An inhalation system (10) is disclosed that, in an exemplary embodiment, includes an ejector (34) that ejects medicated droplets during an activation event, a conduit fluidically coupled to the ejector (34) and configured to transport the droplets to a patient during an in-breath, and a particle detection system configured to determine whether the droplets have properly passed through the conduit and to the patient during an activation event. Also disclosed are methods for detecting particles in an inhaler system (10), with an exemplary method including generating a dose of medicament particles from an inhaler system (10); detecting particles emitted in the inhaler system (10); and determining if a desired particle flux has been achieved for inhalation by a patient.
Declarations under Rule 4.17:
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(ii)) for all designations

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the “Guidance Notes on Codes and Abbreviations” appearing at the beginning of each regular issue of the PCT Gazette.
SYSTEMS AND METHODS FOR PARTICLE DETECTION

BACKGROUND

For pulmonary delivery of aerosols and dry powders, delivered dose is
difficult to predict and estimate. Deposition in the lungs is driven by numerous
factors, including for example particle size, depth of inspiration, residence time,
and lung condition.

Metered dose inhalers (MDIs), dry powder inhalers (DPIs), and
nebulizers currently address the bulk of applications for pulmonary delivery of
aerosols and dry powders. FDA guidance documents on MDIs and DPIs
estimate that only about 10% - 15% of dose reaches the biological target. The
remainder is trapped in the mouth and pharynx and swallowed or is exhaled.
Inhalers for delivering medicament to pulmonary systems historically can
delivery fairly accurate amounts of inhalant in the form of an aerosol. More
specifically, inhalers generally accurately generate a mist of inhalant for the
patient to breathe into their pulmonary system. One issue is with whether the
patient properly breathes in the inhalant being generated. A second issue is
how much aerosol is expelled during an out-breath. Both issues will vary from
patient to patient, making predictability and control of proper dosage difficult.

Delivery of particulates to the deep pulmonary regions of the lung, the
alveoli, can be optimized by delivering particles of the proper size range and by
increasing residence times. For alveoli deposition, particles with diameters in
the range of about 1 to 3 microns appear optimal. Particles below
approximately 3 microns in diameter have been shown, via scintigraphy studies,
to be preferentially transported to the deep lungs, whereas larger particles tend
strike the throat or rain out in the bronchial passages. Smaller particles
penetrate more deeply but also have an increased tendency to be exhaled. Therefore, for deep pulmonary delivery systems exhalation of particles can be substantial issue.

Some devices for deep pulmonary delivery attempt to optimize delivered dose and delivered dose reproducibility by measuring inhalation and exhalation rates and delivering the drugs at critical points. While these small particle size systems with active measurement of breathing maneuvers should help to ensure more reproducible dosing, there are still many uncontrolled factors affecting deposition and eventual bioavailability.

SUMMARY

Briefly described, embodiments of this disclosure include systems and methods of particle detection in an inhaler. One exemplary system, among others, includes an ejector that ejects medicated droplets during an activation event, a conduit fluidically coupled to the ejector and configured to transport the droplets to a patient during an in-breath, and a particle detection system configured to determine whether the droplets have properly passed through the conduit and to the patient during an activation event.

In another exemplary embodiment, the inhaler system includes the following: an inhaler housing; a conduit disposed within the inhaler housing configured to support particle flux therethrough; an inhaler control system disposed within the inhaler housing; a medicament supply system communicatively coupled to the inhaler control system, the medicament supply system including a medicament ejector; and a detection system positioned to allow detection of particles in the conduit.

One exemplary method, among others, includes: generating a dose of medicament particles from an inhaler system; detecting particles emitted in the inhaler system; and determining if a desired particle flux has been achieved for inhalation by a patient.
BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of this disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.

FIG. 1 illustrates an embodiment of an inhaler system.

FIG. 2 illustrates an embodiment of a inhaler particle detection system incorporated into the inhaler system of FIG. 1.

FIG. 3 illustrates an alternative embodiment of an inhaler system.

FIG. 4 illustrates an embodiment of a method of operating an inhaler system.

FIG. 5 illustrates an embodiment of a method of determining amount of uptake of medicament from an inhaler system.

