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(57) Abstract: A system for selectively handling information. In an example embodiment, the system includes a first mechanism
for processing information pertaining to one or more sub-blocks of a macroblock in a first stream and a second stream, and outputting
& afirst processed stream and a second processed stream in response thereto. A second mechanism selectively combines information
& in the first processed stream and the second processed stream and provides an updated version of the first stream or the second stream
to the first mechanism in response thereto. In a more specific embodiment, the first mechanism includes a processor, such as in intra
4x4 search module, that processes a sub-block of a macroblock by performing intra prediction for the sub-block. The processor is
adapted to process sub-blocks of a macroblock in parallel, such as in a pipelined fashion or via separate engines capable of operating
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SELECTIVE INFORMATION
HANDLING FOR VIDEO PROCESSING

Background Of The Invention

[01] This disclosure relates generally to signal processing and more specifically relates
to systems and methods selectively controlling information flow in a video processing or
image processing system. Video processing systems are employed in various demanding
applications, including high-definition television, missile guidance systems, video
conferencing systems, and Internet video streaming. Such applications often demand
compact cost-effective systems for encoding, transmitting, and decoding high quality
compressed video relatively accurately, quickly, and efficiently.

[02] Efficient video processing systems are particularly important in so-called H.264
applications, where video processing systems are subjected to strict standards. H.264 is
digital video codec standard written by the Joint Video Team (JVT) comprising the
International Telecommunication Union (ITU) — Telecommunication Standardization
Sector (T) and the International Organization for Standardization (ISO) / International
Electrotechnical Commission (IEC) Moving Picture Experts Group (MPEG). The H.264
standard is also called the ISO/IEC MPEG-4 Part 10 standard or the ITU-T H.264
standard.

[03] In an example H.264 system, pixels of a video image are logically grouped into
16x16 blocks of pixels called macroblocks. Each macroblock is grouped into sixteen 4x4
blocks of pixels, called sub-blocks. The image is partitioned into horizontal bands,
called slices, each containing several macroblocks. When this example H.264 system
processes a slice, information from one or more previously processed macroblocks is
typically required before a subsequent macroblock is processed. Similarly, when
processing sub-blocks within a macroblock, information from one or more previously
processed sub-blocks is typically required before a subsequent sub-block is processed.
Unfortunately, such macroblock and sub-block dependencies have resulted in video

processing systems that employ relatively inefficient serial processing of macroblocks



WO 2008/127855 PCT/US2008/058349

and sub-blocks. Furthermore, such video processing systems often employ relatively

inefficient information handling systems and methods.

Brief Description of the Drawings

[04] Fig. 1 illustrates an example video-encoding system.

[05] Fig. 2ais a more detailed diagram illustrating example components of a first
embodiment of an encoding module usable with the video-encoding system of Fig. 1.
[06] Fig. 2b is more detailed diagram illustrating example components of a second
embodiment of an encoding module usable with the video-encoding system of Fig. 1.
[07] Fig. 3ais a more detailed diagram illustrating example components of the intra
prediction module of the encoding module of Fig. 2b.

[08] Fig. 3b is a more detailed diagram illustrating example components of the intra
macroblock processor included in the encoding modules of Fig. 2a and 2b and used for
parallel processing of video macroblock sub-blocks.

[09] Fig. 4 is a more detailed diagram illustrating the neighbor pixel selector and its
interaction with the intra 4x4 search module of Fig. 3b.

[10]) Fig. 5 is a diagram of an example frame illustrating a macroblock, constituent
sub-blocks, and neighboring pixels of adjacent sub-blocks used to process an example
sub-block.

[11] Fig. 6 is a diagram illustrating example labeling of certain rows of pixels of sub-
blocks of the macroblock of Fig. 5 that are employed by the intra macroblock processors
of Figs. 3b and 4 to process other sub-blocks of the macroblock.

[12] Fig. 7 is a diagram illustrating example labeling of certain columns of pixels of
sub-blocks of the macroblock of Figs. 5 and 6 that are employed by the intra macroblock
processors of Figs. 3b and 4 to process other sub-blocks of the macroblock.

[13] Fig. 8 is a first example timing diagram illustrating a first example of when
certain sub-blocks of the example macroblock of Figs. 5-7 are processed by the intra
macroblock processors of Figs. 2-4.

[14] Fig. 9 is a second timing diagram illustrating a second example of when certain
sub-blocks of an example macroblock of Figs. 5-7 are processed by the intra macroblock

processors of Figs. 2-4.
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[15] Fig. 10 is a more detailed diagram illustrating example inputs and outputs of the
neighbor pixel selectors and stream-partitioning MUItipleXer (MUX) of Fig. 4.

[16] Fig. 11 is a more detailed diagram of the first neighbor pixel selector of Fig. 4.
[17] Fig. 12 is a more detailed diagram of the second neighbor pixel selector of Fig. 4.
[18] Fig. 13 is a more detailed diagram of the stream-partitioning MUX of Fig. 10.
[19] Fig. 14 is a diagram of a state machine implemented by the controller of Figs. 1-4.
[20] Fig. 15 is a flow diagram of a method usable with the embodiment of Figs. 1-4.

Detailed Description of Example Embodiments

[21] For the purposes of the present discussion, a macroblock may be any grouping of
pixels in a frame of data. A sub-block may be any grouping of pixels within a
macroblock. A frame may be any set of data that includes plural pixels of information,
where a pixel may be a value associated with a data point. A video frame or an image
frame may be any collection of data points or pixels that are associated with an image or
something to be displayed or viewed. The terms video frame and image frame are
employed interchangeably herein. An image may be any thing or representation of a
thing that can be viewed. A slice of an image frame may be any contiguous grouping of
macroblocks for processing purposes.

[22] An example of a macroblock is the macroblock discussed in the H.264 standard,
which includes a 16x16 group of pixels. An example of a sub-block is a 4x4 grouping of
pixels. An example of documentation that provides details of the H.264 standard is
ISO/IEC 14496-10 (ITU-T H.264), International Standard (2005), Advanced video
coding for generic audiovisual services; which is hereby incorporated by reference as if
set forth in full in this specification for all purposes. For the purposes of generating a
prediction frame, macroblocks within a slice are predicted based on previously predicted
macroblocks so that values associated with one macroblock within the slice depend on
values associated with one or more other macroblocks within the slice.

[23] An example embodiment of a system for facilitating processing sub-blocks of a
macroblock by selectively handling information pertaining to one or more sub-blocks of a
macroblock includes a first mechanism for processing information pertaining to one or

more sub-blocks of a macroblock in a first stream and a second stream, and outputting a
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first processed stream and a second processed stream in response thereto. A second
mechanism selectively combines information in the first processed stream and the second
processed stream and provides an updated version of the first stream and/or the second
stream to the first mechanism in response thereto.

[24] In a more specific embodiment, the first mechanism includes a processor, such as
in intra 4x4 search module. The processor is adapted to process a sub-block of a
macroblock by performing intra prediction for the sub-block. The processor is adapted to
process sub-blocks of a macroblock in parallel, such as in a pipelined fashion or via
separate engines capable of operating in parallel.

[25] The second mechanism includes a first pixel selector for selectively employing a
first portion of the first processed stream and a first portion of the second processed
stream to generate the updated version of the first stream. A second pixel selector
selectively employs a second portion of the first processed stream and a second portion of
the second processed stream to generate the updated version of the second stream. A
controller communicates with the first pixel selector and the second pixel selector. The
controller includes one or more instructions for implementing a state machine for
implementing one or more control signals to selectively direct contents of the first
processed stream and the second processed stream into the updated first stream or the
updated second stream.

[26] The novel design of this example embodiment is facilitated by use of separate
streams to process sub-blocks of a macroblock. By controlling the flow of processed
pixels pertaining to sub-blocks in each stream, the need for a large inefficient MUX and
accompanying memory to store results of processed pixels is obviated. Instead, results
associated with processed sub-blocks in the different streams are directed to the
accompanying processor in a particular sequence and fashion, as needed, without the
need for lengthy memory storage and data-lookup processes, thereby facilitating parallel
processing or pipelining of sub-blocks.

[27]1 For the purposes of the present discussion, a sub-block is said to be fed to a
processor if information pertaining to the sub-block is delivered to the processor to
enable processing of the sub-block by the processor. Processes implemented via the

parallel engines may include implementing intra prediction for a sub-block.
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[28] For the purposes of the present discussion, intra prediction may be any process
wherein one or more pixels in an image frame are predicted or estimated based on
information associated with the image frame. Intra prediction may include the process
wherein values for a predicted sub-block are predicted or ascertained from one or more
other sub-blocks within a macroblock of a frame that includes or is to include the
macroblock. H.264 intra prediction may be any intra prediction wherein the intra
prediction of one sub-block is based on certain previously intra predicted sub-blocks in
accordance with H.264 standards. An intra predicted sub-block may be any sub-block
that has been reconstructed or otherwise predicted based on one or more other sub-blocks
within a macroblock or image frame. ‘

[29] Unlike conventional H.264 systems that must process sub-blocks of a macroblock
serially via a single engine, certain embodiments discussed herein enable use of multiple
engines to process sub-blocks of a macroblock within an image frame. This may result in
improved encoder performance, smaller encoder size, lower power consumption, and
lower cost.

[30] For clarity, various well-known components, such as power supplies, H.264
decoders, computer systems, daughter cards, audio encoders, hosts, user interfaces,
scaling circuits (Q-1), timing clocks, and so on, have been omitted from the figures.
However, those skilled in the art with access to the present teachings will know which
components to implement and how to implement them to meet the needs of a given
application.

[31] Fig. 1 illustrates an example video-encoding system 10. The encoding system 10
includes an encoder 12, which receives video input from a video receiver 14 and provides
resulting compressed video to a video transmitter 16. For illustrative purposes, the
encoder 12 is shown communicating with a display 18 for displaying video frames.

[32] The encoder 12 includes an encoding module 20, a front end 22, a display module
24, and a controller 26. The front end 22 communicates with the video receiver 14, the
encoding module, the display module 24, and the controller 26. The encoding module 20
further communicates with the controller 26. The display module 24 further

communicates with the controller 26 and the display monitor 18.
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[33] In operation, the front end 22 formats input from the video receiver 14, which is
accessible by the display module 24 and the encoding module 20. The controller 26
provides control input to the display module, the front end 22, and the encoding module
20 to facilitate controlling the operation of the encoder. Input video may be displayed via
the display monitor 18 after the video data is formatted and prepared as needed via the
display module 24.

[34] In the present example embodiment, the encoding module 20 compresses input
video in accordance with one or more H.264 standards and via a pipelined or parallel
processing scheme, as discussed more fully below. Example processing functions
implemented via the encoding module 20 include inter prediction, intra prediction,
frequency transforms, quantization, dequantization, frame subtraction and addition, and
entropy coding for video image frames. The encoding module 20 outputs resulting
compressed video to the video transmitter 16. The video transmitter 16 may then
transmit the resulting video to a decoder, to memory, and so on, as needed for a particular
application.

[35] The encoding module 20 may be implemented via one or more daughter cards
that are implemented in accordance with the H.264 standard. The front end 22, display
module 24, and controller 26 may be implemented via various technologies, including,
but not limited to Field Programmable Gate Array (FPGA) and Digital Signal Processor
(DSP) technologies.

