
JP 5064483 B2 2012.10.31

10

20

(57)【特許請求の範囲】
【請求項１】
　データサービスをアプリケーションに提供する方法であって、コンピュータが、
　明確に定義された意味を有する宣言的言語を使用して、エンティティデータモデルを用
いるエンティティスキーマと、データベースに関連付けられたリレーショナルデータベー
ススキーマとの間の双方向マッピングを提供するステップであって、前記エンティティデ
ータモデルは、前記アプリケーションによって使用されるデータを概念レベルのエンティ
ティとして定義し、前記マッピングは、前記エンティティスキーマと前記リレーショナル
データベーススキーマとの相互関係を記述する、ステップと、
　前記エンティティスキーマ、前記リレーショナルデータベーススキーマ、および前記マ
ッピングをコンパイルして、クエリビューおよび更新ビューを生成するステップであって
、クエリビューは、前記データベースのテーブルとの関係で前記エンティティをクエリと
して表し、更新ビューは、前記クエリビューのエンティティとの関係で前記データベース
のテーブルを表す、ステップと、
　　データへのアクセスを要求する前記アプリケーションからのクエリ要求であって、前
記エンティティスキーマを対象とするクエリ要求に応答して、前記クエリビューをアンフ
ォールディングして前記データベースを対象とするクエリに変換し、前記データベースに
クエリを行うことによって、要求側のアプリケーションの代わりに前記クエリ要求を処理
するステップと、
　データの更新を要求する前記アプリケーションからの更新要求に応答して、前記更新ビ

(2) JP 5064483 B2 2012.10.31

10

20

30

40

50

ューにビュー保守アルゴリズムを適用して前記データベースを更新することによって、要
求側のアプリケーションの代わりに前記更新要求を処理するステップと
　を含むことを特徴とする方法。
【請求項２】
　前記要求側のアプリケーションから、前記データベースを更新する際に使用するための
データを備えたプログラミング言語のオブジェクトを受信することをさらに含むことを特
徴とする請求項１に記載の方法。
【請求項３】
　前記要求側のアプリケーションから、前記データベースを更新する際に使用するための
データを備えた作成命令、挿入命令、更新命令、または削除命令を受信することをさらに
含むことを特徴とする請求項１に記載の方法。
【請求項４】
　前記要求側のアプリケーションから、前記データベースを更新する際に使用するための
データを備えたデータ操作言語（ＤＭＬ）の式を受信することをさらに含むことを特徴と
する請求項１に記載の方法。
【請求項５】
　前記更新ビューにビュー保守アルゴリズムを適用することは、前記更新ビューに関する
デルタ式を作成することを含み、
　前記デルタ式をクエリビューと組み合わせるためにビューアンフォールディングを使用
することをさらに含むことを特徴とする請求項１に記載の方法。
【請求項６】
　前記エンティティスキーマは、クラス、リレーションシップ、継承、集約、および複合
型をサポートすることを特徴とする請求項１に記載の方法。
【請求項７】
　データサービスをアプリケーションに提供するデータアクセスシステムを実装するため
にコンピュータによって実行可能なプログラムであって、前記コンピュータに、
　明確に定義された意味を有する宣言的言語を使用して、エンティティデータモデルを用
いるエンティティスキーマと、データベースに関連付けられたリレーショナルデータベー
ススキーマとの間の双方向マッピングを提供する動作であって、前記エンティティデータ
モデルは、前記アプリケーションによって使用されるデータを概念レベルのエンティティ
として定義し、前記マッピングは、前記エンティティスキーマと前記リレーショナルデー
タベーススキーマとの相互関係を記述する、動作と
　前記エンティティスキーマ、前記リレーショナルデータベーススキーマ、および前記マ
ッピングをコンパイルして、クエリビューおよび更新ビューを生成する動作であって、ク
エリビューは、前記データベースのテーブルとの関係で前記エンティティをクエリとして
表し、更新ビューは、前記クエリビューのエンティティとの関係で前記データベースのテ
ーブルを表す、動作と、
　データへのアクセスを要求する前記アプリケーションからのクエリ要求であって、前記
エンティティスキーマを対象とするクエリ要求を、前記クエリビューをアンフォールディ
ングして前記データベースを対象とするクエリに変換し、前記データベースにクエリを行
うことによって、要求側のアプリケーションの代わりに処理する動作と、
　データの更新を要求する前記アプリケーションからの更新要求を、前記更新ビューにビ
ュー保守アルゴリズムを適用して前記データベースを更新することによって、要求側のア
プリケーションの代わりに処理する動作と
　を実行させることを特徴とするプログラム。
【請求項８】
　前記コンピュータに、前記要求側のアプリケーションから、前記データベースを更新す
る際に使用するためのデータを備えたプログラミング言語のオブジェクトを受信する動作
をさらに実行させることを特徴とする請求項７に記載のプログラム。
【請求項９】

(3) JP 5064483 B2 2012.10.31

10

20

30

40

50

　前記コンピュータに、前記要求側のアプリケーションから、前記データベースを更新す
る際に使用するためのデータを備えた作成命令、挿入命令、更新命令、または削除命令を
受信する動作をさらに実行させることを特徴とする請求項７に記載のプログラム。
【請求項１０】
　前記コンピュータに、前記要求側のアプリケーションから、前記データベースを更新す
る際に使用されるデータを備えたデータ操作言語（ＤＭＬ）の式を受信する動作をさらに
実行させることを特徴とする請求項７に記載のプログラム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、増分ビューの保守を用いたマッピングアークテクチャに関する。
【背景技術】
【０００２】
　アプリケーションとデータベースとのブリッジングは、長年にわたる問題である。１９
９６年に、ＣａｒｅｙおよびＤｅＷｉｔｔは、オブジェクト指向データベースおよび永続
プログラミング言語を含む多数のテクノロジが、クエリおよび更新処理、トランザクショ
ンスループット、ならびにスケーラビリティにおける制限のために、広く受け入れられな
かった理由の概要を示した。彼らは、２００６年にオブジェクト／リレーショナル（Ｏ／
Ｒ）データベースが中心になるであろうと推測した。実際には、ＤＢ２（登録商標）デー
タベースシステムおよびＯｒａｃｌｅ（登録商標）データベースシステムは、従来のリレ
ーショナルエンジンの上にハードワイヤードのＯ／Ｒマッピングを使用する組み込みオブ
ジェクトレイヤを含む。しかし、これらのシステムによって提供されるＯ／Ｒ機能は、マ
ルチメディアデータ型および空間データ型を除いて、企業データを格納するのにはほとん
ど使用されないと思われる。その理由の中には、データおよびベンダの独立性、レガシデ
ータベースを移行するコスト、ビジネスロジックが中間層ではなくデータベース内で動作
する際のスケールアウトの困難性、ならびにプログラミング言語との統合が不十分である
ことがある。
【０００３】
　１９９０年代半ばから、クライアント側のデータマッピングレイヤが、インターネット
アプリケーションの成長によって活気付けられ、人気を獲得している。そのようなレイヤ
のコア機能は、明示的なマッピングによって駆動されるアプリケーションのデータモデル
にしっかりと合ったデータモデルを公開する、更新可能ビューを提供することである。多
数の製品およびオープンソースプロジェクトが現れ、これらの機能を提供している。事実
上全てのエンタープライズフレームワークが、クライアント側の永続レイヤ（例えば、Ｊ
２ＥＥのＥＪＢ）を提供する。ＥＲＰアプリケーションおよびＣＲＭアプリケーションな
ど、ほとんどのパッケージ化されたビジネスアプリケーションは、専用のデータアクセス
インターフェース（例えば、ＳＡＰ　Ｒ／３のＢＡＰＩ）を組み込んでいる。
【０００４】
　広く使用されているＪａｖａ（登録商標）用のオープンソースのＯＲＭ（Ｏｂｊｅｃｔ
－Ｒｅｌａｔｉｏｎａｌ　Ｍａｐｐｉｎｇ）フレームワークの１つが、Ｈｉｂｅｒｎａｔ
ｅ（登録商標）である。Ｈｉｂｅｒｎａｔｅは、複数の継承マッピングシナリオ、オプテ
ィミスティック並行性制御、および包括的オブジェクトサービスをサポートする。Ｈｉｂ
ｅｒｎａｔｅの最新のリリースは、ＥＪＢ　３．０標準規格に準拠し、ＥＪＢ　３．０標
準規格は、Ｊａｖａ（登録商標）　Ｐｅｒｓｉｓｔｅｎｃｅ　Ｑｕｅｒｙ　Ｌａｎｇｕａ
ｇｅを含む。商業的側面において、一般的なＯＲＭは、Ｏｒａｃｌｅ　ＴｏｐＬｉｎｋ（
登録商標）およびＬＬＢＬＧｅｎ（登録商標）を含む。後者は．ＮＥＴプラットフォーム
で動作する。これらおよび他のＯＲＭは、そのターゲットプログラミング言語のオブジェ
クトモデルに密結合される。
【０００５】
　ＢＥＡ（登録商標）は、最近、ＡＬＤＳＰ（ＡｑｕａＬｏｇｉｃ　Ｄａｔａ　Ｓｅｒｖ

(4) JP 5064483 B2 2012.10.31

10

20

30

40

50

ｉｃｅｓ　Ｐｌａｔｆｏｒｍ（登録商標））と呼ばれる新しいミドルウェア製品を導入し
た。これは、アプリケーションデータのモデル化にＸＭＬスキーマを使用する。ＸＭＬデ
ータは、ＸＱｕｅｒｙを使用してデータベースおよびウェブサービスからアセンブルされ
る。ＡＬＤＳＰのランタイムは、複数のデータソースにまたがるクエリをサポートし、ク
ライアント側のクエリ最適化を実行する。更新は、ＸＱｕｅｒｙビューに対するビュー更
新として実行される。更新が一意の変換を有しない場合は、開発者が、命令コードを使用
して更新ロジックをオーバーライドする必要がある。ＡＬＤＳＰのプログラミングサーフ
ェスは、ＳＤＯ（ｓｅｒｖｉｃｅ　ｄａｔａ　ｏｂｊｅｃｔ）に基づいている。
【０００６】
　今日のクライアント側のマッピングレイヤは、様々な程度の機能、堅固性、および総所
有コスト（ＴＣＯ：ｔｏｔａｌ　ｃｏｓｔ　ｏｆ　ｏｗｎｅｒｓｈｉｐ）を提供する。典
型的に、ＯＲＭによって使用されるアプリケーションとデータベースのアーチファクトと
の間のマッピングは、曖昧な意味を有し、ケースバイケースで推論することになる。シナ
リオ主導の実装は、サポートされるマッピングの範囲を制限し、しばしば、拡張が難しい
脆弱なランタイムをもたらす。ごく少数のデータアクセスソリューションが、データベー
スコミュニティによって開発されたデータ変形技法を活用し、しばしば、クエリ変換およ
び更新変換に関するアドホックな解決策に依拠する。
【発明の開示】
【発明が解決しようとする課題】
【０００７】
　データベースの研究は、永続レイヤの構築に活用することができる多数の強力な技法に
貢献してきた。それでも、著しいギャップがある。最も重大なギャップの中に、マッピン
グを介した更新のサポートがある。クエリと比較して、更新は、マッピングにまたがって
データの一貫性を保つ必要があり、ビジネスルールなどをトリガする可能性があるので、
扱うのがはるかに難しい。その結果、商用データベースシステムおよびデータアクセス製
品は、更新可能なビューに関する非常に制限されたサポートを提供する。最近、研究者は
、双方向変形などの代替なアプローチに取り組んでいる。
【０００８】
　伝統的に、概念モデル化は、データベースおよびアプリケーションの設計、リバースエ
ンジニアリング、およびスキーマ変換に制限されてきた。多数の設計ツールが、ＵＭＬを
使用する。ごく最近の概念モデル化のみが、産業強度（ｉｎｄｕｓｔｒｙ－ｓｔｒｅｎｇ
ｔｈ）のデータマッピングソリューションに進出し始めた。例えば、エンティティおよび
リレーションシップの概念は、ＡＬＤＳＰとＥＪＢ　３．０との両方で姿を表している。
ＡＬＤＳＰは、Ｅ－Ｒスタイルのリレーションシップを複合型ＸＭＬデータの上にオーバ
ーレイするが、ＥＪＢ　３．０は、クラス注釈を使用してオブジェクト間のリレーション
シップを指定することを可能にする。
【０００９】
　スキーママッピング技法は、Ｍｉｃｒｏｓｏｆｔ（登録商標）ＢｉｚＴａｌｋ　Ｓｅｒ
ｖｅｒ（登録商標）、ＩＢＭ（登録商標）Ｒａｔｉｏｎａｌ　Ｄａｔａ　Ａｒｃｈｉｔｅ
ｃｔ（登録商標）、およびＥＴＬ（登録商標）ツールなど、多数のデータ統合製品で使用
される。これらの製品は、開発者が、データ変形を設計し、またはマッピングからデータ
変形をコンパイルして、ｅ－コマースメッセージを変換するかデータウェアハウスをロー
ドすることを可能にする。
【課題を解決するための手段】
【００１０】
　データアクセスアーキテクチャを実装および使用するためのシステム、方法、およびコ
ンピュータ読み取り可能な媒体を提供する。該データアクセスアーキテクチャは、アプリ
ケーションによって使用され得るデータを、データベース内で永続するデータにマッピン
グする、マッピングアーキテクチャを含む。一実施形態では、該マッピングアーキテクチ
ャは、２つタイプのマッピングビュー、すなわち、クエリの変換を助けるクエリビューと

(5) JP 5064483 B2 2012.10.31

10

20

30

40

50

、更新の変換を助ける更新ビューを使用する。増分ビューの保守（ｉｎｃｒｅｍｅｎｔａ
ｌ　ｖｉｅｗ　ｍａｉｎｔｅｎａｎｃｅ）を使用して、アプリケーションとデータベース
との間でデータを変換することができる。さらなる態様および実施形態を、以下で説明す
る。
【００１１】
　本発明にかかる増分ビューの保守を用いたマッピングアーキテクチャのシステムおよび
方法を、添付の図面を参照してさらに説明する。
【発明を実施するための最良の形態】
【００１２】
　新規のデータアクセスアーキテクチャ
　一実施形態では、本革新を、このセクションで説明する新規のデータアクセスアーキテ
クチャ、「Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ（エンティティフレームワーク）」におい
て実装し、その諸態様を組み込むことができる。そのようなＥｎｔｉｔｙ　Ｆｒａｍｅｗ
ｏｒｋの例が、本件特許出願人によって開発されたＡＤＯ．ＮＥＴ　ｖＮＥＸＴ（登録商
標）データアクセスアーキテクチャである。以下に、多くの実装固有の詳細とともに、Ａ
ＤＯ．ＮＥＴ　ｖＮＥＸＴデータアクセスアーキテクチャを全般的に説明するが、この詳
細は本発明の実践に必要とみなされるべきではない。
【００１３】
　＜概要＞
　従来のクライアント－サーバアプリケーションは、そのデータに対するクエリおよび永
続性のオペレーションをデータベースシステムに委ねる。データベースシステムは、行お
よびテーブルの形式のデータを操作するが、アプリケーションは、より高水準のプログラ
ミング言語構造（クラス、構造体など）に関してデータを操作する。アプリケーション層
とデータベース層との間のデータ操作サービスにおけるインピーダンス不整合は、従来の
システムにおいても問題であった。サービス指向アーキテクチャ（ＳＯＡ：ｓｅｒｖｉｃ
ｅ－ｏｒｉｅｎｔｅｄ　ａｒｃｈｉｔｅｃｔｕｒｅ）、アプリケーションサーバ、および
多層（ｍｕｌｔｉ－ｔｉｅｒ）アプリケーションの出現とともに、プログラミング環境と
よく統合され、任意の層において動作可能な、データアクセスサービスおよびデータ操作
サービスの必要性が非常に高まっている。
【００１４】
　本件特許出願人のＡＤＯ．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、抽象化のレ
ベルをリレーショナルレベルから概念（エンティティ）レベルまで高める、データをプロ
グラミングするためのプラットフォームであり、これによって、アプリケーションサービ
スとデータ中心のサービスとのインピーダンス不整合が著しく減少される。Ｅｎｔｉｔｙ
　Ｆｒａｍｅｗｏｒｋ、全体的なシステムアーキテクチャ、および基礎になる技術につい
ての諸態様を以下で説明する。
【００１５】
　＜序論＞
　現代のアプリケーションは、全ての層でデータ管理サービスを必要とする。現代のアプ
リケーションは、ますます豊富な形式のデータを処理する必要があり、このデータは、構
造化されたビジネスデータ（Ｃｕｓｔｏｍｅｒｓ（顧客）とＯｒｄｅｒｓ（注文）など）
だけではなく、電子メール、カレンダ、ファイル、および文書などの、半構造化されたコ
ンテンツおよび構造化されていないコンテンツも含む。これらのアプリケーションは、よ
り機敏な意思決定プロセスを可能にするために、複数のデータソースからのデータを統合
すると同時に、このデータを収集し、浄化し、変形し、格納する必要がある。これらのア
プリケーションの開発者は、その生産性を高めるために、データアクセスツール、プログ
ラミングツール、および開発ツールを必要とする。リレーショナルデータベースは、ほと
んどの構造化データのデファクトストアになっているが、そのようなデータベースが公開
するデータモデル（および機能）と、アプリケーションが必要とするモデル化機能との間
の不整合、すなわち周知のインピーダンス不整合の問題がある傾向がある。

(6) JP 5064483 B2 2012.10.31

10

20

30

40

50

【００１６】
　他の２つの要因も、企業システムの設計において重要な部分を果たす。第１に、アプリ
ケーションのデータ表現は、基礎になるデータベースのデータ表現と異なって進化する傾
向がある。第２に、多くのシステムが、異なる程度の機能を有する別個のデータベースバ
ックエンドから構成される。中間層のアプリケーションロジックは、これらの差を調整し
てデータのより均一なビューを提示する、データ変形に関与する。これらのデータ変形は
、すぐに複雑になる。それらを実装すること、特に基礎になるデータが更新可能である必
要があるときの実装は、難しい問題であり、アプリケーションに複雑性を加える。アプリ
ケーション開発のかなりの部分、一部の事例では４０％までが、これらの問題に対処する
ためのカスタムデータのアクセスロジックの記述に使われる。
【００１７】
　同一の問題が、データ中心サービスについて存在するが、深刻さはより少ない。クエリ
、更新、およびトランザクションなどの従来のサービスは、論理スキーマ（リレーショナ
ル）レベルで実装されてきた。しかし、複製および分析など、より新しいサービスの大多
数は、典型的により高水準の概念データモデルに関連付けられたアーチファクトに対して
最もよく動作する。例えば、ＳＱＬ　ＳＥＲＶＥＲ（登録商標）Ｒｅｐｌｉｃａｔｉｏｎ
は、制限された形式のエンティティを表現する「論理レコード」と呼ばれる構造を発明し
た。同様に、ＳＱＬ　Ｓｅｒｖｅｒ　Ｒｅｐｏｒｔｉｎｇ　Ｓｅｒｖｉｃｅｓは、ＳＤＭ
Ｌ（ｓｅｍａｎｔｉｃ　ｄａｔａ　ｍｏｄｅｌ　ｌａｎｇｕａｇｅ）と呼ばれるエンティ
ティ同様のデータモデルの上にレポートを作成する。これらのサービスのそれぞれは、概
念エンティティを定義してこれらをリレーションテーブルにマッピングする、カスタムツ
ールを有する。したがって、Ｃｕｓｔｏｍｅｒエンティティを、ある方法で複製用に、別
の方法でレポート構築用に、さらに別の方法で他の分析サービス用になど、定義してマッ
ピングする必要がある。アプリケーションに関して、各サービスは典型的に、最終的には
この問題に対するカスタムソリューションを作成することになり、その結果、サービス間
には、コードの重複と制限されたインターオペラビリティとが存在する。
【００１８】
　ＨＩＢＥＲＮＡＴＥ（登録商標）およびＯＲＡＣＬＥ　ＴＯＰＬＩＮＫ（登録商標）な
どのＯＲＭ（Ｏｂｊｅｃｔ－ｔｏ－ｒｅｌａｔｉｏｎａｌ　ｍａｐｐｉｎｇ）技術は、カ
スタムデータアクセスロジックの良く知られた代替である。データベースとアプリケーシ
ョンとの間のマッピングは、カスタム構造内でまたはスキーマ注釈を介して表現される。
これらのカスタム構造は、概念モデルと同様に見えることがあるが、アプリケーションは
、この概念モデルに対して直接プログラミングすることができない。マッピングは、デー
タベースとアプリケーションとの間に、ある程度の独立性を提供するが、同一データのわ
ずかに異なるビューを有する複数のアプリケーションを扱うという問題（例えば、Ｃｕｓ
ｔｏｍｅｒエンティティの異なる射影を見ようとする２つのアプリケーションを考慮され
たい）、または、より動的な傾向があるサービスの必要性という問題（先験的クラス（ｐ
ｒｉｏｒｉ　ｃｌａｓｓ）生成技法は、基礎になるデータベースがより早く進歩する可能
性があるので、データサービスについてはうまく働かない）は、これらの解決策によって
うまく対処されていない。
【００１９】
　ＡＤＯ．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、アプリケーションおよびデー
タ中心サービスのインピーダンス不整合を著しく減少させる、データに対するプログラミ
ングのプラットフォームである。ＡＤＯ．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは
、少なくとも次の観点で他のシステムおよびソリューションと異なる。
【００２０】
　１．Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、豊富な概念データモデル（Ｅｎｔｉｔｙ　
Ｄａｔａ　Ｍｏｄｅｌ、すなわちＥＤＭ）、および、このモデルのインスタンスを操作す
る新しいデータ操作言語（Ｅｎｔｉｔｙ　ＳＱＬ）を定義する。ＳＱＬと同様に、ＥＤＭ
は値ベースである。すなわち、ＥＤＭは、エンティティの構造的な諸態様を定義するので

