
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0119469 A1

Ohmacht

US 2011 0119469A1

(43) Pub. Date: May 19, 2011

(54)

(75)

(73)

(21)

(22)

(60)

BALANCNGWORKLOAD INA
MULTIPROCESSOR SYSTEMI RESPONSIVE
TO PROGRAMMABLE ADJUSTMENTS INA
SYNCRONIZATION INSTRUCTION

Inventor: Martin Ohmacht, Yorktown
Heights, NY (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Appl. No.: 12/796,389

Filed: Jun. 8, 2010

Related U.S. Application Data

Provisional application No. 61/293.266, filed on Jan.
8, 2010, provisional application No. 61/261,269, filed
on Nov. 13, 2009, provisional application No. 61/293,
611, filed on Jan. 8, 2010, provisional application No.
61/295,669, filed on Jan. 15, 2010, provisional appli
cation No. 61/293.237, filed on Jan. 8, 2010, provi
sional application No. 61/293,552, filed on Jan. 8,
2010, provisional application No. 61/293,494, filed on
Jan. 8, 2010, provisional application No. 61/293,476,

1801

1808

CORE L1

THREAD O.

1804

(51)

(52)

(57)

filed on Jan. 8, 2010, provisional application No.
61/293,554, filed on Jan. 8, 2010, provisional applica
tion No. 61/293,559, filed on Jan. 8, 2010, provisional
application No. 61/293.569, filed on Jan. 8, 2010, pro
visional application No. 61/293,499, filed on Jan. 8,
2010, provisional application No. 61/293,603, filed on
Jan. 8, 2010.

Publication Classification

Int. C.
G06F 9/38 (2006.01)
U.S. Cl. 712/216; 712/220; 712/E09.045

ABSTRACT

In a multiprocessor system with threads running in parallel,
workload balancing is facilitated by recognizing a plurality of
levels of Sub-tasks of a memory synchronization instruction
and selectively choosing for at least one thread to do less than
all of levels of these sub-tasks in response to the memory
synchronization instruction. Which thread waits to synchro
nize can be impacted by this choice. The programmer can
cause a thread expected to be a bottleneck to wait less than
other threads. Where one thread is a producer and another
thread is a consumer, types of memory synchronization can
be adapted to these roles.

1802

1805 CORE L1

THREADB

Patent Application Publication May 19, 2011 Sheet 1 of 17 US 2011/01 19469 A1

- - - - - - -
52

531 80

EXTERNAL
CONROLLER DDR3

52
53

5
3.
O

a.

f
O
Y
O

P CONTROLLER EXTERNAL
DDR3

s 3 s

S NETWORK

23 PCI Express

T E S T

Z "SO|-

US 2011/01 19469 A1

909

ETTETTO No.te-- ±?(/LS=nOEN Q

May 19, 2011 Sheet 2 of 17

Z09

LNE WESOV/NW/W ELVILSSNO||L\/>HEINES) CIVER HHL TV/>H_LNEHO(ON)\SWN

Patent Application Publication

Patent Application Publication May 19, 2011 Sheet 3 of 17 US 2011/01 19469 A1

THREAD C. THREAD
1703 170\-Wrdatd N-Rdfig

-Wr1-flag 1704 NIF OREPEAT
1702 1705-N- RC FLAG

1706 - IF fig = 1
1707-1 - Rod data

FIG. 3A

THREAD O. THREAD B

'N-Wrdatd
1708-1N MSYNC 1709 N. MSYNC

1703 1702-/ Wr1-)flag N- Rdfig
1704 N- IF OREPEAT
1705 N. ROFLAG
1706 - IF fig = 1
1707-1 Rd data

FIG. 3B

US 2011/01 19469 A1 May 19, 2011 Sheet 4 of 17 Patent Application Publication

9 CVEHHI | 71 EINHOO

?T ERHOO

Patent Application Publication May 19, 2011 Sheet 5 of 17 US 2011/01 19469 A1

MSYNC GENERATION TAGS OF L2 QUEUE ENTRIES
ARE DECODED INTO SINGLE BITS AND ORD TO
YELD A BT VECTOR OF MSYNCS STILL IN FLIGHT

FIG. 5

US 2011/01 19469 A1 May 19, 2011 Sheet 6 of 17 Patent Application Publication

NOI_L\/>HEINES) LNBWEHONI O L LSETTOER-,

> GG

Patent Application Publication May 19, 2011 Sheet 7 of 17 US 2011/01 19469 A1

12O1

3-8
BINARY

1202 - DECODER

1203 1204 1205 12O6

FIG. 5B

US 2011/01 19469 A1 May 19, 2011 Sheet 8 of 17 Patent Application Publication

ETTìCIOWN RHEILNTIO O NO||\/?q=JNE SÐ TV/GOTE) -HO ALIAI LOENNOO TEAET HÆÐIH

Patent Application Publication May 19, 2011 Sheet 9 of 17 US 2011/01 19469 A1

REG ACTIVE AND
REQ GEN= GEN CNT+1 ?

INC GEN CNT

FIG. 7

US 2011/01 19469 A1 May 19, 2011 Sheet 10 of 17 Patent Application Publication

ON

?. HEL?TTO!! % !! LOTNEÐ

Z08

908

SEÅ

HL?TTOÀI LNEVNEHONI
ON

SEA

| 08

ET[]CIOWN >JE LNT OO G06NOI_L\/?HENES) TVOEOTIÐ

US 2011/01 19469 A1

806

May 19, 2011 Sheet 11 of 17

OOOBO

d?IO?-15) ?IO LOE LEGI #706

Patent Application Publication

US 2011/01 19469 A1 Patent Application Publication

US 2011/01 19469 A1 May 19, 2011 Sheet 13 of 17 Patent Application Publication

LNEVNER-IONI NO||L\/?HEINES) SI SETTOE}} V LVCI SE LIQHWA?0|| ||

gow--^

90 || ||

US 2011/01 19469 A1 May 19, 2011 Sheet 14 of 17 Patent Application Publication

Patent Application Publication May 19, 2011 Sheet 15 of 17 US 2011/0119469 A1

1604

INC

1602

1601 \N

16O7
1608

1603

RECQUESTED GENERATION

INCREQ
FROM CORE

FIG. 13

US 2011/01 19469 A1 May 19, 2011 Sheet 16 of 17 Patent Application Publication

| 97

ET ETTÒ ILSEIT ÜDER

- Gy
89

US 2011/01 19469 A1 May 19, 2011 Sheet 17 of 17

9 ERHOO

Patent Application Publication

US 2011/01 19469 A1

BALANCINGWORKLOAD INA
MULTIPROCESSOR SYSTEMI RESPONSIVE
TO PROGRAMMABLE ADJUSTMENTS INA

SYNCRONIZATION INSTRUCTION

RELATED APPLICATIONS

0001. The present application claims priority of U.S. pro
visional application Ser. No. 61/293.266 filed Jan. 8, 2010,
which is also incorporated herein by reference. The present
application is filed concurrently with “GENERATION
BASED MEMORY SYNCHRONIZATION IN A MULTI
PROCESSOR SYSTEM WITH WEAKLY CONSISTENT
MEMORY ACCESSES (24878)
0002 Benefit is also claimed of the following, which are
also incorporated by reference

0003 U.S. Patent Application Ser. Nos. 61/261,269,
filed Nov. 13, 2009 for “LOCAL ROLLBACK FOR
FAULTTOLERANCE IN PARALLEL COMPUTING
SYSTEMS;

0004. 61/293,611, filed Jan. 8, 2010 for “A MULTI
PETASCALE HIGHLY EFFICIENT PARALLEL
SUPERCOMPUTER:

0005 61/295,669, filed Jan. 15, 2010 for “SPECULA
TION ANDTRANSACTION IN A SYSTEM SPECU
LATION AND TRANSACTION SUPPORT IN L2 L1
SUPPORT FOR SPECULATIONATRANSACTIONS
IN A2 PHYSICALALIASING FORTHREAD LEVEL
SPECULATION MULTIFUNCTIONING L2 CACHE
CACHING MOST RECENT DIRECTORY LOOK UP
AND PARTIAL CACHE LINE SPECULATION SUP
PORT,

