发明名称
一种以多元羧酸交联酯酸纤维素纤维的制备方法

摘要
本发明公开了一种以多元羧酸交联酯酸纤维素纤维的制备方法，其特点是将取代度为 2 ~ 2.7，聚合度为 200 ~ 600 的酯酸纤维素片 21 ~ 44.5 重量份，多元羧酸 0.5 ~ 2 重量份，添加剂 0 ~ 2 重量份以及丙酮 55 ~ 75 重量份，加入带有搅拌器，温度计的溶解釜中，于温度 40 ~ 70℃，搅拌溶解 6 ~ 12h，形成均匀稳定的纺丝原液，脱泡后恒温至 25 ~ 50℃，通过计量泵计量，由直径为 0.08 ~ 0.3mm，温度为 25 ~ 40℃的喷丝孔挤出，纺丝细流进入热风道，在温度 25 ~ 80℃脱除溶剂后，以卷绕速度为 200 ~ 400m/min 卷绕得到酯酸纤维素初生纤维，在 170 ~ 230℃热处理 1 ~ 10min，反应形成交联酯酸纤维素纤维。该纤维的力学性能得到明显提高，用于香烟过滤材料、高档纺织材料和医用材料。
1. 一种以多元羧酸交联醋酸纤维素纤维的制备方法，其特征在于该方法包含以下步骤：

（1）醋酸纤维素纺丝原液的制备

按重量份数计，将取代度为 2 ~ 2.7，聚合度为 200 ~ 600 醋酸纤维素片 21 ~ 44.5 份，
多元羧酸 0.5 ~ 2 份，添加剂 0 ~ 2 份以及丙酮 55 ~ 75 份，加入带有搅拌器、温度计和回
流冷凝器的溶解釜中，于温度为 40 ~ 70°C，搅拌溶解 6 ~ 12h，形成均匀稳定的纺丝原液；

（2）纺丝原液的纺丝

将步骤（1）中的纺丝原液注入纺丝后箱，采用加热脱泡，真空脱泡或真空加热脱泡后
恒温至 25 ~ 50°C；然后通过计量泵计量、过滤后由喷丝孔直径为 0.08 ~ 0.3mm，于温度为
25 ~ 40°C 的喷丝板挤出，纺丝细流进入为长度为 4 ~ 8m 的热风道，其中热风道上部温度为
25 ~ 40°C，热风道中部温度为 40 ~ 60°C，热风道下部温度为 60 ~ 80°C；脱除溶剂后，经上油、
集束、卷绕等工序得到醋酸纤维素初生纤维；其中卷绕速度为 200 ~ 400m/min，喷丝头拉伸倍
率为 4 ~ 10 倍；丙酮溶剂的回收采用吸附法或液体吸收法，回收率在 90 ~ 95% 之间；

（3）初生纤维的后处理

将步骤（2）中的初生纤维进行热处理，热处理温度为 170 ~ 230°C，热处理时间为 1 ~
10min。在热处理过程中，有机多元羧酸与醋酸纤维素反应形成交联结构，同时消除纤维的
内应力以及产生的孔洞，热处理后的纤维即为多元羧酸交联醋酸纤维素长丝，或经上油、卷
曲、切断、打包工序得到多元羧酸交联醋酸纤维素短纤维。

2. 如权利要求 1 所述多元羧酸作为交联剂制备交联醋酸纤维素纤维的方法，其特征在
于多元羧酸交联剂为 1, 2, 3, 4-丁烷四羧酸，2-羟基丙烷-1, 2, 3-三羧酸和 1, 2, 3-丙烷三
羧酸和聚顺丁烯二酸中的至少一种。

3. 如权利要求 1 所述多元羧酸交联醋酸纤维素纤维的制备方法，其特征在于添加
剂为二氧化铁，1, 3, 5-三甲基-2, 4, 6-(3, 5-二叔丁基-4-羟基苯甲基) 苯、四（3, 5-二
叔丁基-4-羟基）苯丙酸季戊四醇酯、双十八烷基季戊四醇双亚磷酸酯、3-(3, 5-二叔
丁基-4-羟基苯甲基) 丙酸正十八烷基酯，硫代二丙酸双十八烷酯，硫代二丙酸双十八
醇酯、三（2, 4-二叔丁基）亚磷酸酯，双（2, 4-二叔丁基苯基）季戊四醇双亚磷酸酯、
N, N'-双-(3-(3, 5-二叔丁基-4-羟基苯基) 丙酰基）己二胺，2’-(2’-羟基-3’-叔丁
基-5’-甲基苯基)-5’-氯苯并三唑和 2-(2’-羟基-3’-5’-二叔丁基苯基)-5’-氯代苯并
三唑中的至少一种。