(7) JP 5064483 B2 2012.10.31

10

20

30

40

50

あって、振舞い（またはメソッド）は定義しない。
【００２１】
　２．このモデルは、クエリおよび更新の強力な双方向（ＥＤＭ－リレーショナル）マッ
ピングをサポートするミドルウェアマッピングエンジンを含む、ランタイムによって具象
化される。
【００２２】
　３．アプリケーションおよびサービスは、値ベースの概念レイヤに対して、または概念
（エンティティ）抽象化にまたがって階層化できるプログラミング言語固有のオブジェク
ト抽象化に対して、直接プログラミングすることができ、ＯＲＭ同様の機能性を提供する
。値ベースのＥＤＭ概念の抽象化は、アプリケーションとデータ中心サービスとの間でデ
ータを共有するための、オブジェクトよりもより柔軟性のある基礎であると考える。
【００２３】
　４．最後に、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、本件特許出願人の新しいＬＩＮＱ
（Ｌａｎｇｕａｇｅ　Ｉｎｔｅｇｒａｔｅｄ　Ｑｕｅｒｙ）技術を活用する。該ＬＩＮＱ
技術は、クエリ表現をネイティブに用いてプログラミング言語を拡張し、アプリケーショ
ンに関するインピーダンス不整合をさらに減少させ、一部のシナリオでは完全に除去する
。
【００２４】
　ＡＤＯ．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、Ｍｉｃｒｏｓｏｆｔ　．ＮＥ
Ｔ　Ｆｒａｍｅｗｏｒｋなどの、より大きいフレームワークに組み込むことができる。
【００２５】
　データアクセスアーキテクチャに関するこの説明の残りは、ＡＤＯ．ＮＥＴ　Ｅｎｔｉ
ｔｙ　Ｆｒａｍｅｗｏｒｋの実施形態の文脈で、次のように編成される。「動機づけ」セ
クションは、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋの追加の動機づけを提供する。「Ｅｎｔ
ｉｔｙ　Ｆｒａｍｅｗｏｒｋ」セクションは、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋおよび
Ｅｎｔｉｔｙ　Ｄａｔａ　Ｍｏｄｅｌを提示する。「プログラミングパターン」セクショ
ンは、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋのプログラミングパターンを説明する。「Ｏｂ
ｊｅｃｔ　Ｓｅｒｖｉｃｅｓ」セクションは、Ｏｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓモジュー
ルの概要を示す。「マッピング」セクションは、Ｅｎｔｉｔｙ　ＦｒａｍｅｗｏｒｋのＭ
ａｐｐｉｎｇコンポーネントに焦点を当て、「クエリ処理」セクションおよび「更新処理
」セクションは、クエリおよび更新がどのように処理されるかを説明する。「メタデータ
」および「ツール」は、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋのメタデータサブシステムお
よびツールコンポーネントを説明する。
【００２６】
　＜動機づけ＞
　このセクションは、より高水準のデータモデル化レイヤが、なぜアプリケーションおよ
びデータ中心サービスに必須になったのかを論じる。
【００２７】
　（データアプリケーションにおける情報レベル）
　データベース設計を作成するための今日の支配的な情報モデル化方法は、情報モデルを
４つの主要なレベル、すなわち、物理、論理（リレーショナル）、概念、およびプログラ
ミング／プレゼンテーションにファクタリングする。
【００２８】
　物理モデルは、データが、メモリ、ワイヤ、またはディスクなどの物理的なリソース内
でどのように表現されるかを記述する。このレイヤで検討される概念のボキャブラリは、
レコードフォーマット、ファイルの区画およびグループ、ヒープ、ならびにインデックス
を含む。物理モデルは、典型的に、アプリケーションに対して可視ではなく、物理モデル
に対する変更は、アプリケーションロジックに影響を与えてはいけないが、アプリケーシ
ョンのパフォーマンスに影響を与えることがある。
【００２９】

(8) JP 5064483 B2 2012.10.31

10

20

30

40

50

　論理データモデルは、ターゲットドメインの完全で正確な情報モデルである。リレーシ
ョナルモデルは、ほとんどの論理データモデルに関する選択の表現である。論理レベルで
検討される概念は、テーブル、行、主キー／外部キー制約、および正規化を含む。正規化
は、データの一貫性、さらなる並行性、およびより良いＯＬＴＰパフォーマンスを達成す
るのを助けるが、アプリケーションに関する重大な課題をも導入する。論理レベルで正規
化されたデータは、しばしばフラグメント化されすぎており、アプリケーションロジック
は、複数のテーブルからの行を、アプリケーションドメインのアーチファクトにさらに類
似しているより高水準のエンティティに、アセンブルする必要がある。
【００３０】
　概念モデルは、問題ドメインからのコア情報エンティティおよびそのリレーションシッ
プをキャプチャする。周知の概念モデルは、１９７６年にＰｅｔｅｒ　Ｃｈｅｎによって
紹介されたエンティティ・リレーションシップモデル（Ｅｎｔｉｔｙ－Ｒｅｌａｔｉｏｎ
ｓｈｉｐ　Ｍｏｄｅｌ）である。ＵＭＬは、概念モデルのより最近の例である。ほとんど
のアプリケーションは、概念設計のフェーズをアプリケーション開発のライフサイクルの
早期に含む。しかし、残念ながら、概念データモデル図は、「壁にピンで止められた」状
態が続き、時とともにアプリケーション実装の現実からますます離れつつある。Ｅｎｔｉ
ｔｙ　Ｆｒａｍｅｗｏｒｋの重要な目標は、概念データモデル（次のセクションで説明す
るＥｎｔｉｔｙ　Ｄａｔａ　Ｍｏｄｅｌによって具現化される）を、データプラットフォ
ームの具象的なプログラム可能な抽象化にすることである。
【００３１】
　プログラミング／プレゼンテーションモデルは、概念モデルのエンティティおよびリレ
ーションシップを、手元のタスクに基づいて異なる形式でどのようにマニフェスト（提示
）する必要があるかを記述する。エンティティの中には、アプリケーションビジネスロジ
ックを実装するために、プログラミング言語オブジェクトに変形される必要があるもの、
ウェブサービスの呼出しのためにＸＭＬストリームに変形される必要があるもの、ユーザ
インターフェースのデータバインディングのために、リストまたはディクショナリなどの
メモリ内の構造に変形される必要があるものがある。当然、普遍的なプログラミングモデ
ルまたはプレゼンテーションの形式は存在せず、したがって、アプリケーションは、エン
ティティを様々なプレゼンテーションの形式に変形する柔軟なメカニズムを必要とする。
【００３２】
　ほとんどのアプリケーションおよびデータ中心サービスは、Ｏｒｄｅｒをリレーショナ
ルデータベーススキーマにおいて正規化できる複数のテーブルについてではなく、Ｏｒｄ
ｅｒなどの高水準の概念に関して推論する傾向がある。注文は、プレゼンテーション／プ
ログラミングレベルにおいて、注文に関連付けられた状態およびロジックをカプセル化す
るＶｉｓｕａｌ　ＢａｓｉｃまたはＣ＃内のクラスインスタンスとして、またはウェブサ
ービスと通信するＸＭＬストリームとして現れることがある。正しいプレゼンテーション
モデルは存在しないが、具象的な概念モデルを提供すること、および、そのモデルを、様
々なプレゼンテーションモデルおよび他の高水準データサービスとの間での柔軟性のある
マッピングの基礎として使用できることには、価値がある。
【００３３】
　（アプリケーションおよびサービスの進化）
　１０～２０年前の、データに基づくアプリケーションは、典型的に、データモノリス、
すなわち、論理スキーマレベルでデータベースシステムと対話する動詞オブジェクト関数
（例えば、ｃｒｅａｔｅ－ｏｒｄｅｒ、ｕｐｄａｔｅ－ｃｕｓｔｏｍｅｒ）によってファ
クタリングされたロジックを有する閉じたシステムとして構造化されていた。いくつかの
顕著な傾向が、今日、近代のデータに基づくアプリケーションをファクタリングし、展開
する方法を形成している。これらの中の主要なものは、オブジェクト指向ファクタリング
、サービスレベルアプリケーション構造、およびより高水準のデータ中心サービスである
。概念エンティティは、今日のアプリケーションの重要な部分である。これらのエンティ
ティは、様々な表現にマッピングされ、様々なサービスにバインドされなければならない

(9) JP 5064483 B2 2012.10.31

10

20

30

40

50

。正しい表現またはサービスバインディングは存在しない。すなわち、ＸＭＬ表現、リレ
ーショナル表現、およびオブジェクト表現の全てが重要であるが、これらの１つが、全て
のアプリケーションにとって十分であることはない。したがって、より高水準のデータモ
デル化レイヤをサポートし、複数のプレゼンテーションレイヤをプラグインすることをも
可能にするフレームワークの必要性が存在する。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、
これらの要件を満たすことを目的とする。
【００３４】
　データ中心サービスも、同様の方法で進化してきている。２０年前に「データプラット
フォーム」によって提供されたサービスは、最小限であり、ＲＤＢＭＳの論理スキーマの
周囲に焦点を合わせていた。これらのサービスには、クエリおよび更新、アトミックトラ
ンザクション、ならびに、バックアップおよびロード／抽出などのバルクオペレーション
が含まれていた。
【００３５】
　ＳＱＬ　Ｓｅｒｖｅｒ自体は、従来的なＲＤＢＭＳから、概念スキーマレベルで実現さ
れるエンティティにまたがる価値の高い複数のデータ中心サービスを提供する、完全なデ
ータプラットフォームへと進化しつつある。ＳＱＬ　Ｓｅｒｖｅｒ製品内の複数のより高
水準のデータ中心サービス（２つだけを例に挙げると、ＲｅｐｌｉｃａｔｉｏｎおよびＲ
ｅｐｏｒｔ　Ｂｕｉｌｄｅｒ）は、そのサービスを概念スキーマレベルで、ますます提供
している。現在、これらのサービスのそれぞれは、別々のツールを有し、概念エンティテ
ィを記述し、これらを基礎になる論理スキーマレベルにマッピングする。Ｅｎｔｉｔｙ　
Ｆｒａｍｅｗｏｒｋの目標は、これらのサービスの全てが共有できる、共通のより高水準
の概念抽象化を提供することである。
【００３６】
　＜Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ＞
　本明細書で説明するＥｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋの前に存在した本件特許出願人
のＡＤＯ．ＮＥＴフレームワークは、データアクセス技術であり、該技術は、アプリケー
ションがデータストアに接続し、該データストア内に含まれるデータを様々な方法で操作
することを可能にした。これは、Ｍｉｃｒｏｓｏｆｔ　．ＮＥＴ　Ｆｒａｍｅｗｏｒｋの
一部であり、．ＮＥＴ　Ｆｒａｍｅｗｏｒｋクラスライブラリの残りに高度に統合された
。以前のＡＤＯ．ＮＥＴフレームワークは、２つの主要な部分、すなわち、プロバイダと
サービスとを有していた。ＡＤＯ．ＮＥＴプロバイダは、特定のデータストアとの話し方
を知っているコンポーネントである。プロバイダは、機能の３つのコア部分から構成され
る。すなわち、コネクションが、基礎になるデータソースに対するアクセスを管理し、コ
マンドが、データソースに対して実行されるコマンド（クエリ、プロシージャ呼出しなど
）を表し、データリーダーが、コマンド実行の結果を表す。ＡＤＯ．ＮＥＴサービスは、
オフラインのデータプログラミングシナリオを可能にするＤａｔａＳｅｔなど、プロバイ
ダ中立コンポーネントを含む（ＤａｔａＳｅｔは、データソースに関わらず一貫したリレ
ーショナルプログラミングモデルを提供する、データのメモリ常駐表現である）。
【００３７】
　（Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋの概要）
　ＡＤＯ　．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、予め存在する既存のＡＤＯ
．ＮＥＴプロバイダモデルを基に、次の機能性を追加する。
　１．概念スキーマのモデル化を助ける新しい概念データモデルである、Ｅｎｔｉｔｙ　
Ｄａｔａ　Ｍｏｄｅｌ（ＥＤＭ）。
　２．ＥＤＭのインスタンスおよびクエリのプログラム的表現（カノニカルコマンドツリ
ー（ｃａｎｏｎｉｃａｌ　ｃｏｍｍａｎｄ　ｔｒｅｅ））を操作して、異なるプロバイダ
と通信するための新しいデータ操作言語（ＤＭＬ：ｄａｔａ　ｍａｎｉｐｕｌａｔｉｏｎ
　ｌａｎｇｕａｇｅ）である、Ｅｎｔｉｔｙ　ＳＱＬ。
　３．概念スキーマと論理スキーマとの間のマッピングを定義する能力。
　４．概念スキーマに対するＡＤＯ．ＮＥＴプロバイダのプログラミングモデル。

(10) JP 5064483 B2 2012.10.31

10

20

30

40

50

　５．ＯＲＭ同様の機能を提供するオブジェクトサービスレイヤ。
　６．データを．ＮＥＴ言語からのオブジェクトとして、プログラミングすることを容易
にするＬＩＮＱ技術との統合。
【００３８】
　（Ｅｎｔｉｔｙ　Ｄａｔａ　Ｍｏｄｅｌ）
　エンティティデータモデル（ＥＤＭ：Ｅｎｔｉｔｙ　Ｄａｔａ　Ｍｏｄｅｌ）は、豊富
なデータ中心アプリケーションの開発を可能にする。ＥＤＭは、Ｅ－Ｒドメインからの概
念を用いて典型的なリレーショナルモデルを拡張する。本明細書で提供する例示的な実施
形態では、ＥＤＭの組織的概念は、エンティティとリレーションシップとを含む。エンテ
ィティは、トップレベルのアイテムを識別（ｉｄｅｎｔｉｔｙ）で表し、リレーションシ
ップは、２つまたはそれ以上のエンティティを関係付ける（または、２つまたはそれ以上
のエンティティの間のリレーションシップを記述する）のに使用される。
【００３９】
　一実施形態では、ＥＤＭは、Ｃ＃（ＣＬＲ）のようにオブジェクト／参照ベースではな
く、リレーショナルモデル（およびＳＱＬ）のように値ベースである。いくつかのオブジ
ェクトプログラミングモデルを、ＥＤＭの上に容易に階層化することができる。同様に、
ＥＤＭは、永続性に関して１つまたは複数のＤＢＭＳ実装にマッピングすることができる
。
【００４０】
　ＥＤＭおよびＥｎｔｉｔｙ　ＳＱＬは、データプラットフォーム用のより豊富なデータ
モデルおよびデータ操作言語を表し、ＣＲＭおよびＥＲＰなどのアプリケーション、レポ
ート作成、ビジネスインテリジェンス、複製、および同期化などのデータ集中型サービス
、ならびにデータ集中型アプリケーションが、その必要性により近い構造および意味のレ
ベルでデータをモデル化して操作することを可能にすることが意図されている。次に、Ｅ
ＤＭに関係する様々な概念を論じる。
【００４１】
　・ＥＤＭの型
　ＥｎｔｉｔｙＴｙｐｅは、エンティティの構造を記述する。エンティティは、そのエン
ティティの構造を記述するゼロまたはそれ以上のプロパティ（属性、フィールド）を有す
ることができる。さらに、エンティティ型は、キー、すなわち、エンティティのコレクシ
ョン内でエンティティインスタンスを一意に識別する値を有するプロパティのセットを、
定義しなければならない。ＥｎｔｉｔｙＴｙｐｅは、別のエンティティ型から派生する（
またはサブタイプ化する）ことができ、ＥＤＭは、単一の継承モデルをサポートする。あ
るエンティティのプロパティは、単純型または複合型とすることができる。Ｓｉｍｐｌｅ
Ｔｙｐｅは、スカラ（またはアトミック）型（例えば、整数、ストリング）を表し、Ｃｏ
ｍｐｌｅｘＴｙｐｅは、構造化されたプロパティ（例えば、Ａｄｄｒｅｓｓ）を表す。Ｃ
ｏｍｐｌｅｘＴｙｐｅは、ゼロまたはそれ以上のプロパティから構成され、これらのプロ
パティ自体は、スカラ型または複合型のプロパティとすることができる。Ｒｅｌａｔｉｏ
ｎｓｈｉｐＴｙｐｅは、２つ（またはそれ以上）のエンティティ型の間のリレーションシ
ップを記述する。ＥＤＭ　Ｓｃｈｅｍａは、型のグループ化メカニズムを提供し、型は、
スキーマで定義されなければならない。型名と組み合わされたスキーマの名前空間は、特
定の型を一意に識別する。
【００４２】
　・ＥＤＭインスタンスモデル
　エンティティインスタンス（または単にエンティティ）は、論理的にＥｎｔｉｔｙＳｅ
ｔ内に含まれる。ＥｎｔｉｔｙＳｅｔは、エンティティの同種コレクションである。すな
わち、あるＥｎｔｉｔｙＳｅｔ内の全てのエンティティは、同一の（または派生した）Ｅ
ｎｔｉｔｙＴｙｐｅを有しなければならない。ＥｎｔｉｔｙＳｅｔは、概念的にはデータ
ベースのテーブルに類似し、エンティティは、テーブルの行に類似する。エンティティイ
ンスタンスは、正確に１つのエンティティセットに属さなければならない。同様に、リレ

(11) JP 5064483 B2 2012.10.31

10

ーションシップのインスタンスは、論理的にＲｅｌａｔｉｏｎｓｈｉｐＳｅｔ内に含まれ
る。ＲｅｌａｔｉｏｎｓｈｉｐＳｅｔの定義が、リレーションシップのスコープを決定す
る。すなわち、これは、リレーションシップに参加するエンティティ型のインスタンスを
保持するＥｎｔｉｔｙＳｅｔを識別する。ＲｅｌａｔｉｏｎｓｈｉｐＳｅｔは、概念的に
はデータベース内のリンクテーブルに類似する。ＳｉｍｐｌｅＴｙｐｅおよびＣｏｍｐｌ
ｅｘＴｙｐｅを、単に、ＥｎｔｉｔｙＴｙｐｅのプロパティとしてインスタンス化するこ
とができる。ＥｎｔｉｔｙＣｏｎｔａｉｎｅｒは、ＥｎｔｉｔｙＳｅｔおよびＲｅｌａｔ
ｉｏｎｓｈｉｐＳｅｔの論理グループ化であり、ＳｃｈｅｍａがＥＤＭ型に関してどのよ
うなグループ化メカニズムであるかに類似する。
【００４３】
　・例示的なＥＤＭ　Ｓｃｈｅｍａ
　サンプルのＥＤＭスキーマを以下に示す。
【００４４】

(12) JP 5064483 B2 2012.10.31

10

20

30

40

【表１】

【００４５】

(13) JP 5064483 B2 2012.10.31

10

20

30

40

50

【表２】

【００４６】
　（高水準のアーキテクチャ）
　このセクションは、ＡＤＯ．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋのアーキテク
チャの概要を示す。その主な機能コンポーネントは、図１に示されており、以下のものを
含む。
【００４７】
　データソース固有のプロバイダ。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ　１００は、ＡＤ
Ｏ．ＮＥＴデータプロバイダモデルを基礎とする。ＳＱＬ　Ｓｅｒｖｅｒ　１５１、１５
２、リレーショナルソース１５３、非リレーショナル１５４、およびＷｅｂサービス１５
５ソースなど、複数のデータソース用の特定のプロバイダ１２２～１２５がある。プロバ
イダ１２２～１２５を、ストア固有のＡＤＯ．ＮＥＴ　Ｐｒｏｖｉｄｅｒ　ＡＰＩ　１２
１から呼び出すことができる。
【００４８】
　ＥｎｔｉｔｙＣｌｉｅｎｔプロバイダ。ＥｎｔｉｔｙＣｌｉｅｎｔプロバイダ１１０は
、具象的な概念プログラミングレイヤを表す。これは、新しい値ベースのデータプロバイ
ダであり、ここでは、データは、ＥＤＭエンティティおよびリレーションシップに関して
アクセスされ、エンティティベースのＳＱＬ言語（Ｅｎｔｉｔｙ　ＳＱＬ）を使用してク
エリ／更新される。ＥｎｔｉｔｙＣｌｉｅｎｔプロバイダ１１１は、Ｅｎｔｉｔｙ　Ｄａ
ｔａ　Ｓｅｒｖｉｃｅｓ　１１０パッケージの一部を形成し、Ｅｎｔｉｔｙ　Ｄａｔａ　
Ｓｅｒｖｉｃｅｓ　１１０パッケージは、メタデータサービス１１２と、クエリおよび更
新パイプライン１１３と、トランザクションサポート１１５と、ビューマネージャランタ
イム１１６と、複数のフラットなリレーショナルテーブルにまたがる更新可能ＥＤＭビュ
ーをサポートするビューマッピングサブシステム１１４とを含むこともできる。テーブル
とエンティティとの間のマッピングは、マッピング仕様言語を介して宣言的に指定される
。
【００４９】
　Ｏｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓおよび他のプログラミングレイヤ。Ｅｎｔｉｔｙ　Ｆ
ｒａｍｅｗｏｒｋ　１００のＯｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓコンポーネント１３１は、
複数のエンティティにまたがる豊富なオブジェクト抽象化、これらのオブジェクトにまた
がるサービスの豊富なセットを提供し、アプリケーションが、よく知られたプログラミン
グ言語構造を使用して命令コーディング経験１６１内でプログラミングすることを可能に
する。このコンポーネントは、オブジェクトの状態管理サービス（変更追跡、識別解決（
ｉｄｅｎｔｉｔｙ　ｒｅｓｏｌｕｔｉｏｎ）を含む）を提供し、オブジェクトおよびリレ
ーションシップをナビゲートし、ロードするサービスをサポートし、Ｘｌｉｎｑ　１３２
などのコンポーネントを使用してＬＩＮＱおよびＥｎｔｉｔｙ　ＳＱＬを介するクエリを

(14) JP 5064483 B2 2012.10.31

10

20

30

40

50

サポートして、オブジェクトの更新および永続化を可能にする。
【００５０】
　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、１３０と類似の複数のプログラミングレイヤが
、ＥｎｔｉｔｙＣｌｉｅｎｔプロバイダ１１１によって公開される値ベースのｅｎｔｉｔ
ｙ　ｄａｔａ　ｓｅｒｖｉｃｅｓレイヤ１１０にプラグオンされることを可能にする。Ｏ
ｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓ　１３１コンポーネントは、ＣＬＲオブジェクトを表面化
するそのようなプログラミングレイヤの１つであり、ＯＲＭ同様の機能性を提供する。
【００５１】
　メタデータサービス１１２コンポーネントは、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ　１
００の設計時間およびランタイムの必要性と、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ上のア
プリケーションとに関するメタデータを管理する。ＥＤＭ概念（エンティティ、リレーシ
ョンシップ、ＥｎｔｉｔｙＳｅｔ、ＲｅｌａｔｉｏｎｓｈｉｐＳｅｔ）、ストア概念（テ
ーブル、列、制約）、およびマッピング概念に関連する全てのメタデータが、メタデータ
インターフェースを介して公開される。メタデータコンポーネント１１２は、モデル主導
型のアプリケーション設計をサポートするドメインモデル化ツールの間のリンクとしても
機能する。
【００５２】
　設計ツールおよびメタデータツール。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ　１００は、
ドメインデザイナ１７０と統合して、モデル主導型のアプリケーション開発を可能にする
。このツールは、ＥＤＭ設計ツール、モデル化ツール１７１、マッピング設計ツール１７
２、ブラウジング設計ツール１７３、バインディング設計ツール１７４、コード生成ツー
ル１７５、およびクエリモデラーを含む。
【００５３】
　サービス。レポート作成１４１、同期化１４２、ウェブサービス１４３、およびビジネ
ス分析などの豊富なデータ中心サービスを、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ　１００
を使用して構築することができる。
【００５４】
　＜プログラミングパターン＞
　ＡＤＯ．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、ＬＩＮＱと一緒に、アプリケ
ーションコードとデータとの間のインピーダンス不整合を大幅に減少させることによって
、アプリケーション開発者の生産性を高める。このセクションでは、論理レイヤ、概念レ
イヤ、およびオブジェクト抽象化レイヤでのデータアクセスプログラミングパターンの進
化を説明する。
【００５５】
　例示のＡｄｖｅｎｔｕｒｅＷｏｒｋｓデータベースに基づく次のリレーショナルスキー
マのフラグメントを検討されたい。このデータベースは、図２に図示されるような、リレ
ーショナルスキーマに従う、ＳＣｏｎｔａｃｔｓ　２０１テーブル、ＳＥｍｐｌｏｙｅｅ
ｓ　２０２テーブル、ＳＳａｌｅｓＰｅｒｓｏｎｓ　２０３テーブル、およびＳＳａｌｅ
ｓＯｒｄｅｒｓ　２０４テーブルから構成される。
【００５６】
【表３】