0006 U.S. patent application Ser. No. 12/684,367, filed
Jan. 8, 2010, for “USING DMA FOR COPYING PER
FORMANCE COUNTER DATA TO MEMORY:

0007 U.S. patent application Ser. No. 12/684,172, filed
Jan. 8, 2010 for “HARDWARE SUPPORT FOR COL
LECTING PERFORMANCE COUNTERS
DIRECTLY TO MEMORY:

0008 U.S. patent application Ser. No. 12/684,190, filed
Jan. 8, 2010 for “HARDWARE ENABLED PERFOR
MANCE COUNTERS WITH SUPPORT FOR OPER
ATING SYSTEM CONTEXT SWITCHING:

0009 U.S. patent application Ser. No. 12/684,496, filed
Jan. 8, 2010 for “HARDWARE SUPPORT FOR SOFT
WARE CONTROLLED FAST RECONFIGURATION
OF PERFORMANCE COUNTERS:

(0010 U.S. patent application Ser. No. 12/684,429, filed
Jan. 8, 2010, for “HARDWARE SUPPORT FORSOFT
WARE CONTROLLED FAST MULTIPLEXING OF
PERFORMANCE COUNTERS:

(0011 U.S. patent application Ser. No. 12/697,799 filed
Feb. 1, 2010, for “CONDITIONAL LOAD AND
STORE IN A SHARED CACHE”;

(0012 U.S. patent application Ser. No. 12/684,738, filed
Jan. 8, 2010, for “DISTRIBUTED PERFORMANCE
COUNTERS:

(0013 U.S. patent application Ser. No. 12/684,860, filed
Jan. 8, 2010, for “PAUSE PROCESSOR HARDWARE
THREAD ON PIN;

(0014 U.S. patent application Ser. No. 12/684,174, filed
Jan. 8, 2010, for “PRECAST THERMAL INTERFACE
ADHESIVE FOR EASY AND REPEATED, SEPARA
TION AND REMATING:

May 19, 2011

(0.015 U.S. patent application Ser. No. 12/684,184, filed
Jan. 8, 2010, for “ZONE ROUTING INATORUSNET
WORK";

0016 U.S. patent application Ser. No. 12/684.852, filed
Jan. 8, 2010, for “PROCESSOR RESUME UNIT":

0017 U.S. patent application Ser. No. 12/684,642, filed
Jan. 8, 2010, for “TLB EXCLUSION RANGE:

(0.018 U.S. patent application Ser. No. 12/684,804, filed
Jan. 8, 2010, for “DISTRIBUTED TRACE USING
CENTRAL PERFORMANCE COUNTER
MEMORY:

(0.019 U.S. patent application Ser. No. 61/293.237, filed
Jan. 8, 2010, for “ORDERING OF GUARDED AND
UNGUARDED STORES FOR NO-SYNC I/O':

0020 U.S. patent application Ser. No. 12/693,972, filed
Jan. 26, 2010, for “DISTRIBUTED PARALLEL MES
SAGING FOR MULTIPROCESSOR SYSTEMS;

0021 U.S. patent application Ser. No. 12/688,747, filed
Jan. 15, 2010, for “Support for non-locking parallel
reception of packets belonging to the same reception
FIFO:

0022 U.S. patent application Ser. No. 12/688,773, filed
Jan. 15, 2010, for “OPCODE COUNTING FOR PER
FORMANCE MEASUREMENT:

0023 U.S. patent application Ser. No. 12/684,776, filed
Jan. 8, 2010, for “MULTI-INPUT AND BINARY
REPRODUCIBLE, HIGH BANDWIDTH FLOATING
POINT ADDER IN A COLLECTIVE NETWORK";

0024 U.S. patent application Ser. No. 61/293,552, filed
Jan. 8, 2010, for “LIST BASED PREFETCH:

(0.025 U.S. patent application Ser. No. 12/684,.693, filed
Jan. 8, 2010, for “PROGRAMMABLE STREAM
PREFETCH WITH RESOURCE OPTIMIZATION:

0026 U.S. patent application Ser. No. 61/293,494, filed
Jan. 8, 2010, for “NON-VOLATILE MEMORY FOR
CHECKPOINT STORAGE”:

0027 U.S. patent application Ser. No. 61/293,476, filed
Jan. 8, 2010, for “NETWORKSUPPORT FOR SYS
TEM.INITIATED CHECKPOINTS”;

0028 U.S. patent application Ser. No. 61/293,554, filed
Jan. 8, 2010, for “TWO DIFFERENT PREFETCHING
COMPLEMENTARY ENGINES OPERATING
SIMULTANEOUSLY:

0029 U.S. patent application Ser. No. 12/697,015 filed
Jan. 29, 2010, for “DEADLOCK-FREE CLASS
ROUTES FOR COLLECTIVE COMMUNICATIONS
EMBEDDED IN A MULTI-DIMENSIONAL TORUS
NETWORK";

0030 U.S. patent application Ser. No. 61/293,559, filed
Jan. 8, 2010, for “IMPROVING RELIABILITY AND
PERFORMANCE OF A SYSTEM-ON-A-CHIP BY
PREDICTIVE WEAR-OUT BASED ACTIVATION
OF FUNCTIONAL COMPONENTS:

0031 U.S. patent application Ser. No. 61/293,569, filed
Jan. 8, 2010, for “IMPROVING THE EFFICIENCY OF
STATIC CORE TURNOFF IN A SYSTEM-ON-A-
CHIP WITHVARIATION:

0032 U.S. patent application Ser. No. 12/697,043 filed
Jan. 29, 2010 for “IMPLEMENTING ASYNCHRO
NOUS COLLECTIVE OPERATIONS IN A MULTI
NODE PROCESSING SYSTEM:

0033 U.S. patent application Ser. No. 12/697,175 Jan.
29, 2010 for “I/O ROUTING IN A MULTIDIMEN
SIONAL TORUS NETWORK";

US 2011/01 19469 A1

0034 U.S. patent application Ser. No. 12/684,287, filed
Jan. 8, 2010 for “ARBITRATION IN CROSSBAR
INTERCONNECT FOR LOW LATENCY,

0035 U.S. patent application Ser. No. 12/684,630, filed
Jan. 8, 2010 for “EAGER PROTOCOL ON ACACHE
PIPELINE DATAFLOW:

0036 U.S. patent application Ser. No. 12/723,277 filed
Mar. 12, 2010 for “EMBEDDING GLOBAL BARRIER
AND COLLECTIVE IN A TORUS NETWORK";

0037 U.S. patent application Ser. No. 61/293,499, filed
Jan. 8, 2010 for “GLOBAL SYNCHRONIZATION OF
PARALLEL PROCESSORS USING CLOCKPULSE
WIDTH MODULATION:

0038 U.S. patent application Ser. No. 12/696,817 filed
Jan. 29, 2010 for “HEAP/STACK GUARD PAGES
USING AWAKEUP UNIT; and

0039 U.S. patent application Ser. No. 61/293,603, filed
Jan. 8, 2010 for “MECHANISM OF SUPPORTING
SUB-COMMUNICATOR COLLECTIVES WITH
O(64) COUNTERS AS OPPOSED TO ONE
COUNTER FOREACHSUB-COMMUNICATOR.

GOVERNMENT CONTRACT

0040. This invention was made with government support
under Contract No. B554331 awarded by the Department of
Energy. The Government has certain rights in this invention

BACKGROUND

0041. The invention relates to the field of synchronizing
threads carrying out memory access requests in parallel in a
multiprocessor system.
0042. The PowerPC architecture is defined in IBM(R)
Power ISATM Version 2.06 Jan. 30, 2009, which is incorpo
rated herein by reference. This document will be referred to as
“PowerPC Architecture’ or “PPC herein. The PowerPC
architecture defines three levels of synchronization:

0043 heavy-weight sync, also called hw sync, or
mSync,

0044 lwsync (lightweight sync) and
0045 eieio (also called mbar, memory barrier).

