

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2023/0069885 A1 **MACQUARRIE**

Mar. 9, 2023 (43) **Pub. Date:**

(54) CONSTRUCTION SYSTEM WITH LINKABLE ELEMENTS AND METHOD **THEREFOR**

(71) Applicant: STUDIOWEAPON MUSIC & **DESIGN LTD.**, Calgary, Alberta (CA)

Inventor: Stuart MACQUARRIE, Calgary,

Alberta (CA)

17/800,605 (21) Appl. No.:

(22) PCT Filed: Feb. 18, 2021

(86) PCT No.: PCT/CA2021/050180

§ 371 (c)(1),

(2) Date: Aug. 18, 2022

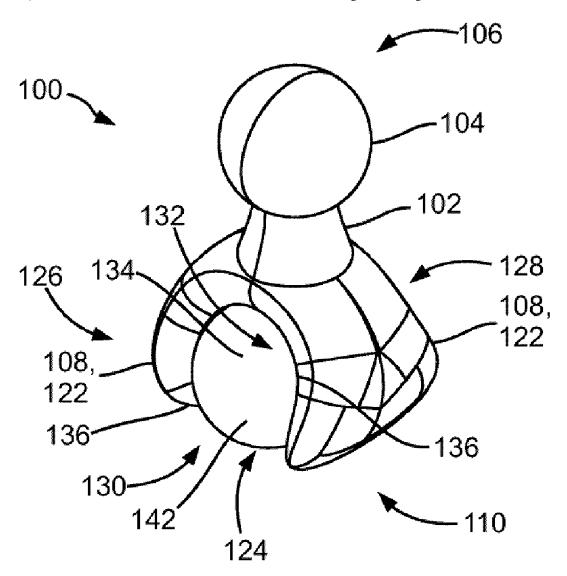
Related U.S. Application Data

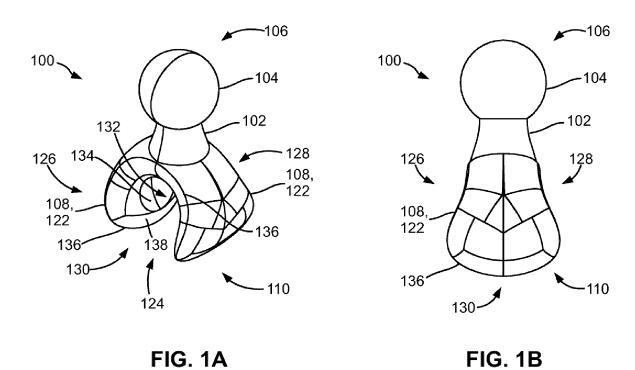
(60) Provisional application No. 62/979,016, filed on Feb. 20, 2020.

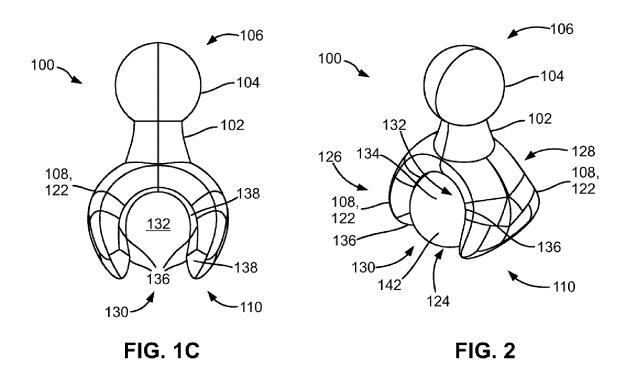
Publication Classification

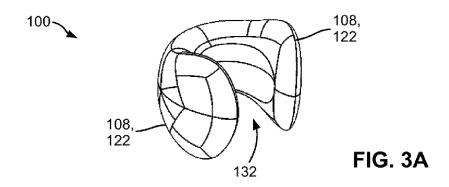
(51) Int. Cl.

A63H 33/10 (2006.01)A63H 33/04 (2006.01)


U.S. Cl.


CPC A63H 33/101 (2013.01); A63H 33/046


(2013.01); A63H 33/042 (2013.01)


(57) ABSTRACT

An interconnectable construction element has a body section, a first socket coupled to a first end of the body section, and a magnetic ball. The first socket has a recess in communication with an opening. The opening extends from a first lateral side of the first socket at least to a distal end thereof. The magnetic ball is individually rotatably receivable into the recess of the first socket for forming a magnetic connection with another interconnectable construction element having another magnetic ball.

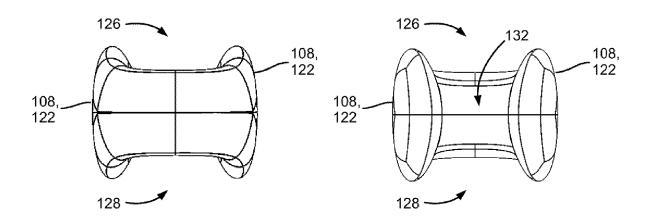


FIG. 3B FIG. 3C

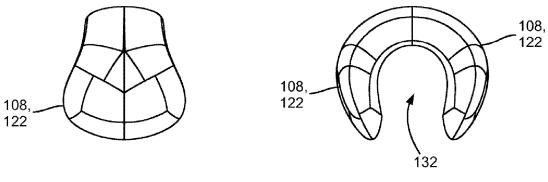
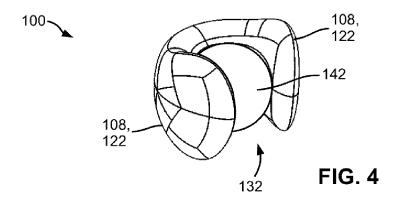
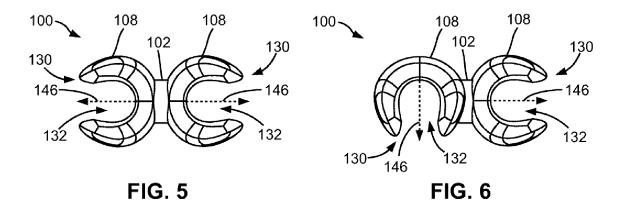




FIG. 3D FIG. 3E

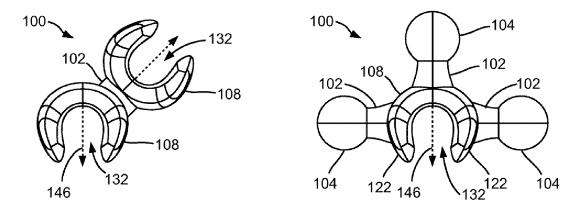
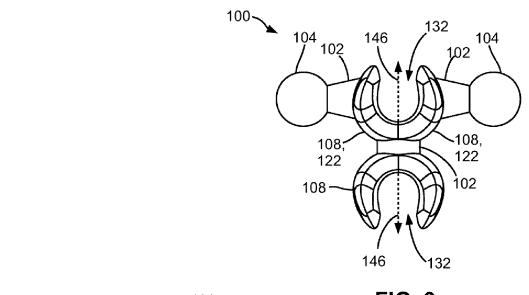



