005/052762 A2 I 0001 0 O 00 A

o (57) Abstract: An application wrapper system and method provide a technique for privatizing application software resources from
an operating system shared resources. The present invention allows the application software to execute in a secured run-time envi-
ronment. The preferred embodiments of the present invention eliminates application conflict, protects operating system resources,
provides multiple instance run-time for instance made to execute single instance and provides multi-user environment.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
9 June 2005 (09.06.2005)

OO O

(10) International Publication Number

WO 2005/052762 A2

(51

21

(22)

(25)
(26)

(30)

(71)

(72)
(75)

International Patent Classification’: GOGF
International Application Number:
PCT/US2004/039548

International Filing Date:

22 November 2004 (22.11.2004)
Filing Language: English
Publication Language: English
Priority Data:
10/718,867 21 November 2003 (21.11.2003) US
Applicant (for all designated States except US):

SOFT-ON-NET [KR/KR]; 601-2 Korea World Trade
Center, 159-1, Samsung-dong, Kangnam-gu, Seoul
135-090 (KR).

Inventors; and

Inventors/Applicants (for US only): SONG, Dong-Ho
[KR/KR]; Sunkyung A.P.T. 10-1201, Dae-chi Dong 506-
Kangnam Ku, Seoul (KR). IN, Yean, Jin [KR/KR]; Bang-
Bae Dong 782-16, 109, Secho Gu, Seoul (KR). CHUN,

(74)

(81)

(84)

Young, Joon [KR/KR]; Hang Shin 102-1801, Dungsang
Gu Koyang Kungi Do, Koyang (KR). KIM, Sung, Ryong
[KR/KR]; Janghan-dong, Hyundae Hometown 1117-1402,
Dangdaemun-Gu, Seoul (KR).

Agent: LOHSE, Timothy, W.; Gray Cary Ware &
Freidenrich, 2000 University Avenue, East Palo Alto, CA
94303 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR EXECUTING AN APPLICATION ON A SECURED RUN-TIME ENVIRONMENT

120

oo) BN
' | _Apph'cauon - 130 130 T Application L
Process-1 Process-4 \
108 f T 108
Simulated Simulated
Application | | Application
i Run-Time fﬂ’:‘ 109 Run-Time ||
1 Resources _\ Resources
i Application Application 108
Process-2 Process-3 I
Privatized 1. f Privatized
System ! Syst
1 ; Installed Application veten
Resowrces B Resources
H Resources
104 H 104
Y Ar L_ 4
h 4 A 120
l System Resources

100

§

N

Operating System

102

WO 2005/052762 A2 I} N0 NDVYH0 AT 0O 0 OO0 AR

SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, For two-letter codes and other abbreviations, refer to the "Guid-
GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— without international search report and to be republished
upon receipt of that report

10

15~

20

25

WO 2005/052762 PCT/US2004/039548

-1-

SYSTEM AND METHOD FOR EXECUTING AN APPLICATION ON A SECURED -
RUN-TIME ENVIRONMENT

Inventor #1 Song, Dong Ho
Inventor #2 In, Yean Jin
Inventor #3 Chun, Young Joon
Inventor #4 Kim, Sung Ryong

Field of the Invention

The present invention relates to the field of computer software systems. More specifically
the invention relates to the construction and implementation of a system for executing
application software on an operating system within a secured run-time environment without

affecting an application software resource on a client computer.

Background of the Invention

In an operating system, application software is executed using various operating system
resources guch' as file system, registry system, shared libraries, COM, DCOM, IPC,
environmental files, variables and others. These resources are shared globally for all application
software installed for execution and the protections are limited during installation as well as at
the time of application execution. With this prior-art, the application software has no private
context to protect all the resources to overcome conflicts dun'ng installation and execution of
application software. Hence keeping this in mind and in order to eliminate various application
installation and run-time conflicts, an application wrapper is provided to create a secured run-
time -environment by privatizing several operating system resources under the application

wrapper.

In the past, application software was designed to have all the necessary resources and was
self-contained with a single executable file or a complex application may have. several
executables that may chain each other to execute the application. Executables that comes with
the application does not interfere other application and could be used only by that applicatioh.
Applications are distributed with all of the files used by that program without being concerned
that other prodticts might interfere with this application software. ‘

WO 2005/052762 : PCT/US2004/039548

10

15

20

25

2-

Many applications in the past few years have bigger size of application files (element 132
in Figure 2) and the size has grown dramatically. To reduce the size of the application files 132,
the Windows operating environment provides libraries such as COM (common object method),
DCOM, IPC to share the modules to Applications. With this envil;onment, the application
depends the capability of libraries. A module shared to the applications is said to be a dynamic
link library and normally has the extension .DLL. The DLL acts as an application-programming
interface (API) that makes Windows work. At the outset, sharing of library modules goes well
without a problem. Most applications use only system library and rarely use private libraries. '
Microsoft windows applications use COM, DCOM,A IPC and other libraries either by DLL host
or SVCHOST.

Later, with the improvement of windows operating system 100, the library modules come
with various versions. In most of the cases, an application probably experienced DLL problems
and this may leads the application to behave strangely or no longer loads. This happens due to
another program overrides to an older DLL, VBX or ActiveX file on their system or may be with
an incompatible library version. The application could not run properly due to conflicts by

environment settings, registry entries and incompatible library loaded already in the memory.

Further, Microsoft continued to provide updated versions of the DLL to have new -
functions and also to fix the bugs. Example. A commdlg.dll library used as a common dialog
library. This library consists of common dialog boxes to obtain a ﬁlenaine or to select a color
etc., for use with any windows application. At the start, application using common dialog
requires the distribution of commdlg.dil file, since windows does not include. Later, it was
included in the windows distribution to include the updated library files. Continuation of various
versions of libraries causes the DLL hell problems. DLL-Hell is a real problem — one of the most

serious problems facing application developers and system administrators today. Thus, it is

desirable to provide a system and method for executing an application on a secured run-time ,

environment and it is to this end that the present invention is directed.

WO 2005/052762 PCT/US2004/039548

10

15

20

25

Summary of the Invention

A technique for privatizing application software resources from an operating system
shared resources is disclosed. The present invention allows the application software to execute in
a secured run-time environment. The preferred embodiments of the preéent invention eliminates
application conflict, protects operating system resources, provides multiple instance run-time for
instance made to execute single instance and provides multi-user environment. The present
system provides an application wrapper, which includes privatized virtual file system created
from an operating system file system, privatized virtual registry created from an ‘operating
system registry system, privatized operating system shared component resources, privatized
application configuration resource and privatized environmental resources for application

variables.

The system includes an application wrapper to shield the application software resources.
Shielding application software résources creates a secured run-time environment for executing
application software and the application software resources are protected. The system provides a
run-time environment to application software that is visible to be an operating syétem run-time
environment without installing the application software. resources. While the application
software is executed the resources are simulated in the secured run-time environment. The
system monitors the application run-time request to determine the required portion of application
software resources for execution and serves the application software resources to incrementally
execute the application software. The system protects the behavior of the application soﬁware‘
from other application and operating system and eliminates application conflicts from other
running application software. The system executes multiple instances of a single software
application. The system keeps the application software resources away from operating systenri
resources, whereby operating system resources are protected from application software
resources. The system allows full access to application software that requires to access for

variation occurs to application software resources within the application wrapper.

WO 2005/052762) PCT/US2004/039548

10

15

20

25

Brief Description of the Drawings

There are presently shown in the drawings embodiments which are presently preferred, it
being understood, however, that the invention is not so limited to the precise arrangements and
instrumentalities shown, wherein the ﬁgures, explains how the application software run-time

resources are secured and brought down privately.

FIGURE. 1 is a block diagram, which illustrates the concepts of system introduced on an

operating system;

FIGURE. 2 is a block diagram, which illustrates, the parts of a preferred embodiment of

the application wrapper system of the present invention.

FIGURE. 3 is a block diagram, which illustrates the abstraction of virtual file system for
creating a pfivatized virtual file system to provide separate file access to application software

which is preferred embodiment of the present invention.

FIGURE. 4 is a block diagram, which illustrates the abstraction of virtual registry system
for creating a privatized virtual registry system to provide separate registry access to application

software which is a preferred embodiment of the present invention.

FIGURE. 5 is a flow chart that represents the functions of initializing several modules

and launching secured application software in accordance with the invention.

FIGURE. 6 is a flow chart shows the functions of process manager for maintaining each

process status of secured application in accordance with the invention.

FIGURE. 7 is a flow chart represents the functions of privatized virtual file system, for
the purpose of private file system resource to secured application software in accordance with the

invention.

