0/74394 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 December 2000 (07.12.2000)

PCT

AT D0

(10) International Publication Number

WO 00/74394 A2

(51) International Patent Classification”: H04Q

(21) International Application Number: PCT/IL00/00314

(22) International Filing Date: 31 May 2000 (31.05.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/136,932
09/410,455

1 June 1999 (01.06.1999)
1 October 1999 (01.10.1999)

us
us

(71) Applicant (for all designated States except US): MAI-
MONIDES INNOVATIVE TECHNOLOGIES LTD.
[IL/ML]; Derech Hasela Street 18, Ein Karem, 95742
Jerusalem (IL).

(72) Inventor; and
(75) Inventor/Applicant (for US only): BENTWICH, Isaac
[IL/IL]; Kibbutz Schiller, 76802 D.N. Emek Sorek (IL).

(74) Agents: COLB, Sanford, T. et al.; Sanford T. Colb & Co.,
P.O. Box 2273, 76122 Rehovot (IL).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,
DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR, HU,
ID,IL,IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,
NZ,PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,
TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ,MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: APPLICATION GENERATION SYSTEM

100
USER INPUT
A F.

105 o Y 110
NAVIAGATION DISPLAY
MECHANISM MECHANISM

T

i s | 25

: CUSTOMER OUTPUT

; RECORD TEXT-GENERATION

i DOCUMENT MECHANISM

? : 125

i : ! DATA ACCESS CONTROL

o 135) ~140 |
CUSTOMER KB
DATABASE DATABASE

(57) Abstract: A method for generating an application, the method including providing a plurality of components, each component
defining an application building block, storing, based on non-programmatic user input, a plurality of user-defined application-specific
properties, each property being associated with one of the plurality of components, receiving structured data input via a questionnaire
based at least in part on the plurality of components, generating text based, at least in part, on the structured data, the generating text
including dynamic runtime generation of a plurality of simple sentences from a plurality of sub-sentence segments based, at least in
part, on user input, and providing an application based on at least some of the plurality of user-defined application-specific properties
and on the components associated therewith. Related apparatus and methods are also provided.

WO 00/74394 PCT/IL00/00314

APPLICATION GENERATION SYSTEM
The present application claims the benefit of provisional U.S. Patent
Application No. 60/136.932. filed June 1. 1999 and entitled ~Application Generation

System™.

FIELD OF THE INVENTION
The present invention relates to application generation systems in

general.

BACKGROUND OF THE INVENTION

Many appiication generation and related systems are known in the art.

The Smart Medical Record (SMR) is a computerized patient record
software program owned by HBOC. SMR provides an interface which displays input
templates. with which a user enters data. Text based on user input may be generated
automatically. with sentence content being generated at runtime. SMR is capable of
generating both simple and compound sentences.

Applicant’s provisional U.S. Patent Application No. 60/136.932. filed
June 1. 1999 and entitled “Application Generation System”, of which the present
application claims benefit. is hereby incorporated herein by reference.

The disciosures of all references mentioned throughout the present

specification are hereby incorporated herein by reference.

SUMMARY OF THE INVENTION
The present invention seeks to provide an improved application
generation system, along with related systems. In various preferred embodiments, the
present invention seeks to provide multi-lingual capability, multi-platform capability.
These capabilities and. preferably, other capabilities, are preferably provided using
separate. typically relational database records and multiple cooperating text generation

modules.

WO 00/74394 PCT/IL00/00314

There is thus provided in accordance with a preferred embodiment of the
present invention a method for generating an application, the method including
providing a plurality of components, each component defining an application building
block. storing. based on non-programmatic user input, a plurality of user-defined
application-specific properties, each property being associated with one of the plurality
of components. receiving structured data input via a questionnaire, based at least in part
on the plurality of components. generating text based. at least in part, on the structured
data. the generating text including dynamic runtime generation of a plurality of simple
sentences from a plurality of sub-sentence segments based. at least in part. on user input,
based at least in part of the components. and providing an application based on at least
some of the plurality of user-defined application-specific properties and on the
components associated therewith.

Further in accordance with a preferred embodiment of the present
invention the generating text also includes automatically joining at least two of the
plurality of simple sentences to form a compound sentence.

Still further in accordance with a preferred embodiment of the present
invention each simple sentence is based on a user-supplied response to a question, the
response being provided in the receiving step.

Additionally in accordance with a preferred embodiment of the present
invention the storing includes receiving user input, wherein the user input is
substantially non-textual.

Moreover in accordance with a preferred embodiment of the present
invention the generating text also includes automatically generating text in more than
one language.

Further in accordance with a preferred embodiment of the present
invention the more than one language includes at least one left-to-right language and at
least one right-to-left language.

Still further in accordance with a preferred embodiment of the present
invention the more than one language includes a first language having a first syntactical
structure and a second language having a second syntactical structure, and the first

syntactical structure and the second syntactical structure are distinct.

B

WO 00/74394 PCT/IL00/00314

Additionally in accordance with a preferred embodiment of the present
mvention the first svntactical structure has a first sentence structural order and the
second syntactical structure has a second sentence structural order, and the first sentence
structural order and the second sentence structural order are different.

Moreover in accordance with a preferred embodiment of the present
invention at least a portion of the method is implemented in software adapted for
execution on a computer.

Further in accordance with a preferred embodiment of the present
invention the computer includes one of the following: a handheld computer, and a
palmtop computer.

Still further in accordance with a preferred embodiment of the present
invention the computer includes a keyboard-less pen-based handheld computer.

Additonally in accordance with a preferred embodiment of the present
invention the computer includes at least one of the following: a computer running
Windows CE. a computer operating on a Windows CE platform, a Psion handheld
computer. a computer operating with an EPOCH operating system, a PalmPilot
computer. a handheld wireless communication computer, and a Palm VII computer.

There is also provided in accordance with another preferred embodiment
of the present invention a text generation method for generating text based, at least in
part. on structured data. the method including generating a plurality of simple sentences
from a plurality of sub-sentence segments based. at least in part. on user input,
dynamically at runtime.

Further in accordance with a preferred embodiment of the present
invention the generating includes automatically generating the plurality of simple
sentences in more than one language.

Still further in accordance with a preferred embodiment of the present
invention the more than one language includes at least one left-to-right language and at
least one right-to-left language.

Additionally in accordance with a preferred embodiment of the present
invention the more than one language includes a first language having a first syntactical

structure and a second language having a second syntactical structure. and the first

[(OP]

WO 00/74394 PCT/IL00/00314

syntactical structure and the second syntactical structure are distinct.

Moreover in accordance with a preferred embodiment of the present
invention the first svntactical structure has a first sentence structural order and the
second syntactical structure has a second sentence structural order, and the first sentence
structural order and the second sentence structural order are different.

Further in accordance with a preferred embodiment of the present
invention at least a portion of the method is implemented in software adapted for
gxecution on a computer.

Still turther in accordance with a preferred embodiment of the present
invention the computer includes at least one of the following: a handheld computer, and
a palmtop computer.

Additionally in accordance with a preferred embodiment of the present
invention the handheld computer includes at least one of the following: a computer
running Windows CE. a computer operating on a Windows CE platform, a Psion
handheld computer, a computer operating with an EPOCH operating system, a
PalmPilot computer, a handheld wireless communication computer, and a Palm VII
computer.

There is also provided in accordance with another preferred embodiment
of the present invention a text generation method for generating a compound sentence
from a plurality of simple sentences, the method including providing general logic
defining compound sentence structure based on structure of simple sentences from
which a compound sentence is to be generated, providing a plurality of simple
sentences. and generating a compound sentence based on the general logic and the
plurality of simple sentences.

Further in accordance with a preferred embodiment of the present
invention each of the plurality of simple sentences reflects a continuation questions in a
data-input questionnaire. and the generating step includes generating a compound
sentence from at least two sentences including a first sentence and a second sentence,
wherein the first sentence reflects data entered via one question in the data-input
questionnaire, and the second sentence reflects data entered via a second question in the

questionnaire. and wherein the second question is a continuation to one of a plurality of

WO 00/74394 PCT/IL00/00314

answers of the first question.

Sull further in accordance with a preferred embodiment of the present
invention wherein at least one of the following is not limited: a number of simple
sentences related to continuation questions in the data-input questionnaire, and the
levels of hierarchy of the continuation questions, the continuation questions being
joinable to generate a compound sentence.

Further in accordance with a preferred embodiment of the present
invention the generating a compound sentence includes automatically generating the
compound sentence in more than one language.

Sull turther in accordance with a preferred embodiment of the present
invention the more than one language includes at least one left-to-right language and at
least one right-to-left language.

Additionally in accordance with a preferred embodiment of the present
invention the more than one language includes a first language having a first syntactical
structure and a second language having a second syntactical structure, and the first
syntactical structure and the second syntactical structure are distinct.

Moreover in accordance with a preferred embodiment of the present
invention the first syntactical structure has a first sentence structural order and the
second syntactical structure has a second sentence structural order, and the first sentence
structural order and the second sentence structural order are distinct.

Further in accordance with a preferred embodiment of the present
invention the generating is based only on the general logic and the simple plurality of
sentences.

There is also provided in accordance with another preferred embodiment
of the present invention a data collection method for allowing data collection from
multiple users. the method including providing a knowledge base defining at least one
data-structured input questionnaire to each of a plurality of users, allowing each user to
modify the knowledge base associated with the user, receiving structured input from
each of the plurality of users. the input being based on the input questionnaire, storing
the input from the receiving step in a textual form, and providing direct access to the

stored input of a first one of the plurality of users by at least a second of the plurality of

WO 00/74394 PCT/IL00/00314

users. after the second one of the plurality of users has modified the knowledge base
associated with the second one of the plurality of users, thereby altering the structured
input associated with the second one of the plurality of users.

There is also provided in accordance with another preferred embodiment
of the present invention a method for analyzing a text, the text including plain text
generated by a text generator using a text generating method, the method for analyzing
including reversing the text generating method. thereby determining a plurality of inputs
which were provided to the text generating method in order to generate the text.

Further in accordance with a preferred embodiment of the present
invention the generated text does not include any of the following indicators: an
embedded ID. and a hidden character. the indicators indicating the questions and
answers which caused generation of the text.

There is also provided in accordance with another preferred embodiment
of the present invention a data access method including receiving data in hierarchical
form. generating natural language sentences from sub-sentence elements based, at least
in part. on the data in hierarchical form, storing the natural language sentences in textual
form. and accessing the stored natural language sentences in textual form.

There is also provided in accordance with another preferred embodiment
of the present invention a data access method including providing a data management
system having questionnaire-structured data entry with multiple levels of hierarchy for
allowing a plurality of users to manage data records including data records of a plurality
of customers. storing data using the data management system, and allowing access to the
stored data by at least one non-user of the data management system without use of the
data management system.

Further in accordance with a preferred embodiment of the present
invention the data management system provides text generation from sub-sentence
elements.

Still further in accordance with a preferred embodiment of the present
invention the data management system provides automatic generation of complex
sentences from simple sentences.

Additionally in accordance with a preferred embodiment of the present

WO 00/74394 PCT/IL00/00314

invention the simple sentences include an unlimited number of sentences corresponding
to continuation questions in the data-input questionnaires, and unlimited levels of
hierarchy of the questions.

Moreover in accordance with a preferred embodiment of the present
invention the data management system provides multi-lingual capability.

Further in accordance with a preferred embodiment of the present
invention the access includes viewing at least one of the data records.

Sull further in accordance with a preferred embodiment of the present
invention the access includes updating at least one of the data records.

Additionally in accordance with a preferred embodiment of the present
invention the updating includes updating by sending an electronic message to the data
management system.

Moreover in accordance with a preferred embodiment of the present
vention the electronic message includes an e-mail message.

There is also provided in accordance with another preferred embodiment
of the present invention a record data structure including a database including a plurality
of documents, each document including a plurality of sections stored in at least one of
the following: one word processing file, one word processing file object, at least one
HTML file. at least one XML file, and a text file, the plurality of sections being arranged
in a hierarchy.

There is also provided in accordance with another preferred embodiment
of the present invention an application generating system including a plurality of
components. each component defining an application building block, storage apparatus
operative to store. based on non-programmatic user input. a plurality of user-defined
application-specific properties. each property being associated with one of the plurality
of components, input apparatus operative to receive structured data input via a
questionnaire, based at least in part on the plurality of components, a text generator
operative to generate text based, at least in part, on the structured data, including
dynamic runtime generation of a plurality of simple sentences from a plurality of
sub-sentence segments based. at least in part. on user input, and an application provider

for providing an application based on at least some of the plurality of user-defined

WO 00/74394 PCT/IL00/00314

application-specific properties and on the components associated therewith.

There is also provided in accordance with another preferred embodiment
of the present invention a computer-readable medium including a computer program,
the computer program being operative, when in operative association with a computer,
to perform the following steps: providing a plurality of components, each component
defining an application building block, storing, based on non-programmatic user input, a
plurality of user-detined application-specific properties, each property being associated
with one of the plurality of components, receiving structured data input via a
questionnaire. based at least in part on the plurality of components. generating text
based. at least in part. on the structured data, the generating text including dynamic
runtime generation of a plurality of simple sentences from a plurality of sub-sentence
segments based. at least in part. on user input. and providing an application based on at
least some of the plurality of user-defined application-specific properties and on the

components associated therewith.

WO 00/74394 PCT/IL00/00314

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood and appreciated more fully
from the following detailed description. taken in conjunction with the drawings in
which:

Fig. 1A is a simplified functional diagram of a computer application
constructed and operative in accordance with a preferred embodiment of the present
invention:

Fig. 1B is a simplified block diagram illustration of a computer
application constructed and operative in accordance with a preferred embodiment of the
present invention, the apparatus of Fig. 1B generally corresponding to the primary data
management mechanism 5 of Fig. 1A;

Fig. 2 is a simplified block diagram illustration of a preferred
embodiment of a portion of the apparatus of Fig. 1A;

Fig. 3 is a simplified block diagram illustration of a preferred
implementation of a portion of the apparatus of Fig. 2. comprising the question display
component 225;

Fig. 4 is a simplified block diagram illustration of a preferred
implementation of the template display component 220 of Fig. 2;

Fig. 5 is a simplified block diagram illustration of a preferred
implementation of the navigation display component 215 of Fig. 2;

Fig. 6 is a simplified block diagram illustration of a preferred

implementation of the question logic component 240 of Fig. 2

[

Fig. 7 is a simplified block diagram illustration of a preferred
implementation of the template logic component 235 of Fig. 2;

Fig. 8 1s a simplified block diagram illustration of the navigation logic
component 230 of Fig. 2:

Fig. 9 is a simplified block diagram illustration of a preferred
implementation of the knowledge-base database 140 of Fig. 1B;

Fig. 10 is a simplified block diagram illustration of a preferred

implementation of the customer database 135 of Fig. 1B;

Fig. 11 is a simplified flowchart illustration of a preferred method of

WO 00/74394 PCT/1L00/00314

operation of the output text-generation mechanism 25 of Fig. 1A:

Fig. 12 a simplified flowchart illustration of a preferred implementation
of the warm-up procedure 1100 of Fig. 11;

Fig. 13 which is a simplified flowchart illustration of a preferred
implementation of the process answers 1110 procedure of Fig. 11;

Fig. 14 is a simplified flowchart illustration of a preferred
implementation of step 1305 of Fig. 13;

Figs. 15A and 15B, taken together. comprise a simplified flowchart
illustration of a preferred embodiment of step 1115 of Fig. 11:

Fig. 16 is a simplified flowchart illustration of a preferred
implementation of step 1120 of Fig. 11;

Figs. 17A and 17B, taken together, comprise a simplified flowchart
illustration of a preferred implementation of step 1125 of Fig. 11;

Figs. 18A and 18B, taken together, comprise a simplified flowchart
illustration of a preferred implementation of step 1130 of Fig. 11;

Fig. 19 is a simplified flowchart illustration of a preferred
implementation of the text analysis mechanism 35 of Fig. 1A;

Fig. 20A is a simplified block diagram illustration of a preferred
implementation of the decision support mechanism 50 of Fig. 1A;

Fig. 20B is a simplified flowchart illustration of a preferred method of
operation of the apparatus of Fig. 20A;

Fig. 21 is a simplified flowchart illustration of a preferred
implementation of the multi-lingual mechanism 60 of Fig 1A.;

Figs. 22A and 22B. taken together, comprise a simplified block diagram
illustration of a preferred implementation of the knowledge-base database 140 of Fig.
IB. which supports the multi-lingual capability described in Fig. 21;

Figs. 23 — 25 are simplified illustrations of a typical customer record
structure and particular examples of the use thereof, useful in understanding the present
invention:

Fig. 26 is a simplified block diagram illustration of a preferred

implementation of the knowledge base editor 45 of Fig. 1A;

10

WO 00/74394 PCT/IL00/00314

Fig. 27 is a simplified block diagram illustration of a preferred
implementation of the multi-user unsynchronized access mechanism 65 of Fig 1A;

Fig.

aQ

28 is a simplified block diagram illustration of a preferred
implementation of the decision support mechanism 50 of Fig. l1A: and

Figs. 29A and 29B, taken together, comprise a simplified flowchart
illustration of a preferred method of operation of the research and statistics mechanism

55 of Fig. 1A.

11

WO 00/74394 PCT/IL00/00314

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Reference is now made to Fig. 1A. which is a simplified functional
diagram of a computer application constructed and operative in accordance with a
preferred embodiment of the present invention. It is appreciated that the computer
application may be implemented in any appropriated programmed computer svstem
such as. for example. an appropriate personal computer including an operating svstem
having a graphical user interface.

The embodiment of Fig. 1A comprises a mechanism for creation of data
collection and management applications. using a small number of enabling components
which serve as building blocks of said applications. This mechanism of Fig. 1A
preferably comprises the following elements:

A primary data management mechanism 5 comprises the main
mechanism of the embodiment of Fig. 1A. The primary data management mechanism S
preferably comprises a mechanism which allows the user to enter data via structured,
hierarchic questionnaires. stores the entered data temporarily in a hierarchical
"language-less’ representation. uses a text-generation mechanism in order to generate
and preferably permanently store the data non-hierarchically, as complex textual output,
preferably including generation of complex sentences from their sub-sentence segments
and automatic joining of sentences to form compound sentences, and uses a text analysis
mechanism to analyze and transform the textual output back into the language-less
representation format, in which format the textual output is preferably stored
permanently.

A preferred embodiment of the primary data management mechanism 5
1s described further below with reference to Fig. 1B, which provides a Structural
Overview of this mechanism, and with reference to Fig. 2, which describes the
application enabling components used to achieve this function; the application enabling
components are turther described below with reference to Figs. 3 - 19 and 23 - 25.

Auxiliary mechanisms 10 comprise a collection of additional
mechanisms which are used in conjunction with the primary data management
mechanism 5. or which comprise features and capabilities which result from the
architecture thereof. These mechanisms are further described below with reference to

12

WO 00/74394 PCT/IL00/00314

Figs. 20 —~ 22 and 26 - 29.

The primary data management mechanism 3 preferable comprises the
following elements. whose function is also described as follows: data is preferably
entered via a hierarchical questionnaire data input mechanism 13. which is a mechanism
for displaying structured questionnaires. The function of the data input mechanism 15 is
preferably achieved by a navigation mechanism 105 (Fig. 1B) and a display mechanism
110 (Fig. 1B). described below with reference to Fig. 1B.

Data entered as described above is preferably stored in memory,
preferably in RAM, in a hierarchical language-less representation 20. Preferably, in the
hierarchical language-less representation 20, only the ID of the questions, answers and
continuation questions and answers, and other elements need be stored; the
language-dependent text which the IDs represent need not be stored.

An output text generation mechanism 25 comprises a mechanism which
allows for a two-way transformation: from the hierarchical language-less representation
20 into rtextual output. and back from said textual output into the hierarchical
language-less representation 20. The structural relationship of the output text generation
mechanism 25 with other elements of the system of Fig. 1A is described further with
reference to Fig. 1B. The enabling components involved are further described below
with reference to Fig. 2. and still further with reference to Figs. 3-10.

This output text generation mechanism 25 preferably comprises the
following: a text generation mechanism 30, which is described further below with
reference to Fig. 11 and further with reference to Figs. 12 - 18; and a text analysis
mechanism 35, which is described further below with reference to Fig. 19.

Non-hierarchical storage as text 40 preferably comprises the output text
which was generated by the text generation mechanism 30, and which is analyzed by the
text analysis mechanism 35. It is in the format of the non-hierarchical storage as text 40
that the data is preferably stored permanently such as, for example, on an appropriate
storage device such as a disk. The textual output storage preferably corresponds to a
customer record document 115 (Fig. 1B). which is further elaborated in Figs. 23-25.

The auxiliary mechanisms 10 preferable comprise the following

mechanisms:

WO 00/74394 PCT/IL00/00314

A no-programming knowledge base (KB) editor 435 preferably comprises
a mechanism allowing the user of the system to create and modifty, without any
programming. the knowledge base which underlies and ‘drives’ the hierarchical
questionnaire data input mechanism 15 as well as the related corresponding text to be
generated by the output text-generation mechanism 25. The no programming KB editor
45 is described turther below with reference to Fig. 26.

A decision support mechanism 50. a research & statistics mechanism 33,
and a multi-lingual mechanism 60 preferably comprise mechanisms which are made
possible due to the fact that the data collected may be represented in the hierarchical
language-less representation 20.

The decision support mechanism 50 preferably comprises a mechanism
which automatically creates a programmable object-model which reflects the exact
structure of the knowledge-base, which the user preferably created without any
programming using the knowledge base editor 45, and is preferably operative to
populate the user’s data-entry selections onto this object model. It is thus possible to
programmatically create complex conditions based on the data-entry, and to assign
values to questions in the knowledge-base programmatically rather than manually. The
decision support mechanism 30 is further described below with reference to Figs. 20A
and 20B.

The research & statistics mechanism 55 preferably comprises a
mechanism which allows the user, without any programming, to perform complex
queries on the customer database, comparing groups of customers, presenting the results
in table or chart format. and deriving statistical conclusions from such comparisons.
This mechanism is further described below with reference to Figs. 29A and 29B.

The mult-lingual mechanism 60 preferably comprises a mechanism
which allowing the system to display questionnaires in multiple languages, including
right-to-left languages. and to generate and analyze text in these languages, including
generation of sentences from their sub-sentence parts, and joining of sentences to form
compound sentences. A knowledge base is created once in one language. and may then
be semi-automatically be translated. such as, for example. by utilizing appropriate

commercially available translation software into multiple languages. The multi-lingual

14

WO 00/74394 PCT/IL00/00314

mechanism 60 is described further below with reference to Figs. 21, 22A, and 22B.

A multi-user unsynchronized access mechanism 63 preferably comprises
a mechanism which allows multiple users to each modify the knowledge-base of the
application to their likings and needs. and still be able to read and write into shared
customer records. without synchronizing their knowledge bases. The multi-user
unsynchronized access mechanism 65 is further described below with reference to Fig.
27.

A non-user access mechanism 70 preferably comprises a mechanism
which allows non-users of the system to view and write into customer records of the
application. without need for the application and its knowledge-base. The non-user
access mechanism 70 is further described below with reference to Fig. 28.

The multi-user unsynchronized access mechanism 65 and the non-user
access mechanism 70 are provided as a result of the systems capability of storing the
hierarchical data in the form of the non-hierarchical storage as text 40, and the ability to
analyze the text back into its hierarchical structure via the text analysis mechanism 335.

Reference is now made to Fig. 1B which is a simplified block diagram
ilustration of a computer application constructed and operative in accordance with a
preferred embodiment of the present invention, the apparatus of Fig. 1B generally
corresponding to the primary data-management mechanism 5 of Fig. 1A. The elements
of Fig. 1B are typically implemented in an appropriate combination of hardware and
software. as is well known in the art.

The application of Fig. 1B preferably comprises the following main
functional elements: two databases (a knowledge-base (KB) database 140 and a
customer-database 135). and a data access component 125 to access them; two user
interface mechanisms, typically including a navigation mechanism 105 and an Input/
display mechanism 110: an output text-generation mechanism 25; and a customer record
document 115.

The customer database 133 typically comprises a plurality of customer
record documents 1135. such that all the data about each customer is preferably stored in
one customer record document 115 object. which is retrieved at the beginning of the

session. worked on locally. and saved back to the customer database 135 at the end of

135

WO 00/74394 PCT/IL00/00314

the session. Additional tables and fields in the customer database 135 duplicate some
fields and tables found in the customer record document 115. for enhancing retrieval
and statistics functions. The customer database 135 is shown connected to the remainder
of the application of Fig. 1B by dashed lines. to indicate that it may optionally reside on
a remote server. and may optionally be accessed over a network such as the Internet.
The customer database 135 is further described below with reference to F ig. 10.

The 'knowledge-base (KB) database 140 preferably stores application and
customer-record-structure data. and knowledge-base data required to display input
templates. and to generate textual output according to user’s selection and input, and to
analyze text previously generated in this manner. A preferred implementation of the
knowledge-base database 140 is described in more detail below with reference to F ig. 9.

The navigation mechanism 105 preferably receives user input, and allows
the user to perform File Operations on the customer database 133, such file operations
typically including: create-new. open-existing, and save customer record. These
commands issued via the navigation mechanism 105 preferably cause the customer
database 135 to create/retrieve a customer record document 115, and to present a copy
of it as the customer record document 113, so that it can be worked on locally during the
session. and to save it back to the database at the end of the session.

A second preferred function of the navigation mechanism 105 is to
navigate to various parts of the customer record document 115 during the session, and to
various knowledge-base input-display templates which are further described below with
reference to Fig. 23. This action is actually preferably three-fold: (a) jumping to the right
place in the customer record document 115, (b) instructing the display mechanism 110
to display the corresponding template, and (c) instructing the output text-generation
mechanism 25 to work with the corresponding set of questions to generate the text.

A preferred implementation of the elements described immediately above
is described below with reference to Figs. 2, 5, and 8.

The display mechanism 110 preferably displays knowledge-base
templates. each preferably comprising a plurality of questions of various types
(multiple-choice. numeric. etc.), used typically for data entry. The display mechanism

110 preferably receives the instruction of which template to display from the navigation

16

WO 00/74394 PCT/IL00/00314

mechanism 103. retrieves the appropriate data. in the appropriate language, displays the
retrieved data as a questionnaire. accepts the user’s responses and data entry, and passes
the responses to the output text-generation mechanism 25.

The display mechanism 110 also preferably displays a section of the
customer record document 113. which is currently being edited. so that the user may
view the text which is being generated in response to his selections, and allows the user
(typically with some restrictions) to add free-text to it.

A preferred implementation of the display mechanism 110 is described in
more detail below with reference to Figs. 2, 3 and 4.

The output text-generation mechanism 25 preferably generates
sophisticated natural language output, based on the user’s selections and input to the
templates displayed by the display mechanism 110, and on additional text-generation
logic and parameters associated with each question and preferably stored in the
knowledge-base database 140. This text generated during the session, is stored to the
customer record document 115.

A preferred implementation of the output text-generation mechanism 25
is described in more detail below with reference to Figs. 2, 6 and 7.

The customer record document 115 is preferably a document file or
object. such as an MS-Word document. or an HTML page or a collection of HTML
pages. the structure of which is application-dependent, which contains all of the
customer data. As mentioned above, preferably the customer record document 115 is
retrieved from the customer database 135 at the beginning of the session, and saved
back to the customer database 135 at the end of the session, allowing the application to
be server-independent during the session. A simple hierarchy of the document (e.g.
headings in a Word document), is preferably used to organize the data into sections of
the record (which are application dependent), chronological log-entries etc., and the
navigation mechanism 105 is preferably used to navigate to these various sections of the
document. The data are preferably entered in a structured manner, using data-entry
questionnaires and text-generation, but are preferably stored as simple text, such that
they may be viewed by non-users of the system, without requiring any special software.

A preferred implementation of the customer record 115 is described below with

17

WO 00/74394 PCT/IL00/00314

reference to Fig. 23. and examples of possible implementations which demonstrate the
wide scope of data-collection and management applications which are supported by
such an architecture are described below with reference to Fig. 24 and 25.

Reference is now made to Fig. 2. which is a simplified block diagram
illustration of a preferred embodiment of the navigation mechanism 103. the display
mechanism 110 and the output text-generation mechanism 23 of Fig. 1B.

Preferably elements 103, 110, and 25, are implemented by six dedicated
components (some of them in multiple instances), organized in a three-tiered
architecture. as shown in Fig. 2 and briefly described below.

The navigation mechanism 103 preferably includes a navigation display
component 215 and a navigation logic component 230. The navigation display
component 215 preferably comprises a toolbar component 500 (shown in Fig. 3,
described below). as is well known in the art, with buttons and combo-boxes,
corresponding to the various sections of the customer record document 115, allowing
the user to navigate to these sections, as well as to perform various workflow actions,
and other actions related to the customer record documents 115. A preferred
embodiment of the navigation display component 215 is described further below, and
with reference to Fig. 3.

The navigation logic component 230 preferably jumps to locations in the
customer record document 115, and identifies the template associated with that section
in the customer record document 115. and activates various macros, and
dialogue-screens, based on user input in the template display component 220. A
preferred implementation of the navigation logic component 230 is described in more
detail below, and with reference to F ig. 8

The display mechanism 110 preferably includes a template display
component 220 and a plurality of question display components 225. The template
display component 220 preferably comprises a screen upon which the question display
components 225 are displayed (for example. VBA Form in an MS-Office
implementation. HTML page or ActiveX Document. or Java application in an Internet
implementation). The template display component 220 preferably calculates the number

of question display components (QDCs) 225 required, their dimensions. and location,

18

WO 00/74394 PCT/1L00/00314

and creates said QDCs 225, and sets their dimensions and location properties
accordingly. A preferred implementation of the template display component 220 is
described in more detail below with reference to Fig. 4.

Each question display component 225 typically displays a question on the
screen. allowing the user to make selections or enter data onto that question: creates,
positions and displavs. the various required screen elements 310 (for example,
check-boxes. labels. text-fields. and so forth); and determines the behavior 315 of these
screen elements 310. according to the *Type’ property of the question, and various other
KB parameters. A preferred implementation of the question display component 225 is
described in more detail below with reference to Fig. 3.