[36] Fig. 2a is a more detailed diagram illustrating example components 30-52 of an
encoding module 20 usable with in the video-encoding system 10 of Fig. 1. The
encoding module 20 includes an input-frame memory 30 for receiving and selectively
storing video frames from the front end 22 of Fig. 1. The output of the input-frame
memory 30 is input to a subtracter 32 and to an inter/intra processing module 50. The
subtracter 32 also receives input from the inter/intra processing module 50 and provides
output to a transformation module 36. An output of the transformation module 36 is
coupled to a quantization module 38, also called a quantizer, an output of which is
coupled to inputs of a dequantization module 40 and a entropy encoder 34. In the present
example embodiment, the entropy encoder 34 implements Context Adaptive Binary
Arithmetic Coding (CABAC), and consequently, is also called a CABAC module. The
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CABAC module 34 provides feedback to a rate control module 52, which provides a rate-
control signal to the quantizer 38.

[37] The dequantizer 40 is further coupled to an inverse transform module 42, an
output of which is coupled to an input of an adder 44. An output of the adder 44 is
coupled to an input of a deblocking filter 46. An output of the deblocking filter 46 is
coupled to an input of a reference frame memory 48. An output of the reference frame
memory 48 is coupled to an input of the inter/intra processing module 50. An output of
the inter/intra processing module 50 is coupled to an input of the subtracter 32 and to an
input of the adder 44. The inter/intra processing module 50 further includes a
macroblock processor 54 for processing macroblocks within a slice of a video image
frame, and an intra macroblock processor 60 for processing sub-blocks of macroblocks
processed by the macroblock processor 54. The intra macroblock processor 60 may act
as a nested processing loop within a loop governed by the macroblock processor 54 as
discussed more fully below.

[38] In operation, an input frame from the input-frame memory 30 is provided to the
inter/intra processing module 50 and to the subtracter 32. The frame is processed by the
encoding module 20 in units of macroblocks. Each macroblock is encoded so-called inter
mode or intra mode. In inter mode, the inter/intra processing module 50 executes one or
more instructions to facilitate forming a prediction frame based on a previously
reconstructed and filtered frame, called a reference frame, which is provided to the
inter/intra processing module 50 by the reference frame memory 48. The inter/intra
processing module 50 may also implement inter/intra search and mode-decision
functions. Details of inter/intra search and mode-decision operations that are known in
the art may be readily adapted for use with example embodiments by those skilled in the
art, without undue experimentation.

[39] Reference frames used for inter prediction have been filtered by the deblocking
filter 46. The inter/intra processing module 50 employs a first feedback loop formed by
the inter/intra processing module 50, the subtracter 32, the transformation module 36, the
quantization module 38, the dequantizer 40, the inverse transform module 42, the adder
44, the deblocking filter 46, and the reference frame memory 48 to facilitate generating a

motion-compensated predicted frame from one or more reference frames.
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[40] In intra mode, the inter/intra processing module 50 executes one or more
instructions to facilitate forming a prediction frame based on the current frame, as
opposed to a reference frame. In intra mode, the inter/intra processing module 50
employs a second feedback loop that includes the inter/intra processing module 50, the
subtracter 32, the transformation module 36, the quantizer 38, the dequantizer 40, the
inverse transform 42, and the adder 44 to facilitate computing a reconstructed prediction
frame. For the purposes of the present discussion, the second feedback loop 32, 36, 38,
40, 42, 44 and the first feedback loop 32, 36, 38, 40, 42, 44, 46, 48, are called the
macroblock TQR (Transform, Quantization, Reconstruction) loop 66.

[41] In either mode, a predicted macroblock output by the inter/intra processing
module 50 is subtracted from the corresponding macroblock in the input frame that is
output from the input-frame memory 30. The resulting macroblock is called a residual or
difference macroblock. The difference macroblock is then transformed from a time
domain to a frequency domain, such as via a block transform, by the transformation
module 36. The resulting transformed macroblock is quantized by the quantizer 38;
dequantized by the dequantizer 40; and then transformed back to the time domain via the
inverse transform module 42. The resulting residual macroblock is added to a
corresponding macroblock from the prediction frame that is output from the inter/intra
processing module 50 before the resulting added macroblock, called a reconstructed
macroblock, is input back to the inter/intra processing module 50 as a reconstructed
macroblock.

[42] The output of the quantizer 38 represents a set of quantized transform
coefficients. These coefficients are then entropy encoded via the CABAC 34. Entropy
encoded coefficients and information required to decode a macroblock, such as prediction
mode, quantizer step size, and so on, are output from the CABAC 34 via one or more
bitstreams. The number of bits employed by the CABAC during a given operation may
be fed back to the rate control module 52 to facilitate controlling the rate of the quantizer
38.

[43] Hence, the rate control module 52 generates rate control signals to control the
quantizer 38 and accompanying quantization parameters based on bit-production

feedback from a previous frame, picture complexity, current bit buffer levels. The



WO 2008/127855 PCT/US2008/058349

inter/intra processing module 50 may facilitate performing prediction through motion
search and intra search mode-decision operations; may implement a mode decision
function that selects a best prediction mode for each macroblock to be processed; and
may perform intra compensation to form sample intensity predictions. The terms intra
compensation and intra prediction may be employed interchangeably herein. Intra
compensation involves predicting a macroblock based on information from the current
frame in which the macroblock is a part.

[44] The subtracter 32 outputs residuals representing differences between input data
samples from the input-frame memory 30 and prediction samples from the inter/intra
processing module 50. The transform module 36 converts residuals to the frequency
domain. The quantizer 38 quantizes frequency coefficients, effectively discarding certain
information to reduce entropy in the residuals. The dequantizer 40 and inverse transform
module 42 are adapted to reconstruct transformed and quantized residuals through
dequantization and inverse transform processes. The adder 44 facilitates adding
reconstructed residuals output from the inverse transform module 42 to prediction
samples output from the inter/intra processing module 50 to reconstruct decoded samples
for a given macroblock. The deblocking filter 46 is adapted to remove blocking artifacts
from decoded samples output from the adder 44. The CABAC 34 is adapted to
implement entropy coding in accordance with H.264 main/high profile. The CABAC 34
codes macroblock modes, prediction information, and residuals into H.264-compliant
bitstreams.

[45] For illustrative purposes, the controller 26 is shown communicating with the
inter/intra processing module 50. The controller 26 may communicate with more
modules, different modules, or no modules in Fig. 2a without departing from the scope of
the present teachings. Furthermore, the rate-control module 52 and the controller 26 may
be implemented in a common control module without departing from the scope of the
present teachings.

[46] Example embodiments discussed more fully below pertain primarily to intra
prediction mode and corresponding components within the inter/intra processing module
50 for implementing intra prediction mode. Intra prediction mode may involve

performing intra prediction. However, those skilled in the art with access to the present
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teachings may readily adapt the embodiments to accommodate inter prediction mode
without undue experimentation and without departing from the scope of the present
teachings.

[47] For illustrative purposes, the implementation of Fig. 2a shows a single Transform
Quantization Reconstruction (TQR) loop 66 outside of the inter/intra processing module
50. However, in practice, a hardware implementation may incorporate one or more
separate TQR loops within the intra macroblock processor 60, as discussed more fully
below.

[48] Fig. 2b is more detailed diagram illustrating example components of a second
embodiment of an encoding module 20’ that is usable with the video-encoding system 10
of Fig. 1. The encoding module 20’ of Fig. 2b may be substituted for the encoding
module 20 of Figs. 1 and 2a.

[49] The alternative encoding module 20’ includes the input-frame memory 30, which
may receive input video data from the encoder front end 22 of Fig. 1 and provide input
video data to an intra prediction module 54’ and to an inter prediction module 57. The
reference frame memory 48 receives filtered reconstructed pixel data from the deblocking
filter 46. The filtered reconstructed pixel data represents reference video data
corresponding to reference frames. The reference frames are provided to the inter
prediction module 57 for use in inter prediction calculations.

[S0] In the present example embodiment, output from the intra prediction module 54’
includes residual coefficients, reconstructed pixels, and Sum of Absolute Difference
(SAD) values, which are input to a main decision mode module 59. The SAD values
represent a measure of the quality, efficiency, or accuracy of the intra prediction
performed by the intra prediction module 54°. Note that while the present embodiment
employs SAD values, other figures of merit may be employed in addition to or instead of
SAD values to facilitate selecting a desirable or efficient prediction mode, without
departing from the scope of the present teachings. The accuracy of the intra prediction is
a measure of how closely video data compressed by the intra prediction module 54’
matches corresponding video data from the input frame memory 30.

[S1] In the present embodiment, the intra prediction module 54’ corresponds to the

macroblock processor 54 of Fig. 2a. Intra prediction uses information from reconstructed
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neighboring macroblocks in the same frame to predict the current macroblock. By
sending the prediction mode and the transformed and quantized version of the differences
(coefficients) between the predicted macroblock and the original macroblock to the mode
decision module 59, the information required to reconstruct the macroblock, such as at a
decoder, is reduced or compressed.

[52] Similarly, the inter prediction module 57 outputs coefficients, SAD values,
motion vectors, and reconstructed pixels to the main mode decision module 59. Inter
prediction uses information from a previous frame to predict values for the current
macroblock. One inter prediction technique, which may be implemented via the inter
prediction module 57, involves searching for a group of pixels in the previous frame that
looks similar to a group of pixels in the present frame and then transmitting, to the main
mode decision module 59, a motion vector along with the transformed and quantized
version of the differences between the predicted macroblock and the original macroblock
from the input frame memory 30. Note that the inter prediction module 57 employs
reference frames that have been filtered by the deblocking filter 46 and employs original
input frames from the input frame memory 30 to facilitate performing inter prediction.
Inter prediction may be more efficient or otherwise more preferred than intra prediction
in certain situations and vice versa.

[S3] The main mode decision module 59 includes instructions for selecting a preferred
prediction method based on output from the intra prediction module 54’ and the inter
prediction module 57. For example, in certain situations, such as when a video changes
scenes or otherwise changes suddenly, output from the intra prediction module 54’ may
be chosen as the output of the main mode decision module. In other situations, such as
when successive frames of a video are very similar, output from the inter prediction
module 57 may be chosen as the output of the main mode decision module 59.
Generally, intra prediction is often performed when encoding so-called I-frames, which
are defined in accordance with H.264 standards. Inter prediction is often performed
when encoding P-frames, which are also defined in accordance with H.264 standards.
When encoding P-frames, it is possible to encode a frame using a combination of inter
prediction and intra prediction. Exact details of methods implemented by the main mode

decision module 59 are application specific. Those skilled in the art with access to the

11
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present teachings may readily implement appropriate methods to meet the needs of a
given application, without undue experimentation.

[54] The intra prediction module 54° and the inter prediction module 57 include TQR
loops as discussed more fully below. The TQR loops facilitate reconstructing pixels and
providing residual coefficients to the main mode decision module 59.

[55] The operation of the rate control module 52 in Fig. 2b is similar to the operation
of the rate control module 52 in Fig. 2a in that the rate control modules 52 of Figs. 2a and
2b employ feedback from the CABAC module 34 to facilitate controlling the rate at
which intra prediction and/or inter prediction are performed.

[56] For illustrative purposes, the controller 26 is shown communicating with the intra
prediction module 54° and the inter prediction module 57. Note, however, that the
controller 26 may be implemented separately from the controller 26 of Fig. 1 without
departing from the scope of the present teachings. Furthermore, while only one
controller 26 is shown, multiple controllers may be employed.