FIG. 7 FIG. 8

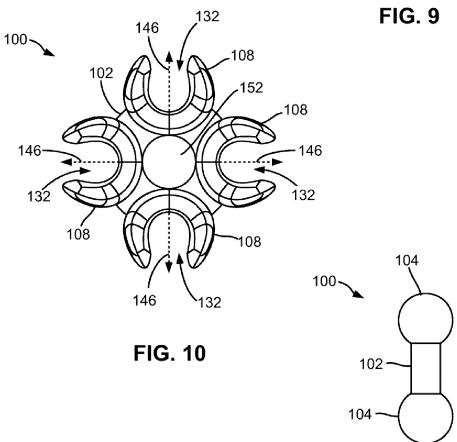


FIG. 11

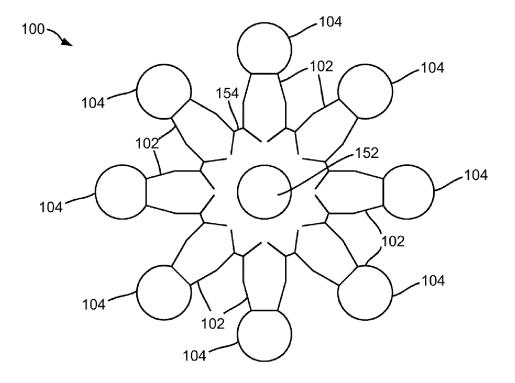


FIG. 12

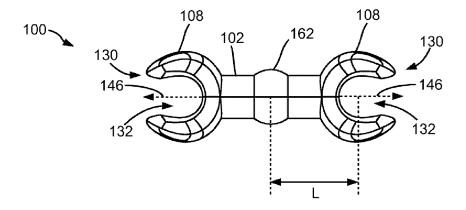


FIG. 13

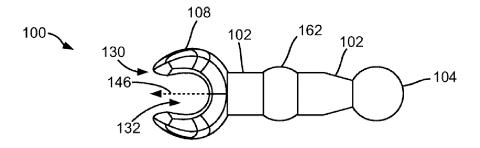


FIG. 14

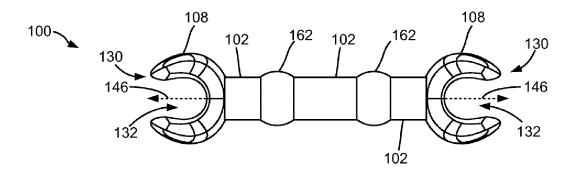


FIG. 15

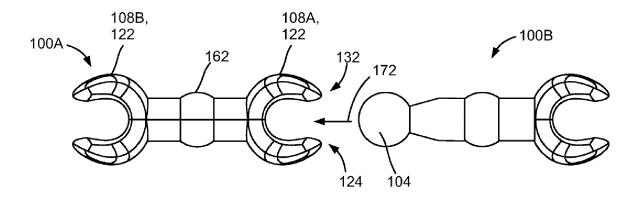
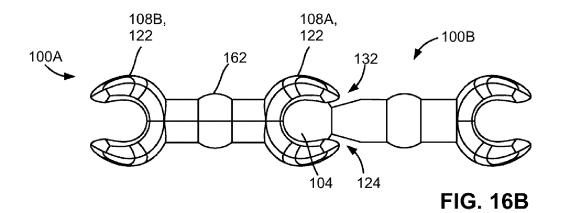
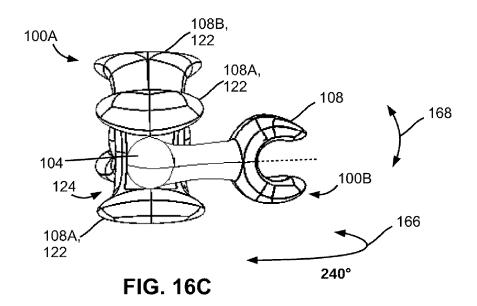




FIG. 16A

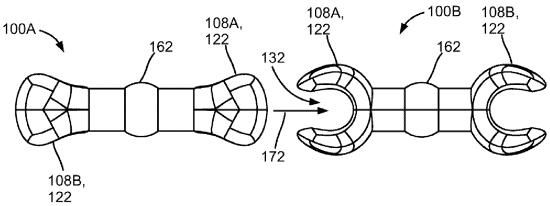


FIG. 17A

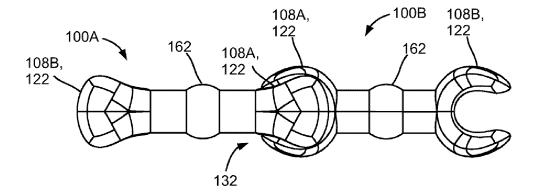


FIG. 17B

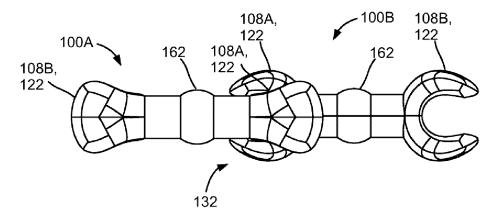


FIG. 17C

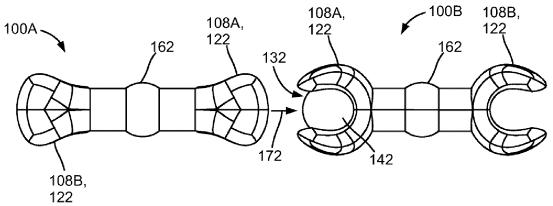


FIG. 18A

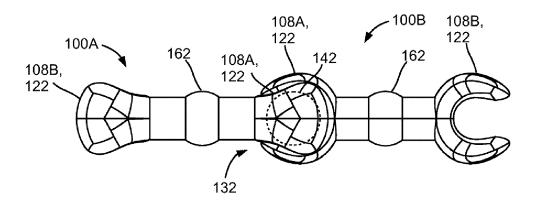
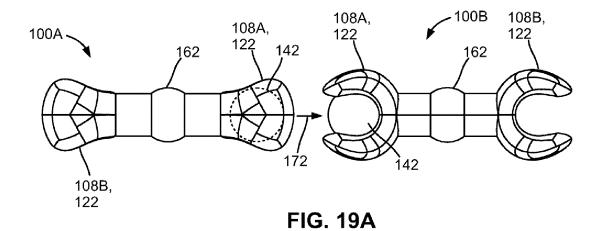