The output text-generation mechanism 25 preferably includes template
logic component 235 and a plurality of question logic component 240. The template
logic component 233 preferably constructs in memory Virtual Template Record for
multiple templates which are in use (collating this data which is found in multiple
records in multiple tables), in the required language, creates sufficient instances of
question logic components 240, and passes to each of the templates their question data.
A pretferred implementation of the template logic component 235 is described in more
detail below with reference to Fig. 7.

Although for the sake of clarity of description the template logic
component 235 is described herein as part of the output text-generation mechanism 235
of Fig. 1B. it may alternatively be considered that text-generation is one of the functions
of the template logic component 235, not the only one, since the business-logic part
thereof preferably supports the Display function as well. The most important example to
that is that one of the functions of the template logic component 235 is to create the
Virtual Template Record. which serves not only the text-generation but also the display.

The question logic component 240 preferably generates text based on
user input made to the corresponding question display component 225. A plurality of
question logic components 240 preferably collaborate and ‘communicate’ (via their
properties) to create. when appropriate. compound sentences, made of input of several
question. and to analyze text previously entered by the user into the questions and

answers which caused generation of such text. A preferred implementation of the

19

WO 00/74394 PCT/TL00/00314

question logic component 240 is described in more detail below with reference to Fig. 6.

Reference is now made to Fig. 3, which is a simplified block diagram
illustration of a preferred implementation of the question display component 225 of Fig.
2. The apparatus of Fig. 3 comprises properties 300. which preferably hold various
parameters. including the Type of the question. its data (question. answers. and so
forth). and other parameters which define how it is presented on the screen, and behave.
The properties 300 also preferably store the user’s responses to the question (answers
selected etc.).

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Question Displav Component
I. Introduction

The Question Display Component (QDC) is the unit which presents the
questions on the screen. It is built such that it can appear and behave as different
question types which the system supports, and does so according to parameters which it
receives (e.g. Type. Language. etc.). It displays questions in multiple languages,
including languages with a right-to-left as well as left-to-right direction. In Edit mode.
its appearance and behavior are different, as described below, allowing certain ‘drag’

actions. which are used for editing the question. The following sections describe the

structure and function of this control.

IL. Properties

. Question ID Short Optional

2. QuestionType Byte Currently about 10 types, in the future, not more than
99.

3. Question 20 Text of the question

4. QuestionGroup Short The Group to which this question belongs. Used for

the Check_Redundancy method.

12 fields with the text of the answers

[R]
(4]

Answer (1-18)

n

6. Response (1-18) - Stores the response of the user for each answer. Used

20

WO 00/74394

10.

18.

ContinuationID

(1-12)

XY Coordinates

(1-12)

Type (1-6)

AnswerTipText
(1-12)

. QuestionTipText

PagingStatus

LanguageDirection

. Font

BackgroundBitmap

. RegionsBitmap

SketchBitmap

Mode

Short

Byte

Bool

II1. Display_Question method

Feed_Questions method.

PCT/11.00/00314

with the paging mechanism (since there are more
answers than are displayed at once).

ID of the question or the template which is the
continuation. Affects the display and behavior of the
answers (if not null. then ... are displayed next to
answer. and popup activated by click).

Used only for Graphic type question. Stores X and Y
coordinates indicating for each answer, to which
region in the RegionsBitmap it is associated with.
Used only in ‘Mixed’ type of question, to indicate for
each ‘answer’, which type of question (e.g. text-field,
combo-box) it displays.

Text that appears when pointing to an answer

Text that appears when pointing to the question
Reflects which set of answers is currently being
displayed. Relates to the PgUp PgDn mechanism.
Options: RightToLeft, LeftiToRight

Language dependent

Used only in Graphic type questions.

Used only in Graphic type questions.

Used only in Graphic type questions. Stores the
sketch drawn by the user. It is displayed ‘overlaid’
over the background bitmap, but stored separately.
Normal (default), or Edit. When in Edit mode,

functions as the Question knowledge-base editor

The Display_Question method is activated by the TDC after finishing its

The following steps are taken prior to activating the Display_Question

tJ

WO 00/74394 PCT/1L00/00314

method. First. the Organize Screen method of the TC creates a sufficient number of QC

units. and sets their properties so as set their size, location, and sequence on the screen.

When a Template is opened. the TC reads it into the multi-dimensional array in the

memory. using the ReadDB method. Finally, using the Feed Questions the TC feeds the

question data into the properties of each one of the QC. Specifically. at this phase, the

Question and Answers(1-18) properties which contain the text of the question and text

of the answers for this question. as well as various properties which determine the

display mode are also fed to the QC.
After performing the Feed Questions method. the TC calls the

Display_Question ot each one of the QCs, as described:

Method Steps:

I. Check the question Type and NumAnswers properties, and create the elements
required for this question Type. If NumAnswers > 6, then create screen elements
sufficient to display 6 answers, and the PgDn and PgUp buttons (PgUp Visible =
False). If NumAnswers < 6, then create screen elements sufficient to display

NumAnswers answers (no PgUp; PgDn buttons).

29

2. Check the question Type and LanguageDirection properties. Assign proper values to
the dimension and location properties of the screen elements of the QC, so as to
position them and set their dimensions according to the Type and LanguageDirection
of the QC.

.Check the LanguageDirection property. If = L-R (default). then set Alignment

W)

property of all Labels and text-fields of the QC to ‘Left’. Else, set it to ‘Right’. This,
with the exception of Numeric Single Option, and Multiple Numeric Question Types,
in which the text-fields are aligned ‘Left’ regardless of the LanguageDirection

properties.

=~

. Check NumAnswers, and load (up to) first 6 Answer properties to the 6 available
Answer-Labels, and set Visible property of the appropriate number of these labels to
True (so that no ‘blank” answer labels would be displayed). PagingStatus is set to =
1.

5.1f NumAnswers < 7. then PgDn button Visible = False, else = True. PgUp button

Visible = False in any case.

27

WO 00/74394 PCT/IL00/00314

A detailed description of the Paging mechanism and its logic is described
below with reference to the PgUp & PgDn Buttons.

Referring back to Fig. 3. the apparatus of Fig. 3 also preferably
comprises screen elements 310 (for example. check-boxes. text-fields. labels) which
preferably are created and positioned according to the type and LanguageDirection
properties 300. and text strings from certain properties 300 are assigned to the
corresponding screen elements 310 (e.g. AnswerLabel. QuestionLabel). User selection
or input onto the screen elements 310. are stored back to the properties 300.

The following detailed examples relating to preferred embodiments of
the present invention are not meant to be limiting. and statements therein are intended to
refer to preterred alternatives only:

Screen-elements & their dimensions & location

Following is a description of the screen elements to be created for each
question type. and their location. and dimensions. As is clear from the bitmaps below,
each question type has two modes of presentation for lefi-to-right languages (e.g.
English. this is the default), and for right-to-left languages (relevant only for Hebrew
and Arabic). Screen elements for both are obviously the same. and their alignment is a
mirror-image of each other. The text alignment within the elements is opposite. except
for numerical fields. which remain left aligned in both language directions.
Multiple-Option, Yes/No, Negation, Negation Yes/No

6 Combo-boxes. 6 Answer-labels. Question label. PgUp & PgDn buttons.
Single-Option

6 Radio-buttons. 6 Answer-labels. Question label. PgUp & PgDn
buttons.

Numeric Single-Option

6 Radio-buttons. 6 text-fields. 6 Answer-labels, Question label, PgUp &
PgDn buttons.

Numeric Single-Option w/1* Textual Answer

6 Radio-buttons. 3 text-fields. 6 Answer-labels. Question label, PgUp &
PaDn buttons.

Multiple Textual Questions

~aA

WO 00/74394 PCT/IL00/00314

6 Answer labels. 6 Text-fields (no check-boxes or radio buttons, no

PgUp & PgDn buttons).
Multiple Numeric Questions

6 Answer labels. 6 Text-fields, Question label (no check-boxes or radio
buttons. no PgUp & PgDn buttons).
Multiple Single-Option-Questions

6 Combo-boxes. Question label (no check-boxes or radio buttons, no
PgUp & PgDn buttons).

Multiple Mixed Questions

Up to 6 questions in any combination of types 4-6 above.
System-Check Style

6 check-boxes, 6 Answer-labels, Question label, Question (large)
Check-box. PgUp & PgDn buttons.

Referring back to Fig. 3, behavior 315 of the screen elements 310 is also
preferably defined by the type property of the question. The following detailed example
relating to a preferred embodiment of the present invention is not meant to be limiting,
and statements therein are intended to refer to preferred alternatives only:

Screen Elements Behavior

A. Answer Screen-Elements

Each click event on one of the answers causes seven actions:

I. Changing the screen status of the component (e.g. changing a check-box from
unselected to selected appearance).

2. Changing the Response property which corresponds to the clicked answer. There
are 18 Response properties in the QC, which corresponds to the 18 answers which is
the maximum number of answers the QC may present. This property stores the user’s
response to the answer: text or number in a Textual or Numeric answer, Selected or
Unselected in Multiple or Single option, and Selected, Unselected, or
Selected-Negative in Yes/No question.

3. Registering the Response to the TC’s Virtual Template Record. In addition to
step 2 above, the QC also registers the response in the TC’s Virtual Template Record

in memory. so that when flipping between two templates. during the same session,

24

WO 00/74394 PCT/IL00/00314

the system retains the user selection and responses to the different templates. and can
refresh the QCs correctly (part of the Feed Questions method).

4. Changing the Selected (and/or SelectedNegative) property of the QC. This
property stores the number of answers which are currently selected. and is updated
with each click (e.g. if the answer was unselected. a click causes it 10 be selected. and
in addition sets the Selected property: Selected = Selected + 1). In a Yes/No question,
the Selected property stores the total number of answers that were selected. including
answers which were SelectedNegative. In a Yes/No question. when an answer Is
SelectedNegative. 1t updates the Selected property. as well as the SelectedNegative
property of the QC. which stores the number of answers which were selected
negative.

5. In some cases ~ modifving the display of other screen elements (e.g. selecting a
Single-Option answer. un-selects all other selected answers in the QC).

6. Causes a Click_Generate_Text method of the respective QLC which generates
(or re-generates) text reflecting the selected answers.

7. Causes a Show_PopUp Method of the TDC. if the answer has a continuation (if the
Continuation property corresponding to the selected answer is Null). The QC assigns
the PopUpQuestion. and PopUpAnswer properties of the TC, and activates the TC
Show_PopUp method.

Following is a description of the specific actions and screen behavior in
the ditferent question tvpes. The Click_Generate_Text. and Show_PopUp methods are
activated in all question types. and are therefore not mentioned repeatedly below.

1. Multiple-choice question type

Behavior is standard. If the check-box was selected. a click event causes
it to be unselected. the corresponding Response property is set to Unselected, and the
QC’s Selected property becomes (Selected — 1). If the check-box was unselected. a click
event causes it to become selected. the corresponding Response property is set to
Selected. and assigns (Selected +1) to the QC’s Selected property.

2. Multiple-choice w/ Negation

The behavior is the same as above, but when the Negation answer (the

first answer in the QC) is selected. it un-selects all other check-boxes in the question.

WO 00/74394 PCT/IL00/00314

and accordingly sets their corresponding Response properties to Unselected. Selecting
any other answer in the question, un-selects the Negation answer radio-button, and sets
its Response property to Unselected.

3. Single-option question type

If the answer was unselected, a click causes it to become selected, causes
all other answers to become unselected, sets their corresponding Response properties to
Unselected. and sets the Selected property to 1. If the answer was selected, a click
causes it to become unselected (note: this is a non-standard component behavior), sets
its Response property to Unselected. and sets Selected = 0.

4. Multiple Yes/No

In addition to the 2 standard statuses of the check-boxes (Selected and
Unselected). answers in this type of question have a third status which 1is
‘SelectedNegative’. In this status, the check-box appears empty (unselected), and the
text (the label next to the check-box) appears in Strikethrough font, and red in color.

The Selected property stores the total number of answers selected, and
the SelectedNegative property stores the number of answers which were selected
negative (so the number of answers which were selected positive is = Selected minus
SelectedNegative).

Behavior in response to a click is as follows:

[f the answer was unselected, a click causes the check-box it to become
selected. sets its Response property to Selected, and sets the QC’s Selected property =
Selected +1.

If the answer was selected, a click causes the check-box to become
SelectedNegative: the check-box appears empty, the label font appears in Strikethrough
and Red. The answer’s Response property is set to SelectedNegative, the QC’s Selected
property remains unchanged, and the QC’s SelectedNegative property =
SelectedNegative + 1.

This status of SelectedNegative is similarly achieved if the answer was
unselected and was double-clicked.

If the answer was Selected Negative, a click causes its check-box to

become unselected -- the check-box appears empty, and the label font appears normal

26

WO 00/74394 PCT/IL00/00314

(black. and not in strikethrough). The answer’s Response property is set to unselected,
the QC’s Selected property = (Selected ~1), and the QC’s SelectedNegative property =
(SelectedNegative —1).

3. Yes/No Negation

When the negation option is selected, all other answers are set to
unselected. and the Selected property is set to 1. Selecting any other answer, either as a
Yes (Selected) or No (SelectedNegative), un-selects the Negation option.

6. Numeric Single-Option, & Numeric Single-Option w/ 1** Textual Option

Behaves same as Single-Option. with 5 additions:

Click on a Numeric field causes selection of the Radio-button of this
answer. and triggers all corresponding actions (e.g. unselecting other selected answers).

Click on a Radio-button, moves focus to the Numeric field of this
answer. and selects the content of this field (so that entering a number would
automatically replace the existing contents of this field).

Click on a radio-button, or the numeric field of this answer, causes
erasing all other numeric fields in the QC.

Clicking a radio-button or a numeric field, causes display of a very small
Numeric Keypad underneath it (as shown in the bitmaps above).

[f a number has been entered into one of the numeric fields, clicking on a
radio-button of a different answer, causes copying the contents of this field into the
numeric field of the newly selected answer. and erasing the contents of the previous
numeric field (e.g. if the user entered ‘3 days’, and then clicks ‘weeks’, then the 3 is
copied to the field next to “weeks’ so as to say ‘3 weeks’, and erased from the field next
to "days’).

7. Multiple Numeric Questions

Clicking into one of the short text fields, causes display of a very small
Numeric Keypad underneath it (as shown in the bitmaps above).

8. Graphic Regions Type

Note the X and Y coordinates of the click. Compare these coordinates to
the RegionsBitmap (stored in the property by this name). This bitmap has various

regions. each in a different color. Check color at the clicked coordinates — this is the

27

WO 00/74394 PCT/IL00/00314

region which was clicked. Loop over the XY coordinates(1-12) properties, to check
which of the answers resides in this selected region (i.e. has the same color). The answer
which matches 1s the selected answer, mark the respective Selected(n) property as
selected.

9. Graphic Points Type

Note the X and Y coordinates of the click. Compare these coordinates to
the 12 XY coordinates(1-12) properties, if the click occurred within the proximity of
one of these points. The radius distance to check is user defined in the configurations
options of the system. If an answer resides within this radius from the coordinates of the
click. then it is selected. Mark the respective Selected(n) property as selected, and
display a visible graphical marker (e.g. dot) at these coordinates.

10. Graphic Sketch Type

A click and drag action causes drawing a free-hand style line on the
screen. It this line creates a closed shape, then it is treated as a region. If it is only a
click. or a very short line (i.e. the used intended a click but his hand moved slightly), it
is treated as a dot. Else, it is treated as a line. For each such event, draw the shape and
insert it into the session document. Note the X and Y coordinates of the click. Compare
these coordinates to the 12 XY coordinates(1-12) properties, if the click occurred within
the proximity of one of these points. The radius distance to check is user defined in the
configurations options of the system. If an answer resides within this radius from the
coordinates of the click. then it is selected. Mark the respective Selected(n) property as
selected. and display a visible graphical marker (e.g. dot) at these coordinates. In
addition. select the regions in which the markings occur. as in a simple Graphic Regions
type.

Referring back to Fig. 3. the apparatus of Fig. 3 also preferably
comprises a paging mechanism 305 which preferably allows the user to flip to the
next/previous set of answers which can be displayed at once, assigning the strings of the
set of answers to be viewed from the properties 300 to the screen elements 310, and
storing the user’s selection of the of the current set of answers. and paging-status to
properties 300.

The following detailed example relating to a preferred embodiment of the

28

WO 00/74394 PCT/IL00/00314

present invention is not meant to be limiting. and statements therein are intended to refer
to preterred alternatives only:
Paging Mechanism

The QC supports display of up to 18 answers (except for certain types
which are limited to 6. as specified above). The question record in the database supports
12 answers per question. but the QC supports display of an additional 6 answers, so that
the user may temporarily add answers to the question during the session. Of these 18
questions. a maximum of 6 may be displayed on the screen at once. A paging
mechanism is therefore needed. which manages the Page-Up and Page-Down actions,
which is triggered by click event of the PgDn and PgUp buttons. This mechanism is
designed to provide efficient and database- autonomous activity of the QC, and
functions as follows:

The QC has only 6 sets of screen components for displaying maximum 6
answers at a time (e.g. 6 check-box and 6 answer-labels).

The QC has 18 Answer and 18 Response properties, corresponding to the
potential 18 answers which the QC can support.

The Answer properties hold the text to be displayed in the Answer-labels,
which are displayed next to the check-boxes or radio-buttons (in a similar manner to the
caption property of standard check-boxes or radio-buttons).

The Response properties store the status of the user’s response to that
answer. This is different for different question types — for example: Selected and
Unselected for single-option and multiple-option; Selected, Unselected, and
SelectedNegative for Yes/No question type; and store the Value entered for a Numeric
or Textual question.

Since only 6 out of the potential 18 answers are displayed at a time, the
QC’s PagingStatus property stores the six-answer-set number: when the first set of up to
six answers is displaved, PagingStatus = 1, when answers 7-12 are displayed
PagingStatus =2. and when answers 13-18 are displayed PagingStatus=3.

During the Feed Questions method of the TC, the TC feeds the 12
Answer property of each QC with the answers which that question has (which may be

12 or less answers). From this point onwards, the QC is autonomous from the TC and

29

WO 00/74394 PCT/IL00/00314

from the database. and doesn’t need to access the TC or the database when paging up or
down to display answers other than those currently displaved.

During the initial QC’s Display_Question method. the QC checks the
number of answers in the question. and feeds (up to) first 6 Answer properties to the 6
available Answer-Labels. and sets Visible property of the appropriate number of these
labels to True (so that no ‘blank” answer labels would be displayed). PagingStatus is set
to=1.

When the user clicks to select or deselect answers. or enters numbers or
text to a text-field on the QC. this response is stored in the Response property which
corresponds to this answer.

When the PgDn button is clicked. the system performs the following
actions:

Checks PagingStatus property

Displays the next set of up to 6 answers according to the PagingStatus
property (i.e. if = 1 display answers 7-12, if = 2 display answers 13-18)

Displays the corresponding user responses. based on the corresponding
Response properties (e.g. checks the response properties for the set of answers.which is
being displayed. and sets check-boxes, and radio-buttons as Selected, Unselected, or
SelectedNegative. and/or displays text or numbers in corresponding text-fields in the
QO).

Sets PagingStatus = PagingStatus + |

Checks NumAnswers property, to find out if there is another set of
answer to be displayed beyond the current set (e.g. If PagingStatus now equals 2, and
NumAnswers = 15. this means that the current set of answers displayed is 7-12, and the
question has a total of 135 answers. so there is another set of 3 answers to be displaved).
If so. PgDn button remains Visible = True. If not (this is the last set of answers), then set
PgDn.Visible = False.

When the PgUp button is clicked, the system performs the following
actions:

Checks PagingStatus property

Displays the previous set of 6 answers according to the PagingStatus

WO 00/74394 PCT/IL00/00314

property (1.e. if = 2 display answers 1-6. if = 3 display answers 7-12).

Displays the user responses to these answers. based on the corresponding
Response properties. as explained above.

Sets PagingStatus = PagingStatus — 1

If PagingStatus property > 1 (this is not the first set of answers 1-6), then
PgUp button remains Visible = True. If PagingStatus = 1 (this is the first set of
answers). then set PgUp.Visible = False.

Reference is now made to Fig. 4, which is a simplified block diagram
illustration of a preferred implementation of the template display component 220 of Fig.
2.

The apparatus of Fig. 4 comprises properties 400 which preferably store
all parameters needed for the display of the template (e.g. template name, type, format
parameters. etc.). and ID’s of the questions belonging to the template.

The apparatus of Fig. 4 also preferably comprises a template form 405
which preferably comprises a form (VBA form in the MS-Office implementation) upon
which the questions are displayed. The template form 405 preferably contains a paging
mechanism to flip through sets of questions, when there are more questions than can be
viewed at once.

The apparatus of Fig. 4 also preferably comprises organize screen 410,
which is a method which assesses the number of questions in the template, creates
accordingly sufficient instances of QDC 225 of Fig. 2. calculates the dimensions and
location of the questions according to various parameters, and assigns appropriate
values to these QDCs 225. Some of these calculated values are stored back to properties
400.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preterred alternatives only:

Oreanize Screen method

The Organize Screen method calculates (in a manner described below),
the number of questions which can be displayed on the screen at once, their dimensions

(height & width). location on screen. and logical sequence (which is vital for correct

-

51

WO 00/74394 PCT/IL00/00314

display of questions and text generation). It also includes a *Stretch’ function which
changes the size of the elements on the screen according to resolution and window size.
Preferably. a commercial OCX is bought and used for this purpose. The function takes
into account the fixed minimal size of the QCs. calculates how many fit on the screen,
and then resizes them accordingly.

1. Check window-size and screen resolution. Check properties: TopMargin,

BottomMargin. SideMargin. MinQuestionHeight and MinQuestionWidth.

(8]

. Calculate appropriate Question dimensions, based on the above properties. and
determine the number of questions that fit on the screen.

. Check Language property, and according to the language direction (all languages

(8]

except Hebrew and Arabic are left-to-right), calculate the correct sequence of
questions on the screen. (i.e. fit as many questions as you can across, in the direction
of the language. then next row, etc.).

4. Create sufficient number of QC components, as a control-array, according to the
above.

5. *Position” the QC’s correctly on the screen, by assigning appropriate values to their
dimensions and position properties. Assign their Identity properties, according to
their correct screen sequence (so that they ‘know’ where they are).

The exact size of the question (minimum dimensions), and length of the
question and answer fields both in the database, as well as in the editing mode of the
question. is dependent on how many questions naturally fit on the screen. A baseline
standard may be 600x800 resolution, with 4 questions in a row, and 3 rows on the
screen. and where each question has 6 answers and a Heading. The database and edit
KB fields should be limited accordingly.

Referring back to Fig. 4, the apparatus of Fig. 4 also preferably
comprises show pop-up 415. which preferably comprises a method which is used to
display a pop-up of one or more questions. It calculates the desired screen location of
the pop-up. and then creates positions and sets dimensions of QDCs 225 accordingly.

The following detailed example relating to a preferred embodiment of the

present invention is not meant to be limiting, and statements therein are intended to refer

(U3]
o

WO 00/74394 PCT/IL00/00314

to preferred alternatives only:

Show PopUp method

When an answer is clicked. which has a continuation (i.e. its respective
ContinuationID(n) < > null). its QC assigns its Identity property to the PopUpQuestion
property of the TC. and the number of the answer which triggered the pop-up (1-12) to
the TC's PopUpAnswer property, and its ContinuationID(n) property to the TC’s

PopUpID property. and then activates the TC’s Show_PopUp method.

Method Steps:
1. Look-up the template in the Multi-Dimensional-Array in memory, according to the

PopUplD property.

" Calculate the screen location of the popup, according to the PopUpQuestion and

[£9)

PopUpAnswer properties, and the calculations done in the Organize_Screen method
(screen resolution. language. window size. etc.). and number of questions in the
pop-up template to be displayed. This is done according to the following

considerations (3-6):

(U8]

. A single popup is to be located to the right of the Question triggering the popup if
possible. to its left if not possible (the reverse in right-to-left languages). The
Question label of the popup is at the level of the triggering answer if possible (if the
triggering question is at the bottom of the screen, this may not be possible).

4. A single popup is always at the width of a standard question, but its height is

dependent on the number of answers in it.

. A multiple popup is displayed as a screen which contains the appropriate number of

wn

questions. The header of the screen (appears as the blue stripe at the head of
standard Windows screens), contains in white, the answer which triggered the pop
up. TC needs to create this window, at the right dimensions, according to the
number of questions to be displayed in it.

. Multiple popup is displayed to the left of the triggering answer if possible. Else,

(o)

positioned such that if possible it at least does not cover the triggering question.
7. Create the required number of QCs needed to display the pop-up questions. These
QCs are created as a component array, which continues the array of the QCs in the

basic template. and their Identity property reflects their number in the array. For

33

WO 00/74394 PCT/IL00/00314

example. if there are 12 questions in the basic template, and the popup has 2
questions. then these would be created as QC(13). and QC(14). and their Identity
property would be set to 15 and 14 rcspectively. This sequence is important for the
text generation process.
8. Position questions on the screen according to the considerations mentioned above.
Feed the QC’s their data properties. and activate their Display_Question method.

Reference is now made to Fig. 5, which is a simplified block diagram
illustration of a preferred implementation of the navigation display component 215 of
Fig. 2. The apparatus of Fig. 5 preferably comprises the elements described below.

A toolbar control 500, the structure of which is typically application
dependent. preferably allows the user to navigate to various parts of the customer record
document 115. and activate various dialogue screens, and utilities described below.

File-action dialogues 505 are preferably invoked by corresponding
buttons on the toolbar. which allow the user to create a new customer record 535, open

an existing one 540. save & sign a session 545, or print parts of the customer record

50.

W

Workflow dialogues 510 are preferably invoked by corresponding
buttons on the toolbar. which allow the user to perform various workflow actions such
as. for example: send E-mail 555, log a call 560, schedule an appointment 565, add task
570. request task 575, set reminder 580, and send pager 585.

Section navigation 520 preferably comprises a set of buttons, which jump
to various sections of the customer record documents 115. Their number, sequence,

identity and icons are application dependent.

Session navigation 525 preferably comprises a mechanism made of a
combo-box and 4 buttons which allow the user to jump to previous-sessions, images,
scanned documents, or letters.

Utilities 530 preferably comprises a group of buttons which invoke

various utilities.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting. and statements therein are intended to refer

to preferred alternatives only:

WO 00/74394 PCT/1L00/00314

Navivation Display Component

The Navigation Display Component (NDC) is a Toolbar control. which
allows the user to activate most of the functions needed operate the application. As its
name suggests. its main tunction is to provide an easy method to create-new, open. close
the customer record document 115. and to “jump’ to its various parts. Technically. in the
PC version. it is a simple MS-Word toolbar.

In order to maintain a solid three-tiered architecture, this component is
purely a display control. All the functions called by it, are performed by a different
control. the Navigation Logic Control, which is described below. Retrieval and
manipulation of data access needed for its display (e.g. populating combo-boxes on it),
is handled by the Data Access Component described below. This section will therefore
brietly describe appearance of the buttons in the control.

The exact format of the toolbar is application dependent, data-driven, and
may be modified by the user. The Application record in the knowledge-base holds
various parameters which effect which buttons and options appear on the toolbar etc.

When a record is opened. or is switched to, in Wofd, it triggers the NDC,
which checks if this is a regular Word document, or if it is based on one of the templates
which belong to the application (there may be several applications, e.g. User’s record,
Avurvedic record. etc.). each with their own Word template. So the NDC appears only
when a Customer record (or other similar application) is viewed, but not when other
regular Word files are viewed.

Preferably, the Word Template, or each document, contains a field
*ApplicationID’ which indicates the application to which it belongs. The NDC checks
this field when opening or switching to a Word document, and acts accordingly. The
NDC appears only if it is an application file, and not if it is a regular Word document
(i.e. the tield ApplicationID exists). The buttons on the NDC, their sequence, icons, etc.,
are configured automatically according to the ApplicationID in the document, which
points to the Application record in the knowledge-base that stores this configuration
information.

The buttons on the toolbar are organized in functional groups (i.e. group

(9]
i

WO 00/74394 PCT/IL00/00314

of buttons which share a similar type of function), according to the Microsoft
convention. Following is a description of the buttons in each of these groups.
1. File Action Dialogues:

File Action Dialogues include "New Customer’. *Open Customer’. ‘Sign
& Save'. and "Print’ buttons. These use the standard MS-Office icons. Note: although
these buttons are similar to the standard Word ones. they bring up non-standard
dialogues (described below in the ‘File Action and Workflow Dialogues’ section).
However. this is dependent on the Word document which is currently being viewed.
When a non-application Word file is viewed, NDC does not appear, and these buttons
bring up the standard dialogues.

2. Section Navigation:

Section Navigation includes group of buttons for jumping to various
Sections of the record. A clicked button remains depressed until another button is
pressed. Clicking it while it is pressed does not un-press it. The first button in this group
is pressed by default. when opening a record. The number of buttons in this group, and
their icon and action (i.e. to which section in the document they are associated), is
defined by the Application record in the KB.

When displaying itself, this component checks the Application record in
the knowledge-base database. for the section structure of the record, and displays the
appropriate number buttons. one for each section, in the proper sequence, and with the
bitmap specitied. The TipText property for each button is set to the name of the section.

The first icon in this group is ‘New Session’. Its icon is a ‘page’ with the
star on its left upper corner (using the Access metaphor for a new object - form, table,
etc.).

The last icon in this group is ‘Browse Previous Sessions’. It jumps to the
‘Previous Sessions’ section of the record. The actual navigation between the different
sessions. is performed by the Session Navigation group discussed below. Its icon shows
three overlapping pages representing multiple sessions.

Five sections which frequently exist in customer record documents 115
(and other applications). and for which icons need to be found/prepared are:

1) Status Sheet (includes summary information of the record, problem-list,

WO 00/74394 PCT/IL00/00314

medication list. etc.). Creative Icon should be designed/selected accordingly.
2) Demographics. Icon of face in profile.
3) Habits. Icon of a burning cigarette.
4) Lab Tests. Icon of a table/matrix.
3) Vital-Signs (graph of blood-pressure. temperature. etc.). Icon of ECG.
3. Session Navigation
This group includes three buttons, and to their right, one combo-box. The
buttons allow the user to select navigation of:
1) Scanned documents (icon showing ‘one page’)
2) Images (icon showing ‘lungs in x-ray’)
3) Previous Sessions (icon showing three overlapping pages. symbolizing multiple
session).

