COMMONWEALTH OF AUSTRALIA The Patents Act 1952 CONVENTION APPLICATION FOR A PATENT CONVENTION APPLICATION FOR A PATENT

We, THORN EMI plc, a British Company, of THORN EMI House, Upper Saint Martin's Lane, London, WC2H 9ED, England, hereby apply for the grant of a Patent for an invention entitled "A TEMPERATURE SENSITIVE DEVICE" which is described in the accompanying complete specification.

This application is a Convention application and is based on the application numbered 8529867 for a patent or similar protection made in the United Kingdom on 4th December, 1985.

Our address for service is care of CALLINAN AND ASSOCIATES, Patent Attorneys, of 48-50 Bridge Road, Richmond, 3121, Victoria, Australia.

DATED this

4th

day of

December,

1986.

THORN EMI plc

By its Patent Attorneys:

CALLINAN AND ASSOCIATES.

FEE STAMP TO VALUE OF

in Malarley

APPLICATION ACCEPTED AND AMENDMENTS

ALLOWED 5-1-90

(a) Delete for Application.

(b) Delete for Convention Application.

(c) Insert Full Name of Application.

Non-Convention

COMMONWEALTH OF AUSTRALIA

Declaration in Support of

(a) A Convention Application FOR A PATENT

Application.

Patent of Addition

In support of the Application/Convention Application made by

(c) THORN EMI plc

for a patent/patent of addition for an invention entitled:

(6) Insert Title of Invention.

(d) "A TEMPERATURE SENSITIVE DEVICE"

(e) Insert Full Names of Declarant(s).

I/We (e) RICHARD ARTHUR ALEXANDER HURST

(f) Insert Address(es) of Declarant(s).

THORN EMI Patents Limited, The Quadrangle, Westmount Centre, of (f) Uxbridge Road, Hayes, Middlesex, UB4 OHB, England.

do solemnly and sincerely declare as follows:-

(g) Delete when Applicant is a Company.

1. 2(8) I am/we are the applicant(s) for the patent/patent of addition

(h) Delete when Applicant is an Individual. Fill in Name of Applicant if a Company.

(h) I am/we are authorised by THORN EMI plc

the applicant for the patent/patent of addition to make this declaration on its behalf.

For Non-Convention Application, delete. For Conven-don Application, fill in details of basic application.

2. (i) The basic application(s) as defined by Section 141 of the Act was/were made day of December, in Great Britain 1985 on the 4th

by THORN EMI plc

Delete for Non-Convention Application by Assignee of Inventor and for Conven-tion Application.

3. (i) I am/we are the actual inventor(s) of the invention.

(L) Deleter for Non-Convention

Application by Inventor and
for Convention Application

by tssignee.

(h) I am/we are the actual inventor(s) of the invention referred to in the basic application. -or

Delete Delete for Application by Inventor. For Application by Assignee, insert name, address and occupation of wentor.

SIMON NEVILLE BALDERSON

Hours, Briddles

of 64, Fleetham Gardens, Lower Earley, Nr. Reading, Berkshire, England is/are the actual inventor(*) of the invention and the facts upon which the applicant we are/the said Company is entitled to make the application are as follows:

Insert details of Assignment, etc. Date of Assignment only is insufficient. (m) Insert

- (m) The applicant is a person who would, if a patent were granted upon an application made by the said actual inventor be entitled to have the patent assigned to it.
- (4) Delete for Application. Non-Convention

4. The basic application referred to in paragraph 2 of this Declaration was the first application made in a Convention country in respect of the invention the subject of the application.

