

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 April 2012 (19.04.2012)

(10) International Publication Number
WO 2012/051595 A1

(51) International Patent Classification:
A61M 1/34 (2006.01) *B01D 27/00* (2006.01)
A61M 1/36 (2006.01)

(74) Agents: FAIRCHILD, Brian, A. et al.; Goodwin Procter LLP, Exchange Place, Boston, MA 02109 (US).

(21) International Application Number:
PCT/US2011/056469

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
14 October 2011 (14.10.2011)

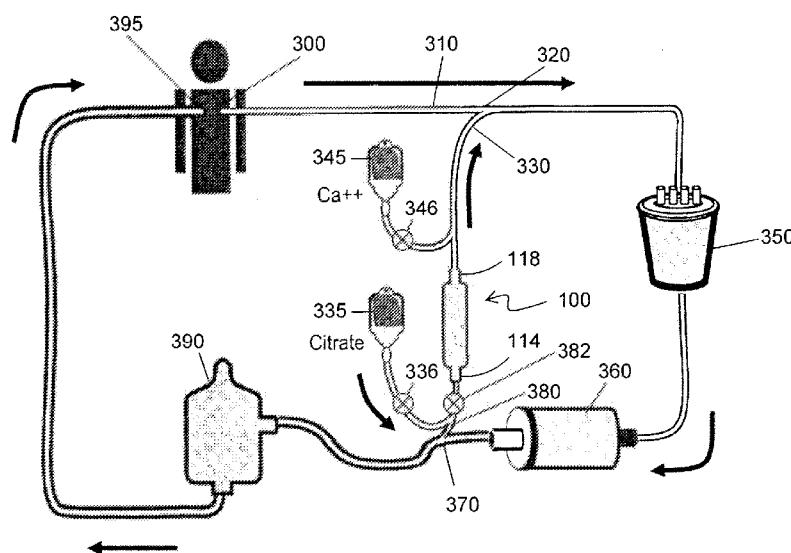
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/393,805 15 October 2010 (15.10.2010) US

(71) Applicant (for all designated States except US): CYTOPHERX, INC. [US/US]; 401 West Morgan Road, Ann Arbor, MI 48108 (US).


(72) Inventors; and

(75) Inventors/Applicants (for US only): HUMES, H., David [US/US]; 2918 Parkridge Drive, Ann Arbor, MI 48103 (US). BUFFINGTON, Deborah [US/US]; 3453 Miller Road, Ann Arbor, MI 48103 (US). PINO, Christopher, J. [US/US]; 859 Country Creek Dr., Saline, MI 48176 (US).

[Continued on next page]

(54) Title: CYTOPHERESISIC CARTRIDGE AND USE THEREOF

Figure 3A

(57) Abstract: The present invention relates to a cytopheretic cartridge for use in treating and/or preventing inflammatory conditions within a subject and to related methods. More particularly, the invention relates to a cytopheretic cartridge that includes a housing and, disposed within the housing, a solid support capable of sequestering activated leukocytes and/or platelets.

Published:

— *with international search report (Art. 21(3))*

— *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

CYTOPHERETIC CARTRIDGE AND USE THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of and priority to U.S. Provisional Application No. 61/393,805, filed October 15, 2010, the complete disclosure of which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support under Grant No. 1 R43 5 DK080529 awarded by the National Institutes of Health and under Grant No. W81XWH-05-2-0010 awarded by the U.S. Department of Defense. The government has certain rights in this invention.

FIELD OF THE INVENTION

[0003] The present invention relates to cartridges, systems, and methods for treating and/or preventing inflammatory conditions within a subject. More particularly, the present invention 10 relates to cartridges and systems for sequestering and reducing the inflammatory activity of cells associated with inflammation, such as leukocytes and platelets, and to related methods for sequestering and reducing the inflammatory activity of such cells.

BACKGROUND

[0004] Various medical conditions are caused, exacerbated, and/or characterized by 15 unwanted inflammation. Infections, such as bacterial, viral, and fungal infections; trauma, such as from falls, automobile accidents, gun and knife wounds; cardiovascular events, such as aneurysms and ischemic events often associated with surgery; and endogenous inflammatory reactions, such as pancreatitis and nephritis, often lead to profound dysfunction of the homeostatic mechanisms involved in regulating cardiovascular and immune system function. Several of these conditions, such as ischemia and infections, through abnormal or excessive 20 activation of the immune system, may result in cardiovascular dysfunction that can develop

over a period of hours to days, and which, under certain circumstances, can be life threatening or even fatal.

[0005] Certain cell types are critical to the dysfunction of the cardiovascular and immune systems. For example, leukocytes, especially neutrophils, contribute to the pathogenesis and 5 progression of various inflammatory conditions, including systemic inflammatory response syndrome (SIRS), sepsis, ischemia/reperfusion injury and acute respiratory distress syndrome (ARDS) (see, *e.g.*, Kaneider *et al.* (2006) FEBS J 273:4416–4424; Maroszynska *et al.* (2000) ANN. TRANSPLANT. 5(4):5-11). In addition, activated platelets enhance leukocyte adhesion and promote leukocyte activation. While inflammation and a systemic immune response can be 10 beneficial in certain circumstances, they can also be fatal.

[0006] Inflammatory injury in organs can result in microvascular damage induced by leukocyte activation and aggregation, as well as platelet activation and aggregation. These activated cells can contribute to microvascular stasis and reperfusion injury by releasing toxic 15 compounds into a patient's tissue. In acute inflammation, activated leukocytes and platelets interact as a gel-like structure within the vessel. This leads to poor perfusion of the tissue, which normally is supplied with oxygen and nutrients by the capillaries. Activated leukocytes additionally cause damage by extravasating across the endothelium into the tissue, where they release toxic agents normally intended to destroy invading microbes or clear out necrotic debris. Activated platelets additionally cause damage by enhancing the activation and 20 endothelial transmigration of leukocytes. When these processes are not controlled, they can lead to tissue injury and death.

[0007] SIRS is the thirteenth leading cause of death in the United States of America. Severe sepsis with SIRS occurs in 200,000 patients annually in the U.S. with a mortality rate of 30–40%, even with use of intensive care units and broad spectrum antibiotics. SIRS is 25 diagnosed largely on observed physiological changes such as increase (fever) or decrease (hypothermia) in body temperature, increased heart rate (tachycardia), increased respiration rate (tachypnea), elevated or diminished white blood cell counts, and inadequate perfusion of tissues and organs. A decrease in blood pressure is a complication associated with SIRS that occurs late in the course of the syndrome. Specifically, a decrease in blood pressure can reflect 30 the development of shock and contribute to multiple organ failure, which is a leading cause of death in these patients. Septic shock is a condition that includes the clinical observations of the

presence of an infection and a drop in blood pressure despite fluid resuscitation and proper cardiac blood output. A similar condition, sepsis syndrome, includes similar physiological signals with no evidence of any type of infection. Other insults, which induce a sepsis-like condition include pancreatitis, burns, ischemia, multiple trauma and tissue injury (often due to 5 surgeries and transplants), haemorrhagic shock and immune-mediated organ dysfunction.

[0008] The standard therapies for SIRS and septic shock involve administration of antibiotics to bring the infection under control and fluid/colloid therapy to maintain circulating blood volume. Frequently, drugs that help maintain blood pressure, such as dopamine and vasopressin, are also administered.

10 **[0009]** Cardiopulmonary bypass (CPB) can induce SIRS, activating complement and coagulation systems and stimulating cytokine production. A large number of therapeutic approaches are under investigation to limit the activation and accumulation of leukocytes during CPB. In fact, animal and early clinical data suggest amelioration of lung and kidney damage during CPB surgery with the use of leukocyte depletion filters (see, e.g., Gu *et al.* 15 (1996) *J. THORAC. CARDIOVASC. SURG.* 112:494–500; Bolling *et al.* (1997) *J. THORAC. CARDIOVASC. SURG.* 113:1081–1090; Tang *et al.* (2002) *Ann. Thorac. Surg.* 74:372–377;

Alaoja *et al.* (2006) *J. THORAC. CARDIOVASC. SURG.* 132:1339–1347). It appears, however, that dialysis can produce transient neutropenia (see, Kaplow *et al.* (1968) *JAMA* 203:1135).

[0010] There remains a need for improved treatments of inflammatory conditions, such as 20 cardiovascular shock, sepsis, systemic inflammatory response syndrome and anaphylaxis.

SUMMARY OF THE INVENTION

[0011] Inflammatory conditions often arise from the activation of cells associated with 25 inflammation, such as leukocytes and platelets. The present invention relates to cartridges, systems and related methods for treating and/or preventing inflammatory conditions by extracorporeally sequestering leukocytes and/or platelets and inhibiting or deactivating their inflammatory action. For example, these cells can be deactivated and/or their release of pro-inflammatory substances can be inhibited.

[0012] As leukocytes and platelets are normally found in the bloodstream, they can be sequestered by passing blood, or another body fluid containing the cells, through the interior of a device providing a surface that sequesters these cells for a period of time. It has now been

discovered that the number of leukocytes and/or platelets sequestered needs to be controlled to treat the inflammatory condition without removing too many cells so as to cause a deficiency of those cells. For example, the loss of too many leukocytes can result in the life threatening and even fatal condition known as leucopenia. Similarly, the loss of too many neutrophils can
5 result in the life threatening condition known as neutropenia. The loss of too many platelets can result in thrombocytopenia. Furthermore, the volume of fluid available from a subject (for example, infants, children and severely ill, hemodynamically unstable patients) can have a significant effect on the efficacy of the treatment. Accordingly, the choice of a SCD cartridge having the appropriate ratio of active surface area on the solid support for sequestering cells to
10 the inner volume of the SCD cartridge housing can have a profound effect on the efficacy of the treatment in a given patient.

[0013] In one aspect, the invention provides a cartridge for treating activated leukocytes, activated platelets, or both activated leukocytes and activated platelets. The cartridge includes a rigid housing with a fluid inlet port, a fluid outlet port, and an inner volume (IV) through
15 which the body fluid can pass. The inner volume is in fluid flow communication with the fluid inlet port and the fluid outlet port. A solid support is positioned within the housing, so that at least a portion of the solid support is located between the fluid inlet port and the fluid outlet port. The solid support defines a fluid contacting surface with a surface area (SA) capable of sequestering an activated leukocyte and/or an activated platelet if present in a body fluid
20 entering the housing via the fluid inlet port. In certain embodiments, the SA/IV ratio of the SCD cartridge is greater than 150 cm^{-1} (for example, in the range of 150 cm^{-1} to $1,500 \text{ cm}^{-1}$, in the range of 300 cm^{-1} to $1,000 \text{ cm}^{-1}$, in the range of 300 cm^{-1} to 800 cm^{-1} , in the range of 300 cm^{-1} to 600 cm^{-1} , in the range of 400 cm^{-1} to 800 cm^{-1} , in the range of 400 cm^{-1} to 600 cm^{-1} , or in the range of 200 cm^{-1} to 600 cm^{-1}).

[0014] In certain embodiments, the IV optionally is less than 300 cm^3 , and may be less than 150 cm^3 or less than 100 cm^3 . In some embodiments, the IV may be in the range of from 10 cm^3 to 150 cm^3 , for example, from 75 cm^3 to 150 cm^3 , from 15 cm^3 to 120 cm^3 , or from 20 cm^3 to 80 cm^3 . In certain embodiments, the SA may exceed 0.8 m^2 . In other embodiments, the SA may be in the range of 0.1 m^2 to 10.0 m^2 or 0.1 m^2 to 5.0 m^2 . For example, the SA may be in
25 the range of from 0.1 m^2 to 0.4 m^2 , from 0.4 m^2 to 0.8 m^2 , from 0.8 m^2 to 1.2 m^2 , from 1.2 m^2 to 1.6 m^2 , from 1.6 m^2 to 2.0 m^2 , from 2.0 m^2 to 2.4 m^2 , from 2.4 m^2 to 2.8 m^2 , from 2.8 m^2 to 3.2 m^2 , from 3.2 m^2 to 3.6 m^2 , from 3.6 m^2 to 4.0 m^2 , from 4.0 m^2 to 4.4 m^2 , from 4.4 m^2 to 4.8 m^2 .

m^2 , from 4.8 m^2 to 5.2 m^2 , from 5.2 m^2 to 5.6 m^2 , from 5.6 m^2 to 6.0 m^2 , from 6.0 m^2 to 6.4 m^2 , from 6.4 m^2 to 6.8 m^2 , or from 6.8 m^2 to 7.2 m^2 .

[0015] The solid support can be defined by one or more fibers (for example, hollow or solid fibers), one or more planar support members, or a combination thereof. The solid support can be a membrane that is porous, semi-porous, or non-porous. Furthermore, the solid support may be fabricated from a biocompatible material, for example, polysulfone or polyethersulfone, and/or may have one or more cell-adhesion molecules attached thereto.

[0016] If the solid support occupies a greater percentage of the volume of the cartridge, this reduces the inner volume of the cartridge, increasing the SA/IV ratio. Accordingly, in this aspect of the invention, the solid support is disposed in the housing at a packing density of 20%-65%, facilitating a favorable SA/IV ratio.

[0017] In another aspect, the invention provides cartridges with enhanced surface areas of greater than 2.6 m^2 for sequestering activated leukocytes, activated platelets, or both activated leukocytes and activated platelets, and methods of using the cartridges to treat subjects. The cartridge comprises a rigid housing with a fluid inlet port, a fluid outlet port, and an inner volume (IV) through which the body fluid can pass. The inner volume is in fluid flow communication with the fluid inlet port and the fluid outlet port. A solid support is positioned within the housing, so that at least a portion of the solid support is located between the fluid inlet port and the fluid outlet port. The solid support defines a fluid contacting surface with a surface area (SA) capable of sequestering an activated leukocyte and/or an activated platelet if present in a body fluid entering the housing via the fluid inlet port. In this embodiment, the SA is more than 2.6 m^2 and may be from 3.0 m^2 to 10.0 m^2 , from 3.0 m^2 to 5.0 m^2 , from 3.0 m^2 to 3.5 m^2 , from 3.5 m^2 to 4.0 m^2 , from 4.0 m^2 to 4.5 m^2 , from 4.5 m^2 to 5.0 m^2 , from 5.0 m^2 to 5.5 m^2 , from 5.5 m^2 to 6.0 m^2 , from 6.0 m^2 to 6.5 m^2 , from 6.5 m^2 to 7.0 m^2 , from 7.0 m^2 to 7.5 m^2 , from 7.5 m^2 to 8.0 m^2 , from 8.0 m^2 to 8.5 m^2 , from 8.5 m^2 to 9.0 m^2 , from 9.0 m^2 to 9.5 m^2 , or from 9.5 m^2 to 10.0 m^2 , for example.

[0018] In certain embodiments, the IV optionally is less than 300 cm^3 , and may be less than 150 cm^3 or less than 100 cm^3 . In some embodiments, the IV may be in the range of from 10 cm^3 to 150 cm^3 , for example, from 75 cm^3 to 150 cm^3 , from 15 cm^3 to 120 cm^3 , or from 20 cm^3 to 80 cm^3 . The SA/IV ratio of the SCD cartridge may be greater than 150 cm^{-1} (for example, in the range of 150 cm^{-1} to $1,500 \text{ cm}^{-1}$, in the range of 300 cm^{-1} to $1,000 \text{ cm}^{-1}$, in the range of 300

cm^{-1} to 800 cm^{-1} , in the range of 300 cm^{-1} to 600 cm^{-1} , in the range of 400 cm^{-1} to 800 cm^{-1} , in the range of 400 cm^{-1} to 600 cm^{-1} , or in the range of 200 cm^{-1} to 600 cm^{-1}).

[0019] The solid support can be defined by one or more fibers (for example, hollow or solid fibers), planar support members, or a combination thereof. The solid support can be a

5 membrane that is porous, semi-porous, or non-porous. Furthermore, the solid support may be fabricated from polysulfone and/or may have one or more cell-adhesion molecules attached thereto.

[0020] In a further aspect, the invention provides cartridges having a plurality of solid fibers. The cartridge comprises a rigid housing with a fluid inlet port, a fluid outlet port, and an

10 inner volume (IV) through which a body fluid can pass. The inner volume is in fluid flow communication with the fluid inlet port and the fluid outlet port. Disposed within the housing is a solid support that includes a plurality of solid fibers, optionally including polysulfone and/or polyethersulfone. The solid support defines a fluid contacting surface with a surface area (SA) capable of sequestering an activated leukocyte and/or an activated platelet if present

15 in a body fluid entering the housing via the fluid inlet port. In this embodiment, the SA/IV ratio of the cartridge is greater than 25 cm^{-1} , and may be greater than 80 cm^{-1} , or greater than 150 cm^{-1} (for example, in the range of 150 cm^{-1} to $1,500 \text{ cm}^{-1}$, in the range of 150 cm^{-1} to $1,000 \text{ cm}^{-1}$, in the range of 25 cm^{-1} to 800 cm^{-1} , or in the range of 80 cm^{-1} to 800 cm^{-1}). The SA may be greater than 0.09 m^2 , or may be in the range of from 0.09 m^2 to 10.0 m^2 . For example, the

20 SA may be in the range of from 0.1 m^2 to 0.4 m^2 , from 0.4 m^2 to 0.8 m^2 , from 0.8 m^2 to 1.2 m^2 , from 1.2 m^2 to 1.6 m^2 , from 1.6 m^2 to 2.0 m^2 , from 2.0 m^2 to 2.4 m^2 , from 2.4 m^2 to 2.8 m^2 , from 2.8 m^2 to 3.2 m^2 , from 3.2 m^2 to 3.6 m^2 , from 3.6 m^2 to 4.0 m^2 , from 4.0 m^2 to 4.4 m^2 , from 4.4 m^2 to 4.8 m^2 , from 4.8 m^2 to 5.2 m^2 , from 5.2 m^2 to 5.6 m^2 , from 5.6 m^2 to 6.0 m^2 , from 6.0 m^2 to 6.4 m^2 , from 6.4 m^2 to 6.8 m^2 , from 6.8 m^2 to 7.2 m^2 , from 7.2 m^2 to 7.6 m^2 , from 7.6 m^2 to 8.0 m^2 , from 8.0 m^2 to 8.4 m^2 , from 8.4 m^2 to 8.8 m^2 , from 8.8 m^2 to 9.2 m^2 , from 9.2 m^2 to 9.6 m^2 , from 9.6 m^2 to 10.0 m^2 . The IV optionally is less than 150 cm^3 . In

25 some embodiments, the IV may be in the range of from 75 cm^3 to 150 cm^3 or from 5 cm^3 to 50 cm^3 .

[0021] The invention provides a method for processing an activated leukocyte, an activated

30 platelet, or both an activated leukocyte and an activated platelet contained within a body fluid. The method uses a cartridge that includes a rigid housing with a fluid inlet port, a fluid outlet

port, and an inner volume (IV) through which the body fluid can pass. The inner volume is in fluid flow communication with the fluid inlet port and the fluid outlet port. A solid support is positioned within the housing so that at least a portion of which is located between the fluid inlet port and the fluid outlet port and defines a fluid contacting surface. The fluid contacting

5 surface has a surface area (SA) capable of sequestering an activated leukocyte and/or an activated platelet if present in a body fluid entering the housing via the fluid inlet port. The SA/IV ratio is greater than 80 cm^{-1} , and optionally greater than 100 cm^{-1} , greater than 125 cm^{-1} , or greater than 150 cm^{-1} (for example, in the range of 80 cm^{-1} to $1,500 \text{ cm}^{-1}$, 150 cm^{-1} to $1,500 \text{ cm}^{-1}$, in the range of 300 cm^{-1} to $1,000 \text{ cm}^{-1}$, in the range of 300 cm^{-1} to 800 cm^{-1} , in the range 10 of 300 cm^{-1} to 600 cm^{-1} , in the range of 400 cm^{-1} to 800 cm^{-1} , or in the range of 400 cm^{-1} to 600 cm^{-1}).

[0022] In certain embodiments, the IV is optionally restricted to less than 150 cm^3 , such as in the range of from 10 cm^3 to 150 cm^3 , from 75 cm^3 to 150 cm^3 , from 15 cm^3 to 120 cm^3 , or from 20 cm^3 to 80 cm^3 . The SA may be in the range of 0.1 m^2 to 10.0 m^2 or 0.1 m^2 to 5.0 m^2 .

15 In certain embodiments, the SA may be in the range of from 0.1 m^2 to 0.4 m^2 , from 0.4 m^2 to 0.8 m^2 , from 0.8 m^2 to 1.2 m^2 , from 1.2 m^2 to 1.6 m^2 , from 1.6 m^2 to 2.0 m^2 , from 2.0 m^2 to 2.4 m^2 , from 2.4 m^2 to 2.8 m^2 , from 2.8 m^2 to 3.2 m^2 , from 3.2 m^2 to 3.6 m^2 , from 3.6 m^2 to 4.0 m^2 , from 4.0 m^2 to 4.4 m^2 , from 4.4 m^2 to 4.8 m^2 , from 4.8 m^2 to 5.2 m^2 , from 5.2 m^2 to 5.6 m^2 , from 5.6 m^2 to 6.0 m^2 , from 6.0 m^2 to 6.4 m^2 , from 6.4 m^2 to 6.8 m^2 , or from 6.8 m^2 to 7.2 m^2 .

20 [0023] In the method, a body fluid from a subject is introduced into the housing via the fluid inlet port under conditions that permit sequestration of an activated leukocyte and/or an activated platelet on the fluid contacting surface of the solid support. The body fluid is optionally permitted to exit the cartridge via the fluid outlet port at a flow rate in the range of $10 \text{ cm}^3/\text{minute}$ to $8,000 \text{ cm}^3/\text{minute}$, such as, for example, $50 \text{ cm}^3/\text{minute}$ to $8,000 \text{ cm}^3/\text{minute}$.

25 [0024] In certain embodiments, the solid support can be defined by one or more fibers (for example, hollow or solid fibers), one or more planar support members, or a combination thereof. The solid support can be a membrane that is porous, semi-porous, or non-porous. Furthermore, the solid support may be fabricated from a biocompatible material such as polysulfone or polyethersulfone, and may have one or more cell-adhesion molecules attached 30 thereto.

[0025] In certain embodiments, the method can also include treating the sequestered leukocyte and/or platelet to inhibit the release of a pro-inflammatory substance or to deactivate the leukocyte and/or platelet. The leukocyte and/or platelet can be sequestered for a time (e.g., at least one second, at least one minute, at least five minutes, at least fifteen minutes, or at least 5 an hour) sufficient to inhibit the release of the pro-inflammatory substance or to deactivate the leukocyte and/or the platelet. A calcium chelator such as citrate can be used to inhibit the release of the pro-inflammatory substance or to deactivate the leukocyte or platelet. After treatment, the leukocyte or platelet can optionally be returned back to the subject.

[0026] In another aspect, the invention provides methods for treating a subject having or at 10 risk of developing an inflammatory condition. The inflammatory condition is optionally selected from the group consisting of systemic inflammatory response syndrome (SIRS), polyarteritis, Wegener's granulomatosis, autoimmune vasculitis, anti-neutrophil cytoplasmic antibody (ANCA) vasculitis, extracorporeal membrane oxygenation (ECMO), cardiopulmonary bypass syndrome, acute respiratory distress syndrome (ARDS), acute lung injury (ALI), 15 chronic obstructive pulmonary disease (COPD), sepsis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis (MS), psoriasis, allograft rejection, asthma, acute renal failure, chronic renal failure (CRF), end stage renal disease (ESRD), cardiorenal syndrome (CRS), chronic heart failure (CHF), stroke, myocardial infarction (MI), hepatorenal syndrome, cirrhosis of the liver, diabetes mellitus (type 2 diabetes), 20 and acute organ failure from ischemic reperfusion injury to myocardium, central nervous system, liver, kidney, or pancreas.

[0027] The treatment method uses a cartridge that includes a rigid housing with a fluid inlet port, a fluid outlet port, and an inner volume (IV) through which the body fluid can pass. A solid support is positioned within the housing so that at least a portion of which is located 25 between the fluid inlet port and the fluid outlet port and defines a fluid contacting surface. The fluid contacting surface has a surface area (SA) capable of sequestering an activated leukocyte if present in a body fluid entering the housing via the fluid inlet port. The SA/IV ratio is greater than 80 cm⁻¹, greater than 100 cm⁻¹, greater than 125 cm⁻¹, greater than 150 cm⁻¹ (for example, in the range of 80 cm⁻¹ to 1,500 cm⁻¹, 150 cm⁻¹ to 1,500 cm⁻¹, in the range of 300 cm⁻¹ 30 to 1,000 cm⁻¹, in the range of 300 cm⁻¹ to 800 cm⁻¹, in the range of 300 cm⁻¹ to 600 cm⁻¹, in the range of 400 cm⁻¹ to 800 cm⁻¹, or in the range of 400 cm⁻¹ to 600 cm⁻¹).

[0028] In certain embodiments, the IV is optionally restricted to less than 150 cm³, such as in the range of from 10 cm³ to 150 cm³, from 75 cm³ to 150 cm³, from 15 cm³ to 120 cm³, or from 20 cm³ to 80 cm³. The SA may be in the range of 0.1 m² to 10.0 m² or 0.1 m² to 5.0 m². In certain embodiments, the SA may be in the range of from 0.1 m² to 0.4 m², from 0.4 m² to 5 0.8 m², from 0.8 m² to 1.2 m², from 1.2 m² to 1.6 m², from 1.6 m² to 2.0 m², from 2.0 m² to 2.4 m², from 2.4 m² to 2.8 m², from 2.8 m² to 3.2 m², from 3.2 m² to 3.6 m², from 3.6 m² to 4.0 m², from 4.0 m² to 4.4 m², from 4.4 m² to 4.8 m², from 4.8 m² to 5.2 m², from 5.2 m² to 5.6 m², from 5.6 m² to 6.0 m², from 6.0 m² to 6.4 m², from 6.4 m² to 6.8 m², or from 6.8 m² to 7.2 m².

[0029] In the method, a body fluid from a subject is introduced into the housing via the 10 fluid inlet port under conditions that permit sequestration of an activated leukocyte on the fluid contacting surface of the solid support. The body fluid is optionally permitted to exit the cartridge via the fluid outlet port at a flow rate in the range of 10 cm³/minute to 8,000 cm³/minute, such as, for example, 50 cm³/minute to 8,000 cm³/minute.

[0030] In certain embodiments, the solid support can be defined by one or more fibers (for 15 example, hollow or solid fibers), one or more planar support members, or a combination thereof. The solid support can be a membrane that is porous, semi-porous, or non-porous. Furthermore, the solid support may be fabricated from polysulfone and may have one or more cell-adhesion molecules attached thereto.

[0031] In certain embodiments, the method optionally further includes treating a 20 sequestered leukocyte and/or platelet to reduce the risk of developing inflammation associated with the inflammatory condition or to alleviate inflammation associated with the inflammatory condition. The leukocyte may be sequestered for a time (e.g. less than one minute, at least one minute, at least five minutes, at least fifteen minutes, or at least an hour) sufficient to deactivate the leukocyte and/or inhibit the release of a pro-inflammatory substance. For example, a 25 calcium chelator such as citrate, ethylenediaminetetraacetic acid (EDTA), or phosphonates, may be used to deactivate the leukocyte and/or the platelet and/or inhibit the release of a pro-inflammatory substance. Once treated, the leukocyte and/or the platelet can optionally be returned back to the subject.

[0032] In each of the foregoing aspects of the invention, the SCD cartridge preferably is 30 sterile and is made of one or more biocompatible materials, particularly in the fluid-contacting portions of the housing and the solid support. In certain embodiments, in order to extend

contact with the fluid while minimizing turbulence, the solid support preferably is oriented substantially parallel to the direction of fluid flow within the cartridge. In other embodiments, the fluid inlet port and the fluid outlet port are optionally dimensioned to permit a flow rate through the housing in the range of 10 cm³/minute to 8,000 cm³/minute or 50 cm³/minute to 5 8,000 cm³/minute. To achieve these flow rates, the fluid inlet and fluid outlet ports optionally and independently have a minimum cross section of no less than 0.01 cm², no less than 0.1 cm², no less than 0.2 cm², no less than 0.4 cm², no less than 0.6 cm², no less than 0.8 cm², or no less than 1.0 cm², or each have a cross section in the range of from 0.01 cm² to 1.0 cm². Furthermore, in certain embodiments, the housing is configured to create a shear force of less 10 than 100 dynes/cm² when a body fluid enters the housing through the fluid inlet port and exits the housing through the fluid outlet port at, for example a rate of 250, 500, 1000, 2000, or 4000 cm³/minute. In various embodiments of the invention, the fluid inlet and fluid outlet port are both be disposed on one side of the housing, or on opposite sides of the housing. In some 15 embodiments, the housing has a first end and a second end opposite the first end, and the fluid inlet port is configured to permit fluid flow through the first end while the fluid outlet port is configured to permit fluid flow through the second end. In certain embodiments, the solid support is disposed in the housing at a packing density of 15%-70%, 20%-65%, 20%-60%, 30%-60%, 40%-55%, or 40%-50%.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The foregoing aspects and embodiments of the invention may be more fully 20 understood by reference to the following detailed description and claims.

[0034] **Figure 1A** is a schematic, cross-sectional representation of an exemplary SCD cartridge containing a plurality of hollow fibers. **Figure 1B-1D** are schematic, cross-sectional representations of a SCD cartridge containing a plurality of solid fibers and/or planar support members.

[0035] **Figure 2A** is a schematic representation of a fluid circuit containing a SCD 25 cartridge where the intracapillary space (ICS) has both ends capped. **Figure 2B** is a schematic representation of an embodiment similar to **Figure 2A** except that ultrafiltrate (UF) is collected from a SCD cartridge having only one end of the ICS capped. **Figure 2C** is a schematic representation of an embodiment of a fluid circuit containing a first device, for example, a 30 hemofiltration device, and a SCD cartridge that includes an ICS with both ends capped. **Figure**

2D is a schematic representation of an embodiment similar to **Figure 2C** except that ultrafiltrate (UF) is collected from the SCD cartridge where only one end of the ICS is capped.

[0036] **Figures 3A and 3B** are schematic representations of embodiments of system configurations that can be used as a CPB circuit. In **Figure 3A** the circuit comprises a recirculation loop and in **Figure 3B**, the fluid circuit lacks a recirculation loop.

[0037] **Figure 4** is a schematic representation of an embodiment of a system configuration used in treating a subject with sepsis.

[0038] **Figure 5** is a graphical depiction of changes in cardiovascular parameters of subjects with sepsis treated an F-40 SCD device in the presence of heparin (SCD-H); an F-40 SCD device in the presence of citrate (SCD-C, F-40); or an F-80A SCD device in the presence of citrate (SCD-C, F-80A). Results are shown for mean arterial blood pressure (**Figure 5A**); cardiac output (**Figure 5B**); systemic vascular resistance (**Figure 5C**); pulmonary vascular resistance (**Figure 5D**); renal vascular resistance (**Figure 5E**); and hematocrit (**Figure 5F**).

[0039] **Figure 6** is a graphical depiction of changes in renal parameters of subjects with sepsis treated an F-40 SCD device in the presence of heparin (SCD-H); an F-40 SCD device in the presence of citrate (SCD-C; F-40); or an F-80A SCD device in the presence of citrate (SCD-C; F-80A). Results are shown for blood urea nitrogen (BUN) (**Figure 6A**); creatinine (**Figure 6B**); renal blood flow (**Figure 6C**); and cumulated urine output (**Figure 6D**).

[0040] **Figure 7** is a graphical depiction of survival times for subjects with sepsis treated with an F-40 SCD device in the presence of heparin (SCD-H) or with an F-40 or F-80A SCD device in the presence of citrate (SCD-C).

[0041] **Figure 8** is a bar graph depicting survival times for subjects with sepsis treated an F-40 SCD device in the presence of heparin (SCD-H); an F-40 SCD device in the presence of citrate (F-40, SCD-C); or an F-80A SCD device in the presence of citrate (F-80A, SCD-C).

[0042] **Figure 9** is a series of light microscopy photographs showing leukocyte attachment and aggregation along the outer surface of SCD membranes.

[0043] **Figures 10A and 10B** are bar graph depicting number (**Figure 10A**) and distribution (**Figure 10B**) of cells eluted from SCD membranes following their use in SCD devices to treat septic subjects. The subjects were treated with an F-40 SCD device in the presence of heparin

(SCD-H); an F-40 SCD device in the presence of citrate (F-40 SCD-C); or an F-80A SCD device in the presence of citrate (F-80A SCD-C).

[0044] **Figure 11** is a graphical depiction of levels of serum myeloperoxidase (**Figure 11A**) or systemic neutrophil activation, as measured by CD11b mean fluorescent intensity (**Figure 11B**) shows hematocrit levels in subjects with sepsis treated with an F-40 SCD device in the presence of heparin (SCD-H) or with an F-40 or F-80A SCD device in the presence of citrate (SCD-C).

[0045] **Figure 12** is a graphical depiction of release of IL-8 (**Figure 12A**) and TNF- α (**Figure 12B**) from peripheral blood mononuclear cells isolated from subjects after 6 hours of treatment for sepsis with an F-40 SCD device in the presence of heparin (SCD-H); an F-40 SCD device in the presence of citrate (F-40 SCD-C); or an F-80A SCD device in the presence of citrate (F-80A SCD-C).

