
A. E. KEITH \& J. \& C. J. ERICKSON. AUTOMATIC TELEPHONE EXCHANGE.
APPLICATION FILED NOV. 28, 1904. RENEWED MAR. 26, 1917.
1,286,180.

UNITED STATES PATENT OFFICE.

LIEXANDER E. REITH, OF" HINSDALE, AND JOHN ERICKSON AND CHARLES J. ERICK SON, OF CHICAGO, ILLINOIS, ASSIGNORS TO THE STROWGER AUTOMATIC TELEPHONE HXCHANGE, A CORPORATION OF ILLINOIS.

AUTOMATIC TELEPHONE-EXCHANGE.

1,886,180.

Specification of Letters Patent.
Patented Nov. 26, 1918.
Origingi epplioation filed May 4, 1803, Serial No. 155,582. (Patent No. 1,151,541.) Divided and this application tled fovember 88 , 1804, Serial No. 234,521. Renewed March 26; 1917. Serial No. 157,589.

To all whom it may concern:

Be it known that we, Alexander E. HEith, residing at Hinsdale, county of Dupage, and State of Illinois, and John Erickin Cind Charles J. Erickson, both residing in Chicago, county of Cook, and State of Mlinois, all citizens of the United States, have invented a new and useful Improvenent in Automatic Telephone-Exchanges, of ebling the different subscribers of an elec trical exchange to call each other by mechanism, preferably automatic, at the central
exchange, such as is shown in our prior Pat ent No. 1,151,541, dated August 24, 1915, of which this is a divisional application.
The main object of our invention is to proride a mechanism by means of which cir30 cuits mey be formed and over which electrical impulses may be sent intermittently and alternately, or simultaneously.
With this and other objects in view our invention consists in the improved construc6 tion and novel arrangement of parts of an exchange and the calling apparatus therefor, as will be hereinafter more fully set forth.
In the accompanying drawings in which the same reference numerals indicate corre0 sponding parts in each of the views in which they occur:
Figure 1 is a view of an exchang embodying our invention, the calling device being shown in front elevation and the paits of the 5 central exchange necessary to show its operation and also its connection with the celling device being shown diagramatically.
Fig. 2 is a side elevation of the calling device.
Fig. 3 is a transverse vertical sectional view of the same.

In the form of calling device which we hâve shown for carrying out our invention, 1 indicates an actuator such as the ordinary
45 finger disk, and 2 indicates a circuit closer which is in the form of a segment having fingers or projections 3 around its periphery, there being one moie projection than there are finger hotds in the actuator. The actu-
50 ator, circuit closer, a stop arm 4 , and also a circuit changer 5 are rigidly secured to a shaft 6 which is journaled in a suitable frame T but insulated therefrom.
The fingers or projections 3 are inclined
and are adapted to engage with a projection 55 8 on a flexible strip or make-and-break terminal 9 , and force the free end of the terminal into engagement with a contact or terminal 10 when the segment 2 is being returned to its normal position, as by a suitable spring 11, but will move it in the opposite direction or away from the terminal 10 , when the segment is being moved out of its normal position by the movement of the actuator in making a call.
The contact 10 is insulated from the frame 7 but is electrically connected by wire 12 with one of a group of three terminals, 13 , 14 and 15 , which are insulatingly secured to the frame. The other ends of these terminals are normally separated but are adapted to he forced into contact by a projection 16 on the telephone receiver hook 17 which engages with a projection 18 on one side of one of the terminals, as 13, when the hook is forced downward by the weight of the receiver after the call has been completed. The hook is also provided with a projection 19 which is adapted to separate the terminals of the talking and ringing circuits as show? at 20 when the hook is depressed. As said creuits form no part of this invention they are not shown otherwise than by said terminals.
The calling device is connected with' the central exchange by means of two wires 21 and 22 , each of which is bifurcated or provided with two terminals at the calling end. Two of said bifurcations are connected respectively with terminals 23 and 24 which are so located as to be engaged by the circuit changer 5 , and the other bifurcations are connected respectively with the terminals 13 and 14. A wire 25 is connected at one end with the fixed end of terminal 9 and at the other end with a terminal 26 which is in constant contact with the circuit changer 5, the terminals 23 and 24 being so arranged as to be in alternate contact with the changer as by making the changer of two diameters and locating the terminals on diametrically opposite sides therenf. A flexible terminal 27 is insulatingly secured to the frame 7 with its free end in position to be moved into or out of engagement with an arm or contact point 59 and having its opposite end 105 grounded, as by wire 28 .
A shouldered lock-plate or arm 29 is pivotally secured to the frame in position to
engage with the stop arm 4 and hold the actuator 1 against movement until after a projection 30 on the hook 17 engages with and partly lifts the plate up when the hook is moved upward after the receiver has been remosed to make a call. The phate also engages with an insulating buiton 32 on the ond of the terminal et and nomally holds the terminal ont of engagement with the and the adtator has been partially rotated to make a call.