FIG. 6 illustrates a timing diagram when practicing an embodiment of a method of FIG. 5.

FIG. 7 illustrates the percentage deposition amounts of a medicament for a range of particle sizes, as measured by an embodiment of a disclosed inhaler system.

FIG. 8 is a chart of the particle size distribution produced by an embodiment of the disclosed inhalation system compared to a typical metered dose inhaler.
DETAILED DESCRIPTION

Inhaler systems and methods of detecting inhaler particles in inhalers for verifying the integrity of delivery of doses are provided. In particular, embodiments relate to an electronically-controlled aerosol generator for delivering medicament to a patient's pulmonary system. With conventional inhalers, the actual uptake of medicament by a patient is generally unknown. The disclosed inhaler systems provide a more accurate and direct measurement of aerosol uptake by a patient. The disclosed inhaler systems include a particle detection system configured to provide an estimate of the particle flux (total number of particles per unit time) being delivered by the inhaler. The disclosed inhaler systems can also be configured to declare a fault, warning, or other annunciation if the patient fails to properly inhale the generated aerosol.

In general, the inhaler system includes a medicament ejector and a mouthpiece (e.g., an inhalation/exhalation structure) that are coupled by a conduit or a flow control system. In use, the patient first places the patient's mouth (or nose in some cases) on the mouthpiece and then takes an in-breath or inhales to receive the medicament (e.g., typically in the form of a medicated aerosol). Preferably, the patient also breathes out or exhales into the mouthpiece during an out-breath.

The medicament ejector includes a face having an array of nozzles or orifice for controllably ejecting medicated aerosol droplets. The medicament ejector is an electronically-controlled drop ejecting device that utilizes a drop generating device (e.g., a thermal bubble generator, a piezo drop generator, and a vibrating porous membrane) to generate droplets of the medicament, which can be entrained in the in-breath.

The conduit is configured to allow air to entrain the medicament droplets so that they pass to the mouthpiece during an in-breath. In other words, during the in-breath, the flow control system defines an “in-breath airflow path” or “an inhalation airflow” that carries the medicament droplets from the medicament ejector face to the mouthpiece. In addition, the flow control system includes an
inlet port for receiving air during an in-breath. During the in-breath of a patient, air flows from the inlet port, past the medicament ejector (entraining the medicament aerosol), and to the mouthpiece along the in-breath airflow path.

The flow control system also defines an "out-breath airflow path" or "exhalation airflow" during the patient's out-breath. The out-breath airflow path does not retrace of the in-breath airflow path. By defining two different airflow paths, the flow control system impedes the flow of air from the mouthpiece to the medicament ejector during the out-breath of the patient. Thus, the out-breath airflow path substantially bypasses the medicament ejector to avoid contamination of the medicament ejector during the out-breath. The flow control system also includes an outlet port that is separated physically from the inlet port. During an out-breath of the patient, air flows from the mouthpiece to the outlet port substantially bypassing the medicament ejector. To provide added assurance that the out-breath air flow path does not substantially impinge upon and contaminate the medicament ejector, one or more valves (e.g., check valves or one-way valves) may be employed that are described in additional detail in U.S. Patent Applications entitled "Inhalers and Methods of Controlling Airflow in Inhalers," having serial number ____ and filed on ____ [HP Docket No.: 200400606-1], which is incorporated herein by reference.

The disclosed inhalation system of this disclosure also includes a detection system that is configured to monitor the particle flux or particle density of medicated droplets as they pass through the conduit to the mouthpiece. Preferably, the detection system is configured to detect particles or a particle flux in a portion of the conduit that is spaced sufficiently far from the ejector face to differentiate between droplets ejected from the ejector and droplets properly passing through the conduit during the in-breath. In other words, the detection system is able to not only measure particles being generated, but also particles delivered along the conduit to and from the mouthpiece during an in-breath or an out-breath, respectively.

The inhalation system also includes system control electronics coupled to the ejector and the detection system. The control electronics activate the
ejector to generate medicated droplets and receive signals from the detection system indicative of the particle flux or density. The control electronics analyze the signals to determine if the proper flux of medicated droplets has been delivered along the conduit during an in-breath. If this flux differs enough from an expected flux, a fault can be declared that is followed by another action. Examples of another action include warning the patient that the medication has not been properly delivered or shutting down the ejector.