[0046] **Figure 13** is a photograph of lung sections incubated with primary anti-CD11b antibody, followed by incubation with an anti-mouse IgG Alexafluor594 conjugate. Nuclei were counterstained with DAPI. The left panel is from a subject treated for sepsis with an F-40 SCD device in the presence of heparin; the right panel is from a subject treated for sepsis with a SCD device in the presence of citrate. A significant decrease in CD11b-labeled cells was observed in the lungs of the patients whose regimen included citrate rather than heparin.

[0047] **Figure 14** is a bar graph depicting the number of CD11b-positive cells detected in non-septic subjects; septic subjects treated with an F-40 SCD device in the presence of citrate (F-40 SCD-C); septic subjects treated with an F-80A SCD device in the presence of citrate (F-80A SCD-C); or septic subjects treated with an F-40 SCD device in the presence of heparin (F-40 SCD-H).

[0048] **Figure 15** is a graphical depiction of systemic white blood cell counts (**Figure 15A**), systemic absolute neutrophil counts (**Figure 15B**), and systemic immature neutrophil counts (**Figure 15C**) over time in septic subjects treated with an F-40 SCD device in the presence of citrate (SCD-C, F-40), with an F-80A SCD device in the presence of citrate (SCD-C, F-80A), or with an F-40 SCD device in the presence of heparin (SCD-H).

[0049] **Figure 16** is a bar graph depicting the percentage of neutrophils that were detected as positive for annexin V, as an assessment of the apoptotic potential of the cells. Both

systemic neutrophils and SCD-adherent neutrophils were measured following treatment of septic patients with an F-40 SCD (F-40 SCD-C) or an F-80A SCD (F-80A SCD-C) in the presence of citrate.

[0050] **Figure 17** is a bar graph depicting the relative numbers of leukocytes attaching to polysulfone in the presence of shear flow and in the presence or absence of lipopolysaccharides (LPS) and/or citrate.

DETAILED DESCRIPTION

[0051] Cells associated with inflammation, such as leukocytes (or white blood cells) and platelets, normally defend the body against infection and injury. However, during many disease states and medical procedures, these cells can become activated, which in turn can produce undesirable immune and inflammatory responses that can be fatal. It has been discovered that devices, referred to as selective cytopheretic devices, that extracorporeally sequester leukocytes and/or platelets and then inhibit their inflammatory actions can be useful in the prevention or treatment of a variety of inflammatory conditions, in particular inflammatory conditions mediated or facilitated by activated leukocytes and/or platelets. U.S.

15 Patent Publication No. US 2009/0060890 describes exemplary selective cytopheretic devices and their use in the prevention and/or treatment of inflammatory conditions. The selective cytopheretic devices described therein typically comprise a housing containing a plurality of fibers or planar sheets, the outer surfaces of which contact a body from the subject being treated. The outer surfaces of the hollow fibers or the planar sheets provide a solid support for 20 selectively sequestering activated leukocytes and/or activated platelets present in the body fluid.

[0052] As used herein, the term “cytopheresis” or “selective cytopheresis” refers to the sequestration of certain cells, for example, leukocytes (e.g., activated leukocytes) or platelets (e.g., activated platelets) from a body fluid, for example, blood. The sequestered cells can be 25 deactivated and/or the release of the pro-inflammatory substance from such cells can be inhibited. It should be understood that such deactivation and/or inhibition can occur before, during, and/or after sequestration. In a specific embodiment, selective cytopheresis refers to the sequestration of leukocytes (e.g., activated leukocytes) and/or platelets (e.g., activated platelets) from blood. The term “blood” refers to any aspect of blood, for example, whole

blood, treated blood, filtered blood, or any liquid derived from blood, for example, serum or plasma.

[0053] The terms, “selective cytopheresis device,” “selective cytopheretic device,” “selective cytopheresis inhibitory device,” and “SCD” each refer to a device that facilitates or 5 is capable of facilitating cytopheresis. Such a device can also facilitate deactivation and/or inhibit the release of pro-inflammatory substances from such cells before, during, and/or after sequestration. The SCD includes one or more SCD cartridges that facilitate selective cytopheresis. While the discussion in the sections that follow generally describe sequestration and inhibition and/or deactivation of a particular cell type (e.g., leukocytes), it is understood 10 that the same principles apply to the sequestration and inhibition and/or deactivation of other cell types associated with inflammation (e.g., platelets, such as activated platelets).

[0054] An “activated leukocyte” is understood to mean a leukocyte that, in response to a challenge, for example, when exposed to an endotoxin (e.g., lipopolysaccharide), has an enhanced ability to elicit an immune response relative to a leukocyte that has not been 15 challenged. For example, an activated neutrophil (PMN), is a neutrophil that, in response to a challenge, for example, when exposed to an endotoxin (e.g., lipopolysaccharide), has an enhanced ability to migrate, phagocytose, and produce an oxidative burst response relative to a neutrophil that has not been challenged. Activation can also be determined via an up-regulation of cell surface CD11b. An activated monocyte is a monocyte that, in response to a 20 challenge, for example, when exposed to an endotoxin (e.g., lipopolysaccharide), has an enhanced ability to release cytokines relative to a monocyte that has not been challenged. An “activated platelet” is understood to mean a platelet that, in response to a challenge, for example, when exposed to an endotoxin (e.g., lipopolysaccharide), becomes adherent to other platelets, to leukocytes, and to certain proteins, for example, coagulation factors. Platelet 25 activation can be quantified by determining the percentage of circulating monocytes that have platelets adhered to their cell surface. Activated leukocytes also include primed leukocytes. For example, a primed neutrophil (PMN), is a neutrophil that, in response to a challenge, for example, when exposed to an endotoxin (e.g., lipopolysaccharide), has an enhanced ability to undergo an oxidative burst response relative to a neutrophil that has not been challenged.

30 [0055] It has now been discovered that the choice of surface area of the solid support in a SCD cartridge capable of sequestering the leukocytes and/or the platelets, and the inner volume

(also referred to as the fill volume) of the housing of the SCD cartridge that contains the solid support can have a profound effect on the efficacy of the SCD in treating an inflammatory condition. For example, the surface area of the solid support should be sufficient to sequester a portion of the leukocytes and/or platelets to be effective but without sequestering too many 5 leukocytes and/or platelets. The sequestration of too many leukocytes can result in leukocyte deficiency that in turn can result in life-threatening leucopenia. The sequestration of too many neutrophils can result in neutropenia, and the sequestration of too many platelets can result in thrombocytopenia or bleeding diathesis. Furthermore, it can be important to choose a housing with an appropriate inner volume (also referred to as the fill volume or the extracapillary space 10 when the solid support is defined by hollow fibers) depending upon the subject to be treated. For example, in the case of infants, children and severely ill, hemodynamically unstable patients, it is important to choose housings with lower fill volumes so that less body fluid needs to be extracted from the subject to contact or bathe the solid support. Accordingly, the choice 15 of a SCD cartridge having the appropriate ratio of active surface area of the solid support to the inner volume of the SCD cartridge housing containing the solid support can have a profound effect on the efficacy of treatment in a given patient. The age, weight, and infirmity of the subject can be important considerations when choosing a particular SCD cartridge.

[0056] Furthermore, although the invention is generally described herein with regard to blood and blood-based body fluids, the invention is applicable to any sample of a body fluid 20 that can flow through an extracorporeal circuit, such as any body fluid from a subject that contains leukocytes and/or platelets. Exemplary extracorporeal circuits are described, for example, in U.S. Patent No. 6,561,997 and U.S. Patent Publication No. US 2009/0060890. The terms "sample" and "specimen" are used in their broadest sense. On the one hand, they are meant to include a specimen or culture. On the other hand, they are meant to include both 25 biological and environmental samples. Body fluids include, but not limited to, blood, serum, plasma, cerebrospinal fluid (CSF), lymphatic fluid, peritoneal fluid or ascites, pleural fluid, and saliva.

[0057] The following sections describe considerations in designing an appropriate SCD cartridge, and systems incorporating such a SCD cartridge for the treatment of a variety of 30 inflammatory conditions.

1. Cartridge Considerations

[0058] Although the underlying principles for designing an appropriate SCD are discussed in detail, it is understood that SCD cartridges useful in the practice of the invention are not limited to the particular design configurations discussed herein.

5 [0059] In one aspect, the invention provides a SCD cartridge for treating activated leukocytes, activated platelets, or both activated leukocytes and activated platelets. The cartridge comprises a rigid housing defining an inner volume (IV), a fluid inlet port and a fluid outlet port. The inner volume is in fluid flow communication with both the fluid inlet port and the fluid outlet port. The inner volume is also referred to herein as the fill volume, and also the 10 extracapillary space or (ECS) in embodiments that contain hollow fibers. The inner volume can be determined by sealing either the fluid inlet port or the fluid outlet port of the rigid housing, filling the SCD cartridge with a liquid, for example, water, via the unsealed port and then measuring the volume of liquid that fills the housing to the top of the unsealed port. In addition, the cartridge comprises a solid support disposed within the housing so at least a 15 portion of the solid support isolated between the fluid inlet port and the fluid outlet port and defining a fluid contacting surface with a surface area (SA) capable of sequestering an activated leukocyte and/or an activated platelet, if present in a biological fluid entering the housing via the fluid inlet port. The SA/IV ratio of the cartridge is greater than 150 cm⁻¹ (for example, the SA/IV ratio can be in the range from 150 cm⁻¹ to 1,500 cm⁻¹, from 300 cm⁻¹ to 1,000 cm⁻¹, from 20 400 cm⁻¹ to 800 cm⁻¹, or from 200 cm⁻¹ to 600 cm⁻¹) and the solid support (which can comprise a plurality of fibers or planar sheets) is disposed within the housing at a packing density in the range from 20 % to 65 % (for example, from 20 % to 60 %, or from 30 % to 60 % or from 40 % to 55 %).

25 [0060] As used herein, the term “packing density” is understood to mean the percentage of the total volume of the interior of a cartridge that is occupied by the solid support. The volume V_{supp} occupied by the solid support is understood to include, for example, the aggregate volume of all the fibers, sheets, or other elements defining the solid support. If the solid support includes hollow elements, such as hollow fibers, the volume occupied by the solid support is understood to include any hollow spaces (e.g., intracapillary spaces), as well as the volume 30 occupied by the material of the solid support. The total volume of the interior of a cartridge is therefore the sum of the fill volume (IV) of the cartridge and the volume occupied by the solid

support. The packing density is the volume occupied by the solid support “inner volume” divided by the total volume of the interior of the cartridge, and can be expressed as $V_{\text{supp}} / (IV + V_{\text{supp}})$, which can also be presented as a percentage. For example, if the volume of V_{supp} is 10 cm^3 , and the IV is 20 cm^3 , the packing density is 0.3 or 30%.

5 [0061] In another aspect, the invention provides a cartridge for treating activated leukocytes, activated platelets, or both activated leukocytes and activated platelets. The cartridge comprises (a) a rigid housing defining an inner volume (IV), a fluid inlet port and a fluid outlet port, wherein the inner volume is in fluid flow communication with the fluid inlet port and the fluid outlet port; and (b) a solid support disposed within the housing and defining a fluid contacting surface with a surface area (SA) capable of sequestering an activated leukocyte and/or an activated platelet if present in a body fluid entering the housing via the fluid inlet port, wherein the SA is greater than 2.6 m^2 (for example, from 3.0 m^2 to 10.0 m^2 or from 3.0 m^2 to 5.0 m^2).

10 [0062] In another aspect, the invention provides a cartridge for treating activated leukocytes, activated platelets, or both activated leukocytes and activated platelets. The cartridge comprises (a) a rigid housing defining an inner volume (IV), a fluid inlet port and a fluid outlet port, wherein the inner volume is in fluid flow communication with the fluid inlet port and the fluid outlet port; and (b) a solid support comprising a plurality of solid fibers disposed within the housing, the solid support defining a fluid contacting surface with a surface area (SA) capable of sequestering an activated leukocyte and/or an activated platelet if present in a body fluid entering the housing via the fluid inlet port, wherein the SA/IV ratio is greater than 25 cm^{-1} (for example, greater than 80 cm^{-1} , greater than 150 cm^{-1} , or in the range from 150 cm^{-1} to $1,500 \text{ cm}^{-1}$, in the range from 80 cm^{-1} to 800 cm^{-1} , in the range from 25 cm^{-1} to 800 cm^{-1}).

15 [0063] In another aspect, the invention provides a method of using a cartridge (i) for processing an activated leukocyte, activated platelet or a combination thereof, or (ii) for treating a subject at risk of developing or having an inflammatory condition. The method comprises providing a cartridge comprising (i) a rigid housing defining an inner volume (IV), a fluid inlet port and a fluid outlet port; and (ii) a solid support disposed within the housing so at least a portion of the solid support isolated between the fluid inlet port and the fluid outlet port and defining a fluid contacting surface with a surface area (SA) capable of sequestering an

activated leukocyte, if present in a biological fluid entering the housing via the fluid inlet port. In the method, the SA/IV ratio of the cartridge is greater than 80 cm⁻¹. The method further comprises introducing a body fluid from a subject into the housing via the fluid inlet port under conditions that permit sequestration of an activated leukocyte and/or an activated platelet on the 5 fluid contacting surface of the solid support.

[0064] **Figure 1A** shows a schematic, cross-sectional representation of an exemplary SCD cartridge **100**. SCD cartridge **100** comprises a housing **110** that defines an inner volume or fill volume **112**, a fluid inlet port **114**, a fluid contacting inner surface **116**, and a fluid outlet port **118**. The fluid inlet port **114**, inner volume (or fill volume) **112**, and fluid outlet port **118** are in 10 fluid flow communication with one another. As shown, the fluid inlet port **114** and the fluid outlet port **118** are disposed on the same side of the housing (*i.e.*, are ipsilateral). In this embodiment, the housing further comprises a solid support **120** defined by the exterior surface(s) of one or more hollow fibers. **Figure 1A** shows three hollow fibers. In this embodiment, the interior of the hollow fibers **120** together define an intracapillary space 15 ("ICS") **122**, and the volume disposed between the fluid contacting inner surface **116** of the housing and the exterior surface of the hollow fibers **120** together define the inner volume **112**, which is also referred to as the extracapillary space ("ECS"). Depending upon the particular embodiment, a fluid, for example, an ultrafiltrate, can be introduced into ICS **122** of the SCD **100** via an ICS inlet **126** which can then pass into or through ICS **122** and, if desired, exit 20 housing **110** via ICS outlet **128**. In certain embodiments, however, the ICS inlet **126** can be blocked or otherwise capped with end cap **130** and/or ICS outlet **128** can be blocked or otherwise capped with end cap **132**. In this embodiment, at least a portion of solid support **120** is disposed within housing **110** between fluid inlet port **114** and fluid exit port **118**.

[0065] During operation of this SCD cartridge, the fluid sample of interest is introduced 25 into housing **110** via fluid inlet **114** into inner volume (or ECS) **112**. The fluid then passes along the surface of solid support **120** (along the exterior surface of the hollow fibers) in a plane substantially parallel to the plane of the solid support **120**, and then exits inner volume (or ECS) **112** via fluid exit port **118**. During passage along solid support **120**, activated leukocytes and/or platelets are sequestered and optionally deactivated. As a result, during 30 operation, cells (for example, leukocytes) from the body fluid (for example, blood) associate with a particular region within the passageway defined by the cartridge housing, specifically, with the exterior surface of the hollow fibers. Accordingly, in certain embodiments, a

passageway region configured to sequester leukocytes may include a porous membrane that permits smaller molecules to pass therethrough but forces larger molecules and/or cells to flow along the membrane. Moreover, in certain embodiments, the passageway region configured to sequester leukocytes is bounded by a surface of a housing and is bounded by, and may include,

5 the exterior surface or surfaces of hollow fibers configured such that the biological sample (e.g., a subject's blood or filtered blood) flows over these surfaces (*i.e.*, over the hollow fibers). See, for example, **Figure 1**. The hollow fibers may be porous, semi-porous, or non-porous and a different fluid (e.g., ultrafiltrate) may optionally flow or be present within the hollow fibers. The fibers can be formed from any suitable material described herein.

10 [0066] **Figure 1B** shows a schematic, cross-sectional representation of another exemplary SCD cartridge **100**. SCD cartridge **100** comprises a housing **110** that defines an inner volume **112**, a fluid inlet port **114**, a fluid contacting inner surface **116**, and a fluid outlet port **118**. The fluid inlet port **114** and the fluid outlet port **118** are disposed on the same side of the housing (*i.e.*, are ipsilateral). In this embodiment, the housing further comprises a solid support **120** defined by the exterior surfaces of a solid substrate, which can be, for example, one or more (a plurality of) solid fibers or one or more (a plurality of) planar supports (for example, a flat membrane). In this **Figure 1B**, which shows a cross-sectional representation of a SCD cartridge, the solid support is defined by three solid fibers or three sheets of a planar support member (for example, a planar membrane). However, it is understood that a plurality of solid fibers or planar support members may together define the solid support. The volume disposed between the fluid contacting inner surface **118** of the housing and the exterior surface of the solid fiber(s) or the planar support member(s) together define the inner volume (or fill volume) **112**. In contrast to the embodiment shown in **Figure 1A**, the solid fibers or planar support members, because they are not hollow, do not define an ICS. In this embodiment, at least a portion of solid support **120** is disposed within housing **110** between fluid inlet port **114** and fluid exit port **118**.

25 [0067] During operation of this SCD cartridge, the fluid sample of interest is introduced into housing **110** via fluid inlet part **114** into the inner volume (ECS) **112**. The fluid then passes along the surface of solid support **120** (along the exterior surface of the solid fibers or planar support, or a combination of one or more solid fibers with one or more planar supports) in a plane substantially parallel to the plane of the solid support **120** and then exits inner

- 20 -

volume **112** via fluid exit port **118**. During movement of the body fluid along solid support **120**, activated leukocytes and/or platelets are sequestered.

[0068] The SCD cartridges shown in **Figures 1C** and **1D** are similar to the SCD cartridge shown in **Figure 1B**. In **Figure 1C**, the fluid inlet port **114** and fluid outlet port **118** are located at opposite sides of the housing (i.e., are contralateral). In **Figure 1C**, housing **110** has a first end and a second end opposite the first end, where fluid inlet port **114** is configured to permit fluid flow through first end and fluid outlet port **118** is configured to permit fluid flow through the second end.

[0069] The SCD cartridge can be configured in any of a variety of ways to sequester cells,

10 for example, leukocytes. As will be discussed in more detail below, the SCD cartridge preferably is designed with a particular subject and indication in mind. For example, the surface area of the solid support should be sufficient to sequester a portion of the activated leukocytes and/or activated platelets to be effective without sequestering too many leukocytes, which potentially can cause life-threatening leukopenia, neutropenia, or too many platelets 15 resulting in thrombocytopenia, or bleeding diathesis. Furthermore, it can be important to choose a housing with an appropriate inner volume depending upon the subject to be treated. For example, in the case of infants, children and severely ill, hemodynamically unstable patients, it is important to choose housings with lower fill volumes so that less body fluid needs to be extracted from the subject in order to contact or bathe the solid support. It is understood 20 that the SCD cartridge can be configured in any of a variety of ways to sequester cells, for example, leukocytes, and to have the appropriate inner volume.

[0070] The solid support can be defined by any number of surfaces, for example, 1, 2, 3, 4, 5, 10, 20, 50, 100, or more different surfaces. Depending upon the subject and the indication to be treated, the surface area of the solid support is greater than about 0.09 m^2 , is greater than 25 about 0.1 m^2 , is greater than about 0.2 m^2 , greater than 0.4 m^2 , greater than 0.6 m^2 , greater than 0.8 m^2 , greater than 1.0 m^2 , greater than 1.5 m^2 , or greater than 2.0 m^2 .

[0071] The surface area of the solid support can be in the range of 0.1 m^2 to 10.0 m^2 , or 0.1 m^2 to 5.0 m^2 . More specifically, the surface area of the solid support can be in the range from 30 0.1 m^2 to 0.4 m^2 , from 0.4 m^2 to 0.8 m^2 , from 0.8 m^2 to 1.2 m^2 , from 1.2 m^2 to 1.6 m^2 , from 1.6 m^2 to 2.0 m^2 , from 2.0 m^2 to 2.4 m^2 , from 2.4 m^2 to 2.8 m^2 , from 2.8 m^2 to 3.2 m^2 , from 3.2 m^2 to 3.6 m^2 , from 3.6 m^2 to 4.0 m^2 , from 4.0 m^2 to 4.4 m^2 , from 4.4 m^2 to 4.8 m^2 , from 4.8 m^2 to

5.2 m², from 5.2 m² to 5.6 m², from 5.6 m² to 6.0 m², from 6.0 m² to 6.4 m², from 6.4 m² to 6.8 m², from 6.8 m² to 7.2 m², from 7.2 m² to 7.6 m², from 7.6 m² to 8.0 m², from 8.0 m² to 8.4 m², from 8.4 m² to 8.8 m², from 8.8 m² to 9.2 m², from 9.2 m² to 9.6 m², or from 9.6 m² to 10.0 m²

5 [0072] As a general guiding principle, it is contemplated that when treating subjects having a body weight less than 50 kg the surface area of the solid support preferably should be in the range of the from 0.4 m² to 0.8 m², when treating subjects having a body weight greater than 50 kg but less than 100 kg, the surface area of the solid support preferably should be in the range of the from 0.8 m² to 1.6 m², and when treating subjects having a body weight greater than 100 kg the surface area of the solid support preferably should be in the range of the from 1.6 m² to 10 [0072] 5.0 m². It is understood, however, that when therapy is initiated, if the patient shows symptoms of developing leukopenia and/or neutropenia, the SCD cartridge can be replaced with a cartridge with a lower surface area to avoid sequestering too many leukocytes and/or platelets.

10 [0073] The housing of the cartridge is not limited to a particular set of dimensions (e.g., length, width, weight, or other dimension) in order to achieve a particular fill volume. 15 Depending upon the subject and the indication to be treated, the IV can be less than 300 cm³, or less than 150 cm³, or less than 100 cm³, or less than 80 cm³, or less than 60 cm³, or less than 40 cm³, or less than 20 cm³. In certain embodiments, the IV is in the range of from 10 cm³ to 150 cm³, 75 cm³ to 150 cm³, 20 cm³ to 80 cm³, or 15 cm³ to 120 cm³. In the case of infants, children, and severely ill, hemodynamically unstable patients, the inner volume can be less than 20 40 cm³, for example, in the range from 5 cm³ to 50 cm³, from 1 cm³ to 20 cm³ or from 5 cm³ to 30 cm³.

25 [0074] In certain embodiments, the SA/IV ratio is in the range from 25 cm⁻¹ to 2,000 cm⁻¹, 25 cm⁻¹ to 1,750 cm⁻¹, 25 cm⁻¹ to 1,500 cm⁻¹, 25 cm⁻¹ to 1,250 cm⁻¹, 25 cm⁻¹ to 1,000 cm⁻¹, 25 cm⁻¹ to 800 cm⁻¹, 80 cm⁻¹ to 2,000 cm⁻¹, 80 cm⁻¹ to 1,750 cm⁻¹, 80 cm⁻¹ to 1,500 cm⁻¹, 80 cm⁻¹ to 1,250 cm⁻¹, 80 cm⁻¹ to 1,000 cm⁻¹, 80 cm⁻¹ to 800 cm⁻¹, 100 cm⁻¹ to 2,000 cm⁻¹, 100 cm⁻¹ to 2,000 cm⁻¹, 100 cm⁻¹ to 1,750 cm⁻¹, 100 cm⁻¹ to 1,500 cm⁻¹, 100 cm⁻¹ to 1,250 cm⁻¹, 100 cm⁻¹ to 1,000 cm⁻¹, 100 cm⁻¹ to 800 cm⁻¹, from 125 cm⁻¹ to 2,000 cm⁻¹, 125 cm⁻¹ to 1,750 cm⁻¹, 125 cm⁻¹ to 1,500 cm⁻¹, 125 cm⁻¹ to 1,250 cm⁻¹, 125 cm⁻¹ to 1,000 cm⁻¹, or 125 cm⁻¹ to 800 cm⁻¹, 150 cm⁻¹ to 2,000 cm⁻¹, 150 cm⁻¹ to 1,750 cm⁻¹, 150 cm⁻¹ to 1,500 cm⁻¹, 150 cm⁻¹ to 1,250 cm⁻¹, 150 cm⁻¹ to 1,000 cm⁻¹, 150 cm⁻¹ to 800 cm⁻¹, 200 cm⁻¹ to 2,000 cm⁻¹, 200 cm⁻¹ to 1,750 cm⁻¹, 200 cm⁻¹ to 1,500 cm⁻¹, 200 cm⁻¹ to 1,250 cm⁻¹, 200 cm⁻¹ to 1,000 cm⁻¹, 200 cm⁻¹ to 800 cm⁻¹, 200

cm⁻¹ to 600 cm⁻¹, from 300 cm⁻¹ to 2,000 cm⁻¹, from 300 cm⁻¹ to 2,000 cm⁻¹, from 300 cm⁻¹ to 1,750 cm⁻¹, from 300 cm⁻¹ to 1,500 cm⁻¹, from 300 cm⁻¹ to 1,250 cm⁻¹, from 300 cm⁻¹ to 1,000 cm⁻¹, 300 cm⁻¹ to 800 cm⁻¹, from 400 cm⁻¹ to 1,200 cm⁻¹, from 400 cm⁻¹ to 1,000 cm⁻¹, from 400 cm⁻¹ to 800 cm⁻¹, from 500 cm⁻¹ to 1,200 cm⁻¹, from 500 cm⁻¹ to 1000 cm⁻¹, or from 500 cm⁻¹ to 800 cm⁻¹.

[0075] The housing of the cartridge can be fabricated from a variety of materials, but the material that defines that fluid contacting surface in the inner volume should be biocompatible. The SCD cartridge can be constructed from a variety of materials including, metals such as titanium, or stainless steel with or without surface coatings of refractory metals including 10 titanium, tantalum, or niobium; ceramics such as alumina, silica, or zirconia; or polymers, such as polyvinylchloride, polyethylene, or polycarbonate.

[0076] The solid support can be defined by flat surfaces (e.g., sheets), curved surfaces (e.g., hollow tubes, hollow fibers, solid tubes, and solid fibers), patterned surfaces (e.g., z-folded sheets or dimpled surfaces), irregularly-shaped surfaces, or other configurations to sequester 15 cells. It is understood that the solid support can be defined by a variety of materials, which can include, for example, hollow fibers, solid fibers, planar support members (for example, planar membranes) or a combination of two or more of the foregoing (for example, a combination of hollow and solid fibers, a combination of hollow fibers and planar support members, or a combination of solid fibers and planar support members). In certain embodiments, the solid 20 support is substantially parallel to the plane of fluid flow within the SCD cartridge from fluid inlet port 114 to the fluid exit port.

[0077] Depending upon the embodiment, the solid support can comprise a membrane. The term “membrane” refers to a surface capable of receiving a fluid on both sides of the surface, or a fluid on one side and gas on the other side of the surface. A membrane can be porous (e.g., 25 selectively porous or semi-porous) such that it is capable of fluid or gas flow therethrough. It is understood that the term “porous” as used herein to describe a surface or membrane includes generally porous, selectively porous and/or semi-porous surfaces or membranes. Moreover, additional surfaces that can facilitate leukocyte sequestration, such as particle (e.g., bead) surfaces, surfaces of one or more projections into the passageway, or surfaces of one or more 30 membranes exposed to the flowing biological sample.

[0078] It is understood that the solid support is not limited to a particular type, kind or size, and may be made of any appropriate material; however, the material should be biocompatible. For example, a surface of the solid support may be any biocompatible polymer comprising one or more of nylon, polyethylene, polyurethane, polyethylene terephthalate (PET),

5 polytetrafluoroethylene (PTFE), CUPROPHAN (a cellulose regenerated by means of the cuprammonium process, available from Enka), HEMOPHAN (a modified CUPROPHAN with improved biocompatibility, available from Enka), CUPRAMMONIUM RAYON (a variety of CUPROPHAN, available from Asahi), BIOMEMBRANE (cuprammonium rayon available from Asahi), saponified cellulose acetate (such as fibers available from Teijin or CD Medical),
10 cellulose acetate (such as fibers available from Toyobo Nipro), cellulose (such as that are regenerated by the modified cuprammonium process or by means of the viscose process, available from Terumo or Textikombinat (Pirna, GDR) respectively), polyacrylonitrile (PAN), polysulfone, polyethersulfone, polyarylethersulfone, acrylic copolymers (such as acrylonitrile-NA-methallyl-sulfonate copolymer, available from Hospal), polycarbonate copolymer (such as
15 GAMBRONE, a fiber available from Gambio), polymethylmethacrylate copolymers (such as fibers available from Toray), and ethylene vinyl copolymer (such as EVAL, a ethylene-vinyl alcohol copolymer available from Kuraray). Alternatively, a surface may be nylon mesh, cotton mesh, or woven fiber. The surface can have a constant thickness or an irregular thickness. In some embodiments, surfaces may include silicon, for example, silicon
20 nanofabricated membranes (see, e.g., U.S. Patent Publication No. 2004/0124147). In some embodiments, surfaces may include polysulfone fibers. Other suitable biocompatible fibers are known in the art, for example, in Salem and Mujais (1993) DIALYSIS THERAPY 2D ED., Ch. 5: Dialyzers, Eds. Nissensen and Fine, Hanley & Belfus, Inc., Philadelphia, PA.

[0079] Any technique or combination of techniques that facilitates sequestration of the leukocytes can be used, including, for example, biological, chemical, mechanical and/or physical techniques. In some embodiments, biological or chemical techniques for sequestration can be used. Such techniques include using tissues, cells, biomolecules (for example, proteins or nucleic acids), or small molecules to sequester leukocytes. In one embodiment, for example, the fluid contacting support of the solid support in the ECS can further comprise a cell adhesion molecule attached thereto to facilitate sequestration.
25
30

[0080] For example, when a leukocyte is activated, selectins are produced by the leukocyte. This altered selectin production can facilitate binding between the leukocyte and other

leukocytes. In turn, the binding between leukocytes can increase selectin production in the additionally bound leukocytes, yielding exponential binding of leukocytes. Thus, selectins may be useful to enhance sequestration. Proteins, protein complexes, and/or protein components known to bind leukocytes include CD11a, CD11b, CD11c, CD18, CD29, CD34, CD44,

5 CD49d, CD54, podocalyxin, endomucin, glycosaminoglycan cell adhesion molecule-1 (GlyCAM-1), mucosal addressin cell adhesion molecule-1 (MAdCAM-1), E-selectin, L-selectin, P-selectin, cutaneous lymphocyte antigen (CLA), P-selectin glycoprotein ligand 1 (PSGL-1), leukocyte functional antigen-1 (LFA-1), Mac-1, leukocyte surface antigen p150,95, leukocyte integrin CR4, very late antigen-4 (VLA-4), lymphocyte Peyer's patch adhesion molecule-1 (LPAM-1), intracellular adhesion molecule-1 (ICAM-1), intracellular adhesion molecule-2 (ICAM-2), intracellular adhesion molecule-3 (ICAM-3), inactivated C3b (C3bi), fibrinogen, fibronectin, peripheral lymph node addressin (PNAd), endothelial vascular adhesion protein 1 (VAP-1), fractalkine, CCL19, CCL21, CCL25, and CCL27. Other large molecules known to bind leukocytes include hyaluronic acid, glycosaminoglycans (GAGs), and fucosylated oligosaccharides and their precursors. In certain embodiments, small molecules or adherents used to sequester a leukocyte can include, but are not limited to, peptides, such as peptides comprising the amino acid sequence arginine-glycine-aspartic acid (RGD), and molecules comprising sialic acid. Accordingly, any of these materials can be used to enhance sequestration.

20 [0081] During use, any of these biological or chemical materials may be bound to the fluid contacting surface of the solid support and/or the fluid contacting surface of the cartridge housing to facilitate or enhance sequestration. Alternatively, or in combination, any of these materials may be used with other additional techniques to facilitate sequestration. For example, materials may be used to bind leukocytes in solution, causing them to agglomerate and to increase their overall size relative to the size of a single leukocyte. The agglomerated leukocytes then can be captured with a membrane having a particular pore size.

25 [0082] It should be understood that the sequestration techniques described herein also can apply to platelets. In the case of platelets, similar biological, chemical, mechanical and/or physical techniques as described above may be used to sequester platelets. In certain 30 embodiments, agents used to sequester platelets include one or more of glycoprotein Ib α (GPIb α), glycoprotein IIb (GPIIb), glycoprotein IIIa (GPIIIa), CD41, CD61, von Willebrand

Factor, β_2 -integrin macrophage antigen-1, selectins such as P-selectin, and a cell-adhesion molecule.

[0083] In addition, sequestration can also be facilitated and/or enhanced by the control of certain mechanical forces that occur within the SCD cartridge. For example, leukocytes may

5 be sequestered on one or more surfaces of (or in) a passageway or passageway region (e.g., the outside of a porous hollow fiber) by utilizing a flow rate and device configuration that minimizes shear force between the leukocytes and the surface(s), allowing the leukocytes to associate with the surface(s). For example, the housing is configured to create a low shear force environment to permit the cells of interest, for example, leukocytes, platelets, etc, to be 10 sequestered on the solid support as body fluid traverses the inner volume.