R.A.A. Hurst For and on behalf of

(12) PATENT ABRIDGMENT (11) Document No. AU-B-66099/86 (19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 594725

(54) Title
TEMPERATURE SENSITIVE DEVICE

International Patent Classification(s)

(51)4 H01C 007/02

H05B 001/02

H05B 003/12

(21) Application No.: 66099/86

(22) Application Date: 04.12.86

(30) Priority Data

(31) Number 8529867

(32) Date **04.12.85**

(33) Country

GB UNITED KINGDOM

(43) Publication Date: 11.06.87

(44) Publication Date of Accepted Application: 15.03.90

(71) Applicant(a) THORN EMI PLC

- (72) Inventor(s)
 SIMON NEVILLE BALDERSON
- (74) Attorney or Agent CALLINAN LAWRIE
- (56) Prior Art Documents EP 158410 AU 511873 16552/76 G05D 23/24, H05B 3/10, 3/34
- (57) Claim
- 1. A temperature-sensitive device comprising an electrically conductive composite material deposited on an electrically-insulative substrate in the form of a thick film heater track, the track producing a heat output when connected to an electric power supply, the composite material consisting of a metal and an electrically non-conductive material in predetermined proportions wherein
- (a) the non-conductive material has the characteristic of undergoing a reversible phase transition at a predetermined temperature, the metal being stable to at least said predetermined temperature;
- (b) said phase transition consists of a reversible change in volume of the non-conductive material;
- (c) the electrical conductivity of the composite material is dependent on the relative proportions by volume of the metal and the non-conductive material, there being a critical relative proportion by volume of the metal and the non-

(10) 594725

conductive material at which said electrical conductivity changes suddenly; and

(d) said predetermined proportions are such that said reversible change in

volume of the non-conductive material at said predetermined temperature effects

a reversible change in the relative proportions by volume of the metal and the

non-conductive material about said critical relative proportion whereby a change

in the electrical conductivity of the composite material and, hence the heat output

of the heater track, is effected at said predetermined temperature.

Australia

594725

PATENTS ACT 1952

COMPLETE SPECIFICATION

(ORIGINAL)

FOR OFFICE USE

Short Title:

Int. CI:

66099/86

Application Number:

Lodged:

omplete Specification-Lodged:

Accepted:

Lapsed:

Published:

•Priority :

Related Art:

TO BE COMPLETED BY APPLICANT

Name of Applicant:

THORN EMI plc

Address of Applicant:

THORN EMI House, Upper Saint Martin's Lane, London,

This document contains the amendments made under Section 49 and is correct for

printing.

WC2H 9ED, England

Actual Inventor:

SIMON NEVILLE BALDERSON

Address for Service:

CALLINAN AND ASSOCIATES, Patent Attorneys, of

48-50 Bridge Road, Richmond, State of Victoria, Australia.

Complete Specification for the invention entitled:

"A TEMPERATURE SENSITIVE DEVICE"

The following statement is a full description of this invention, including the best method of performing it known to me:-

Note: The description is to be typed in double spacing, pica type face, in an area not exceeding 250 mm in depth and 160 mm in width, on tough white paper of good quality and it is to be inserted inside this form,

: 1a :

A TEMPERATURE SENSITIVE DEVICE.

5

25

This invention relates to a temperature sensitive device and in particular, though not exclusively, to such a device for controlling the power supplied to a load, for example a resistive heater, in accordance with a predetermined threshold temperature.

Known temperature sensitive devices of this type generally consist of a thermostat or a thermal cut-out device, which disconnects, or at least reduces, the power supplied to the heater when a predetermined threshold temperature is sensed and reconnects, or increases, the supplied power when the temperature falls below the threshold temperature.

Such devices may consist of a mechanical switch including a thermally-expansive member, such as a metal rod or a bimetallic strip, which undergoes thermal expansion, when heated, and operates a switch at the threshold temperature.

Alternatively, such devices may consist of a temperature-dependent resistor, the output of which is compared with a reference signal indicative of the threshold temperature.

However, these conventional temperature-sensitive devices have relatively complex constructions and thus tend to be susceptible to malfunction during operation, particularly mechanical devices including moving components.

As an alternative to such mechanical devices, U.K. Patent No. 1,243,410 discloses the use of vanadium dioxide, which exhibits an abrupt change in electrical conductivity at a predetermined transition temperature and can thus be employed as both heater and temperature regulator.