【００５７】
　ある日付の前に雇われた販売員の名前および雇われた日付を取得する、アプリケーショ
ンコードのフラグメントを考慮されたい（下記に示す）。このコードフラグメントには、
回答を必要とするビジネス質問にほとんど関係しない４つの主な短所がある。第１に、こ

(15) JP 5064483 B2 2012.10.31

10

20

30

40

のクエリは、英語では非常に簡潔に述べることができるが、ＳＱＬステートメントは、非
常に冗長的であり、開発者が、正規化されたリレーショナルスキーマを意識して、ＳＣｏ
ｎｔａｃｔｓテーブル、ＳＥｍｐｌｏｙｅｅｓテーブル、およびＳＳａｌｅｓＰｅｒｓｏ
ｎテーブルから適切な列を集めるのに必要なマルチテーブル結合を定式化する必要がある
。さらに、基礎になるデータベーススキーマに対する全ての変更が、下記のコードフラグ
メントの対応する変更を必要とする。第２に、ユーザは、データソースへの明示的な関連
付け（ｃｏｎｎｅｃｔｉｏｎ）を定義しなければならない。第３に、返される結果は、強
く型付けされていないので、非既存の列の名前に対する全ての参照は、クエリが実行され
た後にのみキャッチされることになる。第４に、このＳＱＬステートメントは、Ｃｏｍｍ
ａｎｄ　ＡＰＩに対するストリングプロパティであり、その定式化（ｆｏｒｍｕｌａｔｉ
ｏｎ）における全てのエラーは、実行時にのみキャッチされることになる。このコードは
、ＡＤＯ．ＮＥＴ　２．０を使用して記述されているが、コードパターンおよびその短所
は、ＯＤＢＣ、ＪＤＢＣ、またはＯＬＥ－ＤＢなどの、全ての他のリレーショナルデータ
アクセスＡＰＩにあてはまる。
【００５８】
【表４】

【００５９】
　この例示のリレーショナルスキーマを、図３に図示されるようなＥＤＭスキーマを介し
て概念レベルでキャプチャすることができる。これは、ＳＣｏｎｔａｃｔｓ　２０１テー
ブル、ＳＥｍｐｌｏｙｅｅｓ　２０２テーブル、およびＳＳａｌｅｓＰｅｒｓｏｎｓ　２
０３テーブルを抽象化する、エンティティ型ＥＳａｌｅｓＰｅｒｓｏｎ　３０２を定義す
る。これは、エンティティ型、ＥＳｔｏｒｅＯｒｄｅｒ　３０１とＥＳａｌｅｓＯｒｄｅ
ｒ　３０３との間の継承関係もキャプチャする。
【００６０】
　概念レイヤでの同等のプログラムは、次のように記述される。
【００６１】

(16) JP 5064483 B2 2012.10.31

10

20

30

40

50

【表５】

【００６２】
　このＳＱＬステートメントは、かなり単純化されており、ユーザは、もはや正確なデー
タベースレイアウトについて知る必要がない。さらに、アプリケーションロジックを、基
礎になるデータベーススキーマに対する変更から分離することができる。しかし、このフ
ラグメントは、それでもなお、ストリングベースであり、プログラミング言語型でチェッ
クすることの利点が得られず、弱く型付けされた結果を返す。
【００６３】
　エンティティの回りに薄いオブジェクトラッパーを追加し、Ｃ＃のＬＩＮＱ拡張を使用
することによって、次のように、インピーダンス不整合のない同等の関数を再記述するこ
とができる。
【００６４】

【表６】

【００６５】
　このクエリは単純である。すなわち、アプリケーションが、基礎になるデータベースス
キーマに対する変更から（十分に）分離され、クエリが、Ｃ＃のコンパイラによって完全
に型チェックされる。クエリに加えて、オブジェクトと対話し、オブジェクトに対して通
常のＣｒｅａｔｅ、Ｒｅａｄ、Ｕｐｄａｔｅ、およびＤｅｌｅｔｅ（ＣＲＵＤ）オペレー
ションを実行することができる。これらの例を、更新処理のセクションで説明する。
【００６６】
　＜Ｏｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓ＞

(17) JP 5064483 B2 2012.10.31

10

20

30

40

50

　Ｏｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓコンポーネントは、概念（エンティティ）レイヤ上の
プログラミング／プレゼンテーションレイヤである。これは、プログラミング言語と値ベ
ースの概念レイヤエンティティとの間の対話を容易にする複数のコンポーネントを備えて
いる。プログラミング言語ランタイム（例えば．ＮＥＴ、Ｊａｖａ（登録商標））ごとに
１つのオブジェクトサービスが存在することが予期される。．ＮＥＴ　ＣＬＲをサポート
するように設計される場合は、全ての．ＮＥＴ言語のプログラムが、Ｅｎｔｉｔｙ　Ｆｒ
ａｍｅｗｏｒｋと対話することができる。Ｏｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓは、次の主要
コンポーネントから構成される。
【００６７】
　ＯｂｊｅｃｔＣｏｎｔｅｘｔクラスは、データベース接続、メタデータワークスペース
、オブジェクト状態マネージャ、およびオブジェクトマテリアライザを備えている。この
クラスは、Ｅｎｔｉｔｙ　ＳＱＬ構文またはＬＩＮＱ構文のいずれかでのクエリの定式化
を可能にするために、オブジェクトクエリインターフェース、ＯｂｊｅｃｔＱｕｅｒｙ＜
Ｔ＞を含み、強く型付けされたオブジェクトの結果をＯｂｊｅｃｔＲｅａｄｅｒ＜Ｔ＞と
して返す。ＯｂｊｅｃｔＣｏｎｔｅｘｔは、プログラミング言語レイヤと概念レイヤとの
間のクエリおよび更新（すなわち、ＳａｖｅＣｈａｎｇｅｓ）オブジェクトレベルインタ
ーフェースも公開する。オブジェクト状態マネージャは、３つの主要な機能を有する。す
なわち、（ａ）クエリ結果をキャッシュし、識別解決を提供し、オーバーラップするクエ
リ結果からオブジェクトをマージするようにポリシを管理し、（ｂ）メモリ内の変更を追
跡し、（ｃ）更新処理インフラストラクチャに入力される変更リストを構築する、という
３つの主要な機能を有する。オブジェクト状態マネージャは、キャッシュ内の各エンティ
ティの状態、すなわち、デタッチ済み（キャッシュから）、追加済み、未変更、変更済み
、および削除済み、という状態を管理し、その状態遷移を追跡する。オブジェクトマテリ
アライザ（Ｏｂｊｅｃｔ　ｍａｔｅｒｉａｌｉｚｅｒ）は、概念レイヤからのエンティテ
ィ値と、対応するＣＬＲオブジェクトとの間で、クエリおよび更新中に変形を実行する。
【００６８】
　＜マッピング＞
　一実施形態では、ＡＤＯ．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋなどの汎用デー
タアクセスレイヤのバックボーンは、アプリケーションデータとデータベースに格納され
たデータとの間のリレーションシップを確立するマッピング（ｍａｐｐｉｎｇ）とするこ
とができる。アプリケーションは、オブジェクトレベルまたは概念レベルでオブジェクト
をクエリして、更新し、これらのオペレーションは、マッピングを介してストアに変換さ
れる。マッピングソリューションによって対処する必要のある、複数の技術的課題がある
。特に宣言的なデータ操作が不要である場合に、１対１のマッピングを使用してリレーシ
ョナルテーブルの各行を１つのオブジェクトとして公開するＯＲＭを構築することは、比
較的容易である。しかし、より複雑なマッピング、セットベースのオペレーション、パフ
ォーマンス、マルチＤＢＭＳベンダのサポート、および他の要件が加わるにつれて、アド
ホックソリューションは、すぐに手におえなくなる。
【００６９】
　（問題：マッピングを介する更新）
　マッピングを介してデータにアクセスすることの問題を、「ビュー」に関してモデル化
することができる。すなわち、クライアントレイヤ内のオブジェクト／エンティティは、
テーブルの行にまたがる豊富なビューと考えることができる。しかし、ビューのうち限ら
れたクラスだけが更新可能であることは周知であり、例えば、商用データベースシステム
は、結合または統合を含むビュー内の複数のテーブルに対する更新を許容しない。非常に
単純なビューに対するものであっても、一意の更新変換を見つけることは、ビューによる
更新振舞いについての内在する指定が不十分なために、ほとんど不可能である。研究によ
り、ビューから更新セマンティクスを引き出すことは困難であり、かなりのユーザの専門
知識を必要とする可能性があることが示されている。しかし、マッピング主導型のデータ
アクセスについては、ビューに対する全ての更新について明確に定義された変換が存在す

(18) JP 5064483 B2 2012.10.31

10

20

30

40

50

ることが有利である。
【００７０】
　さらに、マッピング主導型のシナリオでは、更新の可能性の要件は、単一のビューを超
えている。例えば、ＣｕｓｔｏｍｅｒエンティティおよびＯｒｄｅｒエンティティを操作
するビジネスアプリケーションは、効果的に２つのビューに対するオペレーションを実行
する。場合によって、一貫したアプリケーションの状態は、複数のビューを同時に更新す
ることによってのみ達成可能である。そのような更新についてのケースバイケースの変換
は、更新ロジックの組み合わせ的爆発（ｃｏｍｂｉｎａｔｏｒｉａｌ　ｅｘｐｌｏｓｉｏ
ｎ）を生じる可能性がある。その実装をアプリケーション開発者に委ねることは、アプリ
ケーション開発者がデータアクセスの最も複雑な部分の１つに手作業で取り組むことを必
要とするので、十分ではない。
【００７１】
　（ＡＤＯ．ＮＥＴのマッピングアプローチ）
　ＡＤＯ．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、上記の課題に対処することを
目指す革新的なマッピングアーキテクチャをサポートする。ＡＤＯ．ＮＥＴ　Ｅｎｔｉｔ
ｙ　Ｆｒａｍｅｗｏｒｋは、次のアイデアを活用する。　
　１．指定：マッピングは、明確に定義された意味を有し、広範囲のマッピングシナリオ
を専門家でないユーザの理解できる範囲内に置く、宣言的言語（ｄｅｃｌａｒａｔｉｖｅ
　ｌａｎｇｕａｇｅ）を使用して指定される。　
　２．コンパイル：マッピングは、クエリビューおよび更新ビューと呼ばれる、ランタイ
ムエンジン内でクエリ処理および更新処理を駆動する、双方向ビューにコンパイルされる
。　
　３．実行：更新変換は、具体化されたビューの保守、すなわち堅固なデータベース技術
を活用する一般的なメカニズムを使用して行われる。クエリ変換は、ビューアンフォール
ディング（ｖｉｅｗ　ｕｎｆｏｌｄｉｎｇ）を使用する。
【００７２】
　この新しいマッピングアーキテクチャは、原理づけられた古くならない方法でマッピン
グ主導型の技術の強力なスタックを構築することを可能にする。さらに、この新しいマッ
ピングアーキテクチャは、すぐに実用に関連する興味深い研究の方向性を広げる。次のサ
ブセクションは、マッピングの指定およびコンパイルを説明する。実行は、下記のクエリ
処理および更新処理のセクションで検討する。本明細書で提供する例示的なマッピングア
ーキテクチャのさらなる態様および実施形態は、下記の「さらなる態様および実施形態」
と題するセクションにおいても説明する。
【００７３】
　（マッピングの指定）
　マッピングは、マッピングフラグメントのセットを使用して指定される。各マッピング
フラグメントは、ＱEntities＝ＱTablesの形式の制約であり、ここで、ＱEntitiesは、エ
ンティティスキーマ（アプリケーション側）に対するクエリであり、ＱTablesは、データ
ベーススキーマ（ストア側）に対するクエリである。マッピングフラグメントは、エンテ
ィティデータのある部分がリレーショナルデータのある部分にどのように対応するかを記
述する。すなわち、マッピングフラグメントは、他のフラグメントと独立に理解すること
ができる、指定の基礎的な単位である。
【００７４】
　説明のために、図４のサンプルのマッピングシナリオを考慮されたい。図４は、エンテ
ィティスキーマ（左）とデータベーススキーマ（右）との間のマッピングを図示する。Ｘ
ＭＬファイルまたはグラフィカルツールを使用して、このマッピングを定義することがで
きる。エンティティスキーマは、本明細書のＥｎｔｉｔｙ　Ｄａｔａ　Ｍｏｄｅｌセクシ
ョンのスキーマに対応する。ストア側には、４つのテーブル、すなわち、ＳＳａｌｅｓＯ
ｒｄｅｒｓ、ＳＳａｌｅｓＰｅｒｓｏｎｓ、ＳＥｍｐｌｏｙｅｅｓ、およびＳＣｏｎｔａ
ｃｔｓがある。エンティティスキーマ側には、２つのエンティティセット、すなわち、Ｅ

(19) JP 5064483 B2 2012.10.31

10

20

30

40

50

ＳａｌｅｓＯｒｄｅｒおよびＥＳａｌｅｓＰｅｒｓｏｎｓと、１つのアソシエーションセ
ットＥＳａｌｅｓＰｅｒｓｏｎＯｒｄｅｒｓがある。
【００７５】
　このマッピングは、図５に示されるエンティティスキーマおよびリレーショナルスキー
マに対するクエリに関して表される。
【００７６】
　図５では、フラグメント１は、ＥＳａｌｅｓＯｒｄｅｒｓ内の正確な型ＥＳａｌｅｓＯ
ｒｄｅｒの全てのエンティティに関する（Ｉｄ，ＡｃｃｏｕｎｔＮｕｍ）値のセットが、
ＩｓＯｎｌｉｎｅがｔｒｕｅであるＳＳａｌｅｓＯｒｄｅｒｓテーブルから取り出された
（ＳａｌｅｓＯｒｄｅｒＩｄ，ＡｃｃｏｕｎｔＮｕｍ）値のセットと同一であることを示
している。フラグメント２も同様である。フラグメント３は、アソシエーションセットの
ＥＳａｌｅｓＰｅｒｓｏｎＯｒｄｅｒｓを、ＳＳａｌｅｓＯｒｄｅｒｓテーブルにマッピ
ングし、各アソシエーションエントリが、このテーブル内の各行の主キーと外部キーのペ
アに対応することを示している。フラグメント４、５、および６は、ＥＳａｌｅｓＰｅｒ
ｓｏｎｓエンティティセット内のエンティティが、３つのテーブルＳＳａｌｅｓＰｅｒｓ
ｏｎｓ、ＳＣｏｎｔａｃｔｓ、およびＳＥｍｐｌｏｙｅｅｓにまたがって分割されること
を示している。
【００７７】
　（双方向ビュー）
　このマッピングは、ランタイムを駆動する双方向のＥｎｔｉｔｙ　ＳＱＬビューにコン
パイルされる。クエリビューは、テーブルに関してエンティティを表し、更新ビューは、
エンティティに関してテーブルを表す。
【００７８】
　更新ビューは、仮想構造に関して永続データを指定するため、いくらか反直観的なもの
である可能性があるが、後で示すように、的確な方法で更新をサポートするために更新ビ
ューを活用することができる。生成されるビューは、明確に定義された意味でマッピング
を「尊重し（ｒｅｓｐｅｃｔ）」、下記のプロパティを有する（この提示は、わずかに単
純化されており、特に永続状態が仮想状態によって完全には決定されないことに留意され
たい）。　
　Entities = QueryViews(Tables)
　Tables = UpdateViews(Entities)
　Entities = QueryViews(UpdateViews(Entities))
【００７９】
　最後の条件は、ラウンドトリップ基準（ｒｏｕｄｔｒｉｐｐｉｎｇ　ｃｒｉｔｅｒｉｏ
ｎ）であり、これは、確実に、全てのエンティティデータを永続させ、ロスのない方法で
データベースから再アセンブルできるようにする。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋに
含まれるマッピングコンパイラは、生成されたビューがラウンドトリップ基準を満たすこ
とを保証する。このマッピングコンパイラは、そのようなビューを入力マッピングから作
ることができない場合に、エラーを発生する。
【００８０】
　図６は、図５のマッピングのマッピングコンパイラによって生成される双方向ビュー、
すなわち、クエリビューと更新ビューを示す。一般に、これらのビューは、必要なデータ
変形を明示的に指定するので、入力マッピングより著しく複雑である可能性がある。例え
ば、ＱＶ1では、ＥＳａｌｅｓＯｒｄｅｒｓエンティティセットは、ＳＳａｌｅｓＯｒｄ
ｅｒｓテーブルから構築され、その結果、ＥＳａｌｅｓＯｒｄｅｒまたはＥＳｔｏｒｅＳ
ａｌｅｓＯｒｄｅｒのいずれかが、ＩｓＯｎｌｉｎｅフラグがｔｒｕｅであるか否かに応
じてインスタンス化されることになる。ＥＳａｌｅｓＰｅｒｓｏｎｓエンティティセット
をリレーショナルテーブルから再アセンブルするためには、ＳＳａｌｅｓＰｅｒｓｏｎｓ
テーブル、ＳＥｍｐｌｏｙｅｅｓテーブル、およびＳＣｏｎｔａｃｔｓテーブルの間で結
合を実行する必要がある（ＱＶ3）。

(20) JP 5064483 B2 2012.10.31

10

20

30

40

50

【００８１】
　ラウンドトリップ基準を満たすクエリビューおよび更新ビューを手で書くことは、厄介
なことであり、かなりのデータベース専門知識を必要とする。したがって、Ｅｎｔｉｔｙ
　Ｆｒａｍｅｗｏｒｋの本実施形態は、組み込みマッピングコンパイラによって作成され
たビューだけを受け入れるが、他のコンパイラまたは手によって作成されたビューを受け
入れることは、代替的な実施形態では確かに妥当と思われる。
【００８２】
　（マッピングコンパイラ）
　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、ＥＤＭスキーマ、ストアスキーマ、およびマッ
ピングからクエリビューおよび更新ビューを生成する、マッピングコンパイラを含む（メ
タデータのアーチファクトは、本明細書のメタデータのセクションで論じる）。これらの
ビューを、クエリパイプラインおよび更新パイプラインによって取り込む（ｃｏｎｓｕｍ
ｅ）。最初のクエリがＥＤＭスキーマに対して実行されると、このコンパイラを、設計時
またはランタイムのいずれかにおいて呼び出すことができる。このコンパイラで使用され
るビュー生成アルゴリズムは、正確な再記述のためのａｎｓｗｅｒｉｎｇ－ｑｕｅｒｉｅ
ｓ－ｕｓｉｎｇ－ｖｉｅｗｓ技法に基づく。
【００８３】
　＜クエリ処理＞
　（クエリ言語）
　一実施形態では、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋを、複数のクエリ言語を処理する
ように設計することができる。Ｅｎｔｉｔｙ　ＳＱＬおよびＬＩＮＱの実施形態を、本明
細書においてより詳細に説明するが、同一または類似の原理を他の実施形態に拡張できる
ことは理解されよう。
【００８４】
　・Ｅｎｔｉｔｙ　ＳＱＬ
　Ｅｎｔｉｔｙ　ＳＱＬは、ＥＤＭインスタンスにクエリして操作するように設計された
、ＳＱＬの派生物である。Ｅｎｔｉｔｙ　ＳＱＬは、以下の方法で標準のＳＱＬを拡張す
る。　
　１．ＥＤＭ構造（エンティティ、リレーションシップ、複合型など）のネイティブサポ
ート：コンストラクタ、メンバアクセッサ、型問合せ、リレーションシップナビゲーショ
ン、ネスト／アンネストなど。　
　２．名前空間。Ｅｎｔｉｔｙ　ＳＱＬは、名前空間を、型および関数のグループ化構造
として使用する（ＸＱｕｅｒｙおよび他のプログラミング言語と同様）。　
　３．拡張可能な関数。Ｅｎｔｉｔｙ　ＳＱＬは、非組み込み関数をサポートする。全て
の関数（ｍｉｎ、ｍａｘ、ｓｕｂｓｔｒｉｎｇなど）は、名前空間内で明示的に定義され
、通常は基礎になるストアから、クエリにインポートされる。　
　４．ＳＱＬと比較される、サブクエリおよび他の構造についてのより直交の扱い（ｏｒ
ｔｈｏｇｏｎａｌ　ｔｒｅａｔｍｅｎｔ）。
【００８５】
　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、例えば、ＥｎｔｉｔｙＣｌｉｅｎｔプロバイダ
レイヤにおいてＯｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓコンポーネント内でクエリ言語として、
Ｅｎｔｉｔｙ　ＳＱＬをサポートすることができる。サンプルのＥｎｔｉｔｙ　ＳＱＬク
エリは、本明細書のプログラミングパターンのセクションに示されている。
【００８６】
　・Ｌａｎｇｕａｇｅ　Ｉｎｔｅｇｒａｔｅｄ　Ｑｕｅｒｙ（ＬＩＮＱ）
　ＬＩＮＱは、クエリ関連構造をＣ＃およびＶｉｓｕａｌ　Ｂａｓｉｃなどのメインスト
リームプログラミング言語に導入する．ＮＥＴプログラミング言語における革新である。
クエリ式（ｑｕｅｒｙ　ｅｘｐｒｅｓｓｉｏｎｓ）は、外部ツールまたは言語プリプロセ
ッサによって処理されるのではなく、言語自体のファーストクラス表現（ｆｉｒｓｔ－ｃ
ｌａｓｓ　ｅｘｐｒｅｓｓｉｏｎｓ）である。ＬＩＮＱは、クエリ式が、豊富なメタデー