[57] Inthe present specific embodiment, the intra prediction module 54’ is adapted to
perform parallel processing of sub-blocks of a macroblock. The intra prediction module
54’ employs a neighbor pixel selector that strategically controls the flow of sub-block
information during intra prediction operations, thereby facilitating parallel processing;
obviating the need to store the sub-block information in a large memory; and further
obviating the need to use a relatively bulky inefficient multiplexer to read from the large
memory, as discussed more fully below.

[58] Fig. 3a is a more detailed diagram illustrating example components of the intra
prediction module 54’ of the encoding module 20° of Fig. 2b. The intra prediction
module 54’ includes an intra 4x4 search engine 60’, also called an intra macroblock
processor. For illustrative purposes, the intra macroblock processor 60° of Fig. 3a is
similar to the intra macroblock processor 60 of Fig. 2a, with the exception that the
macroblock processor 60° of Fig. 3a includes the TQR loop 66. However, a substantially
different macroblock processor may be employed in Fig. 3a with out departing from the
scope of the present teachings.

[59] The intra prediction module 54’ further includes an optional intra 8x8 search

engine 69, and an intra 16x16 search engine 69. The search engines 60’°, 69, 73 include
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individual TQR loops 66, 71, 75. The search engines 60°, 69, 73 receive input
macroblock data from an input frame memory, such as the memory 30 of Fig. 2b, and
also receive reconstructed pixel information from the output of the main mode decision
module 59 of Fig. 2b. The search engines 60°, 69, 73 then perform intra 4x4 prediction,
intra 8x8 prediction, and 16x16 prediction, respectively, to provide corresponding
coefficients, SAD values, and reconstructed pixels to an intra mode decision module 67.
The intra mode decision module 67, then performs implements instructions for selecting
a preferred intra search method. In the present specific embodiment, intra mode decision
module 67 is adapted to select the output of the search engines 60°, 69, 73 that employs
the fewest number of bits to encode a given macroblock.

[60] The search engines 60°, 69, 73 are also called sub-engines, since they are within
the intra prediction module 54°. The output from the search engine 60°, 69, 73 that is
selected by the intra mode decision module 67 is forwarded to main mode decision 59 of
Fig. 2b.

[61] The intra 4x4 search engine 60’ is adapted to process sub-blocks of a macroblock
in parallel, such as in a pipelined fashion, as discussed more fully below. The intra 4x4
search engine 60’ is further adapted to strategically control the flow of information
pertaining to processed sub-blocks of each macroblock, to achieve various efficiencies,
such as obviating the need for a large memory, and to facilitate parallel processing, as
discussed more fully below.

[62] Fig. 3bis a more detailed diagram illustrating example components of the intra
macroblock processor 60° of Fig. 3a, which is included in the intra prediction module 54’
of the encoding module 20’ of Fig. 2b and used for parallel processing of video
macroblock sub-blocks. The intra macroblock processor 60” may be employed as the
intra macroblock processor 60 of Fig. 2a by moving the TQR loop 66 outside of the
macroblock processor 60° of Fig. 3b, as shown in Fig. 2a.

[63] The intra macroblock processor 60°, also called an engine, includes an intra 4x4
neighbor module 62 in communication with an intra 4x4 search module 68, also called an
intra prediction processor. The macroblock processor 60’ further includes the TQR loop
66. The intra 4x4 neighbor module 62 includes a neighbor pixel selector 64, which

communicates with the intra 4x4 search module 68 and the controller 26. The intra 4x4
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search module 68 also communicates with the controller 26. An output of the intra 4x4
search module 68 is input to the macroblock TQR loop 66. For clarity, certain signal
paths have been omitted from the TQR loop 66, such as signal paths from an input-frame
memory, rate-control loops, and so on. The TQR loop 66 outputs reconstructed pixels as
feedback to the intra 4x4 neighbor module 62 and accompanying neighbor pixel selector
64.

[64] In operation, the intra 4x4 neighbor module 62 receives sub-block data, such as
modes and neighboring pixels from previously processed macroblocks. The previously
processed macroblock information may come from the macroblock processor 60°, the
frame memory 30 of Fig. 2, or from another memory or processor. The output of the
intra 4x4 search module 68 includes sub-block data, such as prediction modes and pixel
values for predicting corresponding residuals or difference signals to be transformed,
quantized, dequantized, and inverse transformed by the TQR loop 66 to produce
reconstructed pixels. The output of the intra4x4 search module 68 may also include a
Sum of Absolute Differences (SAD) or other figures of merit, which are used by the intra
mode decision module 67 of Fig. 3a to select a preferred or suitably efficient prediction
mode. Exact details of criteria for determining a preferred or efficient prediction mode
are application specific. Those skilled in the art with access to the present teachings may
readily implement appropriate criteria to meet the needs of a given application without
undue experimentation.

[65] The intra 4x4 neighbor module 62 executes instructions for determining the
neighboring pixels for each sub-block and acts as the main sequencer for the intra
macroblock processor 60°. When neighboring pixels for a given sub-block have been
determined, the intra 4x4 neighbor module 62 directs the intra 4x4 search module 68 to
perform intra prediction calculations and associated comparisons for the sub-block. This is
done for each 4x4 sub-block of pixels within a 16x16 macroblock. Subsequently,
transformation, quantization, inverse quantization and inverse transformation are performed
in the TQR loop 66. Resulting reconstructed pixels are fed back to the intra4x4 neighbor
module 62 for the extraction of neighboring pixels for use in the prediction of subsequent
sub-blocks. The intra 4x4 neighbor module 62 selectively operates on 4x4 sub-blocks of

pixels in two streams or groupings of data, which allows for some pipelining or other
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parallel processing of sub-blocks and macroblocks when sufficient pre-existing
information exists to process each sub-block or macroblock to be processed in parallel.
[66] The neighbor pixel selector 64 acts to control the flow of information pertaining
to the processing of a first sequence of sub-blocks and a second-sequence of sub-blocks,
by strategically feeding back data to the intra 4x4 search module 68 for processing at
certain times so that the intra 4x4 search module 68 has appropriate data available to
process certain sub-blocks in parallel via parallel engines or pipelining, as discussed more
fully below. Use of the neighbor pixel selector 64 may obviate the need for a large
multiplexer and accompanying memory to store and retrieve certain pixel information
needed by the intra 4x4 search module 68.

[67] Although the neighbor pixel selector 64 is shown incorporated within the intra
4x4 neighbor module 62 in the present example embodiment, the neighbor pixel selector
64 can be moved outside of the intra 4x4 neighbor module without departing from the
scope of the present teachings.

[68] In the present example embodiment, the intra 4x4 search module 68 is configured
to accept back-to-back sub-blocks for processing in a pipelined fashion. For the purposes
of the present discussion, two sub-blocks are said to be processed in a pipelined fashion
by a processor, engine, or computer, if at any given time during processing, the
processor, engine, or computer works on processing both macroblocks. The pipelined
processing may be staggered so that the processor, engine, or computer completes
processing of one sub-block before completing processing of the other sub-block. Two
sub-blocks are said to be processed in parallel if at least a portion of each of the two sub-
blocks are being processed simultaneously by one or more processors, engines, or
computers. Hence, two macroblocks that are being processed in a pipelined fashion are
also being processed in parallel but not necessarily vice versa. Parallel processing may
occur via separate processors, engines, or computers that are working or processing
simultaneously. The term “to process a sub-block” may mean to perform any
computation or set of instructions associated with the sub-block, including, but not
limited to generating pixels, reconstructing pixels, determining prediction modes, or other

values for the sub-block.
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[69] Fig. 4 is a more detailed diagram illustrating the neighbor pixel selector 64 and its
interaction with the intra 4x4 search module 68 of Fig. 3b. For illustrative purposes, the
intra 4x4 neighbor module 62 of Fig. 3, which includes the neighbor pixel selector 64, is
not shown in Fig. 4. Furthermore, an additional stream-partitioning MultipleXer (MUX)
80 is shown interfacing output from the neighbor pixel selector 64 with the intra 4x4
search module 68. The stream-partitioning MUX 80 may be implemented within the
intra 4x4 search module 68 or the neighbor pixel selector 64 without departing from the
scope of the present teachings.

[70] The neighbor pixel selector 64 includes a first neighbor pixel selector 74 and a
second neighbor pixel selector 78, which receive input from the intra 4x4 search module
68 and provide output to the stream-partitioning MUX 80. Output from the stream-
partitioning MUX 80 is input to the intra 4x4 search module 68. In intra 4x4 search
module 68 also receives sub-block data as input from the intra 4x4 neighbor module 62
of Fig. 3b; from the input frame memory 30, and/or from another memory or processor.
For the purposes of the present discussion, sub-block data may be any information
associated with a sub-block of a macroblock, including pixels thereof, vectors associated
therewith, etc. The controller 26 communicates with and controls the operation of the
stream-partitioning MUX 80, the first neighbor pixel selector 74, and the second neighbor
pixel selector 78. Note that while the controller 26 of Fig. 4 is shown as the same
controller 26 of the encoder 10 of Fig. 1, the controller 26 of Fig. 4 may be implemented
as a separate controller without departing from the scope of the present teachings.
Generally, while control operations are shown consolidated within the controller 26,
various control operations may be distributed in different control modules.

[71]  In operation, the intra 4x4 search module 68 receives initial sub-block information
associated with a first stream of data from the intra 4x4 neighbor module 62 or another
memory. The intra 4x4 search module 68 performs intra prediction calculations based on
the sub-block information to generate pixels, which are reconstructed via the TQR loop
66 of Fig. 3b and returned back to the intra 4x4 search module 68 via the intra 4x4
neighbor module 62. The reconstructed pixels correspond to a reconstructed, i.e.,
predicted, sub-block. If the reconstructed sub-block is associated with a first

predetermined sequence of sub-blocks in a macroblock, the sub-block is associated with
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so-called data stream 0 (st0), otherwise, the sub-block is considered to be associated with
a second predetermined sequence of sub-blocks within the macroblock and is associated
with data stream 1 (st1).

[72] When processing or predicting sub-blocks in a macroblock according to H.264
standards, the prediction calculations for a subsequent sub-block in a macroblock require
predicted or reconstructed pixels from certain other sub-blocks in the macroblock. Such
processing dependencies affect the order in which sub-blocks of a macroblock are
processed.

[73] In the present example embodiment, the first stream of sub-blocks and the second
stream of sub-blocks are chosen so that when the first stream and the second stream are
selectively fed into the intra 4x4 search module 68, that certain processing dependencies
are met based on information received in the streams to enable parallel processing. In the
present example embodiment, the intra 4x4 search module 68 executes one or more
instructions to enable parallel processing of certain sub-blocks in a given macroblock,
such as via a pipelined engine or via parallel engines, i.e., processors.

[74] When sub-blocks of the first sequence of sub-blocks and sub-blocks of second
sequence of sub-blocks are consecutively numbered 0-15 according to H.264 standards,
the first sequence of sub-blocks includes sub-blocks numbered 0 and 1, and the second
sequence of sub-blocks includes sub-blocks numbered 14 and 15, as discussed more fully
below. The remaining sub-blocks of the first sequence and the second sequence are
chosen to enable the processor, i.e., the intra 4x4 search module 68, to execute one or
more instructions to process pairs of sub-blocks numbered 2 and 4; 3 and 5; 8 and 6; 9
and 7; 10 and 12; and 11 and 13 after sub-blocks 0 and 1 in parallel.