FIG. 18B

100A 108A, 100B 108B, 122 162 162 108B, 122 162

FIG. 19B

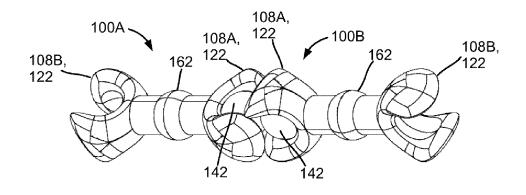
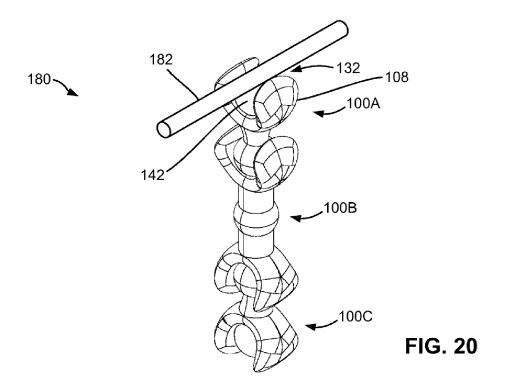
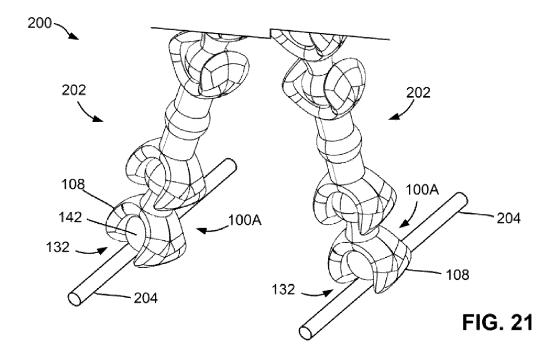
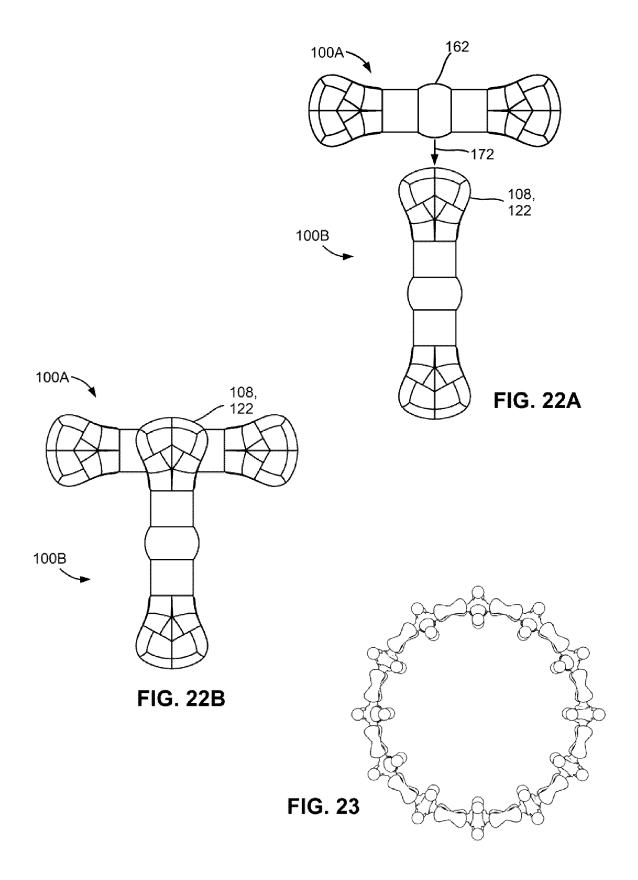
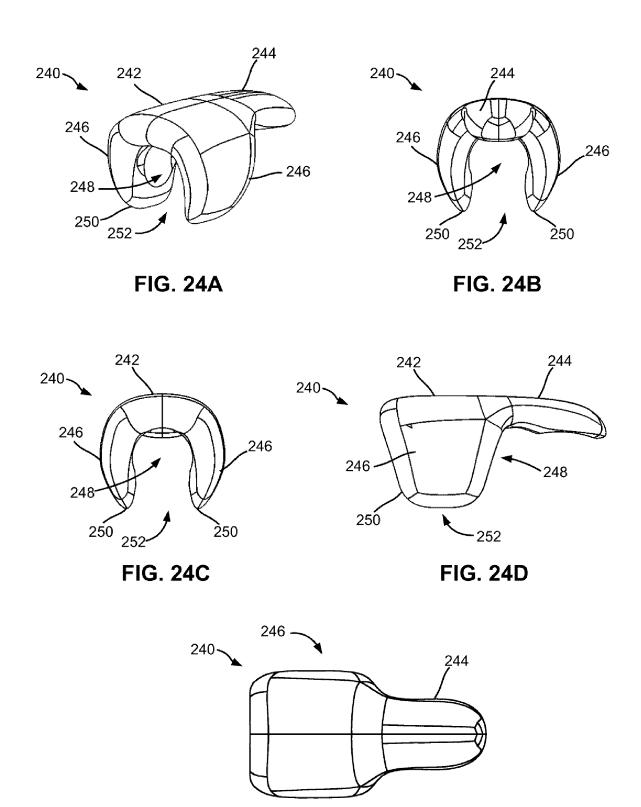






FIG. 19C

246 -

FIG. 24E

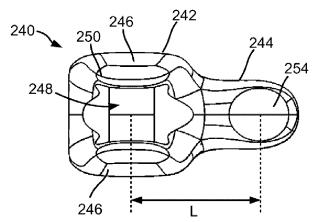


FIG. 24F

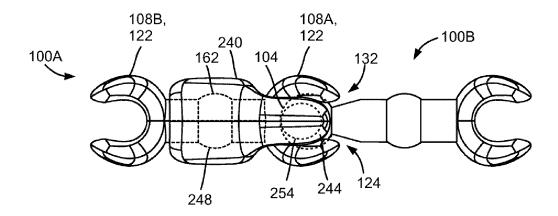
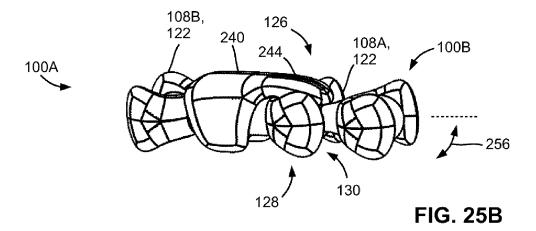
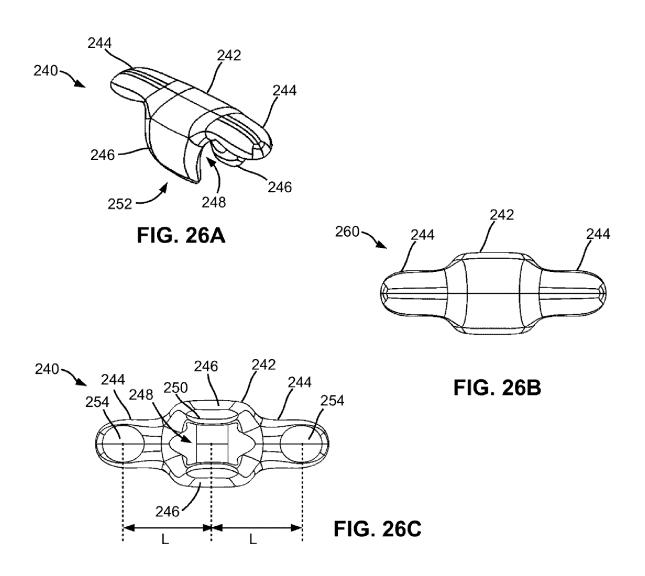




FIG. 25A

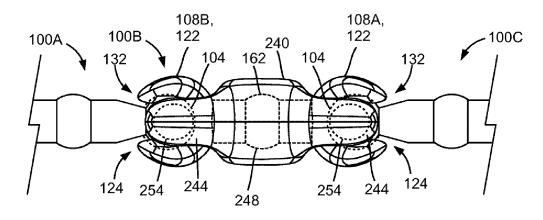


FIG. 27

CONSTRUCTION SYSTEM WITH LINKABLE ELEMENTS AND METHOD THEREFOR

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 62/979,016 filed on Feb. 20, 2020, the content of which is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

[0002] This present disclosure relates generally to a construction system and method, and particularly to a construction system and method employing a plurality of individual construction elements that may be fitted together by way of magnetic and non-magnetic ball-and-socket joints.

BACKGROUND

[0003] Construction systems using small parts or elements such as construction systems for toys are known. Such construction systems often comprise elements with interconnectable or interlockable male and female connectors (e.g., interconnectable or interlockable connection-head and socket) for connecting the elements together.