The combo box shows a list of hyperlinks to the sessions, or scanned
documents. or images. depending on which button is pushed. This list is calculated by
the TLC. when a customer record document 115 is opened.

When one button is pressed the other two buttons are not pressed. The
default is the ‘Sessions’ button. Pressing one of the buttons causes the ‘Previous
Sessions’ button of the previous group to be pressed.

If the record is configured such that it does not include images or scanned
documents. but only the Word document (which is frequently the case), then the three
buttons do not appear. only the combo-box. In this case, the ‘Previous Session’ button
works directly with the combo-box.

The behavior of this combo-box is not standard. When typing letters into
its search-field (i.e. its text-field), it narrows down the list in the following manner:

Items in which any word begins with this string, not necessarily the first word,
are included in the filtered list (e.g. typing Pain would cause item ‘Chest Pain’ to be
included).

Items which contain several words, and in which the entered string holds the first
letter of several consecutive words in the item (not necessarily all words) are included
(e.g. typing MI would cause the item ‘Myocardial Infarction’ to be included).

The letters in the search string appear. e.g. in bold and dark green in all the items

37

WO 00/74394 PCT/IL00/00314

in the list. so that the user may easily see why they were included.

The response of this mechanism must be instantaneous, and checked against
very large lists (100.000 items). It will be used in various places in the system, and
therefore must be technically sound.

4. Write-Session Navigation

The Write-Session Navigation group deals with actions required when
writing a new session. It includes up to 5 buttons. and a combo-box. The combo-box
displays a list of all available templates, for the user to select which template to work
with. The buttons allow the user to select a sub template if this template has sub
templates.

The combo displays at the top of the list, above a separating line, the
templates previously used by this customer. or templates which appear in his current
Problem List (which of these options this is defined in the Options configuration).
Below the separating line the rest of the templates are listed alphabetically (this is
similar to the way recently used fonts appear in the font combo-box in Word). Selecting
from the list is done using the mechanism described above for the Session combo.

Templates may exist with or without sub-templates. If the selected
template is without sub-templates, then the buttons are graved-out. The number,
sequence. identity and icons of the sub-templates is application dependent. and template
independent (i.e. all templates in an application which have sub-templates will have the
same sub-templates: different applications may support different sub-templates). This
information about the sub-templates is stored in the Application record in the KB. The
template record indicates if it has sub-templates, but not their name, icon, etc. Thus the
NDC checks the application record in order to configure the buttons correctly, and the
template record in order to decide if the buttons should be grayed-out or not.

When there are sub-templates, one button is always pressed. Pressing one
button releases a second button. Clicking a pressed button, does not release it.

When a template with sub-templates, is opened for the first time in a
session. the button for the first sub-template is pressed. When returning to a template
visited before in the same session (i.e. flipping back and forth between templates), the

template opens on its last-viewed sub-template.

WO 00/74394 PCT/IL00/00314

When switching to a template not previously visited, the template opens
on the same sub-template as the sub-template viewed in the previous template (e.g.
when viewing the Objective sub-template of the Fever template, and switching to Cough
template for the first time. it opens on its Objective sub-template).

The link between this mechanism and both the templates being used. as
well as the location in the Session document being viewed. is handled by the Navigation
Logic Component (NLC). described later.

5. Insert Object

The Insert Object group includes only one control, a combo-button (ie.a
button. with a small pull-down arrow next to it, same at the standard Font Color button
in Word). When the pull-down arrow is pressed, a pull down menu appears with the
Icons of the different objects which may be inserted into the current session document,
which include Picture, Bitmap, Audio, Video. Once a selection is clicked, it performs
the action of inserting the object at the location of the cursor, and becomes the default
button image. so that future insertions of the same type of object will require only one
click.

6. Workflow Actions

The Workflow Actions group supports actions, represented by respective
buttons. which support workflow issues relating to the customer whose record is
currently being viewed. These buttons include: Call. Send E-Mail, Schedule
Appointment. Add Task. Request Task. Set Reminder, Send Pager.

The icons for the first five buttons (Call, E-mail, Appointment, Task, and
Request Task), are the standard Outlook icons. The icons for Reminder and Pager needs
to be found/designed (for Pager — an icon showing a pager ‘beeping’ from its right upper
corner. for Alert — e.g., a knot on a finger). Clicking each of these buttons activates
respective workflow dialogue screens, which are described below.

7. Utilities

The Utilities group of buttons on the toolbar relates to general actions in
the record. i.e. actions which do not relate to the currently open record (the actions are
described in the TLC section). These buttons include:

1) Retference (icon shows books)

WO 00/74394 PCT/IL00/00314
2) Help (standard Help icon)
3) Options (icon: maybe showing tabs)

4) Knowledge-base Editor (VB’s toolbox icon)

File Action and Workflow Dialogues

Activated from buttons on the TDC are 4 File Action. and 7 Workflow
dialogue-screens. which are described in this section. These dialogues are similar to the
office standard ones. but with some modifications which are specified here.

The File-Actions dialogues are similar to the standard Word dialogues,
but with the differences mentioned below. The Workflow dialogues are created using
MS-Outlook Forms, using Outlook’s Object Model, and VB-Script, and should require
very little programming. The following ‘screens’ are preferably created using the
MS-Outlook forms, so that they can be easily modified by users without any
programming.

This section describes the display of the dialogues and not their actions.
The tunctions carried out by the Workflow and File Action dialogues, are handled by
the Workflow Module. and the Navigation Logic Component respectively.

I. Create New Record Dialogue

Clicking the "New’ icon on the NDC. brings up a Yes/No/Cancel
Message-Box “Create a new Customer Record?” Click ‘No’ to create a regular Word
document”™. Otherwise. there wouldn’t be a simple way to create a regular Word
document while working on Customer one.

I1. Open-Record Dialogue

Shows a list of customers, organized in ‘folders’, using MS metaphor for
directory folders, but in truth reflecting the category the customers belong to in the
database (DB).

The ‘Advanced’ button leads to a simple search screen, similar to the one
on Word. but in the ‘Property’ field, there is in additional to the Word fields, also a list
of all the user defined fields.

The mail list of files displayed includes the following fields: Name, ID,

Age. Sex. Provider. Modified (date last modified).

40

4 PCT/11.00/00314
WO 00/7439

The list-display mechanism is exactly as in the standard dialogue,
allowing sorting by clicking the head of a column (e.g. sort by date last modified by
clicking on the head of that column).

The filtering mechanism is slightly different. Instead of the ‘File’ and
"Text or Property” search fields. and the ‘File type’ combo-box, are two fields: a ‘Filter
by" combo-box. and a *Contains" Combo-box. The ‘Filter By’ combo, includes all the
fields displaved in the list. plus a “Full text search’ option (the first option and default is
"Name’). The *Contains’ combo is empty. and the user types the search string into it.
The combo list shows several previous entries (similar to the standard ‘Text” combo).
When no one folder is open. all folders are searched and displayed. The ‘Last Modified’
combo remains as is.

I11. Sign Session Dialogue

A simple dialogue which shows 4 radio-button options, listed below, and

OK/Cancel buttons. The first option is the default.

1) Save and sign session, close record.

2) Save session without signing, close record.

3) Save and sign session, don’t close record.

4) Save session without signing, don’t close record.
IV. Print Dialogue

Displays a simple OK/Cancel dialogue which presents the following
single-option selections. indicating what should be printed. One of the options is
selected by default. depending on where in the record the Print button was pressed:

1) Current session — the default when clicked from current session view.

2) Session, prescriptions, letters, orders

3) Prescription — the default when

4) Scanned document — default when viewing attached PDF file

5) Selection — when part of the record has been selected

6) Entire record without images — the default when not any of the above

7) Entire record including images

8) Pages to

V. Send E-Mail

41

WO 00/74394
PCT/IL00/00314

The basic dialogue is like the standard one. However, the ‘Select Names’
dialogue which pops-up when clicking the ‘To...” or the ‘Cc...” buttons, is slightly
different. The combo-box at its upper right hand corner (‘show names from”) should
have several options which effect the list of names displayed: (a) Medical Team — shows
a list of all caregivers in the local clinic. (b) Consultants — shows remote caregivers, and
(c)C ontacts/Outlook Phonebook — the ‘regular’ options. The default is ‘Medical Team’.
At the head of all three lists (or at least the first two) is the customer, preferably in bold.

A combo box “Attach:” has the following options: Attach entire record,
Attach last encounter. Attach selection. Attach letter. or Hyperlink to record.

Underneath. there are two ‘Attach Options’ check-boxes: ‘Include
scanned documents’. and ‘Include embedded objects’.

V1. Call

Places a call to the customer using the standard Outlook dialogue, exactly
as it appears and functions when placing a call from the Contacts screen in outlook
(including the built-in combo which allows quick glance at the different numbers the
contact has, the Redial option which shows last numbers called, and the dialogue which
pops-up if you click the button itself).

The only difference is that on the ‘New Call’ dialogue, if the ‘Create new
Journal entry when starting call” option is selected (this is the default), then rather than
starting an Outlook Journal entry. it starts a new Session in the Customer Record, and
opens on a Template called “Phone Session’ (the knowledge-base will have a specific
template designed for phone sessions).

VII. Schedule Appointment

The functionality is based on Outlook’s Appointment Scheduling screen,
but with the following differences:

1. The meeting to be scheduled is with the customer, and with the User, so there is no
need to select these participants.

5 With the standard dialogue. it is necessary to send an e-mail invitation, which is very
cumbersome. There should be no error message if there are no e-mails for
participants, just a check-box which is empty on default, and which gives an option

to send an invitation.

WO 00/74394 PCT/IL00/00314

3. Assigning resources: the list of resources should be separate (when you are looking
for a resource) it should not be with all the other contacts. There should be an easy
way to add a resource. And, as above, a resource may not have an e-mail (e.g., a
table and a meeting-room usually do not).

VIIIL. Add Task

Unlike the other Workflow actions, this one works not only with outlook,
but also with a List in the customer Word document record. This list is handled using
the List tvpe QC mechanisms. and has in addition to the Subject column, additional
columns: Start date (automatically records the date the task is initiated), due date,
priority. and "In charge” which is described in the next section.

1. Task Subject should include the Customer Name followed by a colon, *:".

2. A combo-box. next to the subject field, allows the user to select from a list of
frequently used customer tasks. Selecting an item adds it to end of the Task Subject
(e.g. “John Doe: Pending lab results”). The user may obviously also modify the
Subject field directly (and if he does so, it doesn’t effect the combo).

This combo-box appears minimized next to the Subject line: its width is such that

(VB]

only the arrow-down is visible. The width of the pull down is much wider so that it
can contain 5-6 words. On ‘Change’ event in the combo, the subject line changes
accordingly.

4. Due Date

i

Priority

6. Check-box: ‘Update my general Task List’. If it is clicked then the task is created
and stored to my Outlook Task list. as well as to the Customer’s Record Task List. If
not. it is recorded only in the Customer record.

7. When right clicking on the combo, an option in the popup-menu is ‘Edit List’,
which brings up a simple dialogue which allows the user to add items or remove
items from the list.

8. In outlook. in tasks. create ‘Customer Tasks’, which is used to see the Tasks without-

the reminders (i.e. filters for Categories = CPR, but <> Reminder).

IX. Request Task

The goal of this form is to allow the user to request a task from the

43

WO 00/74394 PCT/IL00/00314

customer or other team members. It is generally very similar to the Add Task form

described above. with the following differences:

I. There is an additional ‘To..."” button and field before the other fields mentioned in
the previous section. When pressed the ‘To...” button displays the same screen
displayed by the E-Mail dialogue described above (with a list of other care-givers
and the customer at the top of the list).

2. The person to whom the task was assigned, appears in the ‘In Charge’ column, in the
copy of the task which appears in the customer record (described in the previous
section).

X. Set Reminder

The reminder mechanism. is technically a Task with its Reminder
property set on. and to the date the reminder is required. Its Category is set to

‘Reminder’. so that a different view can be designed for viewing regular tasks, as

opposed to Reminders (which usually do not need to be viewed).

It is similar to the Add Task form, with the following differences:
1. Below the subject field and frequently selected tasks combo-box, there are date and

time fields.

9

. No check-box option (‘Update my general Task List’), since the reminder is not
noted in the customer record, but only to outlook. Also, no ‘Due Date’
5. Category is set automatically to ‘Reminder’.

XI. Send Pager

Similar dialogue to the Send E-mail dialogue. All this does is send a
pager to "E-Mail Enabled” Pagers (i.e. pagers which have an e-mail address, such as
Skytel in the US). The ‘To..." lists (Local Staff, Consultants, and All) display only
people which have e-mail pagers (create a user defined field in Outlook called ‘Pager’
Y/N. and filter according to it).

Reference is now made to Fig. 6, which is a simplified block diagram
illustration of a preferred implementation of the question logic component 240 of Fig. 2.
It will be appreciated by persons skilled in the art that the apparatus of Fig. 6 is in some
respects central to a preferred embodiment of the present invention. As indicated in Fig.

2. the output text generation mechanism 25 of Fig. 2 preferably comprises muitiple

44

WO 00/74394 PCT/IL00/00314

instances of the question logic component 240, which is the apparatus described in the
present arawing in a preferred implementation.

The apparatus of Fig. 6 preferably comprises warm-up 605, which
preferably comprises a method performed by a question logic component 240 of Fig. 2
once. prior to the actual text-generation. and in preparation for it, so that calculations as
to which sentences can be connected, will not slow down the text generation process. A
preferred implementation of the warm-up 6035 is described in reference to F ig. 12.

The apparatus of Fig. 6 also preferably comprises generate text 610,
which preferably comprises a complex mechanism, by which the question logic
components 240 of Fig. 2 generate sentences 630, generate branches 635 and join
sentences 640: a preferred implementation of this process is further described in Figs. 11
- 17B.

The apparatus of Fig. 6 also preferably comprises analyze text 615,
which preferably implements a process by which text which was generated by the
text-generation mechanisms (e.g. text of previous sessions), is analyzed into the
questions and answers which caused its generation. A preferred embodiment of analyze
text 615 is described below with reference to F ig. 19,

The apparatus of Fig. 6 also preferably comprises object-model
management 620, which enables the decision support mechanism 50 of Fig. 1A. This
apparatus preferably comprises procedures and structure which allow the application to
create 645 and populate 650 an object-model which reflects the structure of the
knowledge-base. so that queries alerts and conditions may be written that manipulate the
customer record document 115 content programmatically. A preferred embodiment of
object model management 620 is described below with reference to Figs. 20A and 20B.

The apparatus of Fig. 6 also preferably comprises KB editor 625, which
is preferably comprised in the no-programming KB-editor mechanism 45 of Fig. 1A,
The KB editor 620 preferably comprises procedures and structure which allow the
application to create and edit questions, as part of the general knowledge-base editing
process. A preferred embodiment of the knowledge-base (KB) editor 625 of the question
logic component is described below with reference to Fig. 26, with special reference to

question editor 2605 of Fig. 26. and its dependent elements 2620, 2625, 2630, 2635, and

45

0 00/74394 PCT/TL00/00314
Wi

2640 of Fig 26.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Question Logic Control

Introduction

Preferably. behind each Question Display Component (QDC), and
corresponding to it. is a Question Logic Component (QLC) unit which performs the
"magic’ of generating the text according to the user’s selections (which the user made on
the corresponding QDC). The text it generates is dependent on parameters which it
receives (e.g. Tvpe. Language. etc.).

In addition to generating its own sentence. it also works in cooperation
with neighboring QLCs, to determine if and how the sentences can be combined into
compound sentences. In addition, it is capable of analyzing text previously generated by
the system. to determine which answers to which questions caused the generation of this
text.

It generates text in multiple languages, including languages which are
right-to-left as well as left-to-right in their direction. In Edit mode, it modifies the
question. its answers and other properties (in the knowledge base), according to the

user's selection. The following sections describe the structure and function of this

control.

Properties

Basic Properties

. Question ID Short Optional

2. QuestionType Byte Currently about 10 types. in the future, not more
than 99.

3. Question 20 Text of the question

4. QuestionGroup Short The Group to which this question belongs. Used for
the Check_Redundancy method.

5. Answer(1-18) 25 12 fields with the text of the answers

6. Subject 25 Used for comparing sentences to check if they may

46

WO 00/74394
7. Prefix
8. Suffix

Continuation Related

9. ContinuationType

10. Continuation(1-12)

1. ContinuationID(1-12) Short

Connection Related

12. ConnectType

13. ConnectString

Language Related

Language
LanguageDirection
TrunkLocation
SubjectLocation
ConnectingWord

Output Format

14. GeneralLayout
15. InsertFields

16. AnswerLayout

17. QuestionsLayout

18. CommaSeperated

Byte

Bool

Byte

Byte
Bool
Bool
Bool

Bool

PCT/IL00/00314

be joined. and to generate the SubjectlessPrefix and
SubjectlessSentence.
Prefix string to used to generate the sentence

Suffix string to used to generate the sentence

Options: InsertBefore, InsertAfter. Replace,
Independent, ForceJoin, StringJoin, StringTruncate
Indicates if the answer’s continuation is a single
question, or several questions (a ‘template’).

ID of the question or the template which is the

continuation

Options: Unconnected, ConnectString,
TruncateString, or ForceConnect

A string used to force connection between two
sentences, either adding it between them, or

subtracting it from the second sentence.

Options: RightToLeft, LeftToRight
Options: TrunkBeforeAnswers, TrunkAfterAnswers
Options: SubjectAtBeginning, SubjectAtEnd

Includes spaces before and after word

Options: ParagraphStyle, FormStyle

Options: ~ NextToQuestion, = TabFromQuestion,
Hanginglndent, OnNewLine, Table
Options: OnSameLine, OnSeperateLines

T/F

47

PCT/IL00/00314

WO 00/74394
19. GroupHeaderBold /F
20. QuestionBold T/F
21. AnswersBold T/F
22. HeaderNewLine T/F

Question-Type Related
Numeric

23. OneUnit

24. TwoUnits

25. PleuralUnits
26. SeveralWord
Yes/No

27. NegPrefix

28. NegConnector
29. NegConnectWord
Mixed

30. Type(1-6)
Graphic

-

31 BackgroundBitmap

| 98]
[N]

- RegionsBitmap
33. Xcoordinate(I-IZ)

34. Ycoordinate(1-1 2)

LI

Gender Dependant

33. FemPrefix

36. FemSubject

37. FemNegPrefix

38. FemNegConnector

Internal TG Parameters

39. NumQuestions Number of questions on screen. Calculated and fed

by TC.

48

WO 00/74394

40.

41.

45.

46.

47.

48.

NumAnswers

Selected

. SelectedNegative

. ConnectingWord

. Identity

BeforeMe

AfterMe

SentenceLeader

ActiveSegments

PCT/1L00/00314

Number of answers in question. Calculated and fed
by TC.

Number of answers selected by the user (including
SelectedNegative in Y/N questions). Updated with
each click event.

Number of answers SelectedNegative in Yes/No
questions. Updated with each click event.

Language (& sometimes Question) dependant.
Calculated during WarmUp by the QC.

The sequence-number of the QC on the screen,
which is also identical to the number of the QC’s
array number (e.g. the first QC is QC(0), and his
Identity property = 0). Calculated by TC during
Organize Screen.

Number of QCs before this QC (me), which belong

to the same potential sentence (i.e. have an identical
Subject). Calculated by the QC during WarmUp.
Number of QCs after this QC (me), which belong to
the same potential sentence (i.e. have an identical
Subject). Calculated by the QC during WarmUp.
Identity number of the QC which ‘leads’ the
sentence to which this QC belongs (i.e. the first QC
in ‘my’ sentence in which one or more answers is
selected). This indicates to the QC if it is the leader
and therefore responsible for creating the compound
sentence, or if not. to which QC it needs to ‘report’
changes in its status. Default = 0. Updated with each
click.

Number of QCs which belong to same sentence, and
in which there is currently one or more answers

selected. Updated with each click.

49

PCT/IL00/00314

WO 00/74394

49. ReferredByv Identity number of the QC. which this QC is a
continuation of. Assigned by TC during
Show_PopUp.

50. SentenceNumber Number of the sentence in text created by the

template. Used for text analysis.

TG Receptacles

31. SubjectlessPrefix Calculated during WarmUp, used for connecting
sentences.
52. SubjectlessSentence Contains the text of the sentence. without its

subject, so its prepared to be connected to0 a previous
sentence with a similar subject.
53. SimpleSentence The sentence generated directly from the question.
54. FinalSentence Contains the compound sentence, made of several

simple sentences joined.

Reference is now made to Fig. 7, which is a simplified block diagram
illustration of a preferred implementation of the template logic component 235 of Fig. 2.
The apparatus of Fig. 7 preferably comprises the elements described below.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Template Logic Control

Introduction

The Template Logic Component (TLC) works together with one or more

Question Components (QCs), to display a template on the screen. store the user

responses and generate the corresponding text. Its main functions are:

I. Retrieve the knowledge-base data of the template, Which are stored in several
different database tables. and unites them in memory into a ‘virtual template record’
multi-dimensional array (Read_ DB method).

2. Creates sufficient number instances of QC units required to display the questions in

the template.

0/74394 PCT/IL00/00314
WO 0

. Organizes the QCs on the screen, by means of calculating and feeding them their

(¥}

appropriate dimensions. location. and Sequence properties, depending primarily on
the screen resolution. window size. and language (Organize Screen method).
4. Organizes and feeds the data from the knowledge-base to the QCs, by assigning

values to their various properties (Feed_Questions method).

n

While retrieving data from the knowledge-base, it retrieves data in the appropriate
language (from the appropriate language-table), thereby enabling the multi-lingual
capability of the system.

6. Presents to the user a list of templates which exist in the knowledge-base, with
several filtering mechanisms, which allow the user to select the desired template.

7. When switching between templates, it stores in memory the data of the various
templates currently in use., as well as the user responses in these templates,
facilitating rapid switching between templates.

The following sections describe in detai] these methods and functions.

Properties

Basic Properties

. TemplateID Short

2. TemplateType Byte

3. QuestionID(1-12) Short

4. EditMode Bool Default = False. When = True, the template
functions in Edit mode, allowing editing of the
template.

5. Language Byte Options: English, French, German, Italian, Spanish,

Hebrew, Arabic, Hindu, Japanese, Portuguese,
Russian. Default = English.
6. VirtualTemplateRec- Array A large multi-dimensional-array, which stores the
ord data from all of the templates currently active in the
current customer-session.
7. Generated Text Memo QCs deliver the generated text to this field, when
not functioning in DeliverToWord mode.

8. ReferenceHyperlink Short Hyperlink to a Reference document relevant to this

-

51

WO 0

0/74394

Pop-Up

)
10

11

Di

l

1o

15.
16.

PopUpID
. PopUpQuestion

. PopUpAnswer

splay

. NumQuestions

. ManualNumQuestion Boo] Default =

S

Short

Byte

Byte

Byte

. NumQuestionsHoriz Byte

NumQuestionsVert

TopMargin

BottomMargin

. SideMargin

. MinQuestionWidth
- MinQuestionHeight

. ScreenResolution

. WindowSize

Byte

PCT/IL00/00314

template (or location within a larger reference

document)

Stores the ID of the popup Questiony/s

Stores the number of Question which has invoked a
pop-up (used by the QC to communicate with the
TC)

Stores the number of Answer which has invoked a
pop-up (used by the QC to communicate with the
TC)

Calculated (or manually entered) number of
questions on the screen

F. When T, disables the automatic
calculation of number of questions that fit on screen

For manual assignment of number of questions to be
on the screen

displayed (when

ManualNquuestions=T)

For setting the margins of the area in which the TC

should fit the questions,

Defines the minima] question width
Defines the minimal question height
Maybe optional, if they can be automatically
detected by the control.

Maybe optional, if they can be automatically

detected by the control.

W
o

PCT/IL00/00314

WO 00/74394
Database
23. KnowledgeDB 50 Name (including path) of the knowledge-base
database.
24. CustomerDB 50 Name (including path) of the customer database.
25, TypeDB(KB) Byte Database type for KB. Options: Access. SQL

26. TypeDB(Customer) Byte Database type for Customer database. Options:
Access, SQL, Oracle.

Performance Tuning

27. SpeedVsMemory Bool Options: F asterResponse, MemoryEfficient
List Of Templates

28. FilterByCategories

29. Category

Referring back to F ig. 7, the template virtual record 700 preferably
comprises a multi-dimensional array, which the template logic component 235 of Fig. 2
preferably creates by collecting all data related to the template, although in the
knowledge-base database 140 of F ig. 1B it is stored in multiple tables. All the actions
performed by the template logic component 235 are based on this structure

Read knowledge-base 705 preferably implements a method which
populates the template virtual record 700 from the knowledge-base database 140 of F ig.
1B

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Read KB method

The data for each template, includes template-data, as well as data of the
questions contained in the template. and their answers, and is stored in the database in
four different tables: Templates. QuestionAnswers. Questions, Answers. The structure
of these tables is specified in the Database section in this document. Depending on the

language. the correct set of tables is opened, for that language.

WO 00/74394 PCT/IL00/00314

Upon opening a template, as well as upon other events, the TC retrieves
the appropriate records from these various tables, and constructs in the memory a
*Virtual Template Record® in a multi-dimensional array. This array may hold data of
several templates at once (this is just another dimension in the array). The TDC *feeds’
the data from this virtual record to the different QDCs on the screen during the
Feed Questions method described in the next section.

This method should probably function as a separate Windows task, so as
to allow reading the data in the background, and allow fine-tuning for maximizing
performance.

Method Steps:

1. Open the database according to the database name and path stored in KnowledgeDB
property. and the database type (Access, MS-SQL Server, or Oracle) stored in
TypeDB(KB) property.

o

Check the Language property, and accordingly open the correct tables in the
database. (The database should contain a duplicate set of tables for each language
supported. e.g. Questions_English, Questions_French, etc.) These tables are
identical in structure and in the ID of their records.

Open the Template table (in the appropriate language), and find the desired

(U8

Template according to your TemplatelD property.

4. Read the template data. and feed into the properties in the Template properties.

5. Store the template data into the a multi-dimensional-array (into the 2™ dimension.
The first dimension is for storing multiple templates simultaneously).

6. Read the 12 QuestionID fields in the Template record, and retrieve from the
QuestionAnswers table (it is language independent since it only contains IDs), the
corresponding records.

7. For each QuestionAnswers record read, retrieve the corresponding Question record
from the Questions table (in the appropriate language). Load related to the question
into the multi-dimensional-array (Srd dimension).

8. Also for each QuestionAnswers record read. read the (up to) 12 Answer records,
from the (language dependent) Answers table. according to the 12 AnswerlD fields

in the QuestionAnswers record. In this way load the data on the answers of each of

54

WO 00/74394 PCT/IL00/00314

the questions. into the multi-dimensional-array (4"dimension).

9. Read and store to the Array Popup questions. using the following steps 10-13:

10.Go over all of the questions and their answers. For each answer check if it has a
continuation. If so:

I 1.Find out if it is a single or multiple popup (i.e. are there one or more questions
which popup at once). Note: if a single popup question has itself a popup
continuation. it is still a single popup, not multiple. This is indicated by the
Continuation(n) property of the QC.

12.1f Single popup. then the respective ContinuationID(n) stores the ID of the question
which needs to popup. Read from the database the data of this question. This single
question is now handled as if it was a template, which contains only one question.
Create in the Multi-Dimensional-Array a ‘record’ of this temporary ‘template’, and
store the question details in this ‘template’

13.If Multiple popup. then the ContinuationID(n) stores the ID of the Template which
needs to popup. From a content perspective, this is part of the original template, but
from a database perspective it is stored as a separate template. Retrieve from the
database this template and store it to the Array (steps 3-8 above). Note: the array is
capable of storing multiple templates.

14.1f the tables in the selected Language are not found, or records in those tables are
missing for some reason, the system sends an error message: “Selected language not
found!™ and immediately switches to English tables and displays the template in
English.

15.In order to achieve maximal speed in displaying the questions on the screen, and in
text-generation, the sequence of reading data from database is as follows:

1) Data related only to Questions visible on the screen, and the (up to) 6 Answers
visible. not including text-generation related data.

2) Feeding this data to questions (Feed Questions method), and QCs performing
their Display_Question method.

3) Read text-generation related data related to the questions on the screen.

4) Read data related to questions in the template which are not visible (e.g. next 6

questions if only 6 were displayed initially), and of answers which were not visible,

wn
W

WO 00/74394 PCT/IL00/00314

and data of all pop-up questions related to this template.

5) Read data of templates which belong to the same TemplateCluster (e.g. other
SOAP templates ot the same ‘Problem”).

6) Read data of templates which appear on the customer’s “Problem-List™ (i.e. have
been used tor this customer before. and therefore have a high probability of being
called again).

Referring back to Fig. 7. feed questions 710 preferably implements a
method which feeds the data relevant to each question in the template to the individual
respective question display component 225 and question logic component 240 units of
Fig. 2.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Feed_Questions method

This method feeds data from the Virtual Template Record (VTR) to the

properties of the QDCs on the screen. In cases where the user flips back and forth

between several templates during the same session, then this method also recalls the

user’s responses to this template last time he visited it. which are also stored in the

VTR. and feeds them as well to the QCs.

Method Steps:

1. Feed data to properties of all QCs, data which is same for all: Language,
LanguageDirection, and presentation preferences, etc. If these properties have
already been set, and have not been modified since (e.g. when flipping back and

forth between templates), then this step is skipped.

[\

. Feed data specific to each of the QCs.

. Turn Visible property = True, for all the QCs which in this specific template are not

(98]

empty.
4. Activate the Display_Question method of each of the QCs on the screen.
[t this template has been visited before in this session, which is
preferably indicated by an internal indicator, then Check for each answer to each

question. if there is a previous response. and if so assign this response to the Response

56

WO 00/74394 PCT/IL00/00314

property of the respective QC as well.

In this case there is no need to regenerate the text, because the generated
text already exists in the Session document, only the on-screen selections need to be
reproduced.