(21) JP 5064483 B2 2012.10.31

10

20

30

40

50

タ、コンパイル時の構文チェック、静的な型付け、および以前には命令コードのみに使用
可能であったＩｎｔｅｌｌｉＳｅｎｓｅから利益を得ることを可能にする。ＬＩＮＱは、
トラバーサル、フィルタ、結合、射影、ソート、およびグループ化のオペレーションを、
直接かつ宣言的な方法で全ての．ＮＥＴベースのプログラミング言語で表すことを可能に
する、汎用の標準クエリ演算子のセットを定義する。Ｖｉｓｕａｌ　ＢａｓｉｃおよびＣ
＃などの．ＮＥＴ言語も、クエリ理解、すなわち標準クエリ演算子を活用する言語構文拡
張をサポートする。Ｃ＃でのＬＩＮＱを使用するクエリの例は、本明細書のプログラミン
グパターンのセクションに示されている。
【００８７】
　（カノニカルコマンドツリー）
　一実施形態において、カノニカルコマンドツリー（より単純にはコマンドツリー）を、
Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ内の全てのクエリのプログラム的（ツリー）表現とす
ることができる。Ｅｎｔｉｔｙ　ＳＱＬまたはＬＩＮＱを介して表されたクエリを、まず
解析し、コマンドツリーに変換することができ、全ての後続処理を、このコマンドツリー
に対して実行することができる。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、コマンドツリー
構築／編集ＡＰＩを介してクエリを動的に構築する（または編集する）ことを可能にする
こともできる。コマンドツリーは、クエリ、挿入、更新、削除、およびプロシ－ジャ呼出
しを表すことができる。コマンドツリーは、１つまたは複数の式（Ｅｘｐｒｅｓｓｉｏｎ
）から構成される。式は、単に、ある計算を表し、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは
、定数、パラメータ、算術演算、リレーショナル演算（射影、フィルタ、結合など）、関
数呼出しなどを含む、様々な式を提供することができる。最後に、コマンドツリーは、Ｅ
ｎｔｉｔｙＣｌｉｅｎｔプロバイダと基礎になるストア固有プロバイダとの間のクエリの
ための通信の手段として使用することができる。
【００８８】
　（クエリパイプライン）
　クエリ実行を、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋの一実施形態では、データストアに
委ねることができる。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋのクエリ処理のインフラストラ
クチャは、Ｅｎｔｉｔｙ　ＳＱＬまたはＬＩＮＱのクエリを、追加のアセンブリ情報とと
もに、基礎になるストアによって評価可能な１つまたは複数の基本的なリレーショナルの
みのクエリに分解することに関与し、この追加のアセンブリ情報を使用して、より単純な
クエリのフラットな結果を、より豊富なＥＤＭ構造に再形成する。
【００８９】
　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、例えば、ストアがＳＱＬ　Ｓｅｒｖｅｒ　２０
００と同様の機能をサポートしなければならないと仮定することができる。クエリを、こ
のプロファイルに適合する、より単純なフラットなリレーショナルクエリに分解すること
ができる。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋの他の実施形態は、ストアがクエリ処理の
より大きな部分を担うことを可能にすることができるであろう。
【００９０】
　典型的なクエリを、次のように処理することができる。
【００９１】
　構文およびセマンティクスの分析。Ｅｎｔｉｔｙ　ＳＱＬクエリは、まずメタデータサ
ービスコンポーネントからの情報を使用して解析され、意味的に分析される。ＬＩＮＱク
エリは、適切な言語コンパイラの一部として解析され、分析される。
【００９２】
　カノニカルコマンドツリーへの変換。クエリは、ここで、それが元々どのように表現さ
れていたかに関わりなくコマンドツリーに変換され、検証される。
【００９３】
　マッピングビューアンフォールディング。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ内のクエ
リは、概念（ＥＤＭ）スキーマをターゲットとする。これらのクエリは、その代わりに基
礎になるデータベーステーブルおよびビューを参照するように変換されなければならない

(22) JP 5064483 B2 2012.10.31

10

20

30

40

50

。このプロセスは、マッピングビューアンフォールディングと称されるが、データベース
システムのビューアンフォールディングメカニズムに類似する。ＥＤＭスキーマとデータ
ベーススキーマとの間のマッピングは、クエリビューおよび更新ビューにコンパイルされ
る。クエリビューは、次いで、ユーザクエリにアンフォールドされ、このクエリは、ここ
で、データベーステーブルおよびビューをターゲットとする。
【００９４】
　構造型の除去（Ｓｔｒｕｃｔｕｒｅｄ　Ｔｙｐｅ　Ｅｌｉｍｉｎａｔｉｏｎ）。構造型
への全ての参照は、ここで、クエリから除去され、再アセンブリ情報に追加される（結果
アセンブリをガイドするために）。これは、型コンストラクタ、メンバアクセッサ、型問
合せの式に対する参照を含む。
【００９５】
　射影のプルーニング。クエリを分析し、クエリ内の未参照式を除去する。
【００９６】
　ネストのプルアップ。クエリ内の全てのネストオペレーション（ネストされたコレクシ
ョンの構築）は、フラットリレーショナル演算子のみを含むサブツリー上のクエリツリー
のルートにプッシュアップされる。通常、ネストオペレーションは、左外部結合（または
、外部適用（ｏｕｔｅｒ　ａｐｐｌｙ））に変換され、続くクエリからのフラット結果が
、適切な結果に再アセンブルされる（下記の結果アセンブリを参照されたい）。
【００９７】
　変形。ヒューリスティック変形のセットを適用して、クエリを単純化する。これは、フ
ィルタプッシュダウン、変換を結合するための適用、ｃａｓｅ式フォールディングなどを
含む。余分な結合（自己結合、主キー、外部キー結合）は、このステージで除去される。
ここでのクエリ処理インフラストラクチャは、いかなるコストベースの最適化も実行しな
いことに留意されたい。
【００９８】
　プロバイダ固有コマンドへの変換。クエリ（すなわち、コマンドツリー）を、ここでプ
ロバイダに渡し、おそらくはプロバイダのネイティブＳＱＬダイアレクトの、プロバイダ
固有コマンドを作成する。このステップをＳＱＬＧｅｎと呼ぶ。
【００９９】
　実行。プロバイダコマンドが実行される。
【０１００】
　結果アセンブリ。プロバイダからの結果（ＤａｔａＲｅａｄｅｒ）が、以前に集められ
たアセンブリ情報を使用して適切な形式に再形成され、単一のＤａｔａＲｅａｄｅｒが、
呼出し側に返される。
【０１０１】
　マテリアライゼーション。Ｏｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓコンポーネントを介して発
行されたクエリについて、結果は、適切なプログラミング言語オブジェクトにマテリアラ
イズされる。
【０１０２】
　（ＳＱＬＧｅｎ）
　前のセクションで論じたように、クエリ実行は、基礎になるストアに委ねられる。その
ような実施形態において、クエリは、まず、ストアにとって適切な形式に変換されなけれ
ばならない。しかし、異なるストアは、ＳＱＬの異なるダイアレクトをサポートし、Ｅｎ
ｔｉｔｙ　Ｆｒａｍｅｗｏｒｋがそれらの全てをネイティブにサポートすることは、現実
的ではない。代わりに、クエリパイプラインは、クエリをコマンドツリーの形式でストア
プロバイダに引き渡すことができる。ストアプロバイダは、次いで、そのコマンドツリー
をネイティブコマンドに変換することができる。これは、コマンドツリーをプロバイダの
ネイティブＳＱＬダイアレクトに変換することによって達成することができ、したがって
、このフェーズはＳＱＬＧｅｎである。次いで、結果のコマンドを実行して、関連する結
果を作成することができる。

(23) JP 5064483 B2 2012.10.31

10

20

30

40

50

【０１０３】
　＜更新処理＞
　このセクションは、更新処理を例示的なＡＤＯ．ＮＥＴ　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗ
ｏｒｋでどのように実行できるかを説明する。一実施形態では、更新処理の２つのフェー
ズ、すなわち、コンパイル時とランタイムがある。本明細書で提供される双方向ビューの
セクションでは、マッピング仕様をビュー表現のコレクションにコンパイルするプロセス
を説明した。本セクションは、どのようにビュー表現をランタイムで活用して、オブジェ
クトレイヤで実行されるオブジェクト変更（または、ＥＤＭレイヤでのＥｎｔｉｔｙ　Ｓ
ＱＬ　ＤＭＬ更新）をリレーショナルレイヤにおける同等のＳＱＬ更新に変換するかにつ
いて説明する。
【０１０４】
　（ビュー保守を介する更新）
　例示的なＡＤＯ．ＮＥＴマッピングアーキテクチャで活用される洞察の１つは、マテリ
アライズビュー保守のアルゴリズムを活用して、双方向ビューを介して更新を伝搬するこ
とができることである。このプロセスを図７に示す。
【０１０５】
　図７の右側に図示されたデータベースの内部のＴａｂｌｅｓは、永続データを保持する
。図７の左側に図示されたＥｎｔｉｔｙＣｏｎｔａｉｎｅｒは、この永続データの仮想状
態を表すが、これは、典型的にはＥｎｔｉｔｙＳｅｔｓ内のエンティティのわずかな部分
のみが、クライアント上でマテリアライズされるからである。目標は、Ｅｎｔｉｔｉｅｓ
の状態の更新ΔＥｎｔｉｔｉｅｓを、Ｔａｂｌｅｓの永続状態の更新ΔＴａｂｌｅｓに変
換することである。このプロセスを増分ビューの保守と称する。なぜなら、更新は、エン
ティティの変更された諸態様を表す更新ΔＥｎｔｉｔｉｅｓに基づいて実行されるからで
ある。
【０１０６】
　これは、次の２つのステップを使用して行うことができる。　
　１．ビュー保守：
　ΔTables = ΔUpdateViews (Entities, ΔEntities)
　２．ビューアンフォールディング：
　ΔTables = ΔUpdateViews (QueryViews (Tables), ΔEntities)
【０１０７】
　ステップ１では、ビュー保守アルゴリズムが更新ビューに適用される。これは、デルタ
式のセットΔＵｐｄａｔｅＶｉｅｗｓを作成し、これにより、ΔＴａｂｌｅｓをΔＥｎｔ
ｉｔｉｅｓ、およびＥｎｔｉｔｉｅｓのスナップショットからどのようにして取得するか
知ることができる。後者は、クライアント側では完全にはマテリアライズされないので、
ステップ２で、ビューアンフォールディングを使用して、デルタ式をクエリビューと組み
合わせる。一緒に、これらのステップは、入力として初期データベース状態およびエンテ
ィティに対する更新を受け取ってデータベースに対する更新を計算する式を、生成する。
【０１０８】
　このアプローチは、一度に１オブジェクトであると同時にセットベースである更新（す
なわち、データ操作ステートメントを使用して表される更新）に対して機能する、クリー
ンで均一なアルゴリズムをもたらし、堅固なデータベース技術を活用する。実際には、ス
テップ１は、更新変換に十分であることが多い。なぜなら、多くの更新は、現在のデータ
ベース状態に直接には依存しないからである。この情況では、ΔＴａｂｌｅｓ＝ΔＵｐｄ
ａｔｅＶｉｅｗｓ（ΔＥｎｔｉｔｉｅｓ）である。ΔＥｎｔｉｔｉｅｓが、キャッシュ・
エンティティに対する一度に１オブジェクトの変更のセットとして与えられる場合は、Δ
ＵｐｄａｔｅＶｉｅｗｓ式を計算するのではなく、変更されたエンティティに対してビュ
ー保守アルゴリズムを直接実行することによって、ステップ１をさらに最適化することが
できる。
【０１０９】

(24) JP 5064483 B2 2012.10.31

10

20

30

40

　（オブジェクトに対する更新の変換）
　上記で概説されたアプローチを説明するために、少なくとも５年間勤務した有資格販売
員にボーナスおよび昇格を与える次の例を検討されたい。
【０１１０】
【表７】

【０１１１】
　ＡｄｖｅｎｔｕｒｅＷｏｒｋｓＤＢは、ツール生成されたクラスであり、該クラスは、
データベース接続、メタデータワークスペース、およびオブジェクトキャッシュデータ構
造を備えＳａｖｅＣｈａｎｇｅｓメソッドを公開する、ＯｂｊｅｃｔＣｏｎｔｅｘｔと呼
ばれる汎用オブジェクトサービスクラスから派生する。Ｏｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓ
セクションで説明したように、オブジェクトキャッシュは、エンティティのリストを管理
し、このリストのそれぞれは、デタッチ済み（キャッシュから）、追加済み、未変更、変
更済み、および削除済みという状態のうちの１つである。上記のコードフラグメントは、
ＥＳａｌｅｓＰｅｒｓｏｎオブジェクトの肩書プロパティおよびボーナスプロパティを変
更する更新を記述し、この肩書プロパティおよびボーナスプロパティは、ＳＥｍｐｌｏｙ
ｅｅｓテーブルおよびＳＳａｌｅｓＰｅｒｓｏｎｓテーブルにそれぞれ格納される。Ｓａ
ｖｅＣｈａｎｇｅｓメソッドの呼出しによってトリガされる、オブジェクト更新を対応す
るテーブル更新に変形するプロセスは、次の４つのステップを含むことができる。
【０１１２】
　変更リスト生成。エンティティセットごとの変更のリストが、オブジェクトキャッシュ
から作成される。更新は、削除および挿入される要素のリストとして表される。追加され
るオブジェクトは、挿入になる。削除されるオブジェクトは、削除になる。
【０１１３】
　値式の伝搬。このステップは、変更ビューおよび更新ビューのリスト（メタデータワー
クスペース内に保持される）をとり、増分マテリアライズビューの保守式、ΔＵｐｄａｔ
ｅＶｉｅｗｓを使用して、オブジェクト変更のリストを、基礎になる作用テーブル（ａｆ
ｆｅｃｔｅｄ　ｔａｂｌｅ）に対する代数ベーステーブルの挿入式および削除式のシーケ
ンスに変形する。この例について、関連する更新ビューは、図６に示されたＵＶ2および
ＵＶ3である。これらのビューは、単純な射影－選択クエリであり、したがって、ビュー
保守ルールの適用は、容易である。挿入（Δ+）および削除（Δ-）について同一である、
次のΔＵｐｄａｔｅＶｉｅｗｓ式を求める。
【０１１４】

(25) JP 5064483 B2 2012.10.31

10

20

30

40

50

【表８】

【０１１５】
　上記に示されるループが、エンティティＥold＝ＥＳａｌｅｓＰｅｒｓｏｎｓ（１，２
０，“”，“Ａｌｉｃｅ”，Ｃｏｎｔａｃｔ（“ａ＠ｓａｌｅｓ”，ＮＵＬＬ））を、Ｅ

new＝ＥＳａｌｅｓＰｅｒｓｏｎｓ（１，３０，“Ｓｅｎｉｏｒ．．．”，“Ａｌｉｃｅ
”，Ｃｏｎｔａｃｔ（“ａ＠ｓａｌｅｓ”，ＮＵＬＬ））に更新したと仮定する。次に、
初期デルタは、挿入について、Δ+ＥＳａｌｅｓＯｒｄｅｒｓ＝｛Ｅnew｝であり、削除に
ついて、Δ-ＥＳａｌｅｓＯｒｄｅｒｓ＝｛Ｅold｝である。Δ+ＳＳａｌｅｓＰｅｒｓｏ
ｎｓ＝｛（１，３０）｝、Δ-ＳＳａｌｅｓＰｅｒｓｏｎｓ＝｛（１，２０）｝が得られ
る。次に、ＳＳａｌｅｓＰｅｒｓｏｎｓテーブルに対する計算された挿入および削除が、
単一の更新に組み合わされ、この更新は、Ｂｏｎｕｓ値に３０をセットする。ＳＥｍｐｌ
ｏｙｅｅｓに対するデルタが、同様に計算される。ＳＣｏｎｔａｃｔｓについて、Δ+Ｓ
Ｃｏｎｔａｃｔｓ＝Δ-ＳＣｏｎｔａｃｔｓが得られ、したがって、更新は不要である。
【０１１６】
　作用ベーステーブルに対するデルタを計算することに加え、このフェーズは、（ａ）参
照整合性の制約を考慮に入れた、テーブル更新を実行すべき正しい順序、（ｂ）最終的な
更新をデータベースに提示する前に必要な、ストアによって生成されたキーの取り出し、
および（ｃ）オプティミスティック並行性制御に関する情報を収集することに関与する。
【０１１７】
　ＳＱＬ　ＤＭＬまたはストアドプロシージャ呼出しの生成。このステップは、挿入され
るデルタおよび削除されるデルタのリストに加えて、並行処理に関係する追加の注釈を、
ＳＱＬ　ＤＭＬステートメントまたはストアドプロシージャ呼出しのシーケンスに変形す
る。この例では、影響される販売員について生成される更新ステートメントは、次の通り
である。
【０１１８】
【表９】

【０１１９】
　キャッシュの同期化。更新が実行されると、キャッシュの状態は、データベースの新し
い状態に同期化される。したがって、必要な場合に、ミニクエリ処理のステップを実行し
て、新しい変更されたリレーショナル状態を、それに対応するエンティティおよびオブジ
ェクトの状態に変形する。
【０１２０】
　＜メタデータ＞
　メタデータサブシステムは、データベースカタログに類似し、Ｅｎｔｉｔｙ　Ｆｒａｍ

(26) JP 5064483 B2 2012.10.31

10

20

30

40

50

ｅｗｏｒｋの設計時およびランタイムのメタデータの必要を満たすように設計される。
【０１２１】
　（メタデータアーチファクト）
　メタデータアーチファクトは、例えば、以下のものを含むことができる。
【０１２２】
　概念スキーマ（ＣＳＤＬファイル）：概念スキーマは、概念スキーマ定義言語（ＣＳＤ
Ｌ：Ｃｏｎｃｅｐｔｕａｌ　Ｓｃｈｅｍｅ　Ｄｅｆｉｎｉｔｉｏｎ　Ｌａｎｇｕａｇｅ）
ファイル内で定義することができ、ＥＤＭ型（エンティティ型、リレーションシップ）と
、データについてアプリケーションの概念ビューを記述するエンティティセットとを含む
。
【０１２３】
　ストアスキーマ（ＳＳＤＬファイル）：ストアスキーマ情報（テーブル、列、キーなど
）は、ＣＳＤＬボキャブラリ項目を使用して表されることがある。例えば、Ｅｎｔｉｔｙ
Ｓｅｔｓは、テーブルを示し、プロパティは、列を示す。これらを、ストアスキーマ定義
言語（ＳＳＤＬ：Ｓｔｏｒｅ　Ｓｃｈｅｍａ　Ｄｅｆｉｎｉｔｉｏｎ　Ｌａｎｇｕａｇｅ
）ファイル内で定義することができる。
【０１２４】
　Ｃ－Ｓマッピング仕様（ＭＳＬファイル）：概念スキーマとストアスキーマとの間のマ
ッピングは、典型的にはマッピング仕様言語（ＭＳＬ：Ｍａｐｐｉｎｇ　Ｓｐｅｃｉｆｉ
ｃａｔｉｏｎ　Ｌａｎｇｕａｇｅ）ファイル内のマッピング仕様にキャプチャされる。こ
の仕様を、マッピングコンパイラによって使用して、クエリビューおよび更新ビューを作
成する。
【０１２５】
　プロバイダマニフェスト：プロバイダマニフェストは、各プロバイダによってサポート
される機能性の記述を提供することがあり、次の例示的な情報を含むことができる。　
　１．プロバイダによってサポートされるプリミティブ型（ｖａｒｃｈａｒ、ｉｎｔなど
）、およびそれらが対応するＥＤＭ型（ｓｔｒｉｎｇ、ｉｎｔ３２など）。　
　２．プロバイダに関する組み込み関数（および、そのシグネチャ）。
【０１２６】
　この情報を、Ｅｎｔｉｔｙ　ＳＱＬパーサによってクエリ分析の一部として使用するこ
とができる。これらのアーチファクトに加えて、メタデータサブシステムは、生成された
オブジェクトクラス、および、該オブジェクトクラスとこれに対応する概念エンティティ
型との間のマッピングを追跡し続けることもできる。
【０１２７】
　（メタデータサービスのアーキテクチャ）
　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋによって消費されるメタデータは、異なるソースか
ら異なるフォーマットで来る可能性がある。メタデータサブシステムを、統一された低水
準のメタデータインターフェースのセットに上に作成することができ、該インターフェー
スのセットにより、メタデータランタイムが、異なるメタデータの永続フォーマット／ソ
ースの詳細と独立に機能することが可能になる。
【０１２８】
　例示的なメタデータサービスは、次を含むことができる。　
　異なるタイプのメタデータの列挙。　
　キーによるメタデータ検索。　
　メタデータのブラウジング／ナビゲーション。　
　一時メタデータの作成（例えば、クエリ処理用）。　
　セッション独立のメタデータのキャッシュと再使用。
【０１２９】
　メタデータサブシステムは、次のコンポーネントを含む。メタデータキャッシュは、異
なるソースから取り出されたメタデータをキャッシュし、メタデータを取り出して操作す

(27) JP 5064483 B2 2012.10.31

10

20

30

40

50

る共通ＡＰＩを顧客に提供する。メタデータは、異なる形式で表され、異なる位置に格納
されることがあるので、メタデータサブシステムは、ローダーインターフェースを有利に
サポートすることができる。メタデータローダーは、ローダーインターフェースを実装し
、適切なソース（ＣＳＤＬ／ＳＳＤＬファイルなど）からのメタデータのロードに関与す
る。メタデータワークスペースは、いくつかのメタデータを集約して、メタデータの完全
なセットをアプリケーションに提供する。メタデータワークスペースは、通常、概念モデ
ル、ストアスキーマ、オブジェクトクラス、およびこれらの構造の間のマッピングに関す
る情報を含む。
【０１３０】
　＜ツール＞
　一実施形態において、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、開発の生産性を高めるた
めの設計時のツールのコレクションを含むこともできる。例示的なツールは、次の通りで
ある。
【０１３１】
　モデルデザイナ：アプリケーションの開発における早期のステップの１つは、概念モデ
ルの定義である。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、アプリケーション設計者および
分析者が、エンティティおよびリレーションシップに関してアプリケーションの主な概念
を記述することを可能にする。モデルデザイナは、この概念モデル化のタスクを対話的に
実行することを可能にするツールである。設計のアーチファクトは、データベース内でそ
の状態を永続することができるＭｅｔａｄａｔａコンポーネントに直接にキャプチャされ
る。モデルデザイナは、モデル記述（ＣＳＤＬを介して指定される）を生成して、消費す
ることもでき、ＥＤＭモデルをリレーショナルメタデータから合成することができる。
【０１３２】
　マッピングデザイナ：ＥＤＭモデルが設計されると、開発者は、概念モデルをリレーシ
ョナルデータベースにどのようにマッピングするかを指定することができる。このタスク
は、マッピングデザイナによって容易にされ、マッピングデザイナは、図８に図示される
ユーザインターフェースを提示することができる。マッピングデザイナは、ユーザインタ
ーフェースの左側に提示されるエンティティスキーマ内のエンティティおよびリレーショ
ンシップが、図８のユーザインターフェースの右側に提示されるデータベーススキーマに
反映されるようにデータベース内のテーブルおよび列にどのようにマッピングされるかを
、開発者が記述するのを助ける。図８の中央セクションに提示されたグラフ内のリンクは
、Ｅｎｔｉｔｙ　ＳＱＬクエリと同等のものとして宣言的に指定されたマッピング式を、
視覚化する。これらの式は、クエリビューおよび更新ビューを生成する双方向のマッピン
グコンパイルコンポーネントへの入力となる。
【０１３３】
　コード生成：ＥＤＭ概念モデルは、ＡＤＯ．ＮＥＴコードパターン（コマンド、接続、
データリーダー）に基づいてよく知られた対話モデルを提供するので、多くのアプリケー
ションに十分である。しかし、多くのアプリケーションは、強く型付けされたオブジェク
トとしてデータと対話することを好む。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、ＥＤＭモ
デルを入力として取り、エンティティ型の強く型付けされたＣＬＲクラスを作成する、コ
ード生成ツールのセットを含む。これらのコード生成ツールは、強く型付けされたオブジ
ェクトコンテキスト（例えば、ＡｄｖｅｎｔｕｒｅＷｏｒｋｓＤＢ）を生成することもで
き、この強く型付けされたオブジェクトコンテキストは、モデルによって定義された全て
のエンティティおよびリレーションセットの強く型付けされたコレクション（例えば、Ｏ
ｂｊｅｃｔＱｕｅｒｙ＜ＳａｌｅｓＰｅｒｓｏｎ＞）を公開する。
【０１３４】
　さらなる態様および実施形態
　＜マッピングサービス＞
　一実施形態において、図１の１１４などのマッピングコンポーネントは、マッピングの
全ての態様を管理し、Ｅｎｔｉｔｙ　Ｃｌｉｅｎｔプロバイダ１１１によって内部的に使