When the hook has raised the plate as far as it (an by means of the projection 30 , the 5 teminal is still hold away from the contact be by means of another button $3: 3$ on the ter minal which enguges with the projection :3t at the end of the plate which was origimally in contact with the button Be. But as soon tion to make a call the stop am engages with the moler edge of the plate es and forces the plate upward until the nose or projection 34 passes above the button 33 and contand 52 and close the circuit to the gromed through the wires 2 .

The medhanism at the central exchange for estahlishing the electrical comnections
ferent sulsuribers may be made of any desired construction. The particular merhanism used by us for changing the circuit from wire 21 to wire 22 , so that, after the and afterward revolved to the proper place it can then be released to the normal position, is shown diagrammatically in the lower portion of Fig. 1 where 62 indicates the reand 64 a 5 tiff in the nomal position. The shatt 31 is proviged with means for contacting the terminals of two banks of points, 66 and 67 .
:3: is a detent shaft upon which are socured two detents 36 and 37 which engage respectively with the teeth of the vertical ratehet 38 and the rotary ratchet 39 on the switch shaft 31 when the instrument is being operated. A spring 40 holds saicl detents in yielding engagement with said ratelets.
A pin 41 projects from detent shaft 35 and is disposed in the path of movement of a hent lever catch-pawl 42, which latter is yiddingly held in position by spring 43.
$\Delta t 44$ is a vertical magnet whose armature is attached to lever to to which is pivoted a pawl for engaging vertical ratchet 38 in operating shaft 31 step by step vertically.

Lever ${ }^{45}$ projects to within a short distance of detent shaft 35, so that, when this lover is operated by the vertical magnet 44 . the outer end of the lever is adapted to strike the inwardy projecting end of release
ment with the detent shaft pin +1 , and permit the detents 36 and 37 to be moved by virtue of spring to, into engagement, respectively, with rertical matelet 38 and rotary ratchet 39 at the proper time.

When the detent shaft 3 in is operated so as to remove detents 36 and 37 from engage-? ment with matehets 38 and 39, a rod 47 , hating one end pirotally attarhed to detent :3 and the other tipped with insulation. comtactes with and moves the switeh lever th from connection with wire to to comne ${ }^{\text {ion }}$ with wire 5 , or into its nomal position, therely erontrolling the comnection of the wire, il with the vertional nall roumy nawe so nets.
In operation. if it is deximed to set a sub)seriberes tolephone switel at the erntral axchange to refmmanicate. for instance, with telephone momber 3it, first remove the tele- 85 phone receiver from the hook when the lerk phate or arme at the calling deviee will be moved upward, when stop arm than the shaft fi, and the finger-hold disk 1 are free to move.

Roferman to pig. 1, the operator now places a finger in contact with finger-hold No. 3, which is pulled down around in the direction indicated by arrow E , until the finger contacts a stop at the botom and is 95 withtrawn. when fuger-hold disk 1 is released and by virtue of spiral prine 11 arried backward, together with what f, and connected segment wheel 2 to the normal position.