Referring back to Fig. 7. check redundancy 715 preferably implements a
method by which the template logic component 235 of Fig. 2 compares user responses
to one template. and synchronizes it with identical (or similar) questions in other
templates. so that the user will not have to repeat his answer there again

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Check Redundancv method

The goal of this method is to compare and equalize the user’s selections
in the different templates which are currently active. Typically, the user uses more than
one template in a session, and very frequently, an answer which has been selected in one
template. appears in other templates. The goal is therefore, to have the system
automatically ‘select” answers which appear in the template which is being displayed,
and which the user already selected elsewhere.

The method is based on the fact that the templates are all composed from
the same “bank™ questions and answers, and so the identity of the answer can be easily
verified. The difficulty is that the same answer may appear in different questions,
sometimes with the same general meaning (e.g. Associated Symptoms > Fever, and
Presenting Symptoms - Fever), but sometimes have completely different meanings
(e.g. Pain Began Before 2 1 Hour, and Pain Lasted = 1 Hour).

The solution lies in the fact that questions in the KB are grouped
according to their topic. such that all questions which relate to generally the same topic
are grouped together. The Check Redundancy method therefore works as follows:
Method Steps:

1. Create a temporary Multi-Dim Array. The purpose of it is to store the identity and
other details ot answers which have been selected in other templates, so that they

can be compared to the current template and its continuation templates.

57

WO 00/74394 PCT/IL00/00314

2. Loop over all templates which have been used in this session. For each template,
find the answers which have been selected by the user (i.e. Response(n) property =
True).

. For each selected answer. copy its AnswerlD to the Array. Look-up the question to

(U¥]

which it belongs. and copy its QuestionGroup property to the Arrav. next to the
AnswerlD.

4. For each selected answer above, check if its question group exists in one of the
questions in the current template. If so. check if the selected answer is included in
that question in the current template. (Note: this is all done in the Template Virtual
Record which stores the entire template in memory).

5. If so. mark it selected (its Response(n) property = True) in the Template Virtual
Record. Feed this updated property also to the appropriate QC, and activate the
Click_Generate_Text method on it.

In a similar manner, loop through the answers and questions of the
templates which represent pop-up questions, and pop-up group-of-questions associated
with the current template (technically speaking, they are stored and handled as separate
‘templates’). The use of the temporary array suggested in step 1, is to ensure
performance, such that first the visible questions are compared, and only then the
pop-up questions are done.

Referring back to Fig. 7, full generate text 720 preferably implements a
method of generating the entire text of the template at once, as opposed to generating it
in small increments, in response to a user click. This method is used for example, when
translating a session from one language to another

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preterred alternatives only:

Full Generate Text

The Full Generate Text method is used by the TC to invoke full

generation of the entire text of the template, not in response to a user’s click, but rather
on the system’s initiative (e.g. when switching to a different language there is a need to

regenerate the entire text in a different language).

58

WO 00/74394 PCT/IL00/00314

Method Steps:

1. Perform the WarmUp method. if it has not be performed before.

(39

. Activate the Generate_Simple_Sentence method on all of the QCs in the template
(their array numbers are 0 to NumQuestions). This causes each QC to generate its
own sentence. as well as to activate the Generate_Branch method which generates
the text of continuation questions they may have.

Loop through the QCs. Find out and mark the QCs which are actively heading

(9]

sentences. using the following steps (for each QC):

4. If this is a head of a potential Simpile sentence (BeforeMe = 0 and AfterMe = 0), and
some answers have been selected (Selected > 0), than this is an active head of a
simple sentence. Assign its Identity to its SentenceLeader property.

5. If this is a head of a potential Compound sentence (BeforeMe = 0, and AfterMe > 0),
than go over this QC, and the next <AfterMe> QCs, to find out which of them, if
any 1s the first one in the sentence which is active (his Selected is > 0), and therefore
is at the head of the sentence. Mark it as sentence leader (set its SentenceLeader = its
Identity).

6. Assign the same number to the SentenceLeader property of all the next QCs which
belong to this sentence (so that they too ‘know’ who they ‘belong’ to).

7. Move to the next QC. and repeat above actions. until the last QC is reached.

8. Calculate and assign the proper values to the ActiveSegments property of the QCs
which are actively leading sentences (this is done since the ActiveSegments is
needed for the Connect method, which is used in the next step):

9. Loop through the QCs finding the QCs which are leading sentences (SentenceLeader
= [dentity).

10.For each of them, loop over the next <AfterMe> QCs after them

11.Count the number of QCs in which the Selected property > 0. Assign this number to
their ActiveSegments. (This is the number of QCs ‘belonging’ to their sentence,
which are currently active).

Activate the Connect method on the QCs which are actively heading
sentences (their SentenceLeader property = their Identity property).

Referring back to Fig. 7. voice recognition 725 preferably implements a

()]
O

WO 00/74394 PCT/IL00/00314

method of enabling voice recognition selections from questions and templates displayed
on the screen.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Voice Recognition Support

The Voice_Feed method and the Voice_Click method are methods
which connect the TC and QC to a voice recognition engine, allowing the user to make
voice selections from the options available on the screen.

Preterably, this is done with a commercial voice recognition OCX which
can be bought without a royalty payment per user, and which preferably also supports
standard packages such as IBM. Dragon (which has a module that allows it to work
trom within Word).

Voice_Feed method

The Voice_Feed method, creates a list of all the options the user may
select by voice on the currently viewed screen (i.e. template), and transfers this list to
the Voice engine. through the appropriate API. This method is activated whenever a
different template is being displayed, i.e. by the Feed_Questions method. Technically,
this method performs the following steps:

1. Creates an array which will store all of the recognizable items for this screen. This
array contains a list of the meaningful text-items to be recognized, which will be fed
to the Voice engine in order to limit its search vocabulary. Identification parameters,
such as Identity property of the QC it belongs to, and answer number within this QC
are stored next to each item in the array. These parameters are used by the

Voice_Click method described below.

g]

. Loops in memory on the Virtual Template Record array, and enters all questions,
and their answers in the template, and writes them into the flat array. This includes
first level questions (i.e. not pop-ups).

. The goal of the next steps is to also include in the search list answers to immediate

[U¥]

pop-up questions which are embedded into the branching sentence. For example if

the continuation question for an answer ‘Hand’ is ‘Left’, then it would make sense

60

WO 00/74394 PCT/1L00/00314

to allow a selection of a string ‘Left hand’.

4. For each answer. check for pop-up continuations (i.e. for check if its Continuation

ID <> null).

n

. If so. check its continuation question/s fit into the same sentence (i.e. their

Continuation property = ForceJoin. ConnectString or TruncateString). If so:

(@)

. Add their answers to the list.

~1

. Generate and add to the list the combined string of the continuation with the answer
that triggered it (e.g. -left hand’” as a string composed of “left” and ‘hand’), as
follows:

*[f InsertBefore. join continuation answer before triggering answer. and add to
flat array.

*[f InsertAfter, join continuation answer after triggering answer, and add to flat
array.

*[f Replace then simply add the continuation answers to the flat array, as is.

8. Add to the list the constant list of ‘navigation commands’, for actions which can be
performed by the system. This list is mostly a reflection of the actions which can be
done through the Navigation Toolbar and the Write Session components.

9. Submit the list of items in the array to the Voice Recognition Engine (in the Options
configuration the user may select different Engines to work with), through the API,
and instruct it to constrict its vocabulary to these words.

Voice_Click method

This method communicates back from the output of the voice recognition
engine. attempting to identify the recognized text, and to ‘click’ (i.e. select) the answer
which the user said bv voice. It is activated by the API of the voice-recognition engine
once a string of text is recognized by this engine. The API transfers to it the string of
text identified, and the method goes through the steps described below, in evaluating
and comparing it to the knowledge-base.

Method steps:

1. Receive from the voice recognition engine, the string identified.

2. Compare it to the fixed list of ‘navigation commands’ (see step 8 in Voice_Feed

method). If it matches one of the navigation commands, it triggers the appropriate

61

WO 00/74394 PCT/IL00/00314

action (same as pressing a ‘shortcut key’).

Else. it loops through the array, comparing the voiced text to the items in the array,

o

and acting according to the following steps:
4. It it matches a navigation command, trigger the appropriate action (e.g. by SendKeys
of the associated shortcut kev). Else:

[f it matches a Question, then move the focus to that question.

wh

6. It it matches an answer. select that answer (mark the Response property of the
selected answer as “selected’).

7. 1t it matches an answer (as above) but the item identified immediately before this,
was a question. then select this answer from this question (there may be several
identical answers in different questions on the screen).

8. If an answer was selected. and several such answers exist in different questions in
the template, and no question was selected before, than mark this answer in the first
question in the template, in which it appears.

If a compound answer (as per step 7 in the Voice Feed method) was
selected. then mark the answer which triggers it, as well as the selected answer in the
pop-up.

Reference is now made to Fig. 8, which describes the navigation logic
component 230 of Fig. 2. The navigation logic component 230 is the business-logic
counterpart of the navigation display component 215 of Fig. 2. as further described with
reference to Fig. 5. Fig. 8 is self-explanatory.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Navigation Logic Control

I. Introduction

The Navigation Logic Component (NLC), is the business-logic tier
counterpart of the Navigation Display Control. [ts main purpose, as its name suggests, is
to provide an easy method to create-new, open, close the customer record document
115, and to ‘jump’ to its various parts. In addition, it executes various other actions

triggered by the toolbar buttons of the NDC.

62

WO 00/74394 PCT/IL00/00314

Information in the customer record document 115 is stored in three
objects:

1) MS-Word object: Stores all of the textual information which is written by users
into the customer record document 115.

2) MS-Excel object: Stores all of the tabular data associated with the customer file.
This data is presented (and to some extent duplicated) in tables which appear in the
HTML document or Word document. It serves primarily as a back-end storage of the
tabular data.

5) Adobe Acrobat PDF file (or object). stores all of the images which are included
in the customer record document 115. This includes both scanned documents
(letters. ECG. scanned forms. etc.), as well as medical imaging (e.g. X-Ray).

The navigation in the customer record document 113 is therefore an
action of “jumping’ to various parts of the HTML document or Word document or the
PDF file. using Bookmarks in the PDF and HTML document or Word files, and the
‘Headings™ hierarchy of the Word document. This methodology is described in detail
below.

II. Navigation Mechanism

The Navigation Logic Component is responsible for the actual action of
navigation within the Record, an action which is triggered by the button and
combo-boxes on the NDC toolbar of the Display Tier described above. This navigation
action is really three-tfold:

(a) Jumping, via hyperlinks. to various parts of the HTML document or Word

document object, which comprises of most of the customer record document 115, or to

bookmarks within the PDF object. which holds the images associated with the record.

(b) ‘Directing’ the TDC and TLC to the template associated with this section.

(c) Directing the text-generation output of the TLC to the correct location in the

HTML document or Word document.

The structure of the record is based on the Heading hierarchy of the

Word document object. Each fixed section in the record is a Heading-1; in the previous

sessions” section, each session is a Heading-2; each problem in the session is a

Heading-3: and each sub-template, is a Heading-4. The NLC is responsible, not only for

63

WO 00/74394 PCT/IL00/00314

navigating to these Headings. but also for creating them when needed (e.g. when writing
a new session). When a new session is being written, it is actually written to a temporary
session Word document. which the NLC creates, and which NLC joins to the main
Word document at the end of the session, as another Heading-2.

An exception to this rule are the templates which are associated with
‘fixed” sections of the record. As mentioned above, these correlate to Heading-1
sections of the main Word document, and need to update the section, rather than add to
it. In this case. rather than creating a blank New-Session document. the NLC instructs
the TLC to generate the text the and the data here is written in update mode to fields
embedded in these sections. rather than to a temporary New-Session document, sections

[n general. clicking a button jumps to the Heading-1 corresponding to
that section in the document. However, when jumping back and forth between sections
of the document (i.e. clicking a button which has already been pressed before, in this
session. for this customer, after which the user moved to a different part of the record of
this customer), causes a slightly different action. Rather than jumping to the beginning
of the Heading-1 section in the document, as described above, it causes a jump to the
exact place in that section, which the user viewed prior to jumping to a different section.

When scrolling down the document, the button corresponding to the part
of the document which is currently visible, is pressed automatically (by the system), so
that it indicates visually where in the document you are. (This works similar to the
behavior of the Document Map feature of Word. which both allows to jump to a part of
the document. as well as indicates where you are.)
I11. Session Navigation

In addition to the ‘constant’ sections of the customer record document
I'15 (sections in which writing to the record updates and overwrites the existing section,
e.g. Status Sheet, Demographics, Lab), the record also contains data recorded in
multiple sessions. These sessions are written in the Word document, in a similar manner
to log entries. i.e. each session adds a new entry in the document. Technically, each
Session. is recorded as a Heading-2, chronologically sequenced, all under the Heading-1
called *Previous Sessions’.

In addition. the customer record document 1135 also includes multiple

64

WO 00/74394 PCT/IL00/00314

images. of both scanned documents (e.g. referral letters), and medical images (e.g.
X-Rays). As mentioned before. these images are stored together as a single PDF file,
which 1s stored as an object embedded in the Word document or associated with it.

The components in this group on the toolbar have a dual purpose: to
navigate between the multiple sessions (which are stored as Headings in the Word
document). and to navigate between the images in the record (which are stored as pages
in the PDF file). This navigation is done simply by using hyperlinks to Heading-2
sections in the Word document. and to bookmarks in different pages of the PDF file,
respectively.

When a customer record document 115 is loaded, the system loops
through the Heading-2 sections in the *Previous Sessions’ Heading-1, and forms a list of
hyperlinks to them. in the combo-box.

Generating the list of hyperlinks to the bookmarks of the PDF file is,
optionally. not performed when loading a new record, in order not to slow down that
phase. It is preferably performed in the background after the record is loaded and
presented. and performance data collected as to how long it takes to create this list.
Note: individually these actions do not take long, and when added together the overall
performance is preferably kept down to short sub-seconds (~250msec).

The PDF file is embedded in the Word file, occupying the entire
document visible area. so that the toolbars etc. are visible, but not the Word document,
and that the switching between the PDF and Word is seamless.

I'V. Write Session

When the new session button is pressed, and if there is no new session
open. then the NLC creates a new Word document. called “<Customer Name> (New
Session)™. In it NLC creates a Heading-2. The name of this Heading-2 contains the date
and time. followed by the templates used in this session in round brackets.

The system has a default session template (this is stored in the
Application record), which is used if no template was specified. NLC inserts the name
of the selected (or default if no selection) template into the Heading-2 of the session, as
mentioned above, and inserts a Heading-3 with this template name, and undemneath is,

inserts Heading-4s for all of the sub-templates (if this template has sub templates). After

65

WO 00/7439%4 PCT/1L00/00314

each heading, there is an empty normal style line. so that the user mayv write into this
freshly created form.

If the user changes the template (in the combo-box). without writing
anything. than NLC erases the previous template name from the Heading-2 and
Heading-3. and replaces it with the name of the newly selected template.

If the user made any entry to the previous template, the NLC creates a
new Heading-3 with the name of the new template, and the Heading-4s underneath it as
described before.

[f the user selects a template which already exists in this session, then
NLC jumps to that heading.

Pressing one of the Sub-Template buttons. merely jumps to the
appropriate Heading-4.

In parallel to the above mentioned actions, NLC alwayvs turns to the
correct template in the Data Access Component (DAC), if it already exists in memory,
or instructs DAC to retrieve that template from the database.

Also in parallel, the NLC informs the TLC (and, where appropriate, the
QLC) where in the document they should direct their input. The NLC may either
communicate directly with the QLC or indirectly with the QLC via the TLC.

At the end of the session. the NLC writes the session to the main
document. i.e. adds it as a Heading-2 to the end of the ‘Previous Sessions’ Heading-1.

There is another configuration that needs to be supported. and which is to
be defined in the User Preferences (or Configuration Options). Some applications, and
some users. may prefer to have the structure of the session reversed, such that Heading-3
stands for the Sub-Template name. and the Heading-4 stands for the Template name. In
such a configuration. if a customer had two problems, first would come Heading-3 (e.g.
Subjective), and under it would come Heading-4s (e.g. Chest Pain, Fever). The NLC
needs to be able to support both configurations.

V. Workflow Actions
The Workflow Actions are represented by buttons as described
above. Clicking each of these buttons activates a dialogue screen, which is technically

an Outlook form., similar to the respective standard Outlook forms (i.e. screens), with

66

WO 00/74394 PCT/TL00/00314

some modifications. These torms and their functionality are described below.

V1. Utilities

The Utilities group of buttons on the toolbar relates to general actions in
the record. i.e. actions which do not relate to the currently open record. These actions
include:

1. Reference: Each template in the knowledge-base has an option of including a
hyperlink to a Reference document which is relevant to this template. Clicking this
button. “jumps’ to this hyperlinked document (the hyperlinks are stored in the
ReferenceHyperlink field in the Template DB record).

2. Help: Invokes the help for the system. which is based on Office Assistant. Unlike
the standard Assistant however, it displays an additional option of ‘Help Topics’,
which displays the full list of help topics available. The small hyperlink (“>>)
buttons in the help text point to various small Exe (exec) files produced with
DemoShield. Each of these include a ‘screen-cam’ scenario, with an embedded AVI
tile (showing a video of a narrator describing the actions viewed in the screen-cam).

3. Options: Brings up a tabulated ‘Options’ dialogue, which resembles the appearance
of the standard MS-Office Options dialogue, but with options relevant for our
components. Basically this is merely a friendly interface for setting some of the
properties of the components defined in this documents.

Knowledge-base Editor: This button invokes the KB editor, which is basically only the

normal TC and QC components, only functioning in Editor mode, which is described

below.

Reference is now made to Fig. 9, which is a simplified block diagram
illustration of a preferred implementation of the knowledge-base database 140 of Fig.
1B. The knowledge-base database 140 of Fig. 9 is preferably built of 4 groups of tables:
application table groups 905. template table groups 910, question table groups 915, and
answer table groups 920. Application table groups 905 store data relevant to the
application. Detailed data structure of all of the tables described above with reference to
Fig. 9 are turther described below.

The following detailed example relating to a preferred embodiment of the

present invention is not meant to be limiting, and statements therein are intended to refer

67

WO 00/74394 PCT/IL00/00314

to preterred alternatives only:
Knowledge-base database structure

Knowledge-base data drives the TC and QC components, contains the
data of the Templates. Questions, and Answers, in three DB tables respectively, and
resides locally in an Access (or Jet) database, on each Client PC. There are multiple sets
of these three tables, one for each Language supported by the system. These sets are
synchronized by the system, so that adding or deleting a record from the current
language used. adds or deletes records respectively from the other-language tables with
the same IDs, and flagging the records that have been changed, and which need to be

translated.

Template Table 940

Field Name Type Length Comments
1. TemplatelD Numeric Short Unique. Estimate: 500-1000 records
2. TemplateName Text 30
3. TemplateType Numeric Byte Less than 10 currently, definitely
less than 99 in the future
4. ReferenceHyperlink Hyperlink Hyperlink to a reference document
relevant to this template (or location
within a large reference document)
5. QuestionID(1-12) Numeric Short Estimate 10,000 possibilities
Answer Table 990
Field Name Type Length Comments
1. AnswerlD Numeric Short Estimate: 10,000
2. Answer Text 25 Text of the answer
3. AnswerShort Text 12 An abbreviated version of the answer for

display on the Handhelds

QuestionAnswers Table 970

Field Name Type Size Comments

68

WO 00/74394
1. QuestionAnswerlD Numeric
2. Question ID Numeric
3. AnswerID(1-12) Numeric
4, TipTextID(1-12) Numeric
5. Continuation(1-12) Boolean

6. ContinuationID(1-12) Numeric

Question Table 960

Field Name Type
Basic Properties

1. QuestionID Numeric

2. QuestionType Numeric

3. QuestionGroup Numeric

4. Question Text

5. QuestionShort Text

6. Subject Text

7. Prefix Text

8. Suffix Text
Continuation &
Connection

9. SingleContinuation Boolean

Short
Short

Short

Short

Short

Size

Short

Byte

Short

69

PCT/1L00/00314

ID of this record. Estimate: 5,000 records
Link to the ID of the Question record,
which stores the detailed parameters for
the question, its format etc. Estimate:
1,000 records

12 fields for the IDs for the 12 answers
linked to this question. Estimate: 10,000

records.

12 fields for the Type of continuation:
Single, or Multiple.

12 fields for the IDs of continuations

Comments

Unique

Format type. Currently about 10 types, in
the future, not more than 99.

Content Group to which the question
belongs. Used for the Check_Redundancy
method.

An abbreviated version of the question for

display on the Handhelds

Determines if the continuation refers to a

WO 00/74394

10.
11.

ConnectType

ConnectString

Output Format

GeneralLayout

. AnswerLayout

. QuestionsLayout
. CommaSeperated

. GroupHeaderBold

QuestionBold

. AnswersBold

. HeaderNewLine

Q-Type Related

. NumenclD

. GraphiclD

GenderlD

. NegativePrefix

NegativeConnector

Bitmaps Table 975

Numeric

Text

Boolean

Numeric

Boolean
Boolean
Boolean
Boolean
Boolean

Boolean

Short
Short
Short
Text

Text

. NegativeConnectWord Text

PCT/IL00/00314

QuestionID (when T), or TemplatelD
(when F)

Byte

20

Options: ParagraphStyle. FormStyle

Byte Options: NextToQuestion,
TabFromQuestion, HangingIndent,
OnNewLine, Table

Options: OnSameLine, OnSeperateLines

50
20
10

A table containing the bitmaps used by the knowledge-base, in Graphic Type QCs.

Field Name
BitmapID
Bitmap

Type

Numeric

Binary

Size Comments

Short Unique

Contains the Bitmap

70

WO 00/74394

TipText Table 995
Field Name
TipTextID
TipText

Reference Table 933
Field Name
ReterencelD

Reference

Application Table 925

Field Name
ApplicationID

PCT/IL00/00314

Type Size Comments
Numeric Short

Text Short

Type Size Comments

Numeric Short

RTF Contains the Reference document for a

Object template (pointed to by the
ReferenceHyperlink property of the TC)

Type Size Comments

Numeric Short

ApplicationName Text

SectionName(1-10) Name of the fixed section

Sectionlcon(1-10) Its icon

SectionTemplate(1-10) The IDs of the templates associated
with each of the sections in the
application. In an Excel section, the ID
points to the Excel document which
serves as a template for this section.

SectionType(1-10) Regular template, Excel spreadsheet,
ete.

WordTMP Object The Word document which serves as a
template for creating customer record
documents 115

SubTemplates Bool Indicates whether this application

supports sub-templates

71

WO 00/74394 PCT/IL00/00314

SubTemplateName(1-5) Stores the names of the sub-templates
in this application

SubTemplatelcon(1-3) Stores the icons of the sub-templates
in this application.

Preferences(1-n) Various additional fields need to store
all preferences associated with the
application.

MultipleSession Bool Indicates whether the application
includes multiple sessions (the
application described in this document
does, but this is not always the case).

LockRecordAfterSign Bool

DefaultSessionTemplate Short Holds the templateID for the template
that will be opened by default when a
new session begins, if no other

template was selected.

Referring back to Fig. 9. application table 925 preferably stores the
structure of the application, that is, for example, the name, sequence, icons, and
template ID of the fixed sections of the application.

A language table 930 preferably stores the profile of different languages
that the system supports, and is not directly related to one or another application,
storing. for example, location of subject in the sentence, and connecting word, and so
forth. for each language.

Messages table 935 preferably implement screen messages, tool-tips etc.,
in the different languages.

Template table group 910 preferably stores data related to the template.
The template table 940 preferably comprises a set of sub-template tables 945, where
each sub-template generates the multiple aspects of a problem. represented as 2340,
23435.2350 in Fig 23, referred to below, in generating a session in a customer record.

An alias name table 950 preferably holds multiple names which a

72

WO 00/74394 PCT/1L00/00314

template may have.

A reference table 955 preferably holds a pointer to reference material
which 1s associated with a specific template.

Question table group 915 preferably stores data related 1o the questions
included in each template. and the combinations of answer that are attached to each
question in each template. Bitmaps table 975, gender table 980, and units table 985
preferably hold data specific to specific types of questions.

Question table 960 preferably holds the data of the question.

Question group table 965 preferably stores the group the question
belongs to (used to organized the questions for ease-of-use in the knowledge-base editor
145 of Fig. 1B).

Question-answers table 970 preferably holds the combination of answers
which appear in this question in a certain instance of this question in a specific template;
preferably. the same question may appear in multiple templates with a different set of
answers.

Gender table 980 preferably stores gender dependent sentences (for
languages where this is applicable).

The bitmaps table 975 is preferably used for graphic type questions,
allowing users to make selections by clicking on different regions of a bitmap, rather
than clicking answers in a multiple-choice question.

Units table 985 is preferably used for unit questions (singular and plural
forms of the unit, and in languages where this is applicable — a special unit-word for the
term 2-units e.g. ‘2 days’ in Hebrew is ‘Yomayim’).

An answer table 990 preferably holds the answers (so that they can be
referred in the question by their ID alone).

Tip text table 995 refers to tool-tips, which are well known in the art, and
which preferably pop-up when an answer is pointed at without clicking.

Reference is now made to Fig. 10, which is a simplified block diagram
illustration of a preferred implementation of the customer database 135 of Fig. 1B.

Most of the data in the customer database 135 is preferably stored in

document file objects. such that for each customer 1010, there is preferably one or more

WO 00/74394 PCT/IL00/00314

of the tfollowing: a hierarchical document object 1025 (e.g. Word document, or multiple
HTML documents). a spreadsheet object 1030 (e.g. Excel document), and an images
object 1035 (e.g. PDF object). All data about a customer is preferably stored in this
document/s object's. such that no interaction is required during the session between the
server and the client. and so that. preferably. no application (e.g. database application) is
needed in order to read the customer record.

User-defined fields 1015 and user-defined-tables 1020 duplicate certain
data which is stored in the customer record document 115 (i.e. fields and tables
embedded into that document, which the user may modify the structure of these
fields/tables), so that records may be easily retrieved based on these fields/tables.

Users 1003 preferably comprises a simple record of multiple users which
are using the system. and each of which may be associated with multiple customers. It is
appreciated that an application may be of a structure where there is only one user (e.g.
‘Personal Health Organizer’ application — described below with reference to Fig. 25).
This user information is also preferably used for the workflow actions of
communication and collaborating between users (e.g. e-mail and other contact
information of different users): this is described further above with reference to Figs. 5
and 8. and also described further below.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Customer Data

The customer data is stored in a central database on the server when
functioning in client-server mode, or on the local Access database when in standalone
mode. and is comprised of four types:

All of the data which is entered by the users is written into-an HTML
document. or an MS-Word Document Object (this holds most of the data in the record),
or other textual document format

All of the scanned documents, and medical images relating to the
customer are stored in a PDF file format.

All fields contained in the HTML or Word document, are duplicated and

74

WO 00/74394 PCT/IL00/00314

stored as discrete fields in the CustomerData table

V Tables in the Word document (e.g. Engine-Parts table, Problem List,
Medication List) are stored as linked tables. The number. name and tformat of such
tables is user definable. and is determined by the KB editor.

It is preferable to support the option of working with SQL. Access, or
Oracle databases. The data structure is however very simple. since all of the data for
viewing purposes of the record in contained primarily in one HTML or Word Document
object.

Data-structure: one main Customer table in which each record stores
most of the information in an HTML or Word Object, and all related scanned
documents in a PDF file object, with a few linked tables e.g. Diagnoses, Medications,
etc.

During regular operation, clients access the information in Read-Only
mode. using the HTML document or Word object. Modifying the customer record
document 115 is performed locally in the memory of the client machine, while the
actual Write to the DB happens at the end of the session, and is handled by the system —
the user does not write directly to the DB. Record locking, and Write procedures to the
DB are therefore very simple.

The linked tables. and the other discreet fields in the record, are used
primarily for research and uncommon search functionality; lengths and other details
when shown below and elsewhere in the present specification are by way of example
only and not meant to be limiting.

‘CustomerData’ Table

Field Name Comments

CustomerID

FirstName

LastName

Sex

BirthDate

Age

MS-Word Object Stores all the textual data in the

75

WO 00/74394 PCT/IL00/00314

record.

MS-Excel Object Stores all the tabular data related to
the record. in it multiple
worksheets (e.g. various type of lab
results)

PDF Object Stores all the imaging data
associated with the record.

AdditonalField 1

AdditonalField_2

AdditonalField_3

AdditonalField_n Unlimited ability to add fields

Reference is now made to Fig. 11, which is a simplified flowchart
illustration of a preferred method of operation of the output text-generation mechanism
25 of Fig. 1A. The method of Fig. 11 comprises an overview of the text generation
process. Elements of Fig. 11 are further elaborated in a separate flowchart in Figs. 12 -
18. and are described in more detail below.

The deliver text step 1135 is the process by which the generated text is
delivered. It is possible. as would be obvious to anyone skilled in the art. to deliver the
text either as the entire paragraph consisting of multiple sentences, or specifically
modifving directly only that sentence which has changed due to the last click. This is
made possible. since the text-generation mechanism is aware of the number of the
sentence in which change has occurred. For example, when delivering the text into a
Word document, use can be made of the Word object model in order to modify only the
sentence which has been modified in the text-generation mechanism, by the last click.

Reference is now made to Fig. 12, which is a simplified flowchart
illustration of a preferred implementation of the warm-up procedure 1100 of Fig. 11.
The warm-up procedure of Fig. 12 is a procedure which preferably takes place prior to
the generation of text in response to a click (step 1105 of Fig. 11), in order to make the
text generation process more efficient. In this process, the QLC which is at the head of
each sentence preferably computes the possibility to connect to other QLCs which

would "belong” to “his’ sentence. and sets his properties and those of these QLCs so as

76

WO 00/74394 ‘ PCT/IL00/00314

to reflect their position in the sentence potential sentence, so that these parameters need
not to be calculated during the process of text-generation..

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Warm Up method

The goal of this method is to perform all actions related to text
generation. and which can be performed prior to the Click event. so as to speed the text
generation process. In this pre-text-generation phase. the QLCs cooperate with
neighboring QLCs, to check the possibility of connecting to create compound sentences,
and calculate and assign (to themselves and to neighboring QLCs) several properties,
which will be utilized during text generation.