[0084] More specifically, the cartridge is configured to facilitate shear forces between the flowing cells (for example, leukocytes or platelets) and the sequestration surface(s) less than

1000 dynes/cm², less than 500 dynes/cm², less than 100 dynes/cm², less than 80 dynes/cm², less than 60 dynes/cm², less than 40 dynes/cm², less than 20 dynes/cm², less than 10 dynes/cm², or 15 less than 5 dynes/cm² when a biological fluid enters the cartridge housing through fluid inlet

port **114** and exits the cartridge housing through the fluid outlet port **118**, for example, at a flow rate in the range of 10 mL (cm³)/minute to about 8,000 mL (cm³)/minute or from 50 mL/minute to about 8,000 mL/minute (for example, 1,000 cm³/minute). As a result, the fluid inlet port **114** and the fluid outlet port **118** are dimensioned to permit a flow rate through the housing in a

20 range from 10 mL/minute to 8,000 mL/minute or from 50 mL/minute to 8,000 mL/minute. For example, when treating certain inflammatory disorders, for example, inflammatory responses during cardiopulmonary bypass, it is understood that treating large flow rates can be tolerated, for example, up to 7000 mL/minute. Similarly, when sepsis, it is understood that flow rates up to, for example, 1000 mL/minute can be tolerated. That said, when treating inflammatory

25 responses associated with other indications, for example, acute renal failure and chronic renal failure, slower flow rates should be used, for example, less than about 500 mL/minute, from about 100 mL/minute to about 500 mL/minute, and from about 200 mL/minute to about 500 mL/minute. As a result, the inlet port **114** and the outlet port **118** are dimensioned to permit a desired volume of body fluid to pass through the SCD cartridge housing in a given amount of

30 time. It is understood that the fluid inlet port **114** and the fluid outlet port **118** each have an internal diameter of no less than 0.1 cm to 2 cm, or 0.2 cm to 1 cm, or have a cross-sectional surface area of no less than 0.01 cm², no less than 0.1 cm², no less than 0.2 cm², no less than

0.4 cm², no less than 0.6 cm², no less than 0.8 cm², no less than 1.0 cm², no less than 2.0 cm², or no less than 3.0 cm². In certain embodiments, the inlet port, the outlet port, or both the inlet and outlet ports have a cross-sectional surface area of 0.01 cm² to 1 cm². The distance between the fluid inlet or fluid outlet to the nearest end of the housing (distance A), can be such that A divided by the length of the housing is between 0.01 and 0.25. It is also understood that the plane of the inlet and/or outlet port can range from 5 degrees to 90 degrees (*i.e.*, is perpendicular) to the plane defined by the longest dimension (usually the length) of the housing.

[0085] In certain embodiments, the fluid inlet port **114** and the fluid outlet port **118** are both disposed on one side of the housing **116**, for example, as shown in **Figures 1A** and **1B**.

Alternatively, as shown in **Figure 1C**, the fluid inlet port **114** and the fluid outlet port **116** can be disposed on opposite sides of the housing **116**. Other orientations of the fluid inlet port **114** and the fluid outlet port **116** are also envisioned. For example, if the housing comprises a first end and a second end opposite the first end, the fluid inlet port can be configured to permit fluid flow through the first end and/or the fluid outlet port can be configured to permit fluid flow through the second end. One such orientation is depicted in **Figure 1D**, in which fluid inlet port **114** permits fluid flow through the left end of housing **116**, and fluid outlet port **118** permits the fluid to exit through the right end of housing **116**.

[0086] It is understood that the size and shape of the housing of the SCD cartridge may be designed to provide the appropriate fill volume and to minimize turbulence when a fluid is passed through the SCD cartridge. Furthermore, it is understood that the size, shape and composition of the solid support located within the SCD cartridge may be designed to provide the appropriate surface area and to minimize turbulence when a fluid is passed through the SCD cartridge.

[0087] By way of example, when solid fibers are used to create the solid support in the cartridge, if a cartridge having a total surface area of 1.8 m² to 2.5 m² is desired, the cartridge can be designed to contain about 43,000 fibers when the fiber length is 26 cm and the fiber diameter is 50 μ m, or about 22,000 fibers when the fiber length is 26 cm and the fiber diameter is 100 μ m, or about 11,000 fibers when the fiber length is 26 cm and the fiber diameter is 200 μ m, or about 43,000 fibers when the fiber length is 13 cm and the fiber diameter is 100 μ m, or about 22,000 fibers when the fiber length is 13 cm and the fiber diameter is 200 μ m.

Alternatively, if the cartridge having a total surface area of 3.6 m² to 5.0 m² is desired, the cartridge can be designed to contain about 87,000 fibers when the fiber length is 26 cm and the fiber diameter is 50 μ m, or about 43,000 fibers when the fiber length is 26 cm and the fiber diameter is 100 μ m, or about 87,000 fibers when the fiber length is 13 cm and the fiber

5 diameter is 100 μ m.

[0088] In contrast, and by way of example, when planar support members are used to create the solid support, if a cartridge with a total surface area of 1.8 m² to 2.5 m² is desired, the cartridge can contain, for example, a plurality of sheets having an average thickness of 50 μ m and an average width of 5 cm (for example, about 115 sheets of a membrane about 12 cm in

10 length, or 63 sheets of membrane about 26 cm in length). In contrast, if a cartridge with a total surface area of 3.6 m² to 5.0 m² is desired, the cartridge can contain about 125 sheets of membrane having an average thickness of 50 μ m, an average width of 5 cm, and average length of 26 cm. The sheets may be placed within the cartridge such that, in certain embodiments, the spacing between the sheets is about 50 μ m or 100 μ m.

15 **[0089]** In certain embodiments, the cartridge can be designed such that the solid support (for example, the fibers or planar supports that constitute the solid support) is disposed within the housing at a packing density from 20% to 65%, 20% to 60%, from 30% to 60%, or from 40% to 55%. The packing density should be chosen to minimize the risk of clotting when blood is passed across the solid support disposed within the IV of the housing.

20 **[0090]** When hollow fibers are used in the SCD cartridge, the SA/IV ratio preferably is at least 80 cm⁻¹ or more. Exemplary SCD cartridges with a SA/IV ratio greater than 80 cm⁻¹ include the F-50, F-60, F-70 and F-80A cartridge, which are available commercially from Fresenius Medical Care North America, Waltham, MA, U.S.A.) or Renaflow cartridges (PSH series) from Baxter (Deerfield, IL, U.S.A.). These cartridges have been approved by the

25 USFDA for use in acute and chronic hemodialysis. The F-80A cartridge, for example, has a solid support (defined by the exterior surfaces in a bundle of hollow fibers) with a surface area capable of sequestering leukocytes and/or platelets of about 2.5 m², has an inner volume of about 250 mL, and a SA/IV ratio of about 100.

30 **[0091]** In certain embodiments, exemplary cartridges can have the features set forth in **Table 1**.

- 28 -

TABLE 1

Device	ECS SA (m ²)	ECS SA (cm ²)	ECS Fill (cm ³)	SA/V (cm ⁻¹)
1	0.98	9800	130	75
2	2.5	25000	250	100
3	1.25	12500	125	100
4	2.5	25000	125	200
5	2.5	25000	109	230
6	2.5	25000	94	267
7	5	50000	93	536
8	5	50000	125	400
9	6.7	67000	125	537
10	10	100000	125	800

[0092] In certain embodiments, in particular, for pediatric uses, exemplary cartridges can have the features set forth in **Table 2**.

5

TABLE 2

Device	ECS SA (m ²)	ECS SA (cm ²)	ECS Fill (cm ³)	SA/V (cm ⁻¹)
1 – 1.5 cm case; 200µm fibers	0.17	1700	9	185
2 - 1.5 cm case; 100µm fibers	0.35	3500	9	392
3 - 1.5 cm case; 75µm fibers	0.47	4700	9	530
4 – 1.5 cm case; 50µm fibers	0.70	7000	9	784
5 - 2.5 cm case; 200µm fibers	0.49	4900	25	199
6 - 2.5 cm case; 100µm fibers	0.98	9800	25	399
7 - 2.5 cm case; 75µm fibers	1.30	13000	25	526
8 - 2.5 cm case; 50µm fibers	1.96	19600	25	797

[0093] In certain embodiments, a system can achieve sequestration by subjecting the leukocytes, platelets or cells of interest to a series of cartridges, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more cartridges (e.g., hollow fiber cartridges), each comprising one or more 10 sequestration passageways, or passageway regions, so as to increase the length of the region

configured to sequester the leukocytes and the residence time of the leukocytes therein. In any of the aforementioned embodiments, the devices are configured to accomplish sequestration of leukocytes in a manner permitting inhibition of release of a pro-inflammatory substance from a leukocyte and/or deactivation of a leukocyte before, during, or after sequestering. Inhibition of release of a pro-inflammatory substance from a leukocyte and/or deactivation of a leukocyte can be achieved both during sequestration and during transport through a passageway, passageway region, or entire system of the present invention.

[0094] In some embodiments, the SCD cartridges or fluid circuits incorporating the SCD cartridges are configured to sequester the leukocytes for any desired amount of time, for example, from 1 to 59 seconds, from 1 to 59 minutes, from 1 to 24 hours, from 1 to 7 days, one or more weeks, one or more months, or one year or more. In some embodiments, the devices are configured to sequester leukocytes for an amount of time sufficient to permit the subsequent inhibition of release of a pro-inflammatory substance from the leukocytes and/or deactivation the leukocytes. In certain embodiments, leukocytes and/or platelets are sequestered within the SCD cartridge for at a time (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 minutes or at least an hour) sufficient to deactivate the leukocyte and/or inhibit the release of a pro-inflammatory substance.

[0095] It is understood that the SCD cartridge, once fabricated should be sterilized prior to use. Sterility can be achieved through exposure to one or more sterilizing agents, separately or in combination, such as high temperature, high pressure, radiation, or chemical agents such as ethylene oxide, for example. The SCD cartridge preferably is sterilized once it has been packaged, for example, after it has been hermetically sealed within an appropriate container (i.e., the cartridge is terminally sterilized). The sterilization process preferably achieves a sterility assurance level (SAL) of 10^{-3} or less; i.e. the probability of any given unit being nonsterile after the process is no more than 1 in 10^3 . More preferably, the sterilization process achieves an SAL of no more than 10^{-4} , no more than 10^{-5} , or no more than 10^{-6} .

2. *System Configurations*

[0096] It is understood that the SCD cartridges can be used in a variety of different fluid circuits depending upon the indication to be treated. See, for example, U.S. Patent Publication No. 2009/0060890 A1.

[0097] In some embodiments, fluid circuits incorporating the SCD cartridge optionally can also perform other blood treatments. For example, fluid circuits optionally can further include additional devices that can filter, oxygenate, warm, or otherwise treat the blood before or after the blood enters the SCD cartridge. Moreover, the SCD cartridge and/or additional devices in a system can include more than one component for treating blood in other or complementary ways, for example, porous filters, oxygen pumps, and/or xenographic or allographic cells (for example, xenographic or allographic renal cells such as renal tubule cells). In certain embodiments, the SCD cartridge is free of such additional components. For example, a SCD cartridge may be free of cells such as xenographic or allographic cells (e.g., xenographic or allographic renal cells). These basic principles are described in more detail below.

[0098] The fluid circuits are configured to accomplish selective cytopheresis. In basic form, the system includes a SCD cartridge, a fluid connection for blood to flow from a blood source (for example, a subject, such as a patient) to the SCD cartridge, and a fluid connection for treated blood to flow from the SCD cartridge to a receptacle (for example, back to the subject). The SCD cartridge acts to sequester cells, for example, leukocytes, such as activated leukocytes, and facilitate inhibition of release of a pro-inflammatory substance from the leukocytes and/or deactivate the leukocytes. Sequestration of leukocytes can be achieved using the SCD cartridges described hereinabove. Inhibition of the release of a pro-inflammatory substance from the leukocytes and/or deactivation of the leukocytes can be achieved by any technique described in Section 3 below.

[0100] The leukocytes may become activated within the subject as result of a primary patient condition or secondary to other types of medical intervention, for example, during passage through a hemofilter (for example, as described hereinbelow, with reference to **Figures 2C and 2D**). The activated leukocytes then enter a SCD cartridge wherein the activated leukocytes are sequestered. In the case of the circuit in **Figure 2D**, replacement fluid equal to the volume of the ultrafiltrate produced optionally is provided to the subject.

[0101] In other words, in the SCD cartridge, the activated leukocytes from the blood are sequestered, for example, by temporarily adhering to one or more surfaces inside the cartridge. Sequestration of the leukocytes can be achieved by a variety of approaches, for example, by association with molecules in a passageway or passageway region in the cartridge that bind leukocytes, for example, activated leukocytes, or by setting blood flow within the device to

provide low shear stress on leukocytes, allowing them to associate with one or more surfaces inside the SCD cartridge. These sequestered leukocytes then are exposed to an agent, for example, citrate, to deactivate the leukocytes or inhibit their release of pro-inflammatory substances. The cartridges can also be used to sequester and deactivate other cell types, such as

5 platelets.

[0102] It is believed that calcium chelators, for example, citrate, lead to a low Ca_i environment in the cartridge thereby inhibiting release of a pro-inflammatory substance from the leukocytes and/or deactivating the leukocytes. Pro-inflammatory substances may include destructive enzymes and/or cytokines from the leukocytes. This inhibition and/or deactivation leads to an amelioration of the inflammatory state of the leukocytes. In this way, the SCD 10 cartridge sequesters leukocytes, for example, neutrophils and monocytes, and inhibits release of a pro-inflammatory substance from the leukocytes and/or deactivates the leukocytes, for example, with citrate and/or a low- Ca_i environment. The sequestration and inhibition and/or deactivation of platelets can be achieved in a similar fashion.

[0103] It has been demonstrated that the addition of a calcium chelator, *e.g.* citrate, to a device of the present invention including a housing containing hollow fibers that sequester leukocytes had the unexpected result of improving a subject's innate immunologic system. Accordingly, it is contemplated that the SCD cartridges of the present invention can treat or prevent a variety of inflammatory conditions (either as primary disease states or as a result of 20 medical intervention) by directly treating a subject's blood that includes leukocytes (*e.g.*, activated leukocytes) or platelets (*e.g.*, activated platelets). Following treatment, the blood is returned to the subject.

2.4. Single Device System

[0104] As mentioned, a system can contain a SCD cartridge to accomplish selective 25 cytopheresis and, optionally, other blood treatments without additional treatment devices in the system (see **Figures 2A-2B**). In one embodiment, such a SCD cartridge is shown schematically in **Figure 1A**. During operation, leukocytes and/or platelets are sequestered within the SCD cartridge, for example, at the external surface of the hollow fibers, and exposed to an agent, for example citrate, capable of inhibiting release of a pro-inflammatory substance 30 from a leukocyte and/or deactivating a leukocyte. The agent can be infused into a line upstream of the fluid inlet **114** or may be infused into the SCD itself via a port. Alternatively,

or in addition, the SCD cartridge can be prepared with the agent prior to its use. Flow rates in the ECS are chosen in the ranges described herein such that there is a low shear force (in the ranges described herein) at the surface of the fiber to allow leukocytes to associate therewith. In this way, inhibition and/or deactivation of the leukocytes and/or platelets is achieved or 5 initiated. Then, the blood in the ECS exits the SCD via fluid outlet **118**, which enters into an outflow line.

[0105] **Figure 2A** shows an exemplary SCD cartridge **100** of **Figure 1A** in an exemplary fluid circuit. Body fluid, for example, blood, from a subject enters a blood line and is moved through that line via a pump **204**. On the same blood line, a leukocyte inhibiting agent (e.g., 10 citrate) can be infused at a port **206**, optionally with a pump. The blood in the blood line then enters the inlet **114** and exits the SCD cartridge **100** at outlet **118**. Blood lines at the inlet **114** and outlet **118**, respectively, are attached using blood line connectors with locking mechanisms 15 **256**. Leukocytes are shown sequestered in the ECS **112** at the external surface of the solid support **120**, which is depicted as a single hollow fiber. A blood outflow line from the outlet **118** returns blood to the subject. Another agent, such as calcium (e.g., calcium chloride or calcium gluconate), can be infused at a port **258** on this blood outflow line to prepare the blood for re-entry into the subject. In certain embodiments, the ICS can contain xenographic or allographic cells, for example, renal tubule cells, cultured in a monolayer on the lining of the ICS **122** of each fiber to further aid in treatment of the blood. However, in other embodiments, 20 the ICS is cell-free. In one embodiment of the circuit of **Figure 2A**, the lumen **122** of SCD cartridge **100** can be filled with saline.

[0106] The circuit of **Figure 2B** includes the same components as **Figure 2A** and operates in the same manner, except that **Figure 2B** utilizes a SCD cartridge **100** in which ultrafiltrate is produced. The SCD cartridge **100** contains a plurality of porous membranes, which are hollow fibers. The luminal space within the fibers is the ICS **122** and the surrounding space outside the solid support **120** (depicted as hollow fibers) and within the SCD cartridge housing **110** is the ECS **112**. Body fluid, for example, blood containing leukocytes enters the inlet **114** and moves into the ECS **112** surrounding the hollow fibers and exits at the outlet **118**. Leukocyte sequestration and inhibition and/or deactivation can be achieved as described above. However, 25 in this SCD, only the ICS inlet is capped with end cap **130**. The ICS outlet **128** is not capped. Accordingly, depending on the characteristics of the porous hollow fibers (e.g., permeability and pore size), a portion of the blood in the ECS **112** can pass across the hollow fibers, and into 30

the ICS 112 as ultrafiltrate (UF). A tube can be connected to the ICS outlet 128 for collecting ultrafiltrate (UF), which may be discarded as waste.

[0107] Flow rates and membrane characteristics for the embodiments shown in the circuits of **Figures 2A-2B** with the SCD of **Figure 1A** can be as described below. For example, the ECS flow rate may be from about 100 mL/minute to about 500 mL/minute. The flow rate of the ultrafiltrate waste (e.g., for the SCD cartridge shown in **Figure 2B**) may include, for example, flow rates from about 5 mL/minute to about 50 mL/minute. In the case of the circuit in **Figure 2B**, replacement fluid equal in volume to the ultrafiltrate waster produced can optionally be added to the subject.

10 **2.B. Selective Cytopheresis Inhibitory Device as part of a Hemodialysis or Hemofiltration System**

[0108] As mentioned, in some embodiments the SCD cartridge can be part of a system with other devices for treating blood. For example, the SCD cartridge can be a part of a hemofiltration system, a hemodialysis system and/or a hemodiafiltration system that includes 15 one or more filtration cartridges separate from the SCD cartridge within the system. When describing the part of the system that is not the SCD, the term “hemofiltration” can refer to hemodialysis, hemodiafiltration, hemofiltration, and/or hemoconcentration, and “hemofilter” can include a device (e.g., a cartridge) for performing one or more of hemodialysis, hemodiafiltration, hemofiltration, and/or hemoconcentration. The hemofiltration cartridge(s) 20 can be configured to be in parallel or series with a SCD within an extracorporeal blood circuit, and associated blood pumps and tubing can be used to move the blood through the extracorporeal circuit.

[0109] For example, as shown in **Figures 2C and 2D**, blood flows from a subject through a blood line. The blood is moved through the blood line via a pump 204. A leukocyte inhibiting 25 agent (e.g., citrate) can be infused into the same blood line at a port 206, optionally with a pump before entering a conventional hemofilter 260. The blood then flows through hollow fibers 262 in hemofilter 260. Dialysate is infused into the ECS surrounding the hollow fibers 262 and within the housing of hemofilter 260, and dialysis occurs with solutes being removed as “waste” from the blood across the hemofilter filtration membrane 262 (the hollow fibers) 30 and into the dialysate. The dialysate flows in a counter current fashion relative to the blood, and the dialysate is moved with a dialysate pump 264. Additionally, molecules and fluid from

the blood can pass across the hemofilter filtration membrane **262** (the hollow fibers) as ultrafiltrate, depending on the pore size through the membrane.

[0110] The exemplary system of **Figure 2C** shows a circuit with the SCD cartridge **100** of **Figure 1A**, in which the ICS inlet and outlet ports have been capped with end caps. Blood exits the hemofilter **260** and enters the SCD cartridge **100** at the inlet **114**. The blood then is processed through the SCD cartridge, which sequesters leukocytes on the solid support **120** (depicted as hollow fibers) and inhibits release of a pro-inflammatory substance from a leukocyte and/or deactivates a leukocyte in the manner described for **Figures 2A-2B**, above. The blood lines into and out of the SCD cartridge **100** are attached using a connection with a locking mechanism **256**. The blood is then returned to the subject via a blood outflow line from the outlet **118**. Another agent, such as calcium, can be infused at a port **258** on this blood outflow line in order to prepare the blood for re-entry into the subject. In certain embodiments, the intracapillary space (ICS) of the SCD can contain xenographic or allographic cells, for example, renal tubule cells, cultured in a monolayer on the lining of the lumen of each fiber to further aid in treatment of the blood. However, in other embodiments the ICS is cell free. In certain embodiments of the fluid circuit shown **Figure 2C**, the ICS **122** of the SCD **100** is filled with saline and the end ports of the ICS are capped with end caps **130** and **132**.

[0111] The circuit of **Figure 2D** includes the same components as **Figure 2C** and operates in the same manner, except that **Figure 2D** utilizes a SCD cartridge **100** that produces ultrafiltrate (*i.e.*, the ICS outlet port is not capped with end caps). The flow of body fluid (*e.g.*, blood) through the SCD cartridge **100** is described above in the context of **Figure 2B**. Additionally, SCD cartridge **100** functions as described above, in the context of **Figure 2B**. As noted above, SCD cartridge **100** has only the ICS inlet **126** capped with end cap **130**. The ICS outlet **128** is not capped with an end cap. Accordingly, depending on the characteristics of the porous hollow fibers, a portion of the blood in the ECS **112** can pass across the hollow fibers, and into the ICS as ultrafiltrate (UF). A tube can be connected to the ICS outlet **128** for collecting ultrafiltrate (UF), which may be discarded as waste.

[0112] Without wishing to be bound by theory, it is contemplated that the flow geometry in these embodiments of the SCD system (and those shown in **Figures 2A-2D** and **3A** and **3B**) allows leukocytes to exist in a low shear force environment in the ECS of the SCD cartridge and, therefore, associate with one or more internal surfaces in the SCD cartridge, for example,

the hollow fibers. Conversely, in a typical use of a hemofiltration cartridge (for example, the first device **260** in the circuits of **Figures 2C** and **2D**), blood flow through the small diameter lumens of the hollow fibers yields a higher shear force (than that in the SCD) that prevents association of leukocytes with the hollow fibers and sequestration of leukocytes within the 5 device. Accordingly, a hemofiltration device having the conventional flow circuit supporting its operation reversed (*i.e.*, blood flowing outside the hollow fibers rather than inside the hollow fibers) can act as a SCD to sequester potentially damaging and circulating activated leukocytes. These sequestered leukocytes can be treated with a leukocyte inhibiting agent (*e.g.* citrate).

10 [0113] Further, it is contemplated that the inflammatory response of sequestered leukocytes is inhibited and/or deactivated in the presence of low Ca_i (caused, for example, by citrate) before, during, and/or after sequestration. The low- Ca_i environment may inhibit the inflammatory activity of, or deactivate, the leukocytes.

15 [0114] In certain embodiments, the circuit of **Figure 2D** can be modified such that the dialysate produced by hemofilter **260** can be introduced into the ICS of SCD cartridge **100** via ICS inlet **126**. Although the ICS can be cell free, it is understood that this system optionally also can include cells within the ICS **122**, for example, renal tubule cells. The rate of the blood flow is chosen to have a sufficiently low shear force (in the ranges described herein) at the surface of the porous, hollow fibers to allow sequestration of leukocytes by association with the 20 fibers, for example at a blood flow rate from about 100 mL/minute to about 500 mL/minute. Alternatively, the blood flow rate through the extracorporeal circuit, through the lumens of the hollow fibers in the hemofilter **260**, and through the ECS **112** of the SCD cartridge **100** can be about 120 mL/minute. The ultrafiltrate can be moved at rates in the ranges described herein, for example, at flow rates less than about 50 mL/minute, from about 5 mL/minute to about 50 25 mL/minute, and from about 10 mL/minute to about 20 mL/minute. Alternatively, the ultrafiltrate flow rate can be maintained at 15 mL/minute. Optionally, a balanced electrolyte replacement solution (*e.g.*, a solution containing bicarbonate base) can be infused into the bloodline on a 1:1 volume replacement for ultrafiltrate produced. The fluid (*e.g.*, ultrafiltrate) and blood (or leukocyte-containing fluid) can flow in the same direction or in opposite 30 directions.

[0115] In this and other embodiments, the blood flow configuration through the SCD cartridge is opposite the blood flow configuration through a typical hemofiltration cartridge. That is, blood flows through the interior of the hollow fibers of the hemofiltration cartridge in its intended use versus around the outside of the hollow fibers of the SCD cartridge. This 5 unconventional blood flow configuration through the SCD cartridge allows for a lower shear force within the ECS at the exterior surface of the hollow fiber relative to the higher shear force within the lumen of the hollow fibers of a hemofilter, thus facilitating sequestration of leukocytes in the ECS of the SCD. Conversely, the blood flow through the interior of the hollow fibers of the hemofilter prohibits leukocyte sequestration due to high shear force created 10 by blood flowing through the small diameter lumens of the hollow fibers. For example, the passage of blood within the interior of a hollow fiber of a hemofilter can create a shear force of 1.5×10^7 dynes/cm² whereas blood flow through the ECS of certain embodiments of a SCD creates a shear force of 10 dynes/cm², or about 10^6 less shear force. For comparison, the shear force at a typical arterial wall is 6 to 40 dynes/cm² and the shear force at a typical vein wall is 15 1-5 dynes/cm². Thus, a capillary wall has a shear stress of less than 5 dynes/cm².

[0116] Accordingly, use of the SCD cartridge uses a sufficiently low shear force at a surface in a region of a passageway configured to sequester leukocytes to be able to associate leukocytes with that surface and sequester leukocytes, such as activated leukocytes in the region. For example, in some embodiments a shear force of less than 1000 dynes/cm², or less 20 than 500 dynes/cm², or less than 100 dynes/cm², or less than 80 dynes/cm², or less than 60 dynes/cm², or less than 40 dynes/cm², or less than 20 dynes/cm², or less than 10 dynes/cm², or less than 5 dynes/cm², is useful at a surface in the passageway region configured to sequester leukocytes. It should be understood that these shear forces may be useful in any of the SCD 25 embodiments described herein. In certain embodiments, having two devices, such as a hemofilter and a SCD, the difference in shear force between blood flowing in the hemofilter and blood flowing in the SCD can be at least 1000 dynes/cm².

[0117] In these and other embodiments, so long as the unconventional flow configuration is followed (*i.e.*, blood flows outside of the hollow fibers, rather than inside the hollow fibers) to yield the requisite shear force, the SCD can be comprised of a conventional (*e.g.*, Model F-30 80A, Fresenius Medical Care North America, Waltham, MA, U.S.A.), which is approved by the FDA for use in acute and chronic hemodialysis. Similarly, the extracorporeal perfusion circuit of this or any other embodiment can use standard dialysis arteriovenous blood tubing.

The cartridges and blood tubing can be placed in any dialysate delivery pump system (e.g., Fresenius 2008H) that is currently in use for chronic dialysis.

[0118] In one exemplary system, the system includes tubing leading from a subject (a blood line) with a bag of a citrate solution infused into the tubing by an infuser. A first F-40

5 hemofilter cartridge (Fresenius Medical Care North America, Waltham, MA, U.S.A.) is connected with the blood line at a point after the citrate enters the blood line. Blood in the blood line then flows through the interior of hollow fibers (the ICS) inside the cartridge, from an end port inlet to an end port outlet, and dialysate flows outside these hollow fibers and within the cartridge (the ECS) from one side port to a second side port in a countercurrent manner with respect to the blood flow. A dialysate/ultrafiltrate mixture exiting from the second side port is collected. Substantially no blood cells, platelets, or plasma cross from the ICS to the ECS, and substantially no leukocytes adhere to the interior of the hollow fibers. The hollow fibers are disposed parallel to one another in a bundle, and each fiber has a diameter of approximately 240 micrometers. Furthermore, the pores of the hollow fibers are small enough 10 to prevent passage of albumin, a molecule of about 30 angstroms, through the fibers, and the pores are generally this size across the entire fiber. The filtered blood then continues from the end port outlet, through tubing, to a side port inlet of an F-80A-based cartridge (Fresenius Medical Care North America, Waltham, MA, U.S.A.), which operates as a SCD cartridge. The blood flows through the ECS of the F-80A-based cartridge and exits the cartridge at a side port 15 outlet. Any ultrafiltrate that is produced in the F-80A-based cartridge enters the ICS and exits through an end port. The other end port of the cartridge is capped. Substantially no blood cells, platelets, or plasma cross from the ECS to the ICS, and leukocytes adhere to the exterior of the hollow fibers for some period of time. Blood exiting the F-80A cartridge enters tubing 20 where a calcium solution is infused into the blood using an infuser. Finally, the tubing returns the processed blood to the subject. In certain embodiments, the blood flow rate in the system 25 does not exceed 500 mL/minute, and blood does not displace air in the system at any point. Additionally, the pumping and infusion rates can be manually changed in view of bedside readings of electrolytes and white blood cell counts. An i-STAT® handheld monitoring device produces these readings from a small amount of blood withdrawn from the subject.

30 [0119] It is contemplated that the risk of using such a system is similar to the risk associated with hemodialysis treatment and includes, for example, clotting of the perfusion circuit, air entry into the circuit, catheter or blood tubing kinking or disconnection, and

temperature dysregulation. However, dialysis machines and associated dialysis blood perfusion sets have been designed to identify these problems during treatment with alarm systems and to mitigate any clot or air embolism to the subject with clot filters and air bubble traps. These pump systems and blood tubing sets are FDA approved for this treatment indication.

5 [0120] As mentioned above, infusion of a leukocyte inhibition agent, for example, citrate, can be local to the SCD, regional, or throughout the system. In this or any embodiment, citrate can also be used as an anti-clotting agent, in which case perfusion throughout the system would be useful. Clinical experiences suggest that if clotting occurs within a hemofiltration system, it is initiated in the first dialysis cartridge. Anticoagulation protocols, such as systemic heparin or 10 regional citrate, are currently established and routinely used in clinical hemodialysis.

2.C. Selective Cytopheresis Inhibitory Device as part of a Cardiopulmonary Bypass System

15 [0121] As shown in **Figures 3A-3B**, a SCD cartridge can be used within a cardiopulmonary bypass (CPB) circuit to treat and/or prevent inflammatory conditions secondary to surgeries (e.g., bypass surgery). **Figures 3A and 3B** show the SCD cartridge of **Figure 1A** in exemplary CPB systems. CPB is used to divert blood from both the left and right sides of the heart and lungs. This is achieved by draining blood from the right side of the heart and perfusing the arterial circulation. However, since systemic-to-pulmonary collaterals, systemic-to-systemic collaterals, and surgical site bleeding return blood to the left side of the heart, special drainage 20 mechanisms of the left side of the heart are required during CPB. Optionally, cardioplegia can be delivered through a special pump and tubing mechanism. A standard CPB system has several features that can be broadly classified into three subsystems. The first subsystem is an oxygenating-ventilating subsystem that supplies oxygen and removes carbon dioxide from the blood. The second subsystem is a temperature control system. The third subsystem includes 25 in-line monitors and safety devices.

30 [0122] As shown in the embodiment of **Figure 3A**, blood is moved via a venous cannula **300** from a subject into a blood line **310**. Blood flows through the blood line **310**, passing a recirculation junction **320**, which is connected to a SCD outflow line **330**. The SCD outflow line **330** contains blood treated by the SCD device **100**. The blood in the blood line **310** mixes with the SCD-treated blood and continues to a venous reservoir **350** and onto an oxygenator **360** where the blood is oxygenated. The oxygenated blood then flows from the oxygenator **360**

to a junction **370** with a SCD inflow line **380**. Here, where a portion of the blood in the blood line **310** is diverted to the SCD **100** via the SCD inflow line **380** for treatment by the SCD cartridge **100**. The flow of blood through the SCD inflow line **380** is controlled by a pump **382**. The SCD cartridge **100** is designed to sequester select cells associated with inflammation, for example, leukocytes or platelets. Blood containing leukocytes enters the inlet **114** and moves into the ECS **112** (see in **Figure 1A**) surrounding the hollow fibers. Leukocytes are sequestered in the device, for example, on the fluid contacting surface of solid support **120** (see in **Figure 1A**) (*i.e.*, the exterior surface of the hollow fibers). Flow rates at pump **382** can be chosen at ranges described herein such that there is a low shear force (in the ranges described herein) at the surface of the hollow fibers to allow leukocytes to associate therewith. Blood in the ECS **112** (see in **Figure 1A**) exits the SCD via outlet **118** and enters the SCD outflow line **330**. At junction **370**, a portion of the blood in the blood line **310** also continues to an arterial filter/bubble trap **390**, before being returned to the subject at an arterial cannula **395**.

[0123] Although no agents need be added to the blood, in one embodiment, a citrate feed **335** and citrate pump **336** add citrate to the blood in the SCD inflow line **380** and a calcium feed **345** and calcium pump **346** add calcium to the blood in the SCD outflow line **330**. Citrate (or another leukocyte inhibiting agent described herein) is added to the blood flowing into the SCD cartridge **100** from the citrate feed **335** to inhibit and/or deactivate cells associated with inflammation, such as leukocytes. Calcium can be added back into the blood to prepare the blood for reentry into the subject.