In thas manipulating the finger-hold disk, the first movement downwardly cabies the stop arm 4 to engage with the locking plate or arm 29 and somplete its upward movement which will permit contact spring or terminal $2 \bar{t}$ to fall into electricoll cngagement with arm of of the insulated part a which is in electrical comnection with pendant terminal 10 .

Also in the first movement downwardy, 110 the insulated circuit chamger has been moved from the position shown in full lines to the position shown in the segmental broken lines in Fig. 1, out of contact with switeh spring or terminal $8 t$ and into contact with swite spring or terminat 23 .
In the serond or backward movement, on account of segment wheel 2 having one more beveled tooth than there are finger-holds on plate 1 , as shown in sad prior Patent No. $1,151,5+1$ dater lugust $2+1.1515$, of which this is a divisiomal application, and this extra tooth being jlaced angularly ahead, relatively to the arrangement of the fingerholds, the segment wheel teeth ojerafing 1 spring arm 9, cause the latter to separately. contact pendant terminal 10, four times instead of three, when the first three of these impulses pass from battery 51 wires of and 55, vertical magnet $4 t$ wire 50 switch arm 13011011115120
\qquad125

9075

\qquad

0

s

\author{

}

48 line wire 21 then to the calling device, spring 23 , disk 5 , spring 26 , wire 25 , spring arm 9, terminal 10 , part 53, arm or contact point 52 , spring 27 , wire 28 to ground, and
b shaft 31 three upward steps.
But just before the last electrical impulse of the four above described, the circuit changer disk 5 has been moved from the with spring 24, so that this last impulse passes from battery 51 through wire 54 , wire 59 , wire 56 , auxiliary electro-magnet 57 and line wire 22 , spring 24 , disk 5 , spring 26 , wire 22 , with the result, that the auxiliary magnet is operated to close springs 60 and 61 , when current passes from battery 51 , through
wires 54 and 59 , springs 60 and 61 , wire 68 , when current passes from battery 51 , through
wires 54 and 59 , springs 60 and 61 , wire 68 , 13,14 and 15 , wire 12 , contact point 10 , its support 53 , contact 52 , terminal 27 and wire
28 to ground.' As the current passes through support 53 , contact 52 , terminal 27 and wire
.28 to ground.' As the current passes through magnet 62 its armature 63 is attracted which 25 , spring arm 9 , pendant terminal 10 , part 53 , arm $\grave{2} 2$, spring 27 and wire 28 to ground, causing the auxiliary electro-magnet 57, to operate the switch arm 48 so that line wire 21 is moved out of connection with wire 50 and into connection with wire 49 , which leads to the rotary electro-magnet 58 .
Thus far main switch shaft 31 has been liftod three steps, and connection established with the rotary magnet, which before was cut out of circuit.
If now, the finger-hold disk is moved from the fifth hole to the stop, and six impulses sent over the line wires, five of these impulses would pass from battery 51 through wire 59^{n}, electro-magnet 58 , wire 49 , then the moved switch arm 48 , wire 21 , spring 23 , disk 5 , spring 26 , wire 25 , spring arm 9 , pendant arm 10 , pari 53 , arm 52, spring 27 and wire 28 to ground and thereby causing rotary magnet 58 to revolve shaft 31 five steps.
When the disk 5 changes the circuit from line wire 21 to 22 the effect is to simply operate the armature of auxiliary magnet 57 , which would have no effect upon switch lever 48 since it would be in the second position in connection with wire 49.
In the manner described the switch shaft 31 would now have a wiper arm in electrical connection with contact point No. 35 of some subscriber's line not shown.