This method is performed only by QLCs which are at the beginning of a
potential sentence (except for connected branched sentences as mentioned above). TLC
activates the first QLC, and this QLC, after organizing the QLCs that belong to its
sentence. activated the QLC which is at the head of the following sentence, and so forth.
This method is operated on Continuation questions only during ShowPopUp method of
the TC. since the same QLCs are used to display many different pop-ups. and there
would not be where to store the WarmUp data.

Each QLC which is at the beginning of a sentence, checks if the next
QLCs have a similar subject (their Subject properties are equal), or Connect string
property is not empty — which means that the sentences may be connected. If so, the
QLC performs 2 actions on the next QLCs:

1. Prepares for them their Subjectless Trunk — by truncating their Trunk, removing the
Subject from it. When the sentences are connected, the subject which appears in the
first sub-sentence, should not be repeated in the next sub sentences. This eliminated
the need to perform this action during text generation.

2. Assigns appropriate values to the BeforMe and AfterMe properties of itself and the
next QLCs. These properties indicate the placement of the QLC in the potential
compound sentence. and prevent the need to re-count it repeatedly during the

generation and moditication of the text. Note: In case of Branching Continuations,

77

WO 00/7439%4 PCT/IL00/00314

if the continuation question/s are connected to the sentence from which they
branched. the BetforeMe and AfterMe properties are assigned to them, as if they

were part of the Compound sentence from which they branched.

Following is a description of the method steps. as they are represented in Fig. 12 (plus

some additional minor steps):

I

2

(OS]

(1

Step 1200: Assign 0 to yvour BetoreMe property.

Check vour CommaConnect property, if it is = True. assign “,_” to your
ConnectWord property. If = False. then check your Language property, and assign
the connecting word appropriate for this language to your ConnectWord property.
Step 1205: Is your NumQuestions property (the question of numbers which appear
on the screen in this template, or the number of questions in a pop-up) = your
Identity property? (in other words — am I the last question on the screen). If yes,
assign 0 to your AfterMe property, and Exit.

Step 1210: If no, check if your Subject property, equals the Subject property of the
next QLC (i.e. can I potentially connect to it). If no, Step 1220 assign 0 to your
AfterMe property. and activate WarmUp method of the next QLC after you.

Go over the next QLCs after you, in a loop (number of loop iterations =
NumAnswers minus Identity). For each QLC, check if its subject equals yours. In
this way. count how many QLCs there are after you. which have a subject which is
equal to yours (Step 1230).

While going over the QLCs, assign to the BeforeMe quality of the QLC directly
after you 1. the next one 2, etc., so that this number reflects for each one of them
how many QLCs there are in the sentence before it (Step 1230).

In addition. assign to the ConnectingWord property of each one of them, your
ConnectingWord property (Step 1235).

Assign the number of QLCs after you, and whose subject equals yours to your
AfterMe property (Step 1230).

Once more, go over the QLCs after you in a loop (AfterMe iterations), and for each
one of them assign its AfterMe property. For the QLC directly after you, this number
is smaller by one from your AfterMe property. the next QLC is again smaller by one,

etc. The last QLC in the potential sentence (whose Subject property equals yours),

78

WO 00/74394 PCT/IL00/00314

its AfterMe property is 0 (Step 1230).

10.While going over the QLCs whose subject equals yours, perform the following
action: Truncate from the beginning of their prefix (from its left end in all languages,
except for Hebrew and Arabic. in which it is from their right end), a string the length
of which is the length of their Subject property. Assign the resulting truncated string
to their SubjectlessPrefix property (Step 1240).

11.Check if vour ConnectString property is not empty. If not (i.e. you are potentially
capable of connecting to the QLC before you connected by this string). truncate the
Subject from the beginning of your Prefix, Concatenate the ConnectString to its
beginning, and assign the resulting string in your SubjectlessPrefix property (Step
1240).

12.End.

Reference is now made to Fig. 13, which is a simplified flowchart
illustration of a preferred implementation of the process answers procedure 1110 of Fig.
L1. The first phase of generating a simple sentence preferably comprises processing the
answers selected. This procedure is different in different types of questions, and in most
types preferably uses the Link-Answers procedure described below in Fig 14.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Process Selected Answers method

1. Check the question type. and perform the following actions according to each of the

different question types:

3]

. If Multiple Option, Single Option, Negation then simply activate the
Link_Answers function 1305, as further elaborated in Fig. 14. For Single type, the
function preferably returns only the one answer which was selected.

. If Numeric Units (both a selection of a Single type option, which typically is used

(OS]

for selecting units e.g. days, weeks, months, as well as entry of a number into the
text-field of the QLC e.g. 2 days). then the output depends on the VALUE. The
generated text handles instances where no number was entered, as well as instances

where the number entered is one (singular form of the selected unit is used), vs.

79

WO 00/74394 PCT/IL00/00314

plural. If the number entered is 2 this is also handled separately, since in some

languages there is a different units form for double. Triple form of units, which also

exists in some languages, is not supported (i.e. handled as plural).

In order to deal with these instances the QLC includes the properties: OneUnit,

TwoUnits. PluralUnits. SeveralWord. (SeveralWord is the word ‘Several’ in the

current language. e.¢. in English it is = “Several”, which is used it no number was

entered by the user.)

Generated Text:

1

R

(8]

I

6

It Text = Null. then generated text is: SeveralWord + = + PluralUnits

. If Text = 1. then generated text is: OneUnit

If Text = 2, then generated text is: TwoUnits
If Text > 2, then generated text is: Text + *_" + PluralUnits
In all the above instances (1-4), if the Suffix property <> Null, then add to the

end of the generated text: “_” + Suffix

. All of the above steps (1-5) are described for Direction L->R. If Direction is

R-L then perform these actions adding the strings to the left side of the string, and

not as done ‘normally’ to the right (e.g. step 1: PluralUnits + “_" + SeveralWord)

4. If Yes/No question tvpe. then, the text generated depends on the combination of

answers which were selected, as follows:

I

0]

(S)

If only positive answers were selected (SelectedNegative = 0), then generate the
text as a regular Multiple Option question type (as described above), using the

link answers procedure.

If only negative answers were selected (Selected = SelectedNegative), then:
activate the Link Answers function, but assign the QLCs
NegativeConnectingWord property to the ConnectingWord variable of the
Link_Answers function (instead of the standard connecting word).

If both positive and negative answers were selected (SelectedNegative < > 0,
AND Selected > SelectedNegative), then:

e Perform a simple Link_Answers with the positive answers

e Add comma + space + NegativeConnector to the end of the resulting string

above.

80

WO 00/74394 PCT/IL00/00314

e Pertorm Link_Answers ~ with ~ the negative answers, using
NegativeConnectingWord as a connecting word. and add to the end of the
resulting string above.

5. It Multiple Text, or Multiple Numeric question types. then

I. Insert new line (chr(13))

19

Insert GroupHeader + NewLine

3. Foreach of the answers. insert: Answer + “:” + TAB + Text + NewLine

[

Reterring back to Fig. 13. the method of Fig. 13 preferably includes the
following steps:

Based on the question type (step 1300), three different routines for
handling the answers selected are shown. Note that the three shown are an example, the
concept not being limited to these three specifically or to only three routines: rather,
there are preferably various types of questions, with a pre-defined logic of how the
answers of each type will be handled. The value entered in a numeric —units question
(null. 1. 2. or greater than 2) determines how the answers will be processed for that
question type. Similarly, for a Yes/No question-type, if the questions are all positive, all
negative. or mixed, determines the processing of the answers.

A Link_Answers routine 1305, further described below with reference to
Fig 14. is preferably utilized here in multiple instances, with slight variances, in steps
1305. 1320. 1325. 1330. and 1335.

Reference is now made to Fig. 14, which is a simplified flowchart
illustration of a preferred implementation of step 1305 of Fig. 13.

The method of Fig. 14 preferably comprises a simple loop procedure of
linking selected answers. such that they are separated by commas and a connecting
word. The procedure is preferably utilized by the method of Fig 13, described above.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Variables:
ConnectingWord ~ The connecting word used in the sentence. Language dependent.

Default = “and_ . This variable includes the space after the

81

WO 00/74394 PCT/IL00/00314

connecting word, since in some languages the connecting word is

just a letter which is joined to the next word.

Direction Left-to-Right (default), or Right-to-Left

Answers Number of answers which exist in this question

Selected Number of answers selected by the user

Current The number of the answer which the loop is currently dealing with
GenText Stores the text-string produced by the Link_Answers function.

Method Steps:

I. Create Textgen variable 1400. into which the linked answers will be stored.

2. Determine the language direction 1403, of the currently selected language. In a right
to left language perform all the following steps, connecting strings from right to left,
in left to right languages perform all the following steps connecting strings from left

to right

LI

Go over. in a loop. Answers number of iterations, on the Response(1-18) properties
of the QLC, in order to check the answers of the question, and check for each answer
if it was selected 1415 (i.e. Response(Current) < > null). For each selected answer,
perform the following steps (where Current is the number of the selected answer, on
which the loop is on right now):

4, Find out the text of the selected answer 1425, which is stored in the
Answer(Current) property. (note: unlike standard MS controls, the selection of the
user. and the label of the answer are not stored as properties of the Check Box or
Radio Button itself. but in separate fields. since only 6 answers are displayed
simultaneously. and up to 12 additional answers are stored in memory.)

5. Check if the selected answer has a continuation (i.e. branching) question 1440 (the

Continuation(Current) property < > ‘none’). If so, perform the Generate Branch

method 1435 on this continuation (further elaborated in Figs. 15A and 15B). This

method checks the question/s in the continuation branch (the pop-up question or
questions), and if the continuation is part of the referring sentence, returns a string
which includes the referring answer as well as any necessary text of the pop-up

questions joined to it. so that it can be included in the sentence.

82

WO 00/74394 PCT/IL00/00314

6. Concatenate the Answer(Current) string to the GenText string 1440 (which will

store the joined answers), as follows:

7. If Direction is Left-to-Right, the Answer string is joined to the right side of

GenText. i.e. GenText = GenText + Answer(Current).
8. If Direction is Right-to-Left, the Answer string is joined to the left side of GenText,
1.e. GenText = Answer(Current) + GenText.

9.1f this is the answer betore last selected 1445, then add to GenText a space (*_) +
ConnectingWord — next answer 1450, again concatenating according to the Direction
variable.

10. If last selected answer 1460. then add the last selected answer separated by space +
ConnectingWord. Note: there is no space atter the connecting word and before the
last answer — this space is included in the ConnectingWord itself.

Reference is now made to Figs. 15A and 15B, which, taken together,
comprise a simplified flowchart illustration of a preferred embodiment of step 1115 of
Fig. 11. The method of Figs. 15A and 15B preferably comprises a procedure by which
the text of continuation questions (i.e. questions which pop-up in response to an answer
selected). is generated. It is preferably activated within the process answers method of
Fig 13.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Generate_Branch

Generate_Branch method is activated during the Generate_Simple_Sentence method,

for each answer in the QLC which has a continuation, and follows the following steps:

1. For each answer selected by the user, during the Generate loop which goes over all
the selected answers. and before entering the answer to the generated text, check if it

has a continuation 1500 (its Continuation property <> None)

rJ

. If there is a continuation, check if any answer was selected in it
QLC(NumQuestions +1).Selected <> 0. Note: the QCs and QLCs in the popup have
ID numbers which begin from where the QCs and QLCs in the template end.

. It any answer was selected. check if its continuation type is such that it is to be

LUP]

WO 00/74394 PCT/IL00/00314

connected to “vour sentence (its ContinuationType property = Replace,
InsertBefore. or InsertAfter). If not = skip to step 8.

4. Are there any more questions which connect to me, and in which answers were
selected (ActiveSegments property of the first QLC in the popup will be > 0) ? If not
1505-> join the SimpleSentence property of the popup question before, after or
instead of the answer which triggered it — according to the ContinuationType
property. and then add the resulting string to the SentenceBuild. Jump to step 8.

. It ves (there are additional popup QLCs which need to connect to me), go in a loop

[

over these additional QLCs (number of iterations is AfterMe property of the first
popup QLC). Check and remember for each one of them their type: InsertBefore,
InsertAtter. or Replace.

6. Go over in the following loops. according to the following conditions and in the
following sequence. in order to add the segments of these questions to the main
sentence. The goal of this step is to add the text of QLCs which are of a InsertBefore
type — betfore the answer that triggered them, Replace type — replacing the answer
that triggered them, and InsertAfter — after the answer which triggered them. The
text from the popup questions is added into a temporary variable AnswerBuild.

1) If there was one or more questions which were of a InsertBefore type 1520, then
loop over these QLCs, and add the SimpleSentence property of each of them to the
AnswerBuild temporary variable.

2) If there were question/s of a Replace type 1525, loop over them and add them to
the end of the AnswerBuild variable. If not = then add the answer which triggered
the continuation. to the AnswerBuild.

3) If there was one or more questions which were of a InsertAfter type 1530, then
loop over these QLCs, and add the SimpleSentence property of each of them to the
end of the AnswerBuild variable.

7. Add the compound answer which was formed into AnswerBuild into your sentence

(add it to your SentenceBuild) 1535.

8. If the first popup question is not of a InsertBefore, InsertAfter or Replace type,

remember its type (ConnectString, TruncateString, or ForceConnect), for future

steps.

84

WO 00/74394 PCT/IL00/00314

9. Are there any additional questions in the continuation questions, which do not
connect to your sentence (in the first QLC in the popup. AfterMe property + 1 <
NumQuestions)? If so, remember the ID of the first of these questions. and its
tvpe (ConnectString, TruncateString, ForceConnect).

10.Go back to generating your sentence as usual.

I1.After finishing to generate your sentence, recall: was there a ConnectString,
TruncateString, ForceConnect sentence in the continuation questions (step 8)? If
so 1330. remove the period and two spaces from the end of your sentence, and
add the FinalSentence of this sentence to your sentence, as follows:

1) It ForceConnect. then simply join it to your end 1533.

2) It ConnectString. then add their ConnectString property to vour end, followed by
their FinalSentence 1560.

3) It TruncateString. then truncate their ConnectString property to their
FinalSentence. and join the resulting string to your end 1565.

12. It there were continuation questions which are not connected to you (step 9), then

add them (their FinalSentence property) to your FinalSentence property (note: in this

case. the FinalSentence property of the triggering sentence, stores actually several
sentences — its own sentence, as well as the sentences of the independent continuation
sentences).

Reference is now made to Fig. 16, which is a simplified flowchart
illustration of a preferred implementation of step 1120 of Fig. 11.

The method of Fig. 16, which preferably follows the process answers
step (step 1110 of Fig. 11). is a method by which the subject and ‘trunk’ (frequently
refers to verb) of the sentence are joined to the processed answered (see Figs. 13 - 15),
to form a simple sentence. The operation of the method of Fig. 16 is preferably
dependent on the language properties, for example, location of the subject in the
sentence in a given language. The drawing gives a simplified version, which
demonstrates the basic concept: the drawing does not show the slight differences in the
procedure. tor different types of questions.

The following detailed example relating to a preferred embodiment of the

present invention is not meant to be limiting, and statements therein are intended to refer

85

WO 00/74394 PCT/IL00/00314

to preferred alternatives only:

[l. Prepare_To_Connect method

1. If the QLC is the first one in its sentence (SentencelLeader property = Identity

property). then this stage generates a simple sub-sentence which will be at the
beginning of the compound sentence. A period and spaces are added to the end,
since it may already be the final sentence. if there are no other sub-sentences to join
it. The Connect method described later, may join other sub-sentences to its end. by
truncating the period and spaces from its end.

1) In a Multl. Single. and Numeric types: add Prefix to the beginning of the
generated text. and a period and 2 spaces to its end.

2) InaNegation type:

3) It the Negation answer was selected (it 1s always the first answer in the question),
then just add a period and 2 spaces (prefix is not added to the beginning).

4) If anv other answer was selected, then add Prefix before the beginning of the
generated text. and a period and 2 spaces to its end (same as regular Multi type).

5} Ina Yes/No type:

6) If not only negative answers were selected (Selected < > SelectedNegative), then
add Prefix before the beginning of the generated text, and a period and 2 spaces to
its end.

7) If only negative answers were selected (Selected = SelectedNegative), then add
NegativePrefix before the beginning of the generated text, and a period and 2 spaces
to its end.

2. If the QLC is not the first QLC in its sentence (SentenceLeader property <> Identity
property), then this stage generates a sub-sentence, which is ready to be joined to the
compound sentence to which it belongs. It uses a SubjectlessPrefix (or
SubjectlessNegativePrefix). and has no period and spaces at the end:

1) In a Multi. Single. Numeric types: add SubjectlessPrefix to the beginning of the
generated text

2) Ina Negation type:

3) If the Negation answer was selected (it is always the first answer in the question),

then truncate the Subject from the beginning of this answer.

86

WO 00/74394 PCT/IL00/00314

4) If any other answer was selected. then add SubjectlessPrefix
3) Ina Yes/No type:
6) If not only negative answers were selected (Selected < > SelectedNegative). then
add SubjectlessPrefix before the beginning of the generated text.
7) If only negative answers were selected (Selected = SelectedNegative), then add
SubjectlessNegativePrefix before the beginning of the generated text.
3. In any case (sections 1.2 above), store the generated text in the SimpleSentence
property.
Referring back to Fig. 16, LanguageDirection? (step 1600), TrunkFirst?
(step 1603) and SubjectFirst? (step 1615) correspond respectively to LanguageDirection,
TrunkLocation and SubjectLocation properties of the question (QLC), and are
preferably language dependent: that is. preferably defined in the language table of the
knowledge-base (unit 930 of Fig. 9). StandaloneSentence? (step 1610) is preferably
deduced from the properties of the QLC (SentencelLeader = Identity, and
ActiveSegments <1).
Reference is now made to Figs. 17A and 17B, which. taken together,
comprise a simplified flowchart illustration of a preferred implementation of step 1125
of Fig. 11. Preferably, the method of Figs. 17A and 17B comprises a process by which,
following a click event, a QLC ‘reports’ to other QLCs its change in status, so as to
facilitate an efficient connection of simple sentences to compound sentences. This is
technically achieved by the QLC setting its own properties, as well as those of other
QLGCs.
The following detailed example relating to a preferred embodiment of the
present invention and specifically to steps 1700, 1705, 1710, 1720, 1725, 1730, 1735,
1740. 1745, and 1750. is not meant to be limiting, and statements therein are intended to
refer to preferred alternatives only:
Report
I. If the click caused my first selected answer (Selected = 1), and I am included in a
sentence in which I am not the first QLC (BeforeMe < > 0), then loop over the QLCs

before you ‘BeforeMe’ iterations, and add 1 to their ActiveSegments parameter.

This indicates to any one of them which would construct the compound sentence,

87

WO 00/74394 PCT/IL00/00314

that there is another sub-sentence (me) which was not active until now, and is active
now.

2. If the click caused my last selected answer to be unselected. and therefore caused my
sub-sentence to be canceled (Selected = 0), and I am included in a sentence in which
I am not the first QLC (BeforeMe < > 0), then loop over the QLCs before you
‘BeforeMe’ iterations. and deduct 1 to their ActiveSegments parameter. This
indicates to any one of them which would construct the compound sentence, that
there is now one less sub-sentence (me), which was active until now, and is inactive
now).

3. If the click caused my first selected answer (Selected = 1), and [am now the QLC
heading the sentence to which I belong (my SentenceLeader property is Null, which
means that no QLC before me in the sentence has indicated that it is in charge), then
loop over the QLCs after me, which belong to my sentence (AfterMe iterations), and
assign to their Sentenceleader property my Identity property — ‘informing’ them that
[am now in charge of the sentence. Also assign my Identity to my SentenceLeader
property.

4.1f the click caused my last selected answer to be unselected, and therefore caused my

sub-sentence to be canceled (Selected = 0), and until now I was the QLC heading the
sentence to which I belong (my SentenceLeader property = my Identity), then loop
over the QLCs after me, which belong to my sentence (AfterMe iterations). Check if
any of them is active (his Selected property > 0). If so, assign his Identity to his
SentenceLeader property, and to the SentenceLeader property of the QLCs after him
(indicating to him and the next QLCs that he is now in charge) (and activate Generate
method on him). If not, assign Null to their SentencelLeader (indicating to all the
QLCs in my sentence. which are not active at the moment, that no one is in charge.)
Reference is now made to Figs. 18A and 18B, which, taken together,

comprise a simplified flowchart illustration of a preferred implementation of step 1130

of Fig. 11. The method of Figs. 18A and 18B comprises a method of connecting simple

sentences formed by individual QLCs (see also Figs, referred to above 13 - 16) to form
compound sentences, based on the connectability parameters which were set before the

beginning of user selections (warm-up phase - see Fig 12, referred to above), and the

88

WO 00/74394 PCT/IL00/00314

change in status during user clicks (report status phase — see Fig 17. referred to above).
The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:
Connect
This method is used to generate a compound sentence from several
sub-sentences (formed by several QLCs). It is performed by the QLC which heads the
sentence. either by his ‘initiative” or by that of one of the QLCs which belong to ‘his’
sentence and which have changed (had a click event). The method steps are as follows:
1. Determine the language direction 1800, based on the LanguageDirection property of
the QLC. If left to right, connect the strings in the following steps always to the right

end of the original string, if not, then connect to the left end.

1

Check if the sentence is a standalone sentence 1805 (ActiveSegments property =0).
It not go on to the next step. if yes, skip to the following step.

Join SubjectlessSentence of all QLCs belonging to your sentence. and which are

Wl

active (i.e. | or more answers have been selected in them), separated by comma and
a space. except the last sub-sentence. which is separated by comma and connecting
word.

4. Check the SubjectFirst property of the QC 1810. This property holds the information
about the language sentence structure: in the current language, does the subject
appear at the beginning or at the end of the sentence. Add the Subject property

accordingly. to the beginning or the end of the joined SubjectlessSenteneces.

W

Check if this sentence should be force-connected to the following sentence 1820.
This is defined by the Connect Property of the QLC heading the next sentence being
not null. If it shouldn’t be connected . then end. else move to the next step.
6. Check the connect type 1820, and connect this sentence to the next one, in the
following manner:

i. If ‘Force Connect’ type. then add the final sentence property of the QLC

heading the next sentence to the end of your sentence.
ii. If *Connect String’ type, then add the ConnectString property of the QLC

heading the next sentence, followed by its FinalSentence property, to the

89

WO 00/74394 PCT/IL00/00314

end of vour sentence.

i1, If “Truncate String” type. then truncate the ConnectString property of the
of the QLC heading the next sentence. from its FinalSentence property,
and add the reminder to the end of vour sentence.

It will be appreciated that, although the connecting of sentences is one of
the most challenging processes, the method of Figs. 18A and 18B is relatively simple,
because of all of the preparation which was done in previous phases.

Reference is now made to Fig. 19, which is a simplified flowchart
illustration of a preferred method, useful with the present invention, of analyzing
structured text which was formed by a text generator. The method of Fig. 19 is
preferably operative to determine the questions and answers which caused the creation
of the generated text. by a process which, in effect, reverses the text generation process,
such as. for example. the process of Fig. 11, described above. In essence. this process is
merely a reversal of the text-generation process, which was described in detail in Figs.
[1-18. Fig. 19 gives an illustration, of how this process works. A similar methodology is
used in order to analyze text of branching continuation questions (reversal of the
Generate Branch mechanism described in Figs. 15A and 15B), which is not explicitly
described in Fig. 19.

Analyze_Text method

This method is used in order to analyze text which was previously generated by the
system (by TC and QLCs), in order to find out which answers to which questions caused
the generation of this text. The method is pretty much the reverse process of generating
the text.

The method is activated by TC. Before activating it, TC assigns 1 to SentenceNumber
property of QLC(0) (the first QLC), and then activates this method on it, ie.
QLC(0).Analyze_Text.

Method Steps (performed by QLCs heading sentences):

I. Check if my sentence appears in the text 1900, by the following method: Using the

"Find” command. Check if your Trunk property exists in the text. If it is found, then

check if the Subject property exists in the same sentence. If it does, then my

sentence exists in the text. Perform the steps 2-9 to further find out which parts of

90

1

W

=~

wn

WO 00/74394 PCT/IL00/00314

vour sentence appear in the text. If I do not exist in the text, then jump to step 10.

This checking process includes: (a) checking which of your answers should be

selected. (b) checking continuation questions if there are any. and (c) if it is a
compound sentence. checking the other questions in the sentence.

. Find out the number of the sentence in the text, in which the Trunk was found. Store

it in vour SentenceNumber property. Note: All the following steps of checking
vourself and any other QLCs which belong to your sentence, is limited to checking
this sentence in the text.

. Truncate the Subject from the head of the sentence or from its tail 1910, depending
on the SubjectAtBeginning property, and the period and two spaces from its end.
Store the resulting string to your SubjectlessSentence property.

. Find out. mark. and count, which other QLCs (if any) participated in creating the
sentence:

i. If I am a Simple sentence 1915 (AfterMe = 0), then jump to next step (5).
ii. Else: Loop over the <AfterMe> QLCs after me (i.e. those that belong to my
sentence).

. For each of my QLCs . use the Find command to check if their Trunk exists in the
sentence 1920.

. If it does. assign 1 to their Selected property, and add 1 to my ActiveSegments
property.

. Parse the sentence to the AnswersString properties of the QLCs that have formed it
(the string composed of selected answers, separated by commas and connecting
word); one such string for each QLC sub-sentence of the full sentence. The
direction of the parsing in this step is dependant on the grammar logic structure of
the sentence (which is language dependant), as it is reflected in the TrunkLocation
property. This process is as follows:

[t the TrunkLocation property = TrunkBeforeAnswers, then parse from right to left

1925:

1. Find out which is the last QLC in the sentence which is active (Loop through
the QLCs in the sentence, starting with me and ending with the QLC which is

<AfterMe> after me. Check which is the last one whose Selected property = 1).

91

WO 00/74394 PCT/11.00/00314

111

1v.

V1.

vil.

(Note: If I am a Simple sentence, or a head of a compound sentence but only I
was active. then | am both head of the sentence, as well as last in it. In this case,

the loop described below is obviously performed only once).

. Assign vour SubjectlessSentence property to a temporary string variable called

MvText. for the text manipulation of the next steps. which will truncate it from
right to left. in order to find the AnswersString for each of the active QLCs).
Find the location of the Trunk string property of this QLC, in MyText, and

calculate the location of its right end (e.g. using VB InStr & Len commands).

Parse MyText from the right end of the Trunk of the last active QLC (calculated
above), to the right end of MyText, and store the resulting string to
AnswersString property of this QLC.

Remove Trunk from the right side of MyText. e.g. Left(MyText(Len(MyText)-
Len(Trunk))).

Remove the comma & space or the comma & connecting-word which appear

before (to the left of) the Trunk (separating the sub-sentences). Since this is a °
loop from the end of the sentence backwards, after the first Trunk, look for and
remove the comma & connecting-word. and then after the next Trunks remove
the Comma and space. Obviously. the last iteration in this loop is the first
sub-sentence, and therefore there is no comma before it, to be removed.

Repeat steps iii - vi (ActiveSegments + 1) times, in a descending loop,
for each of the active QLCs in my sentence, starting with the last one, and

ending with me.

8. If the TrunkLocation property = TrunkAfterAnswers, then parse from left to right
1925:

1.

il

Assign your SubjectlessSentence property to a temporary string variable called
MyText, for the text manipulation of the next steps (which will truncate it from
left to right, in order to find the AnswersString for each of the active QLCs).
Find the location of your Trunk string property, in MyText, and calculate the
location of 1ts left end.

Parse MyText from the left end of MyText to the left end of your Trunk (in

MyText), and store the resulting string to your AnswersString property.

92

WO 00/74394 PCT/IL00/00314

v,

V.

V.

Remove Trunk from the right side of MyText.

Remove the comma & space or the comma & connecting-word which appear

after (to the right of) the Trunk (separating the sub-sentences). Since this is a

loop starts trom the beginning of the sentence. remove the Comma and space
after each of the Trunks. except for the one before last. which is separated by a
comma & connecting-word. which need to be removed. After the last one, there
is nothing to remove.

[t there are additional QLCs in my sentence which have contributed to the
sentence (ActiveSegments > 0), then repeat steps ii - v again for these QLCs, in
an ascending loop. for each of the active QLCs in my sentence, starting with the

one atter me. and ending with the last active QLC in the sentence.

9. Check which of my answers appear in the text, and mark them selected:

L.

Loop over the AnswersString property string, parse it until the next comma or
connect- word. and store in temporary variable AnswerSegment.

Loop over your Answers, comparing them to the AnswerSegment.

i. If found match 1930, ‘select’ this answer (assign ‘True’ to its ‘Selected’

property).

It AnswerSegment doesn’t match any answer. then check the List to which
vour question is linked (and from which the user may select answers to add
temporarily or permanently to the knowledge-base question). If it matches, add
this answer to vour question temporarily and mark it as selected. Technically: it
1s added to one of the additional Answer fields in the QLC (the knowledge-base
stores up to 12 answers per question, but the QLC has additional 6 Answer and
Response fields for this purpose), and the corresponding Response fields is
marked selected.

If it doesn’t exist in the List, then add AnswerSegment as a new temporary
answer to your question in the QLC 1935, as described above. Note: in any case,
no modification is made to the knowledge-base, the addition is only at the level

of the QLC.

10. Have the QLC who is heading the next sentence in the KB check the current

text-sentence. to see if he has generated that sentence. repeating if necessary the

WO 00/74394 PCT/IL00/00314

step 1 above. If he has. let him repeat steps 2-9 above to determine which of his
answers appear etc.

11. If he does not appear in the text, repeat this step 1 for all of the QLCs heading all of
the sentences in myv paragraph. If none of them match the currently checked
sentence. then [must conclude that this sentence is a free-text sentence. entered by
the user. In this case. add it as free-text to my FinalSentence property.

12. Invoke the QLC heading the next sentence after me. to check the next sentence in
the text. repeating steps 1-12, until the QLC heading the last sentence in the
template has done so.

Reference is now made to Fig. 20A, which is a simplified block diagram
illustration of a preferred implementation of the decision support mechanism 50 of Fig.
1A.

The decision support mechanism of Fig. 20A comprises an object model
2010. a plurality of logic rules 2025, and a plurality of logic rule triggers 2020, which
interact which user data-entry selections 2005, a knowledge-base 2015, and external
programs 2030.