[0004] The prior-art construction systems may be used for connecting parts of various shapes using head-to-socket connections and/or socket-to-socket connections. However, such construction systems generally have a number of limitations such as:

[0005] (i) one connector may only be interconnectable with the other connector of the same interconnectable connector pairs,

[0006] (ii) ways for limiting the ranges of rotation of the head-to-socket connections may be lacking.

SUMMARY

[0007] Consequently, a need exists for a construction system that overcomes the limitations of prior systems, is easy to assemble and is inexpensive to manufacture.

[0008] According to some aspects of this disclosure, there is provided a construction element comprising: at least a socket having a recess in communication with an opening, the opening extending from a first lateral side of the socket at least to a distal end thereof; and a magnetic ball rotatably receivable into the recess.

[0009] In some embodiments, the magnetic ball is made of neodymium-iron-boron.

[0010] According to some aspects of this disclosure, there is provided a first construction element for removably coupling to a second construction element for limiting the range of rotation thereof, the second construction element comprising an expansion and a socket spaced from each other, the socket comprising an opening extending from a first lateral side at least to a distal end thereof. The first construction element comprises: an engagement structure having a recess for engaging the expansion of the second construction element; and a tail section extending from the socket, said tail section having a length such that, when the first construction element is coupled to the second construction element with the recess of the first construction element engaging the expansion of the second construction element,

the tail section extends to the first lateral side of the opening of the second construction element.

[0011] According to some aspects of this disclosure, there is provided an interconnectable construction element comprising: a body section; a first socket coupled to a first end of the body section, the first socket comprising a recess in communication with an opening, the opening extending from a first lateral side of the first socket at least to a distal end thereof; and a magnetic ball releasably receivable into the recess of the first socket without falling out therefrom for forming a magnetic connection with another interconnectable construction element having another magnetic ball, a magnetic anchor, and/or a ferromagnetic anchor.

[0012] In some embodiments, the magnetic ball is individually rotatably receivable in the first socket.

[0013] In some embodiments, the magnetic ball comprises a material of neodymium-iron-boron.

[0014] In some embodiments, the interconnectable construction element comprises a second socket coupled to a second end of the body section.

[0015] In some embodiments, the body section comprises an expansion spaced from the first socket, the expansion having a maximum diameter greater than that of the body section.

[0016] In some embodiments, the expansion has a spherical shape.

[0017] In some embodiments, the expansion is located at a position intermediate the first and second sockets.

[0018] In some embodiments, the expansion is receivable into the recess of another interconnectable construction element.

[0019] In some embodiments, the magnetic connection is formed by automatic rotation and alignment of the one or more magnetic balls.

[0020] In some embodiments, the interconnectable construction element comprises an injection-molded thermoplastic material, metal, carved wood, composite materials, or a combination thereof.

[0021] According to some aspects of this disclosure, there is provided a rotation-limiting element for removably coupling to a first interconnectable construction element for limiting the range of rotation thereof when the first interconnectable construction element is connected to a second interconnectable construction element, the first interconnectable construction element comprising a body section and a socket coupled to the body section, the socket comprising a recess in communication with an opening for rotatably receiving a connection portion of the second interconnectable construction element, the opening extending from a first lateral side of the recess at least to a distal end thereof; the rotation-limiting element comprises: an engagement structure for engaging an engagement section of the first interconnectable construction element for removably coupling the rotation-limiting element to the first interconnectable construction element; and a first tail section extending from the engagement structure, said first tail section having a length such that, when the rotation-limiting element is coupled to the first interconnectable construction element, the first tail section extends to a position about the opening of the first interconnectable construction element.

[0022] In some embodiments, the engagement structure comprises a recess for engaging an expansion structure on the body section of the first interconnectable construction element, the expansion structure having a maximum diam-

eter greater than that of the body section and acting as the engagement structure of the first interconnectable construction element.

[0023] In some embodiments, the rotation-limiting element comprises an injection-molded thermoplastic material, metal, carved wood, composite materials, or a combination thereof.

[0024] In some embodiments, the first tail section comprises a spherical secondary recess about a distal end thereof and one side facing the opening of the first interconnectable construction element when the rotation-limiting element is coupled to the first interconnectable construction element.

[0025] In some embodiments, the rotation-limiting element is for coupling to a head-to-socket connection.

[0026] In some embodiments, the recess of the engagement structure is a spherical recess.

[0027] In some embodiments, the rotation-limiting element further comprises a second tail section extending from the engagement structure on a side thereof longitudinally opposite to the first tail section.

[0028] According to some aspects of this disclosure, there is provided a construction system comprising: a plurality of above-described interconnectable construction elements.

[0029] In some embodiments, the construction system further comprises: one or more above-described interconnectable rotation-limiting elements.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1A is a perspective view of a construction element, according to one embodiment of this disclosure;

[0031] FIG. 1B is a side view of the construction element shown in FIG. 1A;

[0032] FIG. 1C is a front view of the construction element shown in FIG. 1A;

[0033] FIG. 2 is a perspective view of a construction element according to another embodiment of this disclosure, the construction element being similar to that shown in FIG. 1A and further comprising a magnetic ball;

[0034] FIG. 3A is a perspective view of a construction element according to yet another embodiment of this disclosure;

[0035] FIG. 3B is a rear view of the construction element shown in FIG. 3A;

[0036] FIG. 3C is a front view of the construction element shown in FIG. 3A;

[0037] FIG. 3D is a side view of the construction element shown in FIG. 3A;

[0038] FIG. 3E is a plan view of the construction element shown in FIG. 3A;

[0039] FIG. 4 is a perspective view of a construction element according to still another embodiment of this disclosure, the construction element being similar to that shown in FIG. 3A and further comprising a magnetic ball;

[0040] FIGS. 5 to 15 are plan views of a construction element in various embodiments;

[0041] FIGS. 16A to 16C show the coupling of two construction elements with a head-to-socket connection, according to one embodiment of this disclosure;

[0042] FIGS. 17A to 17C show the coupling of two construction elements with a socket-to-socket connection, according to another embodiment of this disclosure;

[0043] FIGS. 18A and 18B show the coupling of two construction elements with a socket-to-socket connection

and a ball received in the engaged sockets, according to another embodiment of this disclosure;

[0044] FIGS. 19A to 19C show the engagement of two construction elements, according to another embodiment of this disclosure:

[0045] FIGS. 20 and 21 show the attachment of an assembled apparatus to an anchoring structure, according to different embodiments of this disclosure;

[0046] FIGS. 22A and 22B show the coupling of two construction elements, according to another embodiment of this disclosure:

[0047] FIG. 23 shows a bracelet assembly built from a plurality of plastic construction elements;

[0048] FIG. 24A is a perspective view of a rotationlimiting element, according to one embodiment of this disclosure:

[0049] FIG. 24B is a front view of the rotation-limiting element shown in FIG. 24A;

[0050] FIG. 24C is a rear view of the rotation-limiting element shown in FIG. 24A:

[0051] FIG. 24D is a side view of the rotation-limiting element shown in FIG. 24A;

[0052] FIG. 24E is a plan view of the rotation-limiting element shown in FIG. 24A;

[0053] FIG. 24F is a bottom view of the rotation-limiting element shown in FIG. 24A;

[0054] FIGS. 25A and 25B are a plan view and a perspective view, respectively, of two coupled construction elements with a rotation-limiting element shown in FIG. 24A attached thereto for limiting the range of rotation thereof;

[0055] FIG. 26A is a perspective view of a rotationlimiting element, according to another embodiment of this disclosure:

[0056] FIG. 26B is a plan view of the rotation-limiting element shown in FIG. 26A;

[0057] FIG. 26C is a bottom view of the rotation-limiting element shown in FIG. 26A; and

[0058] FIG. 27 is a plan view of two coupled construction elements with a rotation-limiting element shown in FIG. 26A attached thereto for limiting the range of rotation thereof.