FIGURE. 8 is a flow chart represents the functions of privatized virtual registry system,
for the purpose of private registry system resource to secured application software in accordance

with the invention.

WO 2005/052762 “ PCT/US2004/039548

-5

FIGURE. 9 is a flow chart represents the functions of file path amendment method in the
said privatized virtual component system, for the purpose of private componént system resource

to secured application software in accordance with the invention.
{

FIGURE. 10 is a flow chart shows the injection of hooking DLL for intercepting DLL

5 calls in accordance with the invention.

FIGURE. 11 is a flow chart represents the functions of private environment variable
system, for the purpose of private environment variable resource to secured application softwdre

in accordance with the invention.

FIGURE. 12 is a flow chart shows the process of cache manager for servicing file VO

10 request in accordance with the invention.

FIGURE. 13 is a flow chart shows the process of cache manager for servicing registry

I/O request in accordance with the invention.

" FIGURE. 14 is a flow chart represents the functions of registry redirection method in the
said privatized virtual component system, for the purpose of privatizing component loading to

15 secured run-time application software in accordance with the invention.

FIGURE. 15 is a flow chart represents the RPC (Remote Procedure Call) message
amendment method for IPC (Inter Process Communication) to redirect location of the requested
component to a privatized virtual component, for the purpose of privatizing component loading

to secured run-time application software in accordance with the invention.
20 Detailed Description of a Preferred Embodiment

The invention is particularly applicable to a Windows-based operating system that is
being executed by a personal computer system and it is in this context that the invention will be
described. It will be appreciated, however, that the application wrapper system and method in
accordaqce with the invention has greater uﬁlity since the application wrapper system may be

25 used with other operating systems, such as the Macintosh 0S, Linux, Unix and it may be used

WO 2005/052762 PCT/US2004/039548

10

15

20

25

-6-

with other computer systems, such as servers, personal digital assistants, laptop computers,

distributed computer systems, peer-to-peer systems and the like.

In a preferred embodiment described below, the application wrapper system is
implemented on a typical personal computer system running a Windows-based operating system
wherein the computer system has well known components including one or more CPUs,
input/output devices, such as a display, printer, mouse. keyboard, etc. , memory (DRAMs or
SRAMS), a persistent storage device, such as a hard disk drive, tape drive. optical drive, etc. and
other peripherals. As stated above, the application wrapper system may be implemented on a
variety of other computer systems and with a variety of other operating systems. In the preferred
embodiment, the application wrapper system is implemented as one or more software modules \
that are executed by the CPU of the computer system and inter-operate with the operating system
on the computer system. The application wrapper system may also be implemented as one or
more pieces of software stored on a hardware device that are executed by a CPU of a computer
system. Now, the application wrapper system and method in accordance with the invention will
be described in the context of a personal computer system executing a Windows-based operating

system.

Figure 1 shows a preferred example of an application wrapper 120 in accordance with a
presently preferred exemplary embodiment of this invention. In the present invention, the
application wrapper 120 includes various privatized resources and modulesl to create a secured
run-time environment 130 by privatizing the existing operating system 100 resources. Referring
to Figure 1, two application wrappers 120 are shown that are built on top of typical computer
system resources 102 and a typical operating system 100. Each secured run-time application 108
(Application Process —1 and Application Process-4 in the example shown in Figure 1) may be
executed in a secure environment as shown. Figure 1 also illustrates a first software application
(Application Process-2) 107 and a second software application (Application Process —3) 109 that
are being executed in a typical fashion with installed application resources 110 that operate on
top of the operating system 100. Each application wrapper system 120 provides a secured run-
time environment 130 that includes various privatized resources, such as a simulated application

run-time resource 106 and privatized system resources 104.

WO 2005/052762 PCT/US2004/039548

10

15

20

25

-7-

Figure 2 shows a preferred parts of an application wrapper 120, the parts includes
privatized virtual file system 142, a privatized virtual registfy system 144, a privatized virtual
component éystem 146, process manager 148, cache manager 150. Further, the secured run-time
environment 130 created by the privatizing technique includes files 132, registry entries 134,
DLL’s, COM, DCOM, IPC, fonts and other shared modules 136, privatized environmental
variables 138 and privatized application configuration 140. Each of the privatized resources and

the parts are discussed and explained through several drawings along with technical descriptions.

The application wrapper system shields the application software resources. The shielding
of the application software resources creates a secured run-time ‘environment for executing
application software and the application software resources, which is protected. The system
provides a run-time environment to application software that is visible to be an operating system
run-time environment without installing the application sofiware resources. - While the
application software is executed the resources are simulated in the secured run-time
environment. The system monitors the application run-time request to determine the required
portion of application software resources for execution and serves the application software
resources to incrementally execute the application software. The system protects the behavior of
the application software from other application and operating system and eliminates application
conflicts from other running application software. The system executes multiple instances of a
single software application. The system keeps the application software resources away from
operating system resources, whereby operating system resources are protected from aﬁplication
software resources. The system allows full access to application software that requires to access

for variation occurs to application software resources within the application wrapper.

Privatized virtual file system

Normally, a storage media is well 6rganized with various file system by an operating
system 100 to access the files, airectory and data efficiently. In the present invention, the existing
file system on an operating system 100 is controlled fn such a manner to provide a privatized
virtual file system 142 under an application wrapper 120. Figure 7 describes how a privatized
virtual file system 142 is created under the application wrapper 120. In figure 3, a virtual ﬁlel
system 202 abstractions for creating the privatized virtual file system 142 is shown. Using the

WO 2005/052762 PCT/US2004/039548

10

15

20

25-

An

-8-

privatized virtual file system 142 and the virtual file system 202, the secured application
software 108 has separate ﬁle access to secﬁred application software in accordance with a
preferred embodiment of the invention. The privatized virtual file system device driver module
shown in figure 7 creates the privatized virtual file system 142 for secured application software
108 by mounting the file system information (see step 164 in Figure 5) corresponding to the
selected applicétion software. The pre-required encrypted secured application data is stored in a
pre-determined directory on a storage disk, which is available in a form of a commonly
structured cache database is used for 1mt1ahzat10n of secured application software. Each secured
application data in the cache database has a unique application pack identification (1d) to identify
the relevant application data. In general, each software application has an id that is used to

identify the software application.

The privatized virtual file system 142 is mounted using the privatized virtual file system
mounting information, which is retrieved and decrypted from the said cache database for the
particular requested secured application software to execute on 2 secured run-time environment
130 as shown in Figure 1. A process manager 148 (See Figure 2) within the application wrapper
120, which initiates the selected application software, can view the directory and file
information. The said process manager initiates the main executable file to execute the secured
application software (in step 166 shown in Figure 5). During this initiation process, relevant

calls are triggered to retrieve the data required for continuing the execution.

When a user process issues a file input/output (/O) function call, the subsystem invokes
the corresponding service call to request the operation on behalf of the caller. Here, the
privatized virtual file system driver receives file O requests (in step 204 in Figure 7) from
normal application software and secured application sofiware to open, create, read, write, close
and other file operation functions. These file I/O requests typically originate in the user process.
Whenever any file I/O request is received from a user process by the said privatized virtual file
system driver for a file residing on a mounted storage volume, then the said privatized virtual file
system driver redirects the request to the operating system 100 file:system driver to manage the
mounted logical volume. Before forwarding the request to operating system file system driver,

however, the said privatized virtual file system driver checks to see if there is any file /O request

it i nd wiedannl £la avctan 149 Tharafara tha nrivatized virtnal file cuctem driver

10

15

20

25

WO 2005/052762 PCT/US2004/039548

-9-

module intercepts the I/O request before it reaches the operating system file system to provide a

secured application data from a secured application pack.

The privatized virtual file system device driver can determine the file VO fequest
received from the user process for a particular application process using the known process id.

This file VO request is classified into two categories. One 1s the file /O request received from

-the normal application and the other is from the secured application software created under the

application wrapper 120. -The privatized virtual file system driver will dispatch the entire file /O
request received from normal application software process directly to the operating system file
system driver to service the file I/O request to normal application software. The operating file
system driver performs appfopriate processing and returns the results to the privatized virtual file
system driver and the privatized virtual file system 202 (in Figure 3) eventually returns the
results to the requesting process. Hence the state of file system access is unchanged for normal
application software 107 (See Figure 1). The file VO request recéived from secured application
software is filtered and serviced based on various conditions. Conditions are made to protect the

application software data and to service the various file operations.