Based on the structure of the knowledge-base 2015, which generally
corresponds to element 140 of Fig 1B. which the user has created when creating or
modifving the application using the no-programming knowledge-base editor (KB) 45 of
Fig. 1A. as further described with reference to Fig. 26, the system preferably
automatically creates an object model 2010 which reflects the structure of the
knowledge-base 2015.

Preferably, each time the user enters data, typically by making a
data-entry selection 2005, the system automatically populates the object model 2010, to
reflect the selections made by the user. Data-entry selection 2005 is preferably done via
the hierarchical questionnaire data input mechanism 15 of Fig. 1A.

Also. each time the user makes a data entry selection 2005, the system
preferably checks to see if that data-entry event is associated with one of multiple logic
rule triggers 2020, which the user may preferably define without any programming,
using the knowledge-base editor 145.

Whenever a logic rule trigger 2020 is triggered by a user selection 2005,

94

WO 00/74394 PCT/IL00/00314

then the appropriate logic rule 2025 is preferably activated. There are typically multiple
such logic rules 2025. which the user may define. Logic rules 2025 are typically short
macros. or segments of simple computer code, such as, for example Visual Basic code,
which utilize the object model 2023. to express programmatic conditions or assignments
onto the Object Model. For example a condition may be: “IF Color = Red THEN...”.
An assignment may be: “IF Color = Red THEN Status = NeedsPainting™. These logic
rules 2025 will be executed whenever the conditions in one of the logic rule triggers
2025 have been met.

Reference is now made to Fig. 20B, which is a simplified flowchart
illustration of a preferred method of operation of the apparatus of Fig. 20A.

Preferably, steps 2040, 2045, 2050, and 2055, described below, represent
a setup process. which typically takes place whenever the user changes the structure of
the knowledge-base.

The method of Fig. 20B preferably includes the following steps:

When the user edits the knowledge-base (step 2040), the system
automatically creates an object model (step 2045) which preferably reflects the exact
structure of the hierarchical knowledge-base. For each template, question. and answer in
the knowledge-base. a corresponding object is created in the object model library, such
that the relationships in the knowledge-base between the templates, questions. and
answers are reflected in this object model library.

The user defines logic rules (step 2050), which may include utilizing the
objects in the object model, as well as other objects; for example, part of the condition
may be related to the knowledge base, and some may be not related to the knowledge
base. Specifically, for example, today’s date may be part of the rule, but not part of the
KB object model. Step 2050 may be carried out using any appropriate standard, widely
available. user tools, such as MS-Word VBA macro editor.

The user then defines logic rule triggers (step 2055), typically using the
no-programming knowledge-base editor (KB) 45 of Fig. 1A, as further described with
reference to Fig. 26. typically. no programming by the user is required.

Whenever there is a click event of the user doing a data-entry action (step

2060). such as on the hierarchical questionnaire data input mechanism 15 of Fig. 1A,

95

WO 00/74394 PCT/IL00/00314

object model is automatically populated (step 2065) to reflect the data-entry.

The system then checks (step 2070) if this data-entry selection is
associated with any logic rule trigger 2020 of Fig. 20A: if so. then the appropriate logic
rule 2025 of Fig. 20A is executed (step 2080).

Depending on the type of the rule (step 2085). the system may either
programmatically “select” answers in the knowledge-base (step 2090). or execute
external programs. or actions which are outside the scope of the object model (step
2093).

Reference is now made to Fig. 21, which is a simplified flowchart
illustration of a preferred implementation of the multi-lingual mechanism 60 of Fig. 1A.
The method of Fig. 21. useful in various portions of the apparatus of Fig. 1B, comprises
a preferred method for data input via a structured questionnaire in a first language 2100,
the data being stored either in a hierarchical language-independent structure 2105 or as
generated text in the first language 2120. The data may then be viewed as a
questionnaire 2135 or as generated text 2140 in a second language. The method of Fig.
21 is self-explanatory. The multi-lingual capability is derived from the fact that the data
is collected via a structured questionnaire, and may be represented in a
language-independent structure, and that the eventual output is generated by a
text-generation mechanism based on this language independent structure. Figs. 22A and
22B further elaborate the multi-lingual knowledge-base structure. and translation utility,
which support this multi-lingual mechanism.

Reference is now made to Figs. 22A and 22B, which, taken together,
comprise a simplified block diagram illustration of a preferred implementation of the
knowledge-base database 140 of Fig. 1B, particularly suitable for providing
multi-language support, which further elaborates the multi-lingual mechanism described
in Fig. 21 above. A preferred implementation of the knowledge-base database 140 is
also described above with reference to Fig. 9.

The knowledge-base database 140 preferably comprises a plurality of sets
of tables. one for each language: in Figs. 22A and 22B, for simplicity of description, two
such sets are depicted: language A 2210 and language B 2240, it being appreciated that

a larger number of sets of tables. to support a larger number of languages, may be used.

96

WO 00/74394 PCT/IL00/00314

The user may preferably edit any such set of tables using a knowledge-base editor 145.
A translation utility 2203 preferably provides automatic translation of the content of one
language set of tables 2210 into a set of tables with an identical structure and record IDs
in a second language 2240. The translation is preferably carried out in such a way that,
for each record in each table in one language-set, there exists a record with an identical
ID. in the second language set of tables. which contains a translation of the string stored
m the first record.

The user may select the desired language. via a language selector 2275,
which in turn communicates with the set of tables appropriate for the selected language
(2280. 2281. 2282, 2283. 2284, and 2285).

For each language, the set of tables preferably includes two components:
a logic table 2281 stores definitions about the linguistic logic of the language (e.g. does
the subject of the sentence appear at the beginning or end of the sentence, what
connecting word should be used, etc.).

Content 2282 preferably comprises a set of tables which contain the data
for the specific application, and preferably comprises 3 subsets of tables templates 2283,
questions 2284, and answers 2285, which preferably correspond respectively to
elements 910. 915. and 920 respectively in Fig. 9.

Based on the logic of the selected language 2281, and the content tables
2282 of the selected language. the apparatus of Figs. 22A and 22B then preferably
performs all actions related to the knowledge-base, thus allowing display questions
2290. generate simple sentences 2292, join to compound sentences 2294, and analyze
text 2296. in the selected language.

Reference is now made to Figs. 23 - 25, which are simplified
illustrations of a typical customer record structure and particular examples of the use
thereof. useful in understanding the present invention.

Textual fixed sections 2305 preferably comprise multiple form-like
sections. which hold textual and numeric data, which can be displayed as fields in a
form. and which is used in update mode that is, is overwritten each time it is updated,
and represents “relatively constant’ data about the customer, that is, data which does not

change frequently. Technically the data is preferably stored as one document file object,

97

WO 00/74394 PCT/IL00/00314

for example. one MS-Word object.

Tabular fixed sections 2310 preferably comprise multiple
spreadsheet-like sections. which hold data which is collected in chronological manner,
and is brief enough to be conveniently displayed in table format, or be charted as a
graph. where each column represents a chronological set of data entered. This data is
tfrequently. although not always. numeric.

Log-type images sessions 2315 preferably comprise multiple sections
which each store multiple images — such as. for example. scanned documents. or other
scanned images of various sorts, relating to the ‘customer’, each of which bears a
time-stamp of when it was taken, and a name of what it contains, and which are stored
in the customer record document 115. Technically this is preferably stored in one
spreadsheet-document file object, for example, MS-Excel.

Log-type textual sessions 2320 preferably comprises at least one section
which contains textual data which is entered in a chronological manner, where data is
stored and displayed as a series of log-type data-entry sessions. Each time the user
interacts with the customer, a textual session is preferably created, which documents and
describes this interaction. At the end of the session, the text describing it is preferably
added as an additional log-entry, to the collection of previous such log-entries.

Each such Session 2325, 2330 and 2365 also preferably has a similar
structure. regardless of the application: it deals with one or more problems 2335, 2355
and 2360 which the customer has. The nature of the customer’ and of the ‘problems’
would be very different in different application, but structurally, they are preferably the
same. regardless of whether these are medical diagnoses that need attention, social or
legal issues of the client that are being addressed, or mechanical problems a car has.
Each such problem is related to a template 940 of Fig. 9 in the knowledge-base database
140.

Depending on the application, each problem may sometimes be divided
into several constant aspects 2340, 2345 and 2350, i.e. aspects which exist in different
problems.

Each such problem or aspect of a problem, as well as constant form-style

data sections. may be described using a structured hierarchical questionnaire (i.e. a

98

WO 00/74394 PCT/1IL00/00314

questionnaire with various types of questions, including multiple-choice-questions,
where each answer may ‘branch’® to continuation questions). Provided an efficient
text-generation mechanism, the user’s selections in this questionnaire would generate
text reflecting the user’s selections in this questionnaire. Each such aspect is therefore
related to a sub-template 945 of Fig. 9 in the knowledge-base

Figs. 24 and 25 depict two particular examples, not intended to be
limiting. of data collection applications which are extremely different, and vet are based
on the same structure of Fig. 23.

Retference 1s now made to Fig. 26. which is a simplified block diagram
illustration of a preferred implementation of the knowledge base editor 45 of Fig. 1A.

The knowledge base editor 45 preferably allows the user to create and
modify the knowledge base of the application, and thus its questionnaires, templates,
-and the associated text generation, all preferably without any programming, merely by
setting of properties of the application components, most of which is preferably done
graphically. by click and drag actions.

The knowledge base editor 45 preferably comprises a question editor
2605. a template editor 2610 and a fixed section editor 2615.

The question editor 2605 preferably comprises a mechanism for creating
and editing questions to be used within the application, and the text to be generated
from each such question. This mechanism is based on knowledge-base editing
capabilities of the question logic component 240 of Fig. 2, which are referred to as KB
editor 325 of Fig. 6. The actions supported by the question editor 2605 preferably
include: add/create answers 2620, remove answers 2625, sequence answers 2630, edit
properties 2635, and position answers 2640.

Preferably, all of the supported actions are achieved by setting of
properties of the question logic component 240 (Fig. 2), and thereby of the various
records in the knowledge base database 140 (Fig. 2), such as question records, answer
records. and other records. Preferably, in all cases except for edit properties 2635, the
setting of properties is done graphically, by click-&-drag actions of the user.

Add/create answers 2620 is preferably carried out by selecting answers

from the bank of answers in the knowledge base database 140 (Fig. 2), and associating

99

WO 00/74394 PCT/IL00/00314

the answers with the question, or by typing in a new answer that does not exist in the
knowledge-base in which case the new answer is preferably added to the
knowledge-base.

Remove answers 2625 is preferably performed by dragging an answer
from the question to the waste-basket icon, thus causing the answer to be removed. that
is. dissociated from the question.

Sequence answers 2630 is preferably performed by dragging an answer
up or down within a question. this causes the answers in the question to be
re-sequenced. preferably via a change in the properties of the QuestionAnswer record in
the knowledge base database 140.

Position answers 2640 preferably comprises an action specific to editing
of a graphic type question. When editing this type of question, the x-coordinate and
v-coordinate of each answer, in relation to the background bitmap, is important. Setting
of these properties of the question is also preferably done by a click-&-drag action.

Edit properties 2635 preferably comprises a tabbed property-page
mechanism that allows the user to edit the properties of the question. As mentioned
above. most of the properties are preferably set by various drag actions, described above
and below. The property-page mechanism preferably displays only those properties
which can not be set by drag actions. Properties are preferably organized such that for
each question only those properties which are relevant to the type of the question are
shown.

The template editor 2610 preferably comprises a mechanism for creating
and editing templates to be used within the application, by selecting the questions to be
included in each template, setting continuation questions, and connecting several
questions to form compound sentences. Graphically, the template editor 2610 comprises
a question display area. in which the questions included in the template are displayed, in
a similar manner to the way they are presented in the actual software; technically, this is
based on the template display component 220 (Fig. 2), with only certain drag actions
enabled here, which are not available in the regular template.

The following actions are supported by the template editor 2610 and are

described below: add questions 2645, remove questions 2650, sequence questions 2655,

100

WO 00/74394 PCT/1L00/00314

link sentences 2660. edit properties 2663, and duplicate questions 2670.

Add questions 2645 preferably comprises a mechanism which allows the
user to select questions from a list of existing questions, and to drag them onto a
template. as a means of adding these question or questions to the template. The list may
comprise a hierarchical list, which may preferably be similar, for example, to the
‘folder” metaphor of MS-Explorer, so as to organize the questions into groups for the
purpose of convenience.

Remove questions 2650 is preferably carried out by dragging the
question from a template to the waste-basket icon; the question is then preferably
dissociated from the template.

Sequence questions 26535 is preferably carried out by dragging questions
in the question display area; the dragged question or questions are then inserted in the
location where the drag was released, and all of the other questions are preferably
re-sequenced accordingly.

Link sentences 2660: preferably, when a link button is pressed, dragging
causes the questions covered in the drag area to be linked, such that the sentence of each
of these questions will be joined to form a compound sentence. A ‘Link’ icon is then
preferably graphically displayed on the linked questions, indicating that they are now
linked. Clicking on any such ‘Link’ icon preferably brings up the link-property-page,
allowing the user to edit the properties of the link. Technically, all these actions merely
set properties of the Linked questions. Dragging the Link icon to the waste-basket,
preferably removes the link between these questions.

Edit properties 2665: Those properties which can not be set by
click-&-drag actions are preferably set via this mechanism, which displays a Property
Page mechanism. Properties set using edit properties 2665 preferably include, for
example: template name, type, and other appropriate properties.

Duplicate questions 2670 preferably comprises a mechanism which
allows the user to duplicate questions, so that slightly different variations of the same
question may be created.

The fixed section editor 2615 preferably comprises a mechanism for

editing the templates which underlie the textual fixed sections 2305 (Fig. 23) of the

101

WO 00/74394 PCT/IL00/00314

application. In this type of template, the template is based on a document, upon which
fields are positioned — the fields being associated with various questions. The editing
actions are therefore slightly different as follows:

Add questions 2675 is preferably similar to add questions 2645, except
that the added question is dragged onto the background document, rather than into the
question display area.

Remove questions 2680 is preferably similar to remove questions 2650,
except that the removed question is dragged to the waste-basket not from the question
display area. but rather from the background document.

Position questions 2685: dragging a question in the background
document preferably causes the question to be moved to the exact location of the release
of the drag. At the location of the release, a field is preferably inserted into the
background document. where the name of this field is preferably the name of the
dragged question.

Edit background 2690: the user may edit the background document,
adding static text, graphics and other items, modifying fonts, and performing other
appropriate actions. Technically, the background document preferably comprises an
MS-Word document or an HTML document, and so edit background 2690 does not
require any special mechanisms, but may utilize standard software such as Microsoft
Word or an HTML editor.

Edit properties 2695 is preferably similar to edit properties 26635, except
that some properties are preferably specific for fixed section, and are preferably different
trom regular template.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preferred alternatives only:

Knowledge-base Editor

The KB editor is based on the QC and TC, functioning in their ‘Edit

Mode" (their Mode property set to Edit). In this mode, drag actions are enabled, and the
user may perform editing of the knowledge-base as described briefly here.

Question Editor

WO 00/74394 PCT/IL00/00314

Selecting a question (clicking on it, not on one of the answers), sets the
editing focus on it, and displays a mini-toolbar on top of it, which has the following
buttons: check (OK). accept changes, X (cancel), Garbage (del), Properties icon, and
Add icon (add a new answer).

1. Dragging an answer to a different sequence re-sequences the answers.

o

. Dragging an answer to the Garbage icon. deletes the answer (and re-sequences the
other answers accordingly)

. Clicking the Add button. opens to the right of the QC (or left if not possible) a panel

(9]

of similar size to the QC. with a list of possible items to add. and a text field above
them to enter a search string. The search mechanism works as described for the
Navigation Display Component Select-Template combo. Entering text narrows the
list as mentioned there. Dragging an answer from this list to the question, inserts it at
that point. If answers now exceed 12, a message alerts the user, and the last answer
is deleted.

4. An Add button next to the search string field, allows to add a new item that is not
even on the master list: the ‘search’ string that is typed is accepted as a new answer,
is added to the master list, and is added as the last answer to the question.

5. Clicking the Properties icon, opens a properties dialogue.

Template Editor

All actions performed by this editor seem sophisticated, but are actually
comprise setting various properties of the QCs in the template, and then activating their

Display_Question, (and if necessary the Show_PopUp method). For example, dropping

a question on an answer. assigns its ID to the ContinuationID(n) of the respective

answer. and ‘refreshing” by Show_PopUp. The result however is that the question

"magically’” appears as the continuation. The QCs are fully functional, and the user may

at any point check the text generated, to see if it works properly. Whenever an action is

taken. the system also marks an answer/s, so that the text generation can be viewed.

1. All questions are displayed in EditSmall mode: they are in edit mode, but are also
displayed at 75% of their original size, and with a smaller font. As a result, there is
room on the left for a hierarchical list of templates and questions.

2. Below this list on the left, is a ‘Workspace’, where the user may drag and drop

103

WO 00/74394 PCT/IL00/00314

questions. or groups ot questions temporarily.

. The questions area of the template is marked with squares which indicates the ‘slot’

(OS]

for each of the 12 questions. If there is a question there, it is covered by the question.
4. Dragging a question from one slot to another, moves it to that location, and
re-sequences the remaining questions accordingly if necessary (e.g. moves questions
up if an empty slot remains).
Dragging a question from the list to a slot, inserts it at that point.

Dragging a question from a slot to the garbage, removes it from the template.

N o W

Dragging a question from a slot, or from the list to the workspace, moves that
question there. However, in the workspace the question doesn’t appear graphically,
but just by name.

8. Dragging a question and dropping it on an answer (in one of the questions in a slot),
attempts connect this question as a continuation to that answer. A link sign appears
connecting the answer with its continuation.

9. Double clicking on the continuation link, displays a continuation-link properties
box. which displays the current setting, and allows to modify it. The continuation
question frequently is set already for the type of continuation it is designed to work
under. and so this does not need setting.

10.Dragging the continuation question to the garbage, deletes it and therefore obviously
releases the continuation link.

11.Dragging the continuation-link icon itself to the garbage, releases the continuation
question. and places it in the workspace.

12.Clicking on the Link-Icon button, turns the cursor to a Link-Icon shape. and leaves
the Link-Icon button pressed. until the Link-Icon button is clicked again. In this
mode. clicking on one question of the questions in slots, and dragging and releasing
on a second question next to it, creates a link between the two questions. The link
icon appear connecting them, and a message-box appears with several options for
the connection, e.g. ForceConnect, ConnectString, etc.

13.The list on the left is hierarchical, using the MS-Explorer Folders metaphor. Its four

levels of hierarchy are as follows:

1) First level: Question Groups

104

WO 00/74394 PCT/IL00/00314

2) Groups of questions. to help a user find the question he is looking for. e.g. Time
related. Symptom Description, PE finding.

3) Second level: Questions

4) A list of questions in that category, regardless of the format of the question. The
same question may appear in different output formats, e.g. ‘Duration’.

5) Third Level: Question Variants.

6) List of the variants of the question (e.g. ‘DURATION (table output)’)

7) Fourth level: Question-Answer Combinations

8) A list of the Question-Answer combinations of this question, as it appears in

different templates.

14.0ne of the *Groups’ in the list is ‘Templates’, under which there are groups of
templates. under which is a list of templates. Dragging a template, or double clicking
it. causes it to open. replacing the currently viewed template. If changes were made
to the current template. a message-box asks the user if he wants to save the changes.

15.Most of the templates are selected by using the regular navigation mechanisms on
the NDC.: the fixed section buttons, the Template Combo box, and the sub-template
buttons. The above mentioned mechanism is for accessing templates which are
currently not part of the application.

16.When making changes to a template which is part of the basic KB set (i.e. is not user
defined), the system maintains a backup copy of the original template. When making
changes to a user defined template, the system asks the user if to overwrite this
template, or save them to a different name.

17.When clicking on a question in the list, it is displayed to the right of the list (in a
fixed spot), so that the user may see it. The Template on the right, is grayed-out, so
that the user can focus on the question at hand. Clicking anywhere outside the list
returns the focus to the Template, and un-grays it (the list is not grayed out even
when it is not in focus).

18.When a question that has a pop-up is selected, it is displayed with the pop-up, as if
someone clicked the branching answer, causing the pop-up to show, and text to be
generated. Both the triggering answer as well as an answer in the pop-up question

are selected. When the pop-up itself has a pop-up, then it too is displayed (up to this

105

WO 00/74394 PCT/IL00/00314

level. not needed more if difficult).

19.Copy. Paste. Save. and New buttons allow to perform these actions on the template
being edited. Properties button brings up the template’s properties.

20.Question or group of questions may be Copied, Cut, and Pasted, both within a
template. and between templates.

Import and Export function needs to be defined, that will allow a user to
send an e-mail with an attachment of a template/s or question/s, or Application structure
to another user. It is basically quite simple: when importing the system checks what
elements already exist. and which are new to it. It gives new IDs to the new required
elements. and changes their internal reference if needed; for example, if a question in
the template I received is new to me, then I give it an appropriate ID for me, the next
available ID for example. and modify the template record to call this question by its new
ID.

Reference is now made to Fig. 27, which is a simplified block diagram
illustration of a preferred implementation of a multi-user unsynchronized access
mechanism 65 of Fig. 1A.

In Fig. 27, two users comprising user A 2705 and user B 2710, are shown
using the same application, which is based on the same initial application knowledge
base data base 140. It is appreciated that the apparatus of Fig. 27 is applicable generally
to a plurality of users, with two users being shown in Fig. 27 by way of example only.

Each of the users, user A 2705 and user B 2710, modifies the knowledge
base database 140 according to their individual needs and preferences. The modification
is preferably accomplished without any programming, using the knowledge base editor
45 (Fig. 1A and Fig. 26). As a result, each of the users 2705 and 2710 is now working
with an application which is based on a different knowledge base: user A modified
knowledge base 2725 for user A 2705, and user B modified knowledge base 2730 for
user B 2710, which are different from, and typically unsynchronized with, each other
and the initial application knowledge base database 140.

Based on the differently modified knowledge-bases 2725 and 2730, each
of the two users 2705 and 2710 preferably enters data using a different hierarchical

data-input questionnaire: hierarchical data input questionnaire A 2715, and hierarchical

106

WO 00/74394 PCT/IL00/00314

data-input questionnaire B 2720. respectively.

However. despite the fact that the two users 2705 and 2710 use different,
and unsynchronized knowledge-bases, and accordingly different hierarchical data-entry
questionnaires. they are preferably able to read and write to a shared customer record
document 115 this i1s preferably achieved by the fact that each of them writes to the
customer record document 115 via the text generation mechanism 30, and can read and
process the data from the customer record document 115, via the text analysis
mechanism 35.

The unsynchronized-access mechanism is preferably based on two
elements: (a) the fact that the data is stored in the customer record document 1135,
non-hierarchically, as simple text. and (b) that the text analysis mechanism 335 is capable
of deducing from this simple text the questions and answers which were selected and
caused its creation.

The IDs of the selected questions and answers preferably are not stored;
if they were to be stored as is typical in prior art systems, then it would necessitate that
the knowledge base of different users be synchronized in order to share customer
records in this manner.

Reference is now made to Fig. 28, which is a simplified block diagram
illustration of a preferred implementation of a non-user access mechanism 70 of Fig.
1A; Fig. 28 also incorporates flowchart-like elements.

In Fig. 28 a non-user 2810 of the system, who typically does not have
direct access to the application and its knowledge base, may still have access to the
customer record using the mechanism which is described here with reference to Fig. 28.
The term “direct access”. as used throughout the present specification and claims,
includes the ability to read. analyze, modify. and apply decision support to an object
such as a recbrd. In general, this capability is a result of the architecture, which uses
storage as free-text, despite the fact that the system is hierarchical in nature.

As described above, particularly with reference to Fig. 1A, and referring
additionally back to Figs. 1A and 1B, each application user 2805 preferably enters data
using a hierarchical questionnaire data-input mechanism 15 (Fig. 1A), which is based on

an application knowledge base 140 (Fig. 1B). The data, which is preferably hierarchical

107

WO 00/74394 PCT/1L00/00314

in nature. is preferably stored non-hierarchically as text in the customer record
document 115. by means of a text generation mechanism 30 which generates text based
on the user input. and a text analysis mechanism 35 (Fig. 1A) which is preferably
operative to parse the text. preferably comprising the customer record document 115
back into the hierarchical structure of selected questions and answers which caused the
formation of the text as described above.

Referring again to Fig. 28, the non-user 2810 may view the customer
record document 1135, using any appropriate type of general purpose viewer/browser
2840. since the customer record document 115 is stored as free text, and is therefore not
dependant on the structure of the knowledge-base for viewing thereof.

For writing into the customer record document 115, the following steps
are preferably carried out:

write session as text 2815 — the non-user typically does not have
templates and a knowledge base available, and therefore may only enter data as
free-text:

e-mail to application user 2820 — Typically, the non-user would receive
from a user of the system an appropriate invitation, preferably comprising an e-mail
invitation or any other appropriate invitation, to contribute to a record of a mutual
customer. The invitation typically comprises an attached blank document such as, for
example. in MS-Word in an appropriate format, into which the non-user can write
his/her session. The non-user, then sends his/her input, preferably by simply returning
the e-mail and its attached document into which he wrote his input, back to the referring
user;

inbox agent catches incoming message 2830 — On the user’s machine, an
inbox agent preferably scans incoming messages having an agreed-upon format, which
identifies the incoming message as being an incoming response to request for session by
non-user: for example, the agreed-upon format might comprise having an certain form
of subject or title such as. for example. a form resembling: “RE: Consultation: John Doe
234-28-2837";

system automatically inserts text as new session 2835 — Again, based on

an agreed-upon convention. such as mentioned above, the inbox agent can identify the

108

WO 00/74394 PCT/IL00/00314

customer to whom the non-user session belongs such as. for example. following the
above example. by the customer name and SSN which appear after “RE: Consultation:”
in the subject or title of the e-mail. Accordingly. the system preferably creates a new
session in the customer record document 115 of the appropriate customer, and
preferably copies the text in the document attached to the e-mail to the present session,
and signs the present session, using the name of the non-user.

An alternative method for a non-user to deliver a written session into the
system via e-mail as described in 2820 and 2830, to do so by directly interacting with
the application server, e.g. via an internet site.

It is appreciated that this capability is meaningful, especially in light of
the hierarchical nature of the data in the system, which makes it possible for users of the
system to receive full decision support and other similar facilities, which are not
available in prior art textual systems. In other words, there are systems which can allow
non-users to view and perhaps even write to the customer record. because it is stored as
text: however. there are no prior art systems which do so in a system which also enjoys
the benefits of being structured and hierarchical, such benefits typically including
structured data-entry, decision support, research & statistics, and other similar benefits.

Reference is now made to Figs. 29A and 29B which, taken together,
comprise a simplified flowchart illustration of a preferred method of operation of the
research and statistics mechanism 55 of Fig. 1A. The method of Figs. 29A and 29B
preterably comprises the steps described below.

The research & statistics mechanism 55 (Fig. 1A) preferably comprises a
*Wizard-like’ mechanism, which guides the user through a sequential series of steps,
and performs in the background certain actions accordingly. In Figs. 29A and 29B the
boxes on the left side represent the sequential steps of the Wizard, and the boxes on the
right side represent automatic actions preferably taken by the software in response to the
user input. As is evident from the figure, steps of the wizard which prompts the user for
input preferably lead to an automatic action taken by the system.

The steps of the Wizard and of the automatic steps taken by the system
are now broadly described as follows with reference, by way of example only and

without intention to be limiting, to a patient based or customer based application. For

109

WO 00/74394 PCT/IL00/00314

ease of description. steps which create a particular entity and the entity thereby created

may be described together. the relationship between the step and the entity being clear to
a reasonably skilled person of the art:
I. Detine study-group query 2900

Allows the user to define a compound query, which retrieves a subset of

the patients. which will be included in the study, and which may be further divided

into several comparison groups.

The final query is preferably composed by letting the user define
sub-queries 2902, where each study-group query may comprise a plurality of
sub-queries. The user defines one sub-query 2902 at a time, and repeats this process
multiple times to create a plurality of such sub-queries 2902, which join together to

form the query 2900.

Each such sub-query 2902 preferably comprises the following elements:

And/Or 2904, which is preferably set by a combo-box, and defines
whether the sub-query is joined to the general query as an "AND" or as an ‘OR’
statement.

Field 2906 preferably is implemented as a combo-box which allows the
user to select a Field. from a list of all the fields in the application.

Operation 2908 preferably allows the user to select the operation which
will be used to compare the values against the field; examples of suitable operations
include contains, does not contain, >, <, >=, <=, and other suitable operations.

Question 2910 preferably displays the question which corresponds to the
selected field, so that the user may enter or select the value/s for the sub-query; for
example, enter text/numbers, or select single or multiple answers, numbers and
units. Question 2910 is preferably implemented using the question display
component 225 (Fig. 2).

In response to the above-described user actions, the system preferably
automatically creates a study-group worksheet 2912, In this worksheet, a separate
row is preferably created for each of the qualifying customers or patients, according
to the criteria of the study group query 2900; for example, if this study group

comprises 51 customers, then a worksheet would be created which has 51 rows, one

110

WO 00/74394 PCT/IL00/00314

for each of these customers.
2. Show tields 2914

Preferably allows the user to select the fields to be included in the report,
from a list of fields in the application. For example, and without limiting the
generality of the foregoing. the user may be present graphically with a list on the left
with available fields. and a list on the right with the selected fields: double clicking,
or click and selecting an *Add’ button adds a field; selecting a ‘Remove’ button

removes from the list.