0046 More about the msync instruction can be found in
the article:Janice M. Stone, Robert P. Fitzgerald, “Storage in
the PowerPC IEEE Micro, pp. 50-58, April, 1995

SUMMARY

0047. It has been found that programmers tend to overuse
the msync instruction, resulting in excessive delays in a mul
tiprocessor system. Also, it has been found that workload
balancing requires greater flexibility in determining which
processes need to wait during synchronization. To balance
workload, it is desirable to loosen waiting requirements asso
ciated with synchronization requests.
0048 Advantageously, a computer method for use in a
multiprocessor system might include

0049 processing a plurality of software threads in par
allel:

0050 responsive to a first thread, decoding a first
memory synchronization instruction, the first instruc
tion corresponding to a first synchronization level;

0051 responsive to the first synchronization level,
implementing a first partial synchronization task;

0.052 responsive to a second thread, decoding a second
memory synchronization instruction, the second

May 19, 2011

instruction corresponding to a second synchronization
level different from, but compatible with, the first syn
chronization level;

0.053 responsive to the second thread, implementing a
second partial synchronization task responsive to the
second synchronization level, the second partial Syn
chronization task being complementary with the first
partial synchronization task, so that the first and second
synchronization tasks cooperate to achieve full synchro
nization.

0054 Further advantageously, a multiprocessor system
might include

0.055 facilities adapted to run a plurality of threads in
parallel;

0056 a central generation indication module adapted to
associate generations with memory synchronization
instructions; and

0057 facilities adapted to decode at least one memory
synchronization instruction in at least one of the threads,
in accordance with a memory synchronization protocol
that implements a plurality of levels of memory synchro
nization each level having a respective distinct mode of
operation responsive to the central generation indication
module.

0.058 Still further advantageously, a method for use in a
multiprocessor system might include

0059 responsive to a given thread running on the sys
tem, recognizing a memory synchronization instruction,
the instruction implicating a plurality of memory Syn
chronization Sub-tasks;

0060 responsive to the instruction, invoking at least one
memory synchronization facility in accordance with a
synchronization scheme including a plurality of syn
chronization levels; and

0061 distributing the sub-tasks responsive to the levels
so as to offload sub-tasks from or allocate subtasks to the
given thread

0062) Objects and advantages will be apparent through
Out.

BRIEF DESCRIPTION OF THE DRAWING

0063 Embodiments will now be described by way of non
limiting example with reference to the following figures.
0064 FIG. 1 shows an overview of a multi-processor sys
tem.

0065 FIG. 2 shows the control portion of an L2 slice.
0.066 FIG. 3A shows a producer thread and a consumer
thread.
0067 FIG. 3B shows the threads of FIG. 3A with an
MSYNC instruction added.
0068 FIG. 4 shows what happens in the system in
response to the instructions of FIG. 3A.
0069 FIG. 5 shows conceptually the operation of an OR
reduce tree for communicating generation usage from
devices requesting memory accesses.
0070 FIG. 5A shows more about the OR tree of FIG. 5.
(0071 FIG. 5B shows creation of a vector within a unit
processing memory access requests.
0072 FIG. 6 shows a central msync unit.
0073 FIG. 7 is a flowchart relating to use of a generation
counter and a reclaim pointer.
0074 FIG. 8 is a flow chart relating to update of a reclaim
pointer.

US 2011/01 19469 A1

0075 FIG.9 is a conceptual diagram showing operation of
a memory synchronization interface unit.
0076 FIG. 10 is a conceptual diagram showing a detector
from the memory synchronization interface.
0077 FIG. 11 shows flowcharts relating to how data pro
ducer and consumer threads communicate via the memory
synchronization interface to determine when data is ready for
exchange between threads.
0078 FIG. 12 shows a Venn diagram with different levels
of msync.
0079 FIG. 13 shows a delay circuit.
0080 FIG. 14 shows some circuitry within the L1 P.
0081 FIG. 15 illustrates ordering constraints in threads
running in parallel.
0082 FIG. 16 illustrates some types of consistency con
straints.

DETAILED DESCRIPTION

0083. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident Software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0084 Any combination of one or more computer readable
media may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any Suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.
0085. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
I0086 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,

May 19, 2011

including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
I0087 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
I0088 Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks. These computer program instructions may
also be stored in a computer readable medium that can direct
a computer, other programmable data processing apparatus,
or other devices to function in a particular manner, such that
the instructions stored in the computer readable medium pro
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.
I0089. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0090 The present document mentions a number of
instruction and function names such as “ms c. “hwSync.
“lwsync,” and “eieio:” “TLBsync,” “Mbar,” “full sync.”
“non-cumulative barrier.” “producer sync.” “generation
change sync.” “producer generation change sync.” “con
Sumer sync. and “local barrier.” Some of these names come
from the Power PC architecture and others are new to this
document, but all are nevertheless arbitrary and for conve
nience of understanding. An instruction might equally well be
given any name as a matter of preference without altering the
nature of the instruction or without taking the function
instruction or the hardware Supporting it outside of the scope
of the claims. Moreover the claimed invention is not limited to
a particular instruction set.

s

US 2011/01 19469 A1

0091 Generally implementing an instruction will involve
creating specific computer hardware that will cause the
instruction to run when computer code requests that instruc
tion. The field of Application Specific Integrated Circuits
(ASIC's) is a well-developed field that allows implementa
tion of computer functions responsive to a formal specifica
tion. Accordingly, not all specific implementation details will
be discussed here. Instead the functions of instructions and
units will be discussed.
0092. As described herein, the use of the letter “B” typi
cally represents a Byte quantity, e.g., 2B, 8.0B, 32B, and 64B
represent Byte units. Recitations “GB represent Gigabyte
quantities. Throughout this disclosure a particular embodi
ment of a multi-processor system will be discussed. This
embodiment includes various numerical values for numbers
of components, bandwidths of interfaces, memory sizes and
the like. These numerical values are not intended to be limit
ing, but only examples. One of ordinary skill in the art might
devise other examples as a matter of design choice.
0093. The term “thread will be used herein. A thread can
be a hardware thread, meaning a processing circuitry within a
processor. A thread can also be a Software thread, meaning
segments of computer program code that are run in parallel,
for instance on hardware threads.
General Features of a Multiprocessor System in which the
Invention Maybe Implemented
0094 FIG. 1 shows an overall architecture of a multipro
cessor computing node 50, a parallel computing system in
which the present invention may be implemented. While this
example is given as the environment in which the invention of
the present application was developed, the invention is not
restricted to this environment and might be ported to other
environments by the skilled artisan as a matter of design
choice.
0095. The compute node 50 is a single chip (“nodechip')

is based on low power A2 PowerPC cores, though any com
patible core might be used. While the commercial embodi
ment is built around the PowerPC architecture, the invention
is not limited to that architecture. In the embodiment
depicted, the node includes 17 cores 52, each core being
4-way hardware threaded. There is a shared L2 cache 70
accessible via a full crossbar switch 60, the L2 including 16
slices 72. There is further provided external memory 80, in
communication with the L2 via DDR-3 controllers 78 DDR
being an acronym for Double Data Rate.
0096. A messaging unit (“MU) 100 includes a direct
memory access ("DMA) engine 21, a network interface 22,
a Peripheral Component Interconnect Express (“PCIe) unit
32. The MU is coupled to interprocessor links 90 and i?o link
92.