[0124] The circuit shown in **Figure 3B** is different from the circuit of **Figure 3A** in that it does not recirculate blood within the circuit, for example, at a recirculation junction **320** (see, **Figure 3A**). Rather, as shown in **Figure 3B**, blood is moved via the venous cannula **300** from a subject into the blood line **310**, where the blood flows directly to the venous reservoir **350** and onto an oxygenator **360** where the blood is oxygenated. The oxygenated blood then flows from the oxygenator **360** to the junction **370** with the SCD inflow line **380**. Here, a portion of the blood in the blood line **310** is diverted to the SCD cartridge **100** via the SCD inflow line **380** for sequestration of leukocytes by the SCD cartridge **100**, as described above for **Figure 3A**. Blood exiting the SCD cartridge **100** enters the SCD outflow line **330** and mixes with oxygenated blood at junction **386**. After blood from the SCD cartridge mixes with blood in the blood line **310** it continues in the blood line **310** to the arterial filter/bubble trap **390**, before being returned to the subject at the arterial cannula **395**.

[0125] A citrate feed 335 and citrate pump 336 to add citrate to the blood in the SCD inflow line 380 and a calcium feed 345 and calcium pump 346 to add calcium to the blood in the SCD outflow line 330. As described for **Figure 3A**, citrate or any other leukocyte inhibiting agent is added to the blood from the citrate feed 335 to inhibit and/or deactivate cells associated with inflammation, such as leukocytes. Calcium can be added back into the blood to prepare the blood for reentry into the subject.

2.D. Additional Features of Selective Cytopheresis Inhibitory Devices

[0126] In some embodiments, the SCD cartridges are configured for treating and/or preventing a certain disorder. It is understood, however, that a number of different configurations can be used to treat and/or prevent a particular disorder.

[0127] Moreover, the SCD cartridge can be oriented horizontally or vertically and placed in a temperature controlled environment. The temperature of a SCD cartridge containing cells preferably is maintained at about 37°C to about 38°C throughout the SCD's operation to ensure optimal function of the cells in the SCD cartridge. For example, but without limitation, a warming blanket may be used to keep the SCD cartridge at the appropriate temperature. If other devices are utilized in the system, different temperatures may be needed for optimal performance.

[0128] In some embodiments, the SCD cartridges and/or the fluid circuits incorporating the SCD cartridges are controlled by a processor (e.g., computer software). In such embodiments, a device can be configured to detect changes in activated leukocyte levels within a subject and provide such information to the processor (e.g., information relating to leukocyte levels and/or increased risk for developing an inflammation disorder). In some embodiments, when a certain activated leukocyte level is reached or a subject is deemed at a certain risk for developing an inflammation disorder (e.g., SIRS), the subject's blood is processed through a SCD for purposes of reducing the possibility of developing an inflammation disorder. In some embodiments, the fluid circuit can automatically process the subject's blood through the SCD in response to these measurements. In other embodiments, a health professional is alerted to the elevated leukocyte level or increased risk within the subject, and the professional initiates the treatment.

[0129] It is contemplated that the cartridges of the present invention can be included with various kits or systems. For example, the kits or systems may include the SCD cartridges of

the present invention, leukocyte inhibiting agents (e.g., calcium chelating agents, such as citrate), allographic cells (e.g., renal tubule cells), or other parts. Additionally, the SCD cartridges may be combined with various surgical instruments necessary for implanting the filtration device into a subject.

5 3. *Inhibition and/or Deactivation of Cells Associated with Inflammation*

[0130] The SCD cartridges are configured, and the methods of the present invention when performed inhibit release of a pro-inflammatory substance from leukocytes and/or deactivate leukocytes, such as activated leukocytes, in a subject's blood such that an inflammatory response within the subject is prevented and/or diminished. Various techniques can be used.

10 For example, in some embodiments, the SCD cartridges and the fluid circuits incorporating one or more of the SCD cartridges can inhibit release of a pro-inflammatory substance from a leukocyte and/or deactivate a leukocyte by exposing the leukocytes (e.g., sequestered activated and/or primed leukocytes) to leukocyte inhibiting agents. A leukocyte inhibiting agent can be bound, covalently or non-covalently, to a fluid contacting surface of the SCD cartridge, for 15 example, a hollow fiber. Additionally or alternatively, a leukocyte inhibiting agent can be infused into the SCD cartridge or a circuit incorporating a SCD cartridge before, during, or after sequestration of the leukocytes, for example, at or near a membrane surface.

[0131] The present invention is not limited to a particular type or kind of leukocyte inhibiting agent. Leukocyte inhibiting agents include, for example, anti-inflammatory 20 biological agents, anti-inflammatory small molecules, anti-inflammatory drugs, anti-inflammatory cells, and anti-inflammatory membranes. In some embodiments, the leukocyte inhibiting agent is any material or compound capable of inhibiting activated leukocyte activity including, but not limited to, non-steroidal anti-inflammatory drugs (NSAIDs), anti-cytokines, imatinib mesylate, sorafenib, sunitinib malate, anti-chemokines, immunosuppressant agents, 25 serine leukocyte inhibitors, nitric oxide, polymorphonuclear leukocyte inhibitor factor, secretory leukocyte inhibitor, and calcium chelating agents. Examples of calcium chelating agents include, but are not limited to, citrate, sodium hexametaphosphate, ethylene diamine tetra-acetic acid (EDTA), triethylene tetramine, diethylene triamine, o-phenanthroline, oxalic acid and the like. The leukocyte inhibiting agent can be any protein or peptide known to inhibit 30 leukocytes or immune cells including, but not limited to, angiogenin, MARCKS, MANS, Complement Factor D, the disulfide C39-C92 containing tryptic angiogenin fragment

LHGGSPWPPC⁹²QYRGLTSPC³⁹K (SEQ ID NO: 1) and synthetic homologs of the same; the agent also can be those proteins, peptides, and homologs reported by Tschesche *et al.* (1994) J. BIOL. CHEM. 269(48): 30274-80, Horl *et al.* (1990) PNAS USA 87: 6353-57, Takashi *et al.* (2006) AM. J. RESPIRAT. CELL AND MOLEC. BIOL. 34: 647-652, and Balke *et al.* (1995) FEBS

5 LETTERS 371: 300-302, that may facilitate inhibition of release of a pro-inflammatory substance from a leukocyte and/or deactivate a leukocyte. Moreover, the leukocyte inhibiting agent can be any nucleic acid known to inhibit release of a pro-inflammatory substance from the leukocyte and/or deactivate the leukocyte. The leukocyte inhibiting agent can be in solution or lyophilized.

10 [0132] Any amount or concentration of leukocyte inhibiting agent can be used to inhibit the release of pro-inflammatory substances from a leukocyte and/or deactivate the leukocyte. The leukocyte inhibiting agent can be introduced into a passageway, passageway region, device, device region, or system region of a system by any methods known in the art. For example, the leukocyte inhibiting agent can be infused at a port. The amount of leukocyte inhibiting agent

15 infused in a passageway can be sufficient to inhibit release of a pro-inflammatory substance from a leukocyte and/or deactivate a leukocyte sequestered within the same passageway or within an adjacent passageway. In some embodiments, a leukocyte inhibiting agent, for example, citrate, can be infused into the system, a region of the system, or one or more devices within the system, including devices that perform other functions and do not sequester

20 leukocytes. More particularly, the leukocyte inhibiting agent (*e.g.* citrate) can be infused upstream from, into, or downstream from a passageway that sequesters leukocytes.

Alternatively, the leukocyte inhibiting agent can be contained in one or more passageways, passageway regions, devices, or system regions within a system. For example, a leukocyte inhibiting agent can be bound to a surface in the passageway configured to sequester

25 leukocytes, or in another passageway, in an amount sufficient to inhibit release of a pro-inflammatory substance from the leukocytes and/or deactivate the leukocytes.

[0133] The inhibition of release of a pro-inflammatory substance from a leukocyte and/or deactivation of a leukocyte can occur temporally before, during, and/or after sequestration of the leukocyte. Moreover, the leukocyte can remain inhibited or deactivated for a period of time

30 following sequestration. In certain embodiments, a leukocyte can be inhibited or deactivated during the period of time that the leukocyte is exposed to a target concentration of a leukocyte inhibiting agent or is exposed to a target a concentration of Ca_i (typically from about 0.20

mmol/L to about 0.40 mmol/L) that results from exposure to a leukocyte inhibiting agent such as citrate. The period of time that the leukocyte is exposed to the target concentration of leukocyte inhibiting agent or target concentration of Ca_i can precede, include, and/or follow the period of time that the leukocyte is sequestered. In certain embodiments, the leukocyte can

5 continue to become or remain inhibited or deactivated for a period of time following exposure to the leukocyte inhibiting agent.

[0134] The time of exposure to the leukocyte inhibiting agent can vary depending upon the agent used, the extent of leukocyte activation, the extent of production of pro-inflammatory substances, and/or the degree to which the inflammatory condition has compromised patient

10 health. Exposure can be, for example, from 1 to 59 seconds, from 1 to 59 minutes, from 1 to 24 hours, from 1 to 7 days, one or more weeks, one or more months, or one year or more. The leukocyte inhibiting agent can be applied to the system before or during operation the system. In certain embodiments, the leukocyte inhibiting agent is applied during operation of the system and the amount of leukocyte inhibiting agent applied to the system is monitored.

15 [0135] In some embodiments, a leukocyte inhibiting agent can be titrated into the system (e.g., at a port 206 as shown in **Figures 2A-2D** or from a feed 335 and pump 336 as shown in **Figures 3A and 3B**). The titration can be adjusted relative to a monitored blood characteristic. For example, citrate can be titrated into the system to keep the Ca_i in the blood at a certain level, for example, at a Ca_i concentration of about 0.2 to about 0.4 mmol/L. Any type of citrate

20 that is biologically compatible can be used, for example, 0.67% trisodium citrate or 0.5% trisodium citrate. See, e.g., Tolwani *et al.* (2006) CLIN. J. AM. SOC. NEPHROL. 1: 79-87. In some embodiments, a second solution can be added into the system following inhibition of the release of pro-inflammatory substances from a leukocyte and/or deactivation of the leukocyte (e.g., at port 258 as shown in **Figures 2A-2D**, or from a feed 335 and pump 336 as shown in

25 **Figures 3A and 3B**), to readjust the blood for reentry into the subject. For example, in embodiments in which a calcium chelating agent is used as the leukocyte inhibiting agent, calcium can be added back into the blood before reentry into the subject.

[0136] In one embodiment, a 1000 mL bag containing a citrate solution, for example ACD-A (Baxter Fenwal, Chicago IL; contents per 100 mL: dextrose 2.45 g, sodium citrate 2.2 g, citric acid 730 mg, pH 4.5 - 5.5 at 25° C) can be attached to an infusion pump and then attached

30 to an arterial line (outflow from subject to devices) of the system (e.g. at port 206; the outflow

from a subject in a CPB situation is called a venous line, and infusion occurs from, for example, the feed 335 and pump 336). A negative pressure valve can be employed to facilitate citrate pump function (infusing into a negative pressure area proximal to the blood pump). The initial rate of citrate infusion can be constant, for example, about 1.5 times, in mL/hour, the 5 blood flow rate, in mL/minute (e.g., if the blood flow rate is about 200 mL/minute, then the initial constant rate of citrate infusion may be about 300 mL/hour). In addition, a calcium chloride infusion at a concentration of about 20 mg/mL may be added near the venous port of the system (e.g., port 258 of Figures 2A-2D); the analogous location in the CPB situation is shown as a feed 335 and pump 336 in Figures 3A and 3B). The initial calcium infusion can be 10 set at 10% of the citrate infusion rate (e.g., 30 mL/hour). The Ca_i can be monitored continuously or at various times, for example, every two hours for the first eight hours, then every four hours for the next sixteen hours, then every six to eight hours thereafter. The monitoring can be increased as needed and can be monitored at more than one location in the system, for example, after citrate infusion and after calcium infusion.

15 [0137] Exemplary citrate and calcium chloride titration protocols are shown in **Table 3** and in **Table 4**, respectively. In this embodiment, the target Ca_i range in the SCD is from about 0.20 mmol/L to about 0.40 mmol/L, with the Ca_i target concentration achieved by infusion of citrate (e.g., ACD-A citrate solution). As this is a dynamic process, the rate of citrate infusion may need to be changed to achieve the target Ca_i range in the SCD. The protocol for doing so 20 is shown below, with infusion occurring at the infusion points described above.

TABLE 3
Citrate Infusion Titration Guidelines

Circuit Ionized Ca^{2+} (between the SCD and patient)	Infusion Adjustment with ACD-A citrate solution (as described above)
If circuit ionized Ca^{2+} is less than 0.20 mmol/L	then decrease the rate of citrate infusion by 5 mL/hour
If circuit ionized Ca^{2+} is 0.20 - 0.40 mmol/L (Optimal Range)	then make no change to the rate of citrate infusion
If circuit ionized Ca^{2+} is 0.41 - 0.50 mmol/L	then increase the rate of citrate infusion by 5 mL/hour
If circuit ionized Ca^{2+} is greater than 0.50 mmol/L	then increase the rate of citrate infusion by 10 mL/hour

TABLE 4
Calcium Infusion Titration Guidelines

Patient Ionized Ca²⁺ (drawn systemically from patient)	Ca²⁺ Infusion (20 mg/mL CaCl₂) Adjustment
If patient ionized Ca ²⁺ is greater than 1.45 mmol/L	then decrease the rate of CaCl ₂ infusion by 10 mL/hour
If patient ionized Ca ²⁺ is 1.45 mmol/L (maximum allowable amount)	then decrease the rate of CaCl ₂ infusion by 5 mL/hour
If patient ionized Ca ²⁺ is 0.9 mmol/L (minimum allowable amount)	then increase the rate of CaCl ₂ infusion by 5 mL/hour
If patient ionized Ca ²⁺ is less than 0.9 mmol/L	then administer a 10 mg/kg CaCl ₂ bolus and increase the rate of CaCl ₂ infusion by 10 mL/hour
Default Range (preferred target level)	1.0 – 1.2 mmol/L

[0138] It should be understood that the deactivation techniques described herein also can apply to platelets. In certain embodiments, agents used to deactivate a platelet and/or inhibit release of a pro-inflammatory substance from a platelet include, but are not limited to, agents that inhibit thrombin, antithrombin III, meglatran, herudin, Protein C and Tissue Factor Pathway Inhibitor. In addition, some leukocyte inhibiting agents can act as platelet inhibiting agents. For example, calcium chelating agents, such as citrate, sodium hexametaphosphate, ethylene diamine tetra-acetic acid (EDTA), triethylene tetramine, diethylene triamine, o-phenanthroline, and oxalic acid can deactivate a platelet and/or inhibit release of a pro-inflammatory substance from a platelet.

4. *Indications*

[0139] The SCD cartridges, circuits incorporating the SCD cartridges, and methods of the present invention can be used for treating and/or preventing a number of conditions that are associated with inflammation. As used herein, the term “inflammatory condition,” includes any inflammatory disease, any inflammatory disorder, and/or any leukocyte activated disorder wherein the organism’s immune cells are activated. Such a condition can be characterized by (i) a persistent inflammatory response with pathologic sequelae and/or (ii) infiltration of leukocytes, for example, mononuclear cells and neutrophils, leading to tissue destruction. Inflammatory conditions include primary inflammatory diseases arising within a subject and/or

secondary inflammatory disorders arising as a response to a medical procedure. The systems, devices, and methods of the present invention can treat any inflammatory condition for any subject. As used herein, the term "subject" refers to any animal (e.g., a mammal), including, but not limited to, a human (e.g., a patient), non-human mammals, for example, a non-human primates and other experimental animals, farm animals, companion animals, and the like, which is to be the recipient of a particular diagnostic test or treatment.

5 [0140] Leukocytes, for example, neutrophils, are major contributors to the pathogenesis and progression of many clinical inflammatory conditions, including systemic inflammatory response syndrome (SIRS), sepsis, ischemia/reperfusion injury and acute respiratory distress syndrome (ARDS). Several different and diverse types of leukocytes exist; however, they are 10 all produced and derived from a pluripotent cell in the bone marrow known as a hematopoietic stem cell.

15 [0141] Leukocytes, also referred to as white blood cells, are found throughout the body, including in the blood and lymphatic system. There are several different types of leukocytes including granulocytes and agranulocytes. Granulocytes are leukocytes characterized by the presence of differently staining granules in their cytoplasm when viewed under light microscopy. These granules contain membrane-bound enzymes, which primarily act in the digestion of endocytosed particles. There are three types of granulocytes: neutrophils, basophils, and eosinophils, which are named according to their staining properties.

20 Agranulocytes are leukocytes characterized by the absence of granules in their cytoplasm and include lymphocytes, monocytes, and macrophages.

25 [0142] Platelets, or thrombocytes, also contribute to inflammatory conditions, as well as to homeostasis. Upon activation, platelets aggregate to form platelet plugs, and they secrete cytokines and chemokines to attract and activate leukocytes. Platelets are found throughout the body's circulation and are derived from megakaryocytes.

30 [0143] The molecules that are primarily responsible for initiation of leukocyte and platelet adhesion to endothelium are P-selectin and von Willebrand factor, respectively. These molecules are found in the same granules, known as Weibel-Palade bodies, in endothelial cells. Upon activation of endothelial cells, the Weibel-Palade bodies migrate to the cell membrane to expose P-selectin and soluble von Willebrand factor at the endothelial cell surface. This, in turn, induces a cascade of leukocyte and platelet activity and aggregation.

[0144] Accordingly, the systems, devices, and methods of the present invention can treat and/or prevent any inflammatory condition, including primary inflammatory diseases arising within a subject and/or secondary inflammatory disorders arising as a response to a medical procedure (e.g., dialysis or cardio-pulmonary bypass). Examples of applicable inflammatory 5 conditions, including inflammatory diseases and/or disorders, include, but are not limited to, systemic inflammatory response syndrome (SIRS), polyarteritis, Wegener's granulomatosis, autoimmune vasculitis, anti-neutrophil cytoplasmic antibody (ANCA) vasculitis, extracorporeal membrane oxygenation (ECMO), cardiopulmonary bypass syndrome, acute respiratory distress syndrome (ARDS), acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), 10 sepsis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis (MS), psoriasis, allograft rejection, asthma, acute renal failure, chronic renal failure (CRF), end stage renal disease (ESRD), cardiorenal syndrome (CRS), chronic heart failure (CHF), stroke, myocardial infarction (MI), hepatorenal syndrome, cirrhosis of the liver, diabetes mellitus (type 2 diabetes), and acute organ failure from ischemic reperfusion injury to 15 myocardium, central nervous system, liver, kidney, or pancreas.

[0145] Additional examples of inflammatory conditions include, but are not limited to, transplant (such as organ transplant, acute transplant, xenotransplant) or heterograft or homograft (such as is employed in burn treatment) rejection; ischemic or reperfusion injury such as ischemic or reperfusion injury incurred during harvest or organ transplantation, 20 myocardial infarction or stroke; transplantation tolerance induction; arthritis (such as rheumatoid arthritis, psoriatic arthritis or osteoarthritis); respiratory and pulmonary diseases including but not limited to chronic obstructive pulmonary disease (COPD), emphysema, and bronchitis; ulcerative colitis and Crohn's disease; graft vs. host disease; T-cell mediated hypersensitivity diseases, including contact hypersensitivity, delayed-type hypersensitivity, and 25 gluten-sensitive enteropathy (Celiac disease); contact dermatitis (including that due to poison ivy); Hashimoto's thyroiditis; Sjogren's syndrome; Autoimmune Hyperthyroidism, such as Graves' Disease; Addison's disease (autoimmune disease of the adrenal glands); Autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome); autoimmune alopecia; pernicious anemia; vitiligo; autoimmune hypopituitarism; Guillain-Barre syndrome; 30 other autoimmune diseases; glomerulonephritis; serum sickness; urticaria; allergic diseases such as respiratory allergies (hayfever, allergic rhinitis) or skin allergies; scleroderma; mycosis fungoides; acute inflammatory and respiratory responses (such as acute respiratory distress

syndrome and ischemia/reperfusion injury); dermatomyositis; alopecia areata; chronic actinic dermatitis; eczema; Behcet's disease; Pustulosis palmoplantaris; Pyoderma gangrenum; Sezary's syndrome; atopic dermatitis; systemic sclerosis; morphea; trauma, such as trauma from a gun, knife, automobile accident, fall, or combat; and cell therapy, such as autologous,

5 allogenic or xenogenic cell replacement. Additional inflammatory conditions are described elsewhere herein or are otherwise known in the art.

[0146] The systems, devices, and methods of the present invention may also be used to support the development and use of tissues and organs *ex vivo*. For example, the present invention may be used to support organ harvesting procedures for transplantation, tissue engineering applications, *ex vivo* generation of organs, and the manufacture of and use of bio-microelectromechanical systems (MEMs).

[0147] In light of the foregoing description, the specific non-limiting examples presented below are for illustrative purposes and not intended to limit the scope of the invention in any way.

EXAMPLES

15 **Example 1. Treatment of Inflammation Associated with Acute Sepsis in an Animal Model**

[0148] Activated leukocytes, especially neutrophils, are major contributors to the pathogenesis and progression of sepsis as well as other clinical inflammatory disorders. This example describes *in vivo* experiments that evaluate the effect of different SCD cartridges on leukocyte sequestration and deactivation. The results demonstrate that the choice of a

20 particular SCD cartridge can have a profound effect on the pathogenesis and progression of sepsis in a large animal model. In particular, the results demonstrate that a SCD cartridge having a larger sequestration area is more effective than a SCD cartridge having a smaller sequestration area in alleviating complications associated with sepsis and in prolonging survival.

25 **(I) Methods and Materials**

A - Animal Model

[0149] The efficacy of the SCD cartridge in treating inflammation was evaluated in a well-established porcine model of acute septic shock. (See, *e.g.*, Humes *et al.* (2003) CRIT. CARE MED. 31:2421-2428.)

[0150] Pigs weighing 30–35 kg were utilized. After administration of anesthesia and intubation, the pigs underwent placement of an arterial catheter and a Swan-Ganz thermodilution catheter (which were connected to transducers) to monitor arterial blood pressure, cardiac output, and central venous pressures. An ultrasonic flow probe was placed on 5 a renal artery for continuous assessment of renal blood flow (RBF).

[0151] To induce septic shock, the pigs received 30×10^{10} bacteria/kg body weight of *E. coli* into their peritoneal cavities. To better replicate the human clinical situation, the antibiotic Ceftriaxone (100 mg/kg) was administered 15 minutes after bacteria infusion. During the first 10 hour following bacteria infusion, all animals were resuscitated with 80 mL/kg of crystalloid and 80 mL/kg of colloid. All treatment groups received identical volume resuscitation protocols. No animal received vasopressor or inotropic agents.

B - Extracorporeal Circuit Containing the SCD Cartridge

[0152] Immediately after bacterial administration, the animals were connected to an extracorporeal circuit containing a standard continuous renal replacement therapy (CRRT) 15 hemofilter and a SCD device, as depicted in **Figure 4**. The hemofilter was a Fresenius F-40 hemofiltration cartridge (Fresenius AG). The SCD cartridge (CytoPherx, Inc.) was connected to the blood port of the hemofilter through its side port using a special blood line connector. Two types of SCD cartridges were tested. The first type of SCD cartridge (based on a 20 Fresenius F-40 hemofiltration cartridge) had a membrane surface area of 1.0 m^2 facing the extracapillary space, which had an ECS fill volume of 130 mL. The second type of SCD cartridge (based on a Fresenius F-80A hemofiltration cartridge) had a membrane surface area of 2.5 m^2 facing the extracapillary space, which had an ECS fill volume of 250 mL. The F-40 and F-80A SCD cartridges each contained polysulfone hollow fibers with an inner diameter of 200 μm and a wall thickness of 40 μm . The pressure drop across the SCD was 70–75 mmHg. 25 Either the Gambro AK-10 or the Fresenius 2008H dialysis pump system was utilized for these experiments. Extracorporeal blood flow was regulated at 100–150 mL/min.

[0153] A balanced electrolyte replacement solution (Na 150 mEq/L, Cl 115 mEq/L, HCO_3 38 mEq/L, Ca 2.5 mEq/L, and Mg 1.6 mEq/L in Dextrose 5%) was infused into the blood line on a 1:1 volume replacement basis for the net ultrafiltrate which would exit the circuit. In 30 addition, continuous volume resuscitation with normal saline at 150 mL/h was employed to maintain mean arterial pressure and cardiac output in the treated animals.

- 50 -

[0154] As a control, one group animals (n=3) underwent extracorporeal blood perfusion in a circuit containing the hemofilter alone but without the SCD device. These animals also received regional citrate infusion and were referred to as the conventional citrate (Con-citrate) group. A second group of animals was treated similarly to the SCD group with citrate but 5 without bacterial infusion. These animals were referred to as the non-septic control (NS-control) group.

C - Anticoagulation Process

[0155] The anticoagulation process was a critical variable in this series of experiments. One group of animals referred to as the SCD-heparin group (SCD-H, n = 12), received systemic 10 heparinization to maintain patency of the extracorporeal circuit with targeted activated clotting times (ACTs) of 200–300 sec and treated with a SCD cartridge based on the Fresenius F-40 cartridge with a membrane surface area of 1.0 m² facing the extracapillary space. A second group of animals referred to as the SCD-citrate, F-40 group (SCD-C, F-40; n = 13) were treated 15 with SCD cartridges based on the Fresenius F-40, cartridge with a membrane surface area of 1.0 m² facing the extracapillary space received regional citrate anticoagulation (Pinnick, R.V. *et al.*, (1983) N. ENGL. J. MED., 308(5): 258-261; Lohr, J.W. *et al.*, (1989) AM. J. KIDNEY DIS., 13(2):104-107; Tobe, S.W. *et al.* (2003) J. CRIT. CARE, 18(2): 121-129). In addition, a third group of animals also received regional citrate anticoagulation and were treated with SCD 20 cartridges based on the Fresenius F-80A, with a membrane surface area of 2.5 m² facing the extracapillary space (SCD-C, 2.5; n=3). Regional citrate coagulation was achieved by infusing citrate dextrose-A (ACD-A, Baxter) pre-hemofilter at a rate of 2.5–5.0 mM citrate per 1000 mL whole blood. This essentially lowered iCa concentration in the circuit to 0.2–0.5 mmol/L. Calcium chloride was infused into the venous return of the circuit to maintain systemic iCa values of 1.1-1.3 mmol/L. iCa levels were monitored using an iSTAT reader (Abbott Labs).

D - Complete Blood Counts, Serum Chemistries, and Systemic Inflammation Parameters

[0156] Complete blood counts and serum chemistries were measured with a Hemavet automated analyzer (Drew Scientific) and a VET Test automated analyzer (IDEXX), respectively. Serum myeloperoxidase (MPO) activity was measured using a modified o-dianisidine assay containing 4-aminobenzoic acid hydrazide as a potent and specific inhibitor 30 of MPO (Fietz S, *et al.*, (2008) RES. VET. SCI., 84(3):347-353). Cytokine concentrations,

including IL-1 β , IL-6, IL-8, IL-10, TNF- α and IFN- γ , were measured with commercially available enzyme-linked immunosorbent assay (ELISA) kits from R&D Systems.

E - Assessment of Leukocyte Activation

[0157] FITC-conjugated anti-porcine CD11b antibody (SeroTec) was added to pre-chilled peripheral blood. Red blood cells were lysed and the remaining leukocytes were fixed by addition of a FACS lysing solution (Becton-Dickinson). Cells were collected by centrifugation and resuspended for flow-cytometric analysis. CD11b expression was quantitatively assessed as mean fluorescent intensity (MFI) with an Accuri flow cytometer.

[0158] Peripheral blood mononuclear cells (PBMCs) were isolated from the venous blood. Mononuclear cells were isolated using standard Ficoll-Hypaque gradient technique (Humes *et al.* (2003) CRIT. CARE MED. 31:2421–2428). These cells were then incubated for 24 hours in culture plates containing RPMI-1640 medium supplemented with antibiotics in the absence or the presence of 1 μ g/mL of lipopolysaccharide (LPS). The supernatants were collected and cytokine concentrations measured. The ratio of stimulated to unstimulated cytokine concentrations in the supernatants was then calculated.

F - Lung Histology and Immunohistochemistry

[0159] Lung samples were harvested post-mortem from septic pigs treated under SCD-citrate or SCD-heparin conditions. Two random sections from each of the 5 lobes of the lungs were processed for cryosections. Frozen lung samples were cut at 5- μ m thickness and fixed with 4% paraformaldehyde on ice for 10 minutes. Tissues were stained with hematoxylin and eosin for light microscopic examination, or for CD11b evaluation; nonspecific adsorption was minimized by incubating the section in goat serum in PBS for 1 hour.

[0160] For evaluation of CD11b expression, lung sections were incubated with primary anti-CD11b antibody at recommended dilutions for 1 hour at room temperature. This was followed by incubation with an anti-mouse IgG Alexafluor594 conjugate (1:200 dilution) at room temperature for 30 minutes, and counterstaining the nuclei with DAPI. ImageJ software (Abramoff, M.D. (2004) Biophotonics International, 11(7): 36-42) was used to quantify the percentage of CD11b-positive areas in random 10x images taken with fixed capture settings. Cell number normalization was achieved by determining the percentage of DAPI-positive areas

in the same picture. The results were expressed as the ratio of percent CD11b-positive area by percent DAPI-positive area.

G - Cell Elution from SCD Cartridges

[0161] Prior to disconnecting the circuit, blood was returned to the pig by perfusion with replacement fluid. The SCD extracapillary space (ECS) was then continuously flushed with replacement fluid until the perfusate fluid was free of visible blood. After draining off the replacement fluid, the cartridge was either fixed for histologic processing (Humes, H.D. *et al.*, (2010) BLOOD PURIFICATION, 29:183-190) or exchanged with a stabilization buffer containing a calcium chelating agent. Adherent cells were mechanically removed from the SCD eluent for analysis. To ensure that all cells adherent to the device were eluted, several cartridges were digested after elution with a DNA isolation buffer (SDS and proteinase K). The DNA extracted in this manner, on average, was less than 5 percent of the eluted DNA from the cartridge.

H - Statistical Analysis

[0162] Group comparisons at multiple time points utilized ANOVA with repeated measures. Otherwise, comparisons between groups used Students' T test, paired or unpaired, as appropriate. Statistical significance was defined as $p < 0.05$.

(II) Results and Discussion

A - Observations of Cardiovascular Parameters

[0163] The porcine model of septic shock was utilized to evaluate the effectiveness of SCD cartridges having different membrane surface areas combined with either systemic heparin or regional citrate anticoagulation. Specifically, one group of animals (SCD-H) was treated with systemic heparin anticoagulation and either an F-40-based SCD or an F-80A-based SCD cartridge. A second group of animals was treated with regional citrate anticoagulation and an F-40-based SCD cartridge (SCD-C, F-40). A third group of animals was treated with regional citrate anticoagulation and an F-80A-based SCD cartridge (SCD-C, F-80A). A fourth group of animals received citrate without a SCD device (con-citrate).

[0164] As indicated in **Table 5** and **Figure 5A**, the intraperitoneal administration of bacteria induced a rapid and profound decline in mean arterial pressure (MAP) in all four groups of animals. This decline was progressive and ultimately fatal.