[75] The first neighbor pixel selector 74 receives certain pixels associated with stream
0 and certain pixels associated with stream 1 that are used to process a subsequent sub-
block in the first sequence of sub-blocks. The first neighbor pixel selector 74 then
selectively switches portions of stream 0 and portions of stream 1 onto the output of the
first neighbor pixel selector 74. The output of the first neighbor pixel selector 74
represents an updated stream 0, which is fed back to the intra 4x4 search module 68 via
the stream-partitioning MUX 80, as discussed more fully blow. The first neighbor pixel

selector 74 also receives pixel information as needed pertaining to pixels from one or
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more neighboring macroblocks. The neighboring pixels are selectively inserted into the
updated stream 0 as needed to facilitate processing of one or more subsequent sub-blocks.
[76] The second neighbor pixel selector 78 operates similarly to the first neighbor
pixel selector 74, with the exception that it uses portions of stream 0, stream 1, and
neighboring macroblock pixels to produce an updated stream 1. The intra 4x4 search
module 68 may employ the updated stream 1 to predict, i.e., process one or more
subsequent sub-blocks in the second sequence of sub-blocks. The neighbor pixel
selectors 74, 78 may be implemented via one or MUXs that are selectively controlled by
a state machine running on the controller 26, as discussed more fully below.

[77] Hence the neighbor pixel selector 64, controller 26, and intra 4x4 search module
68 may be considered an example of a system for selectively handling information, where
the system includes a first mechanism 68 for processing information pertaining to one or
more sub-blocks of a macroblock in a first stream (st0) and a second stream (st1), and
outputting a first processed stream (st0 (right0, 1, 4, ...) and st0 (bottom0, 1, 4...)) and a
second processed stream (st1 (bottom2, 3, 6...) and stl (right2, 3, 6 ...)) in response
thereto. A second mechanism 26, 64 selectively combines information in the first
processed stream and the second processed and provides an updated version of the first
stream (st0) or the second stream (st1) to the first mechanism 68 in response thereto.

[78] The first mechanism includes the intra prediction processor, i.c., intra 4x4 search
module 68, which is adapted to process a sub-block of a macroblock. The processor 68 is
adapted to process sub-blocks in parallel, such as by performing intra prediction of sub-
blocks in parallel. The state machine running on the controller 26 includes one or more
instruction for selectively directing contents of the first processed stream and the second
processed stream into the updated first stream (st0) or the updated second stream (st1).
[79] The neighbor pixel selector 64 may be considered an apparatus for selectively
handling information, wherein the apparatus 64 includes a first switch 74 for selectively
outputting a first portion of a first stream and a first portion of a second stream in a third
stream (st0), and a second switch 78 for selectively outputting a second portion of the
first stream and a second portion of the second stream in a fourth stream (st1). The first
stream is associated with a first sequence of sub-blocks of a macroblock, and the second

stream is associated with a second sequence of sub-blocks of a macroblock.
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[80] The third stream (st0) represents an updated version of the first stream (st0). The
fourth stream (st1) represents an updated version of the second stream (st1). The first
sequence and the second sequence include sub-blocks with interdependencies such that
processing of certain sub-blocks from the first sequence may occur in parallel with
processing of certain sub-blocks of the second sequence.

[81] While in the present example embodiment, sub-blocks of macroblocks are
processed in parailel, and macroblocks are processed in parallel. Parallel processing is
facilitated by unique ordering of data streams in accordance with the present teachings.
Those skilled in the art with access to the present teachings may readily implement the
details of a parallel or pipelined processor and accompanying video encoder without
undue experimentation.

[82]  Additional example systems for processing macroblocks and/or sub-blocks in
parallel are disclosed in U.S. Patent Application, Serial No. 11/693,506, entitled
PARALLEL OR PIPELINED MACROBLOCK PROCESSING, and U.S. Patent
Application, Serial No. 11/693,473, entitled INTRA-MACROBLOCK VIDEO
PROCESSING, which are assigned to the assignee of the present invention and which are
hereby incorporated by reference herein.

[83] Fig. 5 is a diagram of an example frame 100 illustrating a macroblock 102 with
sixteen constituent Sub-Blocks (SBs 0->15) numbered 0-15, and neighboring pixels
(pixels A> M) of adjacent sub-blocks used to process an example sub-block (SB9). The
macroblock 102 represents a 16x16 square of pixels, which are partitioned into sixteen
squares of sub-blocks. Each sub-block includes a 4x4 square of sixteen pixels (labeled
a=>p).

[84] With reference to Figs. 3-5, in the present example, pixels A>M of SBs 2, 3, 6, 8
are employed by the intra macroblock processors 60, 60° to predict pixels a=>p of SB 9.
For the purposes of the present example, SB9 is said to be processed when the constituent
pixels a=>p are predicted.

[85] Similarly, other sub-blocks of the macroblock 102 use previously predicted, i.e.,
processed pixels of sub-blocks to the left, upper left, above, and to the upper right of the
sub-blocks. For example, the processing of SB3 requires previously processed pixels

from SBs 0, 2, 1, and 4. As another example, the processing of SB0 uses previously
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processed pixels from neighboring macroblocks. In particular, SBO would use pixels
from the tenth and eleventh sub-block of a macroblock (not shown) above the
macroblock 102. The processing of SBO would also use pixels from the fifteenth sub-
block of the macroblock to the upper left of the macroblock 102; would use pixels from
fifth sub-block of the macroblock to the left of the macroblock 102. Pixel information
from neighboring macroblocks may be retrieved or delivered to the intra macroblock
processors 60, 60° from one or more memories associated with the inter/intra processing
modules 54, 54’ of Figs. 2a and 2b.

[86] Note that the successful processing of SB9 according to H.264 standards depends
upon the results of the processing of SBs 2, 3, 6, 8. Conventionally, sub-blocks are
processed serially due to such dependencies on previously processed sub-blocks.
However, in certain example embodiments discussed herein, sub-blocks are selectively
processed in parallel, such as via a pipelined processor implemented via the intra 4x4
search module 68 of Figs. 3b and 4. The intra 4x4 search module 68 takes advantage of
the ordering of sub-blocks within a macroblock, such as the macroblock 102, as
discussed more fully below.

[87] Processing dependencies for the processing of a given sub-block for the

macroblock 102 are summarized in Table 1 below.

Table 1

Sub-block Previously processed
(SB) Sub-blocks (SBs) in the
current macroblock
used to process the
indicated sub-block
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10 8,9

11 8,9,10,12
12 3,6,7,9

13 6,7, 12

14 9,11,12,13
15 12,13, 14

[88) Fig. 6 is a diagram illustrating example labeling of certain rows of pixels of sub-
blocks (SBs 0->15) of the macroblock 102 of the frame 100 of Fig. 5 that are employed
by the intra macroblock processors 60, 60’ and accompanying intra 4x4 search module 68
of Figs. 2-4 to process other sub-blocks of the macroblock 102. Pixels in a row of pixels
directly above SBO, which are positioned in the macroblock above the macroblock 100,
are labeled ntop0 pixels. The pixel to the upper left of SBO is labeled nc, which is also
called the ncorner pixel.

[89] Pixels in a row of pixels directly above SB1 are labeled ntopl. Pixels in a row of
pixels directly above SB4 are labeled ntop2. Similarly, pixels in a row of pixels directly
above SBS are labeled ntop3. In addition, pixels in a bottom row of a sub-block of a
macroblock diagonally to the upper right of the macroblock 100 are labeled ntop4 pixels.
As an example, with reference to Fig. 5, the ntop0 pixels and the ntop! pixels correspond
to A>D and E->G pixels for SBO, respectively.

[90] Rows of pixels within the macroblock 102 that are used for the processing of
other sub-blocks are labeled bottom0->bottom15, as they are positioned in SBs 0->15,
respectively. As an example, with reference to Figs. 5 and 6, bottom3 and bottom6 pixels
represent pixels A>H used by SB9.

[91] Fig. 7 is a diagram illustrating example labeling of certain columns of pixels of
SBs 0-> 15 of the macroblock 102 of Figs. S and 6 that are employed by the intra
macroblock processors 60, 60’ and accompanying intra 4x4 search module 68 of Figs. 2-
4 to process other sub-blocks of the macroblock 102. Pixels in a column of pixels
directly to the left of SB10, which are positioned in a macroblock directly to the left the
macroblock 102, are labeled nleftO pixels. Pixels in a column of pixels directly to the left
of SB8 are labeled nleftl. Pixels directly to the left of SB2 are labeled nleft2. Similarly,
pixels in a column of pixels directly to the left of SBO are labeled nleft3.
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[92] Columns of pixels within the macroblock 102 that are used for the processing of
other SBs are labeled right0—>right15, as they are positioned in SBs 0->15, respectively.
As an example, with reference to Figs. 3-7, right8 pixels and the bottom pixel of the
right2 pixels are used by the intra 4x4 search module of Figs. 3b and 4, in addition to the
bottom3 and bottom6 pixels of Fig. 6, to process SB9. The right8 pixels correspond to
pixels I>L of Fig. 5. The bottom pixel of the right2 pixels corresponds to pixel M of
Fig. 5.

[93] Processing dependencies for the processing of a given sub-block for the
macroblock 102 in accordance with the present labeling are summarized in Table 2

below.

Table2
Pixels Used to Process Sub-Block
Bk ™ pixels Pixels Pixels Pixel
A,B,C,D E,F,GH LJ, KL M
0 ntopQ ntopl nleft3 ncorner
1 ntop1 ntop2 right0 ntop0
2 bottomO bottom1 nleft2 nleft3
3 bottom1 bottom4 right2 bottomO
4 ntop2 ntop3 rightl ntopl
5 ntop3 ntop4 right4 ntop2
6 bottom4 bottom5 right3 bottom1
bottom5 right pixel of right6 bottom4
bottom5 x4
bottom2 bottom3 nleftl nleft2
bottom3 bottom6 right8 bottom2
10 bottom8 bottom9 nleft0 nleftl
11 bottom9 bottom12 right10 bottom8
12 bottom6 bottom?7 right9 bottom3
bottom?7 right pixel of right12 bottom6
13 bottom7 x4
14 bottom12 bottom13 rightl1 bottom9
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bottom13 right pixel of right14 bottom12
15 bottom13 x4

[94] Direct implementation of a pixel selector to deliver the pixels used to process
each sub-block to the intra 4x4 search module 68 of Figs. 3b and 4 could include a large
MUX implemented via a Field Programmable Gate Array (FPGA) to selectively retrieve
the needed information from a memory. Unfortunately, such an implementation may be
undesirably bulky and inefficient.

[95] The information present in Table 2 may be partitioned into two streams, including
a first stream (stream 0) and a second stream (stream 1) corresponding to Tables 3 and 4
below, respectively. For the purposes of the present discussion, a stream may be any
grouping of one or more signals or sequences of data. A stream may not necessarily be

delivered along a single signal path.