The control electronics can also analyze the signals during the out-breath to determine the particle flux that the patient breaths out and to determine a net dosage delivered. The net dosage absorbed by the patient, otherwise referred to as the uptake of the medication, can be estimated by a total number of particles passing during an in-breath and a total number of particles passing during an out-breath. The control electronics analyzes this information to determine more accurately whether a proper net dosage of medication has been absorbed. If the net dosage is too low, the control electronics activates a device such as, for example, a light-emitting device, an audio device, or a display message signaling the user to take additional inhalations.

In a preferred embodiment, the control electronics include a calibration factor stored in non-volatile memory. The control electronics uses the calibration factor to compute the amount of droplets to eject in order to achieve a given uptake. Stated another way, the calibration factor correlates the expected amount of medication to be absorbed as a function of the total number of droplets to be ejected by the ejector.

In a preferred embodiment, control electronics uses the comparison between the particles passed during an in-breath and an out-breath to adjust the calibration factor. This will tend to vary from patient to patient even in the case of various patients who properly use the inhalation device. The control electronics can adjust this calibration factor so that future doses of delivered medicant more closely match the intended dosage. This can be used to minimize the number of inhalations required for a proper dose.
Turning now to the figures, FIG. 1 illustrates a block diagram of a representative inhaler system 10 that includes, but is not limited to, an inhaler control system 20, a medicament supply system 30, and a medicament monitoring system 40 for monitoring the amount of medicament inhaled and exhaled by the patient. In addition, the inhaler system 10 can include a flow control system 50.

In general, the inhaler control system 20, the medicament supply system 30, the medicament monitoring system 40, and in some instances the flow control system 50, are communicatively coupled to function together to control the release of the medicament and the airflow caused by inhalation out of and exhalation into the inhaler system 10. In practice, the patient inhales on an inhalation/exhalation structure of the inhaler system 10 and depresses a button or switch to cause the medicament to be released. As the patient inhales on the inhaler system 10, the flow control system 50 causes inhalation airflow to pass across the structure releasing the medicament. Once the button is activated, the medicament flows with the inhalation airflow into the patient. After inhalation, the patient exhales into the inhaler system 10. Then the optional flow control system 50 can redirect the exhalation airflow away from the structure that releases the medicament, which substantially decreases the likelihood of contaminating the medicament releasing structure. In addition, during the inhalation and exhalation, the medicament monitoring system 40 is used to monitor the amount of medicament being inhaled by the patient.

The inhaler control system 20 includes, but is not limited to, a computer system and a mechanical system, both of which activate/deactivate the medicament supply system 30. The computer system can include, but is not limited to, programmable logic circuits (e.g., a microprocessor) to control the quantity of medicament released by the medicament supply system 30. The mechanical system can include, but is not limited to, an actuation structure (e.g., button or switch), a spring mechanism in communication with the actuation structure, and similar components used to communicate that the patient is requesting medicament release.
The medicament supply system 30 can be activated by the patient depressing the actuation structure in an effort to release the medicament and/or indicate that the patient is ready to receive the medicament. The medicament supply system 30 includes, but is not limited to, a medicament container and a medicament ejector. The inhaler control system 20 in conjunction with the medicament supply system 30 releases a known amount of the medicament from the medicament container and through the medicament ejector. Once the medicament is released, the flow control system 50 uses the inhalation airflow to carry the medicament to the patient during inhalation. During exhalation, the flow control system 50 directs the exhalation airflow away from the medicament ejector. The flow control system 50 includes, but is not limited to, one or more inhalation/exhalation valves such as a one-way valve (e.g., a valve in which airflow can proceed in one direction or else the valve closes) and channels. The inhalation/exhalation valves control the airflow through the inhaler system 10 by opening and closing under certain conditions. For example, one inhalation/exhalation valve opens during inhalation while another inhalation/exhalation valve closes. In this instance, the inhalation airflow is controlled by the opening and closing of particular inhalation/exhalation valves. In addition, the opening and/or closing of the inhalation/exhalation valves can be used to activate/deactivate of the medicament supply system 30.