5

However, vanadium dioxide can only be used as a thermal cut-out at one particular temperature, i.e. at its transition temperature, and even when the material is suitably doped, as described in U.K. Patent No. 1,243,410, the range of temperatures within which the doped material can be made to exhibit a phase transition may be relatively limited.

10

It is therefore an object of the present invention to provide a temperature-sensitive device, which, on the one hand, is more reliable than known mechanical temperature-sensitive devices, and, on the other hand, can be made to operate at a temperature selected from a relatively wide range of temperatures.

15.

According to the present invention there is provided a temperaturesensitive device comprising an electrically conductive composite material deposited on an electrically-insulative substrate in the form of a thick film heater track, the track producing a heat output when connected to an electric power supply, the composite material consisting of a metal and an electrically non-conductive material in predetermined proportions wherein

20

(a) the non-conductive material has the characteristic of undergoing a reversible phase transition at a predetermined temperature, the metal being stable to at least said predetermined temperature;

25

(b) said phase transition consists of a reversible change in volume of the non-conductive material;

(c) the electrical conductivity of the composite material is dependent on the relative proportions by volume of the metal and the non-conductive material,

there being a critical relative proportion by volume of the metal and the nonconductive material at which said electrical conductivity changes suddenly; and

(d) said predetermined proportions are such that said reversible change in volume of the non-conductive material at said predetermined temperature effects a reversible change in the relative proportions by volume of the metal and the non-conductive material about said critical relative proportion whereby a change in the electrical conductivity of the composite material and, hence the heat output of the heater track, is effected at said predetermined temperature.

In this manner, the heater is effectively a self-regulating device, which limits its own heat output to a predetermined threshold temperature.

The material capable of undergoing the reversible phase transition may be one of a number of suitable materials, such as a ceramic or a polymer, which materials undergo the phase transition over a wide range of temperatures.

The invention will now be further described by way of example only with reference to the accompanying drawings, wherein:-

Figure 1 shows one embodiment of the present invention,

5

10

Figure 2 shows a section through X-X in Figure 1, and Figure 3 shows a typical graph of resistivity versus percentage by volume of metal content of a metal-ceramic composite material utilised in the present invention.

A heater, shown in Figures 1 and 2, comprises a substrate 1, preferably formed from a metal, having an electrically-insulative ceramic coating 2 on one side thereof. A heater track 3, preferably in the form of a thick film ink, is deposited, such as by any suitable printing technique, onto the coating 2 and is electrically connected to a power supply via ends 4 and 5. A coating 6, of similar or the same composition as coating 2, may also be provided on the side of the substrate 1 remote from the heater track 3.

The heater track 3 is formed from a composite material consisting of predetermined proportions of a suitable ceramic material and a metal, preferably in the form of a powder.

15

As shown by the graph in Figure 3, when a metal is
20 added to an electrically-insulative ceramic material, the
electrical resistivity, and thus conductivity, of the
composite material varies, in dependence on the relative
proportions by volume of the metal and the ceramic material.

It can be seen from Figure 3 that, as the metal content is increased, at a critical metal content C by volume, a sudden decrease in resistivity, and thus a

corresponding increase in conductivity, of the composite material occurs, because at this point a complete network of interconnecting metal particles exists throughout the material, thereby making it a good electrical conductor.

The ceramic material for the composite material is specifically chosen such that it undergoes a reversible phase transition, when heated to a particular temperature, which causes a change in volume of the ceramic material.

5

15

20

When, therefore, a composite of the selected ceramic 10 and metal, mixed in predetermined proportions by volume at room temperature so that the composite is a relatively good electrical conductor, is heated to the phase transition temperature, the ceramic expands, thereby causing an effective decrease in the volume proportion of metal content. The proportions of ceramic and metal at room temperature are determined to ensure that the expansion of the ceramic, when heated to the phase transition temperature, causes the proportion of metal content to decrease to below the critical content C, thereby effecting a sudden increase in resistivity, and thus a corresponding decrease in conductivity, of the composite at this temperature.

The value of the critical metal content C is generally between 30% and 40% by volume, but this concentration can 25 vary considerably, in dependence on the particle size and shape before preparation of the composite material.

fact, the composite material may be made electrically conductive with a much lower metal content, particularly if a fibrous metal material is used.