4. 如权利要求 1 ~ 3 所述多元羧酸交联醋酸纤维素纤维的制备方法制备得到的交联醋
酸纤维素纤维。

5. 如权利要求 4 所述交联醋酸纤维素纤维用作香烟过滤材料、高档纺织材料和医用材
料。
一种以多元羧酸交联醋酸纤维素纤维的制备方法

技术领域
[0001] 本发明涉及一种以多元羧酸交联醋酸纤维素纤维的制备方法，属于高技术纤维的制备领域。

[0002] 相关背景
[0003] 醋酸纤维素（cellulose acetate，CA）是由纤维素经乙酰化和部分水解后，得到的取代度为2～2.5之间的产物，可溶于浓盐酸、丙酮、N，N-二甲基甲酰胺以及N，N-二甲基乙酰胺等有机溶剂中，是纤维素衍生物中应用较为广泛的一种。

[0004] 醋酸纤维素纤维具有吸湿、吸附性好等特点，是一种精密的过滤材料，主要用于制作香烟过滤嘴。而且醋酸纤维素长丝是化学纤维中最酷似蚕丝，光泽优雅、染色鲜艳、染色牢度强、手感柔软滑爽、质地轻，具有优良的自然品质感着舒适；回潮率低、弹性好、不易起皱，具有很好的悬垂性、尺寸稳定性，无需水洗定形；其织物具有适度吸湿性、速干性、稳定的抗起球性、抗静电性，易洗涤，可耐高温熨烫和低温打褶，作为蚕丝的替代品，主要用于高档服饰的里料。醋酸纤维素纤维是优良的纺织原料，可与涤纶、锦纶、维纶以及蚕丝等复合纺织各类时装、礼服、高档运动服的面料，市场前景良好。

[0005] 醋酸纤维素纤维的生产方法有干法、二步湿法以及一步湿法三种纺丝技术，但因湿法纺丝缺点较多，国内外主要醋酸纤维素纤维生产企业都通过以丙酮为溶剂的干法纺丝技术进行生产。以丙酮为溶剂进行干法纺丝制备醋酸纤维素纤维，为了提高在丙酮中的溶解性以及在纺丝过程中原液的流动性，醋酸纤维素的聚合度通常较低，一般控制在200～400，因此得到的醋酸纤维素纤维力学性能相对较差，干强仅为1.06～1.23 cN/dtex，极大地限制了其应用领域。

[0006] 中国专利CN102251302A公开了一种醋酸纤维素纤维的制备方法，其通过将醋酸纤维素在离子液体中溶解，形成均一稳定的纺丝原液，再将原液进行干喷湿纺，得到醋酸纤维素纤维，其拉伸断裂强度≥1.5cN/dtex。

[0007] 中国专利102453970A公开了一种低酯酯化纤维素纤维及其制备方法，该专利涉及的纤维素的羟基被部分酯酸酯基取代，取代度在0.01～0.5，纤维断裂强度≥2.0cN/dtex，断裂伸长率为6%～30%，线密度≤3.5dtx，该纤维具有强度好、手感顺滑、光泽柔和以及染色性能优良的特点，应用面更广。该发明以咪唑型离子液体为溶剂，以普通有机溶剂为助溶剂，进行湿法染干法纺丝制备低酯酯化纤维素初生纤维，通过湿法牵伸、湿法拉伸、松驰、洗涤以及干燥等工艺，得到的低酯化纤维素纤维。醋酸纤维素纤维力学性能得到了一定程度的提高。