In the operation of release, a subscriber hangs the telephone on the hook when arm 17 descending in the manner hereinbefore described, causes the switch springs 13 and 14 to first contact, and thus connect line wires 21 and 22 , then they are grounded simultaneously by being brought into contact with spring 15 , which causes a simultaneous current over both main lines 21 and release magnet 62 , wire 69 , to line 21 , springs permits the hook arm 42 , attached thereto,
to engage with the pin in lever 41, which projects from detent shaft 35 , and when the circuit is broken by the additional descent of telephone lever 17 , the strong spring 64 controlling lever armature 63 lifts the latter and withdraws the pawls 36 and 37 to the position shown clear of ratchets 38 and 39 and moves the rod 47 so as to return the switch lever when the main switch shaft 31 is free to return to its normal or initial position by virtue of gravity and the spring 65 at the lower end portion.
We claim as our invention:

1. The combination of two electric circuits extending from a subscriber's calling station 80 to the central exchange, a calling device at the subscriber's station, said calling device having provisions for changing the circuit with which it is connected at each operation, switching mechanism at the central exchange adapted to be connected with said circuits, and a single releasing magnet for restoring said switching mechanism to normal.
2. The combination of two electric circuits 90 extending from a subscriber's station to a telephone exchange, a calling device at the subscriber's station, said device having a circuit closer and a circuit changer, and also having provisions whereby the circuit 9 changer connects the circuit closing device with either one or the other of said circuits, and switching mechanism at the exchange adapted for connection with said circuits.
3. The combination of two electric cir- 100 cuits, a calling deviçe comprising a circuit closer and a circuit changer and having provisions whereby the circuit changer connects the circuit closer with first one and then the other of said circuits during operation of the calling device, and switching mechanism at the telephone exchange adapted to be connected with said circuits.
4 . The combination with a pair of electric circuits, of a calling device at a subscriber's 110 station, said calling device comprising a circuit closer and a circuit changer and having provisions whereby the circuit changer shifts the connection of the calling device from one circuit to the other at the close of the operation of the calling device, and switching mechanism at a tolephone exchange adapted for connection with said circuits.
4. The combination with two electric circuits, of a calling device at a subscriber's station, said calling device comprising a circuit closer adapted for closing the circuit a. plurality of times during one operation, and a circuit changer adapted to change the connection of the calling device from one of said circuits to another, said circuit changer being combined with mechanism whereby it shifts the connection of the calling device from one circuit to the other during the
.
\qquad
\qquad -