5

15

By utilising a composite material of this type for the material of the heater track 3, a voltage can be applied to the heater until it reaches the phase transition temperature, at which the ceramic expands, effectively reducing the volume proportion of metal content to below the critical value C and thus causing a sudden decrease in 10 electrical conductivity of the heater track 3. point therefore, the heat output of the heater track 3 is significantly reduced and it begins to cool. As it cools to below the phase transition temperature, a reverse phase transition occurs and the ceramic returns to its original volume, effectively increasing again the proportions of the metal content to its original value above the critical value and thus causing a sudden return of the electrical conductivity to its original relatively high value.

In this manner, the heater is caused to be temperature-20 sensitive and becomes a self-regulating thermal cut-out device by limiting its own heat output to the phase transition temperature of the ceramic of the composite material.

A considerable number of ceramic and other types of materials undergo a change in volume at different phase 25 transition temperatures, so that a suitable material can be selected to provide the correct threshold temperature for a particular application for the thermal cut-out device.

A specific example of a suitable ceramic material is quartz, which has a phase transition temperature of approximately 573°C, at which a significant change in volume of the material occurs. Any suitable metal, which is stable to at least the phase transition temperature of the ceramic, may be utilised. Such a heater track, formed from a composite of quartz and a suitable metal to provide a thermal cut-out, may have applications, for example, in glass ceramic cooking hobs (not shown), wherein it is necessary to limit the operating temperature to prevent overheating of the glass ceramic cooktop.

5

15

20

Other suitable materials include polymers, which undergo a phase transition known as the "Glass Transition" between a crystalline and an amorphous state, accompanied by a change in volume. The polymer materials can be loaded with a conductive metal filler to the critical concentration referred to hereinbefore and a change in resistivity of the polymer-metal composite material is exhibited at the glass transition temperature, when the polymer undergoes a significant change in volume.

Four specific examples of suitable polymers and their approximate transition temperatures are shown below.

25	Polymer	Transition Temp. (OC)
	Polystyrene	100
	Polybutadiene	200
	Nylon-66	322
	Polyethylene terephthalate	342

The transition temperatures of polymers have been found to be particularly sensitive to molecular weight changes, so that the transition temperature can be readily changed by variation in the molecular weight, thereby increasing further the temperature range over which devices, in accordance with the invention, can be made to operate.

5

15

20

Some polymers, such as polybutadiene, may undergo a substantially continuous change in volume with temperature 10 rather than an abrupt change, but still exhibit a discontinuity in the rate of volume change at the transition temperature. After this temperature, there is a marked increase in the rate of change of volume, thereby resulting in a higher resistivity increase with temperature in the polymer-metal composite material.

Rather than using the composite material as a selfregulating heater, it may be used merely as a temperaturesensitive device, which forms an electrical connection to a separate heater, or other load, the heat output of which is required to be limited to the threshold phase transition temperature of the ceramic of the composite material. the load heats the composite material to the threshold temperature, expansion of the ceramic significantly reduces electrical conduction through the material, thereby 25 reducing electrical connection of the load to the voltage As the heat output of the load decreases to below the threshold temperature, the electrical connection is restored.

A temperature-sensitive device, in accordance with the present invention, may be utilised in many other

temperature-sensing applications including non-destructable fuses, thermostats and other safety cut-outs and sensors.

If temperature regulation below the threshold temperature is required, such as in a cooking hob, an additional temperature sensor, which responds continuously to change in temperature would be needed.

The present temperature-sensitive device is therefore much simpler in construction than known thermal cut-outs and other temperature sensors, as well as being more reliable in operation, because it has no moving parts, which may be susceptible to malfunction.