The activation/deactivation of the medicament supply system 30 can be controlled based on information from the medicament monitoring system 40. For example, the medicament monitoring system 40 is adapted to determine if the patient inhaled a threshold amount of the medicament, desirably by employing the disclosed method(s). Based on this determination by the medicament monitoring system 40, the inhaler control system 20 can alert (e.g., an audible and/or visual signal) the patient whether or not the inhalation was successful.

Additional details about the inhaler system 10 can be found in U.S. Patent Applications entitled “Systems and Methods of Estimating Delivered Doses” and “Inhalers and Methods of Controlling Airflow in Inhalers,” having
serial number ____ and ____ and filed on ____, [HP Docket Nos.: 200400603-1 and 200400606-1] respectively, both of which are incorporated herein by reference.

Now having described the inhaler system 10 in general, FIG. 2 illustrates an exemplary embodiment of the inhaler system 10. This example is not intended to limit the scope of any embodiment of this disclosure, but rather is intended to provide a representative embodiment. Therefore, one skilled in the art would understand that the components of the inhaler system 10 and the configuration of the components within the inhaler system 10 can be modified, and it is intended that any such modifications be within the scope of the embodiments of this disclosure.

FIG. 2 depicts a simplified pictorial block diagram of a representative inhaler system 10. The inhaler system 10 includes a medicament container 32 for housing the medicament and a medicament ejector 34, which are parts of the medicament supply system 30. The medicament ejector 34 can include, but is not limited to, a piezoelectric type device and thermal bubble jet device, to eject the medicament. The various types of medicament containers 32 and the medicament ejectors 34 are known in the art (e.g., U.S. Patent 5,894,841) and are not described in additional detail here.

The inhaler system 10 also includes an inhalation/exhalation structure 60 (e.g., an inhalation/exhalation mouthpiece) having an inhalation/exhalation orifice 62. The inhalation/exhalation orifice 62 is the point at which the patient contacts the inhaler system 10 to breathe out of and into the inhaler system 10. The inhalation/exhalation structure 60 can be a permanent part of the inhaler system 10 or it can be a removable and replaceable part of the inhaler system 10. The inhalation/exhalation structure 60 can have various designs and be made of various materials.

The inhaler system 10 also includes a detection system 42, which is part of the medicament monitoring system 40. The detection system 42 can be located a various positions within the inhaler system 10 to monitor the medicament flow into and out of the inhaler system 10. The detection system
42 can include, but is not limited to, at least one laser system and at least one laser detector. In practice, the laser system emits laser light 44 during inhalation and exhalation, while the laser detector detects laser light scattered by the medicament passing along the path of the laser light. Additional details about the medicament monitoring system 40 and the detection system 42 can be found in U.S. Patent Applications entitled “Systems and Methods of Estimating Delivered Doses” and “Inhalers and Methods of Controlling Airflow in Inhalers,” having serial number ____ and ____, respectively, and filed on ____. [HP Docket Nos.: 200400603-1 and 200400606-1]

The inhaler system 10 also includes a flow control system 50 in fluidic communication with the medicament ejector 34. The flow control system 50 is adapted to control the airflow (inhalation airflow A and exhalation airflow B) within the inhaler system 10. In particular, the flow control system 50 causes inhalation airflow A to pass across the medicament ejector 34. Therefore, as the patient breathes in (e.g., causing the inhalation airflow A to flow out of the inhaler system 10) and depresses the actuation structure to release the medicament, the inhalation airflow A carries the medicament through the inhalation/exhalation structure 60 and into the patient’s lungs. After inhalation, the patient exhales into the inhaler system 10. The flow control system 50 redirects the exhalation airflow 74 away from the medicament ejector 34, which substantially decreases the likelihood of contaminating the medicament ejector 34.

The flow control system 50 includes, but is not limited to, at least an inhalation valve 52 and an exhalation valve 54. The inhalation valve 52 and an exhalation valve 54 can be the same type of valve or different types of valves. The inhalation valve 52 and/or the exhalation valve 54 can be selected from, but is not limited to, a one-way valve, a check valve, a flapper valve, and combinations thereof.