Based on the process ID, the corresponding application data is serviced to the requested
application software. Further, based on the file /O request from the secured applicatiom software
with the corresponding process id is serviced on various pre-determined conditions to open,
create, read, write, close and other file operation functions. At step 204 in figure 7, the file /O
request is intercepted. Once the file VO is intercepted, at step 206 in Figure 7, the privatized
virtual file system 142 establishes the process ID for the intercepted file T/O request. At step 208
in Figure 7, the file path available in the file VO request is verified to lmc;w whether it points to
operating system 100 resource or secured application resource. In one condition the privatized
virtual file system 142 services the /O call, which points to operating system 100 resources. As
show in Figure 7 at step 210; if the process ID does not belong to secured application process
then the I/O call is re-directed to (step 226 in Figure 7) operatingvsystem 100 file system
otherwise the control goes to step 212 of Figure 7. Similarly, if the process ID belongs to a
secured application proc;ass and if the /O call is permitted (step 212 in Figure 7) to access then
the T/O call is re-directed to operating system 100 file system. Finally, if the process ID belongs

10

15

20

25

WO 2005/052762

PCT/US2004/039548

-10-

to secured application process and if the /O call is not permitted to access then the IO call is

rejected (step 228 in Figure 7) and returned to requested process.

Next, the’privatized virtual file system 142 services the I/O call, which points to the

- secured runtime resources. At step 214, 218, 222 in Figure 7, it verifies, If the process D

beiongs to an operating system 100 application process or if the file path does not point to a
corresponding process ID resource or if the access is not permitted to use other process resources
then the file /O request is rejected and returned to the requesting process. At step 220 in Figure
7, the 1/O calls are serviced from secured data source corresponding to process ID and returned
to requesting process only if the file path points to coﬁesponding process ID resources (step 218
in Figure 7). The VO calls also are serviced from secured data source within the pennitted
resources shown in Figure 7 at step 222 and returned to requesting process for file path pointing
other secured application resources based on access permission. This will be useful for inter

process application execution.

Privatized virtual registry system

| An operating system 100 includes a well-known registry system 300 shown in Figure 4.
The Registry is a database used to store settings and options for the operating system 100
environments. It contains information and settings for all the hardware, software, users, and
prefereﬁces of the computer system. Whenever a user makes changes to a particular setting,
system policies, installed application software, the changes are -reflected and stored in the
registry. This information is required for i)rocessing application software. In the present
invention, the existing registry system on an operating system 100 is controlled in such a manner
to provide a privatized virtual registry system 144 under an application wrapper 120. Figure 8
describes how a privatized virtua.I registry system 144 is created under the application wrapper
120.

In-Figure 4, a virtual registry system 302 abstraction for creating a privatized virtual
registry system 144 is shown to provide a separate registry access to secured application
software, a preferred embodiment of the present invention. The virtual registry system 302 and

privatized virtual registry system 144 is built on top of the operating system 100 and the registry

WO 2005/052762 PCT/US2004/039548

10

15

.20

25

-11-

system 300 of the operating system as shown in Figure 4. The secured soﬁware application 108
then accesses the privatized virtual registry system 144 as shown. A privatized virtual registry
system device driver is the heart of a privatized virtual registry system. It is dynamicaily loaded
and initiated before the secured application software initiation. All registry activity received from
any application software is directed through this routine, so the privatized virtual registry system

driver catches all registry activity carried out on a computer system.

A privatized virtual registry systeni driver creates a privatized virtual registry system 144
for the secured application software 108, which has a hierarchal structure similar to the physical
registry structure of the registry system 300. The physical registry consists of main branch keys

known as a Hive and a Hive contains Keys. Each key can contain other keys referred to as sub-

" keys as well as values. The values contain the actual information stored in the real registry

database. Similarly, the values for the privatized virtual registry system 144 is retrieved and
decrypted from the said cache database.

When the application software is initiated or executed, it may require various registry
values to process the application sofiware. Normally, registry keys are accessed through various
queries to its subsystem for all accesses to the registry database 300. When a user process issues
a registry query, the subsystem invokes the corresponding service call to request the operation on
behalf of the caller. Here, the privatized virtual registry system 302 driver receives the registry
query requests from normal application software and secured application software to open,
create, read, write, delete, close and other registry calls to access the regisiry database 300. Any
registry query that is received from a user process by the privatized virtual regiétry system 302
driver for -a registry key or value residing on a real regisiry database, the privatized virtual
registry sys’iem‘ 302 driver redirects the request to the operating system 100 registry system
driver to manage the real registry database. Before forwarding the request to operating system
registry system driver, however the privatized virtual registry system 302 driver checks to see if
any registry queries representing privatized virtual 'registry system, Therefore, the privatized
virtual registry system driver module intercepts the registry query before it reaches the operating
system registry system to provide a secured registry value from a secured registry pack provided

by the cache database.

10

15

20

25

30

WO 2005/052762 PCT/US2004/039548

-12-

In Figure 8 at step 304, the said privatized virtual registry system driver intercepts for an
open, create, read, write, delete, close or other registry query calls. The origination of the
intercepted registry call received from the user process for a particuiar application software
process can be established by identifying the process id. At step 306 in Figure 8, the source or
the requested process for the intercepted registry call is established. This registry query is
classified into two categories as shown in Figure 8 at step 308. That is classified either as a
query from the normal application or a query from the secured application software created
under the application wrapper 120. As shown in Figure 8 at step 322, privatized virtual registry
system driver will dispatch the registry query received from normal application software process
directly to the operating system. registry system driver to service the registry query to normal
application software. The operating system registry system driver performs appropriate
processing and returns the results to privatized virtual registry system driver and the privatized
virtual registry system 302 eventually returns the results to the requésﬁng process. Hence the
state of OS registry system access is unchanged for normal application software. Registry query
received from secured application software is filtered and serviced based on various conditions
shown in Figure 8 at steps 310, 314 and 318. Conditions are made to protect the registry values
and to service the various registry operations. At step 310, the registry call established as secured
application is further verified that if the rgquested registry éall belongé to the same process then
the registry call is serviced (Step 312) with the secured registry data source corresponding to the
process ID otherwise further the call is verified (Step 314) that if access to other process resource
is permitted for this requested call then the registry call is serviced (Step 316) within the
permitted resource. Finally, for the process ID established as secured application software and if
the registry call does not belong to same process or within the permitted resource then that
requested registry call is rejected (Step 320) and returned to the requesting process. Thﬁs, the

registry access for the secured application is serviced privately within their private data resource.

“Privatized Virtual Component System

Figure 9, 10, 14, 15 illustrates more details and steps performed by the privatized virtual
component system 146 (shown in Figure 2) for loading shared component to a private
environment. In the présent invention, application wrapper 120 includes a component loader,

which a module for loading any version of components required for a particular application. For

10

15

20

25

WO 2005/052762

PCT/US2004/039548

-13-

Examplef' Windows components COM, DCOM, Active X, VBX, OLE and other application
specific components, shared across the operating system 100 to execute several common process.
These components are delivered with various features. The components are not stable for all the
process. In the preferred embodiment of the present inventions, the privatized virtual component

system loads the required version of components for the specific secured application software.

Basically, whenever an application process requests a component then the said
component can be searched from the same application process space or from different process
space such as Inter Process Communication called IPC, which requires component loading from
different process space. The said component calls are processed in different methods in windows
operating system. The method includes loading component directly from the file path specified
or from the default system directory, loading component based on registry information such as
GUID specified, which addresses the component file path through the windows registry, loading
component from other process space through service control manager or SCM with in-process or

out-process technique, which is based on registry information.

In the present invenﬁoﬁ, the above said component loading methods are privatized. The
said privatized virtual component system is initialized (Step 158 in figure 5) during the
initialization of the said application wrapper system. The initialization includes component
hooking mechanism for intercepting component calls and a component redirection table for

idenﬁfying the redirecting information.

As shown in Figure 10, the component intercepting module and method monitors each
new process or processes (Step 414), which is not injected with a hooker component. In step
416, the method determines is the process already has a hooking component. If the process
already has a hooking component, the method goes to step 420 and loops back to step 414. If the
process does not already contain a hooking component, then the component hooker module is
injected (Step 418) to all the process available in the operating system process list. The said
component hooker module is comrﬁon and known to one skilled in the art. Furthermore,
whenever a new pfocess is initiated, the component hooker is injected into the initiated process.
Once the component hooker is injected to each process, the injection will bypass all the

comnonent function call to hooker component available in the memory for each process. The

WO 2005/052762 PCT/US2004/039548

10

15

20

25

-14-

component hooker is made in such a way to intercept the required component call and to call
appropriate modules based on the intercepted component call. The said intercepting module is
used for intercepting component calls and the same is referred in the privatizing component

loading methods.