DETAILED DESCRIPTION

[0059] Embodiments disclosed herein relate to a construction system using a plurality of interconnectable, interlockable, or otherwise linkable construction elements for assembling or otherwise building an apparatus such as a toy, an educational tool, an adornment, or the like. Each construction element may comprise a socket, a connection head, or both.

[0060] FIGS. 1A to 1C show an interconnectable construction element 100 according to one embodiment of this disclosure. In this embodiment, the construction element 100 may be made of or comprise Acetal such as Polyoxymethylene Copolymer (POM-C). Of course, those skilled in the art will appreciate that, in other embodiments, the construction element 100 may be made of or comprise any suitable material such as injection-molded thermoplastic, metal, carved wood, composite materials, and/or the like.

[0061] The construction element 100 comprises an elongated substantially cylindrical body section 102, with a connection head 104 on a first end 106 thereof and a socket or jaw 108 on a second end 110 of the body section 102 opposite to the first end 106.

[0062] As shown in FIG. 1A, the socket 108 in this embodiment comprises two opposing petals 122 and an opening 124 laterally extending from a first side 126 of the petals 122 to an opposing second side 128 through a distal end 130 thereof.

[0063] The petals 122 form a recess 132 having an inner surface 134 with a shape substantively complementary to that of at least a portion of the connection head 104 and a diameter equal to or slightly smaller than that of the connection head 104, for removably and rotatably receiving therein the connection head 104 of another construction element. The opening 124 has a dimension along any direction smaller than that of the connection head 104 of another construction element received in the recess 132 along a corresponding direction for preventing the received connection head 104 from accidentally falling out of the recess 132.

[0064] In this embodiment, the socket 108 comprises a crest 136 extending along the edge of the petals 122. The crest 136 defines a radially outwardly facing chamfer 138 at the edge of the recess 132 for facilitating the snapping-in of the spherical connection head 104 of another construction element, and also forms the perimeters of the petals 122 and opening 124 with a shape such that the perimeter of the opening 124 is the reverse image of that of the petals 122 (in other words, the opening 124 has a profile complementary to that of the petals 122) for allowing a socket-to-socket connection. Moreover, the petals 122 comprise a maximum width greater than that of the entrance of the opening 124 to prevent the interconnected sockets from accidentally disengaging.

[0065] As shown in FIG. 4, the interconnectable construction element 100 in another embodiment may further comprise an individual magnetic ball 142 made of a suitable material such as neodymium-iron-boron (NIB) with a size equal to or slightly smaller than the spherical connection head 104 such that the magnetic ball 142 may be removably or releasably snapped into the recess 132 of the socket 108. In some embodiments, the magnetic ball 142 may be freely rotatable in the recess 132 of the socket 108 after snapping thereinto. Similar to the description above, the opening 124 has a dimension along any direction smaller than that of the magnetic ball 142 received in the recess 132 along a corresponding direction for preventing the received magnetic ball 142 from accidentally falling out of the recess 132. [0066] In various embodiments, various interconnectable construction elements 100 may be formed by combining the connection head 104, the socket 108, the body section 102, and the magnetic ball 142. For example, FIGS. 3A to 3E show an interconnectable construction element 100 in one embodiment that only comprises the socket 108.

[0067] FIG. 4 shows an interconnectable construction element 100 in another embodiment. The interconnectable construction element 100 in this embodiment is similar to that shown in FIGS. 3A to 3E except that the interconnectable construction element 100 in this embodiment further comprises a magnetic ball 142 rotatably receivable into the recess 132.

[0068] FIG. 5 shows an interconnectable construction element 100 in yet another embodiment that comprises two sockets 108 coupled together directly or via a body section 102 of a short length (compared to, e.g., that of the body section 102 shown in FIG. 1A). For ease of description, a longitudinal axis 146 is defined for each socket 108 as the

axis about which the two petals 122 are symmetrical and oriented in a direction towards the distal end 130 thereof. In this embodiment, the two sockets 108 are arranged in a "back to back" manner, i.e., the longitudinal axes 146 thereof are opposite to each other.

[0069] In some embodiments similar to that shown in FIG. 5, the interconnectable construction element 100 may further comprise one or two magnetic balls 142 rotatably receivable into one or both of the recesses 132 of the sockets 108

[0070] FIG. 6 shows an interconnectable construction element 100 in another embodiment. The interconnectable construction element 100 in this embodiment comprises two sockets 108 arranged in a perpendicular manner (i.e., the longitudinal axes 146 thereof are perpendicular to each other) and coupled together with a body section 102 of a minimum length.

[0071] In some embodiments similar to that shown in FIG. 6, the interconnectable construction element 100 may further comprise one or two magnetic balls 142 rotatably receivable into one or both of the recesses 132 of the sockets 108.

[0072] FIG. 7 shows an interconnectable construction element 100 in another embodiment. The interconnectable construction element 100 in this embodiment comprises two sockets 108 arranged in an angled manner (i.e., the longitudinal axes 146 thereof are at an angle (e.g., 45°) to each other) and coupled together with a body section 102 of a minimum length.

[0073] In some embodiments similar to that shown in FIG. 7, the interconnectable construction element 100 may further comprise one or two magnetic balls 142 rotatably receivable into one or both of the recesses 132 of the sockets 108.

[0074] FIG. 8 shows an interconnectable construction element 100 having three connection heads 104 and one socket, according to another embodiment of this disclosure. As shown, the interconnectable construction element 100 is similar to that shown in FIGS. 1A to 1C except that the interconnectable construction element 100 in this embodiment further comprises two connection heads 104 extending from the two petals 122.

[0075] In some embodiments similar to that shown in FIG. 8, the interconnectable construction element 100 may further comprise a magnetic ball 142 rotatably receivable into the recess 132 of the socket 108.

[0076] FIG. 9 shows an interconnectable construction element 100 in another embodiment. As shown, the interconnectable construction element 100 is similar to that shown in FIG. 5 except that the interconnectable construction element 100 in this embodiment further comprises two connection heads 104 extending from the two petals 122 of one of the sockets 108.

[0077] In some embodiments similar to that shown in FIG. 9, the interconnectable construction element 100 may further comprise one or two magnetic balls 142 rotatably receivable into one or both of the recesses 132 of the sockets 108.

[0078] FIG. 10 shows an interconnectable construction element 100 in another embodiment. As shown, the interconnectable construction element 100 comprises four (4) sockets 108 circumferentially uniformly distributed on and coupled to a circular body section 102. The circular body section 102 comprises a central hole 152 with a size suitable

for rotatably receiving therein a connection head 104 of another construction element.

[0079] In some embodiments similar to that shown in FIG. 10, the interconnectable construction element 100 may further comprise one or more magnetic balls 142 rotatably receivable into the recesses 132 of the sockets 108 and/or the central hole 152 of the circular body section 102.

[0080] FIG. 11 shows an interconnectable construction element 100 in another embodiment. As shown, the interconnectable construction element 100 comprises two (2) connection heads 104 connected by a body section 102.