(28) JP 5064483 B2 2012.10.31

10

20

30

40

50

用される。マッピングは、２つの潜在的に異なる型空間内の構造の間の変形を論理的に指
定する。例えば、エンティティ（概念空間内で、その用語が上記で使用されるとき）を、
図８に図式的に示されるように、ストレージ空間内のデータベーステーブルに関して指定
することができる。
【０１３５】
　規定のマッピング（ｐｒｅｓｃｒｉｂｅｄ　ｍａｐｐｉｎｇ）は、システムが構造の適
切なマッピングを自動的に決定するマッピングである。非規定のマッピング（ｎｏｎ－ｐ
ｒｅｓｃｒｉｂｅｄ　ｍａｐｐｉｎｇ）は、アプリケーション設計者がマッピングの様々
なファセットを制御することを可能にする。マッピングは、複数のファセットを有するこ
とができる。マッピングのエンドポイント（エンティティ、テーブルなど）、マッピング
されるプロパティのセット、更新の振舞い、遅延ローディングなどのランタイムの影響、
更新時の衝突解決の振舞いなどが、そのようなファセットのごく部分的なリストである。
【０１３６】
　一実施形態において、マッピングコンポーネント１１４は、マッピングビューを作成す
ることができる。ストレージ空間とスキーマ空間との間のマッピングを検討されたい。エ
ンティティは、１つまたは複数のテーブルからの行で構成される。クエリビューは、スキ
ーマ空間内のエンティティを、ストレージ空間内のテーブルに関するクエリとして表す。
エンティティは、クエリビューを評価することによってマテリアライズすることができる
。
【０１３７】
　エンティティのセットに対する変更を、対応するストアテーブルに戻して反映させる必
要があるときは、その変更を、逆の方法でクエリビューを介して伝搬することができる。
これは、データベースにおけるビュー／更新の問題に類似し、更新伝搬プロセスは、論理
的に、反対のクエリビューに対して更新を実行する。このために、更新ビューという概念
を導入し、これらのビューは、エンティティに関してストアテーブルを記述し、反対のク
エリビューと考えることができる。
【０１３８】
　しかし、多くの場合に、本当に関心を持っているのは、増分変更である。更新デルタビ
ュー（Ｕｐｄａｔｅ　Ｄｅｌｔａ　Ｖｉｅｗｓ）は、対応するエンティティコレクション
に対する変更に関して、テーブルに対する変更を記述するビュー（クエリ）である。した
がって、エンティティコレクション（または、アプリケーションオブジェクト）に関する
更新処理は、更新デルタビューを評価することによってテーブルに対する適切な変更を計
算すること、および、その後これらの変更をテーブルに適用することを含む。
【０１３９】
　同様の方法で、クエリデルタビューは、基礎になるテーブルに対する変更に関して、エ
ンティティコレクションに対する変更を記述する。無効化、より一般的には通知が、クエ
リデルタビューの使用を必要とする可能性があるシナリオである。
【０１４０】
　データベース内のビューのように、クエリとして表されたマッピングビューを、ユーザ
クエリを用いて構成することができ、このことは、マッピングのより一般化された取り扱
いにつながる。同様に、クエリとして表されたマッピングデルタビューは、更新を扱うた
めのより一般的で的確なアプローチを可能にする。
【０１４１】
　一実施形態において、マッピングビューの能力を制限することができる。マッピングビ
ューで使用されるクエリ構造は、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋによってサポートさ
れる全てのクエリ構造のサブセットのみとすることができる。これにより、特にデルタ式
の場合において、より単純かつ効率的なマッピング式が可能になる。
【０１４２】
　デルタビューを、代数変更計算スキーマを使用して、マッピングコンポーネント１１４
内で計算して、更新（およびクエリ）ビューから更新（およびクエリ）デルタビューを作

(29) JP 5064483 B2 2012.10.31

10

20

30

40

50

ることができる。代数変更計算スキーマのさらなる態様については後述する。
【０１４３】
　更新デルタビューは、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋが、計算アプリケーションに
よって行われるエンティティ変更を、データベース内のストアレベルの更新に自動的に変
換することによって、更新をサポートすることを可能にする。しかし、多くの場合に、マ
ッピングは、パフォーマンスおよび／またはデータの整合性のために追加の情報を用いて
増補されなければならない。
【０１４４】
　一部の事例では、基礎になるストアテーブルの一部または全てに対して、エンティティ
における更新を直接マッピングすることは、望ましくないことがある。そのような事例で
は、更新を、ストアドプロシージャを介してファンネルし、データ検証を可能にすると同
時に信頼境界を維持しなければならない。マッピングは、エンティティにおける更新およ
びクエリを処理するためのストアドプロシージャの指定を可能にする。
【０１４５】
　マッピングは、Ｏｂｊｅｃｔ　Ｓｅｒｖｉｃｅｓ　１３１内のオプティミスティック並
行性制御のサポートも提供することができる。特に、あるエンティティのプロパティを、
タイムスタンプフィールドまたはバージョンフィールドなどの並行性制御フィールドとし
てマークすることができ、ストアにおける並行性制御フィールドの値がエンティティ内の
並行性制御フィールドと同一である場合にのみ、これらのオブジェクトに対する変更が成
功する。両方のオプティミスティック並行性制御フィールドは、ストア固有レイヤ１２０
ではなく、アプリケーションオブジェクトレイヤでのみ関連することに留意されたい。
【０１４６】
　一実施形態において、アプリケーション設計者は、ＭＳＬを使用して、マッピングの様
々な態様を記述することができる。典型的なマッピング仕様は、次のセクションの１つま
たは複数を含む。　
　１．Ｄａｔａ領域は、クラス、テーブル、および／またはＥＤＭ型の記述を含むことが
できる。これらの記述は、既存のクラス／テーブル／型を記述することができ、または、
そのようなインスタンスを生成するのに使用することができる。サーバ生成値、制約、主
キーなどは、このセクションの一部として指定される。　
　２．Ｍａｐｐｉｎｇセクションは、型空間の間の実際のマッピングを記述する。例えば
、ＥＤＭエンティティの各プロパティは、テーブル（またはテーブルのセット）からの１
つまたは複数の列に関して指定される。　
　３．Ｒｕｎｔｉｍｅ領域は、実行を制御する様々なノブ、例えば、オプティミスティッ
ク並行性制御パラメータおよびフェッチ戦略を指定することができる。
【０１４７】
　（マッピングコンパイラ）
　一実施形態において、ドメインモデル化ツールのマッピングコンポーネント１７２は、
マッピング仕様をクエリビュー、更新ビュー、および対応するデルタビューにコンパイル
するマッピングコンパイラを含むことができる。図９は、クエリビューおよび更新ビュー
を生成するためのＭＳＬのコンパイルを図示する。
【０１４８】
　コンパイルパイプラインは、次のステップを実行する。　
　１．ＡＰＩ　９００から呼び出されるビュージェネレータ９０２が、オブジェクト←→
エンティティ間のマッピング情報９０１（ＭＳＬを介して指定される）を変換し、Ｏ←→
Ｅ（オブジェクト－エンティティ）空間内のクエリビュー、更新ビュー、および対応する
（クエリおよび更新）デルタ式９０４を作成する。この情報は、メタデータストア９０８
に置くことができる。　
　２．ビュージェネレータ９０６が、エンティティ←→ストア間のマッピング情報９０３
（ＭＳＬを介して指定される）を変換し、Ｅ←→Ｓ（エンティティ－ストア）空間内のク
エリビュー、更新ビュー、および対応する（クエリおよび更新）デルタ式９０７を作成す

(30) JP 5064483 B2 2012.10.31

10

20

30

40

50

る。この情報は、メタデータストア９０８に置くことができる。　
　３．依存性分析９０９コンポーネントは、ビュージェネレータ９０６によって作成され
たビューを検査し、参照整合性および他のそのような制約に反しない更新について一貫し
た依存性順序（ｄｅｐｅｎｄｅｎｃｙ　ｏｒｄｅｒ）９１０を決定する。この情報は、メ
タデータストア９０８に置くことができる。　
　４．次に、ビュー、デルタ式、および依存性順序９０８が、メタデータサービスコンポ
ーネント（図１の１１２）に渡される。
【０１４９】
　（更新処理）
　このセクションは、更新処理パイプラインを説明する。一実施形態において、Ｅｎｔｉ
ｔｙ　Ｆｒａｍｅｗｏｒｋは、２種類の更新をサポートすることができる。単一オブジェ
クト変更とは、オブジェクトグラフをナビゲートしている間に個々のオブジェクトに対し
て行われる変更である。単一オブジェクト変更について、システムは、現在のトランザク
ションにおいて作成、更新、および削除されたオブジェクトを追跡する。これは、オブジ
ェクトレイヤにおいてのみ使用可能である。クエリベースの変更とは、例えばテーブルを
更新するためにリレーショナルデータベースで行われるように、オブジェクトクエリに基
づいて更新／削除ステートメントを発行することによって実行される変更である。図１の
１３１などのＯｂｊｅｃｔ　Ｐｒｏｖｉｄｅｒは、単一オブジェクト変更をサポートする
ように構成されることがあるが、クエリベースの変更をサポートするように構成されない
ことがある。一方、Ｅｎｔｉｔｙ　Ｃｌｉｅｎｔプロバイダ１１１は、クエリベースの変
更をサポートすることができるが、単一オブジェクト変更をサポートすることはできない
。
【０１５０】
　図１０は、一例示的実施形態における更新処理の図を提供する。図１０では、アプリケ
ーションレイヤ１０００のアプリケーションのユーザ１００１は、そのようなアプリケー
ションによって操作されるデータに対する変更を保存する１００２ことができる。オブジ
ェクトプロバイダレイヤ１０１０では、変更リストがコンパイルされる１０１１。変更グ
ループ化１０１２は、変更リストに対して実行される。制約処理１０１３は、メタデータ
ストア１０１７に保存される制約情報および依存性モデル１０２２を作ることができる。
拡張オペレーションが実行される１０１４。並行性制御式を生成し１０１５、並行性モデ
ル１０２３をメタデータストア１０１７に保存することができる。オブジェクト－エンテ
ィティコンバータ１０１６は、オブジェクト－エンティティデルタ式１０２４をメタデー
タストア１０１７に保存することができる。
【０１５１】
　エンティティ式ツリー１０１８は、ＥＤＭ　Ｐｒｏｖｉｄｅｒレイヤ１０３０に渡され
る。選択的更新スプリッタ１０３１は、必要に応じてある種の更新を選択し、分割するこ
とができる。ＥＤＭストアコンバータ１０３２は、エンティティ－ストアデルタ式１０３
３をメタデータストア１０３６に保存することができる。クエリビューアンフォールディ
ングコンポーネント１０３５は、クエリマッピングビュー１０３５をメタデータストア１
０３６に保存することができる。エンティティ－ストア補正（ｃｏｍｐｅｎｓａｔｉｏｎ
）１０３７を実行し、ストア式ツリー１０３８をストアプロバイダレイヤ１０４０に渡す
。
【０１５２】
　ストアプロバイダレイヤ１０４０では、単純化（ｓｉｍｐｌｉｆｉｅｒ）コンポーネン
ト１０４１が最初に動作し、続いてＳＱＬ生成コンポーネント１０４２が、データベース
１０４４に対して実行されるＳＱＬ更新１０４３を生成することができる。全ての更新結
果を、サーバ生成値の処理のためにＥＤＭプロバイダレイヤ１０３０内のコンポーネント
１０３９に渡すことができる。コンポーネント１０３９は、結果をオブジェクトプロバイ
ダレイヤ内の同様のコンポーネント１０２１に渡すことができる。最後に、全ての結果ま
たは更新確認１００３が、アプリケーションレイヤ１０００に返される。

(31) JP 5064483 B2 2012.10.31

10

20

30

40

50

【０１５３】
　上述したように、更新デルタビューは、マッピングコンパイルの一部として生成される
。これらのビューを更新プロセスで使用して、ストアでのテーブルに対する変更を識別す
る。
【０１５４】
　ストアでの関係テーブルのセットについて、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、あ
る順序で更新を有利に適用することができる。例えば、外部キー制約の存在は、変更が特
定のシーケンスで適用されることを必要とする場合がある。依存性分析フェーズ（マッピ
ングコンパイルの一部）は、コンパイル時に計算可能な全ての依存性順序付け要件を識別
する。
【０１５５】
　一部の事例では、静的な依存性分析の技法は、例えば循環参照整合性制約（または自己
参照整合性制約）に関して不十分であることがある。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋ
は、オプティミスティックアプローチを採用し、そのような更新の進行を可能にする。ラ
ンタイムで、循環が検出されると、例外を発生する。
【０１５６】
　図１０に図示されるように、アプリケーションレイヤ１０００におけるインスタンスベ
ースの更新に関する更新処理パイプラインは、次のステップを有する。
【０１５７】
　変更グループ化１０１２：変更トラッカからの異なるオブジェクトコレクションに従っ
て変更をグループ化する。例えば、コレクションＰｅｒｓｏｎに関する全ての変更を、そ
のコレクションの挿入セット、削除セット、および更新セットにグループ化する。
【０１５８】
　制約処理１０１３：このステップは、ビジネスロジックが値レイヤで実行されないとい
う事実を補正する全てのオペレーションを実行し、本質的に、オブジェクトレイヤが変更
セットを拡張することを可能にする。カスケード削除補正および依存性順序付け（それぞ
れのＥＤＭ制約に対する）が、ここで実行される。
【０１５９】
　拡張オペレーションの実行１０１４：追加の（例えば削除）オペレーションが実行され
、その結果、対応するビジネスロジックを実行できるようになる。
【０１６０】
　並行性制御式ジェネレータ１０１５：変更されたオブジェクトが不整合（ｓｔａｌｅ）
かどうかを検出するために、マッピングメタデータで指定されるタイムスタンプの列また
は列のセットをチェックする式を生成することができる。
【０１６１】
　オブジェクト－ＥＤＭの変換１０１６：挿入、削除、および更新のオブジェクトセット
に関して指定された変更リストは、ここで、メタデータストア１０１７に格納されたマッ
ピングデルタ式を使用して変換され、これらのマッピングデルタ式は、図９を参照して説
明したマッピングコンパイルの後に格納される。このステップの後に、変更は、ＥＤＭエ
ンティティに関してのみ表される式ツリー１０１８として使用可能である。
【０１６２】
　ステップ１０１８からの式ツリーは、次に、ＥＤＭ－Ｐｒｏｖｉｄｅｒレイヤ１０３０
内のＥＤＭプロバイダに渡される。ＥＤＭプロバイダでは、式ツリーが処理され、変更が
ストアに送られる。この式ツリー１０１８を別の方法で作成することもでき、アプリケー
ションがＥＤＭプロバイダに対して直接にプログラミングすると、そのアプリケーション
は、ＥＤＭプロバイダに対してＤＭＬステートメントを実行することができることに留意
されたい。そのようなＤＭＬステートメントは、まず、ＥＤＭプロバイダによってＥＤＭ
式ツリー１０１８に変換される。ＤＭＬステートメントまたはアプリケーションレイヤ１
０００から取得される式ツリーは、次の方法で処理される。
【０１６３】

(32) JP 5064483 B2 2012.10.31

10

20

30

40

50

　選択的更新スプリッタ１０３１：このステップでは、更新の一部が、挿入および削除に
分離される。一般に、更新を、そのままでより下位のレイヤに伝搬する。しかし、ある事
例では、デルタ式のルールがその事例について開発されていないこと、または正しい変換
が実際にベーステーブルに対する挿入および／または削除をもたらすことのいずれかの理
由で、そのような更新を実行することができない場合がある。
【０１６４】
　ＥＤＭ－ストア変換１０３２：ＥＤＭレベル式ツリー１０１８、適切なマッピングから
デルタ式を使用してストア空間に変換される。
【０１６５】
　クエリマッピングビューアンフォールディング１０３４：式ツリー１０１８は、何らか
のＥＤＭレベル概念を含むことがある。これらを除去するために、クエリマッピングビュ
ー１０３５を使用して式ツリーをアンフォールドし、ストアレベルの概念のみに関するツ
リー１０３８を取得する。ツリー１０３８は、オプションとして、Ｅ－Ｓ補正コンポーネ
ント１０３７によって処理される。
【０１６６】
　現在ストア空間の項目である式ツリー１０３８は、ここで、以下のステップを実行する
ストアプロバイダレイヤ１０４０内のストアプロバイダに与えられる。　
　単純化１０４１：式ツリーは、論理式変換ルールを使用することによって単純化される
。　
　ＳＱＬの生成１０４２：式ツリーが与えられると、ストアプロバイダは、式ツリー１０
３８から実際のＳＱＬ　１０４３を生成する。　
　ＳＱＬの実行１０４４：実際の変更が、データベースに対して実行される。　
　サーバ生成値：サーバによって生成された値は、ＥＤＰレイヤ１０３０に返される。プ
ロバイダ１０４４は、サーバ生成値をレイヤ１０３０内のコンポーネント１０３９に渡し
、コンポーネント１０３９は、マッピングを使用してこれらをＥＤＭ概念に変換する。ア
プリケーションレイヤ１０００は、これらの更新１００３をピックアップし、そのレイヤ
内で利用される様々なアプリケーションおよびオブジェクトにインストールされるオブジ
ェクトレベル概念に伝搬する。
【０１６７】
　多くの場合に、ストアテーブルは、例えばデータベースアドミニストレータ（ＤＢＡ：
Ｄａｔａｂａｓｅ　Ａｄｍｉｎｉｓｔｒａｔｏｒ）ポリシのために、直接更新可能ではな
い可能性がある。テーブルに対する更新は、ある妥当性チェックを実行できるようにする
ために、ストアドプロシージャを介してのみ可能であることがある。そのような情況では
、マッピングコンポーネントは、「生の（ｒａｗ）」挿入、削除、および更新のＳＱＬス
テートメントを実行するのではなく、オブジェクト変更をこれらのストアドプロシージャ
への呼出しに変換しなければならない。他の場合では、「ストアド」プロシージャを、Ｅ
ＤＰ　１０１０またはアプリケーションレイヤ１０００で指定することができ、その場合
、マッピングコンポーネントは、変更されたオブジェクトをＥＤＭ空間に変換し、その後
、適切なプロシージャを呼び出さなければならない。
【０１６８】
　これらのシナリオを可能にするために、ＭＳＬは、ストアドプロシージャをマッピング
の一部として指定することを可能にし、さらに、ＭＳＬは、様々なデータベースの列をス
トアドプロシージャのパラメータにどのようにマッピングするかを指定するメカニズムも
サポートする。
【０１６９】
　ＥＤＰレイヤ１０１０は、オプティミスティック並行性制御をサポートする。ＣＤＰが
変更のセットをストアに送信するとき、変更される行が、別のトランザクションによって
既に変更されている場合がある。ＣＤＰは、ユーザがそのような衝突を検出でき、その後
、そのような衝突を解決できるような方法をサポートしなければならない。
【０１７０】

(33) JP 5064483 B2 2012.10.31

10

20

30

40

50

　ＭＳＬは、衝突検出の単純なメカニズム、すなわち、タイムスタンプ、バージョン番号
、変更済みの列をサポートする。衝突が検出されると、例外が発生し、衝突しているオブ
ジェクト（またはＥＤＭエンティティ）は、アプリケーションによる衝突解決に使用可能
である。
【０１７１】
　＜例示的なマッピング要件＞
　マッピングインフラストラクチャは、有利には、様々なオペレーションをアプリケーシ
ョン空間からリレーショナル空間に変換する能力を提供することができ、例えば、開発者
によって記述されたオブジェクトクエリが、リレーショナル（ストレージ）空間に変換さ
れる。これらの変換は、データの過剰なコピーを伴わない効率的なものでなければならな
い。マッパー（ｍａｐｐｅｒ）は、次の例示的なオペレーションの変換を提供することが
できる。
【０１７２】
　１．クエリ：オブジェクトクエリは、バックエンドリレーショナルドメインに変換され
る必要があり、データベースから取得されるタプル（ｔｕｐｌｅｓ）は、アプリケーショ
ンオブジェクトに変換される必要がある。これらのクエリを、セットベースのクエリ（例
えば、ＣＳＱＬまたはＣ＃　Ｓｅｑｕｅｎｃｅ）またはナビゲーションベース（例えば、
単純に参照に従うこと）とすることができることに留意されたい。
【０１７３】
　２．更新：アプリケーションによってそのオブジェクトに対して行われる変更は、元の
データベースに伝搬される必要がある。やはり、オブジェクトに対して行われる変更は、
セットベースとするか、または個々のオブジェクトに対する変更とすることができる。考
慮すべきもう１つの側面は、変更されているオブジェクトが、完全にメモリにロードされ
るか、または部分的にロードされるかである（例えば、オブジェクトにぶら下がっている
コレクションが、メモリ内に存在しない場合がある）。部分的にロードされたオブジェク
トに対する更新について、これらのオブジェクトがメモリに完全にロードされることを必
要としない設計が、好ましいことがある。
【０１７４】
　３．無効化および通知：ミドルティアまたはクライアントティアで実行中のアプリケー
ションは、一部のオブジェクトがバックエンドで変更する際に、通知されることを望む場
合がある。したがって、ＯＲマッピングコンポーネントは、登録をオブジェクトレベルで
リレーショナル空間に変換しなければならず、同様に、変更されるタプルに関するメッセ
ージがクライアントによって受信されるとき、ＯＲマッパーは、これらの通知をオブジェ
クト変更に変換しなければならない。ＷｉｎＦＳが、そのような「通知」を、そのＷａｔ
ｃｈｅｒメカニズムを介してサポートすることに留意されたい。しかし、この場合は、マ
ッピングは規定されており、Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋは、非規定のマッピング
に対するＷａｔｃｈｅｒをサポートしなければならない。
【０１７５】
　４．通知と同様のメカニズムも、ミドルティアまたはクライアントティアで実行中のＥ
ｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋプロセスから不整合のオブジェクト（ｓｔａｌｅ　ｏｂ
ｊｅｃｔ）を無効化するために必要とされる。Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋが、衝
突する読み取り／書き込みを処理するためにオプティミスティック並行性制御のサポート
を提供する場合、アプリケーションは、（トランザクションが、オブジェクトの読み取り
／書き込みのためにアボートされないように）Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋでキャ
ッシュされるデータが適度に新しいことを保証し、できそうでない場合は、アプリケーシ
ョンは、古いデータに関して決定をし、および／またはそのトランザクションを後にアボ
ートすることができる。したがって、通知と同様に、ＯＲマッパーは、データベースサー
バからの「無効化」メッセージを、オブジェクト無効化に変換しなければならないことが
ある。
【０１７６】