Table 3
Stream 0
Pixels Used to Process Sub-Block
Sub-Block - - - -
Number Pixels Pixels Pixels Pixel

A,B,C,D E,F,GH LJ,KL M
0 ntop0 ntopl nleft3 nc
1 ntopl ntop2 right0 ntop0 (1 pixel)
4 ntop2 ntop3 right1 ntopl (1 pixel)
5 ntop3 ntop4 right4 ntop2 (1 pixel)
8 bottom2 bottom3 nleftl nleft2 (1 pixel)
9 bottom3 bottom6 right8 | bottom?2 (1 pixel)
12 bottom6 bottom7 right9 | bottom3 (1 pixel)

bottom7 right pixel of right12 [ bottom6 (1 pixel)

13 bottom7 x4

[96] Table 3 above further illustrates sub-blocks associated with a first sequence of
sub-blocks, which are associated with the first stream (stream 0). Generally, the intra 4x4

search module 68 of Figs. 3b and 4 processes the sub-blocks of the first sequence of sub-
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blocks (0, 1,4, 5, 8,9, 12, 13) listed in Table 3, in ascending order as listed. With
reference to Fig. 4 and Table 3, pixels used to process a given sub-block of the first
sequence of sub-blocks are output from the first neighbor pixel selector 74 to the intra
4x4 search module 68 via the stream-partitioning MUX 80.

[97] Similarly, Table 4 below illustrates sub-blocks associated with a second sequence
of sub-blocks, which are associated with the second stream (stream 1). Generally, the
intra 4x4 search module 68 of Figs. 3b and 4 processes the sub-blocks of the second
sequence of sub-blocks (2, 3, 6, 7, 10, 11, 14) listed in Table 4, in ascending order as
listed. With reference to Figs. 4 and Table 3, pixels used to process a given sub-block of
the second sequence of sub-blocks are output from the second neighbor pixel selector 78

to the intra 4x4 search module 68 via the stream-partitioning MUX 80.

Table 4
Stream 1
) Pixels Used to Process Sub-Block
S;::L::K Pixels Pixels Pixels Pixel
A,B,C,D E,F,GH LJKL M
bottom0 bottom1 nleft2 nleft3 (1 pixel)
3 bottom1 bottom4 right2 bottomO (1 pixel)
bottom4 bottom5 right3 bottom1 (1 pixel)
bottomS5 right pixel of right6 bottom4 (1 pixel)
7 bottom5 x4
10 bottom8 bottom9 nleft0 nleft1 (1 pixel)
11 bottom9 bottom12 right10 bottom8 (1 pixel)
14 bottom12 bottom13 right11 bottom9 (1 pixel)
bottom13 right pixe] of right14 bottom12 (1 pixel)
15 bottom13 x4

[98] Note that when processing sub-blocks 7 and 15, the EFGH pixels are determined
simply by replicating the D pixel four times.
[99] Pixels associated with the first sequence of sub-blocks, i.e., that are part of the

first stream (stream 0) and that are out from the intra 4x4 search module 68 of Fig. 4 are

24



WO 2008/127855 PCT/US2008/058349

given in Table 5 below. In addition, processed pixels associated with the second stream

(stream 1) that are input the neighbor pixel selector 64 of Fig. 4 are given in Table 5

below.
Table 5
Stream 0 Stream 0 Stream 1 Stream 1
Sub-Block Processed Pixels Sub-Block Processed Pixels
Number Number
0 bottom0 right0
1 bottom1 rightl
4 bottom4 right4 2 bottom?2 right2
5 bottom5 right5 3 bottom3 right3
8 bottom8 right8 6 bottom6 right6
9 bottom9 right9 7 bottom7 right7
12 bottom12 right12 10 bottom10 right10
13 bottom13 right13 11 bottom11 rightl1
14 bottom14 right14
15 bottom15 right15

[100] In Table 5, the order in which a given sub-block is processed by the intra 4x4
search module 68 of Figs. 3b and 4 is given by the position of the sub-block in the Table
5, such that sub-blocks listed earlier in the table are processed before sub-blocks listed
later in the table. For example, the processing of sub-block 2 does not begin until sub-
blocks 0 and 1 have been processed. Pairs of sub-blocks 4 and 2; 5 and 3; 8 and 6; 9 and
7,12 and 10; and 13 and 11 are processed in parallel, such as in a pipelined fashion.
Note that the first sequence of sub-blocks (SBs 0, 1, 4, 5, 8,9, 12, 13) and the second
sequence of sub-blocks (SBs 2, 3, 6, 7, 10, 11, 14, 15) may be altered without departing
from the scope of the present teachings. For example, any sub-blocks of the above-
identified pairs of sub-blocks may be switched to stream 0 or stream 1. For example,
sub-block 2 may be positioned in place of sub-block 4 in stream 0, while sub-block 4 is

positioned in place of sub-block 2 in stream 1.
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[101] With reference to Figs. 4 and 6 and Tables 3 and 5 above, the intra 4x4 search
module 68 uses four sequences of pixels, including a sequence of ABCD pixels, a
sequence of EFGH pixels, a sequence of IJKL pixels and a sequence of M pixels. Note
that the sequence of IJKL pixels in Table 3 may be obtained, at least in part, from the
processed right pixels associated with stream 0 (st0) that are output from the intra 4x4
search module 68 of Fig. 4. The processed right pixels (right0, 1, 4, 5...) of stream 0 in
Table S are processed before they are needed to be input to the intra 4x4 search module
68 as indicated in Table 3.

[102] In addition, certain EFGH pixels (bottom3, 6, 7), ABCD pixels (bottom2, 3, 6, 7),
and M pixels (bottom2, 3, 6) of stream 0 in Table 3 may be obtained from the processed
bottom pixels (bottom2, 3, 6, 7...) of stream 1 as shown in Table 5. Note that certain
EFGH pixels in Table 3 are subsequently used as ABCD pixels or M pixels.

[103] The first neighbor pixel selector 74 of Fig. 4 is configured to output stream 0 as
shown in Table 3 based on certain previously processed pixels shown in Fig. 5 and
neighboring pixel information, such as ntopl, 2, 3, 4 pixels, nleft 1, 2, 3, and nc pixels.
Hence, the first neighbor pixel selector 74 selectively combines a first portion (right0, 1,
4, ...) of the first stream (st0) and a second portion (bottom2, 3, 6, ...) of the second
stream (st1) to facilitate outputting an updated stream 0 (st0) for use in the prediction of
subsequent sub-blocks by the intra 4x4 search module 68.

[104]) Furthermore, note that certain bottom processed pixels (bottom0, 1, 4...) of
stream 0, as shown in Table 5, are usable as the ABCD, EFGH, and M pixels for stream 1
as shown in Table 4. In addition, certain processed right pixels (right 2, 3, 6...) of stream
1, as shown in Table 5, are usable as the IJKL pixels for stream 1 as shown in Table 4.
Note that certain EFGH pixels in stream 1 of Table 4 are: subsequently usable as ABCD
pixels and M pixels.

[105] The second neighbor pixel selector 78 of Fig. 4 is configured to output stream 1 as
shown in Table 4 based on certain previously processed pixels shown in Fig. 5 and
neighboring pixel information, such as nleftl, 2, 3 pixels. Hence, the second neighbor
pixel selector 78 selectively combines a first portion (bottom0, 1, 4, ...) of the first stream

(st0) and a second portion (right2, 3, 6, ...) of the second stream (st1) to facilitate
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outputting an updated stream 1 (st1) for use in the prediction of subsequent sub-blocks by
the intra 4x4 search module 68.

[106] Fig. 8 is a first example timing diagram 110 illustrating a first example of when
certain sub-blocks (SBs 0> 15) of the example macroblock 102 of Figs. 5-7 are
processed by the intra macroblock processors 60, 60° of Figs. 2-4. Approximate example
processing intervals for the SBs 0->15 are plotted along a horizontal time axis 112.

[107] With reference to Figs. 3-7 and Tables 1-5 above, in one operative scenario, the
pipelined engine, i.e., the intra 4x4 search module 68, processes SBs 0, 1,4, 5, 8,9, 12,
and 13 of a first sequence and SBs 2, 3, 6,7, 10, 11, 14, and 15 of a second sequence.
After the intra 4x4 search module 68 processes SB0O and SB1, the intra 4x4 search
module 68 begins processing the following pairs of sub-blocks in parallel, in a pipelined
fashion: SB4 and SB2, SB5 and SB3, SB8 and SB6, SBY and SB7, SB12 and SB10,
SB13 and SB11. Note that by the time any given sub-block is processed, the pixels of the
other sub-blocks used to process the given sub-block have already been processed.
Hence, by capitalizing on the sub-block processing dependencies and the ordering of sub-
blocks within a macroblock, efficient parallel processing of sub-blocks is achieved.

[108] The timing diagram 110 of Fig. 8 is merely illustrative and is not shown to scale.
For example, while, in Fig. 8, the processing of sub-blocks of the above-identified pairs is
shown directly coinciding in time, in practice, the processing intervals are slightly offset
during pipelining, since, for example, SB4 is fed into the pipeline slightly behind SB2 or
vice versa.

[109] While in the present embodiment, the intra 4x4 szarch module 68 is implemented
as a pipelined processor, the intra 4x4 search module 68 may be implemented as two
parallel processors or engines without departing from the scope of the present teachings.
In such an implementation, the processing of sub-blocks of the above-identified pairs of
sub-blocks may directly coincide.

[110] Note that during pipelining, SB2 is fed into the pipelined processor, i.e., the intra
4x4 search module 68, directly behind SB4 so that the pipelined processors 60, 60’ of
Figs. 2-4 begin processing SB2 before the processing of SB4 is complete. Alternatively,
the pipelined processor 68 of Fig. 3b begins processing SB2 just before it begins
processing SB4. Either way, the processing of SB2 and 4 by the pipelined processor 68
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overlap so that parallel processing is achieved. Similarly, the other pairs of sub-blocks
(SB5 and SB3, SB8 and SB6, SB9 and SB7, SB12 and SB10, SB13 and SB11) are
processed by the pipelined processor 68 in a pipelined fashion.

[111] Fig. 9 is a second timing diagram 120 illustrating a second example of when
certain sub-blocks (SBs 0> 15) of the macroblock 102 of Figs. 5-7 may be processed by
the intra macroblock processors 60, 60’ of Figs. 2-4. Processing intervals for the SBs
0->15 are plotted along the horizontal time axis 112. The timing diagram 120 of Fig. 9 is
similar to the timing diagram of Fig. 8 with the exception that the first sequence of sub-
blocks (SBs 0,1,2, 3, 8,9, 10, 11) in Fig. 9 is altered relative to the corresponding
sequence in Fig. 8. Similarly, the second sequence of sub-blocks (SBs 4, 5,6, 7, 12, 13,
14, 15) is altered relative tot he corresponding sequence in Fig. 8. Accordingly, the
following pairs of sub-blocks are processed in parallel by the pipelined processor 68 of

Fig. 4: SB2 and SB4, SB3 and SB5, SB6 and SB8, SB7 and SB9, SB10 and SB12, SB11
and SB13.

[112] Fig. 10 is a more detailed diagram illustrating example inputs and outputs of the
neighbor pixel selectors 74, 78 and stream-partitioning MUX 80 of Fig. 4. An additional
pixel-vector capture module 82 is shown providing stream 0 (st0) and stream 1 (st1)
outputs to the first neighbor pixel selector 74 and the second neighbor pixel selector 78.
The pixel-vector capture module 82 may be implemented within the intra 4x4 search
module 68 of Fig. 4.