[0008] 以上采用的甲基咪唑型离子溶剂，价格昂贵，并未规模化生产；干喷湿纺相对于干法纺丝，流程长、生产效率低，环境污染较为严重。

发明内容
[0009] 本发明的目的是针对现有技术的不足而提供一种以多元羧酸交联醋酸纤维素纤维的制备方法，其特点是解决现有技术中醋酸纤维素纤维力学性能差的问题。采用多元羧
酸化合物作为交联剂，由丙酮酸、醋酸纤维素以及添加剂混合形成均匀稳定的纺丝原液，经干法纺丝制成初生纤维，再经热处理，使多元羧酸与醋酸纤维素发生酯交联反应，制备力学性能较好的交联醋酸纤维素纤维。该方法操作简单，多元羧酸化合物无毒性，通过化学交联作用，在苛刻使用条件下交联点稳定可靠。

[0010] 本发明的目的由以下技术措施实现，其中所述的原料分数除特殊说明外均为质量分数。

[0011] 以多元羧酸交联酯酸纤维素纤维的制备方法包含以下步骤；

[0012] （1）酯酸纤维素纺丝原液的制备

[0013] 将取代度为2～2.7，聚合度为200～600酯酸纤维素片21～44.5份，多元羧酸0.5～2份，添加剂0～2份以及丙酮55～75份，加入带有搅拌器、温度计和回流冷凝器的溶解釜中，于温度为40～70℃，搅拌溶解6～12h，形成均匀稳定的纺丝原液；

[0014] （2）纺丝原液的干法纺丝

[0015] 将步骤（1）中的纺丝原液注入纺丝料简，采用加热脱泡、真空脱泡或真空加热脱泡后恒温至25～50℃；然后通过计量泵计量、过滤后由喷丝孔直径为0.08～0.3mm，于温度为25～40℃的喷丝板挤出，纺丝细流进入长度为4～8m的热风道，其中风道上部温度为25～40℃，风道中部温度为40～60℃，风道下部温度为60～80℃；脱除溶剂后，经上油、集束、卷绕等工序得到酯酸纤维素初生纤维，卷绕速度为200～400mm/min，喷丝头拉伸倍率为4～10倍；丙酮溶剂的回收采用吸附法或液体吸收法，回收率在90～95%之间；

[0016] （3）初生纤维的后处理

[0017] 将步骤（2）中的初生纤维进行热处理，热处理温度为170～230℃，热处理时间为1～10min。在热处理过程中，有机多元羧酸酯酸纤维素反应形成交联结构，同时，消除纤维的内应力以及产生的孔洞。热处理后的纤维即为多元羧酸交联酯酸纤维素长丝，或经上油、卷曲、切断，打包工序得到多元羧酸交联酯酸纤维素短纤维。

[0018] 所述多元羧酸交联剂为1,2,3-丁烷四羧酸,2-羟基丙烷-1,2,3-三羧酸,1,2,3-丙烷三羧酸和聚丙烯丁烯二酸中的至少一种。

[0019] 所述添加剂为二氧化钛，1,3,5-三甲基－2,4,6-(3,5-二叔丁基－4-羟基苯)苯并、（3,5-二叔丁基－4-羟基）苯丙酸季戊四醇酯、双十八烷基季戊四醇双亚磷酸酯、3-(3,5-二叔丁基－4-苯基苯氧基)丙酸正十八烷醇酯、硫代二丙酸双十二烷酯、硫代二丙酸二十八醇酯、三(2,4-二叔丁基－5-亚磷酸苯酯、双(2,4-二叔丁基苯基)季戊四醇二亚磷酸酯,N,N’-双(3-(3,5-二叔丁基－4-羟基苯基)苯氧基)己二胺，2’-(2’-羟基-3’-叔丁基-5’-甲基苯基)－5’-氯苯并三唑和2’-(2’-羟基-3’-叔丁基-5’-甲基苯基)－5’-氯代苯并三唑中的至少一种。

[0020] 所述多元羧酸作为交联剂制备交联酯酸纤维素纤维的方法制备得到的交联酯酸纤维素纤维。

[0021] 所述交联酯酸纤维素纤维用作香烟过滤材料、高档纺织材料和医用材料。


[0023] 结果表明：交联酯酸纤维素长丝的单丝线密度为2～10dtex，断裂强度为2.0～
3.0 cN/dtex, 断裂伸长率为 10%~30%; 交联酸酯纤维素短纤维的单丝线密度为 2.5～15 dtex, 纤维伸长率为 1.5～2.5 cN/dtex, 断裂伸长率为 15%~50%。