\qquad

\qquad
operation of the circuit closer, wherely certain current impulses made by the circuit closer during one operation pass over one cirenit and the remainder over the other "irphone exchange adapted for connection with said cirenits.
6. The combination with two electric cirentits, of a calling device having a cirenit ity of times at sed opestion ant abso ing a circuit changer alapten to comert the calling device with either one or the other of said circuits, waid calling device hating thens wherey the cotelit rhanger shifts connection fom one direnit to the other during the operation of the riment closer so that all but one of the emrent impulses cansed hy the cirenit choser pass over ma pases ole the other line, and switching merdanism at a tolephone exchange comprising two motor devices included in separate local cirenits and an electromagnot combined with a
 ants with one and the other of said loral circuits, said electromagnet being included in sad last mentioned line direnit and the circuit changer of the calling sleviee being 30 adapted to cause the emrent impulses to pass first over the cirenit arranged for connertion with said local cireuits and then orer the circuit containing sadid electromagmet.
7. A device of the chameter describerd
 eireut-closer at the calling station, switching mechanism comprising a pharality of motor devices controlled by the airemit eloser, means for inserting said motor ve-
40 vices alternately in the circuit, two deviese arranged for alternate operation and controlling the satid inserting means, and a single releasing magnet fibe restoring satid devies to nommal.
S. In a telephome system, two eirenits extending to the substation, swite hing merehanism comprising a pharatity of fonotor devices, a device for antomationlly inserting said motor deviees altermately in one circuit,
50 said inserting devier having rontrolling mems included in the other ciremit, and hasing an anxiliaty controlling derice adapted for inclusion in one cirruit, cireuit closing merhanism adapted to be thrown into and? out of operation, and an aditional ememitclosing means mapted for opration intependent:of said cironit chosing merhanism, for closing the cirenit in which the ansiliary controlling devier is included, substantially
9. In a telephone system, a subseriberes line, a calling devier therefor, motor devies for switching merhanism, a cirenit in which there devices are adaped to be altermately
inserted, a cirenit-cosser in the cirenit controlled be said callinge device and adapted when onerated to control the inserted motor device. a plamaty of independent means controlling the insertion of said motor derices in their areuit, and mechanism arranged to actuate one of the controlling means.
10. A device of the character deseribed comprising motor devices for switching merhanism, a circuit in which these devices are adapted to he altemately inserted. a cir-cuit-resser in the cirevit and adapted when operated to control the inserted motor deviere imbependent efectrically actuated means controlling the insertion of the motor deriese in their cimenit. a contact deriee in direnit with one of salid controlling means, and locking merhanism aduated in unisom with the eontart devie for holling the cir-cuit-closer ont of operation, substantially as sot forth.
11. A deviee of the chamacter described comprising two aledric ciruits. a circuit-- loser at the calling station, switeling mechanism comprising motor derioes altarmately insertible in one and the same cirevit and when so inserter alapted to be controlled by said cirelit-dosere means ind luded in the other cirenit am! controlling the insertion of the motor devides in their cirenit, and a cimuit-changer at the sub-station for antomaticalle inserting the motor devices in the cirenit thereof, sulustantially as set forth.
12. A device of the chatacter deseribed, omprising an che trice eirenit induding a cir-cuit-rloser at the calling station, switehing merchanism comprining a jumality of motor deviers controlled by the dirnit- doser, means for inserting the motor deviere altemately in the cirenit, dexiees for reversely operating the inserting means, and merhanism controlled by the operation of one and arranged to control the operation of the other of the said reversely operating devices. subtatatially as sot forth
18. A device of the character deseribed romprising an olectrie ciment-closer at the ralling station, switchime medhanism comprising a planality of motor deviers comtrolled by the arenit-closer. means for inserting the motor devies alternately in the dircuit, devices for reressely oprating the inserting mons, means alapled to actuate one of said reversoly operating desioes. and medhanism controhled by the ohe of sad reverself operating dorieres ame arranged to inser satil first-mathed restasely operating device in the ciremit, substantially as stated.
14. I deviee of the charater deseribed comprisme two dindic ribults, a rimutdoner al the calling statiom, switching merehanism at the exchamge comprising a plurality
of motor devices controlled thereby and insertible in one circuit, and inserting means, devices for reversely operating said inserting means, one of said reversely operating de-
5 vices being included in each circuit, one of said devices consisting of a single magnet for restoring both of said devices to normal.
15. In a telephone system, two electric circuits extending to the substation, a circuitcloser at the calling station, and switching mechanism comprising a plurality of motor devices controlled thereby and insertible in one circuit, an inserting means, a device for operating the inserting means in one direc15 tion and included in the other circuit, and a device insertible in the first named circuit for operating the said inserting means in the other direction, substantially as stated.
16. In a telephone system, two electric cir20 cuits extending to the substation, a circuitcloser at the calling station, and switching mechanism comprising a plurality of motor devices controlled thereby and insertible in one circuit, and inserting means, devices for