In Figure 5 at step 154 and 165, whenever a secured aj)plication is selected for execution,
the said application ‘launcher registers privatized virtual components required for the secured
application to use in service control manager for [PC and adds component redirecting
information for each component required by each secured application to the component
redirection table, which is created during the said application wrapper initialization. The said
component redirection table contains redirecting information such as component location, real
GUID addressing a component available on a real file system and a corresponding privatized
GUID addressing a component on privatized virtual file éystem. This table serves component
redirecting information to search and identify the location of the privatized virtual component.
Using the information from the said redirection component table, the GUID belongs to a shared
component on a real file system can be translated to locate the component available on a said
privatized virtual file system and privatized virtual component created during the initialization of

secured application can be identified for translating RPC messages to redirect the process to Joad

. the said privatized virtual component created. Once the said secured application is terminated

and if the component redirection information is not relevant for any other secured application
process then the said component redirection information is deleted from the said. component
redirection table. The said component redirection table is referred in the privatizing component

loading methods.

Privatized virtual component using file path amendment

In one embodiment of the present invention for privatizing the component loading
discloses the method of replacing the file search path to locate the component from the secured
application pack corresponding to the said secured application process. In the present invention,
the method of file search path amendment works through two modules. One module works for
inﬁercepting component calls as discussed above by injecting hooker component to all process

shown in figure 10 and other one shown in figure 9 works as a privatized virtual component

10

15

20

25

WO 2005/052762 A PCT/US2004/039548

-15-

system to replace the file path with full redirected path name, which points to privatized virtual

file system 142 location corresponding to the said secured application.

In figure 9, the presenf invéntion shows one embodiment of providing the said privatized
virtual component system. Whenever an application process requests a function call such as
createprocess, then the function call is intercepted by the said hooker component and the said
hooker component calls the component file path amendment module to privatize the component
loading. At step 400, the component g:ail is intercepted. The intercepted component call such as
create process function for component loading will not have any path name except the required
component name. In step 402, the system will establish the relevant process ID for the
intercepted component call to classify the requesting process as normal application or as secured
application. In step 404, based on the process ID, the method determines if the process ID
belongs to normal application or secured run-time process. If the process ID belongs to secured
applicaﬁon then as shown in step 406, based on process ID, the said component (DLL) path is
amended with the corresponding component file path addressing the location of the said secured
application. As shown in step 408, after amending the path name, the private component system
will create a new process with the amended path name for the requested secured application to
resume the loading of component from the secured application pack. Thus, based on the
amended component path, subsequent calls for loading the component will use the said
privatized virtual file system to load the component from the private data resource. Hence,
amending the component path with the relevant secured application path privatizes the

component loading.

Privatized virtual component using registry redirection

Another embodiment of the present invention for privatizing the componeni loading
discloses the method of replacing the GUID of registry system to locate the component address

to private data resource through the said privaﬁzed virtual registry system and privatized virtual

file system.

Normally, COM component has a global unique ID said as GUID in the windows

operating system registry. The said GUID used as a reference to locate the component stored on

WO 2005/052762 PCT/US2004/039548

10

15

20

25

20N

-16-

a file system. Whenever a function such as CoCreateInstance, CoGetClassObject available in a
component, if called by an application process then that call will search the windows operating
system registry with an unique GUID for getting component path information to locate the
component on a windows file system. Thus for the specified function call, the corresponding
component location is addressed through the windows operating system registry using the GUID,

which is available at function call.

In the present invention, another embodiment of privatizing the component loading
comprises component hooking and redirecting the search to the privatized virtual registry
system. Figure 14 shows another embodiment of privatizing the said component call. The steps
shown in the figure are described below. In step 422, the component call originated from
application process is intercepted using the said component hooking mechanism. The intercei;ted
component call is verified to know whether it belongs to the said secured run-time application. In
step 424, the process ID is identified. By knowing the application process ID relevant to the
component call, can identify which application process requesting the component. In step 426,
the identified proéess ID is compared to establish processes originated from secured application
and normal application. Based on the comparison result, if the process ID established as normal
application then without any changes, the said component call is redirected to next process by
returning the original values. Whereas, if the process ID established as secured application then
the values for the said component call is privatized through the steps between step 422 and step
438. '

]

Once the said component call is established as secured application, the information such
as component‘ address, GUID and messages from the component call were retrieved as shown in
figure 14 at 428. In order to privatize the component, the call information addressing the real
operating system resource should be amended with information addressing the secured
application pack corresponding to each secured application process. The information for
amending the said component call information is available in the said component redirection
table, which can be searched with the component address available from the retrieved call
infoﬁnation. Component address will have a corresponding redirecting component address in the

said component redirection table for the calls originated from the said secured application. In

Rionre 14 at cten 420 haced an the aid ecamnanent address the corresnonding <aid redirectine

WO 2005/052762 PCT/US2004/039548

10

15

20

25

-17-

component address is searched in the said component redirection table. At step 432, based on the
search result, if the search is successful then the process is branched to step 436 for privatizing
the component or else the process is branched to step 440 for returning the hooked compbnent
call by amending the component call information with failed status in step 434. Tn step 436 of
figure 14, redirecting component address is retrieved from the said componént redirection table.
In step 438 of figure 14, component address originally available in the component call is
replaced with the redirecting component address. In step 440 of ﬁgure 14, the hooked component
call is returned with appropriate amended information. Thus the component loader will call
subsequent call with the said appropriate amended information, which passes through privatized
virtual registry system and privatized virtual file system for locating and loading the component

from the corresponding said secured application pack.

Privatized virtual component using RPC message amendment

Another embodiment of the present invention for privatizing the component loading
discloses the method of RPC (Remote Procedure Call) message amendment for IPC (Inter
Process Communication) to redirect the location of the requested component to a privatized
virtual corﬁponent. The said RPC message amendment will redirect the component search to
privatized virtual component by searching the said service control manager or SCM for the said

privatized virtual component, which is created during the initialization of secured application.

Generally, component calls related to Inter Process Communication is \requested by
remote procedure call or RPC is passed through service control manager or SCM in windows
operating system. The said component call requesting a component registered in service control
manager is searched and addressed through service contfol manager to locate the component
location. Further, the search is made through in-process or out-process technique. Whenever the
component call passed through the said service control manager, if failed to locate the
component thfough in-process within the local host then the call is redirected to search the
component through out-process from the remote host. Both in-process or out-process searches

the registry system to locate the physical address of the requested component.

10

15

20

25

20

WO 2005/052762 PCT/US2004/039548

-18-

In the present invention, the calls to service control manager is replaced with privatized
virtual component information available in the component redirection table and redirected the
process to the said service coﬁtrol manager to use the privatized virtual registry system, which in
further redirects to use privatized virtual- file system to locate the physical address of the
component location within the corresponding secured application pack. Here, both in-process or

out-process always serviced through the privatized virtual registry system.

In figure 15 at step 452, the RPC message is intercepted to privatize the cdm'ponent
loading. In step 454, the process ID corresponding to the intercepted message is identified. At
step 456 in figure 15, the identified process ID is compared to establish processes originated
from secured application and normal application. Based on the comparison result, if the process

ID established as normal application then without any changes, the said component call is

redirected to next process by returning the original values through the step 470. Whereas, if the

process ID established as secured application then the values for the said component call is

privatized through the steps between step 458 and step 468 in figure 15.

At step 458 in figure 15, the information such as component and messages. from the said
RPC call were retrieved. In order to privatize the component, the call information addressing the
real operating system resource should be amended with privatized virtual component information
corresponding to each secured application process. The information for amending the said
component call information is available in the said component redirection table, which can be
searched with the said component information. Each component will have corresponding
rgdirecting component information in the said component redirection table for the calls
originated from the said secured application. In step 460 of figure 15, based on the said
compohent information, the corresponding said redirecting component information is searched in
the said compoﬁent redirection table. At step 462, based on the search result, if the search is
successful then the process is branched to step 466 or else the process is branched to step 470 by
amending the RPC message with failed status in step 434. In step 466 of figure 15, redirecting
component information is retrieved from the said component redirection table. In step 468 of
figure 15, component address originally available in the component call is replaced with the
redirecting component information. In step 470 of figure 15, the hooked component call is

retnmed with the renlaced RPC messares. Thus the said RPC will continue to call subseauent

WO 2005/052762) PCT/US2004/039548

10

15

20

25

-19-

call with the replaced messages, which further searches the SCM for the privatized virtual
component created during the initialization of secured application, which further passes through
privatized virtual registry system and privatized virtual file system for locating and loading the

component from the corresponding said secured application pack.