[0081] FIG. 12 shows an interconnectable construction element 100 in yet another embodiment. As shown, the interconnectable construction element 100 comprises more than two (e.g., eight) connection heads 104 circumferentially uniformly distributed on a circular body 154 and coupled thereto via respective body sections 102. The circular body 154 comprises a central hole 152 with a size suitable for rotatably receiving therein a connection head 104 of another construction element.

[0082] In some embodiments similar to that shown in FIG. 12, the interconnectable construction element 100 may further comprise a magnetic ball 142 rotatably receivable into the central hole 152 of the circular body section 102.

[0083] FIG. 13 shows an interconnectable construction element 100 in still another embodiment. Similar to that shown in FIG. 5, the interconnectable construction element 100 in this embodiment comprises two sockets 108 coupled by a body section 102 of a suitable length. The body section 102 comprises a spherical expansion 162 at a location thereof intermediate the two sockets 108 and having a maximum diameter greater than that of the body section 102. The spherical expansion 162 has a size suitable for being received in a recess 132 of another construction element. As will be described in more detail later, the spherical expansion 162 may be used for engaging the recess 132 of another construction element.

[0084] In some embodiments similar to that shown in FIG. 13, the interconnectable construction element 100 may further comprise one or two magnetic balls 142 rotatably receivable into the recesses 132 of the sockets 108.

[0085] FIG. 14 shows an interconnectable construction element 100 in another embodiment. The interconnectable construction element 100 in this embodiment comprises a socket 108 and a connection head 104 coupled by a body section 102 of a suitable length. Similar to that shown in FIG. 13, the body section 102 comprises a spherical expansion 162 at a location thereof intermediate the socket 108 and the connection head 104.

[0086] In some embodiments similar to that shown in FIG. 14, the interconnectable construction element 100 may further comprise a magnetic ball 142 rotatably receivable into the recess 132 of the socket 108.

[0087] FIG. 15 shows an interconnectable construction element 100 in another embodiment. The interconnectable construction element 100 is similar to that shown in FIG. 13 except that the body section 102 of the interconnectable construction element 100 in this embodiment comprises two spherical expansions 162 spaced from each other at locations thereof intermediate the socket 108 and the connection head 104.

[0088] In some embodiments similar to that shown in FIG. 14, the interconnectable construction element 100 may

further comprise one or two magnetic balls 142 rotatably receivable into one or both of the recesses 132 of the sockets 108.

[0089] In various embodiments, the above-described interconnectable construction elements 100 may be combined in any suitable manner. For example, FIGS. 16A to 16C show the connection or engagement of two construction elements 100A and 100B in one embodiment.

[0090] As shown in FIG. 16A, the construction element 100A is similar to that shown in FIG. 13 and comprises a pair of sockets 108A and 108B. The construction element 100B is similar to that shown in FIG. 14 and comprises a socket 108 and a connection head 104. One may push the connection head 104 of the construction element 100B into the recess 132 of the socket 108A of the construction element 100A, as indicated by the arrow 172.

[0091] As shown in FIG. 16B, with a sufficient force, the petals 122 of the socket 108A are slightly deflected thereby allowing the connection head 104 of the construction element 100B to snap into the recess 132 of the socket 108A of the construction element 100A, thereby forming a joint with a head-to-socket connection.

[0092] As shown in FIG. 16C, the engaged recess 132 and connection head 104 may be used as a pivot for construction elements 100A and 100B to rotate with respect to each other including a large rotation span (e.g., about 220° in some embodiments or 240° in some other embodiments) along the opening 124 of the socket 108A as indicated by the arrow 166 and a relatively small rotation span towards the petals 122 of the socket 108A as indicated by the arrow 168.

[0093] FIGS. 17A and 17B show the connection or engagement of two construction elements 100A and 100B in another embodiment.

[0094] As shown in FIG. 17A, the construction elements 100A and 100B are similar to that shown in FIG. 13 and each comprise a pair of sockets 108A and 108B. One may rotate the construction element 100A about its longitudinal axis (not shown) to align the petals 122 of the socket 108A thereof with the opposite sides of the petals 122 of socket 108A of the construction element 100B, and then push the socket 108A of the construction element 100A towards the socket 108A of the construction element 100B, as indicated by the arrow 172.

[0095] As shown in FIG. 17B, with a sufficient force, the petals 122 of the sockets 108A and 108B are slightly deflected and allow the sockets 108A and 108B of the construction elements 100A and 100B to snap to and engage with each other, thereby forming a socket-to-socket connection. Unlike the head-to-socket connection, the socket-to-socket connection does not allow the construction elements 100A and 100B to rotate with respect to each other.

[0096] As shown in FIG. 17C, with sufficient force, the petals 122 of the sockets 108A and 108B may be forced past the socket-to-socket connection shown in FIG. 17B and into an unstable, buckled state. From the unstable, buckled state, the construction elements 100A and 100B may be pulled backward (that is, along opposite directions) and snapped into a socket-to-socket connection.

[0097] FIGS. 18A and 18B show the connection or engagement of two construction elements 100A and 100B in yet another embodiment.

[0098] As shown in FIG. 18A, the construction elements 100A and 100B are similar to those shown in FIGS. 17A and 17B. However, in this embodiment, the construction element

100B comprises a magnetic ball 142 received in the recess 132 of the socket 108A thereof.

[0099] With an engagement process similar to that shown in FIGS. 17A and 17B, the sockets 108A and 108B of the construction elements 100A and 100B are snapped to and engage with each other with the magnetic ball 142 (indicated using broken line) received therein (see FIG. 18B), thereby forming a socket-to-socket connection. In this embodiment, the magnetic ball 142 supports the engagement of the construction elements 100A and 100B.

[0100] FIGS. 19A to 19C show the connection or engagement of two construction elements 100A and 100B in still another embodiment.

[0101] As shown in FIG. 19A, the construction elements 100A and 100B are similar to those shown in FIGS. 17A and 17B. However, in this embodiment, the construction elements 100A and 100B each comprise a magnetic ball 142 received in the recess 132 of the socket 108A thereof.

[0102] One may rotate the construction element 100A about its longitudinal axis (not shown) to align the petals 122 of the socket 108A thereof with the opposite sides of petals 122 of the socket 108A of the construction element 100B, and then move the construction elements 100A and 100B towards each other as indicated by the arrow 172. As the magnetic balls 142 are rotatable in the respective recesses 132 of the sockets 108, the magnetic fields of the balls 142 force the balls 142 to automatically rotate and align to a mutually attracting orientation (i.e., the north pole of one ball 142 automatically aligned with the south pole of the other ball 142).

[0103] As shown in FIGS. 19B and 19C, the two construction elements 100A and 100B are then coupled to each other by the magnetic force between the balls 412 thereof, thereby forming a joint with a magnetic connection.

[0104] Unlike the socket-to-socket connections shown in FIGS. 17A to 18B, the magnetic connection allows the two construction elements 100A and 100B to rotate with respect to each other. The strong magnetic force provided by the NIB magnetic balls 142 ensures reliable coupling of the construction elements 100A and 100B.

[0105] In various embodiments, the magnetic ball 142 may also facilitate an assembled apparatus to couple to an anchor structure.

[0106] For example, FIG. 20 shows an assembled or otherwise constructed apparatus 180 formed by interconnected construction elements 100A to 100C. The construction element 100A comprises a magnetic ball 142 received in the recess 132 of the socket 108 thereof for attaching the assembled apparatus 180 to a ferromagnetic anchor such as a ferromagnetic rod 182. As the magnetic ball 142 is rotatable in the respective recesses 132 of the sockets 108, it may also be used to attach the assembled apparatus 180 to a magnetic anchor.