In addition, the flow control system 50 includes an inlet port 56 in fluid communication with the inhalation valve 52 and an outlet port 58 in fluid communication with the exhalation valve 54. As the patient inhales, the
inhalation valve 52 opens and air flows through the inlet port 56 into the inhaler system 10. As the patient exhales, the exhalation valve 54 opens and air flows through the outlet port 58 out of the inhaler system 10.

The inhalation valve 52 is disposed adjacent the medicament ejector 34, while the exhalation valve 54 is disposed away or spaced from the medicament ejector 34. The position of the inhalation valve 52 is selected so that upon the inhalation breath, the inhalation airflow A passes over the medicament ejector 34. In this manner, the medicament is carried through the inhalation/exhalation structure 60 and orifice 62 and into the patient. The position of the exhalation valve 54 is selected so that upon the exhalation breath, the exhalation airflow B does not substantially pass over the medicament ejector 34. The inhaler system 10 (e.g., positions of the inhalation valve 52 and the exhalation valve 54) is desirably configured to limit the contamination of the medicament ejector 34. However, one skilled in the art could design the flow control system 50, the medicament ejector 34, and other components of the inhaler system 10 in a different manner as that shown in FIG. 2 to accomplish limiting the contamination of the medicament ejector 34.

The inhaler system 10 preferably further includes the medicament monitoring system 40 that can perform the disclosed methods, detailed below, for estimating delivered pulmonary doses. The medicament monitoring system 40 also can, based on information received from the detection system 42, signal to the inhalation control system 20 to vary a number of different pulmonary delivery parameters so as to optimize the dose received by the patient and/or reduce the variance between doses. The inhaler system 10 may include many other features and components not shown or described herein. For example, the inhaler system 10 may include a droplet generator, a dispersion chamber, and/or a feedback unit.

The flow control system 50 can be communicatively coupled with the inhaler control system 20, the medicament supply system 30, and the medicament monitoring system 40 to effectively release the medicament. For example, the patient may depress the actuation structure to release the
medicament, but exhale instead of inhale. Since the inhalation valve 52a only
opens upon inhalation and/or the exhalation valve 54 only opens during the
exhalation, the flow control system 50 can be configured to communicate with
the inhaler control system 20 and/or the medicament supply system 30 when
these valves are open and/or closed. Therefore, medicament is not released
during patient exhalation.

Shown in FIG. 3 is a simplified block diagram of an alternative
embodiment of the disclosed inhaler system, depicted as inhaler system 100. A
drop ejection device 34 such as a drop on demand jetting device (e.g., a piezo-
or thermal-activated drop generator) is controlled by system electronics, also
called the inhaler control system 20. The inhaler system 100 delivers
medicament to a patient’s pulmonary system via a conduit system 44, for
example, an aerosol conduit system. Disposed in or adjacent the conduit
system 44 is a detection system 42 that measures particle flux moving through
the conduit system 44. The detection system 42 is desirably positioned to not
only allow detection of particles but to also differentiate, based on whether the
patient properly takes an in-breath during aerosol formation. As indicated
previously, the detection system may include a laser device 82 and a detector
84.

Illustrated in FIG. 4 is a flow diagram of a representative method 200 of
verifying the integrity of an inhaled dose. Generally, the flow chart illustrates the
use of the disclosed inhaler system to determine proper uptake of a
medicament. In the method 200 shown in FIG. 4, the particle detector is used
to measure the integrated particle flux over time for in-breath by a patient, but it
can be envisioned that the same method could be employed to measure both
in-breath and out-breath. By comparing these values, the total dosage
delivered to the pulmonary system can be inferred.

As shown in block 210 of FIG. 4, a patient initially activates the device
(e.g., via a manual switch) and begins inhalation. Desirably, inhalation begins
just prior to the patient activating the device. As shown in block 220, in
response to the activation, the device begins aerosol generation and, shown in
block 230, activates the particle detection system. As shown in block 240, the inhalation may also optionally start after the particle detection device is activated. At a certain threshold time, as shown in decision block 250, the system determines whether a proper particle flux has been detected. This would be the case if the patient is taking a proper in-breath. If a patient has taken a proper in-breath and a desired particle flux is obtained, the aerosol generation stops, as shown in block 260. At that point the patient begins to exhale, as shown in block 270.