Thus, in the present invention, one preferred embodimenf, the application wrapper 120
provides a privatized virtual component system for each secured run-time application. The uses
of shared component within the application are provided to keep the application run under
independent use of component files. It protects the operating system 100 component files and
provides version independent component files to the application. It keeps the operating system

component files to original state. Applications use their own version of component files.

Applications use font resources from an operating system 100, which is shared globally
to several processes. Any application requires installing a font for its own purpose should be
added in the font resources available in the operating system 100. These fonts are also shared

globally and affect the operating system 100

In the preferred embodiment, Application wrapper 120 provides an application specific
font resource and resolves conflicts between fonts.. Any application requires a particular font to
be installed for it’s own purpose should be installed in the operating system 100. Installing fonts
for each application or related version of application may require using a same kind of fonts or
updated fonts. Use of same font ID number will lead to font conflicts. Application wrapper 120
avoids font conflicts from fonts installed by other application and keeps protected from system

fonts and other application. Installing and use of new fonts within the application are provided.

Environment Variables

In the present invention, application wrapper 120 provides virtual environment variables
138 to application software created within the Application wrapper 120. An application requires
environmental information are set in environment variables. Figure 11, refers to environmental
information 138 for setting private environmental information to an application software.

Environment variables can be defined in two ways. That is system environment variables and

WO 2005/052762 - PCT/US2004/039548

10

15

20

25

220-

user environment variables. An environment variable includes information such as a drive, path,
or filename. Provides information to opera.ting system 100 and application to perform tasks
based on environmental settings. For example, an environment variable specifies the temporary
storage directory to keep the temporary files used by the application. Application wrapper 120

sets the required environment variables virtually for the application software.

In the present invention, the private environment system intercepts (in step 500) calls for
environmental variable request and determines the requesting process ID corresponding to the
intercepted call. In step 502, the process ID for the particular request is determined. Once the
process ID is determined, the type of requesting application is found and established as an
operating system 100 process or a secured application process. Further, it is confirmed to know
whether the requesting proceés is currently active under secure run-time environment by
searching the process ID in process list. If the process is not originated from secured run-time
environment 130 then the call is redirected (in step 504) to win 32 sub-systems and the operation
for the particular request will be serviced by operating system and a return value/result is

returned to the requested routine in step 516.

An environment variable call originating from secured applications is further cla|ss.iﬁed
into read / write operétion in step 506. For any read operation, the private subsystem will search
and retrieve (in step 508) the requested variable from the application pack corresponding to
process ID. The retrieved value from the private application pack is returned (in step 516) to the
trequesting process. For a write operation originated from secured application, it is serviced
4under the private environment. When a write operation for environmental variable occurs, the
private subsystem checks (in step 510) the presence of variable in the private system

environment. If the variable does not exist in the private environmental system then the variable

is created (in step 512) and the value is stored within the private environmental system. In case

if the variable exist in the private environmental system then the value is updated (in step 514)

for the requested variable and returns the status of operation to the requesting process.

System environment information are defined and configured during the installation
process. The system administrator can modify the environment information. Operating system

100 refers to the system environment variables for its system path and all its environmental

10

15

20

25

WO 2005/052762

PCT/US2004/039548

-21-

resources. In case, if use of same variables to set different value, the system over rides the
existing value with the current value. This will cause system variable conflicts. In the preferred
embodiment, Application wrapper 120 sets the system environment variables for application
software within the Application wrapper 120 without affecting the existing system

environmental information. Original system environmental variables are kept unaffected.

User environment information requires to an application are defined by the application
software at the time of application installation. The environmental values differ for each user of a
user computer. The user environment variables include any userfdeﬁned settings such as a
desktop pattern and any variables &eﬁned by applications such as the path to the location of the
application files 132. Users can manage their user environment values to user environmental
variables. In case, if an application installation uses an existing environmeﬁt variable to set a
different \}alue for that particular application, it will over ride the prior setting with a new value.
This will cause conflicts between application environment values used for these applications. In
the preferred embodiment, Application wrapper 120 sets user environment variables to
application software within the Application wrapper 120 without affecting the existing user
environmental information. Other user environmental variables used in other application are kept

unaffected.

Application Configuration

In most of the aspects, application soﬂwﬁe will Have the run-time settings in an
application configuration file 140 shown in Figure 2. Figure 2, shows the application
configuration settings for application software. Application softwaré refers to the configuration
settings during the loading of application software or while it is executing. In most-of the aspects
these settings on configuration files are affected by other application installation, which uses the
same type of parameter or settings in the configuration file. Also it may over rides the entire

configuration file and corrupts the previously installed settings.

In the preferred embodiment, the Application wrapper 120 provides the configuration
files separately within the secured run-time environment 130. Broviding this function,

applications may use the same parameter or settings in the configuration file but does not conflict

WO 2005/052762 PCT/US2004/039548

10

15

20

25

22~

each other by retaining the each application configuration file independently. Whatever

configuration file required for the process is kept separately under the secured application pack.

Hence configuration files can be retrieved through private file system and privates the

application configuration.

Application launcher

In the present invention, an application launcher shown in Figure. 5 refers the initiation of

secured application. Whenever a secured application in step 152 is requested to execute, the

_ application launcher will check the presence of required Application wrapper system resources in

~ step 154 to perform the execution. The application launcher will receive the request to execute

the said secured application. Launcher will verify and establishes whether all the application
system resources are initiated. In case if the system is already initiated then the system
initialization process will be skipped and directly it will perform application process initiation in
step 162. In case if the system is not initiated the launcher will initiate all the application
wrapper modules in steps 156 - 160. The system initialization process includes privatized virtual
file system driver and privatized virtual registry system driver. In step 156, the privatized virtual
file system driver is loaded dynarnically above the operating system file system as like virtual
file system. Similarly, the privatized virtual registry system driver is loaded dynamically above
the operating system registry system as like virtual registry system. These drivers can be loaded
and unloaded dynamically based on the application process status. Further at step 158, it
initializes private component system, component redirection table, private environment system
and private conﬁguration system. Finally at step 160, cache manager and process manager is

executed and initiated.

When the system initialization process is completed, the application wrapper system will
be at ready state to execute the secured application. During the initiation of secured application,
the launcher downloads initializing data for the requested secured application using an fip
module via cache manager from a remote server in step 162. Further in step 164, the launcher
mounts the downloaded data for mounting privatized virtual file system 142 and privatized
virtual registry system. Using the mounted privatized virtual file system; the said application

launcher can view the files and directories required for the secured application. In step 165, the

WO 2005/052762 : PCT/US2004/039548

10

15

20

25

23

said application launcher registers privatized virtual components required for the secured
application to use in service control manager for IPC and the component redirecting information
for each component required by the said selected secured application is added to the component
redirection table. Finally in step 166, the main executable file name is located and triggered to

execute.

Process manager

In the present invention, one preferred embodiment is the process manager 148, which
maintains the application runtime status in a process list. Application software resources brought
to secure run-time environment are invisible to other executions. In figure 2, refers to process
manager 148 that executes each application with their own resources from their own run-time
environment. In some cases, application software may require to use other application software
reséurces to chain the execution for several uses. Example: Microsoft office comes with several
packages like word, excel, power point, access etc., Process manager 148 executes the necessary
shared application software resources for interlinked application software. Hence the process id

and child process id is stored in a process list to maintain the interconnected processes.

Figure 5 illustrates a process manager method in accordance with the invention. -
Whenever a process is initiated in the opérating system, a process ID is created. The process
manager monitors the process continuously and retrieves process ID from operating system
process list (in step 174). Once the process ID is retrieved, it is verified to establish the process
as operating system 100 process or secured application process in step 176. If the process ID

belongs to secured application then it checks the process list for the presence of secured

" application process ID in step 178. Further, if the process ID is found to be new then the process

ID and relevant information to that process is added (in step 180) in the process. Similarly, all
the process ID in the process list is verified in the operating system process list in step 182. If
any process ID not found in operating system process list, that process ID is deleted (in step 184)
from the process list. Finally, it checks for empty process list in step 186. If there is no process
ID in the process list, it is understood that there is no secured application running on. the
operating system. Once the process list is determined to be empty, the process manager cleans

up (in step 188) the entire systems by unloading all the initialized routines.