[113] The pixel-vector capture module 82 receives a stream of reconstructed pixels
(labeled recon_pixel x, where x is an integer between 0 and 7) and selectively outputs
portions of st0 and stl in parallel to the neighbor pixel selectors 74, 78. For example, the
pixel-vector capture module 82 outputs the processed bottom pixels of st1 (st1_bottom)
and the processed right pixels of stO (st0_right), as shown in Table 5, to the first neighbor
pixel selector 74 in response to an appropriate control signal from the controller 26.
Similarly, the pixel-vector capture module 82 outputs the processed bottom pixels of st0
(st0_bottom) and the processed right pixels of st1 (st1_right), as shown in Table 5, to the
second neighbor pixel selector 78 in response to an appropriate control signal from the

controller 26.
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[114] The first neighbor pixel selector 74 receives various pixels associated with one or
more previously processed neighboring macroblocks (n-pixels), including the eight-bit
corner pixel (nc), nleft1, nleft2, nleft3, ntop0, ntop1, ntop2, ntop3, and ntop4. These
pixels are received from the intra 4x4 search module 68 or from another memory or
processor that handles or otherwise stores results associated with processed macroblocks.
Note that the neighboring pixels input to the first neighbor pixel selector 74, the
processed st1 bottom pixels, and the processed stO right pixels, are used by the neighbor
pixel selector 74 to output the updated st0 pixels in accordance with Table 3 above. The
updated st0 pixels include ABCD pixels (ABCD_st0), EFGH pixels (EFGH_st0), DKL
pixels (IJKL _st0), and M pixels (M-st0) associated with 5t0. The first output stream (st0)
is input to the stream-partitioning MUX 80.

[115] Similarly, the second neighbor pixel selector 78 receives neighboring pixel
information, such as nleft0, nleft1, nleft2, and nleft3 pixels, from one or more
neighboring macroblocks. Various neighboring pixels are shown in Figs. 6 and 7. The
neighboring pixels input to the first neighbor pixel selector 78 in combination with the
processed st0 bottom pixels and st1 right pixels are employed by the second neighbor
pixel selector 78 to provide the updated stl pixels as indicated in Table 4 above. The
updated st1 pixels include ABCD pixels (ABCD_st1), EFGH pixels (EFGH_st1), IJKL
pixels (IJKL_st1), and M pixels (M-st1) associated with st1. The second output stream
(stl) is also input to the stream-partitioning MUX 80.

[116] The stream-partitioning MUX 80 receives st0 pixels and st1 pixels in a particular
format or grouping from the first neighbor pixel selector 74 and the second neighbor
pixel selector 78, respectively, and reformats them as needed, to provide pixels A-M for
st0 and st1 on individual output lines for use by the intra 4x4 search module 68 of Figs.
3band 4.

[117] Timing and control of operational modes and behaviors of the various modules
74, 78, 80, 82 of Fig. 10 are governed by a state machine implemented by the controller
26, as discussed more fully below.

[118] In the present example embodiment, a pixel is defined via eight bits ([7:0]) of
information. Accordingly, a group of four pixels, such as bottomO pixels output from the

pixel-vector capture module 82 are described by thirty-two bits ([31:0]). Note that
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different pixel resolutions (e.g., 10, 12, 16, or 24 bits per pixel) may be employed to
encode pixels without departing from the scope of the present teachings.

[119] Fig. 11 is a more detailed diagram of the first neighbor pixel selector 74 of Fig. 4.
With reference to Figs. 10 and 11, the first neighbor pixel selector 74 includes a first
MUX 130, a second MUX 132, a third MUX 134, and a fourth MUX 136, which are
controlled by a stream 0 block-number input (block_num_st0) from the controller 26 of
Fig. 10. Outputs of the MUXs 130-136 are input to corresponding registers 140-146, the
outputs of which are selectively clocked or enabled by a stream 0 output-capture signal
(st0_out_capture) from the controller 26.

[120] Output from the first register 140 represents M pixels (M_st0) associated with st0,
as indicated in Table 3 above. Neighboring pixels, one pixel from each of the
neighboring groups of pixels ntop0, ntop1, ntop2, and nleft2, and one pixel from each
group of bottom pixels bottom 2, bottom 3, and bottom 6, are obtained from the ABCD
pixels of stream 0, as indicated in Table 3 above and in Fig. 11. Output of the second
register 142 represents ABCD pixels (ABCD_st0); output from the third register 144
represents EFGH pixels (EFGH_st0); and output from the fourth register 146 represents
IJKL pixels (IJKL_st0) associated with the first stream s10.

[121] The first MUX 130 receives corner pixels (nc), nleft2 pixels, and ABCD_st0
pixels output from the second register 142 as input outputs M_st0 to the first register 140
in response to the appropriate control signal (block_num_st0) from the controller 26.
[122] A fifth register 138 receives st1_bottom pixels as input and forwards the
st1_bottom pixels to the second MUX 132 in response to a stream 0 output-capture signal
(st0_out_capture) signal from the controller 26. The second register 132 also receives
ntop0 pixels and EFGH pixels output from the third register 144 as input and provides
ABCD pixels to the second register 142 in response to an appropriate control signal
(st0_out_capture) from the controller 26.

[123] A fanout module 148 is coupled between the output of the third register 144 and
an input to the third MUX 134. The fanout module 148 replicates the right bottom7 pixel
four times for use in processing SB 13 for each macroblock, as indicated in Table 3
above. The right bottom7 pixel is obtained from the output of the third register 144. The

third MUX 134 also receives various neighboring pixels, including ntop1, ntop2, ntop3,
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and ntop4 as input. These neighboring pixels are used to construct the EFGH pixels for
stream 0, as indicated in Table 3 above.

[124]) The fourth MUX receives processed right pixels for stream 0 (st0_right) as
indicated in Table 5 above, and receives nleft1, and nleft3 pixels for use in providing
IJKL pixels for stream 0 (IJKL_st0) as indicated in Table 3 above.

[125] The operation of the first neighbor pixel selector 74 of Fig. 11 should be clear
with reference to Fig. 11, Table 5, and Table 3 above. Outputs of the first neighbor pixel
selector 74 are listed in Table 3 and are derived in part from the st0 and st1 sequences of
processed pixels in Table 5. The various components, including the MUXSs 130-136,
registers 140-148, and fanout 148 are employed to selectively generate the contents as
shown in Table 3 based on input as shown in Table 5 anc. neighboring sub-block input.
The neighboring sub-block input may be obtained from raemory within the intra 4x4
neighbor module 62 or intra 4x4 search module 68 of the intra macroblock processors 60,
60’ of Figs. 2-4.

[126] Fig. 12 is a more detailed diagram of the second neighbor pixel selector 78 of Fig.
4. The second neighbor pixel selector 78 includes a top MUX 160, a middle MUX 162,
and a bottom MUX 164, which provide output to a top register 170, a first middle register
172, and a bottom register 174. A second middle register 176 receives input from a third
middle register 180.

[127) With reference to Figs. 10 and 12 and Tables 4 and 5, the top register 160 receives
certain neighboring pixels, namely, nleft 3 and nleft 1 pixels, and receives ABCD pixels
associates with stream 1 (ABCD _st1) as input and provides M pixels for stream 1
(M_st1) as output to the top register 170. The top register 170 is selectively clocked or
enabled by an appropriate control signal (st1_out_capturz) from the controller 26 of Fig.
10. The ABCD _stl pixels input to the top MUX 160 are received from the second
middle register 176.

[128] The output of the second middle register 176 represents ABCD pixels for stream

1 (ABCD _st1) as indicated in Table 4 above. The output of the middle register 172
represents EFGH pixels for stream 1, as indicated in Table 4 above. Similarly, the output
of the bottom register 174 represents IJLK pixels for stream 1 (IJLK_st1) as indicated in
Table 4 above.
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[129] The middle MUX 162, which facilitates forming the EFGH_st1 pixels of Table 4
receives output from a second fanout module 178, which is coupled between the output
of the middle register 172 and an input of the middle MUX 162. The second fanout
module 178 replicates the right bottom5 pixel four times to facilitate SB7 processing and
replicates the right bottom13 pixel four times to facilitate SB15 processing. Note that in
Table 4, the EFGH pixels may be obtained from the processed bottom pixels of stream 0
(st0_bottom) as shown in Table 5. Note that the processed stO_bottom pixels are also
input to the third middle register 180 and selectively forwarded to the second middle
register 176 in response to a cycle0_st0 control signal from the controller 26. The bottom
MUX 164 receives processed right pixels from stream 1 (st1_right) as shown in Table 5,
and receives nleft2 and nleft0 neighboring pixels, as needed to obtain the IJKL pixels
(IJKL_st1) as shown in Table 4.

[130] The operation of the second neighbor pixel selector 78 of Fig. 12 should be clear
with reference to Fig. 12, Table 5, and Table 4 above. Outputs of the second neighbor
pixel selector 74 are listed in Table 4 and are derived in part from the st0 and stl
sequences of processed pixels in Table 5. The various components 160-180 are
employed to selectively generate the contents as shown in Table 4 based on input as
shown in Table 5 and neighboring sub-block input. The neighboring sub-block input
may be obtained from memory within the intra 4x4 neighbor module 62 or intra 4x4
search module 68 of the intra macroblock processors 60, 60’ of Figs. 2-4.

[131] The timing, modes, and operation of the components 160-180 of the second
neighbor pixel selector 78 are controlled by a state machine running on the controller 26
of Fig. 10. For example, the controller 26 controls the MUXSs 162-164 via a
block_num_stl1 control signal; controls the registers 170-176 via an st1_out_capture
control signal, and controls the third middle register 180 via a cycle0_stO control signal.
Such control signals are discussed more fully below.

[132] Fig. 13 is a more detailed diagram of the stream-partitioning MUX 80 of Fig. 10.
The stream-partitioning MUX 80 includes four sub-MUXs, including a first sub-MUX
190, a second sub-MUX 192, a third sub-MUX 194, and a fourth sub-MUX 196. The
sub-MUXs 190-196 are controlled via an output-stream selection control signal

(output_stream_sel) from the controller 26 of Fig. 10. The first sub-MUX 190 receives
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M pixels associated with the first stream (M_st0), and M pixels associated with the
second stream (M_st1) on separate eight-bit inputs and outputs individual M-pixel values
on an eight-bit M-pixel output (rpixel M) in response to an appropriate control signal.
[133] The second sub-MUX 192 receives ABCD pixels (ABCD_st0) for the first stream
(stream O (st0)) and ABCD pixels (ABCD _st1) for the second stream (stream 1 (st1)) and
selectively outputs four individual eight-bit pixel busses (rpixel_A, rpixel_B, rpixelC,
rpixel D) for the ABCD pixels for st0 and stl.

[134] Similarly, the third sub-MUX receives st0 EFGH pixels (EFGH_st0) and st1
EFGH pixels (EFGH_st1) and selectively outputs four individual eight-bit pixel busses
(rpixel_E, rpixel F, rpixel G, rpixel_H) for the EFGH pixels for st0 and st1.

[135] Similarly, the fourth sub-MUX 196 receives st0 IJKL pixels (IJKL_st0) and stl
IJKL pixels (IJKL_1) and selectively outputs four individual eight-bit pixel busses
(rpixel I, rpixel_J, rpixel K, rpixel_L) for the IJKL pixels for st0 and st1.