If a patient has not taken a proper in-breath, then a “fault” is inferred, as depicted in block 280 and a fault response is desirably indicated to the patient, as shown in block 290. In the case fault, the device may have several possible responses. In an exemplary embodiment, the fault response comprises waiting for the aerosol to settle, giving a visible or audible alert to the patient that another dose required. The inhaler system can then proceed for readying itself for the patient to take the next dose.

FIG. 5 is a flow diagram of an alternative embodiment of the disclosed method of verifying the amount of medicament inhaled by a patient. In the method 300 of FIG. 5, the step of calibration is included. The disclosed inhaler system uses any shortfall in the first delivered dose to compute an increase in the amount of inhalant to be ejected relative to the targeted delivery for subsequent dose(s).

As shown in block 310 of FIG. 4, a patient initially activates the device (e.g., via a manual switch) and begins inhalation. As shown in block 320, in response to the activation, the device begins aerosol generation and, shown in block 330, activates the particle detection system. As shown in block 340, the inhalation may optionally begin after the particle detection device is activated. Aerosol generation stops, as shown in block 350, and then the patient exhales back into the inhaler system, as shown in block 360.

As part of activating the particle system, a means of tracking amount of aerosol is activated. This could take various forms, depending on the ejector mechanism employed. In the case of a thermal bubble or piezo-based drop
ejector, the total number of drop generator actuations is controlled to provide the correct dose. For many cases the number of actuations are selected so that the calculated dose is at or below the expected dose. Alternatively, the time of actuation can be controlled, as would be preferable for a system such as a vibrating porous membrane. Again, the ejection time would be selected to deliver the proper dose.

Another aspect of activating the particle system is a calibration factor. In a non-volatile memory the system stores information indicative of a quantified relationship between a dosage delivered or absorbed and the number of droplets generated (or total time of activation). This information can be considered to be a calibration factor that may, for example, be a linear multiplier or a constant for a non-linear relationship between number of drops and quantity of medication absorbed. The control electronics uses this factor to calculate the proper time or number of drop generator actuations to provide the proper dose to the patient.

While the dosage is being delivered, and during exhalation, the particle detection remains active and acquiring information indicative of the total number of particles or droplets delivered through the conduit to the patient and preferably even the total number of particles or droplets that are exhaled. Based upon this information, the system can determine whether a full dose has been delivered and absorbed by the patient according to block 370. If the dose is correct, the inhalation process ends and the patient may receive an indication ("dose complete" message or the like) that the dosage is complete.

If the dosage is not correct, it would typically be too low. The patient receives an indication of this according to step 390. The patient can take another dose starting with the device activation step 310. This process would continue until the required dosage is achieved.

Assuming that the ejector is functioning properly, the dosage may not be correct for one or both of two reasons: (1) the patient has not inhaled properly or (2) the patient exhaled more medicated particles than expected. With the particle detection during inhalation, reason (1) can be identified and quantified.
With the particle detection during exhalation, reason (2) can be identified and quantified. With reason (2), the patent is not absorbing enough medication even though the proper quantity of medicated droplets are being passed through the conduit. In the case of reason (2), the calibration factor is adjusted to more properly attain correct absorbed dosage. This will tend to reduce the number of times the patient has to inhale in order to get the proper dose.

In this way, the disclosed inhaler system becomes more accurate with dosages as the uptake is characterized. The disclosed inhaler system can learn from previous uptakes versus outputs from the patient. Thus, fewer inhalations may be required by the patient over time for a give dose.

Depicted in FIG. 6 is a timing diagram that illustrates the timing of an exemplary embodiment of a disclosed method, showing various aspects of the disclosed inhaler system in use. At step 1, the inhaler system is turned on, the particle density sensor detects low particle count, particle generation is initiated, and delivered dose estimation begins. At step 2, the particle density detector reaches density level set point, deactivating particle generation. At step 3, the patient begins inhaling, and the particle sensor detects a decrease in particle density and signals the particle generator to produce particles at a rate necessary to maintain set point particle density. At step 4, a dose estimation subsystem calculates that the delivered dose has reached some set point level above the target deposited dose and stops particle generation while the patient continues to inhale and then holds breath. At step 5, the patient begins to exhale, activating the exhalation sensor and causing the exhaled particle density sensor to begin accumulating signal. At step 6, the exhalation sensor is inactivated, the deposited dose subsystem deposited dose estimate is below the set point, and the particle density detector is below its set point value, causing particle generation to start. At step 7, the next delivered dose set point is reached, causing particle generation to cease while the patient continues to inhale and hold breath.