WO 2005/052762 PCT/US2004/039548

10

15

20

25

24-

Cache manager

In one embodiment of the present invention, includes a cache manager 150, which
facilitates the secured run-time environment 130 to keep the simulated data saved for further ﬁse
of these data to execute the application from the cache. Figure 2, shows the cache manager 150
for caching application resources retrieved in the process. Whenever an application requires a
different portion of application data, an application data simulated process determines the
fequested portion of application data and downloads the requested application data. Further, the
downloaded data is return to the run-time environment to incrementally execute the application.
In between this process, a cache facility is introduced to reduce the application data retrieval
time. The retrieved application data is stored in a cache database within the application wrapper
120. Having cache facility, the application data simulated process checks the cache for the
availability of requested application data. If the application data is available in the cache
database then the application data is retrieved from the cache and returns to the secured run-time
environment 130 otherwise, it retrieves from the original available sources. This reduces the
simulation time and speeds up the execution of application software. The application data is

encrypted and cannot be used by any other application or users.

In the present invention, the method of caching file data is shown in figure 12 and
caching registry data is shown in figure 13. As shown in Figure 12, when a file /O request is "
sent to cache manager in step 602, the cache manger responds the requesting module with the
necessary data. The data required for the I/O request is searched from a cache database available
for the corresponding process in step 604. If the required data is not found in cache database
then the data js retrieved (in step 608) from a remote network and saves (in step 610) the data in
cache database. Finally, if the file data is available in the cache database, the required data is
retrieved (in step 606) from the cache database, which is in a form of encrypted data. The
encrypted data is decrypted (in step 612) and returned (in step 614) to the reQuesting file VO

request.

Similarly, in the present invention, the method of caching registry data is shown in figure

13. For some application the size of the registry might be huge. It takes huge time to retrieve all

- the registry entries from a remote system to serve the secured application in a better speed.

10

15

WO 2005/052762) PCT/US2004/039548

-25-

Whatever registry keys requiredk for executing the secured application is brought to the process
on demand. In figure 13, the function of cache manager for private regisiry system 144 is
explained. When a registry I/O request is sent to cache manager in step 618, the cache manger
responds the requesting module with the necessary registry information. The registry information
required for the /O request is searched from a cache database available for the corresponding
process in step 620. If the required registry information is not found in cache database then the
registry information is retrieved (in step 624) from a remote network and saves the registry data
in cache database in step 626. Finally, if the registry data is not in the cache database, the
required data is retrieved (in step 622) from the cache database, which is in a form of encrypted
data. The encrypted data is then decrypted (in step 628) and returned (in step 630) to the
requesting file /O request.

While the foregoing has been with reference to a particular embodiment of the invention,
it will be appreciated by those skilled in the art that changes in this embodiment may be made
without departing from the principles and spirit of the invention, the scope of which is defined by

the appended claims.

w N

10 .

11
12
13
14

15
16

17
18

19
20

21
22

23
24

25

WO 2005/052762 ‘ PCT/US2004/039548

=26~

1. A system for executing application software on a operating system within a

secured run-time environment without affecting an application software resources of a client

computer, the system comprising:

an application wrapper, wherein said application wrapper shields the application software
resources, whereby said secured run-time environment for executing said application

software is created and the application software resources are protected; and

the application wrapper further comprising a privatized virtual file resource created from
an operating system file system, a privatized virtual registry created from an operating
system registry system, a privatfzed operating system shared component resource, a
privatized application configuration resource and a privatized environmental resources

for application variables.

2. The system of claim 1, wherein privatized virtual file resource further comprising:
intercepting file I/O request generated by one or more processes;

establishing a process ID for the intercepted file /O request;

comparing process ID to establish operating system process and secured run-time

process;

establishing a process ID as operating system process and secured run-time process;

‘ servicing the file I/O request for all process ID established as secured run-time process;

redirecting the file /O request to operating system service for process ID established as

operating system process;

rejecting the file /O request on secured run-time process resources for process ID

established as operating system'pro'cess;

comparing process ID established as secured run-time process to further establish process

resources corresponding to process ID;

establishing corresponding process resources within secured run-time resources; and

26
27
28

29.

30
31

32

33
34

35

36
37

38
39

40
41

42
43

45
46
47
48
49

50
51

WO 2005/052762 PCT/US2004/039548

27-

rejecting the file J/O request on secured run-time process resources for process ID
established as secured run-time process and process ID belongs to other process

resources.
3. The system of claim 1, wherein privatized virtual registry further comprises:

privatizing virtual registry system by intercepting regisiry /O request generated by

several process;
establishing process ID for the intercepted registry /O request;

comparing process ID to establish operating system process and secured run-time

process;

establishing process ID as operating system process and secured run-time process;

servicing the registry VO request for all process ID established as secured run-time

process;

redirecting the registry I/O request to operating system service for process ID established

as operating system process;

rejecting the registry J/O request on secured run-time process resources for process ID

established as operating system process;

comparing process ID established as secured run-time process to further establish process

resources corresponding to process ID;

establishing corresponding process resources within secured run-time resources; and

rejecting the registry /O request on secured run-time process resources for pfocess D

established as secured run-time process and process ID belongs to other process resources.

4, The systém of claim 1, wherein privatizing operating system shared component'

resource further comprising:

searching secured application process for injecting component hooker;

checking the said secured application process to establish whether the process is injected

with component hooker;

WO 2005/052762 PCT/US2004/039548

52
53

54
55

56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77

resource further comprising:

8-

establishing the said secured application process as new secured application process for

said secured application process not injected with component hooker;

injecting component hooker to new secured application process to intercept component

process;
repeating component hooker injection for all the new secured application process;

5. The system of claim 1, wherein privatizing operating system shared component

Initializing component redirection table to provide component redirecting information;
Registering virtual component required for the secured application;

Adding redirecting information to the said component redirection table for the execution

of each selected said secured run-time application;

Removing component redirecting information from the said component redirection table

for the termination of each said secured run-time application;

6. The system of claim 1, wherein privatizing operating system shared component

resource further comprising:

intercepting component process function for replacing component search path with

secured application resource path;

replacing component search path with private resource path to load the component from

the secured application resource path; and

creating new process for the intercepted component with the replaced secured application

resource path.

7. The system of claim 1, wherein pﬁvaﬁzing operating system shared component

resource further comprising:

intercepting component ca}l for replacing component registry path with the said

privatized virtual registry path;

searching component redirection table for the said component redirecting information;

WO 2005/052762

PCT/US2004/039548
-29-
78 replacing component registry path with the said privatized virtual registry path retrieved
79 from the said component redirection table;
80 returning the intercepted call to the requested call with the replaced secured application
81 registry path for addressing the component location from the privatized virtual registry
82 system and further the said component is addressed to load from the said privatized
83 virtual file system; ;
84 redirecting the said component call as it is to the requested call for the said component
85 call originated from non secured run-time application and for the said component call,
86 which do not have redirécting information in the said component redirection table.
87 8. The system of claim 1, wherein privatizing operating system shared component
88 resource further comprising:
89 intercepting the said RPC message call for replacing component information with
90 privatized virtual component information;
91 . searching component redirecting information from the said component redirection table;
92 " replacing RPC message with the said privatized virtual component information retrieved
93 from the said component redirection table;
94 returning the intercepted RPC message call to the requested call with the replaced
95 message; -
96 continuing the RPC call to locate the privatized virtual component through SCM;
97 redirecting the said RPC message call as it is to the requested call for the said component
98 call originated from non secured run-time application and for the said component call,
99 which do not have redirecting information in the said component redirection table.
100 9. The system of claim 1, wherein privatized application configuration resource
101 further comprises:
102 monitoring file I/O request for configuration file to provide separate configuration file; -
103 searching and retrieving configuration file from secured application resources; and

104 serving application configuration file to requesting process.

WO 2005/052762 PCT/US2004/039548

-30-

105 10. The system of claim 1, wherein privatized environmental resources further
106 comprises:

107 intercepting environment variable request to supply private values to secured application
108 process;

109 verifying process ID to establish the process ID as operating system process or secured
110 application process;

111 redirecting the call for process ID established as operating system process;

112 reading variable data from secured application resource and returning the value to
113 requested process for read variable calls requested by the secured application process;

114 searching the requesting write variable in secured application resource to find the
115 presence of requesting write variable;

116 . creating variable with variable data within secured application resource and returning the
117 status to requested. process for variable do not exist in secured application resource; and
118 updating variable with variable data within secured application resource and returning the
119 status to requested process for variable exist in secured application resource.

120 11. ' The system of claim 1, wherein the application wrapper further comprises

121 selectively allowing the application software to interact operating system resources directly

122 during the said application software executing under the said secured run-time environment.

123 . 12. The system of claim 1, wherein the application wrapper further comprises
124 selectively allowing said application software to interact with other application software
125 resources directly during the said application software executing under the said secured run-time

126 environment.