(34) JP 5064483 B2 2012.10.31

10

20

30

40

50

　５．バックアップ／リストア／同期：エンティティのバックアップおよびミラーリング
は、一部の実施形態に組み込むことができる２つの特徴である。これらの特徴の要件は単
に、ＯＲマッパーの観点から、エンティティに対する特殊化されたクエリに変換すること
ができ、あるいは、そのようなオペレーションの特別なサポートを提供することができる
。同様に、同期は、オブジェクト変更、衝突などをストアに変換するため、およびその逆
に変換するために、ＯＲマッピングエンジンからのサポートを必要とする。
【０１７７】
　６．並行性制御への関与：ＯＲマッパーは、有利には、アプリケーションがオプティミ
スティック並行性制御を使用することができる異なる方法、例えば、タイムスタンプ値、
フィールドの何らかの特定のセットを使用することなどをサポートすることができる。Ｏ
Ｒマッパーは、タイムスタンププロパティなどの並行性制御情報を、オブジェクト空間へ
／オブジェクト空間から、リレーショナル空間から／リレーショナル空間へ変換しなけれ
ばならない。ＯＲマッパーは、ペシミスティック並行性制御（ｐｅｓｓｉｍｉｓｔｉｃ　
ｃｏｎｃｕｒｒｅｎｃｙ　ｃｏｎｔｒｏｌ）（例えば、Ｈｉｂｅｒｎａｔｅのような）の
サポートさえ提供することができる。
【０１７８】
　７．ランタイムエラー報告。本明細書で説明される例示的な実施形態では、ランタイム
エラーは、通常、ストレージレベルで発生する。これらのエラーを、アプリケーションレ
ベルに変換することができる。ＯＲマッパーを使用して、これらのエラー変換を容易にす
ることができる。
【０１７９】
　＜マッピングシナリオ＞
　Ｅｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋがサポートできる例示的な開発シナリオを論じる前
に、ＯＲマッパーの様々な論理的な部分を説明する。一実施形態では、図１１に図示され
るように、ＯＲマッピングに５つの部分がある。
【０１８０】
　１．オブジェクト／クラス／ＸＭＬ（別名、アプリケーション空間）１１０１：開発者
は、好みの言語でクラスおよびオブジェクトを指定し、最終的に、これらのクラスは、Ｃ
ＬＲアセンブルにコンパイルされ、リフレクションＡＰＩを介してアクセス可能である。
これらのクラスは、永続メンバおよび非永続メンバも含み、また、言語固有の詳細をこの
部分に含めることができる。
【０１８１】
　２．Ｅｎｔｉｔｙ　Ｄａｔａ　Ｍｏｄｅｌ　Ｓｃｈｅｍａ（別名、概念空間）１１０２
：ＥＤＭ空間は、開発者によって、データをモデル化するのに使用される。上述のように
、データモデルの指定は、ＥＤＭ型、アソシエーションを介するエンティティ間のリレー
ション、継承などに関して行われる。
【０１８２】
　３．データベーススキーマ（別名、ストレージ空間）１１０３：この空間では、開発者
は、テーブルがどのようにレイアウトされるかを指定し、外部キーおよび主キーの制約な
どの制約もここで指定される。この空間における指定は、ベンダ固有の特徴、例えばネス
トされたテーブル、ＵＤＴなどを利用することができる。
【０１８３】
　４．オブジェクト－ＥＤＭマッピング１１０４：このマッピングは、様々なオブジェク
トおよびＥＤＭエンティティが互いにどのように関係するかを指定し、例えば、配列を１
対多のアソシエーションにマッピングすることができる。このマッピングが自明（ｔｒｉ
ｖｉａｌ）／恒等（ｉｄｅｎｔｉｔｙ）であることは必須ではなく、例えば、複数のクラ
スを所与のＥＤＭ型にマッピングすることができ、逆も可能であることに留意されたい。
これらのマッピングにおいて冗長性／非正規化を有しても有しなくてもよいことに留意さ
れたい（当然、非正規化を用いると、オブジェクト／エンティティの一貫性を保つという
問題に突き当たる可能性がある）。

(35) JP 5064483 B2 2012.10.31

10

20

30

40

50

【０１８４】
　５．ＥＤＭ－ストアマッピング１１０５：このマッピングは、ＥＤＭエンティティおよ
びＥＤＭ型がデータベース内の異なるテーブルにどのように関係するかを指定し、例えば
、異なる継承マッピング戦略をここで使用することができる。
【０１８５】
　開発者は、空間１１０１、１１０２、または１１０３の１つまたは複数、およびそれら
の間の１つまたは複数のマッピングの間の対応するマッピングを指定することができる。
いずれかのデータ空間が欠けている場合、開発者は、その空間をどのように生成すべきか
に関するヒントを与えるか、対応する規定のマッピングを用いてＥＤＰがそれらの空間を
自動的に生成すると期待することができる。例えば、開発者が、既存のクラス、テーブル
、およびそれらの間のマッピングを指定する場合、ＥＤＰは、内部ＥＤＭスキーマ、なら
びに対応するオブジェクト－ＥＤＭマッピングおよびＥＤＭ－ストアマッピングを生成す
る。当然、最も一般的な事例では、開発者は、完全な制御を有し、２つのマッピングとと
もにこれらの３つの空間内でデータモデルを指定することができる。下記の表は、ＥＤＰ
でサポートされる異なるシナリオを示す。これは、開発者がオブジェクト、ＥＤＭエンテ
ィティ、テーブルを指定できる事例、または指定できない事例の網羅的リストである。
【０１８６】
【表１０】

【０１８７】
　上記のＥＤＰがサポートを望むシナリオに応じて、（規定の手法で、またはヒントが提
供される場合はそのヒントに基づいて）指定されていないデータ空間およびマッピングを
作成するツールを提供しなければならない。内部ＯＲマッピングエンジンは、マッピング
の５つの部分の全て（オブジェクト、ＥＤＭ仕様、テーブル、ＯＥマッピング、ＥＳマッ
ピング）が使用可能であると仮定する。したがって、マッピング設計は、最も一般的な事
例、すなわち上記の表の（Ｇ）をサポートすべきである。
【０１８８】
　＜マッピング仕様言語＞
　開発者の観点からのＯＲマッパーの「可視」部分の１つは、マッピング仕様言語、すな
わちＭＳＬであり、開発者は、この言語を使用して、マッピングの様々な部分を互いにど
のように結び付けられるかを指定する。ランタイムコントロール（例えば、遅延フェッチ
、オプティミスティック並行性制御の問題）も、ＭＳＬを使用して指定される。
【０１８９】
　マッピングを３つの異なる概念に分割する。各概念は、マッピングプロセスの異なる懸
念事項に対処する。これらの仕様を単一ファイルに格納するのか、複数ファイルに格納す
るのか、あるいは外部リポジトリ（例えば、データ仕様のための）を介して指定するのか
について言及しないことに留意されたい。
【０１９０】

(36) JP 5064483 B2 2012.10.31

10

20

30

40

　１．データ仕様：この領域では、開発者は、クラス記述、テーブル記述、およびＥＤＭ
記述を指定することができる。これらの記述を、生成目的の仕様として提供することがあ
り、あるいは既に存在するテーブル／オブジェクトの仕様とすることができるであろう。
【０１９１】
　オブジェクトおよびテーブルの仕様を、我々のフォーマットで記述することができ、あ
るいは、何らかのインポートツールを使用して外部メタデータリポジトリからインポート
することができる。
【０１９２】
　サーバ生成値、制約、主キーなどの指定が、このセクションで行われる（すなわち、Ｅ
ＤＭ仕様では、制約は型指定の一部として指定される）ことに留意されたい。
【０１９３】
　２．マッピング仕様：開発者は、様々なオブジェクト、ＥＤＭ型、およびテーブルのマ
ッピングを指定する。開発者は、オブジェクト－ＥＤＭマッピング、ＥＤＭ－ストアマッ
ピング、およびオブジェクト－ストアマッピングを指定することが可能である。このセク
ションは、データ仕様との冗長性を最小限にすることを試みる。
【０１９４】
　３つのマッピングケース（ＯＳ、ＥＳ、およびＯＥ）の全てにおいて、各クラスのマッ
ピングを、トップレベルで「直接に」または別のクラスの内部で「間接に」のいずれかで
指定する。各マッピングでは、フィールド／プロパティが、別のフィールド、フィールド
のスカラ関数、コンポーネント、またはセットにマッピングされる。更新を可能にするた
めに、これらのマッピングは双方向である必要がある。すなわち、オブジェクトからスト
ア空間へおよびその逆に進むことによって、どの情報も失われてはならない。オブジェク
トが読み取り専用になるように、非双方向マッピングも許容することができる。　
　オブジェクト－ＥＤＭマッピング：一実施形態において、全てのオブジェクトのマッピ
ングをＥＤＭ型に関して指定する。　
　ＥＤＭ－ストアマッピング：一実施形態において、全てのエンティティのマッピングを
テーブルに関して指定する。　
　オブジェクト－ストアマッピング：一実施形態において、全てのオブジェクトのマッピ
ングをテーブルに関して指定する。
【０１９５】
　３．ランタイム仕様：一実施形態において、開発者は、実行を制御する様々なノブ、例
えば、オプティミスティック並行性制御パラメータ、およびフェッチ戦略を指定すること
が可能である。
【０１９６】
　ここに、ＯＰｅｒｓｏｎオブジェクトがアドレスのセットを含む事例のマッピングファ
イルの例がある。このオブジェクトは、ＥＤＭ　Ｅｎｔｉｔｙ型にマッピングされ、セッ
トは、インラインセット型にマッピングされる。データは、２つのテーブル、すなわち、
一方は人（ｐｅｒｓｏｎ）用のテーブル、および他方はアドレス用のテーブルに格納され
る。前述したように、開発者が全てのオブジェクト、ＥＤＭ型、およびテーブルを指定す
ることは必須ではなく、上記の表のケース（Ｇ）を示しているに過ぎない。仕様は、特定
の構文を記述することは想定されておらず、この仕様は、本明細書で開示される概念を中
心とするシステムの設計を説明し、可能にすることを意図されたものである。
【０１９７】
　・オブジェクト仕様
【０１９８】

(37) JP 5064483 B2 2012.10.31

10

20

30

40

50

【表１１】

【０１９９】
　・ＥＤＭ仕様
　各ＣＰｅｒｓｏｎがＣＡｄｄｒｅｓｓアイテムのコレクションを有するように、１つの
エンティティ型ＣＰｅｒｓｏｎ、およびインライン型ＣＡｄｄｒｅｓｓを指定する。
【０２００】

【表１２】

【０２０１】
　・ストア仕様
　２つのテーブル型、ＳＰｅｒｓｏｎおよびＳＡｄｄｒｅｓｓを、それらのキー（ｔｐｉ
ｄおよびｔａｉｄ）とともに指定する。
【０２０２】

【表１３】

【０２０３】
　・オブジェクト－ＣＤＭマッピング
　ＯＰｅｒｓｏｎの後のマッピングは、オブジェクト型ＯＰｅｒｓｏｎがＥｎｔｉｔｙ　
ＣＰｅｒｓｏｎにマッピングされることを述べるものである。その後のリストは、ＯＰｅ
ｒｓｏｎの各フィールドがどのようにマッピングされるかを指定し、ｎａｍｅは名前にマ
ッピングされ、ａｄｄｒｓコレクションはアドレスコレクションにマッピングされる。
【０２０４】
【表１４】

【０２０５】
　・ＥＤＭ－ストアマッピング
　ＥＤＭエンティティ型、ＣＰｅｒｓｏｎは、テーブル型ＳＰｅｒｓｏｎに、そのキー属
性および名前ｃｎａｍｅ属性でマッピングされる。ＩｎｌｉｎｅＴｙｐｅ　ＣＡｄｄｒｅ
ｓｓは、単純な手法でＳＡｄｄｒｅｓｓにマッピングされる。テーブルＳＡｄｄｒｅｓｓ
は、外部キーをＳＰｅｒｓｏｎに格納する場合があることに留意されたい。この制約は、
マッピングではなく、テーブルのデータモデル仕様において指定されている可能性がある

(38) JP 5064483 B2 2012.10.31

10

20

30

40

50

。
【０２０６】
【表１５】

【０２０７】
　・ランタイム仕様
　開発者は、ＯＰｅｒｓｏｎに対するオプティミスティック並行性制御を、ｐｉｄフィー
ルドおよびｎａｍｅフィールドに対して行うことを指定することを望む場合がある。ＯＡ
ｄｄｒｅｓｓについて、開発者は、ｓｔａｔｅフィールドに対する並行性制御を指定する
ことができる。
【０２０８】
【表１６】

【０２０９】
　＜マッピング設計の概要＞
　ＨｉｂｅｒｎａｔｅおよびＯｂｊｅｃｔＳｐａｃｅｓなどの、ほとんどのＯＲマッピン
グ技術は、重要な短所を有する。すなわち、これらの技術は、比較的アドホックな手法で
更新を処理する。オブジェクト変更をサーバにプッシュバックする必要があるとき、これ
らのシステムによって使用されるメカニズムは、ケースバイケースの原則で更新を扱い、
これによりステムの拡張性が制限される。より多くのマッピングケースがサポートされる
につれて、更新パイプラインは、より複雑になり、更新のためにマッピングを構成するこ
とが難しくなる。システムが進化するにつれて、システムのこの部分は、正しいことを保
証しながら変更することが非常に面倒になる。
【０２１０】
　そのような問題を避けるために、２つタイプの「マッピングビュー」を使用してマッピ
ングプロセスを実行する、新規の手法を使用する。このマッピングビューの一方は、クエ
リを変換するのに役立ち、他方は更新を変換するのに役立つ。図１２に示されるように、
ＭＳＬ仕様１２０１がＥＤＰによって処理されると、ＥＤＰは、コアマッピングエンジン
の実行のために、内部的に２つのビュー１２０２および１２０３を生成する。後でわかる
ように、これらのビューに関してマッピングをモデル化することによって、リレーショナ
ルデータベースにおけるマテリアライズビュー技術に関する既存の知識を活用することが
できる。特に、正しく的確で拡張可能な手法で更新をモデル化するために、増分ビューの
保守技法を利用する。次に、マッピングビューのこれら２つのタイプについて論じる。
【０２１１】
　クエリマッピングビュー（Ｑｕｅｒｙ　Ｍａｐｐｉｎｇ　Ｖｉｅｗｓ）、すなわちＱＭ
Ｖｉｅｗという考えを使用して、テーブルデータをオブジェクトにマッピングし、更新マ
ッピングビュー（Ｕｐｄａｔｅ　Ｍａｐｐｉｎｇ　Ｖｉｅｗｓ）、すなわちＵＭＶｉｅｗ
という考えを使用して、オブジェクト変更をテーブル更新にマッピングする。これらのビ
ューは、これらが構築される（主な）理由ゆえに命名される。クエリビューは、オブジェ
クトクエリをリレーショナルクエリに変換し、入ってくるリレーショナルタプルをオブジ
ェクトに変換する。したがって、ＥＤＭ－ストアマッピングについて、各ＱＶｉｅｗは、

(39) JP 5064483 B2 2012.10.31

10

20

30

40

50

ＥＤＭ型が様々なテーブルからどのように構築されるかを示す。例えば、Ｐｅｒｓｏｎエ
ンティティが、２つのテーブルＴ＿ＰおよびＴ＿Ａの結合から構築される場合、Ｐｅｒｓ
ｏｎをこの２つのテーブルの間の結合に関して指定する。クエリが、Ｐｅｒｓｏｎコレク
ションにおいて要求されると、ＰｅｒｓｏｎのＱＭＶｉｅｗは、ＰｅｒｓｏｎをＴ＿Ｐお
よびＴ＿Ａに関する式に置換する。次いで、この式が適切なＳＱＬを生成する。次いで、
このクエリがデータベースで実行され、応答をサーバから受信すると、ＱＭＶｉｅｗが、
返されたタプルからオブジェクトをマテリアライズする。
【０２１２】
　オブジェクト更新を処理するために、ＱＭＶｉｅｗを介して変更をプッシュし、リレー
ショナルデータベース用に開発された「ビュー更新」技術を活用することを想像すること
ができる。しかし、更新可能なビューは、それらに対する複数の制限があり、例えば、Ｓ
ＱＬ　Ｓｅｒｖｅｒは、１つのビュー更新を通じて複数のベーステーブルを変更すること
を許容しない。したがって、ＥＤＰで許容されるマッピングのタイプを制限する代わりに
、本発明の実施形態は、制約がはるかに少ないマテリアライズビュー技術の別の態様、す
なわちビュー保守を活用する。
【０２１３】
　システム内の各テーブルをＥＤＭ型に関して表すために、更新マッピングビュー、ＵＭ
Ｖｉｅｗを指定する。すなわち、ある意味で、ＵＭＶｉｅｗはＱＭＶｉｅｗの逆である。
ＥＤＭ－ストアの境界上のテーブル型のＵＭＶｉｅｗは、異なるＥＤＭ型を使用してその
テーブル型の列を構築する方法を表す。したがって、Ｐｅｒｓｏｎオブジェクト型をテー
ブル型Ｔ＿ＰおよびＴ＿Ａにマッピングすることを指定した場合、Ｔ＿ＰおよびＴ＿Ａに
関してＰｅｒｓｏｎ型のＱＭＶｉｅｗを生成するだけではなく、Ｐｅｒｓｏｎオブジェク
ト型を与えられるとＴ＿Ｐの行をどのように構築できるかを指定する、ＵＭＶｉｅｗも生
成する（Ｔ＿Ａについても同様である）。あるトランザクションが、いくつかのＰｅｒｓ
ｏｎオブジェクトを作成、削除、または更新する場合、更新ビューを使用して、そのよう
な変更を、オブジェクトから、Ｔ＿ＰおよびＴ＿Ａに対するＳＱＬの挿入ステートメント
、更新ステートメント、および削除ステートメントに変換することができる。ＵＭＶｉｅ
ｗにより、リレーショナルタプルがどのようにオブジェクトから（ＣＤＭ型を介して）取
得されるかがわかるため、ＵＭＶｉｅｗは、これらの更新を実行する際に役立つ。図１３
および１４は、高水準で、ＱＭＶｉｅｗおよびＵＭＶｉｅｗがクエリ変換および更新変換
でどのように使用されるかを示す。
【０２１４】
　オブジェクトに対するビューとしてテーブルをモデル化する、このアプローチが与えら
れると、オブジェクトに対する更新を元のテーブルに伝搬するプロセスは、オブジェクト
が「ベースリレーション」でありテーブルが「ビュー」である、ビュー保守の問題に類似
する。ビュー保守の問題に対処する膨大な量のデータベース文献があり、これを我々の目
的のために活用することができる。例えば、ベースリレーションに対する増分変更を、ビ
ューに対する増分変更にどのように変換できるかについて示す、重要な多数の研究がある
。代数的アプローチを使用して、ビューに対する増分更新を実行するのに必要な式を判定
する。この式をデルタ式と呼ぶ。増分ビューの保守に、手続き的アプローチではなく、代
数的アプローチを使用することが適切であるが、これは、このアプローチが最適化および
更新の単純化に対してより修正可能なものであるからである。
【０２１５】
　一般に、ＥＤＰのコアエンジンでマッピングビューを使用することの利点には、次のも
のが含まれる。　
　１．ビューは、オブジェクトとリレーションとの間のマップを表すための相当な能力（
ｐｏｗｅｒ）および柔軟性を提供する。ＯＲマッピングエンジンのコア部分内の制限され
たビュー式の言語から始めることができる。時間およびリソースが許す限り、ビューの能
力を使用して、システムを体裁よく進歩させることができる。　
　２．ビューは、クエリ、更新、およびビュー自体で非常に的確に構成されることが知ら

(40) JP 5064483 B2 2012.10.31

10

20

30

40

50

れている。構成可能性、特に更新に関する更新可能性は、以前に試みられたＯＲマッピン
グアプローチの一部に関し、問題のある争点であった。ビューベースのテクノロジを採用
することによって、そのような懸念事項を回避することができる。
【０２１６】
　ビューの考えを使用することによって、データベース文献の重要な多数の研究を活用で
きるようになる。
【０２１７】
　＜更新に関するアーキテクチャ的階層化＞
　本発明の諸態様の実装において考慮すべき重要な問題は、クエリマッピングビューおよ
び更新マッピングビューを表すマッピングビュー言語（ＭＶＬ）の能力が何であるかであ
る。これは、ＥＤＭとストアとの間のマッピングとともにオブジェクトとＥＤＭとの間の
非規範的マッピング（ｎｏｎ－ｐｒｅｓｃｒｉｐｔｉｖｅ　ｍａｐｐｉｎｇ）の全てをキ
ャプチャするのに、ほぼ十分に強力である。しかし、全ての非リレーショナルＣＬＲおよ
びＥＤＭの概念をネイティブにサポートするＭＶＬについて、全てのそのような構造につ
いてデルタ式または増分ビューの更新ルールを設計する必要がある。特に、一例示的実施
形態は、次の非リレーショナル代数の演算子／概念に関する更新ルールを必要とすること
がある。　
　複合型－オブジェクト、タプルコンストラクタ、フラット化、複合定数などの部分にア
クセスする。　
　コレクション－ネスト化およびアンネスト化、セット構築／フラット化、相互適用（ｃ
ｒｏｓｓ　ａｐｐｌｙ）など。　
　配列／リスト－要素の順序付けは、リレーショナル構造ではなく、明らかに、順序付け
リストの代数は、非常に複雑である。
【０２１８】
　モデル化される必要がある、ＣＬＲ／Ｃ＃の他のＥＤＭ構造およびオブジェクト構造。
【０２１９】
　これらの構造に関する増分更新のためのデルタ式を開発することできる。ＭＶＬでネイ
ティブに構造の大きなセットをサポートすることに関連する主な問題は、これがコアエン
ジンをかなり複雑にする可能性があることである。一実施形態において、より望ましいア
プローチは、「コアマッピングエンジン」が単純なＭＶＬを処理するようにシステムを階
層化し、このコアの上に非リレーショナル構造を階層化することである可能性がある。そ
のような設計について次に論じる。
【０２２０】
　ＯＲマッピングに関するアプローチは、「階層化」によって上記の問題に対処する。コ
ンパイル時に、まず、オブジェクト空間、ＥＤＭ空間、およびデータベース空間内の各非
リレーショナル構造（ＷｉｎＦＳは、ネスティング、ＵＤＴなどをサポートする）を、対
応するリレーショナル構造に所定の手法で変換し、次いで、リレーショナル構造の間で要
求される非規定の変換を実行する。このアプローチを、階層化ビューマッピングアプロー
チと称する。例えば、クラスＣＰｅｒｓｏｎがアドレスのコレクションを有する場合、ま
ず、このコレクションを１対多のアソシエーションとしてリレーショナル構造に変換し、
次に、要求される非規定の変換をテーブルに対してリレーショナル空間で実行する。
【０２２１】
　（ＭＶＬ分解）
　ＭＶＬは、２つのレイヤ、すなわち、リレーショナル項（ｔｅｒｍ）内での実際の非規
範的マッピングを扱うレイヤと、リレーショナル項への非リレーショナル構造の規範的変
換を扱うレイヤに分解される。前者の言語を、Ｒ－ＭＶＬ（リレーショナル－ＭＶＬ）と
称し、対応するマッピングをＲ－ＭＶＬマッピングと称する。同様に、後者の（より強力
な）言語を、Ｎ－ＭＶＬ（非リレーショナル－ＭＶＬ）と称し、マッピングを、Ｎ－ＭＶ
Ｌマッピングと称する。
【０２２２】