本发明具有如下优点:

1. 采用多元羧酸交联酸酯纤维素, 纤维力学性能得到明显提高;
2. 交联反应发生在纤维后处理过程中, 因此在原液中加入交联剂后, 不会影响原液的可纺性;
3. 交联剂为多元羧酸, 无生物毒性, 制得的酸酯纤维素纤维用于贴身衣物或医用材料;
4. 交联酸酯纤维素纤维具有强度好, 手感顺滑, 光泽柔和以及染色性能优良等特点, 用于高档服饰的里料和面料, 具有很好的市场前景;
5. 采用现有干法纺丝技术及设备, 操作简单, 工艺成熟, 成本较低。

具体实施方式

通过实施例对本发明进行具体的描述, 有必要在此指出的是本实施例只用于对本发明进行进一步说明, 不能理解为对本发明保护范围的限制。该领域的技术熟练人员可以根据上述本发明的内容对本发明作出一些非本质性的改进和调整。

实施例 1

将取代度为 2.5, 聚合度为 400 的醋酸纤维素片 28 份, 1,2,3,4-丁烷四羧酸 2 份, 以及丙酮 70 份加入带有搅拌器、温度计和回流冷凝器的溶解釜中, 于温度 30℃下搅拌溶解 8h, 形成固含量为 30%的透明纺丝原液。将该纺丝原液输入纺丝料筒中, 经加热脱泡后恒温至 30℃, 然后通过计量泵计量, 过滤后由直径为 0.1mm 的喷丝孔中挤出, 纺丝细流进入热浴中脱除溶剂, 脱丝板面温度为 40℃, 热道上部温度为 40℃, 热道中部温度为 60℃, 热道下部温度为 80℃; 固化的丝条经上油、集束、卷绕工序得到酸酯纤维素初生纤维, 卷绕速度为 300m/min, 喷丝头拉伸比为 6 倍。初生纤维进入热箱中进行热处理, 热处理温度为 230℃, 热处理时间为 1min。所得交联酸酯纤维素长丝的单丝线密度为 4.22 dtex, 断裂强度为 2.51 cN/dtex, 断裂伸长率为 18.0%。

实施例 2

将取代度为 2.5, 聚合度为 400 的醋酸纤维素片 33 份, 2-羟基丙烷-1,2,3-三羧酸 2 份, 以及丙酮 65 份加入带有搅拌器、温度计和回流冷凝器的溶解釜中, 于温度 40℃下搅拌溶解 6h, 形成固含量为 35%的透明纺丝原液。将该纺丝原液输入纺丝料筒中, 经加热脱泡后恒温至 40℃, 然后通过计量泵计量, 过滤后由直径为 0.1mm 的喷丝孔中挤出, 纺丝细流进入热浴中脱除溶剂, 脱丝板面温度为 40℃, 热道上部温度为 40℃, 热道中部温度为 60℃, 热道下部温度为 80℃; 固化的丝条经上油、集束、卷绕工序得到酸酯纤维素初生纤维, 卷绕速度为 250m/min, 喷丝头拉伸比为 5 倍。初生纤维进入热箱中进行热处理, 热处理温度为 220℃, 热处理时间为 3min。所得交联酸酯纤维素长丝的单丝线密度为 5.10 dtex, 断裂强度为 2.23 cN/dtex, 断裂伸长率为 26.4%。

实施例 3

将取代度为 2.3, 聚合度为 300 的醋酸纤维素片 44.5 份, 聚顺丁烯二酸 0.5 份, 以及丙酮 55 份加入带有搅拌器、温度计和回流冷凝器的溶解釜中, 于温度 70℃下搅拌溶
解 8h, 形成固含量为 45% 的透明纺丝原液。将该纺丝原液输入纺丝料筒中，经加热脱泡后恒温至 50°C，然后通过计量泵计量、过滤后由直径为 0.1mm 的喷丝孔中挤出，纺丝细流进入热雨道中脱除溶剂，喷丝板面温度为 40°C，雨道上部温度为 40°C，雨道中部温度为 60°C，雨道下部温度为 80°C；固化之的丝条经上油、集束、卷绕工序得到醋酸纤维素初生纤维，卷绕速度为 300m/min，喷丝头拉伸比为 6 倍。初生纤维进入热箱中进行热处理，热处理温度为 230°C，热处理时间为 4min。所得交联醋酸纤维素长丝的单丝线密度为 4.01dtex，断裂强度为 2.14cN/dtex，断裂伸长率为 33.2%。