25 reversely operating the inserting means, one of said reversely operating devices being included in the other circuit and the other device being insertible in the first named circuit, and mechanism controlled by the in$s 0$ cluded device, and controlling the inserting of the insertible device in the first named circuit; substantially as set forth.
17. A device of the character described comprising circuit closing means at the calling station, switching mechanism comprising motor devices and means for alternately inserting said motor devices in circuit with said circuit-closing means, automatic mechanism at the calling station for controlling
40 the insertion of said motor devices in circuit with the circuit-closing means, and a release mechanism for returning the motor devices to their initial positions, substantially as set forth.
18. A device of the character described comprising an electric circuit including a circuit-closer at the calling station, alternately operating motor devices for switching mechanism insertible in the circuit, another 60 circuit including means for controlling the insertion of said motor devices in their circuit, means included in the first named circuit for removing the inserted motor device therefrom, and contact means for closing 65 said circuits, substantially as set forth.
19. A device of the character described comprising an electric circcuit including a circuit-closer at the calling station, alternately operating motor devices insertible in for controlling the insertion of said motor devices in their circuit, means for removing the inserted motor device therefrom, con thet monns for closing said circuits, and
means for holding the circuit-closer out of operation, when the contact means is actuated, substantially as set forth.
20. In á telephone system, two electric circuits extending to the substation, motor devices controlled thereby, a switch for the motor devices in one of said circuits, a magnet in the other, release mechanism adapted to be controlled by said magnet, means for actuating said switch in one direction automatically, and manually operated means for closing the circuit to actuate the release mechanism, substantially as set forth.
21. In a telephone system, two electric circuits extending to the substation, motor devices controlled thereby, a switch for said motor devices in one of said circuits and release mechanism adapted to be controlled by the other, a magnet for controlling the movement of the switch in each direction, one of said magnets also controlling the release mechanism, substantially as set forth.
22. In a telephone system, two electric circuits extending to the substation, switching mechanism controlled thereby, a switch in one of said circuits and release mechanism adapted to be controlled by the other, a magnet for controlling said release mechanism, and means for moving said switch in one direction and simultaneously therewith passing a current through said magnet, substantially as set forth.
23. In a telephone system, two electric circuits extending to the substation, switching mechanism controlled thereby, a side switch mechanism and release mechanism, a magnet for controlling each of said mechanisms, and means for passing a current through the release magnet only when the side switch magnet is energized, substantially as set forth.
24. In a telephone system, two electric cir- 106 cuits extending to the substation, switching mechanism controlled thereby, a switch and release mechanism, a magnet for controlling said switch and release mechanism, an angular lever adapted to simultaneously operate the switch and close a circuit through the release magnet, and another magnet for operating said lever, substantially as set forth.
25. In a telephone system, two electric circuits extending to the substation, switching 11 mechanism at the central office controlled thereby, a magnet in each circuit, a switch, means controlled by one magnet for moving said switch in one direction, and means controlled by the other magnet for moving it in the other direction, said last magnet alone controlling the release of said mechanism, substantially as set forth.
26. In a telephone system, two electric circuits extending to the substation, switching 12s mechanism controlled thereby, a magnet in each circuit, a switch and release michanism, a lever for each magnet, one of which is
adapted to move the switch in one direction and the other one is adapted to control the release, and means connected with the release for moving the switch in the opposite 5 direction, substantially as set forth.
27. A device of the character described comprising two electric circuits, switching mechanism controlled thereby, a magnet in each circuit, a switch lever. released mechafor for engaging with the switching mechanism a lever connected with the armature of each magnet, one of which moves the switch lever in one direction and the other one controls shat, and a rod connected with the shaft for moving the switch lever in the opposito direction, substantially as set forth.
28. A device of the character deseribed comprising two electric circuits, swi, hing
20 mechanism controlled thereby, a magnet in each circuit, a switch lever, release mechanism inclucling a spring-pressel ratchet shaft for engaging with the switching mechanism, a pin on said shatt, a lever connected with
25 the armature of each magnet, one of which moves the switch lever in one direction, a catch pawl connected with the other lever for engaging with said pin, means for disengaging sad lever from the pin, and a rod
30 connected with the shaft for moving the switch lever in the opposite direction, substantially as set forth.
29. In a telephone system, two electric cireuits extending to the substation, each of
35 which is provided with a magnet and one of them $w^{i t h}$ two terminals, switehing mechanism controllerl by said circuits, a switch lever, release merhanism, means, comnerted therewith for moving said lever in one di-
40 rection, means for moving sait lever in the opposite direction, and a single release masnet for controlling the release of sall mechanism, substantially as set fortl.
30. In a telephone system, two electrie cir-