3. Determine question logic type 2916

For each of the selected fields 2914, the system preferably determines
whether the question corresponding to that field is quantitative 2918, qualitative
2920. or value-range qualitative 2922. Part of the decision process leading to the
determination is preferably automatic, and part of it typically requires user input, as

tollows:

e [t the question is of a single-option or multiple-option type, then it is
preferably automatically treated a qualitative type question 2920. In this case,
in step 2926, in the study group worksheet one column is preferably created
for each answer of the question; that is, several columns would preferably be
created for each question. Since each row represents data corresponding to
one customer in the study group, then in each such row, there are several
cells, each corresponding to each of the answers of the questions, and each
such cell holds the value true or false — reflecting which answer/s were
selected for each customer. For example, in a question ‘Hobbies’, which is a
multiple-option question with four answers — ski, dancing, reading, watching
television — four columns are preferably created, one for each of the answers
of the question. For each customer, true and false are assigned to the cells of
the four columns according to the answers which were selected for the
customer.

e [f the question is not single-option or multiple-option type, that is, if the
question receives numeric or textual user input, then the system preferably

prompts the user to decide if the question logic type should be quantitative

111

WO 00/74394 PCT/IL00/00314

2918. or value-range qualitative 2922 preferably, quantitative 2918 is the
default.

[f the user opted to handle the question as quantitative 2918, then, in step
2924, one column for each question is created in the study group worksheet,
the column preferably holding the value which the user entered for the
question. For example. in a question “Age’ the user enters the age of the
customer, and the value entered would appear in the worksheet.

e However, if the user opts to handle the question as value-range qualitative
2922 then the user is preferably prompted to enter several value-ranges which
will be used to group the quantitative, numeric or textual, answers into
qualitative groups. For example, the numeric question ‘Age’, may be handled
as value-range qualitative 2922, by defining several age-groups such as, for
example: 0-25. 26-50, and 50-100.

In the case of a value-range qualitative question 2922, in step 2928 one
column is preferably created for each value-range group defined by the user;
in the above example, three columns, one for each of the three age groups,
would be created. For each customer, each of the cells corresponding to each
of the value-range groups preferably holds true or false. reflecting the
value-range group in which the value of that customer fell. In the above
example. if a customer’s age were 24, then the ‘0-25’ cell on this customer’s
row would be assigned to true, and the other cells (‘26-50" and ‘50-1007)
would be false.
4. Define comparison groups 2930
Optionally, the user may define several comparison groups. Each of the
defined comparison groups is preferably defined using a query creation mechanism
similar to the one used to define the study-group query 2900, by creating one or

more sub-queries 2902.

In step 2932. for each comparison group created, the system preferably
automatically creates a separate worksheet, in which each row preferably

corresponds to each of the qualifying customers in this group.
3. Define longitudinal timeframe comparison groups 2938

112

WO 00/74394 PCT/IL00/00314

Optionally. the user may define longitudinal timeframe comparison
groups in step 2938: choosing to compare the same group/s of customers to
themselves at different points in time. One example of such a longitudinal timeframe
comparison would be to check a certain lab result in the same patient, before and
after a certain medication was given. The system prompts the user for the number of
timeframe groups. and for the timing to be used.

In step 2940 the system preferably automatically creates one worksheet
for each group.

6. Automatically create summary-data worksheets 2942

For each selected field/question 2914, a summary sheet is preferably
automatically created in step 2942. In the summary sheet the system preferably
calculates and summarizes the data from all of the
study-group/comparison-groups/longitudinal group worksheets.

The basic structure of the worksheet will be appreciated from step 2944:
each row summarizes the data for each comparison group 2930 or longitudinal
timeframe comparison group 2938.

In each such row, for each field/question 2914 or its answers or
value-range groups. two columns are preferably created as follows:

o For a quantitative question 2918 — in step 2950 for each question two
columns are created holding the average and the standard deviation (STD)
respectively of the values all of the customers in this group had.

e For a qualitative or value-range question 2948, in step 2952 two columns are
created for each answer of the question in the case of a qualitative question,
or for each value-range group in a value-range qualitative question. The two
columns preferably respectively hold the number, also known as the count, of
customers for whom this answer/value-range is true, and the percent of this
number out of the total number of customers for which this question was
checked.

Note that in the case described. for each question there would be several
pairs of columns. one pair for each answer/value-range.

7. Select output format 2954

WO 00/74394 PCT/IL00/00314

Preferably. the user may select the output format in step 2954, including
whether the user wants the results to be presented in a table format or in a chart, or
both. If the user selects to display the results in a chart, then he is preferably
prompted to select the format of the chart to be used.

In step 2936. based at least in part on the input of step 2954. the system
preferably automatically creates and formats the chart/table which presents the
results.

8. Select statistical analysis 2958

The system preferably offers the user several possible statistical tests to
be performed on the compared groups, to define the significance of the differences
between them. Which tests are offered is preferably dependant on the number of
groups and the type of data; for example, there are preferably different tests for
qualitative vs. quantitative data.

The system preferably offers the user several possible statistical tests to
be performed on the compared groups in step 2958, in order to define the statistical
significance of the differences between these groups. Which tests are offered is
dependant on the number of groups and the type of data; as stated above, there are,
for example. different tests for qualitative vs. quantitative data. The system
preferably allows the user to select a preferred statistical test such as, for example,
the chi-square test or any other appropriate statistical test.

Preferably. in step 2958 a check box is presented which asks: “Compare
sub-groups to entire study group?” This is useful since the entire study group
frequently represents a certain norm, to which the different groups are compared. If
this option is selected, than the selected statistical test is preferably performed
multiple times, comparing each of the groups against the study group.

The selected statistical test is preferably carried out in step 2960.

In one preferred implementation of the present invention, the entire
method of Figs. 29A and 29B may be implemented as an Excel macro. For each query
defined. an Excel workbook is preferably created. In the workbook and using a
patient-based example. the patients selected for the study group (step 2900) are

preferably stored in one worksheet. in which each row displays the data of one patient.

114

WO 00/74394 PCT/IL00/00314

In each row. the first column preferably always displays the patient name. and contains a
hyperlink to the record of this patient; that is, technically a hyperlink to the
corresponding Word document object contained in the record. The additional columns
preferably display the additional fields selected to be shown. processed or compared
(step 2914).

Similarly. additional worksheets are preferably created. one for each of
the comparison groups of patients. defined in step 2930 if the user opted for defining
such groups.

A separate worksheet in the workbook preferably stores the compilation
of the calculated summary data from the different worksheets. In the separate worksheet,
the first column preferably stores the field names of the compared field, that is, fields
upon which calculation was performed. The next columns preferably show the
calculated summary value for the different groups, that is, the group worksheets. This
summary is dependant on the data type, and is in one of the two following formats:

1. If the data is quantitative, that is, has numerical value, then each group
preferably has two columns: for average or median and for standard deviation.

2. If the data is qualitative that is, is either yes or no for a certain
criterion. than each group preferably has two columns: a first column for number of
patients which qualified. that is. were "yes” for this criterion; and a second column for
the percentage which the number in the first column reflects out of the entire group.

Important note: although numerical data is most simply treated as
quantitative. numerical data may also be treated as qualitative, if it is divided into range
groups. For example, although cholesterol level is numeric data, and may be treated
quantitatively, the user may choose to treat the level as qualitative, by dividing the
patients as falling into ranges such as 180-200 vs. 200-220. When treated as
quantitative. one preferably looks for the average of this value in the patients in the
group. When treated as qualitative, one preferably counts the number of patients in each
of the range-groups, and its percentage from the total number of patients.

Technically. for each field, if it represents a single/multiple choice
question. then the field definitely represents a qualitative parameter. In this case, each

answer in the question appears in a separate row. and the calculation comprises counting

115

WO 00/74394 PCT/IL00/00314

for each answer how many patients in the group, that is, in the worksheet, selected this
option. and their percentage out of the group.

If the field is numerical, then the system preferably prompts the user to
determine if the data should be treated as quantitative or as qualitative. If quantitative.
than the system preferably prompts the user to decide what should be calculated:
average. preferably the default: mean: or median. Each question preferably appears n a
separate row. The calculated value. as selected above. is preferably presented in one
column in the question’s row. and the standard deviation is presented in a second
column.

If the user chooses qualitative, then the system preferably prompts for
break-up into value-range groups: that is, to define the number of range groups, and for
each range-group it minimum and maximum values. Separate rows are then dedicated to
each of the value-range groups. The heading, which typically appears in the first cell in
the row. displays the question followed by the value-range in brackets; for example,
“Cholesterol(180-200)". The number of patients which had values within this range is
preferably counted and presented in the first column in this row, and the percentage
which the number of patients reflects in another row. Note: generally. a date field is
necessarily value-range qualitative.

Finally, the system preferably allows the user to select a suitable
statistical comparison between the summarized results of two or more groups, to find if
the difference is statistically significant; for example. an appropriate statistical test such
as the chi-square test may be performed.

The following detailed example relating to a preferred embodiment of the
present invention is not meant to be limiting, and statements therein are intended to refer
to preterred alternatives only:

KB ObjectModel Create method

At the end of editing the knowledge-base structure of a question and/or
template. this method creates/modifies objects which reflect this template, its questions
and their answers. The result is an Object Model which reflects and is a mirror-image of
the structure of the Knowledge-base, and which is programmable in VB. Each

Template. Question. and Answer in the KB. is an object. and its properties are properties

116

WO 00/74394 PCT/IL00/00314

of this object.

For example: “CurrentSession.Chest_Pain.History.Location = Hand”,
indicates that in the current session, in the ‘Chest Pain’ template, in its ‘History’
sub-template. in the ‘Location’ question. the answer ‘Hand’ was selected. This object
model forms a library called "KB" which is programmable in VB or VBA. Changes in
the structure of the KB cause changes in the structure of the Library.

KB ObjectModel Populate method

With each click event. in addition to marking the finding in the
"Response” field in the QDC and QLC. and storing it to the Virtual Template Record in
the TDC. it is also reflected in the KB object model. However, in order to simplify, this
is done only for the current encounter, and is only stored in memory, and not in the
database. Therefore, no special database structure is required. Findings are kept only
until the end of the session.

The following conceptual background and functional overview is
intended to further assist in understanding of the present invention.

Conceptual Background

General concepts relating to the present invention and possible uses
thereot are now described. it being appreciated that the following is by way of example
only and is not meant in any way to limit the generality of the present invention.

One idea behind the present invention is to develop a small number of
smart building-blocks. from which a very wide array of data management and
decision-support applications can be built. and which would preferably function in
multiple languages, on diversified platforms, and would preferably be fully
user-customizable. The abilityA to do so, is based on the cognition that most data
collection applications, even ones which appear to be very different, have a similar
architecture. and therefore may be constructed using the same, relatively simple,
building blocks.

The application preferably has one or more ‘providers’, which collect
data from multiple ‘customers’. Examples of a ‘provider’ may be as diverse as a social
worker. healthcare provider, lawyer, mechanic, or insurance agent, and the ‘customers’

may be clients. patients. cars. airplanes, or production-floor parts: the above comprising

117

WO 00/7439%4 PCT/IL00/00314

examples only and not being intended to limit the generality of the present invention. In

some applications the "customer’ and the ‘provider’ are the same: the ‘customer’ would

use such an application to manage his/her own data, and therefore functions as his own

‘provider” (e.g. a health advisor application). The basic functional relationship is

preferably still present: The data related to each ‘customer’ is stored in a ‘customer

Record". which the application needs to be able to create-new. locate & open,

update-&-save. and print from.

Regardless of the application. the data structure of the customer record
document 113 preferably is always comprised of one or more sections. which may be of
four basic structural data-types:

1) Constant form-styvle data section: textual and numeric data, which can be displayed
as tields in a form. and which is used in update mode (i.e. is overwritten each time it
is updated). and represents ‘relatively constant’ data about the customer (i.e. data
which doesn’t change frequently). In the health advisor example, status sheet,
demographics, past medical history are examples of such sections.

b) Tabular data section: data which is typically collected in chronological manner, and
is brief enough to be conveniently displayed in table format, or be charted as a
graph. where each column represents a chronological set of data entered. This data is
frequently. although not always, numeric. In the health advisor example, lab results,
and vital-signs are examples of such sections.

¢) Chronological log-type textual data entries section: textual data which is entered in a
chronological manner, where data is stored and displayed as a series of log-type
data-entry sessions. Each time the provider interacts with the customer, a textual
session is created. which documents and describes this interaction. At the end of the
session. the text describing it is preferably added as an additional log-entry, to the
collection of previous such log-entries. In the health advisor example, this correlates
to textual descriptions of the sessions, or encounters, the healthcare provider had
with the customer.

d) Scanned images section: scanned documents, or other scanned images of various
sorts. relating to the ‘customer’, each of which bears a time-stamp of when it was

taken. and which are stored in the customer record document 115.

118

WO 00/74394 PCT/IL00/00314

Each of the ‘chronological textural data entries’ also preferably have a
surprisingly similar structure. regardless of the application. Each textual data-entry (or
session). deals with one or more ‘problems’ the customer has. The nature of the
customer” and of the ‘problems’ would be very different in different applications, but
structurally. they are preferably the same. regardless of whether these are medical
diagnoses that need attention. social or legal issues of the client that are being addressed.
or mechanical problems a car has.

Depending on the application. each problem may sometimes be divided
into several constant aspects (i.e. aspects which exist in different problems). In the
health advisor example this correlates to the subjective. objective. assessment, and plan
aspects that each diagnosis has.

Each such problem or aspect of a problem. as well as constant form-style
data sections. may be described using a structured hierarchical questionnaire (i.e. a
questionnaire with various types of questions, including multiple-choice-questions,
where each answer may ‘branch’ to continuation questions). Provided an efficient
text-generation mechanism, the user’s selections in this questionnaire would generate
text reflecting the user’s selections in this questionnaire.

Finally, all such applications share in common two basic functions: to
document effectively their interactions with multiple customers, and to have effective
workflow tools. in order to collaborate and exchange information with other providers.

Based on these assumptions. and with maximal utilization of existing
commonly used software packages. it is possible to create a small set of components,
which together would allow to create effective. totally flexible data-collection
applications.

The entire bulk of textual and numeric customer-data can preferably be
stored in one hierarchically structured document (e.g. MS-Word document), with an
embedded spreadsheet document for tabular data, and a linked PDF file for customer
imaging data. Workflow actions revolving around these documents, can be provided by
MS-Outlook., which provides easy customization. A small number of
custom-components, which would operate from within Word would provide the tools

for knowledge-base-driven structured-data-entry. and easy access to workflow actions.

119

WO 00/74394 PCT/IL00/00314

Since the application is preferably based on knowledge-base-driven
templates. instead of “hard-coded’ screens, the only elements which appear to be needed
are a navigation mechanism (opening/closing a record, and navigating to its different
sections). template display and text-generation mechanism, and several file-Action and
worktlow dialogues. and a database access module.

Creating several versions of these components for various platforms (e.g.
handheld computers. Java. PC). is relatively easy, since their display tier level is
relatively simple. and most of their complexity is at the business-logic tier level, which
tends to be less platform dependent. Examples of suitable handheld computers for this
purpose include: computers running Windows CE: computers operating on a Windows
CE platform: Psion handheld computers: computers operating with an EPOCH
operating system: PalmPilot computers: handheld wireless communication computers;
and Palm VII computers.

Functional Overview

One goal of the current invention, in a preferred embodiment thereof, is
to develop several custom-components, which would serve as building blocks in
creating a health advisor application for the consumer-health market, as well as other
applications. The PC version of these components is designed to preferably be tightly
integrated with MS-Office applications and utilize its object-model functionality. Three
additional versions of these components are believed to be required, which would work
on handheld platforms. and in Java. This section gives a brief overview of how these
elements join to form an application such as a personal health organizer, as described
above with reference to Fig. 25. The following sections provide a detailed functional
and technical specification of these components.

The required components, are divided into a three-tiered architecture, in
order to facilitate multi-platform and multi-database support, and ensure future easy
maintenance and development. Display tier components, which may need to be
developed separately for different platforms; business-logic tier components, which
hopefully need minimal changes across platforms; and database and connectivity tier

components, which need to adjusted to different databases.

120

WO 00/74394 PCT/IL00/00314

Display Tier Components

Navigation Display Component (NDC)

Launching the application preferably causes MS-Word to be launched,
with the navigation display component replacing the standard Word toolbar. This
component allows the user to open. create-new, and close (save and sign) a customer
record document 115, as well as to view, browse and navigate to different parts of the
record. and perform various workflow actions related to the record.

Buttons corresponding to the various fixed sections of the record (e.g.
demographics) preferably allow navigation to the various fixed sections. A combo-box
preferably allows navigation to previous sessions in the record, as well as to Images
associated with the record. When writing a new session. another combo-box preferably
displays a list of available templates, and together with several adjoining buttons, allows
selecting and navigating between different templates and their sub-templates.

Four file-actions and seven workflow actions are preferably triggered by
respective buttons on the toolbar, and trigger 11 non-standard dialogues described
below. Finally, the last group of button on the toolbar typically offers general utilities:
reference (provided by hyperlinks in the KB to reference documents); help (DemoShield
based): options configuration (tab component for setting options in the system, similar
to MS-Office format); reports & statistics module (described below); and the
knowledge-base editor (basically just the standard question component and template
component described below. functioning in their ‘edit’ mode).

File Action and Workflow Dialogues

The custom dialogues in the system preferably include four file action
dialogues (create new, open file. sign & save. and print). and seven workflow dialogues
(call. send E-mail. schedule appointment. add task, request task set reminder, and send
pager). The file action dialogues are typically similar to but not identical to the standard
Word ones. and the workflow dialogues are (in the PC version) technically merely
simple Outlook forms, and therefore are very easy to create, and are modifiable by the
users.

Template Display Component (TDC)

The template display control, is preferably responsible for displaying

121

WO 00/74394 PCT/IL00/00314

data-driven templates. composed of multiple-choice and other types of questions, as a
means of structured textual data entry. Technically, the TDC is a ‘form” activated by the
navigation display control, which creates and positions an appropriate number of
question display components (QDC) units upon itself, and displays at its bottom the
Word document into which the text generated by the QLCs is displayed. The navigation
display component preferably ‘tells’ the TDC which template to display, and the data
access component holds (or gets) the knowledge-base data required to display this
template.

Based on the template data. the selected language. and other system
parameters. the TDC preferably computes the number. dimensions, and location, and
sequence of question display components (QDCs) required to display the template, and
creates sutficient number of QDC units. setting their properties so as to position and size
them appropriately on the screen. Finally, the template component feeds the data to the
different QDCs. and prompts them to display their questions properly.

Continuation questions (i.e. questions which pop-up in response to
answers selected by the user), are also prefefably stored ‘templates’ in the KB, and are
similarly handled by the TDC: the TDC creates and positions the necessary additional
QDCs and feeds them with the data of the pop-up questions. When in edit mode, the
TDC appears and behaves slightly different, supporting click-&-drag operations to edit
the template. adding, removing, sequencing questions in the template, linking them to
each other. and creating continuation questions.

Since the user may preferably switch back and forth between several
templates in one session. the TDC also preferably stores (temporarily, in memory) the
user’s responses to the questions in the different templates. feeding them back to the
QDC when returning to a template previously visited.

Question Display Component (QDC)

Each of the question display components, having preferably received its
knowledge-base data and being prompted by the template display control, displays its
question on the screen. The question’s screen appearance and behavior are preferably
dependent on the question type (e.g. multiple-option, single option, numeric units,

textual. etc.), and are defined in the knowledge-base.

122

i

WO 00/74394 PCT/IL00/00314

Business-Logic Tier Components

Data Access Component (DAC)

The data access component preferably serves as the single connection
between the application and its knowledge-base and customer databases. On the
knowledge-base side. the DAC preferably retrieves all of the template-related data
(which is stored in several different tables) from the database, and creates a ‘virtual’
template record in memory. It preferably does so both for a template the user selected
using the NDC. as well as all possibly related templates. in anticipation of the user’s
next move. Since the database preferably includes several sets of theses tabies, one for
each language supported. the DAC is also in charge of loading the data in the language
selected by the user.

Navigation Logic Component (NLC)

The navigation logic component is preferably responsible for the actual
action ot navigation within the record, an action which is triggered by the button and
combo-boxes on the NDC toolbar of the display tier described above. This navigation
action preferably is really three-fold: (a) jumping, via hyperlinks, to various parts of the
Word document object, which comprises of most of the customer record document 115,
or to bookmarks within the PDF object, which holds the images associated with the
record. (b) “directing’ the TDC and TLC to the template associated with this section. (c)
directing the text-generation output of the TLC to the correct location in the Word
document.

The structure of the record is preferably based on the heading hierarchy
of the Word document object. Each fixed section in the record is a Heading-1; in the
previous sessions section. each session is a Heading-2: each problem in the session is a
Heading-3: and each sub-template, is a Heading-4. The NLC is typically responsible, not
only for navigating to these headings, but also for creating them when needed (e.g. when
writing a new session). When a new session is being written, it is actually preferably
written to a temporary session Word document, which the NLC creates, and which NLC
joins to the main Word document at the end of the session, as another Heading-2.

Preferably. an exception to the above rule relates to templates, which are

associated with “fixed’ sections of the record. As mentioned before. templates preferably

WO 00/74394 PCT/IL00/00314

correlate to Heading-1 sections of the main Word document, and need to update the
section. rather than add to it. In this case. rather than creating a blank New-Session
document. the NLC preferably instructs the TLC to generate the text the and the data
here is written in update mode to fields embedded in these sections. rather than to a

temporary New-Session document.

Template Logic Component (TLC)

The TLC typically retries data from the knowledge-base database,
constructs a virtual template record which holds preferably all data relevant to the
template. the data typically originating from multiple database tables, and feeds the date
to multiple QLC and QDC units.

Question Logic Component (QLC)

In response to user’s selections and input. the QC preferably generates
text which reflects these selections, writing it into the temporary Word ‘session’
document. The output format is configurable through output format parameters in the
question record in the knowledge-base. After each QC generated its own text, the QCs
preferably collaborate between them to connect their sentences into compound
sentences. In a similar manner, the QCs are also preferably capable of analyzing text
previously generated (e.g. of a previous encounter), collaborating between them to find
out which questions and answers caused the generation of this text.

When the QCs type is graphic it allows the user to make selections from
by checking the coordinates of the click on a background bitmap (as opposed to simply
clicking a check-box). or to mark finding on the bitmap. As mentioned above, form type
of QCs preferably generate form style output. and create and embed Word fields into the
document. rather than generating sentence. Finally. in edit mode, the QC preferably
allows the user to drag answers in order to modify their sequence, and to add or remove
answers.

Tabular Data Component (TC)

The tabular data component preferably comprises an Excel spreadsheet
embedded into the main Word document, which is formatted, and includes several

macros. such that it is suitable for storing and manipulating tabular, chronological,

124

WO 00/74394 PCT/IL00/00314

numerical data such as lab results in a personal health organizer application, or any
tabular log function. One of the buttons on the navigation toolbar component allows the
user to easily jump to this section. The connectivity component and the TextBridge
components (described below) allow for numerical data to be fed in directly into this
control.

Reports & Statistics Component (RSC)

The reports & statistics component preferably comprises a complex
Excel macro which retrieves data from multiple customer record documents 115 (i.e.
Word documents). into one Excel spreadsheet, presents them as Excel graphs, and
performs various Excel statistics functions on them.

Database & Connectivity Tier Components

Database Structure & Internet Capability

The application is preferably based on two major datasets: customer data,
and knowledge-base data. A third set — transactional data — comprises of 2 temporary
tables for inbound and outbound data connectivity.

The knowledge-base data is preferably stored in 6 tables (Application,
Template. Question, QuestionAnswers, and Answer), and is used to present templates
which contain various types of questions (e.g. multiple-choice), which are used for data
entry. The knowledge-base database preferably resides locally on an Access database
(may use a faster internal flat-table engine during text generation).

The customer data is preferably stored primarily in one simple table
(‘CustomerData’). In the one simple table, all of the data needed for routine actions is
preferably stored in three objects: Word Document object, Excel workbook object, and
PDF file object (for scanned data). Additional fields in this table, and several linked
tables. duplicate important data items for rapid record retrieval. Databases supported:
MS-SQL and Oracle. Client’s interaction with the server is preferably minimal: only at
beginning and end of a session.

Clients may work standalone, or with a local server, or a remote server
over secure [nternet connection. Secure E-mail sending and receiving should preferably
also be enabled.

It is appreciated that various features of the invention which are, for

WO 00/74394 PCT/IL00/00314

claritv. described in the contexts of separate embodiments may also be provided in
combination in a single embodiment. Conversely. various features of the invention
which are. for brevity. described in the context of a single embodiment may also be
provided separately or in any suitable subcombination.

It will be appreciated by persons skilled in the art that the present
invention is not limited by what has been particularly shown and described hereinabove.

Rather the scope of the invention is defined only by the claims which follow:

126

PCT/IL00/00314

WO 00/74394

What 1s claimed 1s:
CLAIMS

A method for generating an application. the method comprising:
providing a plurality of components, each component defining an

application building block:

storing, based on non-programmatic user input, a plurality of
user-defined application-specific properties, each said property being associated with

one of said plurality of components;
recetving structured data input via a questionnaire, based at least in part

on said plurality of components;
generating text based, at least in part, on the structured data. said

generating text comprising dynamic runtime generation of a plurality of simple

sentences from a plurality of sub-sentence segments based, at least in part. on user input,
based at least in part of said components; and
providing an application based on at least some of said plurality of
user-defined application-specific properties and on said components associated
therewith.
2 A method according to claim 1 and wherein said generating text also

comprises automatically joining at least two of said plurality of simple sentences to form

a compound sentence.
3. A method according to claim 1 and wherein each said simple sentence is
based on a user-supplied response to a question, said response being provided in said

receiving step.
A method according to claim | and wherein said storing comprises:

receiving user input, wherein said user input is substantially non-textual.

A method according to claim | and wherein said generating text also

N

comprises:
127

WO 00/74394 PCT/IL00/00314

automatically generating text in more than one language.

6. A method according to claim 5 and wherein said more than one language

comprises at least one left-to-right language and at least one right-to-left language.

7. A method according to claim 5 and wherein said more than one language
comprises a first language having a first syntactical structure and a second language
having a second syntactical structure, and

said first syntactical structure and said second syntactical structure are

distinct.

8. A method according to claim 7 and wherein said first syntactical
structure has a first sentence structural order and said second syntactical structure has a
second sentence structural order. and

said first sentence structural order and said second sentence structural

order are different.

9. A method according to claim 1 and wherein at least a portion of said

method is implemented in software adapted for execution on a computer.

10. A method according to claim 9 and wherein the computer comprises one

of the following: a handheld computer; and a palmtop computer.

11 A method according to claim 10 and wherein the computer comprises a
keyboard-less pen-based handheld computer.
12

A method according to claim 10 and wherein the computer comprises at
least one of the following: a computer running Windows CE; a computer operating on a
Windows CE platform: a Psion handheld computer: a computer operating with an
EPOCH operating system: a PalmPilot computer; a handheld wireless communication

computer: and a Palm VII computer.

WO 00/74394 PCT/IL00/00314

13. A text generation method for generating text based, at least in part. on
structured data. said method comprising:
generating a plurality of simple sentences from a plurality of

sub-sentence segments based. at least in part, on user input. dynamically at runtime.

14. A method according to claim 13 and wherein said generating comprises:
automatically generating the plurality of simple sentences in more than

one language.

15. A method according to claim 14 and wherein said more than one

language comprises at least one left-to-right language and at least one right-to-left

language.

16. A method according to claim 14 and wherein said more than one
language comprises a first language having a first syntactical structure and a second
language having a second syntactical structure, and

said first syntactical structure and said second syntactical structure are

distinct.

17. A method according to claim 16 and wherein said first syntactical
structure has a first sentence structural order and said second syntactical structure has a
second sentence structural order, and

said first sentence structural order and said second sentence structural

order are ditferent.

18. A method according to claim 13 and wherein at least a portion of said

method is implemented in software adapted for execution on a computer.

19. A method according to claim 18 and wherein the computer comprises at

least one of the following: a handheld computer; and a palmtop computer.

129

WO 00/74394 PCT/IL00/00314

20. A method according to claim 19 and wherein the handheld computer
comprises at least one of the following: a computer running Windows CE; a computer
operating on a Windows CE platform: a Psion handheld computer: a computer operating
with an EPOCH operating system: a PalmPilot computer; a handheld wireless

communication computer: and a Palm VII computer.

21. A text generation method for generating a compound sentence from a
plurality of simple sentences, the method comprising:

providing general logic defining compound sentence structure based on
structure of simple sentences from which a compound sentence is to be generated;

providing a plurality of simple sentences; and

generating a compound sentence based on said general logic and said

plurality of simple sentences.

22. A method according to claim 21 and wherein each of said plurality of
simple sentences reflects a continuation questions in a data-input questionnaire, and

the generating step comprises:

generating a compound sentence from at least two sentences comprising
a first sentence and a second sentence. wherein the first sentence reflects data entered
via one question in the data-input questionnaire, and the second sentence reflects data
entered via a second question in the questionnaire, and

wherein said second question is a continuation to one of a plurality of

answers of said first question.

23. A method according to claim 22 and wherein at least one of the
following is not limited:

a number of simple sentences related to continuation questions in the
data-input questionnaire: and

the levels of hierarchy of said continuation questions, said continuation

questions being joinable to generate a compound sentence.

WO 00/74394 PCT/IL00/00314

24, A method according to claim 21 and wherein said generating a
compound sentence comprises:
automatically generating the compound sentence in more than one

language.

25. A method according to claim 24 and wherein said more than one
language comprises at least one left-to-right language and at least one right-to-left

language.

26. A method according to claim 24 and wherein said more than one
language comprises a first language having a first syntactical structure and a second
language having a second syntactical structure, and

said first syntactical structure and said second syntactical structure are

distinct.

27. A method according to claim 26 and wherein said first syntactical
structure has a first sentence structural order and said second syntactical structure has a
second sentence structural order, and

said first sentence structural order and said second sentence structural

order are distinct.

28. A method according to claim 21 and wherein said generating is based

only on said general logic and said simple plurality of sentences.

29. A data collection method for allowing data collection from multiple
users. the method comprising:

providing a knowledge base defining at least one data-structured input
questionnaire to each of a plurality of users:

allowing each said user to modify the knowledge base associated with

said user:

131

WO 00/74394 PCT/IL00/00314

receiving structured input from each of said plurality of users, said input
being based on said input questionnaire;

storing the input from said receiving step in a textual form: and

providing direct access to the stored input of a first one of said plurality
of users by at least a second of said plurality of users. after said second one of said
plurality of users has modified the knowledge base associated with said second one of
said plurality of users. thereby altering the structured input associated with said second

one of said plurality of users.