[136] Hence, the stream-partitioning MUX 80 is used to select between st0 and stl
neighbor pixels. The stream-partitioning MUX 80 also breaks out the larger pixel group
buses (ABCD _st0, ABCD _stl, etc.) into the individual pixel buses (rpixel_A, rpixel_B,
rpixelC, rpixel D, etc.) as needed.

[137] Fig. 14 is a diagram illustrating a state machine 26 corresponding to the controller
26 of Figs. 1-4. The state machine 26 is also called a neighbor pixel sequencer. The state
machine 26 includes various states 200-218, which determine various output control
signals shown in the embodiments of Figs. 10-14. The states are transitioned when
certain conditions are met.

[138] In Fig. 14, the names of each state occur above a horizontal line in each state.
Example values of specific output signals of the controllzr 26 when the controller 26 is in
the given state are indicated below each horizontal line. Similarly, each transition
between states is identified by a condition that causes the given transition above a
horizontal line, and certain control signal values establisied during each transition are
indicated below the horizontal line for each transition.

[139] The states include an idle state 200, an st0_load state 202, an st0_out state 204, a
delay state 206, a st1_load state 208, an st0_wait step 210, an st0_out step 212, an
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st0_capture (st0_cap) state 214, an st _wait step 216, and an st _capture (st1_cap) state
218.

[140] In operation, the state machine 26 facilitates processing sub-blocks of a
macroblock approximately as shown in Fig. 8. Hence, SBs 0 and 1 are processed before
SB4. SB2 and 4 are processed in a pipelined fashion, and so on. At certain times during
processing, the loading of stl is delayed (e.g., delay state 206); the capturing of st0 is
delayed (e.g., st0_wait state 210); the capturing of stl is delayed (stl_wait state 216); and
the setting of corresponding control signals is selectively delayed. With reference to
Figs. 8 and 14, for example, the loading of data used to process stl is delayed until SBs 0
and 1 are processed in st0. Note that SBs 0, 1,4, 5, 8,9, 12, and 13 correspond to st0,
and SBs 2, 3,6, 7, 10, 11, 14, and 15 correspond to stl, as indicated in Tables 3 and 4
above.

[141] The idle state 200 is entered when the controller 26 is reset or when the controller
transitions from the st1_wait state 216. The controller 25 transitions from the st1_wait
state 216 to the idle state 200 when the sub-block number associated with stl is 15
(blk_num_stl = 15) and when pixel reconstruction is do1e, as indicated by a pixel-
reconstruction flag (recon_done). When in the idle state 200, a block-counter reset flag is
set to 1 (blk_counter_rst = 1) and a delay-counter clearing flag is set to 1 (delay_cnt_clr =
1) so that the block counter is cleared and the delay courter is reset. Certain modules,
such as modules for generating certain signals, such as tlock counters and delay counters,
which may be implemented via 3-bit counters, are not shown in Fig. 14. However, those
skilled in the art with access to the present teachings will know which components to
implement and how to implement them to meet the needs of a given application without
undue experimentation.

[142] The controller 26 transitions from the idle state 200 to the st0_load state 202 to
begin loading st0 pixel information when a start flag (mb_start) is set. The mb_start flag
may be set when the controller 26 detects that information required to process SB 0 is
available. Exact details of mechanisms for determining when a SB 0 is ready for loading
are application specific and may be determined by those skilled in the art without undue
experimentation. During the transition from the idle state 200 to the st0_load state 202, a

cycle counter value for st0 is set to 1 (cycleQ _st0 = 1).
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[143] Subsequently, during the st0_load state 202, the «t0_out_capture control signal is
set to 1, and an source_capture flag is set to 1. The st0_out_capture control signal
triggers the registers 138-146 for the first neighbor pixel selector 74 shown in Fig. 11.
After st0_out_capture and source_capture are appropriatzly set, the controller transitions
to the st0_out state 204.

[144] In the stO_out state 204, an output-stream selection control signal
(output_stream_sel) is set to 0, and a search-start flag is set to 1 (search_start = 1). The
output_stream_sel signal controls the sub-MUXs 190-166 of the stream-partitioning
MUX 80 of Fig. 13. The search_start flag affects enables the intra 4x4 search module 68
of Fig. 4 to start the intra prediction process, also called he search process.

[145] From the st0_out state 204, the controller 26 may transition to the delay state 206
or the st0_wait state 210, depending on which conditions; are met. If the current sub-
block number associated with st0 is greater than one (blk._num_st0 > 1), then the
controller 26 clears the delay counter (delay cnt_clear = 1), and enters the delay state
206, where the delay counter is enabled (delay cnt_en = 1). Otherwise, if blk num_st0 <
1, then the controller 26 enters the st0_wait state 210.

[146] The controller 26 transitions from the delay state 206 to the st1_load state 208
when the delay counter reaches 4 (delay cnt =4). Wher in the st1_load state 208, the
controller sets the output-capture control signal for st1 to 1 (st1_out_capture = 1) and sets
the source-capture flag to 1 (souce capture = 1). The st _out_capture control signal
controls the output registers 170-174 of the second neiglibor pixel selector 78 of Fig. 12.
[147] Subsequently, after stl_out_capture and source_capture are set in the st1_load
state 208, the controller transitions to the st1_out state 2 2. In the stl_out state 212, an
output-stream selection signal is set to 1 (output_stream_sel = 1), and a search-start flag
is set to 1 (search_start = 1).

[148] The controller 26 transitions from the st1_out state 212 to the st0_wait state if the
current sub-block number associated with stl is less than eleven (blk_num_stl <11).
Otherwise, if blk_num_stl >= 11, then the controller 26 transitions from the st1_out state
212 to the stl_wait state 216.

[149] The controller 26 transitions from the st0_wait state 210 to the st0_cap state 214

when a reconstruction flag (recon_done) is set, indicating that certain pixel reconstruction

35



WO 2008/127855 PCT/US2008/058349

has been completed. During the transition, a cycle counter for st0 is set to one
(cycle0_st0 =1).

[150] In the st0_cap state 214, the block counter associited with st0 is periodically
incremented by 1 via a block counter (block_cnt_st0_incr = 1) and a cycle 1 flag for st0
is set to one (cyclel_st0 = 1), indicating that cycle 1 is underway. The controller 26
transitions from the st0_cap state 214 to the st1_wait state 216 when the block number
associated with st0 is greater than or equal to two (blk_nam_st0 >=2). Note that the
value of the blk_num_st0 acts as a control signal for con:rolling the MUXs 130-136 of
the first neighbor pixel selector 74 of Fig. 11. Similarly, blk_num_st! acts as a control
signal for controlling the MUXSs 160-164 of the second r eighbor pixel selector 78 of Fig.
12.

[151] The controller 26 transitions from the st1_wait stite 216 to the st1_cap state 218
when the current sub-block number associated with stl is greater than or equal to eleven
(blk_num_stl >= 11). During the transition, the reconstruction flag indicating that
certain pixel reconstruction is complete is set (recon_dore), and the cycle0_stl flag is set
to one (cycle0_stl = 1).

[152] During the st1_cap state, the block counter assoc ated with stl is periodically
incremented by 1 (block cnt _stl_incr = 1), and the cycle:_st1 flag is set to one

(cyclel stl =1). The controller 26 transitions from the st1_cap state 218 to the st0_load
state 202 when blk_num_stl < 11, and transitions to the st1_load state 208 when

blk_ num_stl >=11.

[153] Hence, the controller 26, i.e., neighbor pixel sequencer, generates control signals
required for operating the neighbor pixel selector 64 and accompanying components 74,
78 of Figs. 4 and 10-12 and for the stream-partitioning MUX 80 as shown in Figs. 4, 10,
and 13.

[154] In the present example embodiment, in addition to the state machine illustrated in
Fig. 14, the controller 26 includes two 3-bit counters to track the sub-block number
currently being processed by each stream (st0 and st1). .Associated counter values are
converted to the actual sub-block number being processed by each stream through a
mapping operation, which may be implemented in hardv-are or software by those of

ordinary skill in the art, without undue experimentation. The controller 26 also contains a
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3-bit delay counter used to create a sufficient delay between assertions of search_start
signal. The controller 26 may also include additional modules, such as logic modules for
decoding the current block number (block_num) to control the selection inputs of various
MUXSs in the two stream pixel selectors 74, 78 of Figs. 4, and 10-12 and stream-
partitioning MUX 80 of Figs. 4, 10, and 13 according to Tables 3 and 4.

[155] Hence, the controller 26 may be considered an apparatus that exhibits a first
operational mode (202, 204, 210, 214) associated with a first stream of data (st0),
wherein the first stream of data is associated with a first sequence of sub-blocks (SBs 0,
1,4,5,8,9,12, 13). A second operational mode (208, 212, 216, 218) is associated with a
second stream of data (st1), wherein the second stream of data is associated with a second
sequence of sub-blocks (SBs 2, 3, 6,7, 10, 11, 14, 15). A processor for facilitating
implementing the controller 26 executes one or more instructions included in the
controller 24 for causing the first operational mode (202, 204, 210, 214) to switch to the
second operational mode (208, 212, 216, 218) and to gererate a control signal (e.g.,
stl_out_capture = 1, output_stream_sel = 1, etc.) in response thereto. The control signal
is adapted to cause a selector, such as the neighbor pixel selector 64 of Fig. 4, to output a
portion of the first stream (st0) or to output a portion of the second stream (st1) based on
a block number associated with a sub-block of the first sequence or the second sequence.
[156] Alternatively, the controller 26 may be considered an apparatus that implements
one or more instructions for determining a block number of a sub-block, wherein the sub-
block is associated with a first stream or a second stream, and providing a first indication
(e.g., st0_load, st1 load, etc.) in response thereto; and then generating one or more
control signals (e.g., st0_out_cap, block_ num_st0, stl_out_cap, block_ num_stl, etc.) to
control output of a third stream (e.g., st0) or fourth stream (e.g., st1) from a pixel selector
(e.g., neighbor pixel selector 64) based on the operational mode and the first indication.
[157] Fig. 15 is a flow diagram of a method 230 usable with various embodiments
disclosed herein, such as the embodiment depicted in Fig. 4. The method 230 includes a
first step 232, which includes outputting reconstructed pixel information pertaining to a
sub-block of a macroblock. The pixel information is output in a first stream (st0) and a

second stream (st1).
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[158] Subsequently, a second step includes selectively directing contents of the first
stream and the second stream to a processor, such as the intra 4x4 search module 68 of
Fig. 4. The contents are directed in an arrangement, order, and/or timing that facilitates
parallel processing of one or more sub-blocks of the one or more macroblocks based on
the first stream and the second stream.

[159] A subsequent third step 236 includes outputting newly processed pixel
information, representing neighbor pixel information for a subsequent sub-block to be
processed, via the first stream and the second stream. The method 230 then completes.
[160] For the purposes of the present discussion, neighbor pixel information may be any
information pertaining to pixels of a sub-block that are adjacent to a given sub-block.
Reconstructed pixel information may be any information or data pertaining to a pixel that
has been compressed and then decompressed or otherwise operated on by a function and
then subsequently operated on by an inverse of the function. For example, pixel data that
has been subtracted from an original representation of the pixel data, then transformed,
quantized, dequantized, inverse transformed, and then added to the original
representation, may be considered a type of reconstructed pixel data.