The claims defining the invention are as follows:-

- 1. A temperature-sensitive device comprising an electrically conductive composite material deposited on an electrically-insulative substrate in the form of a thick film heater track, the track producing a heat output when connected to an electric power supply, the composite material consisting of a metal and an electrically non-conductive material in predetermined proportions wherein
- (a) the non-conductive material has the characteristic of undergoing a reversible phase transition at a predetermined temperature, the metal being stable to at least said predetermined temperature;
- (b) said phase transition consists of a reversible change in volume of the non-conductive material:
- (c) the electrical conductivity of the composite material is dependent on the relative proportions by volume of the metal and the non-conductive material, there being a critical relative proportion by volume of the metal and the nonconductive material at which said electrical conductivity changes suddenly; and
- (d) said predetermined proportions are such that said reversible change in volume of the non-conductive material at said predetermined temperature effects a reversible change in the relative proportions by volume of the metal and the non-conductive material about said critical relative proportion whereby a change in the electrical conductivity of the composite material and, hence the heat output of the heater track, is effected at said predetermined temperature.
- 2. A device according to Claim 1 wherein the composite material is deposited onto the substrate by a printing technique.
- 3. A device according to Claims 1 or 2 wherein said material capable of undergoing said reversible phase transition is a ceramic material.
- 4. A device according to Claims 1 or 2 wherein said material capable of undergoing said reversible phase transition is a polymer material.

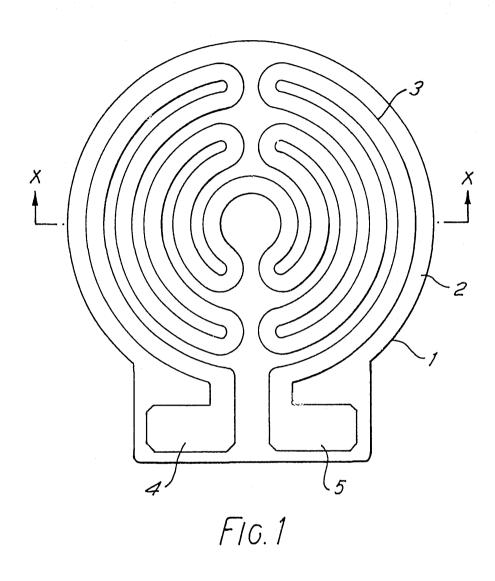
5. A temperature-sensitive device substantially as hereinbefore described with reference to the accompanying drawings.

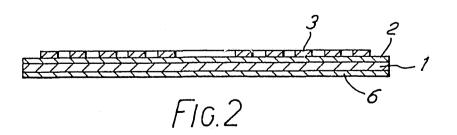
DATED this

21st

day of

December,


1989.


THORN EMI plc

By its Patent Attorneys:

CALLINAN LAWRIE

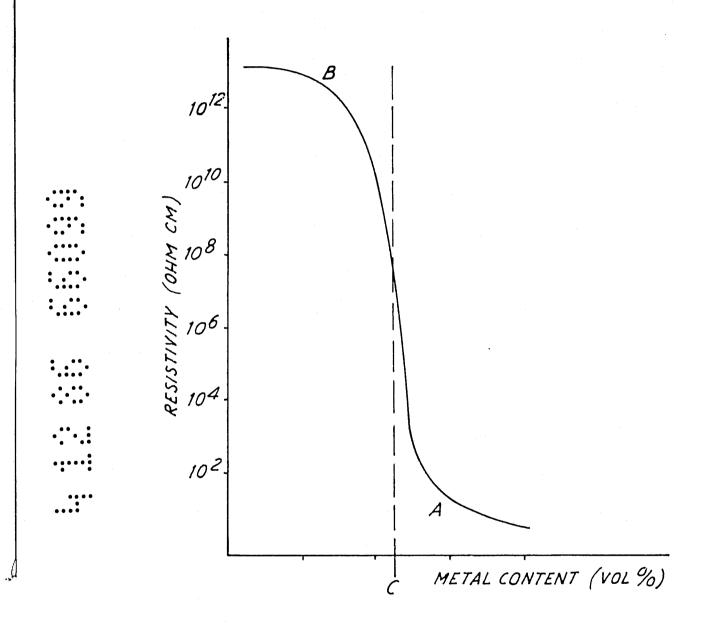


FIG. 3