[0107] FIG. 21 shows a portion of an assembled apparatus 200 in the form of a robot. The robot 200 comprises two legs 202 assembled or otherwise constructed using a plurality of interconnected construction elements. The construction elements 100A at the ends of the legs 202 each comprise a magnetic ball 142 received in the recess 132 of the socket 108 thereof for attaching the legs 202 to ferromagnetic anchors such as ferromagnetic rods 204 for maintaining the assembled apparatus 200 in a upright orientation. Similar to the description above, the magnetic ball 142 is rotatable in

the respective recesses 132 of the sockets 108, and may also be used to attach the assembled apparatus 200 to a magnetic anchor.

[0108] As shown in FIGS. 22A and 22B, one may snap the spherical expansion 162 of a construction element 100A into the recess 132 of a socket 108 of another construction element 100B (as indicated by the arrow 172) to couple the construction element 100A to the construction element 100B

[0109] FIG. 23 shows a bracelet assembly in faux jade finish which is assembled or built from a plurality of plastic construction elements 100.

[0110] In one example, some measurements of the construction elements 100 described above are as follows, which are obtained through extensive experiments for achieving an improved performance of balancing of assembled apparatuses.

[0111] the recess 132 of the socket 108 has a diameter of about 6 millimeters (mm);

[0112] the connection head 104 has a diameter of about 6.1 mm;

[0113] the portion of the body section 102 connecting to the connection head 104 has a diameter of 3.4 mm, and the rest of the body section 102 has a diameter of about 4.9 mm or smaller;

[0114] the spherical expansion 162 has a diameter of about 6.0 mm;

[0115] the magnetic ball 142 has a diameter of about 5.9 mm:

[0116] the head-to-socket connection allows a pitch (rotation along the opening 124) of at most 220° (e.g., at most 110° on each side); and

[0117] the head-to-socket connection allows a yaw (rotation towards the petals 122) of no more than 20° .

[0118] In some embodiments, the dimensions of the construction elements 100 may be:

[0119] the recess 132 of the socket 108 has a diameter of 5 mm to 6 mm;

[0120] the connection head 104 has a diameter of 6 mm to 6.4 mm;

[0121] the portion of the body section 102 connecting to the connection head 104 has a diameter of 3.2 mm to 3.6 mm, and the rest of the body section 102 has a diameter of 4.7 mm to 6 mm;

[0122] the spherical expansion 162 has a diameter of 6 mm to 6.4 mm;

[0123] the magnetic ball 142 has a diameter of about 5 mm to 6 mm;

[0124] the head-to-socket connection allows a pitch (rotation along the opening 124) of at most 240° (e.g., at most 120° on each side); and

[0125] the head-to-socket connection allows a yaw (rotation towards the petals 122) of 15° to 20°.

[0126] Of course, those skilled in the art will appreciate that the construction elements 100 described above may have any other suitable dimensions in other embodiments.

[0127] In some embodiments, it may be beneficial to limit the rotation range of an assembled joint with the head-to-socket connection. For example, such a limitation of rotation range may be particularly desirable for assembling or building a human-like toy with arms, legs, and the like that have limited rotation range at certain directions. Limiting rotation

range may be also advantageous in some embodiments such as in the assembling or construction of furniture or outdoor playground equipment.

[0128] FIGS. 24A to 24F show a rotation-limiting element 240 (also called a "joint guard") attachable to the head-to-socket connection for limiting the rotation range thereof. Similar to the construction element 100, the rotation-limiting element 240 may be made of any suitable material such as injection-molded thermoplastic, metal, carved wood, composite materials, and/or the like.

[0129] As shown in FIG. 24A, the rotation-limiting element 240 comprises an engagement structure 242 in the form of a socket or jaw and a tail section 244 extending therefrom. Similar to the socket 108 described above, the engagement structure 242 comprises two opposing petals 246 on the two lateral sides thereof defining a main recess 248 therebetween. In this embodiment, the recess 248 is substantially spherical and has a dimension equal to or slightly smaller than that of the spherical expansion 162 of a construction element 100. A crest 250 extends around the perimeter of the petals 246 forming the perimeter of the petals 246 and the perimeter of the opening 252 between the petals 246.

[0130] The tail section 244 longitudinally extends from the engagement structure 242 and comprises a spherical secondary recess 254 about a distal end thereof. The length L of the tail section 244, measured longitudinally from the center of the main recess 248 to the center of the secondary recess 254 is about the same as the distance L between the center of spherical expansion 162 and the center of the recess 132 of a construction element 100 (see FIG. 13).

[0131] As shown in FIGS. 25A and 25B, the rotationlimiting element 240 may be attached to a pair of construction elements 100A and 100B coupled using the head-tosocket connection for limiting the joint's range of rotation. As shown, the main recess 248 of the rotation-limiting element 240 engages the spherical expansion 162 of the construction element 100A. The tail section 244 of the rotation-limiting element 240 extends to the first lateral side 126 of the opening 124 of the construction element 100B with the secondary recess 254 of the rotation-limiting element 240 engaging the spherical connection head 104 of the construction element 100B. As a result, the construction element 100B may only rotate along the opening 124 between the distal end 130 and the second lateral side 128 thereof as indicated by the arrow 256, and cannot rotate to the first lateral side 126 of the opening 124.

[0132] In some alternative embodiments, the tail section 244 may have other suitable lengths L provided that, when the rotation-limiting element 240 is attached to a construction element 100 having a socket 108 with the main recess 248 engaging the spherical expansion 162, the distal end of the tail section 244 extends to a position about the opening 124 such as the first lateral side 126 of the opening 124 of the construction element 100 for limiting the range of rotation thereof.

[0133] FIGS. 26A to 26C show a rotation-limiting element 240 in one embodiment. The rotation-limiting element 240 is similar to that shown in FIGS. 24A to 24F except that the rotation-limiting element 240 in this embodiment comprises two tail sections 244 on longitudinally opposite sides of the engagement structure 242.

[0134] As shown in FIG. 27, the rotation-limiting element 240 in this embodiment may be attached to a construction

element 100B having two sockets 108A and 108B on opposite ends thereof and coupled to two construction elements 100A and 100C using head-to-socket connections. The tail sections 244 of the rotation-limiting element 240 extend to the first lateral side 126 of the opening 124 of each socket 108A, 108B of the construction element 100B for limiting the range of rotation thereof.

[0135] Although in above embodiments, the petals have continuous surfaces, in some alternative embodiments, the petals may be perforated and comprise a plurality of openings therethrough. In some other embodiments, the petals may have a mesh structure formed by a plurality of intersecting columns and rows.

[0136] Although in above embodiments, the recess 132 of the socket 108 is spherical and correspondingly the connection head 104 is also spherical, in various embodiments, at least one of the recess 132 and the connection head 104 may have other suitable shapes such as an egg shape. Furthermore, in some embodiments, the connection head 104 may have a suitable surface such as a smooth surface or a textured surface.

[0137] In some embodiments, one or more construction elements 100 may be made of a transparent or semi-transparent material with a light source such as a light-emitting diode (LED) embedded therein for emitting light with various colors.