0097. Each FPU 53 associated with a core 52 has a data
path to the L1-data cache 55. Each core 52 is directly con
nected to a Supplementary processing agglomeration 58,
which includes a private prefetch unit. For convenience, this
agglomeration 58 will be referred to herein as “L1P mean
ing level 1 prefetch—or “prefetch unit; but many additional
functions are lumped together in this so-called prefetch unit,
Such as write combining. These additional functions could be
illustrated as separate modules, but as a matter of drawing and
nomenclature convenience the additional functions and the
prefetch unit will be illustrated herein as being part of the
agglomeration labeled “L1P.” This is a matter of drawing
organization, not of Substance. Some of the additional pro
cessing power of this L1P group is shown in FIGS. 9 and 15.

May 19, 2011

The L1P group also accepts, decodes and dispatches all
requests sent out by the core 52.
0098. In this embodiment, the L2 Cache units provide the
bulk of the memory system caching. Main memory may be
accessed through two on-chip DDR-3 SDRAM memory con
trollers 78, each of which services eight L2 slices.
0099] To reduce main memory accesses, the L2 advanta
geously serves as the point of coherence for all processors
within a nodechip. This function includes generating L1
invalidations when necessary. Because the L2 cache is inclu
sive of the L1s, it can remember which processors could
possibly have a valid copy of every line, and can multicast
selective invalidations to such processors. In the current
embodiment the prefetch units and data caches can be con
sidered part of a memory access pathway.
0100 FIG.2 shows features of the control portion of an L2
slice. Broadly, this unit includes coherence tracking at 301, a
request queue at 302, a write data buffer at 303, a read return
buffer at 304, a directory pipe 308, EDRAM pipes 305, a
reservation table 306, and a DRAM controller. The functions
of these elements are explained in more detail in U.S. provi
sional patent application Ser. No. 61/299,911 filed Jan. 29.
2010, which is incorporated herein by reference.
0101. The units 301 and 302 have outputs relevant to
memory synchronization, as will be discussed further below
with reference to FIG.S.B.

0102 FIG. 3A shows a simple example of a producer
thread C. and a consumer thread?. In this example, a seeks to
do a double word write 1701. After the write is finished, it sets
a 1 bit flag 1702, also known as a guard location. In parallel,
Breads the flag 1703. If the flag is Zero, it keeps reading 1704.
If the flag is not zero, it again reads the flag 1705. If the flag is
one, it reads data written by C.
0103 FIG. 4 shows conceptually where delays in the sys
tem can cause problems with this exchange. Thread C. is
running on a first core/L1 group 1804. Thread B is running on
a second core/L1 group 1805. Both of these groups will have
a copy of the data and flag relating to the thread in their L1D
caches. When a does the data write, it queues a memory
access request at 1806, which passes through the crossbar
switch 1803 and is hashed to a first slice 1801 of the L2, where
it is also queued at 1808 and eventually stored.
0104. The L2, as point of coherence, detects that the copy
of the data resident in the L1D for thread B is invalid. Slice
1801 therefore queues an invalidation signal to the queue
1809 and then, via the crossbar switch, to the queue 1807 of
core/L1 group 1805.
0105. When C. writes the flag, this again passes through
queue 1806 to the crossbar switch 1803, but this time the write
is hashed to the queue 1810 of a second slice 1802 of the L2.
This flag is then stored in the slice and queued at 1811 to go
to through the crossbar 1803 to queue 1807 and then to the
core/L1 group 1805. In parallel, thread B, is repeatedly scan
ning the flag in its own L1D.
0106 Traditionally, multiprocessor systems have used
consistency models called “sequential consistency” or
'strong consistency', see e.g. the article entitled “Sequential
Consistency’ in Wikipedia. Pursuant to this type of model, if
unit 1804 first writes data and then writes the flag, this implies
that if the flag has changed, then the data has also changed. It
is not possible for the flag to be changed before the data. The
data change must be visible to the other threads before the flag

US 2011/01 19469 A1

changes. This sequential. model has the disadvantage that
threads are kept waiting, sometimes unnecessarily, slowing
processing.
0107 To speed processing, PowerPC architecture uses a
“weakly consistent memory model. In that model, there is no
guarantee whatsoever what memory access request will first
resultina change visible to all threads. It is possible that B will
see the flag changing, and still not have received the invali
dation message from slice 1801, so may still have old data
in its L1D.
0108. To prevent this unfortunate result, the PowerPC pro
grammer can insert msync instructions 1708 and 1709 as
shown in FIG. 3B. This will force a full sync, or strong
consistency, on these two threads, with respect to this particu
lar data exchange. In PowerPC architecture, if a core executes
an imsync, it means that all the writes that have happened
before the msync are visible to all the other cores before any
of the memory operations that happened after the msync will
be seen. In other words, at the point of time when the msync
completes, all the threads will see the new write data. Then the
flag change is allowed to happen. In other words, until the
invalidation goes back to group 1805, the flag cannot be set.
0109. In accordance with the embodiment disclosed
herein, to support concurrent memory synchronization
instructions, requests are tagged with a global “generation”
number. The generation number is provided by a central
generation counter. A core executing a memory synchroniza
tion requests the central unit to increment the generation
counter and then waits until all memory operations of the
previously current generation and all earlier generations have
completed.
0110. A core's memory synchronization request is com
plete when all requests that were in flight when the request
began have completed. In order to determine this, the L1P
monitors a reclaim pointer that will be discussed further
below. Once it sees the reclaim pointer moving past the gen
eration that was active at the point of the start of the memory
synchronization request, then the memory synchronization
request is complete.
0111 FIG. 5A shows a view of the memory synchroniza
tion central unit. In the current embodiment, the memory
synchronization generation counter unit 905 is a discrete unit
placed relatively centrally in the chip 50, close to the crossbar
switch 60. It has a central location as it needs short distances
to a lot of units. UP units request generation increments,
indicate generations in flight, and receive indications of gen
erations completed. The L2's provide indications of genera
tions in flight. The OR-tree 322 receives indications of gen
erations in flight from all units queuing memory access
requests. Tree 322 is a distributed structure. Its parts are
scattered across the entire chip, coupled with the units that are
queuing the memory access requests. The components of the
OR reduce tree are a few OR gates at every fork of the tree.
These gates are not inside any unit. Another view of the OR
reduce tree is discussed with respect to FIG. 5, below.
0112 A number of units within the nodechip queue
memory access requests, these include:
0113 L1P
0114 L2
0115 DMA
0116 PCIe
0117 Every such unit can contain some aspect of a
memory access request in flight that might be impacted by a
memory synchronization request. FIG. 5B shows an

May 19, 2011

abstracted view of one of these units at 1201, a generic unit
that issues or processes memory requests via a queue. Each
Such unit includes a queue 1202 for receiving and storing
memory requests. Each position in the queue includes bits
1203 for storing a tag that is a three bit generation number.
Each of the sets of three bits is coupled to a three-to-eight
binary decoder 1204. The outputs of the binary decoders are
OR-ed bitwise at 1205 to yield the eight bit output vector
1206, which then feeds the OR-reduce tree of FIG. 5. A clear
bit in the output vector means that no request associated with
that generation is in flight. Core queues are flushed prior to the
start of the memory synchronization request and therefore do
not need to be tagged with generations. The L1D need not
queue requests and therefore may not need to have the unit of
FIG.SB.