In step 8, as in step 5, the patient begins to exhale, activating the exhalation sensor and causing the exhaled particle density sensor to begin
accumulating signal. In step 9, as in step 6, the exhalation sensor is inactivated, the deposited dose subsystem deposited dose estimate is below the set point, and the particle density detector is below its set point value, causing particle generation to start. In step 10, the next delivered dose set point is reached, causing particle generation to cease while the patient continues to inhale and hold breath. In step 11, as in steps 5 and 8, the patient begins to exhale, activating the exhalation sensor and causing the exhaled particle density sensor to begin accumulating signal. In step 12, as in steps 6 and 9, the exhalation sensor is inactivated, the deposited dose subsystem deposited dose estimate is below the set point, and the particle density detector is below its set point value, causing particle generation to start. In step 13, the final delivered dose set point is reached, causing particle generation to cease while the patient continues to inhale and hold their breath. In step 14, the patient continues to inhale and hold breath until an audio signal indicates that dosing is complete. In step 15, the patient deactivates the dose activation switch.

In the disclosed inhaler systems and methods, it may be desirable to use a medicament for inhalation that has particle sizes in the range of about 1 to 8 microns. It may also be desirable to use a medicament for inhalation that has a particle sized in the range of about 1 to 6 microns to achieve certain deposition of particles in the deep lung tissue. It may be preferred to use a medicament for inhalation that has a particle sized in the range of about 2 to 5 microns to achieve certain deposition of particles in the deep lung tissue, as depicted in the graph of FIG. 7, measured for a representative inhaler system disclosed herein.

Preferably, the disclosed inhaler system creates a very narrow range of particles sizes as shown in FIG. 8, which aids in accuracy of the laser scatter method of particle detection. The laser scatter method can measure particle size distribution in some careful configurations but it can be difficult to measure both particle size distribution and absolute particle flux. For example, in a portable embodiment of the disclose inhaler system, a particle size distribution will probably be assumed and the particle count then used to compute the
delivered volume. Error can arise as the various particle sizes have different deposition efficiencies. A narrow particle distribution should reduce the error inherent in these assumptions and computations.

The disclosed inhaler systems and methods allows for a more direct and accurate way to verify that a patient has received a proper dosage of inhalant. In particular, the disclosed methods allow the disclosed inhaler systems to determine whether a patient’s in-breath has properly drawn in the desired amount of a dose of inhalant. Further, the disclosed methods allow the disclosed inhaler systems to estimate the amount of medicament exhaled by the patient’s out-breath in order to further estimate the need for additional dosages.

Many variations and modifications may be made to the above-described embodiments. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
CLAIMS

At least the following is claimed:

1. An inhalation system comprising:
 a conduit fluidically coupled to the ejector 34 and configured to transport
 the droplets to a patient during an in-breath; and
 a particle detection system 42 configured to determine whether the
 droplets have properly passed through the conduit and to the patient during an
 activation event.

2. The inhalation system of claim 1, wherein the ejector 34 has an ejector
 face, the detection system 42 configured to detect particles in a portion of the
 conduit, the portion is spaced sufficiently far from the ejector face to differentiate
 between droplets ejected from the ejector 34 and droplets properly passing
 through the conduit during the in-breath.

3. The inhalation system of claim 1, further comprising a warning device for
 warning the user if the proper particle flux has not been delivered through the
 conduit.

4. The inhalation system of claim 1, further comprising system control 20
 electronics coupled to the ejector 34 and the detection system 42 the control
 electronics 20 configured to respond in the event that the droplets have not
 passed through the conduit during the activation event.
5. The inhalation system of claim 1, further comprising:
 an information storage device storing calibration information indicative of
 a correlation estimation between medication absorbed by a patient versus a
 number of drops ejected from the ejector 34; and
 control electronics coupled to the ejector 34 and the detection system 40,
 wherein the control electronics utilize the calibration information to select a
 number of drops to be ejected, and the control electronics updates the
 calibration information based on information received from the particle detection
 system.