[0138] A construction system using the above-described construction elements 100 and/or rotation-limiting elements 240 may be used for assembling or building various types of apparatus such as toys (e.g., action figures, plush toys, dolls, and the like), scientific modeling (e.g., molecular engineering), ergonomic, anatomical, and artistic modeling (e.g., poseable figures and armatures), and the like, for play, use, display (e.g., in store, museum, or office as wall mountings and/or shelving), and may be used for creating mannequins in the clothing industry. The construction system may also be used in outdoor playground equipment, sporting goods, jewelry or other clothing accessories, and the like. Moreover, the construction system may be used in prosthetics, robotics, and computer applications. For example, software may be developed whereby the construction system may be used in computer-aided modeling. It is contemplated that the system may be used to assemble or build a model connectable to a computer for creating a virtual three-dimensional (3D) version of the model. As another example, models made from the construction system may be connected to a computer and then manipulated to create real-time animation of the virtual version of a corresponding computer generated form.

[0139] Those skilled in the art will appreciate that other embodiments are also readily available. By way of non-limiting example, the body section 102 may be perforated; the body section 102 may have an I-beam configuration; or the body section 102 may comprise parallel cylinders of different diameters that relate to the scales of the system so that three different-scale jaws 108 can simultaneously engage the body section 102.

[0140] In above embodiments, the socket 108 of the construction element 100 comprises a recess 132 in communication with an opening 124 that extends from the first lateral side 126 through the distal end 130 to the second lateral side 128. In some alternative embodiments, the opening 124 may only extend from the first lateral side 126 to the distal end 130 (i.e., the petals 122 are connected on the

second lateral side 128). In these embodiments, the rotationlimiting element 240 may be coupled to the first lateral side 126 of the construction element 100 for limiting its range of rotation

[0141] In above embodiments, the expansion 162 on the body section 102 of a construction element 100 is spherical. In some alternative embodiments, the expansion 162 may have other suitable shapes such as a cylindrical shape. Accordingly, the main recess 248 of a rotation-limiting element 240 may having a corresponding cylindrical shape.

[0142] In above embodiments, the body section 102 of a construction element 100 is cylindrical. In some alternative embodiments, the body section 102 may have other suitable shapes (e.g., bones, branches, bamboo sections, bricks, the electron clouds of atomic bonds, and/or the like) and may be decorated to resemble plants, animals, man-made objects, and/or the like. The body section 102 may be made of any suitable material such as rubber, metal, foam, plush, and/or the like. In some embodiments, the construction elements disclosed herein may be used for architectural or engineering purposes, or to assemble or construct temporary, semi-permanent, or permanent structures.

[0143] In above embodiments, the rotation-limiting element 240 comprises an engagement structure 242 comprising a recess for engaging the spherical expansion 162 on the body section 102 of the interconnectable construction element 100. In some embodiments, the engagement structure 242 may be any suitable structure for engaging a corresponding engagement section of the interconnectable construction element 100. For example, the body section 102 of the interconnectable construction element 100 may comprise an engagement section in the form of a recess, and the engagement structure 242 of the rotation-limiting element 240 may comprise an extrusion for engaging the recessshaped engagement section of the interconnectable construction element 100 to engage the rotation-limiting element 240 with the interconnectable construction element 100.

[0144] Although embodiments have been described above with reference to the accompanying drawings, those of skill in the art will appreciate that variations and modifications may be made without departing from the scope thereof as defined by the appended claims.

- 1. An interconnectable construction element comprising: a body section;
- a first socket coupled to a first end of the body section, the first socket comprising a recess in communication with an opening, the opening extending from a first lateral side of the first socket at least to a distal end thereof; and
- a freely rotatable magnetic ball releasably receivable into the recess of the first socket without falling out therefrom for forming a magnetic connection with another interconnectable construction element having another magnetic ball, a magnetic anchor, and/or a ferromagnetic anchor.
- 2. The interconnectable construction element of claim 1, wherein the magnetic ball is individually rotatably receivable in the first socket.
- 3. The interconnectable construction element of claim 1, wherein the magnetic ball comprises a material of neo-dymium-iron-boron.

- **4**. The interconnectable construction element of claim **1**, further comprising a second socket coupled to a second end of the body section.
- **5**. The interconnectable construction element of claim **4**, wherein the body section comprises an expansion spaced from the first socket, the expansion having a maximum diameter greater than that of the body section.
- **6**. The interconnectable construction element of claim **5**, wherein the expansion has a spherical shape.
- 7. The interconnectable construction element of claim 5, wherein the expansion is located at a position intermediate the first and second sockets.
- **8**. The interconnectable construction element of claim **5**, wherein the expansion is receivable into the recess of another interconnectable construction element.
- 9. The interconnectable construction element of claim 1, wherein the magnetic connection is formed by automatic rotation and alignment of the one or more magnetic balls.
- 10. The interconnectable construction element of claim 1, further comprising an injection-molded thermoplastic material, metal, carved wood, composite materials, or a combination thereof.
- 11. A rotation-limiting element for removably coupling to a first interconnectable construction element for limiting the range of rotation thereof when the first interconnectable construction element is connected to a second interconnectable construction element, the first interconnectable construction element comprising a body section and a socket coupled to the body section, the socket comprising a recess in communication with an opening for rotatably receiving a connection portion of the second interconnectable construction element, the opening extending from a first lateral side of the recess at least to a distal end thereof, the rotation-limiting element comprising:
 - an engagement structure for engaging an engagement section of the first interconnectable construction element for removably coupling the rotation-limiting element to the first interconnectable construction element;
 - a first tail section extending from the engagement structure, said first tail section having a length such that, when the rotation-limiting element is coupled to the first interconnectable construction element, the first tail section extends to a position about the opening of the first interconnectable construction element.
- 12. The rotation-limiting element of claim 11, wherein the engagement structure comprises a recess for engaging an expansion structure on the body section of the first interconnectable construction element, the expansion structure having a maximum diameter greater than that of the body section and acting as the engagement structure of the first interconnectable construction element.
- 13. The rotation-limiting element of claim 11 comprising an injection-molded thermoplastic material, metal, carved wood, composite materials, or a combination thereof.
- 14. The rotation-limiting element of claim 11, wherein the first tail section comprises a spherical secondary recess about a distal end thereof and one side facing the opening of the first interconnectable construction element when the rotation-limiting element is coupled to the first interconnectable construction element.
- 15. The rotation-limiting element of claim 11, wherein the rotation-limiting element is for coupling to a head-to-socket connection.

- 16. The rotation-limiting element of claim 15, wherein the recess of the engagement structure is a spherical recess.
- 17. The rotation-limiting element of claim 11 further comprising a second tail section extending from the engagement structure on a side thereof longitudinally opposite to the first tail section.
 - 18. A construction system comprising:
 - a plurality of interconnectable construction elements of claim 1.
- 19. The construction system of claim 18, further comprising:
 - one or more interconnectable rotation-limiting elements, wherein each rotation-limiting element is adapted for removably coupling to a first interconnectable construction element for limiting the range of rotation thereof when the first interconnectable construction element is connected to a second interconnectable construction element, the first interconnectable construction element comprising a body section and a
- socket coupled to the body section, the socket comprising a recess in communication with an opening for rotatably receiving a connection portion of the second interconnectable construction element, the opening extending from a first lateral side of the recess at least to a distal end thereof, the rotation-limiting element comprising:
- an engagement structure for engaging an engagement section of the first interconnectable construction element for removably coupling the rotation-limiting element to the first interconnectable construction element; and
- a first tail section extending from the engagement structure, said first tail section having a length such that, when the rotation-limiting element is coupled to the first interconnectable construction element, the first tail section extends to a position about the opening of the first interconnectable construction element.

* * * * *