0118. The global OR tree 502 per FIG. 5 receives from
all units 501 issuing and queuing memory requests—an eight
bit wide vector 504, per FIG. 5B at 1206. Each bit of the
vector indicates for one of the eight generations whether this
unit is currently holding any request associated with that
generation. The numbers 3, 2, and 2 in units 501 indicate that
a particular generation number is in flight in the respective
unit. This generation number is shown as a bit within vectors
502. While the present embodiment has 8 bit vectors, more or
less bits might be used by the designer as needed for particular
applications. FIG. 5 actually shows these vectors as having
more than eight bits, based on the ellipsis and trailing Zeroes.
This is an alternative embodiment. The Global OR tree
reduces each bit of the vector individually, creating one
resulting eight bit wide vector 503, each bit of which indicates
if any request of the associated generation is in flight any
where in the node. This result is sent to the global generation
counter 905 and thence broadcasted to all core units 52, as
shown in FIG. 5 and also at 604 of FIG. 6. FIG. 5 is a
simplified figure. The actual OR gates are not shown and there
would, in the preferred embodiment, be many more than three
units contributing to the OR reduce tree.
0119 Because the memory subsystem has paths—espe
cially the crossbar—through which requests pass without
contributing to the global OR reduce tree of FIG. 5, the
memory synchronization exit condition is a bit more
involved. All such paths have a limited, fixed delay after
which requests are handed over to a unit 501 that contributes
to the global OR. Compensating for Such delays can be done
in several alternative ways. For instance, if the crossbar has a
delay of six cycles, the central unit can wait six cycles after
disappearance of a bit from the OR reduce tree, before con
cluding that the generation is no longer in flight. Alterna
tively, the L1P mightkeep the bit for that generation turned on
during the anticipated delay.
0120 Memory access requests tagged with a generation
number may be of many types, including:

0121 A Store request; including compound operations
and "atomic' operations such as store-add requests

0122. A load request, including compound and
"atomic' operations such as load-and-increment
requests

0123. An L1 data cache (“L1D) cache invalidate
request created in response to any request above

0.124. An Instruction Cache Block Invalidate instruc
tion from a core 52 (“ICBI, a PowerPC instruction);

0.125. An L1 Instruction Cache (“L1I) cache invalidate
request created in response to a ICBI request

US 2011/01 19469 A1

0.126 AData Cache Block Invalidate instruction from a
core 52 (“DCBI, a PowerPC instruction):

I0127. An L1 I cache invalidate request created in
response to a DCBI request

Memory Synchronization Unit
0128. The memory synchronization unit 905 shown in
FIG. 6 allows grouping of memory accesses into generations
and enables ordering by providing feedback when a genera
tion of accesses has completed. The following functions are
implemented in FIG. 6:

I0129. A 3 bit counter 601 that defines the current gen
eration for memory accesses;

I0130. A 3 bit reclaim pointer 602 that points to the
oldest generation in flight;

I0131 Privileged DCR access 603 to all registers defin
ing the current status of the generation counter unit. The
DCR bus is a maintenance bus that allows the cores to
monitor status of other units. In the current embodiment,
the cores do not access the broadcast bus 604. Instead
they monitor the counter 601 and the pointer 602 via the
DCR bus;

0.132. A broadcast interface 604 that provides the value
of the current generation counter and the reclaim pointer
to all memory request generating units. This allows
threads to tag all memory accesses with a current gen
eration, whether or not a memory synchronization
instruction appears in the code of that thread;

I0133) A request interface 605 for all synchronization
operation requesting units:

I0134. A track and control unit 606, for controlling
increments to 601 and 602.

In the current embodiment, the generation counter is used to
determine whether a requested generation change is com
plete, while the reclaim pointer is used to infer what genera
tion has completed.
0135. The module 905 of FIG. 6 broadcasts via 604 a
signal defining the current generation number to all memory
synchronization interface units, which in turn tag their
accesses with that number. Each memory Subsystem unit that
may hold such tagged requests flags per FIG. 5B for each
generation whether it holds requests for that particular gen
eration or not.
0136. For a synchronization operation, a unit can request
an increment of the current generation and wait for previous
generations to complete.
0.137 The central generation counteruses a single counter
601 to determine the next generation. As this counter is nar
row, for instance 3 bits wide, it wraps frequently, causing the
reuse of generation numbers. To prevent using a number that
is still in flight, there is a second, reclaiming counter 602 of
identical width that points to the oldest generation in flight.
This counter is controlled by a track and control unit 606
implemented within the memory synchronization unit. Sig
nals from the msync interface unit, discussed with reference
to FIGS. 9 and 10 below, are received at 605. These include
requests for generation change.
0138 FIG. 7 illustrates conditions under which the gen
eration counter may be incremented and is part of the function
of the track and control unit 606. At 701 it is tested whether a
request to increment is active and the request specifies the
current value of the generation counter plus one. If not, the
unit must wait at 701. If so, the unit tests at 702 whether the
reclaim pointer is equal to the current generation pointer plus

May 19, 2011

one. If so, again the unit must wait and retest in accordance
with 701. If not, it is tested at 703 whether the generation
counter has been incremented in the last two cycles, if so, the
unit must wait at 701. If not, the generation counter may be
incremented at 704.
0.139. The generation counter can only advance if doing so
would not cause it to point to the same generation as the
reclaim pointerper in the next cycle. If the generation counter
is stalled by this condition, it can still receive incoming
memory synchronization requests from other cores and pro
cess them all at once by broadcasting the identical grant to all
of them, causing them all to wait for the same generations to
clear. For instance, all requests for generation change from
the hardware threads can be OR'd together to create a single
generation change request.
0140. The generation counter (gen cnt) 601 and the
reclaim pointer (rcl ptr) 602 both start at Zero after reset.
When a unit requests to advance to a new generation, it
indicates the desired generation. There is no request explicit
acknowledge sent back to the requestor, the requestor unit
determines at whetherits request has been processed based on
the global current generation 601, 602. As the requested gen
eration can be at most the gen cnt--1, requests for any other
generation at are assumed to have already been completed.
0.141. If the requested generation is equal to gen cnt+1
and equal to rcl ptrat, an increment is requested because the
next generation value is still in use. The gen cnt will be
incremented as soon as the rcl ptr increments.
0142. If the requested generation is not equal togen cnt--
1, it is assumed completed and is ignored.
0.143 If the requested generation is equal to gen cnt+1
and not equal to rcl ptr, gen cnt is incremented at; but gen
cnt is incremented at most every 2 cycles, allowing units
tracking the broadcast to see increments even in the presence
of single cycle upset events.
0144 Per FIG. 8, which is implemented in box 606, the
reclaim counter is advanced at 803 if

0145 Per 804 it is not identical to the generation
counter,

014.6 per 801, the gen cnt has pointed to its current
location for at least n cycles. The variable n is defined by
the generation counter broadcast and OR-reduction
turn-around latency plus 2 cycles to remove the influ
ence of transient errors on this path; and

0147 Per 803, the OR reduce tree has indicated for at
least 2 cycles that no memory access requests are in
flight for the generation rcl ptrpoints to. In other words,
in the present embodiment, the incrementation of the
reclaim pointer is an indication to the other units that the
requested generation has completed. Normally, this is a
requirement for a “full sync' as described below and
also a requirement for the PPC msync.

Levels of Synchronization
0.148. The PowerPC architecture defines three levels of
synchronization:
0149 heavy-weight sync, also called hw sync, or msync,
0150 lwsync (lightweight sync) and
0151 eieio (also called mbar, memory barrier).
0152 Generally it has been found that programmers over
use the heavyweight sync in their Zealousness to prevent
memory inconsistencies. This results in unnecessary slowing
of processing. For instance, if a program contains one data
producer and many data consumers, the producer is the

US 2011/01 19469 A1

bottleneck. Having the producer wait to synchronize aggra
Vates this. Analogously, if a program contains many produc
ers and only one consumer, then the consumer can be the
bottleneck and forcing it to wait should be avoided where
possible.
0153. In implementing memory synchronization, it has
been found advantageous to offer several levels of synchro
nization programmable by memory mapped I/O. These levels
can be chosen by the programmer in accordance with antici
pated work distribution. Generally, these levels will be most
commonly used by the operating system to distribute work
load. It will be up to the programmer choosing the level of
synchronization to Verify that different threads using the same
data have compatible synchronization levels.
0154 Seven levels or “flavors” of synchronization opera
tions are discussed herein. These flavors can be implemented
as alternatives to the msync?hwSync, lwSync, and mbarleieio
instructions of the PowerPC architecture. In this case, pro
gram instances of these categories of Power PC instruction
can all be mapped to the strongest Sync, the msync, with the
alternative levels then being available by memory-mapped
i/o. The scope of restrictions imposed by these different fla
vors is illustrated conceptually in the Venn diagram of FIG.
12. While seven flavors of synchronization are disclosed
herein, one of ordinary skill in the art might choose to imple
ment more or less flavors as a matter of design choice. In the
present embodiment, these flavors are implemented as a store
to a configuration address that defines how the next msync is
supposed to be interpreted.
O155 The seven flavors disclosed herein are:

Full Sync 1711

0156 The full sync provides sufficient synchronization to
satisfy the requirements of all PowerPC msync, hwsync?
lwSync and mbar instructions. It causes the generation
counter to be incremented regardless of the generation of the
requester's last access. The requestor waits until all requests
complete that were issued before its generation increment
request. This sync has sufficient strength to implement the
PowerPC synchronizing instructions.