(41) JP 5064483 B2 2012.10.31

10

20

30

40

50

　一実施形態において、マッピングは、全ての非リレーショナル構造が、クエリパイプラ
インおよび更新パイプラインの終りにプッシュされるように、設計を構造化することによ
って提供される。例えば、オブジェクトマテリアライゼーションは、オブジェクト、配列
、ポインタなどを構築することを含む場合があり、そのような「演算子」は、キューパイ
プラインの上にプッシュされる。同様に、更新がオブジェクトに対して行われるとき、パ
イプラインの始めで非リレーショナルオブジェクト（例えば、ネストされたコレクション
、配列）に対する変更を変換し、その後、これらの変更を、更新パイプラインを通じて伝
搬する。ＷｉｎＦＳなどのシステムでは、更新パイプラインの終りでＵＤＴに変換する必
要がある。
【０２２３】
　非規定のマッピングをＲ－ＭＶＬに制限することによって、増分ビューの保守ルールに
関するリレーショナル構造の小さいセットが存在する。そのようなルールは、リレーショ
ナルデータベース用に既に開発されている。Ｒ－ＭＶＬで許容される単純化された構造／
スキーマを、Ｒｅｌａｔｉｏｎａｌｌｙ－Ｅｘｐｒｅｓｓｅｄ　Ｓｃｈｅｍａ、すなわち
ＲＥＳと称する。したがって、一部の非リレーショナル構造が、（例えば）オブジェクト
ドメイン内でサポートされる必要があるとき、対応するＲＥＳ構造、ならびにオブジェク
トとＲＥＳ構造との間の規定の変換を見つけ出し、例えば、ＲＥＳ空間内でオブジェクト
コレクションを１対多のアソシエーションに変換する。さらに、非リレーショナル構造Ｎ
に対する更新を伝搬するために、Ｎからの挿入、削除、および更新をＮの対応するＲＥＳ
構造に変換するデルタ式を見つけ出す。これらのデルタ式は、設計時に規定され、生成さ
れており、例えば、コレクションに対する変更を１対多のアソシエーションにどのように
プッシュすべきか分かることに留意されたい。実際の非規定のマッピングに関するデルタ
式は、リレーショナルデータベースに関する増分ビューの保守ルールを使用して自動的に
生成される。この階層化方法論は、多量の非リレーショナル構造に関する一般化された増
分ビューの保守ルールを見つけ出すという要件を取り除くだけではなく、内部更新パイプ
ラインをも単純化する。
【０２２４】
　階層化マッピングアプローチが、通知パイプラインにおける利点と同様の利点も有する
ことに留意されたい。タプルに対する変更をサーバから受信すると、それらをオブジェク
トに対する増分変更に変換する必要がある。これは、これらの変更を伝搬するためにクエ
リマッピングビューを使用する必要があること、すなわち、ＱＭＶｉｅｗのデルタ式を生
成すること、を除いて更新パイプラインと同一の要件である。
【０２２５】
　更新および通知パイプラインを単純化することとは別に、ＭＶＬの階層化は、重要な利
点を有する。すなわち、「上位言語」（オブジェクト、ＥＤＭ、データベース）が、コア
マッピングエンジンに重大な影響を与えることなく発展することを可能にする。例えば、
新しい概念がＥＤＭに追加される場合、行う必要があることは、それをその構造の対応す
るＲＥＳに変換する規定の方法を見つけ出すことだけである。同様に、非リレーショナル
概念がＳＱＬ　Ｓｅｒｖｅｒ内に存在する（例えば、ＵＤＴ、ネスティング）場合、これ
らの構造を規定の手法でＭＶＬに変換して、ＭＶＬおよびコアエンジンに対する影響を最
小限にすることができる。ＲＥＳ－ストアとストアテーブルとの間の変換は、必ずしも恒
等変換（ｉｄｅｎｔｉｔｙ　ｔｒａｎｓｌａｔｉｏｎ）ではないことに留意されたい。例
えば、ＵＤＴ、ネスティングなどをサポートするバックエンドシステム（ＷｉｎＦＳバッ
クエンドなど）において、この変換は、規定のオブジェクトリレーションに類似する。
【０２２６】
　図１５は、マッピングビューのコンパイル時およびランタイムの処理を図示する。１５
０１、１５０２、および１５０３によって示されるように、ＭＳＬにおいてデータモデル
およびマッピング仕様が与えられると、まず、非リレーショナル構造１５１１、１５１２
、および１５１３に対応するＲＥＳ　１５２１、１５２２、および１５２３と、これらの
構造とＲＥＳとの間の規定の変換、すなわちＮ－ＭＶＬマッピングとを生成する。次いで

(42) JP 5064483 B2 2012.10.31

10

20

30

40

50

、開発者によって要求される非規定のマッピングについて、クエリマッピングビューおよ
び更新マッピングビューと、Ｒ－ＭＶＬのオブジェクト－ＥＤＭと、Ｒ－ＭＶＬのＥＤＭ
－ストアとを生成する。これらのマッピングビューは、Ｒ－ＭＶＬ言語を使用してＲＥＳ
で動作することに留意されたい。このポイントで、クエリマッピングビューおよび更新マ
ッピングビューのデルタ式（ビュー保守式）を生成し、そのようなルールは、リレーショ
ナル構造用に開発済みである。ＱＭＶｉｅｗのデルタ式が、通知のために必要であること
に留意されたい。Ｎ－ＭＶＬマッピングについて、デルタ式は設計時に決定される。これ
は、これらのマッピングが規定されており、例えば、Ａｄｄｒｅｓｓコレクションを１対
多のアソシエーションにマッピングするときに、対応するビュー保守式も設計するからで
ある。
【０２２７】
　上記のビューおよび変換（Ｎ－ＭＶＬおよびＲ－ＭＶＬ）が与えられると、これらを構
成して、ストア１５３３内のテーブルに関してオブジェクト１５３１を表すことができる
クエリマッピングビューと、オブジェクト１５３１に関してストア１５３３を表すことが
できる更新マッピングビューとを得ることができる。図に示されているように、１５３２
内のＥＤＭエンティティがランタイム用のマッピングから完全に除去されないようにマッ
ピングビューを保つことを選択することができ、これらのビューを保持するためには、Ｅ
ＤＭ制約を利用する或る種のクエリ最適化を可能にすることが必要である。もちろん、こ
のことは、ランタイムに実際にＥＤＭエンティティを格納することを意味するのではない
。
【０２２８】
　図１６は、様々なコンポーネントが上述のビューコンパイル処理を達成する方法を示す
。アプリケーションが、ＡＰＩ　１６００を呼び出す。ビュージェネレータ１６０１、１
６０３は、３つの機能に関与する。すなわち、非リレーショナル構造をＲＥＳ構造に変換
すること、クエリ／更新ビューを生成すること、更新および通知を伝搬するためのデルタ
式を生成すること、という３つの機能に関与する。これらは、これらの機能を実行する際
にメタデータ１６０２を使用することができる。ＯＥビューコンポーザ１６０５は、オブ
ジェクトおよびＥＤＭ情報を取り込み、ＥＤＭ型に関するオブジェクトの代数式となるよ
うにそれを構成する。同様に、ＥＳビューコンポーザ１６０６は、テーブルに関するＥＤ
Ｍ型の代数式を作る。これらのビューを、さらにＯＳビューコンポーザ１６０７において
構成して、メタデータストア１６０８内のビューの単一のセットを得る。上述したように
、クエリ最適化の機会のために、ビューの２つのセットを保持することができる。最後に
、依存性分析コンポーネント１６０４も、ＥＳビュージェネレータの出力に対して動作し
て、依存性順序をメタデータストア１６０８に提供することができる。
【０２２９】
　（マップコンパイルの要約）
　要約すると、クラス、ＥＤＭ型、またはテーブルの仕様Ｍごとに、対応するＲＥＳ、お
よび、Ｍと対応するＲＥＳとの間の規定の変換を生成する。したがって、図１５に図示さ
れるように、次を生成する。　
　１．Ｍに対応するＲＥＳ　ＲＥＳ－ＣＤＭ（Ｍ）、ＲＥＳ－Ｏｂｊｅｃｔ（Ｍ）、また
はＲＥＳ－Ｓｔｏｒｅ（Ｍ）と表される。　
　２．各仕様ＭをＲＥＳリレーションに関して表すための規定の変換。　
　３．上記ＲＥＳリレーションをＭに関して表すための規定の変換。　
　４．クエリマッピングビュー：ＥＤＭ型に関してオブジェクトを表すＯＥ　ＱＭＶｉｅ
ｗ、ストア（テーブル）に関してＥＤＭ型を表すＥＳ　ＱＭＶｉｅｗの２つのビューがあ
る。　
　５．更新マッピングビュー：オブジェクトに関してＥＤＭ型を表すＯＥ　ＵＭＶｉｅｗ
、ＥＤＭ型に関してストアテーブルを表すＥＳ　ＵＭＶｉｅｗの２つのビューがある。
　６．更新の増分保守のために、ＵＭＶｉｅｗに対するデルタ式も生成する。
【０２３０】

(43) JP 5064483 B2 2012.10.31

10

20

30

40

50

　これらのビューを構成した後に、４つのマップで終わる。これらのマップは、メタデー
タストア１６０８に格納され、集合的にコンパイル済みマッピングビューと称される。
　クエリマップ：ＣＤＭ／テーブルに関してオブジェクト／ＣＤＭを表す。　
　更新マップ：ＣＤＭ／オブジェクトに関してテーブル／ＣＤＭを表す。　
　更新デルタ式：ＣＤＭ／オブジェクトのデルタに関してテーブル／ＣＤＭのデルタを表
す。　
　通知デルタ式：ＣＤＭ／テーブルのデルタに関してオブジェクト／ＣＤＭのデルタを表
す。　
　依存性順序：様々な挿入、削除、更新のオペレーションを異なるリレーションに対して
実行しなければならない順序。この順序は、更新プロセス中にデータベース制約に違反し
ないことを保証する。
【０２３１】
　（コレクションの例）
　ここで、検討してきたＰｅｒｓｏｎの例に関する規定の変換および非規定の変換のマッ
ピングについて、簡潔に示す。クエリマッピングビューと更新マッピングビューとの両方
を提示し、対応するビュー保守式については、下記でさらに検討する。
【０２３２】
　（ＲＥＳ）
　ＯＰｅｒｓｏｎを、ＲＥＳ構造のＲ＿ＯＰｅｒｓｏｎに変換し、Ｒ＿ＯＰｅｒｓｏｎは
、ｎａｍｅおよびｐｉｄを単純に反映する。同様に、ＯＡｄｄｒｅｓｓを、Ｒ＿ＯＡｄｄ
ｒｅｓｓに変換する。アドレスのコレクションを変換するために、１対多のアソシエーシ
ョン、Ｒ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓを使用する。ＥＤＭ構造についても同様であ
る。テーブル（Ｒ＿ＳＰｅｒｓｏｎ、Ｒ＿ＳＡｄｄｒｅｓｓ）のＲＥＳは、ＳＰｅｒｓｏ
ｎおよびＳＡｄｄｒｅｓｓへの恒等マッピングである。これらのＲＥＳは、次の通りであ
る。
【０２３３】
【表１７】

【０２３４】
　（クエリマッピングビュー）
　オブジェクト－ストアマッピング（オブジェクト－ＥＤＭマッピングおよびＥＤＭ－ス
トアマッピングにまたがって構成される）を示す。
【０２３５】
　・ＲＥＳ空間における非規定ビュー
　オブジェクトとＥＤＭ空間との間のマッピングは、本質的に恒等である。３つのビュー
、Ｒ＿ＣＰｅｒｓｏｎ、Ｒ＿ＣＡｄｄｒｅｓｓ、およびＲ＿ＣＰｅｒｓｏｎ＿Ａｄｄｒｅ
ｓｓの全てが、Ｒ＿ＳＰｅｒｓｏｎおよびＲ＿ＳＡｄｄｒｅｓｓに対する単純な射影であ
る。
【０２３６】

【表１８】

【０２３７】

(44) JP 5064483 B2 2012.10.31

10

20

30

40

【表１９】

【０２３８】
　・規定変換（ＲＥＳ－オブジェクトに関するオブジェクト）
　ＯＰｅｒｓｏｎオブジェクトは、Ｒ＿ＯＡｄｄｒｅｓｓとＲ＿ＯＰｅｒｓｏｎ＿Ａｄｄ
ｒｅｓｓの結合を行い、結果をネストすることによって、Ｒ＿ＯＰｅｒｓｏｎ、Ｒ＿ＯＡ
ｄｄｒｅｓｓ、およびＲ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓを使用して表される。
【０２３９】

【表２０】

【０２４０】
　・ＣＰｅｒｓｏｎの構成されたビュー
　単純化の後の構成された式は、以下とすることができる（この例に関し、テーブルとそ
のＲＥＳ構造との間に恒等変換があることを想起されたい）。
【０２４１】

【表２１】

【０２４２】
　最終的なビューは、「直接」マッピングアプローチを使用することによってうられるこ
とが予想されるものを示す。ＲＥＳアプローチの１つの利点は、更新パイプラインに関す
るデルタ式をみるときや、クエリマッピングビューのデルタ式が必要な通知パイプライン
においても現れる。
【０２４３】
　（更新マッピングビュー）
　・ＲＥＳ空間内の非規定のビュー
　Ｒ＿ＳＰｅｒｓｏｎに関するＵＭＶｉｅｗは、単にＲ＿ＣＰｅｒｓｏｎに対する射影で
あり、Ｒ＿ＳＡｄｄｒｅｓｓは、Ｒ＿ＣＡｄｄｒｅｓｓを１対多のアソシエーションテー
ブル、Ｒ＿ＣＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓと結合することによって構築される。ＣＤＭ
とオブジェクト空間との間のマッピングは、恒等である。
【０２４４】
【表２２】

【０２４５】

(45) JP 5064483 B2 2012.10.31

10

20

30

40

50

【表２３】

【０２４６】
　・規定の変換（オブジェクトに関するＲＥＳ－オブジェクト）
　オブジェクトをＲＥＳに変換し、その結果、更新をオブジェクト空間からＲＥＳ空間に
プッシュできるようにする必要がある。Ｒ＿ＯＰｅｒｓｏｎの規定の変換は、単純な射影
であるが、Ｒ＿ＯＡｄｄｒｅｓｓおよびＲ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓの変換は、
人とそのアドレスとの間で結合を実行することによって達成される。これは、「ポインタ
結合」または「ナビゲーション結合」である。
【０２４７】

【表２４】

【０２４８】
　・構成された更新マッピングビュー
　上記のビューを構成して（およびいくつかの単純化を伴って）、次の構成された更新マ
ッピングビューを得る。
【０２４９】
【表２５】

【０２５０】
　したがって、テーブルＳＰｅｒｓｏｎを、ＯＰｅｒｓｏｎに対する単純な射影として表
すことができ、ＳＡｄｄｒｅｓｓは、ＯＰｅｒｓｏｎをそのアドレスと結合することによ
って取得される。
【０２５１】
　（ビューの検証）
　生成されたビューが満たす必要がある重要なプロパティは、それらのビューが「ラウン
ドトリップ」しなければならないことである。すなわち、情報の消失を全て防ぐために、
エンティティ／オブジェクトが保存され、その後取り出される際に情報の消失がないこと
を保証しなければならない。言い換えると、全てのエンティティ／オブジェクトＤについ
て、次を保証することを望む。　
　D = QMView(UMView(D))
【０２５２】
　ビュー生成アルゴリズムは、このプロパティを保証する。このプロパティが真である場
合は、「クエリビューおよび更新ビューがラウンドトリップする」、または双方向である
とも言う。ここで、人－アドレスの例についてこのプロパティを実証する。単純にするた
めに、ＲＥＳ空間におけるラウンドトリップに焦点を当てる。
【０２５３】
　・Ｒ＿ＯＰｅｒｓｏｎに関する検証

(46) JP 5064483 B2 2012.10.31

10

20

30

40

　ＯＰｅｒｓｏｎに関するクエリビューにおいてＳＰｅｒｓｏｎを置換することによって
、次が得られる。
【０２５４】
【表２６】

【０２５５】
　簡約化して次を得る。
【０２５６】
【表２７】

【０２５７】
　これは、ＳＥＬＥＣＴ＊ＦＲＯＭ　Ｐｅｒｓｏｎと同等である。
【０２５８】
　・ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓに関する検証
　Ｒ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓについて、わずかに複雑である。次を有する。
【０２５９】

【表２８】

【０２６０】
　Ｒ＿ＳＡｄｄｒｅｓｓについて置換することによって、次が得られる。
【０２６１】
【表２９】

【０２６２】
　これは、次のように簡約化される。
【０２６３】
【表３０】

【０２６４】
　上記が実際はＳＥＬＥＣＴ＊ＦＲＯＭ　Ｒ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓであるこ
とを示すために、外部キーの依存性、Ｒ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓ．ａｉｄ→Ｒ
＿ＯＡｄｄｒｅｓｓ．ａｉｄを有することが必要である。この依存性が成り立たない場合
は、ラウンドトリップすることができない。しかし、セット値付きプロパティａｄｄｒｓ
の範囲がＲ＿ＯＡｄｄｒｅｓｓなので、これは成り立つ。この外部キー制約は、次の２つ
の方法で表すことができる。
【０２６５】

(47) JP 5064483 B2 2012.10.31

10

20

30

40

50

【表３１】

【０２６６】
　この制約を上の式において置換することによって、次が得られる。
【０２６７】

【表３２】

【０２６８】
　・アドレスに関する検証
　Ｒ＿ＯＡｄｄｒｅｓｓは、次のように与えられる。
【０２６９】

【表３３】

【０２７０】
　Ｒ＿ＳＡｄｄｒｅｓｓについて置換することによって、次が得られる。
【０２７１】

【表３４】

【０２７２】
　これを、次のように言い換えることができる。
【０２７３】
【表３５】

【０２７４】
　ここで、Ｒ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓとの結合は、外部キー依存性、Ｒ＿ＯＡ
ｄｄｒｅｓｓ．ａｉｄ→Ｒ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓ．ａｉｄが成り立つ場合は
不必要である。この依存性は、Ｒ＿ＯＡｄｄｒｅｓｓが、実存的にＲ＿ＯＰｅｒｓｏｎに
依存する（すなわち、アドレスが合成物である）場合にのみ成り立つ。そうでない場合に
は、ビューはラウンドトリップしない。したがって、次の制約がある。
【０２７５】
【表３６】

【０２７６】
　したがって、次の式が得られる。

(48) JP 5064483 B2 2012.10.31

10

20

30

40

50

【０２７７】
【表３７】

【０２７８】
　＜クエリ変換＞
　（クエリトランスレータ）
　ＥＤＰクエリトランスレータ（ＥＱＴ）は、マッピングメタデータを利用することによ
って、クエリをオブジェクト／ＥＤＭ空間からプロバイダ空間に変換することに関与する
。ユーザクエリを、様々な構文、例えば、ｅＳＱＬ、Ｃ＃　Ｓｅｑｕｅｎｃｅ、ＶＢ　Ｓ
ＱＬなどで表すことができる。ＥＱＴアーキテクチャを図１７に示す。ここで、ＥＱＴの
様々なコンポーネントを説明する。
【０２７９】
　パーサ１７１１は、ｅＳＱＬ、ＬＩＮＱ（Ｌａｎｇｕａｇｅ　Ｉｎｔｅｇｒａｔｅｄ　
Ｑｕｅｒｙ）、Ｃ＃　Ｓｅｑｕｅｎｃｅ、およびＶＢ　Ｓｑｌを含む複数の形式の１つで
表されたユーザクエリを解析することによって、構文分析を実行する。全ての構文エラー
が、この時に検出され、フラグを立てられる。
【０２８０】
　ＬＩＮＱについて、構文分析（および意味分析）は、言語（Ｃ＃、ＶＢなど）自体の構
文分析フェーズと統合される。ｅＳＱＬについて、構文分析フェーズは、クエリプロセッ
サの一部である。典型的に、言語ごとに１つの構文アナライザがある。
【０２８１】
　構文分析フェーズの結果が、解析ツリーである。このツリーは、次いで意味分析フェー
ズ１７１２に供給される。
【０２８２】
　パラメータバインダおよび意味分析コンポーネント１７１２は、ユーザクエリ内のパラ
メータを管理する。このモジュールは、クエリ内のパラメータのデータ型および値を追跡
する。
【０２８３】
　意味分析フェーズは、構文分析フェーズ１７１１によって作成された解析ツリーを意味
的に検証する。クエリ内の全てのパラメータは、この時点で既にバインドされていなけれ
ばならない。すなわち、そのデータ型が知られていなければならない。全ての意味エラー
が、ここで検出され、フラグを立てられる。成功の場合、このフェーズの結果が意味ツリ
ーである。
【０２８４】
　ＬＩＮＱについて、前述したように、意味分析フェーズは、言語自体の意味分析フェー
ズと統合される。典型的には、言語ごとに１つの構文ツリーがあるので、言語ごとに１つ
のセマンティックアナライザがある。
【０２８５】
　意味分析フェーズは、論理的には次のものから構成される。　
　１．名前解決：クエリ内の全ての名前が、この時点で解決される。これは、エクステン
ト、型、型のプロパティ、型のメソッドなどへの参照を含む。副作用として、そのような
式のデータ型も推論される。このサブフェーズは、メタデータコンポーネントと対話する
。　
　２．型のチェックおよび推論：クエリ内の式が型をチェックされ、結果の型が推論され
る。　
　３．検証：他の種類の検証が、ここで行われる。例えば、ＳＱＬプロセッサ内で、クエ
リブロックがグループ化の節（ｇｒｏｕｐ－ｂｙ　ｃｌａｕｓｅ）を含む場合、このフェ
ーズを使用して、選択リストがグループ化のキー（ｇｒｏｕｐ－ｂｙ　ｋｅｙｓ）または
集約関数だけを参照できるという制約を実施することができる。