TABLE 5 – Cardiovascular Parameters

TABLE 5 – continued

Parameter	0	1	2	3	4	5	6	7	8	9	10	11
SCD-Citrate F-40	1288±119	1119±61	1027±73	994±72	1101±64	1414±111	1601±143	1767±204	1701±179	2170±183	2856±722	1776±36
SCD-Citrate F-80A	1881±152	1073±23	710±143	784±59	874±114	926±131	884±59	1028±139	1134±186	1088±87	971	
SCD-Heparin	1371±137	1250±120	1268±110	1200±58	1412±75	1567±140	1552±242	1918±533				
Con-Citrate	1034±111	1149±94	1067±72	976±96	1174±103	1375±343	1274					
Pulmonary vascular resistance, dynes/cm⁵												
SCD-Citrate F-40	141±17	180±25	255±33	321±47	393±78	573±118	632±97	859±145	935±131	948±343	1602±242	1067±133
SCD-Citrate F-80A	164±13	228±83	207±86	281±63	317±55	377±55	475±61	543±54	634±49	694±58	552	
SCD-Heparin	268±102	287±51	384±46	525±58	763±76	1293±243	1024±198	1121±291	1504			
Con-Citrate	147±18	122±17	404±177	602±83	525±151	982±248	1199±14					
Pulmonary capillary wedge pressure, mmHg												
SCD-Citrate F-40	7.8±0.7	8.5±0.9	8.3±1.0	7.0±1.1	7.2±1.1	7.2±1.1	5.9±0.9	5.9±0.8	4.9±1.0	6.8±2.1	5.0±2.6	3.5
SCD-Citrate F-80A	8.3±0.9	11.3±2.4	10.7±3.7	7.3±1.2	6.3±0.9	5.7±0.9	6.0±0.6	6.3±0.7	6.3±0.7	6.0±0.6	12.0±5.5	
SCD-Heparin	7.0±0.8	8.5±1.2	7.2±0.8	6.6±0.7	7.3±1.4	6.3±1.0	5.7±1.0	6.8±1.0	5.5			
Con-Citrate	7.7±1.2	10.7±0.9	9.0±1.5	7.3±1.3	6.3±0.3	6.3±0.3	8.5±1.5					
Renal arterial blood flow, mL/min												
SCD-Citrate F-40	197.4±16.	183.7±12.	193.4±25.	173.2±23.	125.1±18.	79.9±18.0	69.3±17.9	48.5±14.7	37.1±11.8	37.0±13.9	47.5±12.5	13.5±8.5
SCD-Citrate F-80A	152.0±15.	141.0±2.3	170.7±31.	173.3±33.	153.0±23.	131.3±26.	103.0±23.	83.0±13.1	67.3±8.2	49.7±9.2	30.5±24.5	
SCD-Heparin	207.0±22.	155.2±15.	152.0±21.	148.5±18.	111.8±21.	53.4±13.6	37.6±13.8	45.8±20.1	24			
Con-Citrate	200.3±19.	157.3±38.	184.3±63.	183.0±48.	138.0±17.	69.0±24.0	19.0±19.0					
Renal vascular resistance, mmHg/min/mL												
SCD-Citrate F-40	0.39±0.03	.037±0.6	0.37±0.05	0.48±0.07	1.05±0.29	1.37±0.44	2.18±0.63	1.93±0.72	1.05±0.31	0.82±0.37	2.38±1.56	

TABLE 5 – continued

Parameter	0	1	2	3	4	5	6	7	8	9	10	11
SCD-Citrate F-80A	0.67±0.27	0.49±0.06	0.25±0.05	0.28±0.07	0.30±0.05	0.35±0.08	0.44±0.09	0.50±0.08	0.59±0.07	0.59±1.14		
SCD-Heparin	0.39±0.08	0.58±0.08	0.55±0.11	0.41±0.04	0.63±0.20	0.77±0.16	1.30±0.37	0.78±0.23	1.64±0.30			
Con-Citrate	0.30±0.02	0.52±0.12	0.33±0.08	0.26±0.05	0.28±0.04	0.67±0.31	0.75					

[0165] Cardiac outputs (CO) were also assessed. As depicted in **Figure 5B**, CO was significantly higher ($p < 0.02$) in the SCD-C groups. This increase in CO was not due to differences in left ventricular filling pressures, since pulmonary capillary wedge pressures were similar in all three groups. Rather, the increase in CO in the SCD-C groups was associated with 5 lower levels of systemic vascular resistance (SVR; $p < 0.03$; **Figure 5C**) and pulmonary vascular resistance (PVR; $p < 0.001$; **Figure 5D**). Notably, the SCD-C, F-80A group consistently showed the most improvement in cardiac out and also had lower SVR, PVR, and renal vascular resistance (**Figure 5E**) when compared to the other groups.

[0166] As a quantitative measure of the systemic capillary leak induced by bacterial sepsis, 10 changes in hematocrit (HCT) were assessed. As depicted in **Figure 5F**, the SCD-H group had a higher rate of HCT increase, reflective of larger rates of volume loss from the intravascular compartment. In comparison, HCT levels plateaued after 6 hours in the SCD-C groups. Notably, the SCD-C, F-80A group showed the most protection to the bacterially activated systemic capillary leak.

[0167] Renal parameters were also assessed. As shown in **Figure 6**, the SCD-C groups 15 exhibited much better renal function than the SCD-H group as reflected in the lower BUN ($p < 0.02$) and serum creatinine levels ($p = 0.007$). Renal blood flow (RBF) was also much better preserved in the SCD-C, F-80A group as compared to the SCD-H group ($p < 0.05$). Furthermore, the SCD-C, F-80A group also exhibited must higher urine output ($p < 0.05$).

[0168] The improved cardiovascular and renal parameters observed with the SCD-C groups 20 translated to longer survival time. As shown in **Figure 7**, the citrate-treated animals survived 8.8 ± 0.4 hours compared to 6.4 ± 0.3 hours for the SCD-H animals ($p = 0.0002$). Notably, the SCD-C, F-80A group had the longest survival times (11.5, 10, and 9.5 hours), as shown in **Figure 8**.

[0169] Only those animals treated with a combination of the SCD device and citrate exhibited 25 improved cardiovascular parameters and organ function. The Con-citrate group of animals treated with a single hemofilter cartridge with citrate anticoagulation but without the SCD device demonstrated similar cardiovascular parameters as the SCD-H group, with a average survival time of 6.5 ± 0.5 hours. Thus, both the SCD cartridge and the citrate anticoagulation protocol were required to provide a survival advantage. Furthermore, it was found that the surface area for

sequestration can have a profound effect on alleviating complications relating to sepsis and in prolonging survival time post infection.

B - Observations of Leukocyte Sequestration and Activation

[0170] To assess the sequestration of activated leukocytes along the SCD membranes, the SCD

5 cartridges were processed for histologic evaluation at the conclusion of the porcine sepsis study.

The light microscopy findings depicted in **Figure 9** clearly showed leukocyte attachment and aggregation along the outer surface of the SCD membranes. To determine the amount and type of adherent leukocytes, the devices were processed and cells eluted off the membrane at the end of the treatment period. The number of white blood cells (WBCs) eluted off the SCD-H and SCD-C,

10 F-40 cartridges were $6.44 \pm 3.4 \times 10^8$ and $1.72 \pm 1.20 \times 10^8$ cells (**Figure 10A**) ($p < 0.05$), respectively, indicating that citrate anticoagulation reduced the number of adherent leukocytes.

Furthermore, the distributions of eluted cells were $79 \pm 5\%$ neutrophils and $21 \pm 4\%$ monocytes in the SCD-H group as compared to 55 ± 4 neutrophils and $30 \pm 5\%$ monocytes in the SCD-C, F-40 group (**Figure 10B**). Surprisingly, an average of $1.88 \pm 1.21 \times 10^7$ cells were eluted off from the

15 cartridges of the SCD-C, F-80A group (**Figure 10A**), which was about ten fold lower than the average number of eluted cells from the SCD-C, F-40 group. Thus, even though the substantially larger membrane surface area of the F-80A might have led to increased retention of leukocytes, the SCD cartridge's efficiency in deactivating leukocytes apparently led to a dramatic reduction in leukocyte retention by the end of the procedure. An average of 8×10^6 cells were eluted from the 20 cartridges of non-septic control animals ($n = 2$), suggesting that most of the cells that were sequestered in the cartridges of the SCD-H and SCD-C groups were activated leukocytes. The SCD-C group had fewer than 2×10^4 cells eluted from lumens of the cartridges with luminal blood perfusion.

[0171] In order to determine whether the SCD cartridge with citrate anticoagulation can

25 influence the activity of neutrophils in the systemic circulation, biomarkers of neutrophil activation were assessed. Activated neutrophils release various enzymes in response to invading microbes or tissue injury. Since the dominant enzyme released from neutrophil granules is myeloperoxidase (MPO) (Klebanoff, S.J., *et al.*, (2005) LEUKOC. BIOL. 77(5): 598-625), blood MPO levels reflect the level of neutrophil activation. As depicted in **Figure 11A**, plasma MPO levels in the SCD-C

groups were significantly lower compared with the SCD-H group, reflective of a lower level of activated neutrophils. Furthermore, the SCD-C, F-80A group showed the lowest level of MPO. Systemic circulating neutrophil activation was also assessed by measuring the amount of CD11b expression on circulating neutrophils. CD11b is a membrane protein involved in the adherence of leukocytes to activated endothelium at the site of inflammation (Fan, S.T., *et al.*, (1993) *J. IMMUNOL.*, 150(7): 2972-2980). As depicted in **Figure 11B**, the amount of CD11b expression on circulating neutrophils was dramatically decreased in the SCD-C groups compared to the SCD-H groups ($p = 0.03$), indicating a lower level of neutrophil activation.

[0172] To further assess the immunomodulatory effect of the SCD cartridge and regional citrate coagulation, systemic cytokine levels were evaluated. Serum levels of various cytokines including IL-1 β , IL-6, IL-8, IL-10, TNF- α and IFN- γ were not significantly different between the SCD-H and the SCD-C groups, although the pro-inflammatory cytokines IL-1 β and IL-8 appeared to be slightly higher in the SCD-H group. Since the SCD device also sequesters monocytes, PBMCs were isolated and assessed for cytokine release. Prior to sepsis induction, PBMC release of TNF- α and IL-8 in response to LPS were 2.1 ± 1.8 and 6.5 ± 2.8 pg/ 10^6 cells, respectively, in the SCD-H group; in the SCD-C group, the release was 5.1 ± 0.9 and 18.7 ± 8.1 pg/ 10^6 cells, respectively. At 6 hours post sepsis, PBMC release of TNF- α and IL-8 in response to LPS was significantly lower in the SCD-C groups as compared to the SCD-H group ($p < 0.05$) (**Figures 12A and 12B**). These results indicated that the overall pro-inflammatory cytokine profile in the septic state was dampened in the SCD-C groups. Again, it appeared that the SCD device having a membrane surface area of 2.5 m^2 had the greatest immunomodulatory effect.

[0173] Previous studies have reported that the lung was the first organ targeted for activated leukocyte sequestration and infiltration after endotoxemia or sepsis (Welbourn, C.R. *et al.*, (1992), *BR. J. SURG.*, 79(10): 998-1003; Andonegui, G., *et al.*, (2009), *J. CLIN. INVEST.*, 119(7): 1921-1930). Thus, we evaluated the effect of the SCD device and citrate anticoagulation on the sequestration of activated leukocytes in lung tissues. As demonstrated in **Figure 13**, a significant decrease in CD11b-labeled cells in the lung was observed in the SCD-C group compared to the SCD-H group. Further, a histomorphometric analysis showed that the ratios of percent CD11b-positive area by percent DAPI-positive area in the SCD-C group and SCD-H group were $0.114 \pm$

0.21 versus 0.334 ± 0.052 ($p = 0.007$), respectively (**Figure 14**). Together, these results indicated a reduced lung sequestration of activated leukocytes in animals treated with the SCD device and citrate.

[0174] White blood cell (WBC) kinetics may also provide insights into the manner in which the SCD device may influence leukocyte response to infection. To determine the kinetics of the circulating pool of leukocytes in the SCD-H and SCD-C groups, absolute WBC and neutrophil counts were measured (**Figure 15**).

Both the SCD-H and SCD-C, F-40 groups reached a nadir of 1125 ± 240 and 1094 ± 166 neutrophils/ mm^3 at 3 hours post sepsis induction, respectively. These groups did not reach absolute neutropenia (defined as counts below 500) due to an increase in immature neutrophils from the bone marrow, as determined by manual examination of blood smears, beginning at 3 hours post sepsis induction. Notably, the SCD-C, F-80A, group consistently exhibited a low neutrophil count reaching a nadir of 457 ± 77 at 6 hours. This was due to a markedly diminished release of immature neutrophils from the bone marrow, suggesting that the SCD device with a larger surface area may function to alter the kinetics of bone marrow release of immature neutrophils. The Con-citrate F-40 group had a similar decline and rebound of leukocyte counts as the SCD-H F-40 group, whereas the NS-control animals tended to have neutrophilia, with neutrophil counts rising from approximately 4,000 to 14,000 over the 8-hour evaluation period.

[0175] Under septic conditions, activated neutrophils have an increased lifespan with a delay

in apoptosis. The apoptotic potential of the circulating and adherent leukocytes isolated from the SCD-C groups was assessed. As shown in **Figure 16**, the SCD-C, F-80A group had a higher number of apoptotic circulating neutrophils as compared to the SCD-C, F-40 group, suggesting that this SCD device with the larger membrane surface area decreased the activation state of circulating neutrophils. On the other hand, the SCD-C, F-80A group had fewer apoptotic SCD-cartridge-adherent neutrophils, suggesting that this SCD device selectively sequestered activated neutrophils thus removing them from the circulating pool.

[0176] Together, the above results demonstrated the efficacy of the SCD device combined with citrate in ameliorating cardiovascular instability, reducing renal dysfunction, and improving survival time in a porcine model of septic shock. More importantly, these results demonstrated

that a SCD cartridge having larger sequestration area is more effective in alleviating the complications associated with sepsis.

Example 2. In Vitro Studies of Leukocyte Sequestration and Deactivation

[0177] This example describes *in vitro* experiments to evaluate the effect of the SCD device on leukocyte sequestration and activation.

(I) Methods and Materials

A - In Vitro Assessment of Leukocyte Interaction with the Membrane of a SCD Cartridge

[0178] A custom microscopic flow chamber system was set up to enable microscopic analysis of leukocyte interaction with the SCD membrane. The flow chamber consisted of a polycarbonate housing with an inlet and outlet for perfusion. A polysulfone membrane was affixed to the polycarbonate block with a gasket which directed shear flow. The thickness of the gasket (100 μm) along with the length (2 cm) and the width of the channel (1.5 mm) determined the volume of the flow chamber. Microscopic imaging was accomplished through an optical window made up of a cover glass affixed to the bottom of the polycarbonate block. Either isolated blood or purified leukocytes were used for this study.

[0179] Isolated blood was prone to activation from excessive handling. Thus, 5 mL of fresh heparinized porcine blood was minimally manipulated prior to the flow chamber study. Briefly, leukocytes were fluorescently labeled using 50 $\mu\text{g}/\text{mL}$ of Hoechst 33342 dye. Further, the leukocytes were activated by adding 1 $\mu\text{g}/\text{ml}$ lipopolysaccharide (LPS) directly to the blood samples. Similarly, 125 μL of Anticoagulant Citrate Dextrose Solution USP (ACD) Formula A (Baxter) was added to 5 mL of isolated blood and ionized calcium levels were measured prior to microscopic flow analysis with i-stat EG-7+ cartridges. Blood passed through the flow chamber at a rate of 20 $\mu\text{L}/\text{min}$ with calculated shear forces between 1-10 dynes/cm². For each isolated blood sample, sequences were acquired in triplicate.

[0180] Microscopic analysis of cell capture events was accomplished using either a Zeiss Axiovert 200M or Axio-Observer epifluorescence microscope equipped with a microscope stage-top incubator to control environmental temperature and CO₂ content. Fluorescence images were acquired with either a Zeiss MRm3 or an Icc1 camera at a frequency of 1 frame/second for 5

minutes, for analysis of leukocyte/membrane interaction, and at 1 frame/minute for 1 hour sequences, for analysis of long term leukocyte attachment. Frame by frame evaluation of leukocyte rolling, attachment and detachment of leukocytes was carried out to determine the total number and duration of these phenomena. An attachment event was defined as when a leukocyte 5 appeared in the same location for multiple frames within a sequence. Detachment was defined as release events associated with previously defined attached leukocytes. Rolling events were defined by identifying the same leukocyte in multiple sequence frames within a sequence where the leukocyte was not in same exact location, but in close proximity to the prior location.

B - Assessment of *In Vitro* Leukocyte Activation

10 [0181] Heparinized human whole blood was added to tubes with or without lipopolysaccharide (LPS) (10 μ g/mL) or formyl-Methionyl-Leucyl-Phenylalanine (fMLF, 50 nM). Citrate anticoagulation was achieved by adding citrate dextrose solution (ACD) to the tubes (Damsgaard, C.T., (2009) J. IMMUNOL. METHODS, 340(2): 95-101; Wutzler, S., (2009) J. TRAUMA, 66(5): 1273-15 1280). The release of IL-6, IL-8, or IL-10 was measured using commercially available ELISA kits from R&D Systems. The release of elastase was measured using a commercially available ELISA kit from Bender MedSystems. The release of lactoferrin was measured using a commercially available ELISA kit from EMD Chemicals. The iCa levels were measured using an I-STAT reader and were confirmed to be \leq 0.25 mM and 1.25 mM in the citrate treated or nontreated samples, respectively. Samples were incubated for various times at 37 °C and 5% CO₂. CD11b activation 20 was measured using an FITC-conjugated mouse anti-human antibody (AbD Serotech) and evaluated on an Accuri C6 flow cytometer.

(II) Results and Discussion

A - Observation of Leukocyte Parameters

25 [0182] To assess the interactions of leukocytes and the SCD polysulfone membranes, a customized flow chamber with video microscopy was set up. The addition of citrate lowered blood iCa level from 1.32 ± 0.05 mmol/L to 0.32 ± 0.05 mmol/L. Analysis of leukocyte attachment events confirmed that LPS activation of the leukocytes in the absence of citrate significantly increased leukocyte attachment to polysulfone membranes during shear flow ($p <$

0.05, **Figure 17**). In citrate-treated, low ionized calcium flow chambers, a statistically significant decrease in leukocyte attachment was observed ($p < 0.05$), suggesting that leukocyte adhesion to polysulfone membranes may be ionized calcium dependent. These results were consistent with the *ex vivo* data in the above-described sepsis porcine model, in which citrate-treated membrane

5 cartridges had fewer adherent leukocytes at the end of the studies. In addition, preliminary analysis of 1 hour sequences demonstrated far fewer persistent leukocyte adhesion events for LPS and citrate treated blood compared to blood treated with LPS only. However, there was an observed increase in rolling events for the LPS and citrate treated blood. This suggested a catch and release phenomena when leukocytes interact with the polysulfone membrane in the presence 10 of citrate.

[0183] Experiments were carried out to assess the effects of citrate-promoted reductions in blood iCa on leukocyte activity. Specifically, an *in vitro* whole blood assay system was utilized (Damsgaard, C.T., (2009) J. IMMUNOL. METHODS, 340(2): 95-101; Wutzler, S., (2009) J. TRAUMA, 66(5): 1273-1280) to assess the effects of lowered blood iCa levels on leukocyte cytokine

15 production (IL-6, IL-8, IL-10) and the release of preformed inflammatory proteins from neutrophil exocytotic vesicles (lactoferrin, elastase). The results are summarized in **Table 6**.

TABLE 6 – Effect of citrate on leukocyte activation parameters

<u>Baseline</u>	IL-6 (ng/mL) n = 7	IL-8 (ng/mL) n = 5	IL-10 (ng/mL) n = 4	Lactoferrin (mg/mL) n = 4	Elastase (mg/mL) n = 5	CD11b (MFI x 10^3) n = 3
Heparin	0.18 \pm 0.04	0.0 \pm 0	0.11 \pm 0.07	8.47 \pm 1.54	2.73 \pm 0.29	22.55 \pm 1.06
Citrate	0.38 \pm 0.15	0.59 \pm 1.51	0.01 \pm 0.01	1.67 \pm 0.29*	0.94 \pm 0.14§	7.32 \pm 0.47§
Stimulated (LPS, fMLF)						
Heparin	65.42 \pm 19.77	34.18 \pm 6.66	3.74 \pm 0.94	12.42 \pm 1.08	4.52 \pm 0.54	53.43 \pm 3.12
Citrate	28.99 \pm 7.60*	3.45 \pm 2.30†	2.06 \pm 0.84†	3.43 \pm 0.18§	0.91 \pm 0.28**	28.72 \pm 2.95§

*p < 0.05; †p < 0.02; **p < 0.005; §p < 0.002, as determined with paired t-test between heparin and citrate groups.

20

[0184] As shown in Table 4, lowering iCa with citrate inhibited the release of cytokines (IL-6, IL-8, IL-10) and neutrophil exocytotic proteins, suggesting that a low iCa environment promoted the deactivation of leukocytes.

Example 3. Use of SCD Device During Cardiopulmonary Bypass Surgery

[0185] Systemic Inflammatory Response Syndrome (SIRS) can occur in association with cardiopulmonary bypass (CPB) surgery, resulting in multiple organ dysfunction (MOD).

5 Activated neutrophils have been implicated as major inciting factors in this process. This example describes *in vitro* and *in vivo* experiments that evaluate the effect of SCD cartridges for use during CPB surgery. The results demonstrate that the usage of SCD cartridges may disrupt the systemic leukocyte response during CPB surgery, leading to improved outcomes for CPB-mediated MOD.

(I) Background

[0186] Leukocytes, especially neutrophils, are major contributors to the pathogenesis and progression of many clinical inflammatory disorders, including systemic inflammatory response syndrome (SIRS), sepsis, ischemia/reperfusion injury, acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI). Cardiac surgical advances have been dependent upon the techniques for cardiopulmonary bypass (CPB). It has been recognized that a systemic inflammatory response occurs in association with CPB, resulting in multiple organ dysfunctions (MOD) following surgery. Multiple insults during CPB have been shown to initiate and extend this inflammatory response, including artificial membrane activation of blood components (membrane oxygenator), surgical trauma, ischemia-reperfusion injury to organs, changes in body temperature, blood activation with cardiotomy suction, and release of endotoxin. These insults promote a complex inflammatory response, which includes leukocyte activation, release of cytokines, complement activation, and free-radical generation. This complex inflammatory process often contributes to the development of acute lung injury, acute kidney injury, bleeding disorders, altered liver function, neurologic dysfunction, and ultimately MOD.

[0187] The mechanisms responsible for MOD following CPB are numerous, interrelated and complex, but growing evidence suggests a critical role in the activation of circulating blood 25 leukocytes, especially neutrophils in the development of ARDS in CPB-induced post-pump syndrome. Sequestered and activated neutrophils migrate into lung tissue, resulting in tissue injury and organ dysfunction. The importance of activated leukocytes and microvascular dysfunction has also been demonstrated to be important in acute kidney injury.

[0188] In this regard, the use of leukocyte depleting filters within an extracorporeal blood circuit during CPB has been developed and evaluated in preclinical animal models and clinical studies. While filters remove leukocytes *in vitro*, they do not appear to consistently deplete leukocyte concentrations *in vivo*. The majority of papers reported no significant reduction in 5 circulating leukocytes, a conclusion similarly drawn by meta-analysis. Acknowledgement of “filter exhaustion,” a progressive decrease in leukocyte reduction efficiency during CPB has been repeatedly observed during experimental evaluation.

[0189] The instant invention utilizes a biomimetic membrane called the selective cytopheretic device (SCD) and regional citrate anticoagulation to promote a decrease in activated leukocytes in 10 animals and patients suffering from acute inflammation. Early pre-clinical and clinical results, suggest that the device ameliorates the MOD effects of SIRS and impacts the mortality rate of multiorgan failure in intensive care unit (ICU) patients. Results described herein demonstrate that the SCD reduces the circulating level of neutrophils and reduces markers of neutrophil activation, both *in vitro* and *in vivo*.

15 **(II) Methods and Materials**

A - Selective Cytopheretic Device (SCD)

[0190] The SCD tested was a polycarbonate housing containing porous polysulfone hollow fibers with an inner diameter of 200 μm , a wall thickness of 40 μm , and a molecular weight cutoff of 40 to 50 kDa. Blood flow was directed to the extracapillary space (ECS). The SCDs used had 20 outer membrane surface area (SA) of 2.2 m^2 and 2.6 m^2 , and surface area/inner volume (SA/IV) ratios of 486 cm^{-1} and 508 cm^{-1} , respectively. The SCDs were supplied by CytoPherx, Inc. (Ann Arbor, MI).

B - *In Vitro* Blood Circuit Studies

[0191] *In vitro* blood circuit studies were initiated to compare two leukocyte reducing 25 membrane systems, the Pall Leukogard LGB (Ann Arbor, MI) and the SCD device in a series of 10 paired studies. Fresh, heparinized bovine blood (5-6L) was collected in a 7L silicone drain bag (B Braun Medical Inc. Bethlehem, PA) with 90,000 IU sodium heparin (Clipper Distributing LLC, Saint Joseph, MO) and divided evenly into two identical drain bags, which served as reservoirs for two separate blood circuits, each to test the respective device. The *in vitro* blood circuits utilized 30 FDA approved Tygon lines (Cole-Parmer, Vernon Hills, IL). The circuits were set up to monitor

temperature with type T thermocouples, and pressure measurements with a 4 channel 90XL (Mesa Labs, Lakewood, CO), pre- and post- device during perfusion. Both blood reservoirs were warmed in the same water bath (34.5°C) to insure identical heating behavior, and a handheld IR-pyrometer was employed to measure internal temperatures (approximately 31°C) within each device tested.

5 Peristaltic blood pumps (Fresenius 2008H, Walnut Creek, CA) maintained a constant flow rate of 300 mL/min in both circuits.

[0192] Blood samples were obtained every 15 minutes to measure total white cell, neutrophil, and platelets as previously described, as well as for other assays. For plasma myeloperoxidase (MPO) and free hemoglobin (Hgb) analysis, blood samples were immediately cooled and 10 centrifuged free of cells. Plasma hemoglobin concentration was chemically determined using a colorimetric assay with 3,3', 5,5', tetramethylbenzidine (TMB), and MPO was measured by ELISA. At the end of the experiment, the circuit was disconnected and normal saline flushed continuously through the extracapillary space (ECS) of the SCD until fluid was free of visible blood, and then the SCD was eluted to quantify adherent cells as previously described. A similar 15 process was also conducted to elute LGB filters.

C - In Vivo Cardiopulmonary Bypass Model

[0193] Wisconsin calves (100-110kg) were premedicated with atropine (0.04 mg/kg), and ketamine (25 mg/kg) administered by intramuscular (IM) injection, and then anesthetized with 5 µg/kg of thiopental. After intubation with an endotracheal tube (Mallinckrodt Company, Mexico 20 City, Mexico), ventilation was established with a volume cycle ventilator. Anesthesia was maintained by continuous infusion of 5 mg/kg/h of thiopental and 20 µg/kg/h of fentanyl. Muscle relaxation was induced with 0.2 mg/kg of pancuronium followed by intermittent reinjections at 0.1 mg/kg. Polyethylene monitoring lines were placed in the external jugular vein and the femoral artery and vein. Median sternotomy was performed. A 16 to 20 mm Transonic perivascular flow 25 probe was placed on the main pulmonary artery, and Millar microtip pressure transducers were placed in the pulmonary artery and left atrium. Prior to initiating cardiopulmonary bypass, baseline pulmonary artery pressure and flow rate and left atrial pressure readings were taken for determination of cardiac output. After systemic heparinization (300 U/kg), an 18F Medtronic DLP arterial cannula was placed in the left carotid artery and a 24F Medtronic DLP single-stage venous 30 cannula was placed in the right atrium.

[0194] The CPB circuit was primed with 1,000 mL of lactated Ringer's solution and 25 mEq of NaHCO₃. The circuit consisted of a Sarns roller blood pump, a Medtronic Affinity hollow fiber oxygenator with integral heat exchanger, and a cardiotomy reservoir. A Medtronic Affinity 38- μ m filter was placed in the arterial limb to capture particulate debris. The left ventricle was vented 5 using a 12-Ga Medtronic standard aortic root cannula with vent line connected to a Sarns roller pump and the cardiotomy reservoir. Cardiopulmonary bypass was initiated, ventilation was discontinued, and systemic perfusion maintained at 2.4 L/min/m² body surface area. Moderate perfusion hypothermia (32°C rectal temperature) was used, and mean aortic pressure kept at 60-80 mmHg by modification of flow and intravenous phenylephrine infusion (0-2 μ g/kg/min). The 10 ascending aorta was cross clamped. CPB was maintained for 255 minutes.

[0195] Three groups of animals were evaluated: CPB circuit without SCD, CPB circuit with SCD, and CPB circuit with SCD with citrate/calcium regional perfusion to provide a low ionized calcium (iCa) blood environment only along the SCD circuit. The SCD circuit blood flow was controlled at 200 mL/min with an AK12 blood pump system (Gambro). Citrate/calcium infusion 15 was based upon well developed clinical protocols for citrate regional anticoagulation, as previously described.

[0196] Similar to the in vitro blood circuit studies, for all sample times systemic blood was used to assess CBCs. The SCD or LGB was routinely removed at T = 225 minutes, with a final blood sample taken 15 minutes after removal to evaluate post therapy dynamics. Total manual 20 white cell counts were determined using the Unopette system (BD Biosciences) and manual differentials were determined from blood smears after ethanol fixation and Wright stain (Richard-Allen Scientific). After each study, if a SCD or LGB was used, adherent cells were eluted and quantified as previously described.

D - Statistical Analysis

25 [0197] Analysis of variance (ANOVA) was conducted for all studies with statistical significance of p < 0.05.

(III) Results and Discussion

A - In vitro blood circuit studies

[0198] The temperature of the blood was similar between the SCD and LGB circuits 30 throughout the study, averaging 31.1 \pm 0.4 °C and 31.1 \pm 0.3°C, respectively. The pressure

profile across the devices were 92.0 ± 49.1 and 29.2 ± 16.2 mmHg for pre- and post- SCD with a pressure drop of 62.9 ± 39.8 , and 98.8 ± 71.5 and 40.1 ± 17.1 pre- and post- LGB, with a pressure drop of 31.3 ± 3.9 mmHg. The variability in pressures was related to differences in the hematocrit of blood in the circuit, which averaged $31.1 \pm 3.9\%$.

5 [0199] The total white cell counts for the LGB circuits dropped by greater than 50% within the first 15 minutes and remained steady to the end of the experiment. This decline is largely the result of a more than an 80% drop in circulating neutrophils. The SCD circuits showed a substantial, but smaller drop in total white cells and neutrophils during the experiment, with the neutrophil counts declining between 40% and 60%. Differential white blood cell counts from each 10 device were evaluated. Monocyte and eosinophil concentrations also declined, but due to their low percentages in circulating blood, accurate quantification was challenging. A substantial decline in the number of platelets was observed, with the SCD and LGB in particular, displaying a relative platelet reduction of greater than 80% at 15 minutes. However, in both cases the platelet count rebounds to a level equivalent to approximately 50% of the platelet counts enumerated prior to 15 beginning the experiment.

B - *In vitro* blood circuit device elution

20 [0200] The total number of cells eluted from LGB and SCD were counted. Twice as many cells were recovered from LGB than the SCD. The percentage of neutrophils, monocytes, and eosinophils in the closed circulation loop that were recovered from each device were calculated. The total number of each leukocyte population recovered from each device was divided by the total number of each leukocyte population present in blood prior to the initiation of each experiment. The Mean \pm SEM for neutrophils, monocytes, and eosinophils are shown for 10 SCD and 10 LGB. Neutrophils outnumbered monocytes roughly 2 to 1, while eosinophils were present at a variable and much smaller number and percentage from both leukocyte filters. More 25 neutrophils and monocytes were eliminated from LGB versus SCD.

[0201] Total cell numbers remaining in the blood at the termination of each experiment were added to the cell numbers eluted from the device and compared with the number of cells present in the blood sample at the beginning of the experiment. The difference in these numbers is reported as the “change of total cell number” and is most likely to indicate the number of cells destroyed 30 during the four hour circulation experiment. Significantly more cells were unaccounted for in the

circuits employing the LGB than in the case of the SCD ($P < 0.05$). The data are presented as the mean \pm SEM of 10 paired experiments.

C - *In vitro* blood circuit blood biocompatibility

[0202] Neutrophil released myeloperoxidase (MPO) activity was assayed as the mean \pm SEM for SCD (N=8), and for LGB (N=10) in $\mu\text{g}/\text{ml}$. Plasma MPO activity was significantly higher for the LGB relative to the SCD, with a peak at the first sampling time after circuit initiation ($7.45 \pm 3.02 \mu\text{g}/\text{mL}$) and continued to be elevated for the remainder of the experiment ($p < 0.05$). SCD circuit MPO values remained below $0.4 \mu\text{g}/\text{mL}$ at all times. Free hemoglobin (Hgb) in plasma, a measure of hemolysis is also assessed, as the mean \pm SEM for LGB (N=10) and SCD (N=10) in mg/mL , with a peak at the first sampling time after circuit initiation ($0.06 \pm 0.04 \text{ mg}/\text{mL}$) and elevated levels throughout. SCD circuit free hemoglobin values remained below $0.005 \text{ mg}/\text{mL}$ at all times.

D - *In vivo* bovine calf model of CPB

[0203] Systemic white blood cell (WBC) counts are assessed for the CPB *in vivo* bovine studies. In the CPB No SCD control group, WBC increased above the baseline level counts after 90 minutes and peaked with nearly double the baseline WBC. For device treated groups, WBC counts decreased in the first hour of CPB. In the SCD heparin treatment group, following this initial reduction, the WBC gradually increased after 60 minutes, and throughout CPB, with a sharp raise after removing SCD (routinely at $t = 225 \text{ min}$) for the final measurement 15 minutes thereafter. Similar results were observed when LGB was placed in the circuit rather than the conventional arterial line filter (data not shown). In SCD citrate group, WBCs were low throughout CPB, and even after the SCD was removed.

[0204] Quantification of the neutrophil population during cardiopulmonary bypass (CPB) surgery without a SCD showed an approximate 5-fold rise in the systemic levels. SCD treatment with only systemic heparin coagulation during CPB dramatically reduced the systemic neutrophil concentration during the first 120 min, but was followed by a steady rise until SCD removal (routinely at $t = 225 \text{ min}$), with a larger increase 15 minutes after SCD removal. SCD with regional citrate during CPB resulted in a systemic neutrophil concentration approximately 75% lower than the pre-SCD level, which persisted throughout CPB, and remained low 15 minutes after SCD removal.