Non-Cumulative Barrier 1712

0157. This sync ensures that the generation of the last
access of the requestor has completed before the requestor
can proceed. This sync is not strong enough to provide cumu
lative ordering as required by the PowerPC synchronizing
instructions. The last load issued by this processor may have
received a value written by a store request of another core
from the Subsequent generation. Thus this sync does not
guarantee that the value it saw prior to the store is visible to all
cores after this sync operation. More about the distinction
between non-cumulative barrier and full sync is illustrated by
FIG. 15. In this figure there are three core processors 1620,
1621, and 1623. The first processor 1620 is running a program
that includes three sequential instructions: a load 1623, an
msync 1624, and a store 1625. The second processor 1621 is
running a second set of sequential instructions: a store 1626,
a load 1627, and a load 1628. It is desired for

0158 a) the store 1626 to precede the load 1623 per
arrow 1629:

0159 b) the store 1625 to precede the load 1627 per
arrow 1630, and

May 19, 2011

(0160 c) the store 1626 to precede the load 1628 per
arrow 1631.

(0161 The full sync, which corresponds to the PowerPC
msync instruction, will guarantee the correctness of
order of all three arrows 1629, 1630, and 1631. The
non-cumulative barrier will only guarantee the correct
ness of arrows 1629 and 1630. If, on the other hand, the
program does not require the order shown by arrow
1631, then the non-cumulative barrier will speed pro
cessing without compromising data integrity.

Producer Sync 1713

0162 This sync ensures that the generation of the last store
access before the sync instruction of the requestor has com
pleted before the requestor can proceed. This sync is suffi
cient to separate the data location updates from the guard
location update for the producer in a producer/consumer
queue. This type of sync is useful where the consumer is the
bottleneck and where there are instructions that can be carried
out between the memory access and the msync that do not
require Synchronization. It is also not strong enough to pro
vide cumulative ordering as required by the PowerPC syn
chronizing instructions.

Generation Change Sync 1714

0163 This sync ensures only that the requests following
the sync are in a different generation than the last request
issued by the requestor. This type of sync is normally
requested by the consumer and puts the burden of synchro
nization on the producer. This guarantees that load and stores
are completed. This might be particularly useful in the case of
atomic operations as defined in co-pending application
61/299,911 filed Jan. 29, 2010, which is incorporated herein
by reference, and where it is desired to verify that all data is
consumed.

Producer Generation Change Sync 1715

0164. This sync is designed to slow the producer the least.
This sync ensures only that the requests following the Sync
are in a different generation from the last store request issued
by the requestor. This can be used to separate the data location
updates from the guard location update for the producer in a
producer/consumer queue. However, the consumer has to
ensure that the data location updates have completed after it
sees the guard location change. This type does not require the
producer to wait until all the invalidations are finished. The
term “guard location here refers to the type of data shown in
the flag of FIGS. 3A and 3B. Accordingly, this type might be
useful for the types of threads illustrated in those figures. In
this case the consumer has to know that the flag being set does
not mean that the data is ready. If the flag has been stored with
generationX, the data has been stored with X-1 or earlier. The
consumer just has to make Sure that the current generation -1
has completed.

Consumer Sync 1716

0.165. This request is run by the consumer thread. This
sync ensures that all requests belonging to the current gen
eration minus one have completed before the requestor can
proceed. This sync can be used by the consumer in conjunc

US 2011/01 19469 A1

tion with a producer generation change sync by the producer
in a producer/consumer queue.

Local Barrier 1717

0166 This sync is local to a core/L1 group and only
ensures that all its preceding memory accesses have been sent
to the Switch.
(0167 FIG. 11 shows how the threads of FIG. 3B can use
the generation counter and reclaim pointer to achieve Syn
chronization without a full sync. At 1101, thread C. the
producer writes data. At 1102 thread a requests ageneration
increment pursuant to a producer generation change Sync. At
1103 thread a monitors the generation counter until it incre
ments. When the generation increments, it sets the data ready
flag.
0.168. At 1105 thread B the consumer tests whether the
ready flag is set. At 1106, thread B also tests, in accordance
with a consumer Sync, whether the reclaim pointer has
reached the generation of the current synchronization
request. When both conditions are met at 1107, then thread B
can use the data at 1108.
0169. In addition to the standard addressing and data func
tions 454, 455, when the L1P 58 shown in FIG. 14 sees
any of these synchronization requests at the interface from the
core 52, it immediately stops write combining responsive to
the decode function 457 and the control unit 452—for all
currently open write combining buffers 450 and enqueues the
request in its request queue 451. During the lookup phase of
the request, Synchronizing requests will advantageously
request an increment of the generation counter and wait until
the last generation completes, executing a Full Sync. The L1P
will then resume the lookup and notify the core 52 of its
completion.
0170 To invoke the synchronizing behavior of synchroni
Zation types other than full Sync, at least two implementation
options are possible:
1. Synchronization caused by load and store operations to
predefined addresses

0171 Synchronization levels are controlled by
memory-mapped I/O accesses. As store operations can
bypass load operations, synchronization operations that
require preceding loads to have completed are imple
mented as load operations to memory mapped I/O space,
followed by a conditional branch that depends on the
load return value. Simple use of load return may be
Sufficient. If the Sync does not depend on the completion
of preceding loads, it can be implemented as store to
memory mapped I/O space. Some implementation
issues of one embodiment are as follows. A write access
to this location is mapped to a sync request which is sent
to the memory synchronization unit. The write request
stalls the further processing of requests until the Sync
completes. A load request to the location causes the
same type ofrequests, but only the full and the consumer
request stall. All other load requests return the comple
tion status as value back, a 0 for sync not yet complete,
a 1 for sync complete. This implementation does not
take advantage all of the built in PowerPC constraints of
a core implementing PowerPC architecture. Accord
ingly, more programmer attention to order of memory
access requests is needed.

2. configuring the semantics of the next synchronizations
instruction, e.g. the PowerPC msync, via storing to a memory
mapped configuration register

May 19, 2011

0.172. In this implementation, before every memory
synchronization instruction, a store is executed that
deposits a value that selects a synchronization behavior
into a memory mapped register. The next executed
memory synchronization instruction invokes the
selected behavior and restores the configuration back to
the Full Sync behavior. This reactivation of the strongest
synchronization type guarantees correct execution if
applications or Subroutines that do not program the con
figuration register are executed.