[161] Although embodiments of the invention are discussed primarily with respect to an
H.264-compliant encoder, embodiments of the present invention may be adapted to any
video encoder wherein selective information handling as described herein may be useful,
such as in encoders employing parallel engines or a pipelined engine for processing
macroblocks and sub-blocks. Furthermore, any acceptable architecture, topology,
protocols, or other network and digital processing features can be employed. In general,
certain modules and components discussed herein can be implemented in hardware,
software, or via any device with processing ability or other requisite functionality.
Techniques described herein may be suitable for use with other types of information
processing. For example, the processing can operate on previously compressed or
encoded image information, on three-dimensional image data, on non-visual information,
etc.

[162] Although specific processing sequences have been provided for processing data
such as macroblocks, sub-blocks, slices, etc., any other suitable processing order or

approach may be used. For example, any number of contiguous macroblocks may be in a
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slice. A slice can be a horizontal band but can also span horizontal bands, or be oriented
vertically, diagonally, or in other non-horizontal directions.

[163] Arrowheads shown on signal paths between various modules are for illustrative
purposes only. For example, various communication paths or connecting lines, which
appear to be unidirectional in the drawings, may be bidirectional without departing from
the scope of the present teachings.

[164] Although processes of the present invention and the hardware executing the
processes may be characterized by language common to a discussion of video processing
(e.g., “FPGA,” “CABAC,” “intra 4x4 module,” etc.), it should be apparent that
operations of an embodiment of the present invention can execute on any type of suitable
hardware or software in any communication relationship to another device on any type of
link or network.

[165] Although a process of the present invention may be presented as a single entity,
such as software or hardware executing on a single machine, such software can readily be
executed on multiple machines. That is, there may be multiple instances of a given
software program, a single program may be executing on two or more processors in a
distributed processing environment, parts of a single program may be executing on
different physical machines, etc. Furthermore, two different programs, such as a
transformation program and a quantization program, can be executing in a single module,
or in different modules.

[166] Although the invention has been discussed with respect to specific example
embodiments thereof, these embodiments are merely illustrative, and not restrictive, of
the invention. In the description herein, numerous specific details are provided, such as
examples of components and/or methods, to provide a thorough understanding of
discussed example embodiments. One skilled in the relevant art will recognize, however,
that certain embodiments can be practiced without one or more of the specific details, or
with other apparatus, systems, assemblies, methods, components, materials, parts, and/or
the like. In other instances, well-known structures, materials, or operations are not
specifically shown or described in detail to avoid obscuring aspects of the example

embodiments discussed herein.
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[167] A “machine-readable medium” or “computer-readable medium” may be any
medium that can contain, store, communicate, propagate, or transport the program for use
by or in connection with the instruction execution system, apparatus, system or device.
The computer readable medium can be, by way of example only but not by limitation, an
electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system,
apparatus, system, device, propagation medium, or computer memory.

[168] A “processor” or “process” includes any human, hardware and/or software
system, mechanism or component that processes data, signals or other information. A
processor can include a system with a general-purpose central processing unit, multiple
processing units, dedicated circuitry for achieving functionality, or other systems.
Processing need not be limited to a geographic location, or have temporal limitations.
For example, a processor can perform its functions in “real time,” “offline,” in a “batch
mode,” etc. Portions of processing can be performed at different times and at different
locations, by different (or the same) processing systems. A computer may be any
processor in communication with a memory.

[169] Reference throughout this specification to “one embodiment”, “an example
embodiment”, or “a specific embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment not necessarily included in
all possible example embodiments. Thus, respective appearances of the phrases “in one
embodiment”, “in an embodiment”, or “in a specific embodiment” in various places
throughout this specification are not necessarily referring to the same embodiment.
Furthermore, the particular features, structures, or characteristics of any specific
embodiment or example embodiment discussed herein may be combined in any suitable
manner with one or more other embodiments. It is to be understood that other variations
and modifications of the embodiments described and illustrated herein are possible in
light of the teachings herein, and the variations are to be considered as part of the spirit
and scope of the present invention.

[170] Example embodiments discussed herein may be implemented in whole or in part
by using a programmed general purpose digital computer; by using application specific
integrated circuits, programmable logic devices, FPGAs, optical, chemical, biological,

quantum or nanoengineered systems or mechanisms; and so on. In general, the functions
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of various embodiments can be achieved by any means as is known in the art.
Distributed or networked systems, components, and/or circuits can be used.
Communication, or transfer of data may be wired, wireless, or by any other means.

[171] It will also be appreciated that one or more of the elements depicted in the
drawings/figures can also be implemented in a more separated or integrated manner, or
even removed or rendered as inoperable in certain cases, as is useful in accordance with a
particular application. It is also within the spirit and scope of the present invention to
implement a program or code that can be stored in a machine-readable medium to permit
a computer to perform any of the methods described above.

[172] Additionally, any signal arrows in the drawings/figures should be considered only
as exemplary, and not limiting, unless otherwise specifically noted. Furthermore, the
term “or” as used herein is generally intended to mean “and/or” unless otherwise
indicated. Combinations of components or steps will also be considered as being noted,
where terminology is foreseen as rendering the ability to separate or combine is unclear.
[173] As used in the description herein and throughout the claims that follow “a”, “an”,
and “the” include plural references unless the context clearly dictates otherwise.
Furthermore, as used in the description herein and throughout the claims that follow, the
meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
[174] The foregoing description of illustrated example embodiments, including what is
described in the Abstract, is not intended to be exhaustive or to limit the invention to the
precise forms disclosed herein. While certain example embodiments are described herein
for illustrative purposes only, various equivalent modifications are possible within the
spirit and scope of the present invention, as those skilled in the relevant art will recognize
and appreciate. As indicated, these modifications may be made in light of the foregoing
description of illustrated example embodiments and are to be included within the spirit
and scope of the present invention.

[175] Thus, while example embodiments have been described herein, a latitude of
modification, various changes and substitutions are intended in the foregoing disclosures,
and it will be appreciated that in some instances some features of embodiments will be
employed without a corresponding use of other features without departing from the scope

and spirit of the invention. Therefore, many modifications may be made to adapt a
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particular situation or material to the essential scope and spirit of the present invention. It
is intended that the invention not be limited to the particular terms used in following
claims and/or to a particular embodiment disclosed as the best mode contemplated for
carrying out this invention, but that the invention will include any and all embodiments

and equivalents falling within the scope of the appended claims.
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WHAT IS CLAIMED IS:

1. A system for selectively handling information, the system comprising:

first means for processing information pertaining to one or more sub-blocks of a
macroblock in a first stream and a second stream, and outputting a first processed stream
and a second processed stream in response thereto; and

second means for selectively combining information in the first processed
stream and the second processed stream and providing an updated version of the first

stream or the second stream to the first means in response thereto.

2. The system of Claim 1, wherein the first means includes:

a processor that is adapted to process a sub-block of a macroblock.

3. The system of Claim 2, wherein the processor is adapted to perform intra

prediction for the sub-block.

4. The system of Claim 3, wherein the processor is adapted to process sub-

blocks of a macroblock in parallel.

5. The system of Claim 1, wherein the second means includes:
a first pixel selector that is adapted to selectively employ a first portion of the
first processed stream and a first portion of the second processed stream to generate the

updated version of the first stream.

6. The system of Claim 5, wherein the second means further includes:
a second pixel selector that is adapted to selectively employ a second portion of
the first processed stream and a second portion of the second processed stream to

generate the updated version of the second stream.

7. The system of Claim 6, further including a controller in communication with

the first pixel selector and the second pixel selector, wherein the controller includes:
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one or more instructions for implementing a state machine.

8. The system of Claim 7, wherein the state machine includes:
one or more instructions for selectively directing contents of the first processed
stream and the second processed stream into the updated first stream or the updated

second stream.

9. The system of Claim 1, wherein the first stream includes:

information employed by the processor to process a first sequence of sub-
blocks.

10. The system of Claim 9, wherein the second stream includes:

information employed by the processor to process a second sequence of sub-
blocks.

11. The system of Claim 10, wherein sub-blocks of the first sequence of sub-
blocks and the second sequence of sub-blocks are consecutively numbered 0-15

according to H.264 standards.

12. The system of Claim 11, wherein the processor is adapted to execute one or
more instructions to process pairs of sub-blocks in parallel, including pairs numbered 2
and 4; 3 and 5; 8 and 6; 9 and 7; 10 and 12; and 11 and 13 after sub-blocks 0 and 1 have

been processed by the processor.

13. An apparatus for selectively handling information, the apparatus
comprising:

a first operational mode associated with a first stream of data, wherein the first
stream of data is associated with a first sequence of sub-blocks;

a second operational mode associated with a second stream of data, wherein the

second stream of data is associated with a second sequence of sub-blocks; and
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a processor adapted to implement one or more instructions for causing the first
operational mode to switch to the second operational mode and to generate a control
signal in response thereto, wherein the control signal is adapted to cause a selector to
output a portion of the first stream or to output a portion of the second stream based on a

block number associated with a sub-block of the first sequence or the second sequence.

14. An apparatus for selectively handling information, the apparatus
comprising:

a first switch adapted to selectively output a first portion of a first stream and a
first portion of a second stream in a third stream; and

a second switch adapted to selectively output a second portion of the first
stream and a second portion of the second stream in a fourth stream, wherein the first
stream is associated with a first sequence of sub-blocks of a macroblock, and wherein the

second stream is associated with a second sequence of sub-blocks of a macroblock.

15. The apparatus of Claim 14, wherein the third stream represents an updated

version of the first stream.

16. The apparatus of Claim 15, wherein the fourth stream represents an updated

version of the second stream.

17. The apparatus of Claim 16, wherein the first sequence and the second
sequence include sub-blocks with interdependencies such that processing of certain sub-
blocks from the first sequence may occur in parallel with processing of certain sub-

blocks of the second sequence.

18. The apparatus of Claim 17, wherein the processing includes H.264 intra

prediction.

19. An apparatus for selectively handling information, the apparatus

comprising:
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first means for establishing an operational mode;

second means for determining a block number of a sub-block, wherein the sub-
block is associated with a first stream or a second stream, and providing a first indication
in response thereto; and

third means for generating one or more control signals to control output of a
third stream or fourth stream from a pixel selector based on the operational mode and the

first indication.

20. The apparatus of Claim 19, wherein the third stream includes:

an updated version of the first stream.

21. The apparatus of Claim 19, wherein the fourth stream includes:

an updated version of the second stream.

22. A method for selectively handling information, the method comprising:

outputting reconstructed pixel information, which pertains to a sub-block of a
macroblock, in a first stream and a second stream;

selectively directing contents of the first stream and the second stream to a
processor in an arrangement, order, or timing that facilitates parallel processing by the
processor of one or more sub-blocks of one or more macroblocks based on the first
stream and the second stream; and

outputting neighbor pixel information, which pertains to a subsequent sub-block

to be processed, in the first stream and the second stream.
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230

232

Output reconstructed pixels pertaining to one or more sub-blocks of a macroblock, in a
first stream and a second stream.

234

Selectively direct contents of the first stream and the second stream to a processor in an
arrangement, order, and/or timing that facilitates parallel processing by the processor of
one or more sub-blocks of one or more macroblocks based on the first stream and the
second stream.

236

Output neighbor pixel information, which pertains to the next sub-block to be
processed, in the first stream and the second stream.

Fig. 15
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