[0205] At the conclusion of SCD therapy, SCD were thoroughly washed and bound leukocytes were eluted and enumerated. On average 8×10^7 and 1.63×10^9 leukocytes were eluted from the SCD employing regional citrate or systemic heparin, respectively. Eluted cells were of the granulocytic lineage independent of the use of regional citrate, on average consisting of

5 approximately 80% neutrophils, 20% monocytes, and variable amounts of eosinophils, typically < 2%, similar to distributions reported in *in vitro* blood circuit studies. Preliminary results from the quantification of immature neutrophils by manual counts demonstrate a trend of low counts for the SCD-Citrate group at the end of 240 minutes of CPB (230, 0 per μL , n = 2) wheras SCD-Heparin (1630, 6300, 1390 per μL , n = 3), No SCD (160, 2660 per μL , n = 2) and LGB (1760, 3880 per

10 μL , n = 2) groups all have cases of increased amounts of immature neutrophils.

E - Discussion

[0206] CPB promotes SIRS often resulting in MOD. This inflammatory disorder arises from multifactorial processes, but circulating leukocyte activation is postulated to play a central role. Therapeutic interventions directed toward leukocyte depletion during CPB have been evaluated

15 both in pre-clinical and clinical studies. The results have been inconsistent with regards to reducing circulating leukocyte counts and alleviating progression to MOD.

[0207] An *in vitro* test circuit was developed to assess leukocyte depletion in a circulating

heparinized blood circuit between 31°C and 34.5°C and comparable blood flow rates of 300 ml/min. When integrated into the blood circuit, both the LGB and SCD prompted a significant 20 reduction in circulating white blood cell and neutrophil counts with the LGB group having a greater effect to lower WBC counts compared to the SCD. This reduction in leukocyte counts in the LGB group compared to the SCD group was due to both a higher degree of sequestration in the device (eluted cells), and a higher degree of destruction of leukocytes (by mass balance).

Destruction of cellular elements within the blood was reflected in the higher free hemoglobin and

25 MPO levels in the LGB versus SCD. Platelet dynamics with over an 80% reduction within the first 15 minutes followed by a recovery to 50% of the pre-study platelet concentration, are suggestive of rapid initial phase of platelet binding to circuit components, followed by subsequent release.

[0208] To further assess the influence of the SCD to lower circulating leukocyte counts, a

30 bovine model utilizing CPB was examined. CPB performed without SCD demonstrated a small,

but not statistically significant reduction of WBC counts in the first 60 minutes of CPB perfusion most likely due to non-specific attachment along the artificial membranes and blood tubing of the perfusion circuit. After 60 minutes, the WBC counts increased two-fold, and neutrophils increased up to five-fold relative to starting values. When the SCD was placed in the circuit utilizing

5 systemic heparinization, leukocyte reduction was achieved for 2 hours, but led to a large increase in neutrophils at later time points and following SCD removal. When the SCD perfusion circuit was regionally perfused with citrate to lower ionized calcium to 0.25 to 0.40 mM, leukocyte and neutrophil counts remained low throughout CPB, even after removal of the SCD (routinely at $t = 225$ min) for the final measurement 15 minutes after SCD removal.

10 [0209] The WBC and neutrophil kinetics in these bovine studies also provide insight into the manner in which SCD treatment may influence the leukocyte response to CPB. The number of neutrophils sequestered in the SCD was approximately 10^8 cells, a small percentage of the circulating and marginated pool. However, the magnitude of neutrophil release from bone marrow and marginated stores in response to the systemic insult of CPB was blunted with SCD, especially with regional citrate 15 infusion, suggesting that SCD-C treatment may alter the kinetics of neutrophil apoptosis and/or signals required for recruitment of neutrophils from marginated or bone marrow pools.

Further, the finding that the number of leukocytes eluted from the SCD during citrate infusion was 10-fold less than in the heparin condition, while maintaining lower leukocyte concentration in blood suggests that the low-iCa environment may promote the adhesion of activated leukocytes, followed by 20 release after a time period of sequestration and deactivation. The kinetics of this "catch and release" phenomenon is supported with published and ongoing studies utilizing *in vitro* shear chambers. These *in vitro* and *ex vivo* studies suggest that the SCD devices of the invention may ameliorate the natural progression of SIRS by blunting the systemic leukocyte response leading to improved cardiovascular stability, respiratory performance and renal function. This study demonstrates a preventative therapeutic 25 approach to ameliorate CPB promoted leukocyte response and lessen progression to MOD. The *in vitro* and *ex vivo* data provided herein demonstrates the safety and efficacy of the SCD for CPB applications.

Example 4. Exemplary SCD Cartridge for Use in Treating an Inflammatory Condition in a Subject

[0210] To demonstrate the efficacy of the SCD cartridges of the invention, subjects (for example, porcine animal model or a human subject) with various inflammatory conditions may be 5 treated with a SCD device listed below in **Table 7** using the protocols described above to improve cardiovascular and/or renal parameters.

TABLE 7 – Exemplary SCD Cartridges

Device	ECS SA (m ²)	ECS SA (cm ²)	ECS Fill (cm ³)	SA/V (cm ⁻¹)
1	0.98	9800	130	75
2	2.5	25000	250	100
3	1.25	12500	125	100
4	2.5	25000	125	200
5	2.5	25000	109	230
6	2.5	25000	94	267
7	5	50000	93	536
8	5	50000	125	400
9	6.7	67000	125	537
10	10	100000	125	800

10 [0211] The SCD cartridges of the invention may also be adapted for treating small subjects (for example, pediatric patients) with inflammatory conditions. **Table 8** depicts various SCD cartridges that may be useful in such applications.

TABLE 8 – Exemplary SCD Cartridges

Device	ECS SA (m ²)	ECS SA (cm ²)	ECS Fill (cm ³)	SA/V (cm ⁻¹)
1 – 1.5 cm case; 200µm fibers	0.17	1700	9	185
2 - 1.5 cm case; 100µm fibers	0.35	3500	9	392
3 - 1.5 cm case; 75µm fibers	0.47	4700	9	530

Device	ECS SA (m ²)	ECS SA (cm ²)	ECS Fill (cm ³)	SA/V (cm ⁻¹)
4 - 1.5 cm case; 50µm fibers	0.70	7000	9	784
5 - 2.5 cm case; 200µm fibers	0.49	4900	25	199
6 - 2.5 cm case; 100µm fibers	0.98	9800	25	399
7 - 2.5 cm case; 75µm fibers	1.30	13000	25	526
8 - 2.5 cm case; 50µm fibers	1.96	19600	25	797

INCORPORATION BY REFERENCE

[0212] The entire disclosure of each of the publications and patent documents referred to herein is incorporated by reference in its entirety for all purposes to the same extent as if each individual publication or patent document were so individually denoted.

EQUIVALENTS

5 **[0213]** The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended
10 to be embraced therein.

[0214] What is claimed is:

- 1 1. A cartridge for treating activated leukocytes, activated platelets, or both activated
2 leukocytes and activated platelets, comprising:
 - 3 (a) a rigid housing defining an inner volume (IV), a fluid inlet port and a fluid outlet port,
4 wherein the inner volume is in fluid flow communication with the fluid inlet port and the
5 fluid outlet port; and
 - 6 (b) a solid support disposed within the housing and defining a fluid contacting surface with
7 a surface area (SA) capable of sequestering an activated leukocyte and/or an activated
8 platelet if present in a body fluid entering the housing via the fluid inlet port, wherein the
9 SA/IV ratio is greater than 150 cm^{-1} and the solid support is disposed within the housing at
10 a packing density in the range from 20% to 65%.
- 1 2. The cartridge of claim 1, wherein the SA/IV ratio is in the range from 150 cm^{-1} to $1,500 \text{ cm}^{-1}$.
- 1 3. The cartridge of claim 2, wherein the SA/IV ratio is in the range from 300 cm^{-1} to $1,000 \text{ cm}^{-1}$.
- 1 4. The cartridge of claim 3, wherein the SA/IV ratio is in the range from 400 cm^{-1} to 800 cm^{-1} .
- 1 5. The cartridge of claim 2, wherein the SA/IV ratio is in the range from 200 cm^{-1} to 600 cm^{-1} .
- 1 6. The cartridge of any one of claims 1-5, wherein the solid support is a membrane.
- 1 7. The cartridge of claim 6, wherein the membrane is porous.
- 1 8. The cartridge of any one of claims 1-7, wherein the solid support comprises a planar
2 support member.
- 1 9. The cartridge of claim 8, wherein the planar support member is a membrane.
- 1 10. The cartridge of any one of claims 1-7, wherein the solid support comprises a fiber.
- 1 11. The cartridge of claim 10, wherein the fiber is a hollow fiber or a solid fiber.
- 1 12. The cartridge of any one of claims 1-11, wherein the SA is greater than 0.8 m^2 .

- 1 13. The cartridge of any one of claims 1-11, wherein the SA is in the range of from 0.1 m² to
- 2 10.0 m².
- 1 14. The cartridge of claim 13, wherein the SA is in the range of from 0.1 m² to 5.0 m².
- 1 15. The cartridge of claim 13, wherein the SA is in the range of from 0.1 m² to 0.4 m², from 0.4 m² to 0.8 m², from 0.8 m² to 1.2 m², from 1.2 m² to 1.6 m², from 1.6 m² to 2.0 m², from 2.0 m² to 2.4 m², from 2.4 m² to 2.8 m², from 2.8 m² to 3.2 m², from 3.2 m² to 3.6 m², from 3.6 m² to 4.0 m², from 4.0 m² to 4.4 m², from 4.4 m² to 4.8 m², from 4.8 m² to 5.2 m², from 5.2 m² to 5.6 m², from 5.6 m² to 6.0 m², from 6.0 m² to 6.4 m², from 6.4 m² to 6.8 m², from 6.8 m² to 7.2 m², from 7.2 m² to 7.6 m², from 7.6 m² to 8.0 m², from 8.0 m² to 8.4 m², from 8.4 m² to 8.8 m², from 8.8 m² to 9.2 m², from 9.2 m² to 9.6 m², or from 9.6 m² to 10.0 m².
- 1 16. The cartridge of any one of claims 1-15, wherein the IV is less than 300 cm³.
- 1 17. The cartridge of claim 16, wherein the IV is less than 150 cm³.
- 1 18. The cartridge of claim 17, wherein the IV is less than 100 cm³.
- 1 19. The cartridge of any one of claims 1-15, wherein the IV is in the range of from 10 cm³ to 150 cm³.
- 1 20. The cartridge of claim 19, wherein the IV is in the range of from 75 cm³ to 150 cm³.
- 1 21. The cartridge of claim 19, wherein the IV is in the range of from 15 cm³ to 120 cm³.
- 1 22. The cartridge of claim 21, wherein IV is in the range of from 20 cm³ to 80 cm³.
- 1 23. The cartridge of any one of claims 1-22, wherein the fluid inlet port and the fluid outlet port are dimensioned to permit a flow rate through the housing in a range from 10 cm³/minute to 8,000 cm³/minute.
- 1 24. The cartridge of claim 23, wherein the flow rate through the housing is in the range from 50 cm³/minute to 8,000 cm³/minute.
- 1 25. The cartridge of any one of claims 1-24, wherein the housing is configured to create a shear force less than about 100 dynes/cm² when a body fluid enters the housing through the fluid inlet port and exits the housing through the fluid outlet port at a rate of 1,000 cm³/minute.

- 1 26. The cartridge of any one of claims 1-25, wherein the fluid contacting surface of the solid
2 support comprises polysulfone.
- 1 27. The cartridge of any one of claims 1-26, wherein the fluid contacting surface of the solid
2 support comprises a cell-adhesion molecule attached thereto.
- 1 28. The cartridge of any one of claims 1-27, wherein the cartridge is sterile.
- 1 29. The cartridge of any one of claims 1-28, wherein the fluid inlet port and the fluid outlet port
2 each have a cross-section of no less than 0.01 cm^2 , no less than 0.1 cm^2 , no less than 0.2 cm^2 ,
3 no less than 0.4 cm^2 , no less than 0.6 cm^2 , no less than 0.8 cm^2 , or no less than 1.0 cm^2 .
- 1 30. The cartridge of any one of claims 1-28, wherein the fluid inlet port and the fluid outlet port
2 each have a cross-section in the range of from 0.01 cm^2 to 1 cm^2 .
- 1 31. The cartridge of any one of claims 1-30, wherein the solid support is substantially parallel
2 to the direction of fluid flow within the cartridge.
- 1 32. The cartridge of any one of claims 1-30, wherein a fluid contacting surface of the housing
2 comprises a biocompatible material and/or the fluid contacting surface of the solid support
3 comprises a biocompatible material.
- 1 33. A method for processing an activated leukocyte, an activated platelet, or both an activated
2 leukocyte and an activated platelet contained within a body fluid, the method comprising:
3 (a) providing a cartridge comprising
 - 4 (i) a rigid housing defining an inner volume (IV), a fluid inlet port and a fluid outlet
5 port, wherein the inner volume is in fluid flow communication with the fluid inlet port and
6 the fluid outlet port; and
 - 7 (ii) a solid support disposed within the housing and defining a fluid contacting
8 surface with a surface area (SA) capable of sequestering an activated leukocyte and/or an
9 activated platelet if present in a body fluid entering the housing via the fluid inlet port,
10 wherein the SA/IV ratio is greater than 80 cm^{-1} ; and

11 (b) introducing a body fluid from a subject into the housing via the fluid inlet port under
12 conditions that permit sequestration of an activated leukocyte and/or an activated platelet
13 on the fluid contacting surface of the solid support.

1 34. The method of claim 33, further comprising

2 (c) treating the leukocyte and/or platelet sequestered in step (b) to inhibit release of a pro-
3 inflammatory substance or to deactivate the leukocyte and/or the platelet.

1 35. The method of claim 34, wherein the leukocyte or the platelet is sequestered for a time
2 sufficient to inhibit the release of the pro-inflammatory substance or to deactivate the
3 leukocyte or the platelet.

1 36. The method of claim 35, wherein the leukocyte and/or the platelet is sequestered for at least
2 one minute.

1 37. The method of any one of claims 34-36, further comprising the step of returning the
2 leukocyte and/or the platelet produced in step (c) back to a subject.

1 38. The method of any one of claims 34-37, wherein in step (c), a calcium chelator inhibits the
2 release of the pro-inflammatory substance or deactivates the leukocyte or the platelet.

1 39. A method for treating a subject having or at risk of developing an inflammatory condition,
2 the method comprising:

3 (a) providing a cartridge comprising

4 (i) a rigid housing defining an inner volume (IV), a fluid inlet port and a fluid outlet
5 port, wherein the inner volume is in fluid flow communication with the fluid inlet port and
6 the fluid outlet port; and

7 (ii) a solid support disposed within the housing and defining a fluid contacting
8 surface with a surface area (SA) capable of sequestering an activated leukocyte, if present
9 in a body fluid entering the housing via the fluid inlet port, wherein the SA/IV ratio is
10 greater than 80 cm^{-1} ; and

11 (b) introducing a body fluid from a subject into the housing via the fluid inlet port under
12 conditions that permit sequestration of an activated leukocyte and/or an activated platelet
13 on the fluid contacting surface of the solid support.

1 40. The method of claim 39, further comprising

2 (c) treating the leukocyte and/or platelet sequestered in step (b) to reduce the risk of
3 developing inflammation associated with the inflammatory condition or to alleviate
4 inflammation associated with the inflammatory condition.

1 41. The method of claim 39 or 40, wherein the inflammatory condition is selected from the
2 group consisting of systemic inflammatory response syndrome (SIRS), polyarteritis,
3 Wegener's granulomatosis, autoimmune vasculitis, anti-neutrophil cytoplasmic antibody
4 (ANCA) vasculitis, extracorporeal membrane oxygenation (ECMO), cardiopulmonary
5 bypass syndrome, acute respiratory distress syndrome (ARDS), acute lung injury (ALI),
6 chronic obstructive pulmonary disease (COPD), sepsis, rheumatoid arthritis, systemic lupus
7 erythematosus, inflammatory bowel disease, multiple sclerosis (MS), psoriasis, allograft
8 rejection, asthma, acute renal failure, chronic renal failure (CRF), end stage renal disease
9 (ESRD), cardiorenal syndrome (CRS), chronic heart failure (CHF), stroke, myocardial
10 infarction (MI), hepatorenal syndrome, cirrhosis of the liver, diabetes mellitus (type 2
11 diabetes), and acute organ failure from ischemic reperfusion injury to myocardium, central
12 nervous system, liver, kidney, or pancreas.

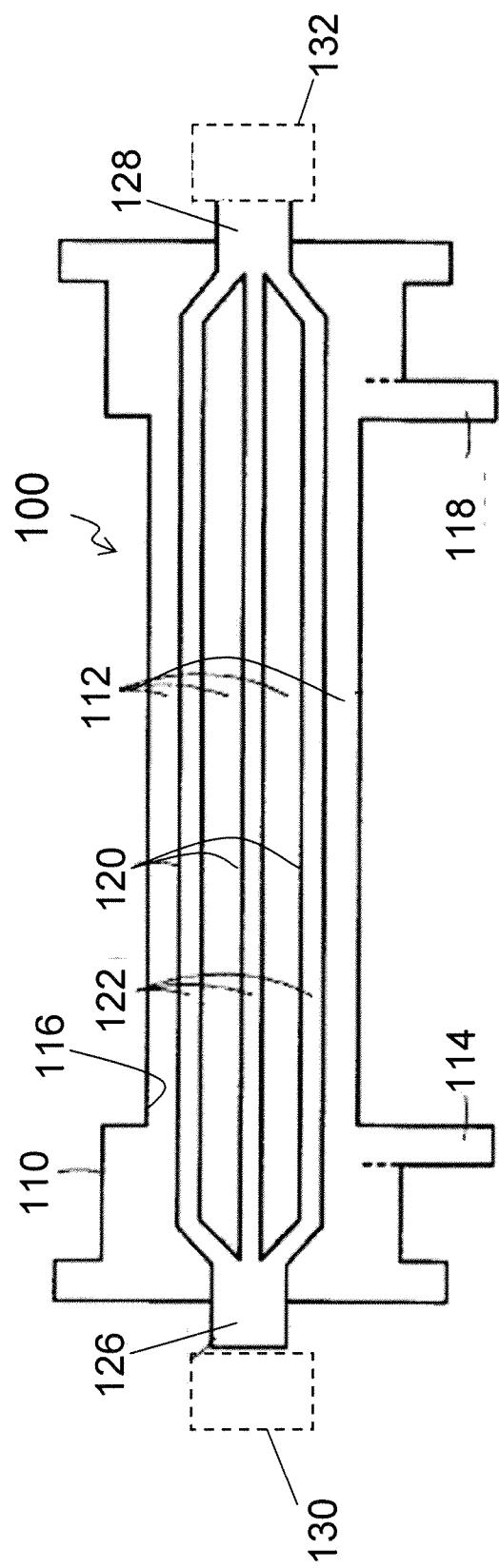
1 42. The method of any one of claims 39-41, wherein the leukocyte and/or platelet is
2 sequestered for a time sufficient to deactivate the leukocyte and/or the platelet.

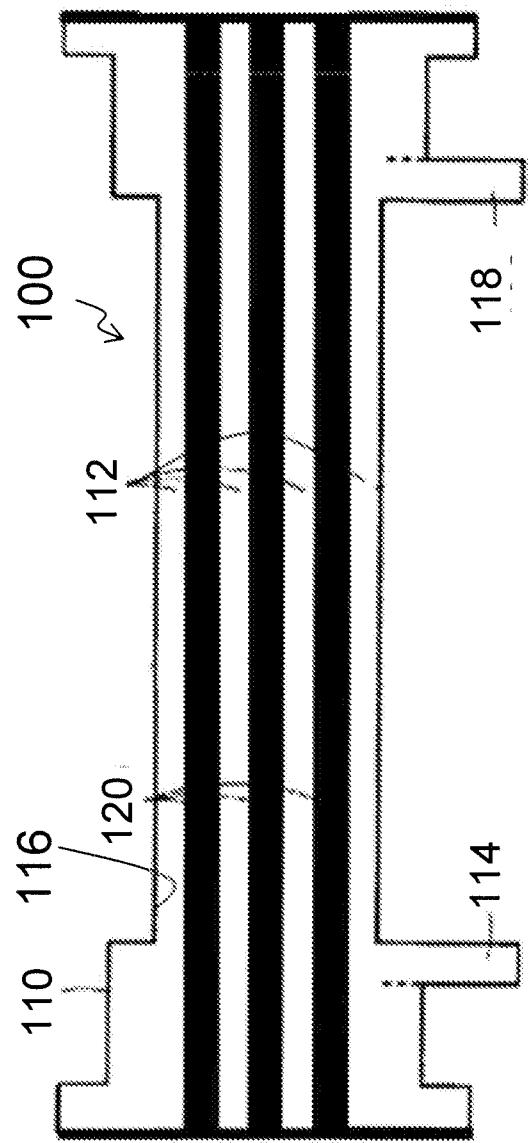
1 43. The method of any one of claims 39-42, wherein the leukocyte and/or the platelet is
2 sequestered for at least one minute.

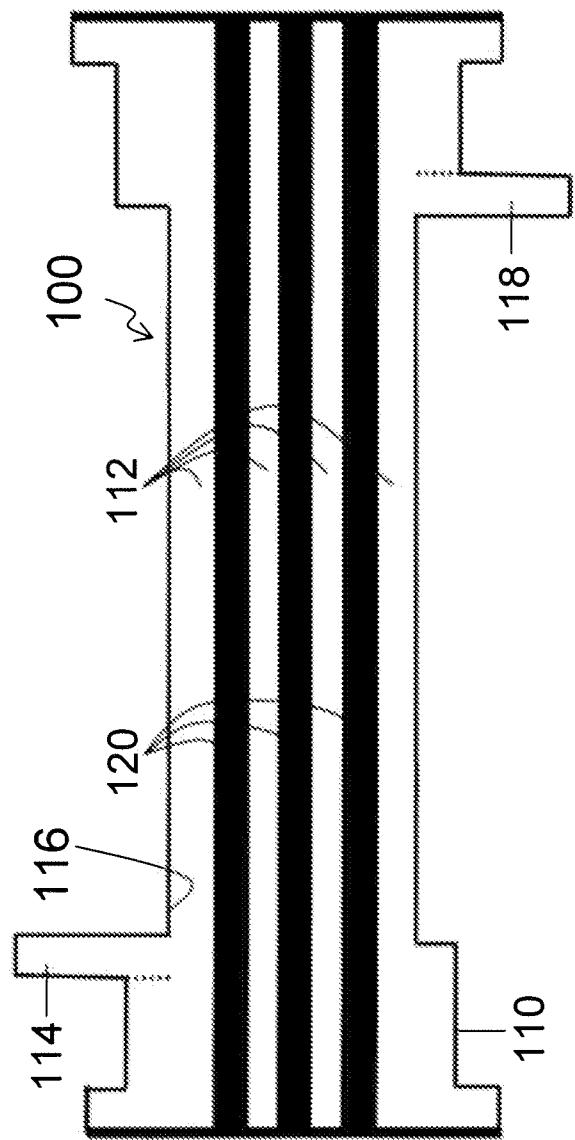
1 44. The method of any one of claims 40-43, further comprising the step of returning the
2 leukocyte and/or the platelet produced in step (c) back to a subject.

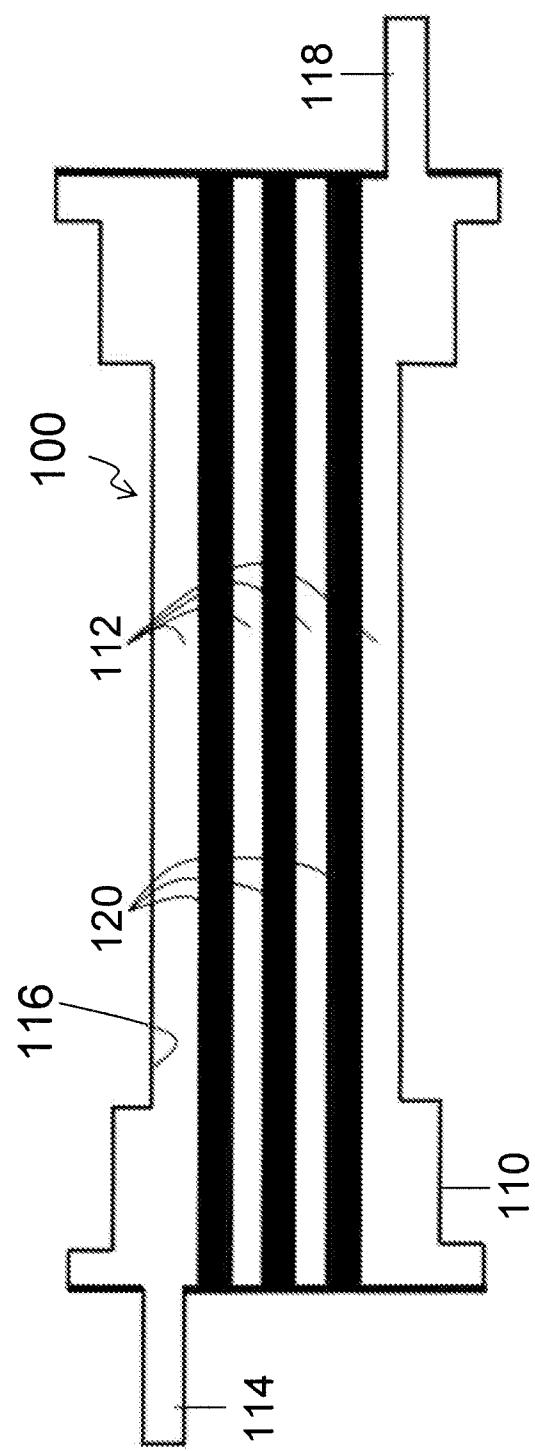
1 45. The method of any one of claims 40-44, wherein, in step (c), a calcium chelator deactivates
2 the leukocyte and/or the platelet.

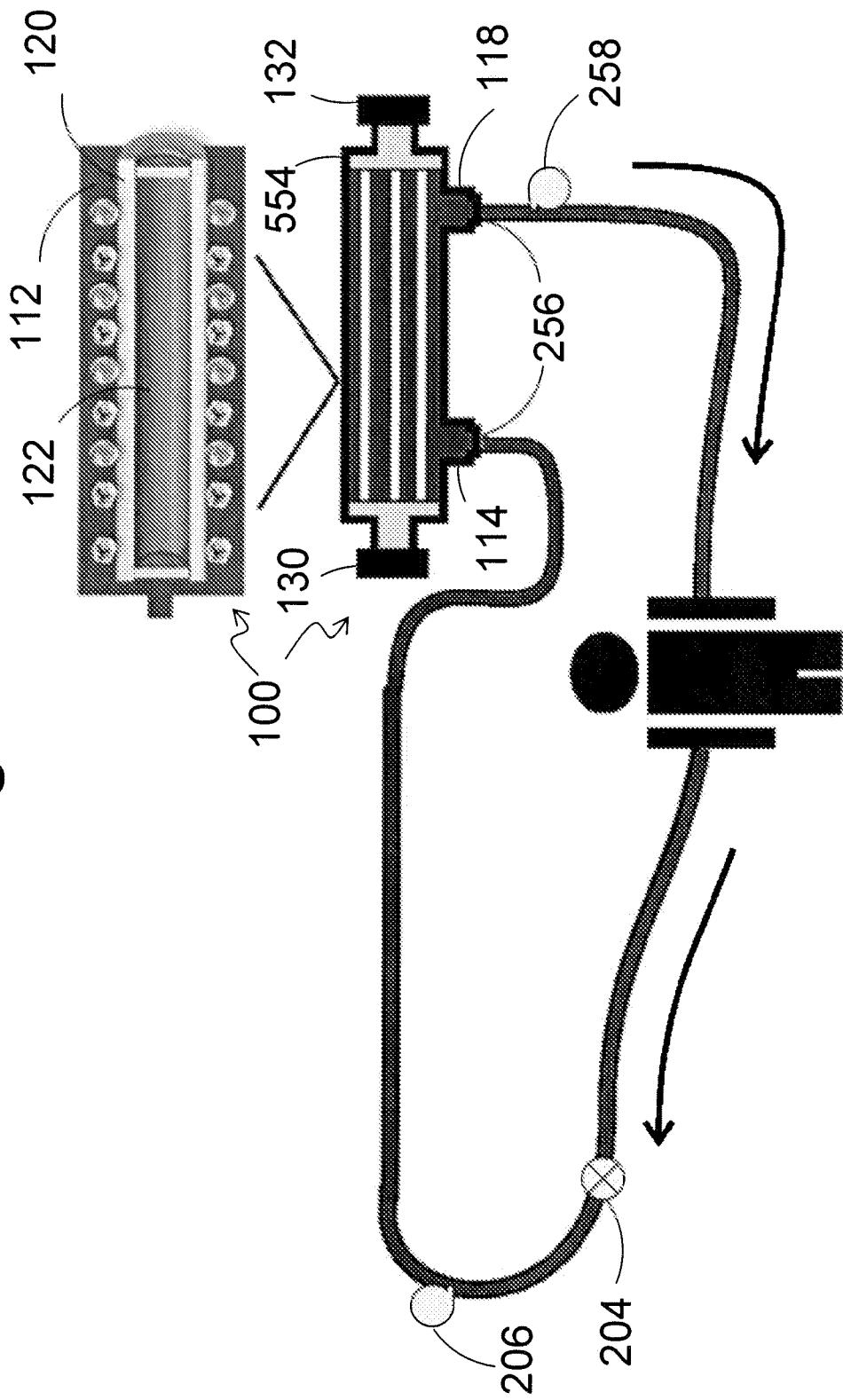
- 1 46. The method of any one of claims 33-45, wherein the SA/IV ratio of the cartridge provided
2 in step (a) is greater than 150 cm⁻¹.
- 1 47. The method of any one of claims 33-45, wherein the SA/IV ratio of the cartridge provided
2 in step (a) is in the range of from 80 cm⁻¹ to 1,500 cm⁻¹.
- 1 48. The method of claim 47, wherein the SA/IV ratio is in the range of from 150 cm⁻¹ to 1,500
2 cm⁻¹.
- 1 49. The method of any one of claims 33-48, wherein the solid support comprises a membrane.
- 1 50. The method of any one of claims 33-48, wherein the solid support comprises a planar
2 support member.
- 1 51. The method of any one of claims 33-48, wherein the solid support comprises a fiber.
- 1 52. The method any one of claims 33-51, wherein the SA of the cartridge provided in step (a) is
2 in the range of from 0.1 m² to 10.0 m².
- 1 53. The method claim 52, wherein the SA of the cartridge provided in step (a) is in the range of
2 from 0.1 m² to 5.0 m².
- 1 54. The method of claim 52, wherein the SA is in the range of from 0.1 m² to 0.4 m², from 0.4
2 m² to 0.8 m², from 0.8 m² to 1.2 m², from 1.2 m² to 1.6 m², from 1.6 m² to 2.0 m², from 2.0
3 m² to 2.4 m², from 2.4 m² to 2.8 m², from 2.8 m² to 3.2 m², from 3.2 m² to 3.6 m², from 3.6
4 m² to 4.0 m², from 4.0 m² to 4.4 m², from 4.4 m² to 4.8 m², from 4.8 m² to 5.2 m², from 5.2
5 m² to 5.6 m², from 5.6 m² to 6.0 m², from 6.0 m² to 6.4 m², from 6.4 m² to 6.8 m², from 6.8
6 m² to 7.2 m², from 7.2 m² to 7.6 m², from 7.6 m² to 8.0 m², from 8.0 m² to 8.4 m², from 8.4
7 m² to 8.8 m², from 8.8 m² to 9.2 m², from 9.2 m² to 9.6 m², or from 9.6 m² to 10.0 m².
- 1 55. The method of any one of claims 33-54, wherein the inner volume of the cartridge provided
2 in step (a) is less than 150 cm³.
- 1 56. The method of any one of claims 33-54, wherein the inner volume is in the range of from
2 10 cm³ to 150 cm³.
- 1 57. The method of claim 56, wherein the inner volume is in the range of from 75 cm³ to 150
2 cm³.