6. The inhaler system of claim 1, further comprising an inhaler control
 system 20 communicatively coupled to the medicament monitoring system 40
 and adapted to adjust at least one delivery parameter of the inhaler, whereby
 the difference between desired dose and estimated delivered dose is reduced.

7. A method, comprising the steps of:
 generating a dose of medicament particles from an inhaler system 10;
 detecting particles emitted in the inhaler system 10; and
 determining if a desired particle flux has been achieved for inhalation by
 a patient.

8. The method of claim 7, further comprising the step of ceasing the
 generation of medicament particles if a desired particle flux has not been
 achieved.

9. The method of claim 7, further comprising the steps of:
 detecting particles exhaled into the inhaler system 10 by the patient; and
 determining if a desired amount of dose of medicament has been
 delivered to a patient.
10. The method of claim 9, further comprising the steps of:
the inhaler system 10 calibrating itself to compensate for any shortfall in
the amount of dose delivered to the patient; and
generating a subsequent dose of medicament particles from an inhaler
system.
FIG. 1
FIG. 3
Patient activates device

Aerosol generation starts

Particle detection activated

Inhalation starts

Proper Particle Flux Detected?

Aerosol generation stops

Exhalation starts

Fault Response

Device Fault Inferred

FIG. 4
Patient Activates Device

Aerosol Generation Starts

Particle Detection Activated

Inhalation Starts

Aerosol Generation Stops

Exhalation Starts and is Completed

Full Dose Delivered?

Update Calibration Factor

Indicate to Patient Dosage Incomplete

Indicate Dosage Complete to Patient

FIG. 5
FIG. 6
A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61M/15/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 02/09574 A (SHOFNER ENGINEERING ASSOCIATES, INC; SHOFNER, FREDERICK, M; SHOFNER, F) 7 February 2002 (2002-02-07) page 7, line 14 - page 11, line 19 page 13, paragraph 3 page 15, line 27 - page 19, line 10 page 20, last paragraph - page 21, paragraph 3; figures</td>
<td>1-7, 9, 10</td>
</tr>
<tr>
<td>X</td>
<td>WO 99/37347 A (ARADIGM CORPORATION) 29 July 1999 (1999-07-29) page 14, line 24 - page 17, line 11; figures</td>
<td>1-5, 7</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 293 259 A (UNIVERSIDAD DE SEVILLA) 19 March 2003 (2003-03-19) paragraphs '0124!' - '0130!'; figures 6-8</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>A</td>
<td>further paragraphs 9-15; figures 7-9</td>
<td>3-6, 8-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

S document member of the same patent family

Date of the actual completion of the international search
21 April 2005

Date of mailing of the international search report
02/05/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 290-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer
Vänttinen, H

Form PCT/SA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 41 05 190 A1 (FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV, 8) 27 August 1992 (1992-08-27)</td>
<td>1,7</td>
</tr>
<tr>
<td>A</td>
<td>column 3, line 25 - column 4, line 34; figures</td>
<td>2-6,8-10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 0209574 A</td>
<td>07-02-2002</td>
<td>AU 7813101 A</td>
</tr>
<tr>
<td>WO 0209574 A2</td>
<td></td>
<td>US 2005066968 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4532901 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2457999 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002073991 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9937347 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001010223 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1293259 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 745991 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1572699 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 745904 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1572799 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 745870 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1572899 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 737688 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1572999 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 743440 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1573099 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 746017 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1573199 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 745698 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1573299 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2314918 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2314919 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2314920 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2314979 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2315048 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2315108 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2315121 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69806504 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69806504 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69814918 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69814918 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1039971 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1039972 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1039965 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2175828 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9930831 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9931019 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9930832 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9930833 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9930834 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9930835 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9930812 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002508238 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002508242 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002508243 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002508244 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002508232 T</td>
</tr>
</tbody>
</table>

Form PCT/ISA/10 (patent family annex) (January 2004)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 2002508250 T</td>
<td>19-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6405936 B1</td>
<td>18-06-2002</td>
</tr>
<tr>
<td>DE 4105190 A1</td>
<td>27-08-1992</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>