127 13. The system of claim 1, wherein said application wrapper further comprises
128 providing a run-time environment to said application software that is visible to an operating
129 system run-time environment without having said application software run-time resources,
130 whereby said application software resouroces is simulated to said secured run-time environment

131 during the execution of said application software.

WO 2005/052762 . PCT/US2004/039548

132
133

134
135

136
137

138
139
140

141
142
143

144
145

146
147

148
149
150

151
152

153
154

155
156
157
158

-31-

14. The system of claim '13, further comprising means for protecting the behavior of

said application software from other application and said operating system.

15. The system of claim 13, further comprising means for eliminating said application

conflicts from other running application software.

16. The system of claim 13, further comprising means for executing multiple instance

of single said application software.

17. The system of claim 1, wherein the said application wrapper further comprising
maintaining the application software resources away from said operating system resources,

whereby said operating system resources is protected from said application software resources.

. 18. The system of claim 1, wherein said application wrapper further comprises
permitting full access to said application software that requires to access for variation occurs to

said application software resources within the said application wrapper.

19. The system of claim 18 further comprising means for keeping the state of secured

run-time environment to said application software.

20. The system of claim 18, further comprising means for updating said application

software resources required by said application software.

.21. The system of claim 1, wherein the said application wrapper monitors the said
application run-time request to determine the required said application software resources for

execution.

22. The system of claim 21, further comprising means for receiving said application

software resources to execute said application software in the said secured run-time environment.

23. The system of claim 21, further comprising means for incrementally executing the

said application software in the secured run-time environment.

24. A method for executing application software on a operating system within a
secured run-time environment without affecting an application software resources of a client
computer, the client compute comprising an application wrapper, wherein said application

wrapper shields the said application software resources, whereby a said secured run-time

WO 2005/052762 PCT/US2004/039548

159
160

161
162
163
164
165

166
167

168
169

170
171

172
173

174
175

176
177

178
179

180

181
182
183

-32-

environment for executing an said application software is created and the said application

software resources is protected, the method further comprising;
privatizing virtual file resource created from an operating system file system;
privatizing virtual registry created from an operating system registry system;
privatizing operating system shared component resource;
privatizing appliéation configuration resource; and
privatizing environmental resources for application variables.

25. The method of claim 24, wherein privatizing the virtual file resource further

comprising:
intercepting file /O request generated by several processes;
establishing process ID for the intercepted file VO request;

comparihg process ID to establish operating system process and secured run-time

process;
establishing process ID as operating system process and secured run-time process;
servicing the file I/O request for all process ID established as secured run-time process;

redirecting the file I/O request to operating system service for process ID established as
operating system process;
rejecting the file /O request on secured run-time process resources for process ID

established as operating system process;

cbmparing process ID established as secured run-time process to further establish process

resources corresponding to process ID;
establishing corresponding process resources within secured run-time resources; and

rejecting the file /O request on secured run-time process resources for process ID
established as secured run-time process and process ID belongs to other process

resources.

WO 2005/052762 PCT/US2004/039548

184
185

186
187

188

189
190

191

192
193

194
195

196
197

198
199

200

201
202
203

204
205

206
207

208
209

-33-

26. The method of claim 24, wherein Privatizing the virtual registry further

comprising:

privatizing virtual registry system by intercepting registry /O request generated by

several process;
establishing process ID for the intercepted registry I/O request;

comparing process ID to establish operating system process and secured run-time

process;
establishing process ID as operating system process and secured run-time process;

servicing the registry 1/O request for all process ID established as secured run-time

process;

redirecting the registry I/O request to operating system service for process ID established

as operating system process;

rejecting the registry /O request on secured run-time process resources for process ID

established as operating system process;

comparing process ID established as secured run-time process to further establish process

resources corresponding to process ID;
establishing corresponding process resources within secured run-time resources; and

rejecting the registry /O request on secured run-time process resources for process ID

_established as secured run-time process and process ID belongs to other process

resources,

27. The method of claim 24, wherein privatizing operating system shared component

resource further comprising:

intercepting component process function for replacing component search path Wwith

secured application resource path;

replacing component search path with private resource path to load the component from

the secured application resource path; and

WO 2005/052762 PCT/US2004/039548

-34-
210 _ creating new process for the intercepted component with the replaced secured application
211 resource path. '
212 28. The method of claim 24, wherein privatizing operating system shared component
213 resource further comprising:
214 searching secured application process for injecting component hooker;
215 checking the said secured application process to establish whether the process is injected
216 with component hooker;
217 establishing the said secured application process as new secured application process for
218 said secured application process not injected with component hooker;
219 injecting component hooker to new secured application process to 'intercept component
220 process; .
221 repeating component hooker injection for all the new secured application process;
222 29. The method of claim 24, wherein privatizing operating system shared component
223 resource further comprising:
224 Initializing component redirection table to provide component redirecting information;
225 Registering virtual component required for the secured application;
226 Adding redirecting information to the said component redirection table for the execution
227 - of each selected said secured run-time application;
228 Removing component redirecting information from the said component redirection table
229 for the termination of each said secured run-time application;
230 30. The method of claim 24, wherein privatizing operating system shared component
231 resource further comprising:
232 interéepting component call for replacing component registry path with the said
233 privatized virtual registry path;
234 searching component redirection table for the said component redirecting information;
235 replacing component registry path with the said privatized virtual registry path retrieved

236 . from the said component redirection table;

WO 2005/052762 PCT/US2004/039548

237
238
239
240

241
242
243

244
245

246
247

248

249

250 -

251
252

253

254
255
256

257
258

259
260
261

262
263

-35-

returning the intercepted call to the requested call with the replaced secured application
registry path for addressing the component location from the privatized virtual registry
system and further the said component is addressed to load from the said privatized

virtual file system;

redirecting the said component call as it is to the requested call for the said component
call originated from non secured ru-time application and for the said component call,

which do not have redirecting information in the said component redirection table.

31. The method of claim 24, wherein privatizing operating system shared component

resource further comprising:”

intercepting the said RPC message call for replacing component information with

privatized virtual component information;
searching component redirecting information from the said component redirection table;

replacing RPC méssage with the said privatized virtual component information retrieved

from the said component redirection table;

returning the intercepted RPC message call to the requested call with the replaced

message;
continuing the RPC call to locate the privatized virtual component through SCM;

redirecting the said RPC message call as it is to the requested call for the said component
call originated from non secured run-time application and for the said component call,

which do not have redirecting information in the said component redirection table.

32. The method of claim 24, wherein privatizing application configuration resource

further comprising:

monitoring file J/O request for configuration file to provide separate configuration file;
searching and retrieving configuration file from secured application resources; and
serving application configuration file to requesting process.

33. The method of claim 24, wherein privatizing environmental resources for

application variables further comprising:

WO 2005/052762 PCT/US2004/039548

-36-

264 intercepting environment variable request to supply private values to secured application
265 process;

266 verifying process ID to establish the process ID as operating system process or secured
267 application process;

268 redirecting the call for process ID established as operating system process;

269 reading variable data from secured application resource and returning the value to’
270 requested process for read variable calls requested by the secured application process;

271 searching the requesting write variable in secured application resource to find the
272 presence of requesting write variable;

273 creating variable with variable data within secured application resource and returning the
274 status to requested process for variable do not exist in secured application resource; and
275 updating variable with variable data within secured application resource and returning the
276 status to requested process for variable exist in secured application resource. .
277 34. The method of claim 24, wherein selectively allows said application software to

278 interact operating system resources directly during the said application software executing under

279 the said secured run-time environment.

280 35. The method of claim 24, wherein selectively allows said application software to
281 interact with other application software resources directly during the said application software

282 executing under the said secured run-time environment.

283 ' 36. The method of claim 24, wherein said application wrapper provides an run-time
284 environment to said application software that visible to be an operating system run-time
285 environment without having said application software run-time resources, whereby said
286 application software resources is simulated to said secured Tun-time environment during the

287 execution of said application software.

288 37. The fnethod of claim 36, further comprising protecting the behavior of said

289 ai)plication software from other application and said operating system.

290 38. The method of claim 36, further comprising eliminating said application conflicts

291 from other running application software.

WO 2005/052762 PCT/US2004/039548

-37-
292 . 39. The method of claim 36, further comprising executing multiple instance of single
293 said application software.
204 40. The method of claim 24, wherein the said application wrapper keeps the

295 application software resources away from said operating system resources, whereby said

296 operating system resources is protected from said application software resources.

297 41. The method of claim 24, wherein said application wrapper allows full access to
298 said application software that requires to access for variation occurs to said application software

299 resources within the said application wrapper.