Memory Synchronization Interface Unit
0173 FIG. 9 illustrates operation of the memory synchro
nization interface unit 904 associated with a prefetch unit
group 58 of each processor 52. This unit mediates between the
OR reduce end-point, the global generation counter unit and
the synchronization requesting unit. The memory synchroni
zation interface unit 904 includes a control unit 906 that
collects and aggregates requests from one or more clients 901
(e.g., 4thread memory synchronization controls of the UP via
decoder 902) and requests generation increments from the
global generation counter unit 905 illustrated in FIG. 6 and
receives current counts from that unit as well. The control unit
906 includes a respective set of registers 907 for each hard
ware thread. These registers may store information Such as
0.174 configuration for a current memory synchronization
instruction issued by a core 52,
0.175 when the currently operating memory synchroniza
tion instruction started,
(0176 whether data has been sent to the central unit, and
0177 whether a generation change has been received.
0.178 The register storing configuration will sometimes be
referred to herein as “configuration register.” This control unit
906 notifies the core 52 via 908 when themsync is completed.
The core issuing the msync drains all loads and stored, stops
taking loads and stores and stops the issuing thread until the
msync completion indication is received.
0179 This control unit also exchanges information with
the global generation counter module 905. This information
includes a generation count. In the present embodiment, there
is only one input per L1P to the generation counter, so the L1P
aggregates requests for increment from all hardware threads
of the processor 52. Also, in the present embodiment, the OR
reduce tree is coupled to the reclaim pointer, so the memory
synchronization interface unit gets information from the OR
reduce tree indirectly via the reclaim pointer.
0180. The control unit also tracks the changes of the global
generation (gen cnt) and determines whether a request of a
client has completed. Generation completion is detected by
using the reclaim pointer that is fed to observer latches in the
L1P. The core waits for the L1P to handle the msyncs. Each
hardware thread may be waiting for a different generation to
complete. Therefore each one stores what the generation for
that current memory synchronization instruction was. Each
then waits individually for its respective generation to com
plete.
0181 For each client 901, the unit implements agroup 903
of three generation completion detectors shown at 1001,
1002, 1003, per FIG. 10. Each detector implements a 3 bit
latch 1004, 1006, 1008 that stores a generation to track, which
will sometimes be the current generation, gen cnt, and some
times be the prior generation, last gen. Each detector also
implements a flag 1005, 1007, 1009 that indicates if the
generation tracked has still requests in flight (ginfl flag). The

US 2011/01 19469 A1

detectors can have additional flags, for instance to show that
multiple generations have completed.
0182 For each store request generated by a client, the first
1001 of the three detectors sets its ginfl flag 1005 and updates
the last gen latch 1004 with the current generation. This
detector is updated for every store, and therefore reflects
whether the last store has completed or not. This is sufficient,
since prior stores will have generations less than or equal to
the generation of the current store. Also, since the core is
waiting for memory synchronization, it will not be making
more stores until the completion indication is received.
0183 For each memory access request, regardless
whether load or store, the second detector 1002 is set corre
spondingly. This detector is updated for every load and every
store, and therefore its flag indicates whether the last memory
access request has completed.
0184. If a client requests a full sync, the third detector
1003 is primed with the current generation, and for a con
Sumer sync the third detector is primed with the current gen
eration-1. Again, this detector is updated for every full or
consumer Sync.
0185. Since the reclaim pointer cannot advance without
everything in that generation having completed and because
the reclaim pointer cannot pass the generation counter, the
reclaim pointer is an indication of whether a generation has
completed. If thercl ptr 602 moves past the generation stored
in lastgen, no requests for the generation are in flight anymore
and the ginfl flag is cleared.

Full Sync
0186 This sync completes if the ginfl flag 1009 of the
third detector 1003 is cleared. Until completion, it requests a
generation change to the value stored in the third detector plus
OC.

Non-Cumulative Barrier

0187. This sync completes if the ginfl flag 1007 of the
second detector 1002 is cleared. Until completion, it requests
a generation change to the value that is held in the second
detector plus one.

Producer Sync
0188 This sync completes if the ginfl flag 1005 of the first
detector 1001 is cleared. Until completion, it requests agen
eration change to the value held in the first detector plus one.

Generation Change Sync
(0189 This sync completes if either the ginfl flag 1007 of
the second detector 1002 is cleared or the if the last gen 1006
of the second detector is different from gen cnt 601. If it does
not complete immediately, it requests a generation change to
the value stored in the second detector plus one. The purpose
of the operation is to advance the current generation (value of
gen cnt) to at least one higher than the generation of the last
load or store. The generation of the last load or store is stored
in the last gen register of the second detector.

0190. 1) If the current generation equals the one of the
last load/store, the current generation is advanced (ex
ception is 3) below).

0191) 2) If the current generation is not equal to the one
of the last load/store, it must have incremented at least
once since the last load/store and that is sufficient;

May 19, 2011

0.192 3) There is a case when the generation counter has
wrapped and now points again at the generation value of
the last load/store. This case is distinguished from 1) by
the clearedginfl flag (when we have wrapped, the origi
nal generation is no longer in flight). In this case, we are
done as well, as we have incremented at least 8 times
since the last load/store (wrap every 8 increments)

Producer Generation Change Sync
(0193 This sync completes if either the ginfl flag 1005 of
the first detector 1001 is cleared or if the last gen 1004 of the
first detector is different from gen cnt 601. If it does not
complete immediately, it requests a generation change to of
the value stored in the first detector plus one. This operates
similarly to the generation change sync except that it uses the
generation of the last store, rather than load/store.

Consumer Sync
(0194 This sync completes if the ginfl flag 1009 of the
third detector 1003 is cleared. Until completion, it requests a
generation change to of the value stored in the third detector
plus one.

Local Barrier

(0195 This sync is executed by the L1P, it does not involve
generation tracking.
0196. From the above discussion, it can be seen that a
memory synchronization instruction actually implicates a set
of Sub-tasks. For a comprehensive memory synchronization
scheme, those Sub-tasks might include one or more of the
following:

0.197 Requesting a generation change between
memory access requests;

0198 Checking a given one of a group of possible gen
eration indications in accordance with a desired level of
synchronization strength;

0199 Waiting for a change in the given one before
allowing a next memory access request; and

0200 Waiting for some other event.
0201 In implementing the various levels of synchroniza
tion herein, sub-sets of this set of sub-tasks can be viewed as
partial synchronization tasks to be allocated between threads
in an effort to improve throughput of the system. Therefore
address formats of instructions specifying a synchronization
level effectively act as parameters to offload sub-tasks from or
to the thread containing the synchronization instruction. If a
particular sub-task implicated by the memory synchroniza
tion instruction is not performed by the thread containing the
memory synchronization instruction, then the implication is
that some other thread will pick up that part of the memory
synchronization function. While particular levels of synchro
nization are specified herein, the general concept of distrib
uting synchronization sub-tasks between threads is not lim
ited to any particular instruction type or set of levels.

Physical Design

0202 The Global OR tree needs attention to layout and
pipelining, as its latency affects the performance of the Sync
operations.
0203. In the current embodiment, the cycle time is 1.25 ns.
In that time, a signal will travel 2 mm through a wire. Where
a wire is longer than 2 mm, the delay will exceed one clock
cycle, potentially causing unpredictable behavior in the trans

US 2011/01 19469 A1

mission of signals. To prevent this, a latch should be placed at
each position on each wire that corresponds to 1.25 ns, in
other words approximately every 2 mm. This means that
every transmission distance delay of 4 ns will be increased to
5 ns, but the circuit behavior will be more predictable. In the
case of the msync unit, some of the wires are expected to be
on the order of 10 mm meaning that they should have on the
order of five latches.

0204. Due to quantum mechanical effects, it is advisable
to protect latches holding generation information with Error
Correcting Codes (“ECC) (4b per 3b counter data). All
operations may include ECC correction and ECC regenera
tion logic.
0205 The global broadcast and generation change inter
faces may be protected by parity. In the case of a single cycle
upset, the request or counter value transmitted is ignored,
which does not affect correctness of the logic.

Software Interface

0206. The Msync unit will implement the ordering seman
tics of the PPC hwsync, lwsync and mbar instruction by
mapping these operations to the full Sync.
0207 FIG. 13 shows a mechanism for delaying incremen
tation if too many generations are in flight. At 1601, the
outputs of the OR reduce tree are multiplexed, to yield a
positive result if all possible generations are in flight. A
counter 1605 holds the current generation, which is incre
mented at 1606. A comparator 1609 compares the current
generation plus one to the requested generation. A compari
son result is ANDed at 1609 with an increment request from
the core. A result from the AND at 1609 is ANDed at 1602
with an output of multiplexer 1601.
0208 Although the embodiments of the present invention
have been described in detail, it should be understood that
various changes and Substitutions can be made therein with
out departing from spirit and scope of the inventions as
defined by the appended claims. Variations described for the
present invention can be realized in any combination desir
able for each particular application. Thus particular limita
tions, and/or embodiment enhancements described herein,
which may have particular advantages to a particular appli
cation need not be used for all applications. Also, not all
limitations need be implemented in methods, systems and/or
apparatus including one or more concepts of the present
invention.