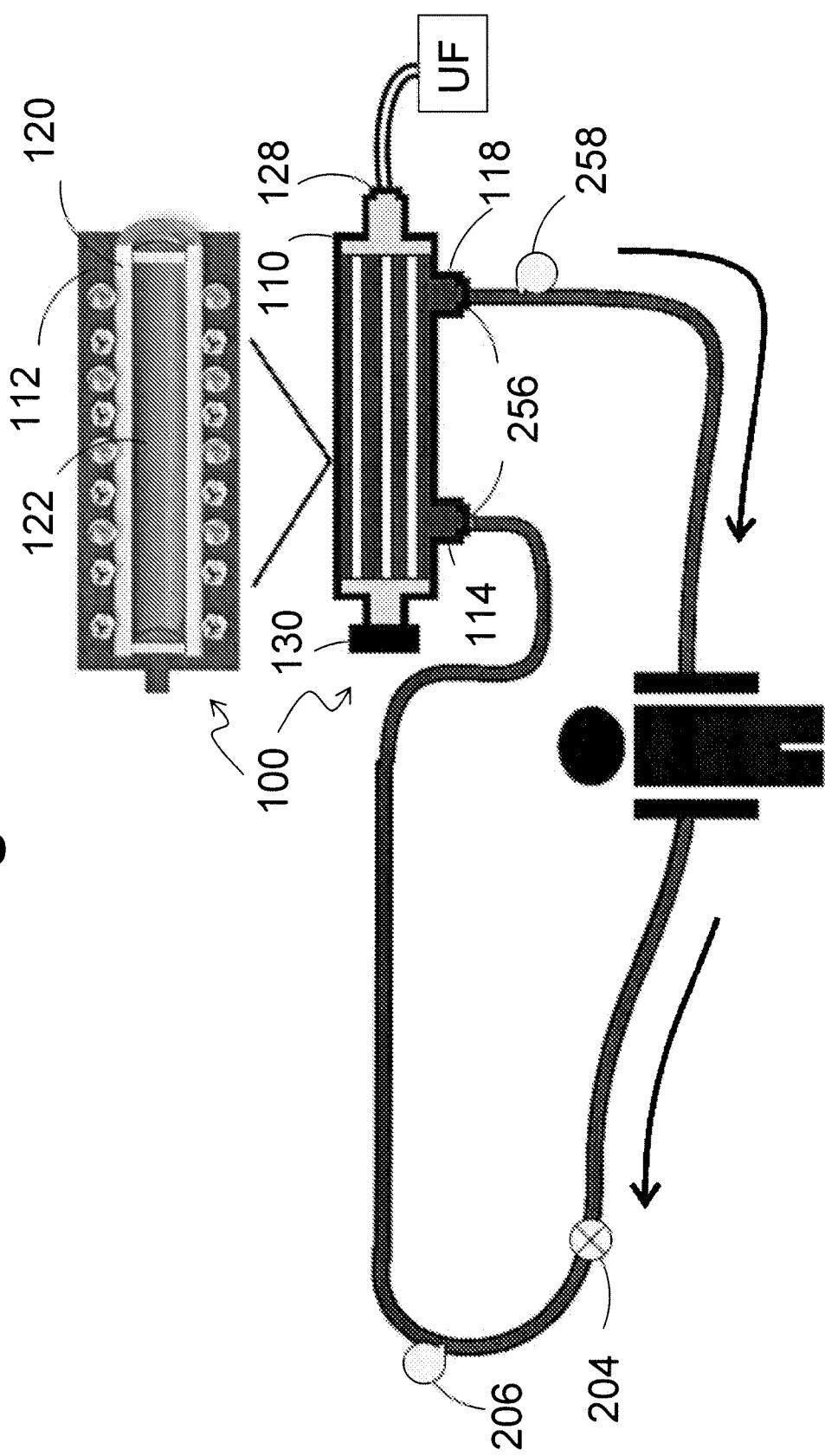

- 1 58. The method of claim 56, wherein the inner volume is in the range of from 15 cm³ to 120
2 cm³.
- 1 59. The method of claim 58, wherein the inner volume is in the range of from 20 cm³ to 80
2 cm³.
- 1 60. The method of any one of claims 33-59, further comprising permitting the body fluid to
2 exit the cartridge via the fluid outlet port at a flow rate in the range of 10 cm³/minute to
3 8,000 cm³/minute.
- 1 61. The method of claim 60, wherein the flow rate is in the range of 50 cm³/minute to 8,000
2 cm³/minute.
- 1 62. A cartridge for treating activated leukocytes, activated platelets, or both activated
2 leukocytes and activated platelets, comprising:
 - 3 (a) a rigid housing defining an inner volume (IV), a fluid inlet port and a fluid outlet port,
4 wherein the inner volume is in fluid flow communication with the fluid inlet port and the
5 fluid outlet port; and
 - 6 (b) a solid support disposed within the housing and defining a fluid contacting surface with
7 a surface area (SA) capable of sequestering an activated leukocyte and/or an activated
8 platelet if present in a body fluid entering the housing via the fluid inlet port, wherein the
9 SA is greater than 2.6 m².
- 1 63. The cartridge of claim 62, wherein the SA is in the range from 3.0 m² to 10.0 m².
- 1 64. The cartridge of claim 63, wherein the SA is in the range from 3.0 m² to 5.0 m².
- 1 65. The cartridge of any one of claims 62-64, wherein the solid support is a membrane.
- 1 66. The cartridge of claim 65, wherein the membrane is porous.
- 1 67. The cartridge of any one of claims 62-66, wherein the solid support comprises a planar
2 support member.
- 1 68. The cartridge of claim 67, wherein the planar support member is a membrane.
- 1 69. The cartridge of any one of claims 62-66, wherein the solid support comprises a fiber.

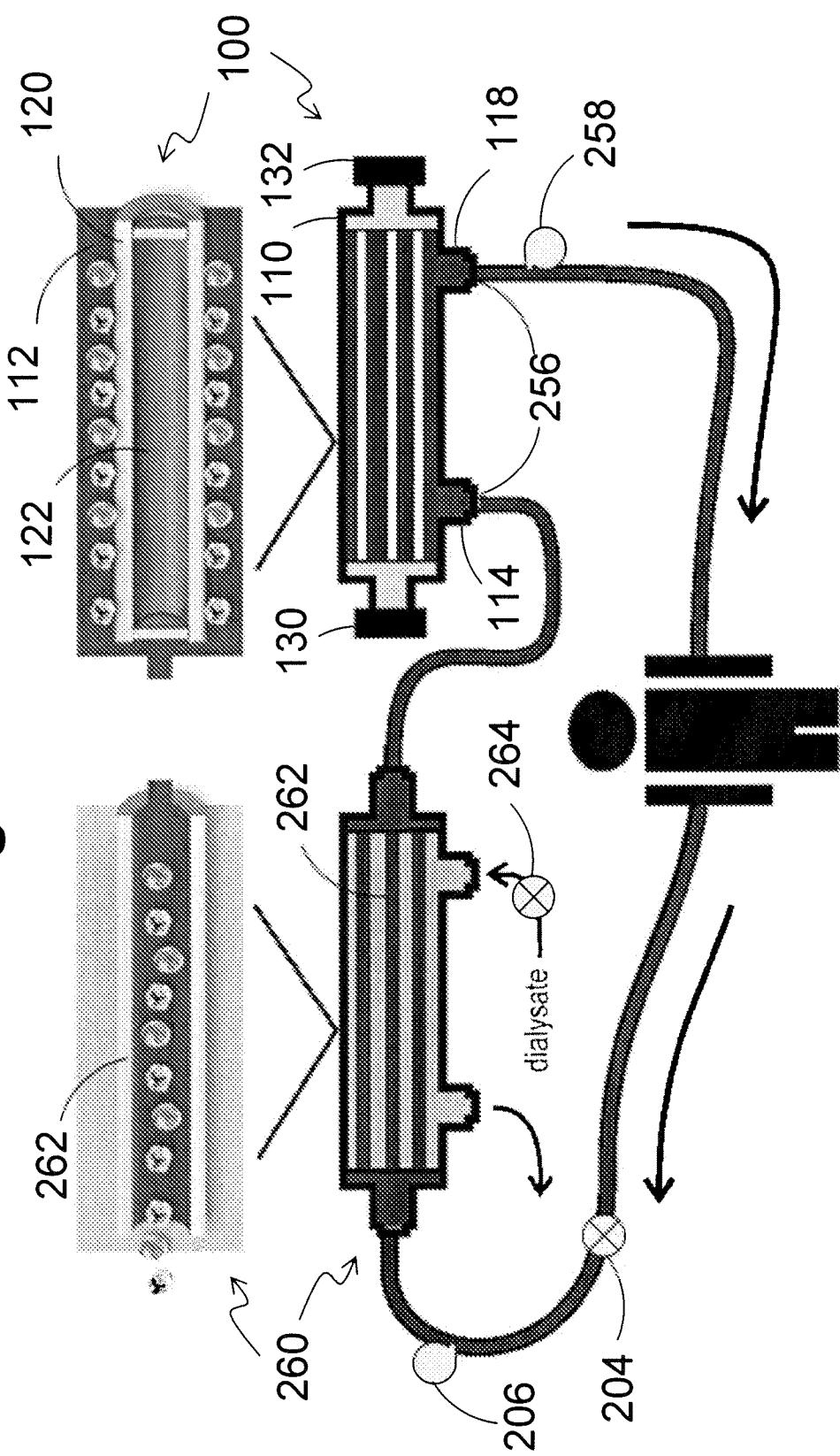

- 1 70. The cartridge of claim 69, wherein the fiber is a hollow fiber or a solid fiber.
- 1 71. The cartridge of any one of claims 62-70, wherein the IV is less than 300 cm³.
- 1 72. The cartridge of claim 71, wherein the IV is less than 150 cm³.
- 1 73. The cartridge of claim 72, wherein the IV is less than 100 cm³.
- 1 74. The cartridge of any one of claims 62-73, wherein the inner volume is in the range of from
2 10 cm³ to 150 cm³.
- 1 75. The cartridge of claim 74, wherein the inner volume is in the range of from 75 cm³ to 150
2 cm³.
- 1 76. The cartridge of claim 74, wherein the inner volume is in the range of from 15 cm³ to 120
2 cm³.
- 1 77. The cartridge of any one of claims 76, wherein the IV is in the range of from 20 cm³ to 80
2 cm³.
- 1 78. The cartridge of any one of claims 62-77, wherein the fluid inlet port and the fluid outlet
2 port are dimensioned to permit a flow rate through the housing in a range from 10
3 cm³/minute to 8,000 cm³/minute.
- 1 79. The cartridge of claim 78, wherein the flow rate through the housing is in a range from 50
2 cm³/minute to 8,000 cm³/minute.
- 1 80. The cartridge of any one of claims 62-79, wherein the housing is configured to create a
2 shear force less than about 100 dynes/cm² when a body fluid enters the housing through the
3 fluid inlet port and exits the housing through the fluid outlet port.
- 1 81. The cartridge of any one of claims 62-80, wherein the fluid contacting surface of the solid
2 support comprises polysulfone.
- 1 82. The cartridge of any one of claims 62-81, wherein the fluid contacting surface of the solid
2 support comprises a cell-adhesion molecule attached thereto.
- 1 83. The cartridge of any one of claims 62-82, wherein the cartridge is sterile.


- 1 84. The cartridge of any one of claims 62-83, wherein the fluid inlet port and the fluid outlet
2 port each have a cross-section of no less than 0.01 cm^2 , no less than 0.1 cm^2 , no less than
3 0.2 cm^2 , no less than 0.4 cm^2 , no less than 0.6 cm^2 , no less than 0.8 cm^2 , or no less than 1.0
4 cm^2 .
- 1 85. The cartridge of any one of claims 62-83, wherein the fluid inlet port and the fluid outlet
2 port each have a cross-section in the range of from 0.01 cm^2 to 1 cm^2 .
- 1 86. The cartridge of any one of claims 62-85, wherein the solid support is substantially parallel
2 to the direction of fluid flow within the cartridge.
- 1 87. The cartridge of any one of claims 62-86, wherein a fluid contacting surface of the housing
2 comprises a biocompatible material and/or the fluid contacting surface of the solid support
3 comprises a biocompatible material.
- 1 88. A cartridge for treating activated leukocytes, activated platelets, or both activated
2 leukocytes and activated platelets, comprising:
 - 3 (a) a rigid housing defining an inner volume (IV), a fluid inlet port and a fluid outlet port,
4 wherein the inner volume is in fluid flow communication with the fluid inlet port and the
5 fluid outlet port; and
 - 6 (b) a solid support comprising a plurality of solid fibers disposed within the housing, the
7 solid support defining a fluid contacting surface with a surface area (SA) capable of
8 sequestering an activated leukocyte and/or an activated platelet if present in a body fluid
9 entering the housing via the fluid inlet port, wherein the SA/IV ratio is greater than 25 cm^{-1} .
- 1 89. The cartridge of claim 88, wherein the SA/IV ratio of the cartridge provided in step (a) is
2 greater than 80 cm^{-1} .
- 1 90. The cartridge of claim 89, wherein the SA/IV ratio of the cartridge provided in step (a) is
2 greater than 150 cm^{-1} .
- 1 91. The cartridge of claim 90, wherein the SA/IV ratio is in the range of 150 cm^{-1} to $1,500 \text{ cm}^{-1}$.
- 1 92. The cartridge of claim 91, wherein the SA/IV ratio is in the range of 80 cm^{-1} to 800 cm^{-1} .


- 1 93. The cartridge of claim 92, wherein the SA/IV ratio is in the range of 25 cm⁻¹ to 800 cm⁻¹.
- 1 94. The cartridge of any one of claims 88-93, wherein the SA is greater than 0.09 m².
- 1 95. The cartridge of any one of claims 88-93, wherein the SA is in the range of from 0.1 m² to
2 10.0 m².
- 1 96. The cartridge of claim 95, wherein the SA is in the range of from 0.1 m² to 0.4 m², from 0.4
2 m² to 0.8 m², from 0.8 m² to 1.2 m², from 1.2 m² to 1.6 m², from 1.6 m² to 2.0 m², from 2.0
3 m² to 2.4 m², from 2.4 m² to 2.8 m², from 2.8 m² to 3.2 m², from 3.2 m² to 3.6 m², from 3.6
4 m² to 4.0 m², from 4.0 m² to 4.4 m², from 4.4 m² to 4.8 m², from 4.8 m² to 5.2 m², from 5.2
5 m² to 5.6 m², from 5.6 m² to 6.0 m², from 6.0 m² to 6.4 m², from 6.4 m² to 6.8 m², from 6.8
6 m² to 7.2 m², from 7.2 m² to 7.6 m², from 7.6 m² to 8.0 m², from 8.0 m² to 8.4 m², from 8.4
7 m² to 8.8 m², from 8.8 m² to 9.2 m², from 9.2 m² to 9.6 m², from 9.6 m² to 10.0 m².
- 1 97. The cartridge of any one of claims 88-96 wherein the IV is less than 150 cm³.
- 1 98. The cartridge of claim 97, wherein the IV is in the range of from 75 cm³ to 150 cm³.
- 1 99. The cartridge of claim 97, wherein the IV is in the range of from 5 cm³ to 50 cm³.
- 1 100. The cartridge of any one of claims 88-99, wherein the fluid inlet port and the fluid outlet
2 port are dimensioned to permit a flow rate through the housing in a range from 10
3 cm³/minute to 8,000 cm³/minute.
- 1 101. The cartridge of any one of claims 88-100, wherein the housing is configured to create a
2 shear force less than about 100 dynes/cm² when a body fluid enters the housing through the
3 fluid inlet port and exits the housing through the fluid outlet port.
- 1 102. The cartridge of any one of claims 88-101, wherein the solid fibers comprise polysulfone.
- 1 103. The cartridge of any one of claims 88-101, wherein the solid fibers comprise
2 polyethersulfone.
- 1 104. The cartridge of any one of claims 88-103, wherein the solid fibers are substantially
2 parallel to the direction of fluid flow within the cartridge.


- 1 105. The cartridge or method of any one of claims 1-104, wherein the fluid inlet port and the
2 fluid outlet port are both disposed on one side of the housing.
- 1 106. The cartridge or method of any one of claims 1-104, wherein the fluid inlet port and the
2 fluid outlet port are disposed on opposite sides of the housing.
- 1 107. The cartridge or method of any one of claims 1-104, wherein the housing comprises a first
2 end and a second end opposite the first end, and wherein the fluid inlet port is configured to
3 permit fluid flow through the first end and the fluid outlet port is configured to permit fluid
4 flow through the second end.
- 1 108. The cartridge or method of any one of claims 1-107, wherein the solid support is disposed
2 within the housing at a packing density from 20% to 60%.
- 1 109. The cartridge of claim 108, wherein the packing density is in the range from 30% to 60%.
- 1 110. The cartridge of claim 109, wherein the packing density is in the range from 40% to 55%.
- 1 111. A method for processing an activated leukocyte, an activated platelet, or both an activated
2 leukocyte and an activated platelet contained within a body fluid, the method comprising:
3 (a) providing a cartridge according to any one of claims 1-32 or 62-110; and
4 (b) introducing a body fluid from a subject into the housing via the fluid inlet port under
5 conditions that permit sequestration of an activated leukocyte and/or an activated platelet
6 on the fluid contacting surface of the solid support.


Figure 1A


Figure 1B

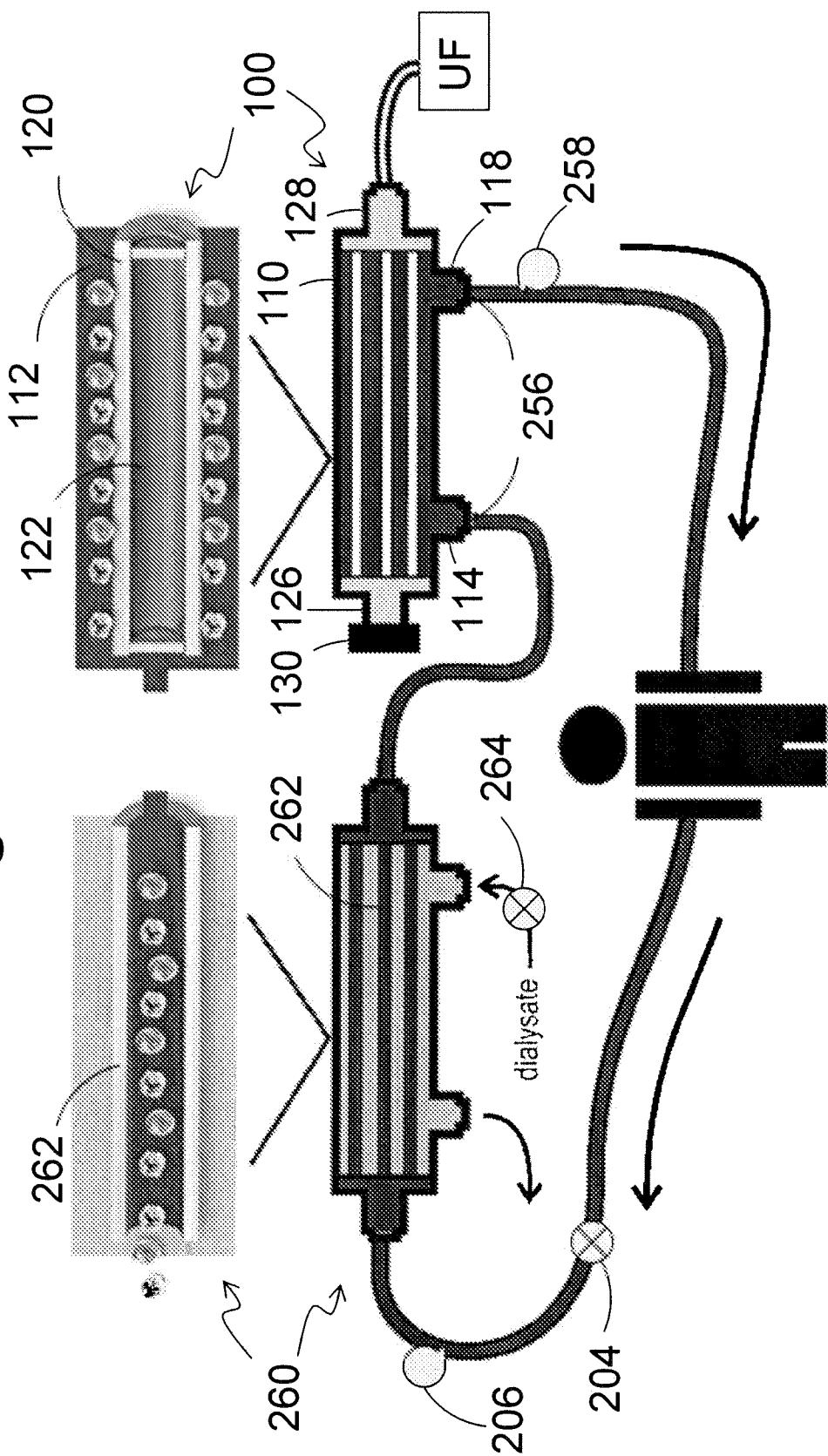

Figure 1C

Figure 1D

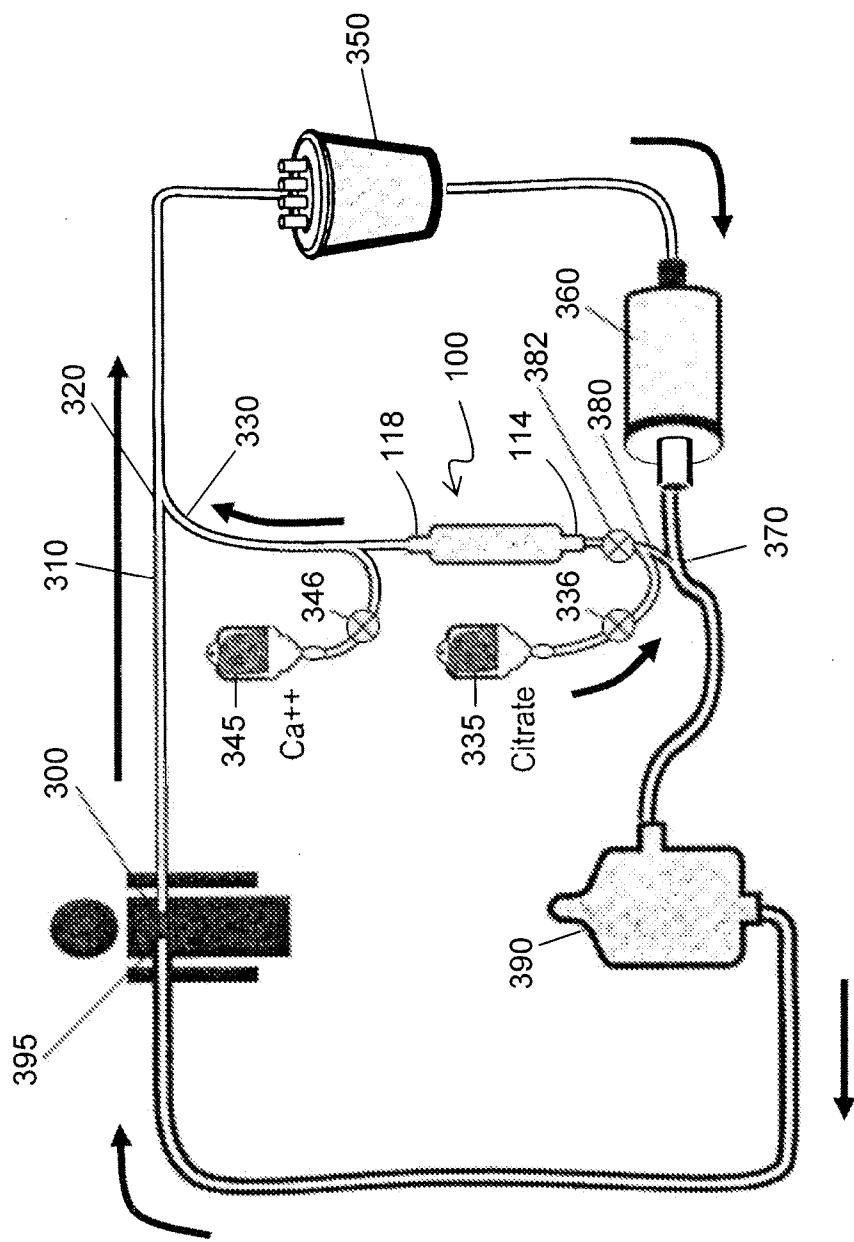

Figure 2A

Figure 2B

Figure 2C

Figure 2D

Figure 3A

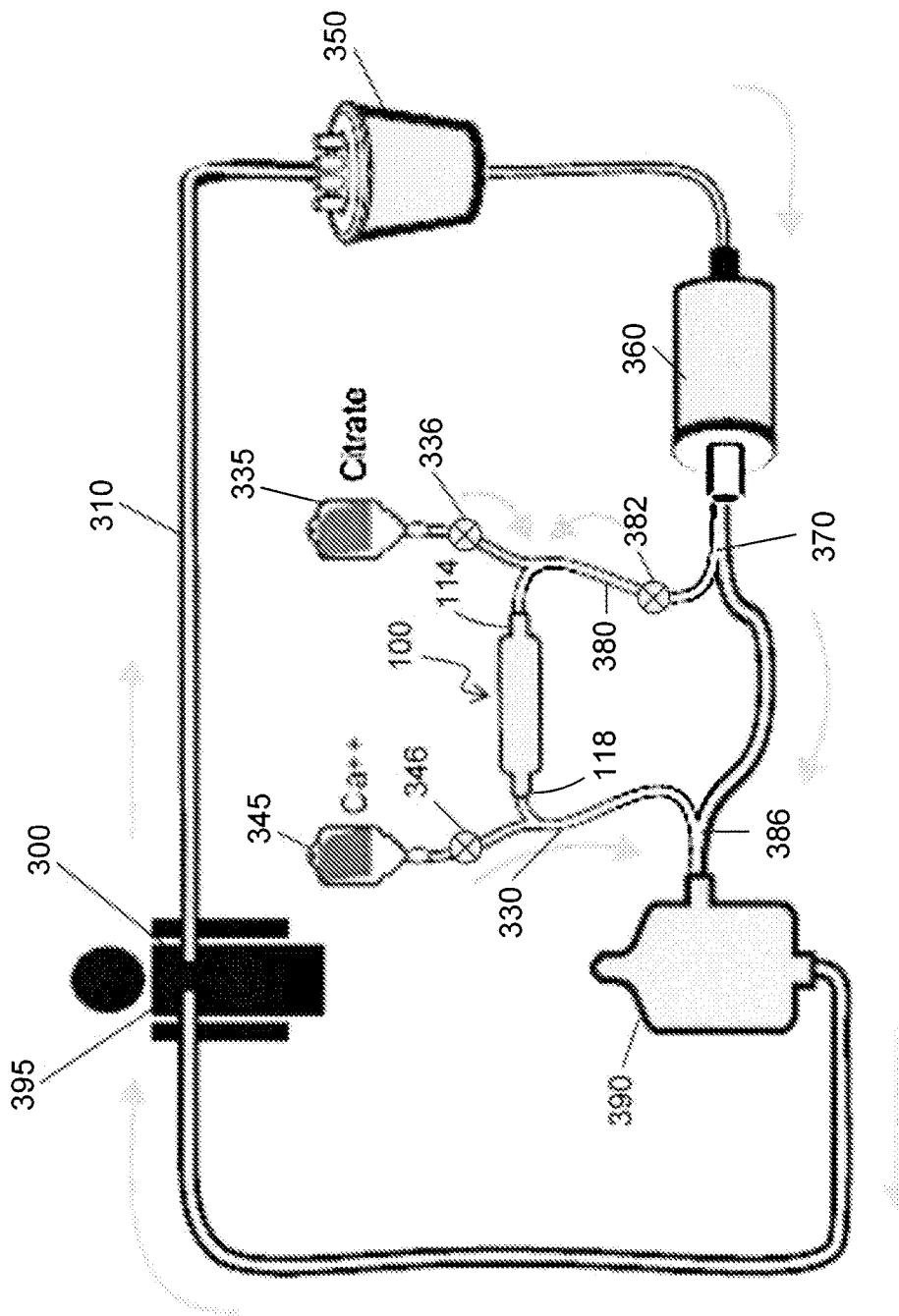

Figure 3B

Figure 4

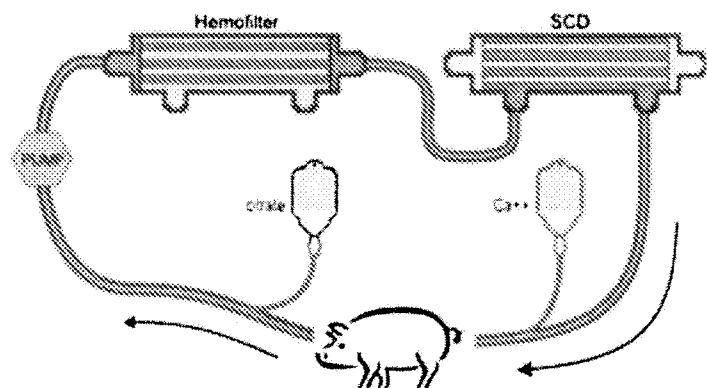


Figure 5

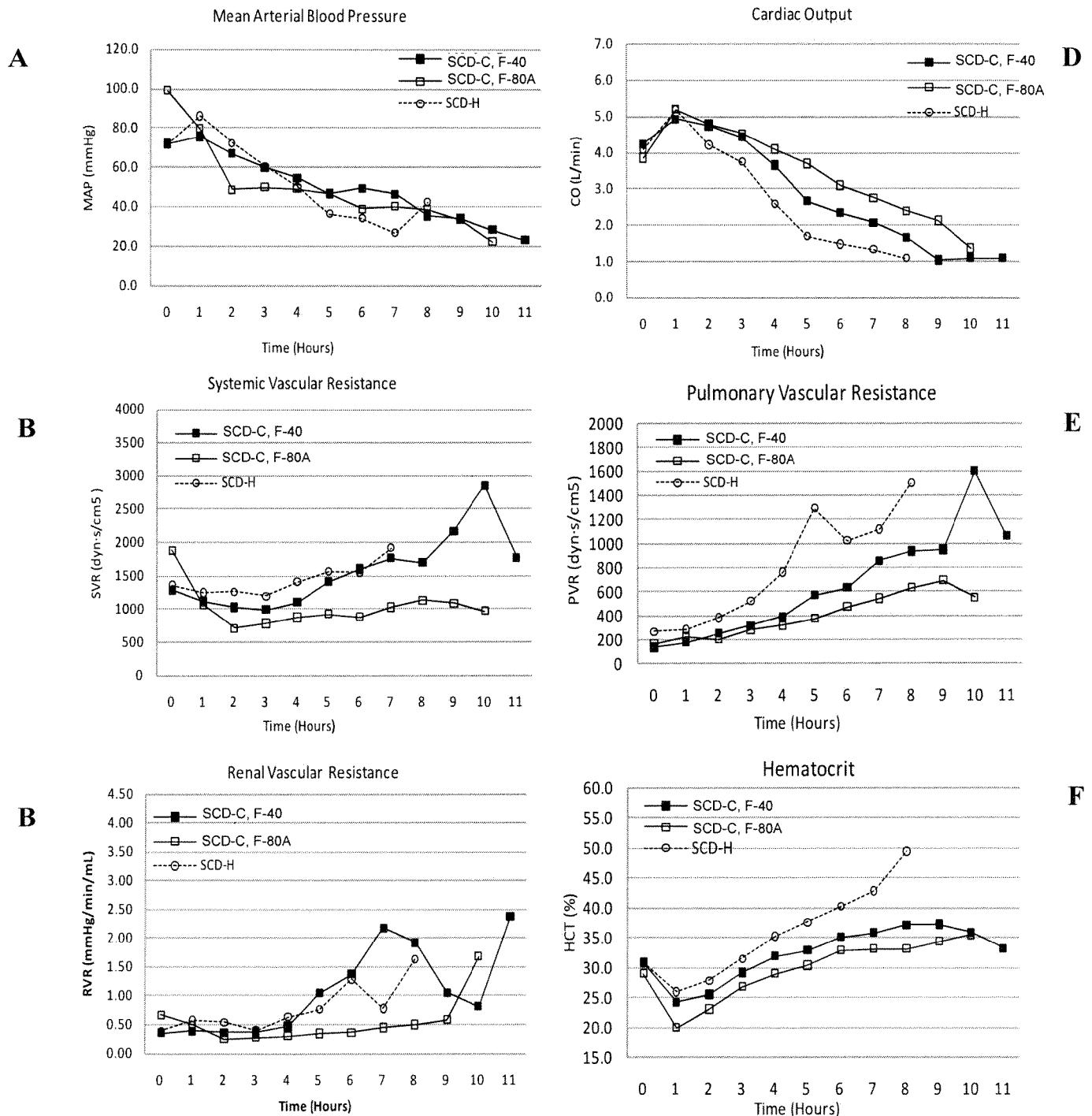
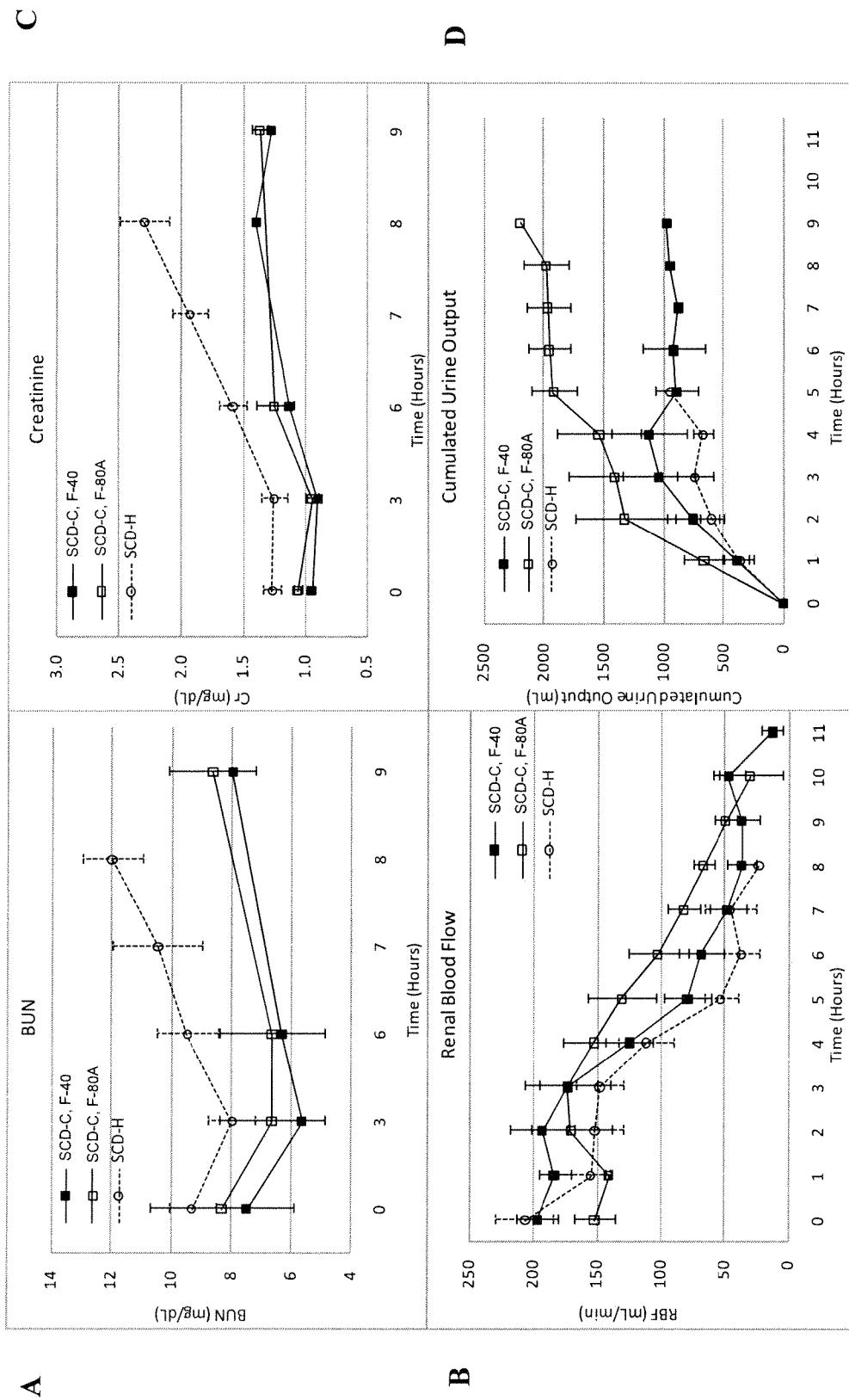