300 42. The method of claim 41, further comprising a means for keepingA the state of

301 secured run-time environment to said application software.

302 ' 43, The method of claim 41, further comprising a means for updating said application

303 software resources required by said application software.

304 44. The method of claim 24, wherein the said application wrapper monitors the said
305 application run-time request to determine the required said application software resources for

306 execution.

307 45. The method of claim 44, further comprising a means for receiving said
308 application software resources to execute said application software in the said secured run-time

309 environment.

310 46. The method of claim 44, further comprising a means for incrementally executing

311 ‘the said application software in the secured run-time environment.

WO 2005/052762

)

108

N

106

)

Application

e S .

~Process-1

?

Simulated

Application

Resources

!

Privatized

System
Resources

- - - -

1]
]
1]
1]
1]
]
1]
i
13
1]
]
1]
1]
1]
1]
1]
L
]
¥
: s
Run-Time :
]
3
]
1]
’
1]
]
)
1
]
]
]
1]
L}
]
]
11
]
1]
s
)
1]
A

-

130

ﬁﬁ?

1/15

PCT/US2004/039548

Application

130

? |

Process-4

?

Simulated

109

~

Application

Process-2

Application
Process-3

f

f

Installed Application

Resources

I Lllfvi

——— T - —— " o ¢ VAB S G W Sy T W Gy — o —— | o —

Run-Time

Resources

. Application

106

.

Privatized
System

Resources

=

— ID4

System Resources

i

D)

102

Operating System

Figure. 1

108 .

WO 2005/052762 PCT/US2004/039548

2/15
120\-

e |
I 7 !
: Privatized Virtual Component !
| System :
I |
I
: 148 — 130— 150 :

I
| \ 12— 134 (!
] N 7/) !
I }
1|]
: Execution Registry- :
{ Rles entries }
| }
' :
E Process) " Cache :
| I
] Components . |
| Manager Environmental Manager i
: DLL’s, Fonts {
l and others Information :
I !
] __// ‘\]
: 136 138 !
] I
} Application Configuration :
: \ :
! 140 !
I I
: — |
: Privatized Virtual File Privatized Virtual Registry I
. I
} Syst Syst |
) / ystem ystem \ |
b ug — S—— |

B e e et e e e e = e e - i - - e > S i S S . o e s e e - S — —— e T o S T — - T — ot o

System Resources

Operating System

Figure. 2

WO 2005/052762 PCT/US2004/039548
3/15

Application 1

* i'\
S —— o

Privatized Virtual File System 1

1l

Virtual File System

File System w
200

I

Operating System

=

100

Figure. 3

WO 2005/052762 PCT/US2004/039548
4/15

Application 1
% % | !
.]
s e
Privatized Virtual Registry System 1
F Y J

I % | 144
! v

Virtual Registry System Ty

302

!

Registry System ———

I 300

Operating System . ¥

100

Figure. 4

WO 2005/052762
5/15

v

' Request to execute
Secured Application

152

Is System

Initiated?

Load privatized virtual file system
& privatized virtual registry
system driver

|

Initialize privatized
component system,
component redirection table
privatized environmental

system & privatized 158
configuration system

!

Initialize cache manager
& process manager 150

¢

Download Initial data
for the requested
secured application
from remote server 162

v

Mounts privatized file

system & registry
svstem 164
Register virtual component
Add component redirecting
information to component ‘\\
redirection table 165
E&ecute éecured)
application '
¢ 166
Return ﬂ
168

Figure. 5

PCT/US2004/039548

WO 2005/052762

6/15

Start

C Pt

Retrieve process D from

PCT/US2004/039548

0OS process list 174
Is it secured
application
process ID?
Is process D Yes

available in
vrocess list?

Add process ID
to process list

Is process list
_ process IDin
0OS process list

Delete process
ID to process

. Is process list
empty?

B
180
¥
No
.
182
1184
b h 4
\/\
188

WO 2005/052762

No

belongs to Secwred

PCT/US2004/039548
7/15

v

Intercept file /O
request

v

Establish process
ID for the
intercepted file

/0 request

. 204

" 206

Is N\
file path
pointing to Secured
run-time or OS
resources?

Is
ProcessID

Application

process? 208

Secured Run-time
Resource

=

. Is
Process ID Yes
Is Reject file
: belongs to OS »
Permitted /O v
” Application /O request
process?
-
g Is D Service file /O
file path polr.xtlng request from
corresponding secured data source |—p—
process ID corresponding to
resources Process ID
h h 7 Is " Service file VO
Re-directing access to Yes request from
file I/O request other process sources secwred data source |—p—
to OS file Allowed? within the permitted |-
system“ resources
% . 2 f
26 * 24
Reject file
v /O request \
228
-
A 4
Return file /O "L
30

Figure. 7

WO 2005/052762

8/15
Intercept registry /0
request
Establish process ID for -
the intercepted registry
/O request

PCT/US2004/039548

oo

\ oo

OS process Process ID
——g belongs to Secured
run-time or OS
0cess? |
proce 08
Secured run-time process f_alz
Service registry I/O
key available at Yes request from secured
corresponding P data resource -
process ID corresponding to
resource Process ID
[ﬁls
Is S
Service registry I/O
access to Yes | request from secured |
other process resource data source within the |
Allowed? permitted resowrces
Is
access to No Reject Registry
OS Registry resource : S mame
Allowed? VO Request
318 -
- {
‘L 320
Re-direct
Registry I/O
request to 0OS
" registry \/_\2
system 32
I
—¢
h 2
Retwrn Registry
/O request b4

Figure. 8

WO 2005/052762 PCT/US2004/039548
9/15

Intercept create
rrocess function k 00

Establish process ID
for the intercepted
function 402

ProcessID
belongs to secured
run-time

process
404
¢ Yes
Amend the DLL path with

corresponding secured
run-time resource path
based on process D

J,' 406
Create new process p—"\
l . 408
\ 4
Return
410

Figure. 9

WO 2005/052762 PCT/US2004/039548
10/15

|
h 4
Search for new
processes
T
A process
already injected wi
hooking DLL
L 4
Inject hooking DLL
to each processes \QB
4
h 4
 —] Repeat
420

Figure. 10

WO 2005/052762

11/15

|

Intercept Environment *°
variable Request

Check
process ID

Secured Appin.

Read / write
request?

506

Variable
exists?

510

Update variable within
private system

PCT/US2004/039548
500
Redirect to L

win32 sub system

504"
Read variable from :
rrivatized system ’

508
Create variable within

privatized system —

512

k 4

Return value / result to
requested routine

Figure. 11

WO 2005/052762 PCT/US2004/039548
12/15

Receive file I/0 request ’—Q

606

(_,)

Retrieve data from
cache database

Is file data
available in
cache db?

Retrieve data from remote
server for the corresponding

file /O request 60

Save retrieved data in cache
database
7 1
F Y
Decrypt retrieved data \»/)
61

Return decrypted data to the
requested file /O /\614

[=2)

(]

Figure. 12

WO 2005/052762

13/15

(Start ¥ D!
616

l

Receive registry /0 request

Is registry data
available in
cache db?

620

o

Retrieve data from remote
server for the corresponding
registry /0 request

l

Save retrieved data in cache
database

o/

N
™,
[=2)

PCT/US2004/039548

622

Retrieve data from
cache database

:

Decrypt retrieved data

i

l

Return decrypted data to the
requested registry I/O

Y

Figure. 13

WO 2005/052762 PCT/US2004/039548
14/15
Intercept
t call
compor‘tn 120
Establish process ID |
for the intercepted \"_\
component call 424
Process D
belongs to secured ~~ N¢ >
run-time
TOCEeSS
426
Reftrieve comgonent Y k 4
call information 428
Search redirection table
for component 430
redirecting address
/434
redirecting -
Amend component call
address available - . .
. . . information with e
in redirection search failled status
table ?
Retrieve component "
redirecting address 436 v ¥
Amend component call | __—~—
information with 438
redirecting address
' < o
v
Return call to the
hooked finction A
440
Figure. 14

WO 2005/052762
15/15

Intercept
RPC message

v

Establish process ID
for the intercepted
RPC message 454

‘452

Process ID
belongs to secured

No

PCT/US2004/039548

run-time”
roCcess

Retrieve informaton fh—\
. from the intercepted 458
RPC message

v

Search redirection table o\,
for component 460
redirecting information

/——454

redrrecting
information avalable

Amend RPC message
with search fail status |

in redirection

table ?

Retrieve component W
redirecting information 466 v

v

Amend RPC message f_-—\
with redirecting information 4168

1
-+ . |
) 4
Return call to the

hooked function \

Figure. 15

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