30. A method for analyzing a text, said text comprising plain text generated
by a text generator using a text generating method, said method for analyzing
comprising:

reversing said text generating method, thereby determining a plurality of

inputs which were provided to said text generating method in order to generate said text.

31, A method according to claim 30 and wherein said generated text does not
include any of the following indicators:

an embedded ID; and

a hidden character.

said indicators indicating the questions and answers which caused

generation of said text.

32. A data access method comprising:

receiving data in hierarchical form;

generating natural language sentences from sub-sentence elements based,
at least in part, on said data in hierarchical form;

storing said natural language sentences in textual form; and

accessing said stored natural language sentences in textual form.

A data access method comprising:

(P]
I

providing a data management system having questionnaire-structured

WO 00/74394 PCT/IL00/00314

data entry with multiple levels of hierarchy for allowing a plurality of users to manage
data records comprising data records of a plurality of customers:

storing data using said data management system; and

allowing access to said stored data by at least one non-user of said data

management system without use of said data management system.

34, A method according to claim 33 and wherein the data management

system provides text generation from sub-sentence elements.

35. A method according to claim 33 and wherein the data management

system provides automatic generation of complex sentences from simple sentences.

36. A method according to claim 35 and wherein the simple sentences
include an unlimited number of sentences corresponding to continuation questions in the

data-input questionnaires, and unlimited levels of hierarchy of said questions.

37. A method according to claim 33 and wherein the data management

system provides multi-lingual capability.

38. A method according to claim 33 and wherein said access comprises

viewing at least one of said data records.

39. A method according to claim 33 and wherein said access comprises

updating at least one of said data records.

40. A method according to claim 39 and wherein said updating comprises

updating by sending an electronic message to said data management system.

41. A method according to claim 40 and wherein said electronic message

comprises an e-mail message.

WO 00/74394 PCT/1L00/00314

42, A record data structure comprising:
a database comprising a plurality of documents, each document

comprising a plurality of secttons stored in at least one of the following:

one word processing file;

one word processing file object:

at least one HTML file;

at least one XML file: and

a text file,

said plurality of sections being arranged in a hierarchy.

43, An application generating system comprising:

a plurality of components, each component defining an application
building block:

storage apparatus operative to store, based on non-programmatic user
input, a plurality of user-defined application-specific properties, each said property
being associated with one of said plurality of components:

input apparatus operative to receive structured data input via a
questionnaire. based at least in part on said plurality of components;

a text generator operative to generate text based. at least in part, on the
structured data. comprising dynamic runtime generation of a plurality of simple
sentences from a plurality of sub-sentence segments based. at least in part, on user input;
and

an application provider for providing an application based on at least
some of said plurality of user-defined application-specific properties and on said

components associated therewith.

44, A computer-readable medium comprising a computer program, the
computer program being operative, when in operative association with a computer, to
perform the following steps:

providing a plurality of components. each component defining an

application building block:

WO 00/74394 PCT/IL00/00314

storing, based on non-programmatic user input, a plurality of
user-defined application-specific properties, each said property being associated with
one of said plurality of components;

receiving structured data input via a questionnaire, based at least in part
on said plurality of components:

generating text based. at least in part. on the structured data. said
generating text comprising dynamic runtime generation of a plurality of simple
sentences from a plurality of sub-sentence segments based. at least in part. on user input;
and

providing an application based on at least some of said plurality of

user-defined application-specific properties and on said components associated

therewith.

PCT/IL00/00314

WO 00/74394

1/35

01/

SAASN-NON

WSINVHOTIN SSHODV [@-f--1--mmmmmmmmmmmmeeeees

Aooo umz zm:zo_ m:uv
LXAL SV ADVIOLS

0L/ == JTVOIHDUVHAIH-NON
. . \\\\\..\ Ovl\
WSINVHIEN SSHO0V| | -~
AAZINOIHONASNN &
§9_ AASO-LL NN T ————— S ———
IWSINVHOHIW WSINVHOAW
m_§4<z< 1XAlL NOLLVIINAD- ;m%
INSINVHOIA INSINVHDAN zo_,ﬁﬁ_mz,_o -LXAL LNdLNO
09~ IVNONITILION g | o7/ / \
Z<I,um—2 mU_rrm~_<r—Lm :::::::::: ;'i ZOFH{FZWWM—MA_M_N_
cc 4 ®HOAVESTY D R B » SSAT-ADVNONV,
e I I > TVOIHOMVIHIH
INSIN :9_51 -4 0z a
05 LAOJdNS NOISIDHA _
INSINVHDAN
NVHOUW dOLIAA-g) |~ "~ > m%@ﬂﬂﬁ@%ﬁ@

SWSINVHOAW AYVITIXNV

HWSINVHOIAW INAWADVNVIW-VIVA AYVININ]

V10l

PCT/IL00/00314

WO 00/74394

2/35

HSvdv.ivd

4Svdv.ivd

g3 YHNOLSND
T ov1—~ A
TOULNOD SSHOOV VIVA | w
sc1-/ v :
l\\l‘/ '
WSINVHOHN INIWNO0A m
NOLLY YANAD-1XH L/, aJgoddy m

1NdLNO JINOLSND
st/ ; i1~/ m
WSINVHOAN WSINVHOHW

AV1dSIa NOLLVOVIAVN
oL’ \ 7 s01~/

AN
A}
\
\

b

K

’
s

LOdNI 4S8N
001

q41°DI4

PCT/IL00/00314

3/35

HSVHV.LVA

ASVU-IDAT TMONA

ASVHV.LVd
ATWOLSND

WO 00/74394

vl Sel H
st) TOULNOD SSAIIV VLV
X 4
N va 0rc Cee N\ F , H
_ INGINOJINOD DIDOT [ININOINOD DID0T LNANOJIWOD JIDO
~{ NOLLSINO ALY TNGLL _ NOLLVDIAVN
HITW NOLLVHANAD-UIXAL LAdL10 ¥ ocz -/
- T 7
e e —— e 14/] | [s1T
;’ INZNOINOD AV 1dSIC e LNINOJWOD AV 1dSIC] INHINOJWOD AV 1dSIA
- NOLLSANO ALY TdWAELL NOLLVDIAVN
WSINVHIIAW AV1dSId 0z WSINVHIAW NOLLVOIAVN
01— So1—" N
'Ol

PCT/IL00/00314

WO 00/74394

4/35

NAHHOS

> INYJOd

dN-d0d MOHS HZINVOUO HLV IdINEL
L] g H S0y~ H
SHILYAdOYUd
007~
b O
1
|
S INAWETE INSINVHOHW
UOIAVHHE NGENON ONIDVd
17§ 0T~ H S0E~ H
SHILYAdOUd
00€~

£ "OIA

PCT/IL00/00314

WO 00/74394

S8S Y yanvd
085\ waaNniATy
SLS Y sV OTY
OLS Y ygvL 0SSy INnId
95\ a1naguos SVS\ NDIS/AAVS
)
~M)
> e VS Nado
SSSY My SESY MaAN
1]
1
NOLLVOIAVN NOILVDIAVN SHNDOTVIA SANDOTVI
SHLLILLA NOISS?IS NOLLOSIS MO LIIOM NOILLOV-T711:]
0£S ST~ 0cS 7 0TS~ C0s =~
TOYLNOD UVET00L
00S
S 'OIAd

PCT/IL00/00314

WO 00/74394

6/35

0v9 -| SADNHLNAS NIOf

SLOHMdO HONV Y
059 —| ALV INJOd S€9 ALVIANAD

SLOIa0 JONGLLNAS
St9 - ALVIRID 0€9 ALVIIANID

ININIIDVNVYIN IX4L Al
AOLIA 9N TAAOW-LOIEIO AZATVNY LXILL ALV ¥IND dN-NAVM
G797 ﬁ 079 -/ a G197/ H 019~ H 09 H
SALLIAJOUd
009
9 "OIA

PCT/IL00/00314

WO 00/74394

7/35

asvd
NOLLINDODHY LXAL ADNVANNATY -IDATTMONY
4DI0A ALVIANAD 1104 MOAHD SNOLLSANO add:d avad
S H 0zL H s1L”/ H o1L -~ a soL %

YOO "TVILLYIA 4LV IdNAL

00L ~

L O

PCT/1L00/00314

WO 00/74394

8/35

dAOVd
AFANINTY
MSVL Oay
MSV.L INIId
41INAaGHOS NDIS/AAVS
TIVO N4dO
| | TIVIN-A MAN
_
NOLLVDIAVN NOILLVOIAVN .
o SHNDOTVIA SINDO VI
SHILLYAJOU

8 "Old

PCT/IL00/00314

WO 00/74394

9/35

$36 SLINN
036 | ¥WHANAD | |
c16 - sdvmaLiEg |
ss6~ HONAuAIAY |
026~ SHAMSNY O | lose - amwvNsvry | |0 saovssaw ||
666~ IXALdIL | |96~ dnown® | |sve~arviamar-ans || % aovnonvi |
066~ YIAMSNY | |096 | NOLLSAND ove ~ arviamar | |7 Noiwvoridav |
SATEVL SHTEVL SH1EVL SATEV.L
AAMSNY NOLLSENO ALV IdNEL NOLLYOI'lddV
026 s16 016 - 506

ovi

HSVHVLVA dSVH-dDdd TMONMA

6 "Old

PCT/IL00/00314

WO 00/74394

10/35

0201~

sto1—"

sydasn

S001

SE01 N
LOAC4O SHOVII
0€01 LOdrd0 a
1AaHSAvaddsS
§C0l LOdrdo | |
LINANND0d
SA'19v.L _
AANLIFA-¥dasn _
Saridid SYAWO.LSND
AANIIFA-Yasn 0101~
4SVEV.LVA Y9N0LSND

CEl

01 "DIA

WO 00/74394 PCT/IL00/00314

11/35

FIG. 11

WARM-UP L

'

[USER INPUT / CLICK N— 1105

I

PROCESS ANSWERS L__

v

GENERATE BRANCH | __

y

GENERATE SIMPLE |__

1100

1110

1115

SENTENCE 1120
REPORT STATU
ORTS S e 1125
ONNECT
¢ ~— 1130

SENTENCES

v

DELIVER TEXT |L__

1135

WO 00/74394 PCT/IL00/00314

12/35

FIG. 12
1200

ASSIGN BEFOREME =0

l o 1205
[F LAST QUESTION ON SCREEN

- ASSIGN AFTERME =0

1220
COMPOUND ASSIGN
SENTENCE? AFTERME=0

COUNT QUESTIONS IN SENTENCE TO
AFTERME
l Vs 1230

FOR ALL QUESTIONS IN SENTENCE
CALCULATE & ASSIGN BEFOREME &
AFTERME PROPERTIES

r Vs 1235

FOR ALL QUESTIONS IN SENTENCE ASSIGN
CONNECTWORD PROPERTY

l e 1240
FOR ALL QUESTIONS IN SENTENCE

CALCULATE & ASSIGN
SUBJECTLESSTRUNK = TRUNK - SUBJECT

C_ o)

WO 00/74394 PCT/IL00/00314

13/35
FIG. 13
1300
MULTIPLE-OPTION/SINGLE- 1305
OPTION/NEGATION LINK ANSWERS |—
. _
NUMERIC- 1310 = SEVERALWORD +
[T13 - PLURALWITS -
UNITS "y ALUE? “NULL | -
= 1 =ONEUNIT ||
—P
=2 =TWOUNITS |
>
) =VALUE+“_ "+ ||
|~ < | PLURALUNITS
1320
1315 £
YES/NO LINK_ANSWERS
ANSWERS ALL POS. a
1325

LINK_ANSWERS W/
| ALL NEG. | NEG-CONNECT- [
WORD

~1330

BOTH LINK_ANSWERS ON
—® POSITIVE ANSWERS

ADD 66’7, + ‘6—77 + N’EG_
CONNECTOR

v 1335
LINK_ANSWERS ON

NEGATIVE ANSWERS W/
NEG-CONNECT-WORD
v
ADD LINKED NEGATIVE
ANSWERS TO STRING

1349

WO 00/74394

CONNECT
TO LEFT

14/35

FIG. 14
1400

CREATE
TEXTGEN

1405

LANGUAGE
LT. TO RT.?

PCT/IL00/00314

CONNECT
TO RIGHT

s

NEXT ANSWER

GET ANSWER
TEXT

MOVE TO 1410

CONNECT ANSWER
TO GENTEXT

1450

ADD
CONNECTING |
WORD

—

1460

ADD COMMA

AND SPACE |

WO 00/74394 PCT/IL00/00314

15/35

FIG. 15 A

CONTINU-
ATION?

CHECK FIRST CONTINUATION
QUESTION

ANSWER
MODIFIER?

~ 1515

CHECK ALL CONT. QUESTIONS
WHICH ARE OF ANSWER-
MODIFIER TYPE

v — 1520
PROCESS ALL INSERTBEFORE
QUESTIONS

~ 152
PROCESS ALL REPLACE
QUESTIONS
v ~ 1530
PROCESS ALL INSERTAFTER
QUESTIONS

L

w

153
ADD ABOVE PROCESSED
MODIFIERS TO TRIGERRING
SENTENCE
v L~ 154
FINISH GENERATING SENTENCE

o

1545

ANY NON-
MODIFIERS?

TO FIG. 15 B

WO 00/74394 PCT/IL00/00314
16/35

FIG.15B

FROM FIG. 15 A

1550
FORCE TRUNCATE
CONNECT CONNECT STRING

1555 1560 STRING 1565
[[/[

ADD THE ADD TRUNCATE THE
FINALSENTENCE CONNECTSTRING CONNECTSTRING
PROPERTY OF THE PROPERTY OF QC PROPERTY OF QC
QC HEADING THE HEADING THE NEXT HEADING THE
NEXT SENTENCE TO| [SENTENCE TO YOUR| | NEXT SENTENCE,

YOUR END END, FOLLOWED BY FROM ITS
ITS FINALSENTENCE FINALSENTENCE
PROPERTY PROPERTY, AND
ADD THE
REMAINDER TO
YOUR END

WO 00/74394 PCT/IL00/00314

17/35

FIG. 16
1600

LANGUAGE
LT. TO RT.?

ADD BEFORE ADD BEFORE
ALWAYS MEANS: ALWAYS MEANS:
TO THE LEFT OF TO THE RIGHT OF
[]
l 1605
N Y
ADD TRUNK AFTER ADD TRUNK BEFORE
ANSWERSSTRING ANSWERS STRING

STANDALONE
SENTENCE?

ADD SUBJECT AFTER ADD SUBJECT BEFORE
TRUNK & ANSWERS TRUNK & ANSWERS

I

ADD PERIOD + 2 SPACES TO
END OF SENTENCE 1620

(B) g5

PCT/IL00/00314

WO 00/74394

18/35

q.1 'Dld0L

YHAVATIONTLNAES MON
AV I LVHL ‘ADNILNAS
AW OL DNIDNOTA4
SO0 TTV WYO:ANI

SAONALNAS
AW NI DO
HALLDV LSYId

0CL1 ~

& AHMSNY

V LI "OId

HHL MON TNV

A4 LOATES LSAUI
AW Q4LOdTdS

"HALLOV MON
AV I LVHL ‘ADN4.LNAS
AW 40 S9davdai
49 AVIA 31 “AONALNAS
AW OL DNIONOTdL ‘AN 40
AVHHY SO0 T1V WYOANI

SOLI ~

PCT/IL00/00314

WO 00/74394

19/35

AaNA

06L1

|

HONHLNAS
HLVIANID-T3Y O.L ydavd1
HONHLNAS MHN LdJWOUd

SyLl 4

MAAvAT HONILNAS
MAN dHL ST ALLOV SI
OHM AW LIV D0 LXAN
dHL LVHL ANV “4daval
ADONALNAS YAONOT
ON AV | LVHL ‘9DON4.LNAS
AW OL DNIDNO14€
S:D0 TTV WIO:ANI

ovLl

SCLI

CHONALNAS AN
NI DO dALLDYV
1S¥ld MON

TIINO I SYM

CHIM SNV
d4Ldd1I4dS LSV1
AW AdLOATISNN

V L1 'O WOY4
gL1 DM

"HALLDOV YIONOTON MON
AV 1 LVHL ‘9ONALNAS
AW J0 S¥gava
49 AVIN ‘9T “9ONALNAS
A OL ONIONOTAd ‘AN 10
AVAHYV SO0 T1V WIOANI

0€L1-"

PCT/IL00/00314

WO 00/74394

20/35

g 81 ‘DI OL

g

YOM DNILIINNOD + .5, A9 AALVIVIAS
STHDIHM “‘DNALNIS-9NS LSV LdIDXH
o+ S A AALVEVdES GALLDY YV
HOIHM ‘HONHLNAS OL ONIONOTAd S.00

TTV 40 AONHLNASSSHTLOHdNS NIOf

CHONHINAS
ANOTV
~ANV.LS

ANH LHDY
O.L LOINNOD

LY OL LT
HDVDNVT

AN Ldd71
OL LOINNOD

0081

V 81 "OIA

PCT/IL00/00314

WO 00/74394

21/35

(ava)

[

]

dNd dNOA OL
JAANIVINGY dH.L ddV ANV
‘ALYAdOUd ADNALNASTYNIA
S.LT WO TIDNGLLNAS
LXHAN dHL ONIAVAH 20 J0

HONALNASTVNIA SLI
A" dIMOTIOL ‘ANd YNOA
OL dONHINAS 1XHIN dH.L
ONIAVAH D0 40 ALAdOUd
ONRILSLDANNOD dav

AN 4NOA OL dINALNAS
IXAN TH.L ONIAVAH
D0 ML 10 ALNAJOUd
ONALNASTVNIA dHL dayv

ALY9d0O¥d DNILLS.LIANNOD ONNILS LDANNOD
AH.L ALVONNL H
'y (AdAL
ONIILS ALVONMIL LIOINNOD

0¢81

LOANNOD dD¥04d

HIONHLNAS
10 DNINNIDHAH
O.L LOdrdns aay

V 81 'DId WOYAd
q 81 "OIA

HONHLNHS 40
AdNd OL LOArdns aav

WO 00/74394 PCT/IL00/00314

22/35
FI1G. 19
1900 1905
N CHECK FOR FREE-
TEXT SENTENCE
Y 1910

TRUNCATE SUBJECT
(FROM RT. ORLT.)
[

1915
Y

N /— 1920

FIND WHICH QUESTIONS IN MY
SENTENCE EXIST
¢ 192

FOR EACH EXISTING QUESTION,
TRUNCATE ITS TRUNK
(FROM RT. OR LT.)

l¢ /- 1930

FOR EACH EXISTING QUESTION,
FIND & MARK SELECTED ANSWERS
WHICH APPEARED IN THE TEXT

v 1935

FOR EACH EXISTING QUESTION,
FIND, ADD, & MARK SELECTED
ANSWERS ADDED BY THE USER

v L~ 1940

FIND IF CONTINUATION EXIST,
AND PROCESS CONTINUATION

Iv‘ L~ 1945

MOVE TO NEXT SENTENCE

()]

l

END

WO 00/74394

23/35

FIG.20 A

2005

USER
SELECTION

I 2010

PCT/IL00/00314

v 2020
LOGIC-RULE [T+
TRIGGERS

PROGRAMS

~ 2015
OBJECT KNOWLEDGE
MODEL ¢ BASE
i 2025
LOGIC-RULES
T
T
l — 2030
EXTERNAL

WO 00/74394 PCT/1L00/00314

24/35

FIG.20B
2040

USER EDITS KNOWLEDGE-
BASE

2045

AUTOMATIC OBJECT-MODEL
GENERATION

l 2050

USER DEFINES LOGIC RULES
USING OBJECT MODEL MECH.

2055

USER DEFINES LOGIC RULE
TRIGGERS USING KB-EDITOR

2060
I

USER CLICK

l e 2065
POPULATE OBJECT MODEL

l 2070

RULE
TRIGGERED?

EXECUTE LOGIC RULE

2090 2095
PROGRAMATICALLY EXECUTE EXTERNAL
‘SELECT” ANSWERS PROGRAMS
IN KB

WO 00/74394

25/35

PCT/IL00/00314

FIG. 21
9)
[.f_lOO [2135 [2140
DISPLAY DISPLAY RE-GENERATE
QUESTIONNAIRE QUESTIONNAIRE TEXT
LANGUAGE A LANGUAGE B LANGUAGE B
(‘TRANSLATE’)
\ r 2105 f
LANGUAGE-LESS
HIERARCHICAL
REPRESENTATION
J— 2110 \ r 2125
TEXT- TEXT-
GENERATION ANALYSIS
LANGUAGE A LANGUAGE A

, [

STORE AS TEXT
LANGUAGE A

PCT/1L00/00314

WO 00/74394

26/35

ALTTLEN
NOLLVISNV2LL

soce 7/

AOLICAE]
ASVU-HOUT TMONY

[

—

\ 4

Sy /

4 ¢¢ DLIOL

HOLDHTHS
HOVADNV

V ¢ O

SLTT
\\\« SUHMSNY | | SNOLLSTNO | | SHLV TdWLL
s9¢¢ 7 09Zz 7 INHINOD ¢ssit / D100
0sze / € DV NONY'] svee /
ovce 7/ ¥
T SUTM SNV SNOLLSHNO | | SHLV TdINHLL
cecc 7 ogze / INHINOD seee D100
oczz / V ADVDNV'] siee
01z
ov1

PCT/IL00/00314

WO 00/74394

27/35

SHONHLNAS

LXHL SHONALNAS I TdNIS SNOILLSANO
AZATVNY ANNOJINOD OL NIOf ALVIANAD AV1dSId
9677 vezrz < 6tz 7 0627 -
SUIMSNV SNOILSINO SHLVIdNAL
mwmm\\ p8zc < LNILNOD €8tz DIDO'
- —
[414¢ AOVNONVT AdLOATdS 18cc
0scc

|

V ¢C 'Dld WOUd

4 77 °Old

PCT/IL00/00314

WO 00/74394

28/35

S9€T] -

£ NOISSHS

09£Z

1

J NH1HOUd

SSEC

H NHTHOUd

0SET|
Il

LIHdSV

94 XEN
11

LIddSV B

0reC~

1 .LOHdSV

SEET

V NHT190Ud

IRXAN u

STET -

¢ NOISSHS

I NOISSHS

NOLLJAS SNOISSHS
IVALXHL AdAL-DO']

CAOVINL | |
CADVIL || g
O NOLLOES
qa1avL 4
| g NOILLDAS
| IDVINI 1
vV 241avL V NOLLDAS
NOLLOAS SNOISSAS SNOILLOAS SNOILOHS
SADVIAL GdAL-DOT QaxId UVINgVv.L aaxid TvOLXAL

0cec

01¢¢

s1ez

c0tC

LNHANOO0A AYOOdY YJHNO.LSND

S

I

€7 O

PCT/IL00/00314

WO 00/74394

29/35

ATdV.L AAVININQNS
HONVNHILNIVIN

H14dV.L SAHUNNN
SLUVd TVIINID

—

MHID LNIVIN

A 1140 Ud ANIDONH

ANV ULV

6661 ‘6 AVIN | |
Aa1vd LO1doLNY | |
9304 LVHS 'SSVd | |
AV NS
LNANSSASSY ANILNOY
TVOINHOAL [T S6TI9
| NOILDAS-SU)
LAOdHd MAUO yaaany U
a $8'SY
1# ANTONG NI I
LLDAS-SSOUD
6661 ‘S AVIN ONIM s
| 1Y €8°€°T
6661 ‘1 AVIA
SADVIAIL
007 AVI-X ANDILV A
AONVNALNIVIA “1VLAN

SNOILOHS
daXI1d dvINngdv.i

SNOILDAS
AdXI1d TVALXHL

LNIWNNDO0d ddO02dd NOLLVII'TddV AHONVNALNIVIN LAVIDIIY,

¥T"Old

PCT/IL00/00314

WO 00/74394

30/35

6661 ‘6 AVIAL | |

WHTHOYU] dH'IS

HN1DLLVA

LI LNOoYv
Od I NVD LVHM

LNHWSSHSSV
S0.1.00d

SINOLJIWAS AN

AHOVAVHH

6661 ‘S AVIN

06661 ‘1 AVIA

YALLAT
LST'IVIOAdS
HSON §6C19

I

NOISSINAAV
1V LIdSOH
S8SP

r

U4LLAT
ALAICEECH NS
£8¢tC

SNOISSHS
LXHL HJAL-DOT

41dV.L d4

% "TOYHLSHTOHO

AMOLSIH ATIANVA |]

SLNAHWND0d
TVOIddIN
AAINNVOS

HT1UV.L ASIOUAXH

¥ SHIYOIVO

SLIGVH HLTVdH

SOHHJVIDOWHA

SNOILLOAS

ddXId dVINEV.L

SNOLLOHS

dd X1 TvALXHL

LINHWNDO0A AYOIHYU NOLLVOI'lddV AJAZINVOYIO HLTVAH TYNOSYHd,

ST'OI

PCT/IL00/00314

WO 00/74394

31/35

¢69¢y SHILIYHdOUd

LIAdH

069CYANNOYOADVE
Liad

¢897{ SNOILLSANO

NOILLISOd

08971 SNOILSINO ||
HAOWN:HY

6,9z SNOILLSANO ||
adayv

JO.LIAH
NOILLDAS dAdXI:d

51977

0,9zy SNOILSANO
41LvOolI'1dNd
c99z{ SHILUAJOUd 0y9Ty W%wmww
L1ad
0997 SHONHLNAS SE9TY sAILYAJOUd
SINIT L1aqa
§s9zy SNOLLSANO 0971 SUAMSNVY
HONINOAS HONAINOIS
0597y SNOILLSHNO s797y SUIMSNV
JAONTY JAONY
sv9zy SNOILLSHANO 0797y SUAMSNY
aav HLVIND/Aay
JOLIaY JOLIAH
LV TdNAL NOILLSANO
019¢~" 097~

JOLIAdd ASVE-dDUATMONM

9T "DId

s

PCT/IL00/00314

WO 00/74394

32/35

(LXAHL SV ADVIOLS) LNAWNO0A A¥0Ddd ddWO.LSNO

/ \ / \

WSINVHOHIN WSINVHOHEN IWSINVHOH INSINVHIHW
SISATVNY 1XdL | | NOILV¥ANED LXAL SISATYNV LXdL | | NOLLVHANID LXAL
se-/ 0c7

HSVH-dDAdTMONA
AdidIdON V-HdS()

dSVH-dDdATMONN
AdI4IdON g-ddS/1

HSVE-4DAdTMONMA
NOILLVOI'lddV "TVILINI

- IVNNOLLSHNO V-2UIVNNOILSENO

LNdNI-VLVd bl LNdNI-V.LVA
IVOIHDUVYAIH TVOIHDYVYLIH
02LT7 S1.77
g-udsn v-udsn
01L S0LT

LT OIA

PCT/TL00/00314

WO 00/74394

33/35

(LXZLL SV ADVIOLS) INTNNDOd AIOITY YINOLSND —

< ‘
N_mmBOzm_\zm\Sm_>
HSOdUN "TVAIANID

0v3c— ﬁ» .

a 4

/

\

NOISSHS MEN SINVHOUIN WSINVHOIW
SV LXELL S LAESNI SISATYNY .LXGLL NOLLV UINED LXLL
ATIVOILVINOLNY se-/ / 0¢

WHLSAS
ceser F ASYE-dDaaTMONY
d4DVSSAN NOLLYOI'lddV

ONINOODNI SAHILYD
LINHADV XOdNI

oegz” 4

AUS NOILLVOI'lddV
Ol TIVIN-d

ocge” %

LXdL
SV NOISSHS d.L1um

si8c”/ x

UASN-NON

0187~

WSINVHOANW
LNdNI-V.LVd
YIVNNOILLSENO
TVOIHOUVYHIH

sg/

HHSN NOLLYOI'1ddV

5087~

8T "Old

PCT/IL00/00314

WO 00/74394

34/35

dNOYUH
HOVH 4Od LHHHSHYOM HLVHEO

o

d6¢ Old NO d4NNILLNOD

!

1

]

/Nmom

AS TV AL
SAT0H “‘HONVI-ANTVA
HOVH 404 NIWNTOD 1

o
|

L

SdNOYD NOSTEVIWOO dNIA9d /omam

A5V 4/401d4.L SATOH
“dAMSNV HOVH JOd NWNTO0D |

/cmmm

HOTVA SAT0H
‘NOLLSHNO HOVA Y04 NWNTOD |

—

v6¢c

AINOLSND DNIAAITVYNO
HOVH 401 MOY 1 “LHFHSHIOM
d1OYD-AANLS ALVIUD

4

|
|

“IVNOO AONVI-HNTVA

AALLV.LITVNO

AAILVLILNVNO

dd AL O1D0T NOLLSINO ANINYALAA /.@_om

*

MOHS OL SNOILSANO/SATAI LOATIS \pioz

*

\

cloc

1

0167 ~\

8067 ~ 9067 ~ P06T ~

INOLLSANO| [NOLLYV¥adO] [aTand | [wo/anv]

SARANO-94NS ANIIAd

2067 7

A¥dN0 dNOYD-AdNLS ANIJFd /coom

V6c Ol

PCT/IL00/00314

35/35

AN

WO 00/74394

0961
LSAL TVOLLSLLY LS WO ¥4d
T SISATTVNY TYOLLSILY.LS LOATAS Ngcer
ATAV.ILALAVID LVINUO: A(/j.lfflL 1
1561 ‘ \
LNZIDW:d % LNNOD :SNIWMNTOD 1VINUO4 LNd.LNO LOFTLS ; ¥56C
056 ‘
dLS % ADVUTAY SNINNTOD HONVI-dNTVA
B AAILYLITVNO _Jecs =
SMOTI0d AALLV.LLLNYNO
SV AMSNV /NOILSINO 816¢
HOVH 404 SNINNTOD T ‘dNO¥D 1
HOVEI MO T SLATHS-MUOM | SIHFHSTUAOM VLVA-AAVINNNS
AUVININNS LV Ph6T | ALVAYO ATIVIILVIWOLNY 7162
*44
dNOYH Hov X - SANOYD NOSIAVINOD
A0 LAAHSHAOM TLVAUD Nogper | ANV AIFNLL TYNIANLIONOT ANLIAA gz

|

V6< Old WOY:A AINNLLNOD
46T "D

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