(49) JP 5064483 B2 2012.10.31

10

20

30

40

50

【０２８６】
　意味分析フェーズの結果は、意味ツリーである。この時、クエリは有効とみなされ、さ
らなる意味エラーは、後のクエリコンパイル中のどの時にも発生してはならない。
【０２８７】
　代数化フェーズ１７１３は、意味分析フェーズ１７１２の結果を取り込み、これを代数
変形にとってより適した形式に変換する。このフェーズの結果は、論理拡張されたリレー
ショナル演算子ツリー、別名、代数ツリーである。
【０２８８】
　代数ツリーは、コアリレーショナル代数演算子、すなわち、選択、射影、結合、合併に
基づき、これをネスト／アンネスト、ピボット／アンピボットなどの追加演算で拡張する
。
【０２８９】
　クエリトランスレータのビューアンフォールディングフェーズ１７１４は、おそらくは
再帰的に、ユーザクエリ内で参照される全てのオブジェクトに関するＱＭＶｉｅｗ式を置
換する。ビュー変換プロセスの終りに、ストア項でクエリを記述するツリーを得る。
【０２９０】
　オブジェクトレイヤの事例では、ビューアンフォールディングが、ストアスペースまで
行われている可能性があり（メタデータリポジトリ内に格納された、最適化されたＯＳマ
ッピングがある場合）、あるいは、クエリツリーが、ＥＤＭレイヤまで変形されている可
能性がある。後者の事例では、このツリーを取り込み、ＥＤＭ概念をストア概念に変換す
るという要件を用いて、このツリーをビューアンフォールディングコンポーネントに再供
給する必要がある。
【０２９１】
　変形／単純化コンポーネント１７１５は、プロバイダ１７３０固有とすることができ、
あるいは、代替的な実施形態では、様々なプロバイダによって活用できるＥＤＰ汎用コン
ポーネントとすることができる。クエリツリーに対する変形を実行する少数の理由がある
。
【０２９２】
　１．ストアにプッシュする演算子：ＥＱＴは、複合演算子（例えば、結合、フィルタ、
集約）をストアにプッシュする。あるいは、そのような演算は、ＥＤＰで実装される必要
がある。ＥＤＰの値マテリアライゼーションレイヤは、ネスティングなどの「非リレーシ
ョナル補償」演算だけを実行する。演算子Ｘをキューツリーの値マテリアライゼーション
ノードより下にプッシュすることができず、値マテリアライゼーションレイヤがオペレー
ションＸを実行できない場合は、そのクエリは不正であると宣言する。例えば、クエリが
、プロバイダにプッシュできない集約演算である場合、値マテリアライゼーションレイヤ
はいかなる集約も実行することができないので、そのクエリを不正と宣言する。
【０２９３】
　改善されたパフォーマンス：クエリの複雑さの軽減は重要であり、巨大なクエリをバッ
クエンドストアに送信することを回避したい。例えば、ＷｉｎＦＳでの現在のクエリの一
部は、非常に複雑であり、実行に長い時間を要する（対応する手書きクエリは、１桁以上
高速である）。
【０２９４】
　改善されたデバッグ可能性：より単純なクエリにより、開発者がシステムをデバッグし
、何がおきているかを理解することがより容易になる。
【０２９５】
　変形／単純化モジュール１７１５は、クエリを表す代数ツリーの一部または全てを同等
のサブツリーに変形することができる。これらのヒューリスティックベースの変形が、論
理的であること、すなわち、コストモデルを使用して行われるのではないことに留意され
たい。論理的変形の種類には、次の例示的なプロバイダ固有サービスを含めることができ
る。　

(50) JP 5064483 B2 2012.10.31

10

20

30

40

50

　サブクエリフラット化（ビューおよびネストされたサブクエリ）
　結合除去
　述部の除去および統合
　述部のプッシュダウン
　共通のサブ式の除去
　射影のプルーニング
　外部結合→内部結合の変形
　左相関の除去
【０２９６】
　このＳＱＬ生成モジュール１７３１は、生成されるＳＱＬがプロバイダに固有なので、
プロバイダコンポーネント１７３０の一部である。単純化の後に、代数ツリーが、プロバ
イダに渡され、このプロバイダは、適切なＳＱＬを生成する前に、プロバイダ固有の変形
または単純化をさらに実行することができる。
【０２９７】
　クエリがサーバで実行された後に、結果は、ＥＤＰクライアントにストリーミングされ
る。プロバイダ１７３０は、アプリケーションによって使用可能なＤａｔａＲｅａｄｅｒ
を公開して、結果をＥＤＭエンティティとして取得する。値マテリアライゼーションサー
ビス１７４１は、これらのリーダーを取り込み、これらを関連するＥＤＭエンティティに
変換することができる（新しいＤａｔａＲｅａｄｅｒとして）。これらのエンティティを
アプリケーションによって消費することがあり、あるいは、新しいＤａｔａＲｅａｄｅｒ
を上のオブジェクトマテリアライゼーションサービスに渡すことができる。
【０２９８】
　ＥＱＴ　１７００は、マテリアライゼーションをキューツリー内の演算子として表す。
これは、通常のクエリ変換パイプラインが、ＥＤＭ空間内でオブジェクトを作ることを可
能にし、このオブジェクトは、その後、実際のマテリアライゼーションを実行するために
特殊な帯域外のオペレーションを必要とするのではなく、ユーザに直接に供給されること
ができる。これは、部分的オブジェクトフェッチ、イーガローディング（ｅａｇｅｒ　ｌ
ｏａｄｉｎｇ）などのような、様々な最適化をユーザクエリに対して実行することも可能
にする。
【０２９９】
　（クエリの例）
　我々が展開していた、人－アドレスの例を検討されたい。ユーザが、次のクエリ（ＷＡ
内の全ての人を見つける）を実行することを望むと仮定する。このクエリを擬似ＣＳＱＬ
で次のように記述することができる。
【０３００】
【表３８】

【０３０１】
　この時点でＰｅｒｓｏｎのクエリビューを使用してビューアンフォールディングを行う
と、次が得られる。
【０３０２】
【表３９】

(51) JP 5064483 B2 2012.10.31

10

20

30

40

50

【０３０３】
　このクエリは、バックエンドサーバに送信する前に単純化することができる。
【０３０４】
【表４０】

【０３０５】
　（メタデータ）
　ＥＱＴは、クエリのコンパイル中および実行中に様々なメタデータを必要とする。この
メタデータは、次を含む。
【０３０６】
　アプリケーション－空間メタデータ：ユーザクエリを検証するために意味分析中に必要
な、エクステント／コレクション、型、型プロパティ、型メソッドに関する情報。
【０３０７】
　スキーマ－空間メタデータ：ビューコンパイル中に必要なエンティティコレクション、
ＣＤＭ型、およびプロパティに関する情報。変形に関するエンティティ間のリレーション
シップおよびエンティティに対する制約についての情報。　
　ストレージ－空間メタデータ：上で説明したもの。　
　アプリケーション－＞スキーママッピング：ビュー拡張に必要なビュー定義を表す論理
演算子ツリー。　
　スキーマ－＞ストレージマッピング：上で説明したもの。
【０３０８】
　（エラー報告パイプライン）
　クエリ処理の様々な段階でのエラーは、ユーザが理解できる用語で報告されるべきであ
る。様々なコンパイル時および実行時のエラーが、クエリ処理中に発生することがある。
構文分析中および意味分析中のエラーは、ほとんどがアプリケーション空間内であり、ほ
んのわずかな特殊処理を必要とする。変形中のエラーは、ほとんどがリソースエラー（メ
モリ不足など）であり、多少の特殊処理を必要とする。コード生成中および後続のクエリ
実行中のエラーは、適切に処理されることが必要な可能性がある。エラー報告における主
要な課題は、より低いレベルの抽象化で発生するランタイムエラーを、アプリケーション
レベルの意味のあるエラーにマッピングすることである。これは、より低いレベルのエラ
ーを、ストレージマッピング、概念マッピング、およびアプリケーションマッピングを介
して処理することが必要であることを意味する。
【０３０９】
　（クエリの例）
　サンプルのＯＯクエリは、ワシントン州にアドレスを有する全ての人の名前をフェッチ
する。
【０３１０】
【表４１】

【０３１１】
　・ステップ１：リレーショナル項への変換
　このクエリを、項またはＲ＿ＯＰｅｒｓｏｎ、Ｒ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓ、
およびＲ＿ＯＡｄｄｒｅｓｓで表された次の純リレーショナルクエリに変換することがで
きる。本質的に、必要な場合に様々なナビゲーションプロバティ（ドット「．」式）を結

(52) JP 5064483 B2 2012.10.31

10

20

30

40

50

合式に拡張しようとしている。
【０３１２】
【表４２】

【０３１３】
　このクエリは、まだオブジェクトドメイン内であり、オブジェクトエクステントに関す
ることに留意されたい。
【０３１４】
　・ステップ２：ビューアンフォールディング：ストア空間への変換
　ここで、クエリをＳＱＬに変換するためにビューアンフォールディングを行う。
【０３１５】
【表４３】

【０３１６】
　・ステップ３：クエリの単純化
　ここで、一連の論理変形を適用して、このクエリを単純化する。
【０３１７】

【表４４】

【０３１８】
　次に、ＳＡｄｄｒｅｓｓの主キー（ａｉｄ）における余分な自己結合を除去し、次を得
る。
【０３１９】

【表４５】

【０３２０】
　上記全てが、かなり単純である。ここで、ＳＱＬ　Ｓｅｒｖｅｒに送信することができ
るクエリとなる。
【０３２１】
　＜更新に関するコンパイル時の処理＞
　ＥＤＰは、アプリケーションが新しいオブジェクトを作成し、更新し、削除し、これら
の変更を永続的に格納することを可能にする。ＯＲマッピングコンポーネントは、これら
の変更がバックエンドストア変更に正しく変換されることを保証する必要がある。前述し
たように、オブジェクトに関してテーブルを宣言する更新マッピングビューを使用する。
そのようなビューを使用することによって、本質的に、更新の伝搬の問題が、ベースリレ
ーションに対する変更がビューに伝搬される必要があるマテリアライズビュー保守の問題
となった。ここでＵＭＶｉｅｗｓの場合は、「ベースリレーション」はオブジェクトであ
り、「ビュー」はテーブルである。この問題をこの手法でモデル化することによって、リ
レーショナルデータベースの世界で開発されてきたビュー保守技術の知識を活用すること
ができる。

(53) JP 5064483 B2 2012.10.31

10

20

30

40

【０３２２】
　（更新マッピングビューの生成）
　クエリの場合と同様に、更新に関する多数のマッピング作業が、コンパイル時に実行さ
れる。クラス、ＥＤＭ型、およびテーブルのＲｅｌａｔｉｏｎａｌｌｙ　Ｅｘｐｒｅｓｓ
ｅｄ　Ｓｃｈｅｍａとともに、これらの型と対応するＲＥＳ構造との間の規定の変換を生
成する。また、クラスのＲＥＳ構造とＥＤＭ型との間、およびＥＤＭ型のＲＥＳ構造とス
トアテーブルとの間で更新マッピングビューも生成する。
【０３２３】
　我々が展開していた、人－アドレスの例の助けを得て、これらのＵＭＶｉｅｗｓを理解
しよう。構築されたオブジェクト（Ｒ＿ＯＰｅｒｓｏｎ、Ｒ＿ＯＡｄｄｒｅｓｓ、Ｒ＿Ｏ
Ｐｅｒｓｏｎ＿Ａｄｄｒｅｓｓ）に関するＲＥＳ制約を想起されたい。
【０３２４】
　・更新マッピングビュー（オブジェクトのＲＥＳに関するテーブルのＲＥＳ）
　Ｒ＿ＯＰｅｒｓｏｎのＵＭＶｉｅｗは、単にＲ＿ＳＰｅｒｓｏｎに対する射影であり、
Ｒ＿ＳＡｄｄｒｅｓｓは、Ｒ＿ＯＡｄｄｒｅｓｓを、１対多のアソシエーションテーブル
、すなわちＲ＿ＯＰｅｒｓｏｎ＿Ａｄｄｒｅｓｓと結合することによって構築される。
【０３２５】
【表４６】

【０３２６】
　・規定の変換（オブジェクトに関するＲＥＳ）
　オブジェクトをＲＥＳに変換し、その結果、更新をオブジェクト空間からＲＥＳ空間に
プッシュできるようにする必要がある。「ｏ２ｒ」関数を使用して、オブジェクトの仮想
メモリアドレスをｐｉｄキーおよびａｉｄキーに変換する。この実装において、単純にオ
ブジェクトのシャドウ状態からキーを得ることができる。Ｒ＿ＯＰｅｒｓｏｎに関する規
定の変換は、単純な射影であるが、Ｒ＿ＯＡｄｄｒｅｓｓおよびＲ＿ＯＰｅｒｓｏｎ＿Ａ
ｄｄｒｅｓｓに関する変換は、人とそのアドレスとの間の結合を実行することによって達
成される。
【０３２７】
【表４７】

【０３２８】
　・構成された更新マッピングビュー
　上記のビューを構成して（およびいくつかの単純化を伴って）、次の構成された更新マ
ッピングビューを得る。
【０３２９】

(54) JP 5064483 B2 2012.10.31

10

20

30

40

50

【表４８】

【０３３０】
　したがって、テーブルＳＰｅｒｓｏｎを、ＯＰｅｒｓｏｎに対する単純な射影として表
すことができ、ＳＡｄｄｒｅｓｓは、ＯＰｅｒｓｏｎをそのアドレスと結合することによ
って取得される。
【０３３１】
　（デルタ式の生成）
　アプリケーションが、そのオブジェクト変更をバックエンドに保存することを求めると
き、諸実施形態は、これらの変更をバックエンドストアに変換することができる。すなわ
ち、オブジェクト（ベースリレーション）のデルタ式に関するテーブル（ビュー）のデル
タ式を生成することができる。これは、ビュー生成／コンパイルプロセスのＲＥＳ構造へ
の分解が実際に役立つ領域である。非規定のマッピングに関するデルタ式は、比較的容易
に生成することができる。これは、非規定のマッピングがリレーショナル空間にあり（Ｒ
ＥＳは純粋にリレーショナルである）、リレーショナルデータベースにおける大量の研究
がこの目標を達成するために行われてきたからである。例えば、データベース文献では、
デルタ式ルールが、選択、射影、内部結合、外部結合、準結合、共用体、交差、および差
などのリレーショナル演算子に関して表されるビューについて開発されてきた。非リレー
ショナル構造について、必要なものは、非リレーショナル構造をＲＥＳ空間へ／から変換
する規定のデルタ式を設計することだけである。
【０３３２】
　Ｐｅｒｓｏｎの例を用いてデルタ式を理解しよう。ＲＥＳ構造（例えば、Ｒ＿ＳＡｄｄ
ｒｅｓｓ）が２つのオブジェクトコレクション（Ｒ＿ＯＡｄｄｒｅｓｓとＲ＿ＯＰｅｒｓ
ｏｎ＿Ａｄｄｒｅｓｓ）の結合として表される事例を検討されたい。そのようなビューに
関するデルタ式は、次のルールを使用することによって得ることができる（結合ビューが
Ｖ＝Ｒ　ＪＯＩＮ　Ｓであると想定されたい）。
【０３３３】

【表４９】

【０３３４】
　この式では、ｉ（Ｘ）およびｄ（Ｘ）は、リレーションまたはビューＸに関する挿入ま
たは削除されたタプルを表し、Ｒnewは、全ての更新が適用された後のベースリレーショ
ンＲの新しい値を表す。
【０３３５】
　したがって、ランタイムの更新を容易にするために、一例示的実施形態は、まず、コン
パイル時に次のデルタ式を生成することができる。　
　１．更新されたオブジェクトコレクション１８０１のグループのデルタ変更式に関する
、ＲＥＳリレーション１８１１の規定のデルタ変更式１８０３。例えば、ｉ（ＯＰｅｒｓ
ｏｎ）に関するｉ（Ｒ＿ＯＰｅｒｓｏｎ）。　
　２．ＲＥＳリレーション１８１２のデルタ変更式に関するテーブル１８０２の規定のデ
ルタ変更式１８０４。例えば、ｉ（Ｒ＿ＳＰｅｒｓｏｎ）に関するｉ（ＳＰｅｒｓｏｎ）
。　
　３．オブジェクトのＲＥＳリレーションのデルタ式に関して表された、テーブルのＲＥ
Ｓリレーションのデルタ式１８１３。例えば、ｉ（Ｒ＿ＯＰｅｒｓｏｎ）に関するｉ（Ｒ
＿ＳＰｅｒｓｏｎ）。

(55) JP 5064483 B2 2012.10.31

10

20

30

40

50

【０３３６】
　上記の（１）、（２）、および（３）を構成して、オブジェクト１８２１（例えば、Ｏ
Ｐｅｒｓｏｎ）のデルタ式に関するテーブル１８２２（例えば、ＳＰｅｒｓｏｎ）のデル
タ式１８２０を取得することができる。この構成を図１８に図示する。したがって、クエ
リの場合と同様に、コンパイル時に、オブジェクトからテーブルへの直接変換を有する。
更新の場合は、実際にＲＥＳ分解を活用してデルタ式を生成している（ＱＭＶｉｅｗにつ
いて、この利点は、通知に適用可能である）。
【０３３７】
　更新に関するデルタ式は必要ないことに留意されたい。後でわかるように、モデル更新
は、モデル更新を挿入および削除のセットに置くことによってモデル化されることが可能
であり、後の処理ステップが、その後、変更を実際にデータベースに適用する前にそれら
を更新に再変換する。このアプローチの理由の１つは、増分ビューの保守に関する既存の
研究は、典型的には、更新に関するデルタ式がないことである。代替的に、そのような式
が開発されるより複雑な実施形態が、実現可能である。
【０３３８】
　ビュー構成を実行した後、テーブルに関するデルタ式は、純粋に、オブジェクトコレク
ションとオブジェクトの挿入および削除のセットとに関するものとすることができ、例え
ば、ｉ（ＳＰｅｒｓｏｎ）は、ＯＰｅｒｓｏｎ、ｉ（ＯＰｅｒｓｏｎ）、およびｄ（ＯＰ
ｅｒｓｏｎ）の項目である。これらのデルタ式の一部は、オブジェクトコレクションが計
算されることを必要とし、例えば、ｉ（ＯＰｅｒｓｏｎ）は、その計算にＥＰｅｒｓｏｎ
を必要とする。しかし、コレクション全体が、ＥＤＰクライアントでキャッシュされない
場合がある（あるいは、コレクションの最も一貫した最新の値に対してこのオペレーショ
ンを実行したいことがある）。この問題に対処するために、対応するクエリマッピングビ
ューを使用してオブジェクトコレクションをアンフォールドする。例えば、ＯＰｅｒｓｏ
ｎにＱＭＶｉｅｗを使用し、ＳＰｅｒｓｏｎおよび必要な場合に他のリレーションに関し
てこれを表す。したがって、一実施形態において、コンパイルプロセスの終りに、ＳＰｅ
ｒｓｏｎに関する全てのデルタ式が、ｉ（ＯＰｅｒｓｏｎ）、ｄ（ＯＰｅｒｓｏｎ）、お
よびリレーションＳＰｅｒｓｏｎ自体に関して表され、ランタイムに、ＯＰｅｒｓｏｎの
挿入および削除のセットが与えられると、サーバで実行可能な関連するＳＱＬステートメ
ントを生成することができる。
【０３３９】
　要約すると、テーブルのＲＥＳ構造とオブジェクトとの間のＱＭＶｉｅｗおよびＵＭＶ
ｉｅｗ、ならびにこれらの構造とテーブル／オブジェクトとの間の規定の変換が与えられ
ると、次の例示的ステップを実行することができる。　
　１．上記のステップ１、２、および３で言及したデルタ式を生成する。　
　２．オブジェクト（ＯＰｅｒｓｏｎ）のデルタ式およびオブジェクトコレクション自体
に関するテーブル（ＳＰｅｒｓｏｎ）のデルタ式を有するように、これらの式を構成する
。　
　３．オブジェクトコレクションをそのＱＭＶｉｅｗを使用してアンフォールドして、オ
ブジェクトのデルタ式およびテーブル自体に関するテーブル（ＳＰｅｒｓｏｎ）のデルタ
式を取得する。すなわち、オブジェクトコレクションを除去する。諸実施形態において、
このアンフォールディングを回避するか、コレクション全体がクライアントでキャッシュ
されることを知ることを可能にする、特別な事例が存在する可能性がある。　
　４．ランタイム作業を減らすように、式を単純化／最適化する。
【０３４０】
　本明細書で明示的に説明された特定の実施形態に加えて、他の態様および実施態様が、
本明細書に開示された仕様を考慮することから当業者に明らかなるであろう。添付の特許
請求の範囲の真の範囲および趣旨とともに、この仕様および図示された実装は単なる例示
としてみなされるべきと意図されている。
【図面の簡単な説明】

(56) JP 5064483 B2 2012.10.31

10

20

30

【０３４１】
【図１】本明細書で検討される例示的なＥｎｔｉｔｙ　Ｆｒａｍｅｗｏｒｋのアーキテク
チャを示す図である。
【図２】例示的なリレーショナルスキーマを示す図である。
【図３】例示的なエンティティデータモデル（ＥＤＭ）スキーマを示す図である。
【図４】エンティティスキーマ（左）とデータベーススキーマ（右）との間のマッピング
を示す図である。
【図５】エンティティスキーマおよびリレーショナルスキーマに対するクエリに関して表
されたマッピングを示す図である。
【図６】図５のマッピングに関してマッピングコンパイラによって生成される双方向ビュ
ー、すなわち、クエリビューと更新ビューを示す図である。
【図７】双方向ビューを介して更新を伝搬するマテリアライズビュー保守アルゴリズムを
活用するプロセスを示す図である。
【図８】マッピングデザイナユーザインターフェースを示す図である。
【図９】クエリビューおよび更新ビューを生成するためにマッピング仕様言語（ＭＳＬ）
で指定されるマッピングのコンパイルを示す図である。
【図１０】更新処理を示す図である。
【図１１】オブジェクトリレーショナル（ＯＲ）マッパーの例示的な論理部分を示す図で
ある。
【図１２】ＭＳＬ仕様で指定されたマッピングを処理するときのエンティティデータプラ
ットフォーム（ＥＤＰ）によるクエリビューおよび更新ビューの生成を示す図である。
【図１３】クエリ変換におけるＱＭＶｉｅｗの使用を示す図である。
【図１４】更新変換におけるＵＭＶｉｅｗの使用を示す図である。
【図１５】マッピングビューのコンパイル時処理およびランタイム処理を示す図である。
【図１６】ビューコンパイル処理における様々なコンポーネントの対話を示す図である。
【図１７】マッピングメタデータを利用して、オブジェクト／ＥＤＭ空間からデータベー
ス空間へクエリを変換する、ＥＤＰクエリトランスレータ（ＥＱＴ）のアーキテクチャを
示す図である。
【図１８】オブジェクトのデルタ式に関してテーブルのデルタ式を取得するための様々な
デルタ式の構成を示す図である。

(57) JP 5064483 B2 2012.10.31

【図１】 【図２】

【図３】

【図４】 【図５】

(58) JP 5064483 B2 2012.10.31

【図６】 【図７】

【図８】 【図９】

(59) JP 5064483 B2 2012.10.31

【図１０】 【図１１】

【図１２】

【図１３】

【図１４】

【図１５】

(60) JP 5064483 B2 2012.10.31

【図１６】 【図１７】

【図１８】

(61) JP 5064483 B2 2012.10.31

10

20

フロントページの続き

(72)発明者 ジョセ　エー．ブラークレイ
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション　インターナショナル　パテンツ内
(72)発明者 パー－エーク　ラーソン
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション　インターナショナル　パテンツ内
(72)発明者 セルゲイ　メルニク
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション　インターナショナル　パテンツ内

 審査官 桜井　茂行

(56)参考文献 米国特許第０６０５８３９１（ＵＳ，Ａ）
 米国特許第０６８６５５６９（ＵＳ，Ｂ１）
 米国特許第０６９１５３０５（ＵＳ，Ｂ２）
 米国特許第０６６１８７３３（ＵＳ，Ｂ１）
 小島 功，アクティブデータベースの動向と応用へのインパクトについて，情報処理学会研究報
 告，日本，社団法人情報処理学会，１９９４年１１月１８日，第９４巻第９９号，P. 73-78

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F 12/00
 G06F 17/30

	biblio-graphic-data
	claims
	description
	drawings
	overflow