Figure 6

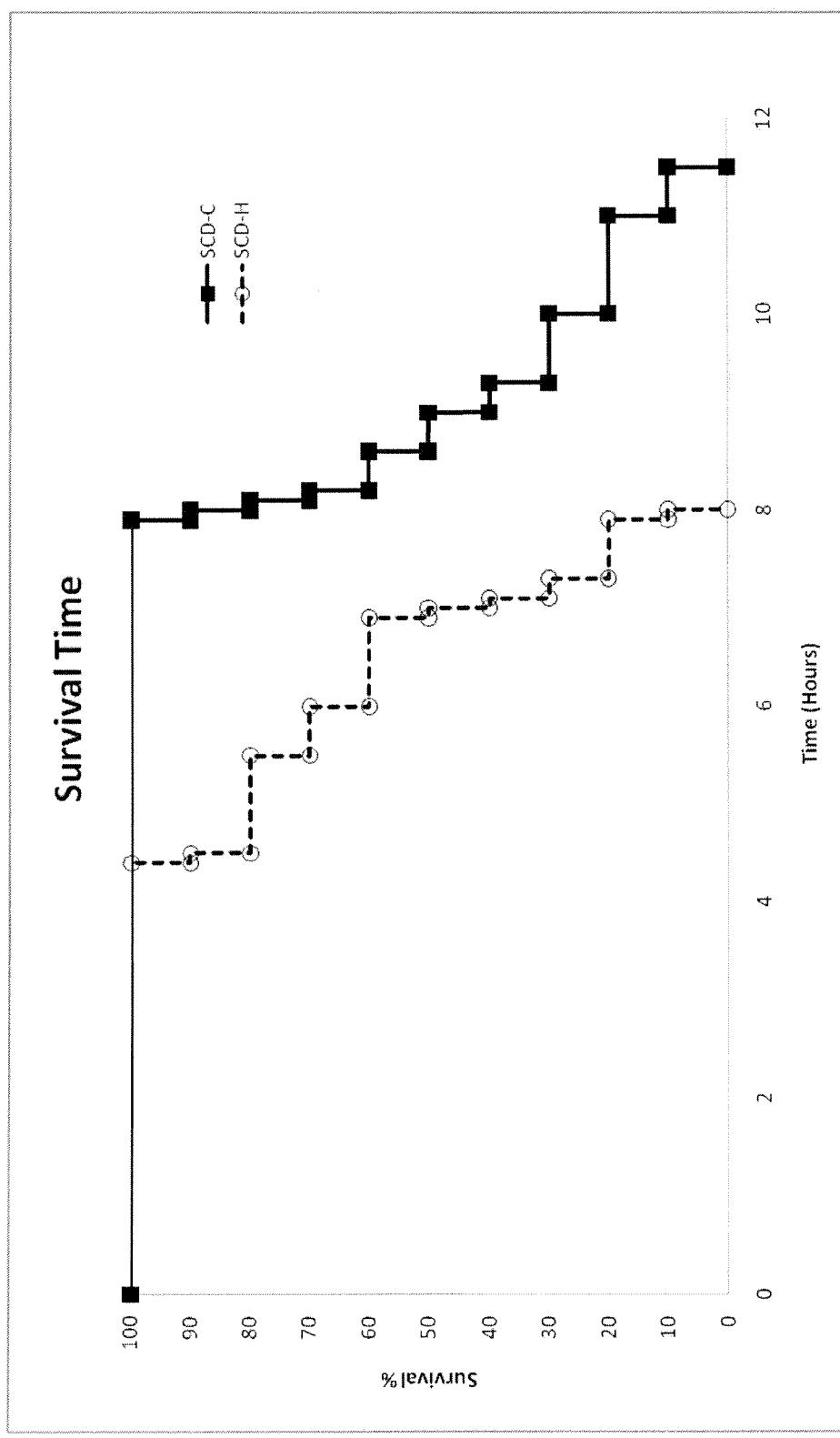


Figure 7

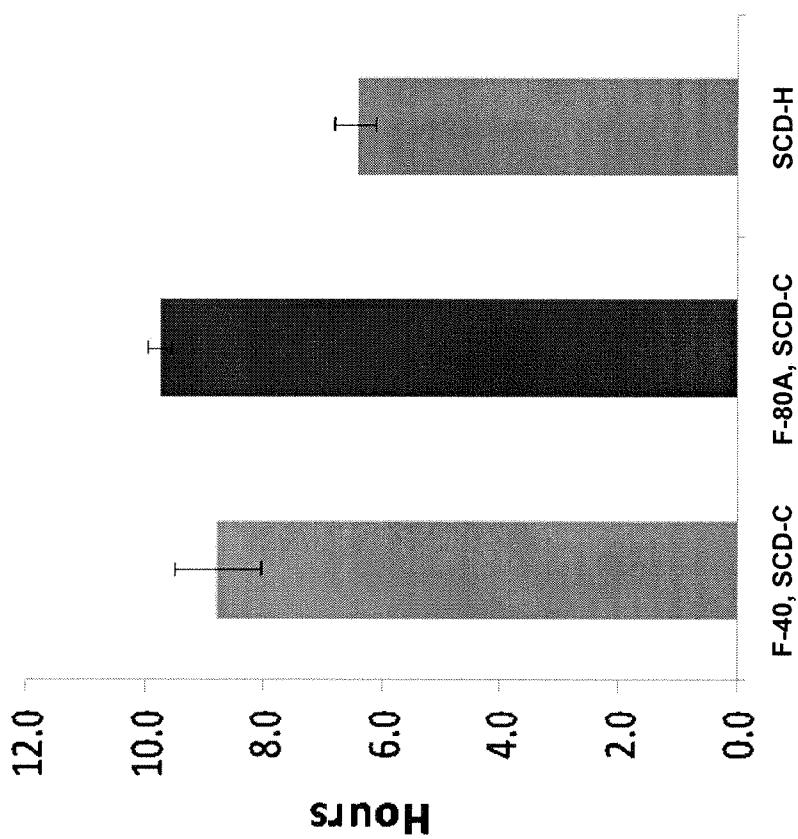
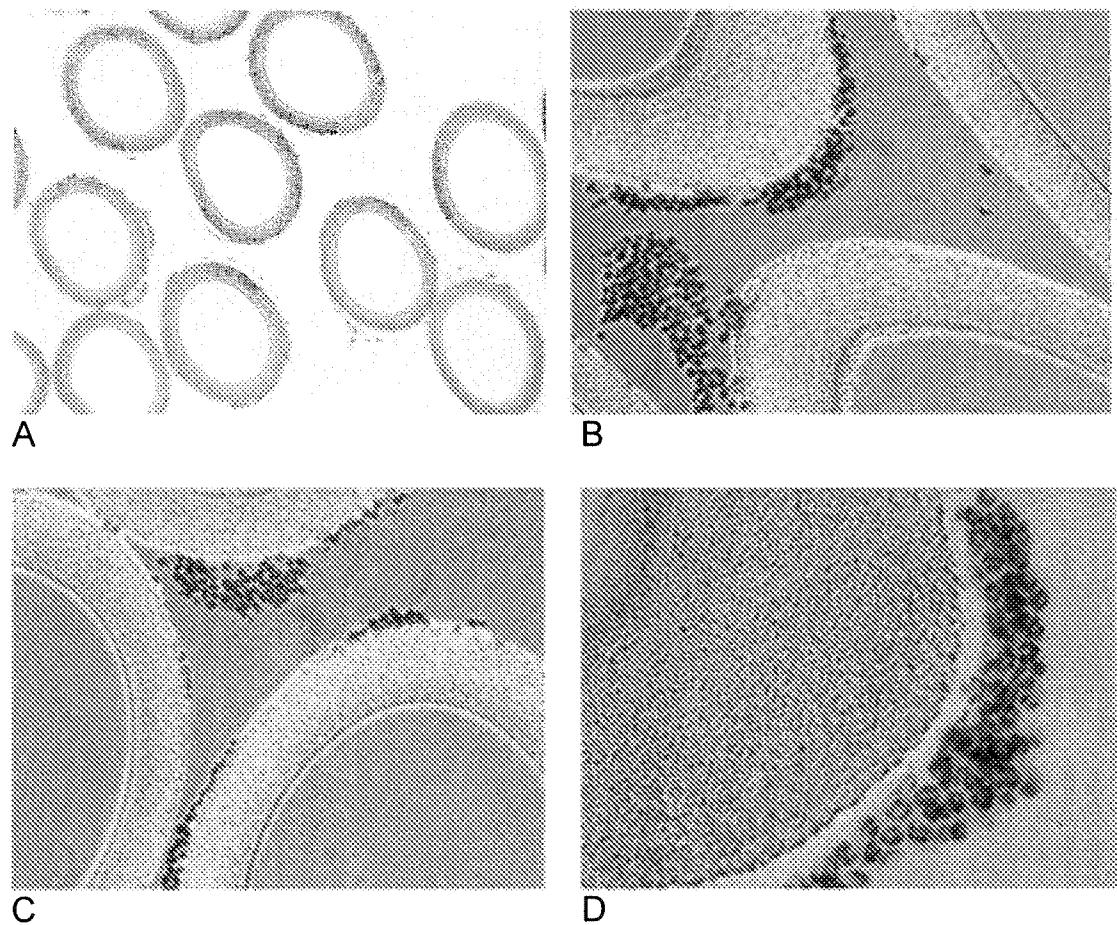



Figure 8. Impact of SCD-C vs. SCD-H on Survival Time in the septic pig, $p<0.005$ (F-40) and <0.0004 (F-80A)

Figure 9

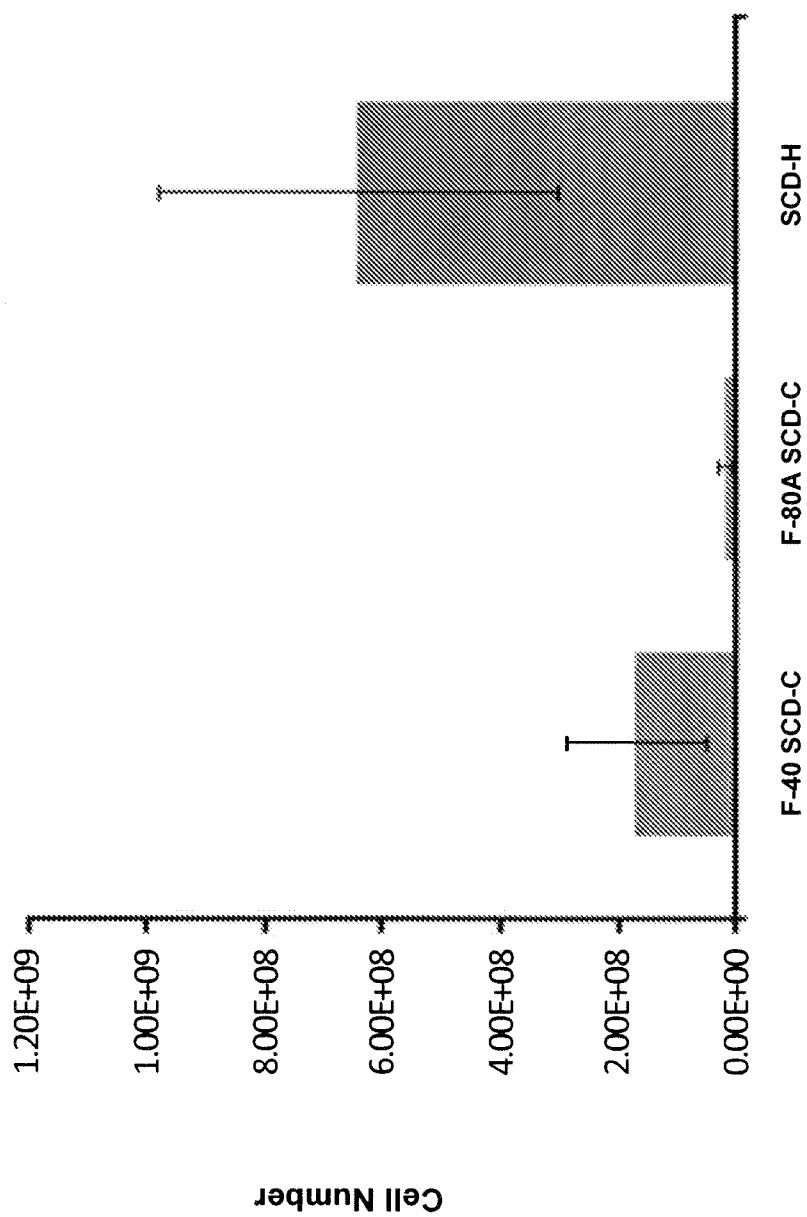


Figure 10A. Adherent cells eluted from SCD-C and SCD-H cartridges after septic pig study end point.

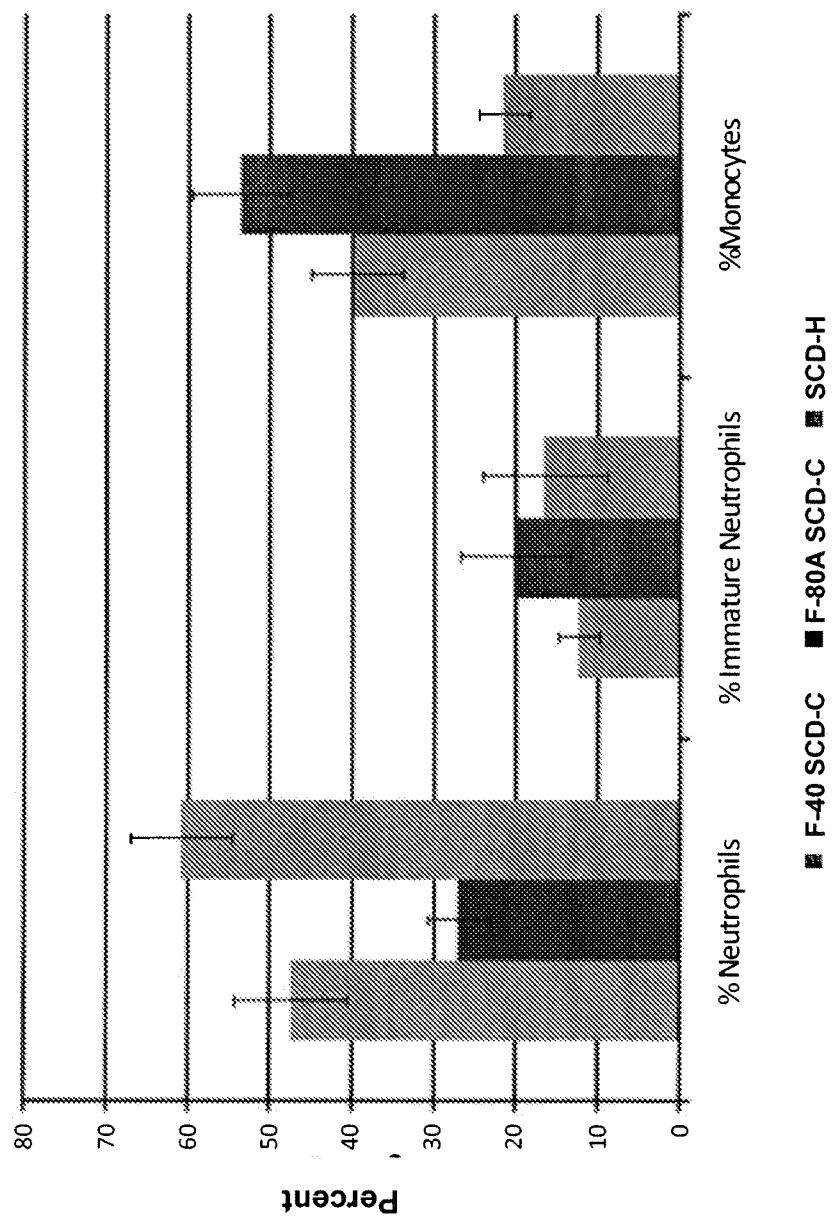
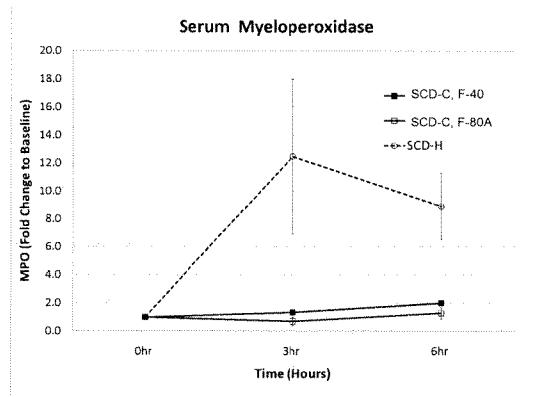
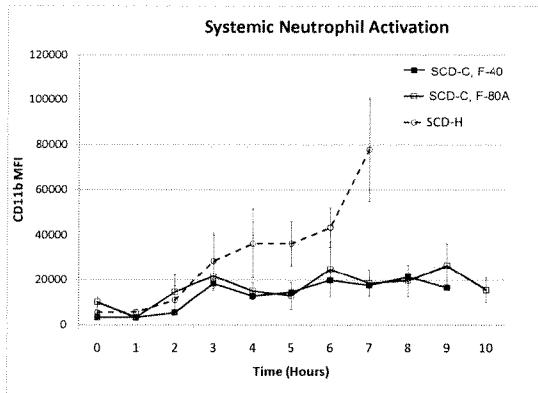
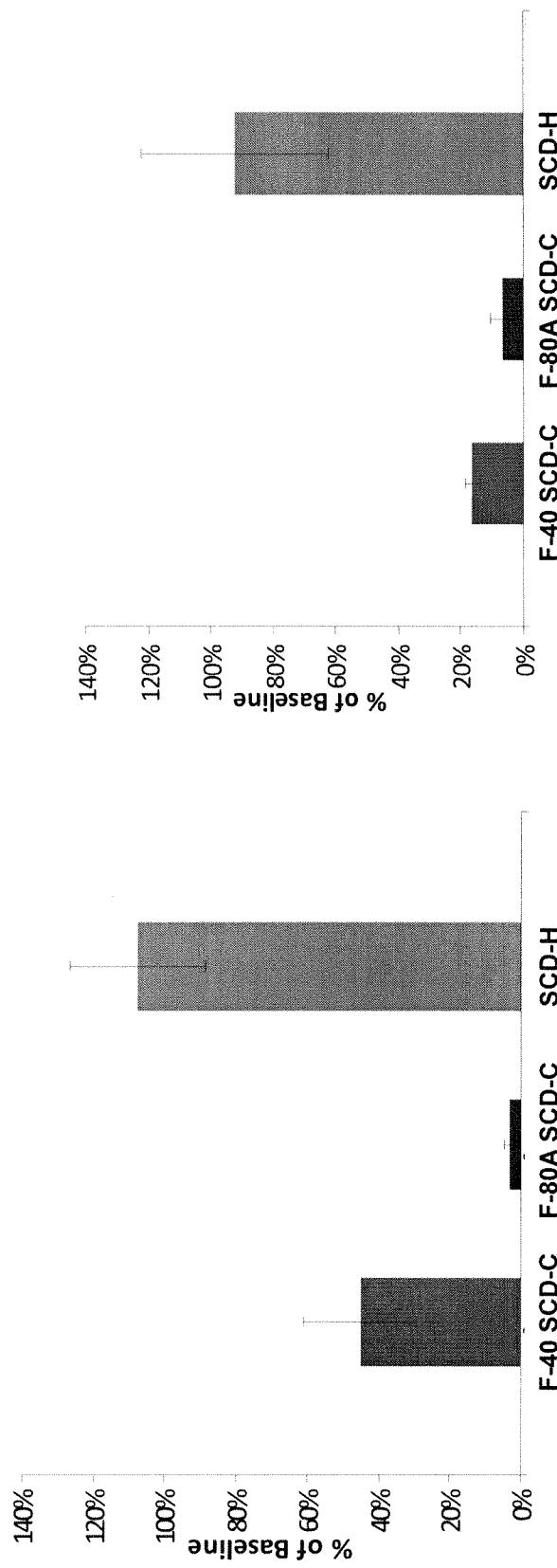





Figure 10B. SCD Eluted Cell Differentials

Figure 11A**Figure 11B**

Figure 12A. Stimulated MNC IL-8 Secretion.
Secretion.

All values are expressed as the LPS-stimulated 6 hour Septic Time Point Percent of LPS-stimulated 0 hour Baseline,
 $p < 0.05$ for all SCD-C groups compared the SCD-H group for IL-8 and TNF- α .

Figure 12B. Stimulated MNC TNF- α

Figure 13

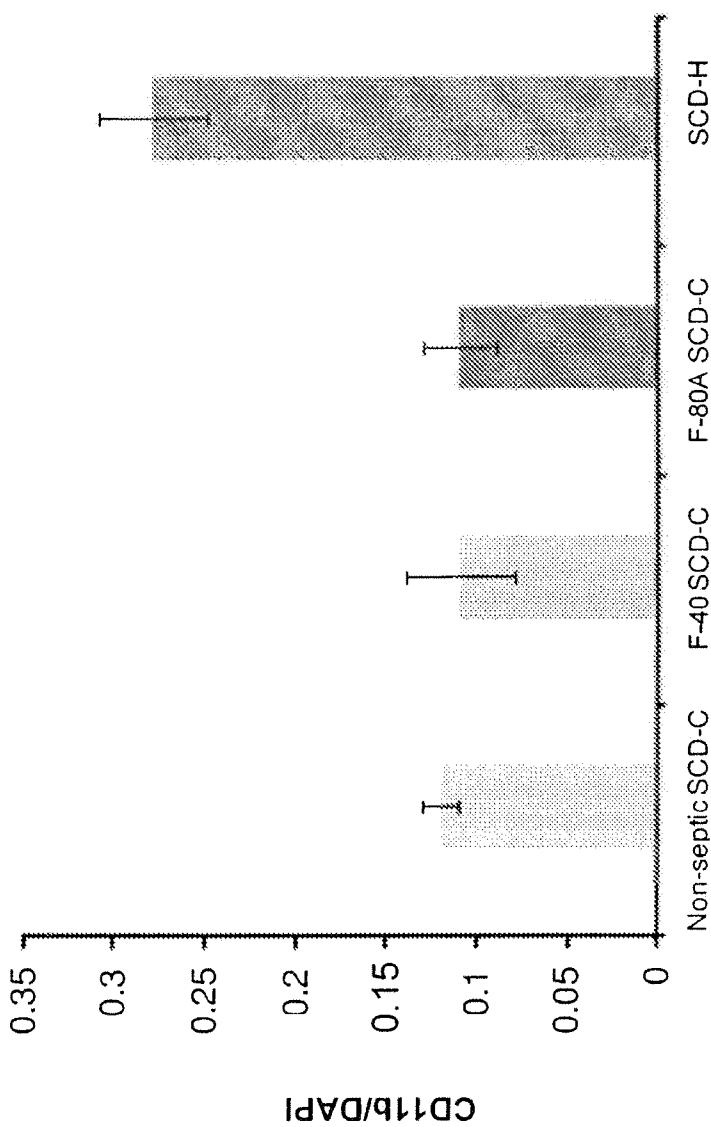
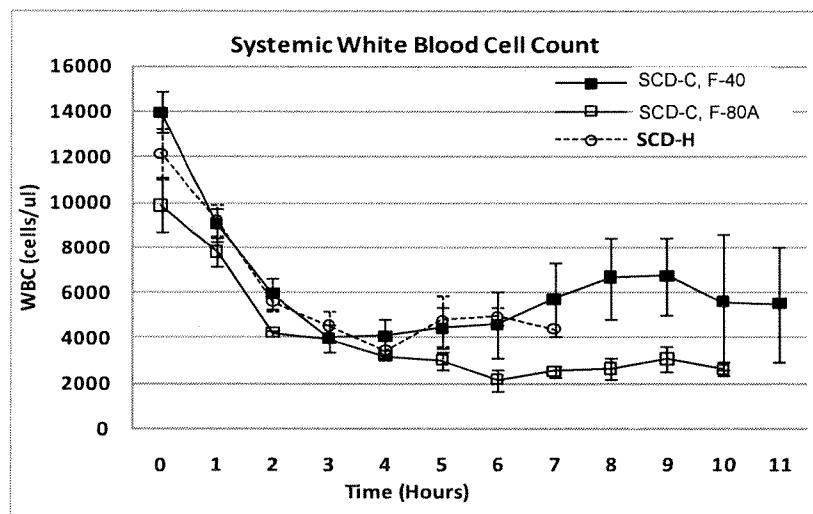
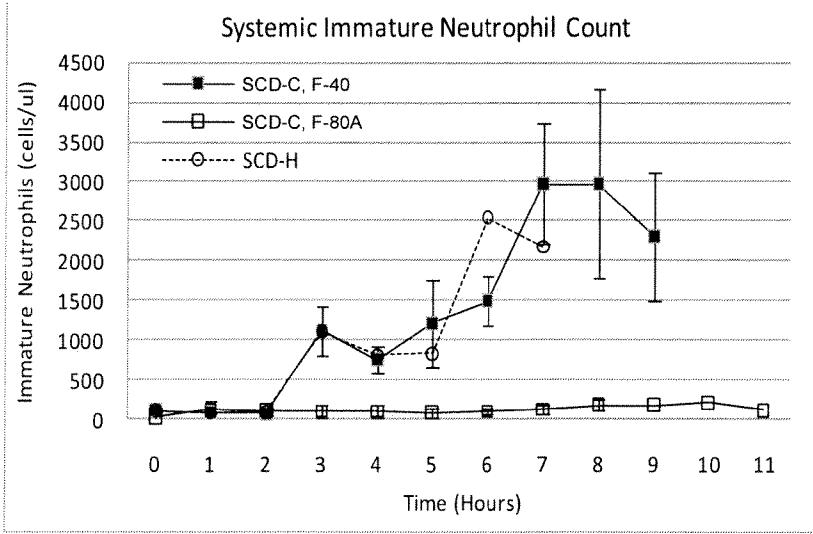



Figure 14. Lung Tissue Leukocyte Aggregation expressed as # of CD11b positive cells/# of DAPI stained nuclei after IHC staining, $p < 0.01$ for all SCD-C groups compared to the SCD-H group.

Figure 15


A

B

C

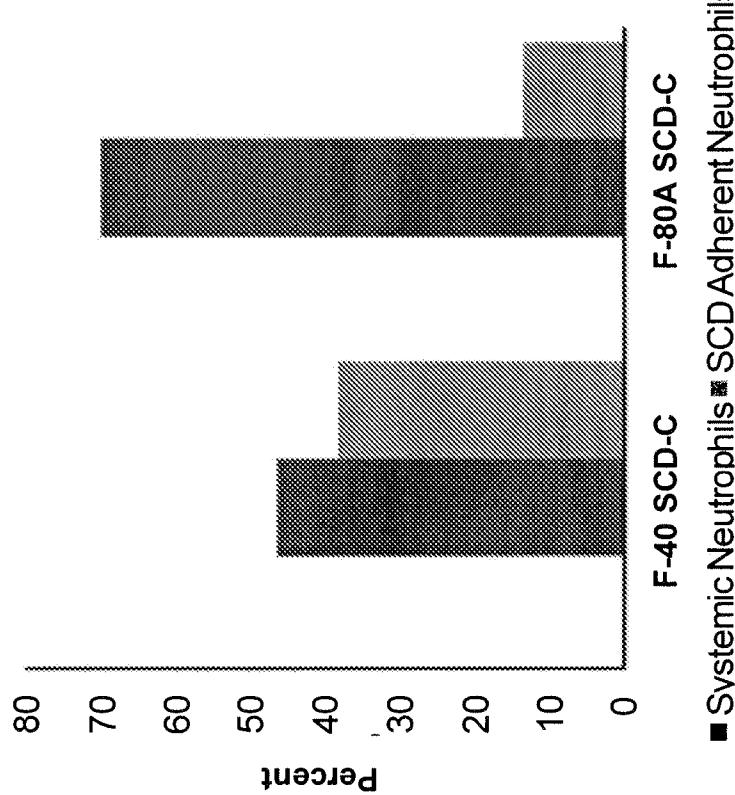
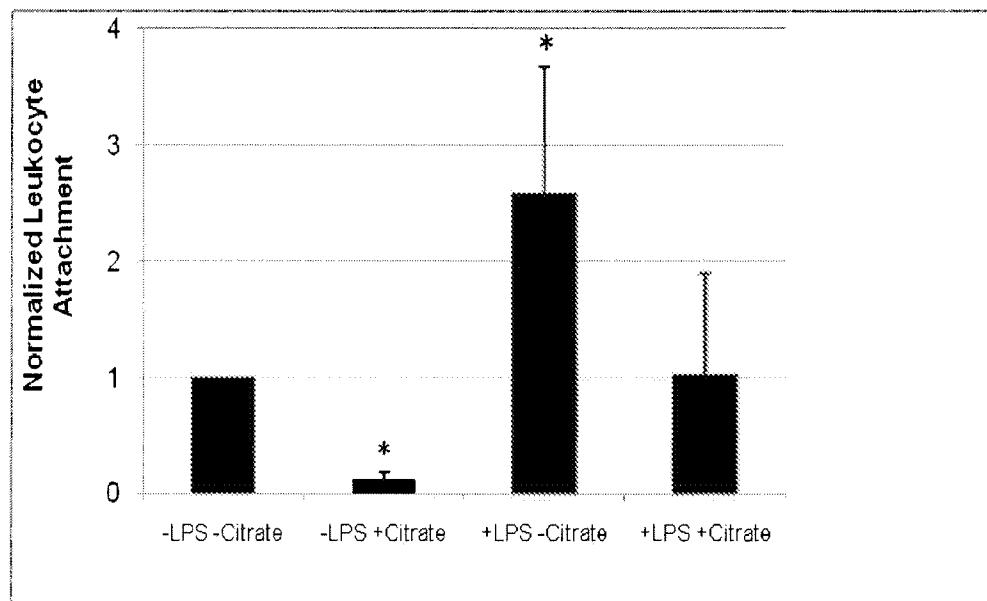



Figure 16. Apoptotic Potential assessed by percent Annexin V positive NEs.

Figure 17

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2011/056469

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61M1/34 A61M1/36 B01D27/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61M B01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2009/029801 A2 (UNIV MICHIGAN [US]; HUMES H DAVID [US]; BUFFINGTON DEBORAH [US]) 5 March 2009 (2009-03-05) paragraphs [0045], [0082]; figures 2, 4F -----	1-38, 62-110

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
8 February 2012	15/02/2012

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Westsson, David

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2011/056469

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 39-61, 111 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.2

Claims Nos.: 39-61, 111

Claims 39-61 and 111 refer to a method for treatment of the human or animal body by therapy and surgery, which is against Rule 39.1(iv) PCT and Rule 67.1(iv). Even if it is not explicitly claimed, it is clear from the description (see e.g. ?12 and ?60) that the intended use is to treat the patient by removing or deactivating blood components in the patient's blood.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.2), should the problems which led to the Article 17(2) declaration be overcome.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/056469

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2009029801 A2 05-03-2009		AU 2008293431 A1		05-03-2009
		CA 2697681 A1		05-03-2009
		CN 101842111 A		22-09-2010
		EP 2187957 A2		26-05-2010
		JP 2010538973 A		16-12-2010
		KR 20100061704 A		08-06-2010
		US 2009060890 A1		05-03-2009
		US 2010266562 A1		21-10-2010
		US 2010266563 A1		21-10-2010
		US 2010268146 A1		21-10-2010
		US 2010268147 A1		21-10-2010
		US 2011196280 A1		11-08-2011
		WO 2009029801 A2		05-03-2009