45 chits extending to the subsiation, motor devices controlled thereby, a swith controlled over one of said circulits and a magnet in the other, release mechanism alapterl to be controlled by said magnet, and means includ-
50 ing said magnet for simultameonsly operating said switeh and release merhanism, sub)stantially as set forth.
31. In a telephone system, lines divided into gromps, a switch including a contact arm
55 having vertical motion to select gromps and rotary motion in at plame al right angles thereto to connert with a line in the protetermined group), a magnot for (athing the vertioal motion, a maget for mising the
60 atary motion, a riment controllor and means operated orer the lime to surersively lring said magnots moler the combol of satil eirenit controller, indmding an arm adapterl by one movement to open circuit thromgh the
first magnet and close circuit through the 65 second magnet.
32. In a telephone system, lines divided into groups, a switch including a contact arm having vertical motion to select grolips and rotary motion in a plane at right angles thereto to connect with a line in the predetermined group, a side switch successively controlling the circuits of the operating mag. nets thereof.
33. In a telephone systom, lines divided into groups, a switch inchuling a contact arm having vertical motion to select groups and rotary motion in a plane at pight angles thereto to connect with a line in the predetermined group, a switch wiper, a phrality of controling magnets adapted to be successively brought into circuit with said wiper, and means incloding a magnet for controlling said wiper.
:34. In a telephone system, lines divided into groups, a swith inclucting a contact am having vertioal motion to select gronps and rotary motion in a plane at right angles; thereto to commet with a line in the procletermined group, a pair of operating magnets, a relay mechanism, a cirenit controller, means operated by said relay mechanism to first open circuit throngh one magnet and to thereatere close cirenit throngh the other, to remove one magnet from the control of said rireuit controller, and a line cireuit for controlling sadid relay mechanisin.
33. In a telepione system, lines divided into groups, an antomatic switch inclucling a contact arm having one motion to select grotps, and then another motion in a plane at right-angles to the first motion to find a line in the selected group, an electromagnet controlling the actuation of said switch, a line over which the said magnet is confrolled, mother magnet controlled over the same line for disconnecting the first magnet therefrom, and a single release magnet for controlling the release of said switeh.
36. In a telephone system, a circuit, an antomatic switch, a conirolling magnet therefor included in said circuit, and an elecfromagnet antomatically contiolled over said cirenit to diseomed therefrom the controlling magnet of said automatic switch, 11 and a single release magnet for releasing the switch after it has operated.
37. In a telephone system, an antomatic switch having a line wiper, a maknet for moving said wiper in one phane, a second magnet for moving said wiper in a second phame, a step-by-step switching device for shifting comnection from sad first magnet to said second magnet, and a single release magnet for controlling the release of sad step-by-step switching device and said anfomatic switch.
38 . In a telephone system, an automatic
switch having a line wiper, a magnet for moving said wiper in one plane, a second magnet for moving said wiper in a second plane, a step-by-step switching device for 5 shifting connection from said first magnet to said second magnet, a single release magnet for controlling the release of said step-by-step switching device and said automatic switch, and a switching magnet for
20 controlling said step-by-step switching device, said switching magnet having under its control a one step switch for controlling the circuit of said release magnet.
39. In a telephone system, a subscriber's station and a line therefor, a calling device at the station adapted at each operation thereof to transmit automatically a series of impulses over one side of the line followed by a final inpulse over the other side of the line, a switching mechanism controllable over the said line and having primary and secondary operating magnets responsive to successive series of impulses, and switching means responsive to said final impulses to shift the control from one magnet to the other.
40. In a telephone system, a subscriber's line, a switching mechanism having primary and secondary operating movenents and controllable over said line, a calling derice at the station on said line adapted upon successive operations thereof to transmit suc-
cessive series of impulses orer the line to control the movements of said switching mechanism, and a circuit controller in said switching mechanism responsive to the last impulse of a series to cause the "change orer" from one movement to the other.
41. In a telephone system, a subscriber's line, a calling device at the station on said line comprising a pair of coöperating contact members, subseriber controlled means adapted at each operation to cause said contact members to make and break contact with each other a plurality of times to pro- 4 duce current changes in the said line, an automatic switch at the exchange, and a plumity of operating magnets and an electromagnetic circuit changer in said switch all adapted to be controlled by said contact 5 members, the said circuit changer being effective to shift the control of said contact members from one of said magnets to the other.

In testiniony whereof we hare signed our 5 names to this specification in the presence of two subscribing witnesses.

ALESANDER E. KEITH. JOHN ERICKSON. CHARLES J. ERICKSON.

Witnesses:
W. S. Boyd, W. Lee Chiphelh.