0209. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the

May 19, 2011

specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0210. The word “comprising”, “comprise', or “com
prises' as used herein should not be viewed as excluding
additional elements. The singular article “a” or “an as used
herein should not be viewed as excluding a plurality of ele
ments. Unless the word 'or' is expressly limited to mean only
a single item exclusive from other items in reference to a list
of at least two items, then the use of 'or' in such a list is to be
interpreted as including (a) any single item in the list, (b) all
of the items in the list, or (c) any combination of the items in
the list. Ordinal terms in the claims, such as “first and “sec
ond' are used for distinguishing elements and do not neces
sarily imply order of operation.

1. A computer method comprising carrying out operations
in a multiprocessor system, the operations comprising:

processing a plurality of software threads in parallel;
responsive to a first thread, decoding a first memory syn

chronization instruction, the first instruction corre
sponding to a first synchronization level;

responsive to the first synchronization level, implementing
a first partial synchronization task:

responsive to a second thread, decoding a second memory
synchronization instruction, the second instruction cor
responding to a second synchronization level different
from, but compatible with, the first synchronization
level;

responsive to the second thread, implementing a second
partial synchronization task responsive to the second
synchronization level, the second partial synchroniza
tion task being complementary with the first partial Syn
chronization task, so that the first and second synchro
nization tasks cooperate to achieve full Synchronization.

2. The method of claim 1, wherein the first and second
levels are chosen to reduce waiting time for one of the first and
second threads, while increasing wait time for the other of the
first and second threads.

3. The method of claim 2, wherein
the first thread writes data;
the second thread reads the data;
the first synchronization level causes a generation change

within the system related to the write; and
the second synchronization level causes the second thread

to wait for the generation change to complete.
4. The method of claim 3, wherein the central generation

indication is derived responsive to a generation counter.
5. The method of claim 3, wherein the central generation

indication is derived responsive to a reclaim pointer.
6. The method of claim 1, wherein the first and second

instructions are memory synchronization instructions in
accordance with a given instruction architecture modified by
parameters conveyed in accordance with memory-mapped
i/o.

7. The method of claim 1, wherein the first thread is a
producer thread and the second thread is a consumer thread
and the method comprises:

in the producer thread, requesting to write data;
in the producer thread, requesting a generation increment;
in the producer thread, waiting for the generation incre

ment, without any other data ready indication;
in the producer thread, setting a data ready flag;
in the consumer thread, waiting for the data ready flag;
in the consumer thread, waiting for a value in a reclaim

pointer to reach a desired generation; and
in the consumer thread, using the data responsive to the

data ready flag and the reclaim pointer value.

US 2011/01 19469 A1

8. A multiprocessor System comprising:
facilities adapted to run a plurality of threads in parallel:
a central generation indication module adapted to associate

generations with memory synchronization instructions;
and

facilities adapted to decode at least one memory synchro
nization instruction in at least one of the threads, in
accordance with a memory synchronization protocol
that implements a plurality of levels of memory synchro
nization each level having a respective distinct mode of
operation responsive to the central generation indication
module.

9. The system of claim 8, wherein each level is invoked
responsive to respective parameters communicable in asso
ciation with the memory synchronization instruction.

10. The system of claim 8, comprising a plurality of gen
eration detectors, each adapted to detect a generation associ
ated with a respective type of instruction, such that each level
of memory synchronization instruction is associated with a
respective distinctive use of the generation detectors.

11. The system of claim 10, wherein each thread is a
associated with three generation detectors,

a first detector detecting a generation of a last store;
a second detector detecting a generation of a last load or

store; and
a third detector detecting a generation of a last memory

synchronization instruction.
12. The system of claim 11, wherein each detector has an

associated flag indicating whether a respective generation of
an instruction detected by that detector has completed.

13. The system of claim 11, wherein
the third detector is primed with the current generation;
the memory synchronization instruction is a full sync that

completes when the third detector indicates completion;
and

until completion, the memory synchronization instruction
requests a generation change to one more than the gen
eration detected by the third detector.

14. The system of claim 11, wherein
the memory synchronization instruction is a non-cumula

tive barrier that completes when the second detector
indicates completion; and

until completion, the memory synchronization instruction
requests a generation change to one more than the gen
eration detected by the second detector.

15. The system of claim 11, wherein
the memory synchronization instruction is a producer Sync

that completes when the first detector indicates comple
tion; and

until completion, the memory synchronization instruction
requests a generation change to one more than the gen
eration detected by the first detector.

16. The system of claim 11, wherein
the memory synchronization instruction is a generation

change sync that completes if either
the second detector indicates completion or
if the generation stored in the second detector differs

from a central generation indication; and
the system is adapted Such that, if the memory synchroni

Zation instruction does not complete immediately, agen
eration change is requested for one more than the gen
eration stored in the second detector.

17. The system of claim 11, wherein
the memory synchronization instruction is a producergen

eration change sync that completes if

11
May 19, 2011

the first detector indicates completion; or
the generation detected by the first detector is different

from a central generation indication; and
the system is adapted Such that, if the memory synchroni

Zation instruction does not complete immediately, agen
eration change is requested for one more than the gen
eration detected by the first detector.

18. The system of claim 11, wherein
the third detector is primed with the current generation

m1nus one;
the memory synchronization instruction is a consumer

sync that completes if the third detector indicates
completion; and

the system is adapted Such that, until completion, a gen
eration change is requested for one more than the gen
eration detected by the third detector.

19. A computer method comprising carrying out opera
tions in a multiprocessor system, the operations comprising

responsive to a given thread running on the system, recog
nizing a memory synchronization instruction, the
instruction implicating a plurality of memory synchro
nization Sub-tasks:

responsive to the instruction, invoking at least one memory
synchronization facility in accordance with a synchro
nization scheme including a plurality of synchronization
levels; and

distributing the Sub-tasks responsive to the levels so as to
offload sub-tasks from or allocate subtasks to the given
thread.

20. The method of claim 19, wherein at least one of the
Sub-tasks comprises requesting a change of generation with
respect to a central generation indication of the system.

21. The method of claim 19, wherein at least one of the
Sub-tasks comprises checking at least one generation detector
associated with the given thread and indicating completion
responsive to Such checking.

22. The method of claim 19, wherein the given thread is one
of a group of threads working together and one of the group is
considered a bottleneck, so the distributing offloads sub-tasks
from the bottleneck.

23. A computer program product for carrying out tasks
within a multiprocessor System, the computer program prod
uct comprising. a storage medium readable by a processing
circuit and storing instructions run by the processing circuit
for performing a method comprising:

implementing the tasks in accordance with a plurality of
threads adapted to run in parallel;

specifying first and second memory synchronization
instructions in accordance with a memory synchroniza
tion protocol that implicates a plurality of memory syn
chronization sub-tasks, respective sub-sets of the Sub
tasks corresponding to respective levels of
synchronization, wherein the first and second memory
synchronization instructions are adapted to offload
given sub-tasks from a thread expected to be a bottle
neck to a thread expected not to be a bottleneck.

24. The product of claim 23, wherein at least one of the
Sub-tasks comprises requesting a generation change from a
central generation indication device between a memory
access request and a guard location in at least one of the
threads.

24. (canceled)
25. The product of claim 22, wherein at least one of the

Sub-tasks comprises monitoring completion of a generation
associated with a particular type of instruction associated
with a respective level of respective memory synchronization
instruction.