【0037】实施例 4

【0038】将取代度为 2.3、聚合度为 600 的醋酸纤维素片 27.5 份，1,2,3,4-丁烷四羧酸 1.5 份，双十八烷基季戊四醇双亚磷酸酯 1 份以及丙酮 70 份加入带有搅拌器、温度计和回流冷凝器的溶解釜中，于温度 40°C 下搅拌溶解 8 小时，形成固含量为 30%的透明纺丝原液。将该纺丝原液输入纺丝料筒中，经加热脱泡后恒温至 40°C，然后通过计量泵计量、过滤后由直径为 0.1mm 的喷丝孔中挤出，纺丝细流进入热雨道中脱除溶剂，喷丝板面温度为 40°C，雨道上部温度为 40°C，雨道中部温度为 60°C，雨道下部温度为 80°C；固化之的丝条经上油、集束、卷绕工序得到醋酸纤维素初生纤维，卷绕速度为 300m/min，喷丝头拉伸比为 6 倍。初生纤维进入热箱中进行热处理，热处理温度为 230°C，热处理时间为 4min。所得交联醋酸纤维素长丝的单丝线密度为 4.38cN/dtex，断裂强度为 2.65cN/dtex，断裂伸长率为 15.3%。

【0039】实施例 5

【0040】将取代度为 2.0、聚合度为 400 的醋酸纤维素片 21 份，1,2,3,4-丁烷四羧酸 2 份，四 (3,5-二叔丁基 -4- 羟基 ) 苯丙酸季戊四醇酯 2 份以及丙酮 75 份加入带有搅拌器、温度计和回流冷凝器的溶解釜中，于温度 30°C 下搅拌溶解 8h，形成固含量为 25%的透明纺丝原液。将该纺丝原液输入纺丝料筒中，经加热脱泡后恒温至 30°C，然后通过计量泵计量、过滤后由直径为 0.08mm 的喷丝孔中挤出，纺丝细流进入热雨道中脱除溶剂，喷丝板面温度为 40°C，雨道上部温度为 40°C，雨道中部温度为 60°C，雨道下部温度为 80°C；固化之的丝条经上油、集束、卷绕工序得到醋酸纤维素初生纤维，卷绕速度为 300m/min，喷丝头拉伸比为 6 倍。初生纤维进入热箱中进行热处理，热处理温度为 230°C，热处理时间为 2min。热处理的纤维经上油、卷曲、切断等工序得到交联醋酸纤维素短纤维，其单丝线密度为 4.53dtex，断裂强度为 2.38cN/dtex，断裂伸长率为 23.6%。

【0041】实施例 6

【0042】将取代度为 2.7、聚合度为 200 的醋酸纤维素片 27.5 份，1,2,3,4-丁烷四羧酸 1.5 份，添加剂二氧化钛 1 份，以及丙酮 70 份加入带有搅拌器、温度计和回流冷凝器的溶解釜中，于温度 30°C 下搅拌溶解 8h，形成固含量为 30%的纺丝原液。将该纺丝原液输入纺丝料筒中，经加热脱泡后恒温至 25°C，然后通过计量泵计量、过滤后由直径为 0.3mm 的喷丝孔中挤出，纺丝细流进入热雨道中脱除溶剂，喷丝板面温度为 25°C，雨道上部温度为 25°C，雨道中部温度为 60°C，雨道下部温度为 80°C；固化之的丝条经上油、集束、卷绕工序得到醋酸纤维素初生纤维，卷绕速度为 400m/min，喷丝头拉伸比为 10 倍。初生纤维进入热箱中进行热处理，热处理温度为 170°C，热处理时间为 10min。所得交联醋酸纤维素长丝的单丝线密度为 4.28dtex，断裂强度为 2.46cN/dtex，断裂伸长率为 17.5%。