

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification⁶ : B32B 31/10, B29C 65/08		A1	(11) International Publication Number: WO 00/02727 (43) International Publication Date: 20 January 2000 (20.01.00)
(21) International Application Number: PCT/SE99/01169			(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 29 June 1999 (29.06.99)			
(30) Priority Data: 9802456-5 8 July 1998 (08.07.98) SE			
(71) Applicant (for all designated States except US): SCA HYGIENE PRODUCTS AB [SE/SE]; S-405 03 Göteborg (SE).			
(72) Inventors; and (75) Inventors/Applicants (for US only): TENNBY, Anders [SE/SE]; Klarinettvägen 14, S-434 47 Kungsbacka (SE). ÅBERG, Thomas [SE/SE]; Götabergsgatan 8A, S-411 34 Göteborg (SE). THORNSTRÖM, Bo [SE/SE]; Heden 140, S-442 74 Harestad (SE). HENRIKSSON, Kenneth [SE/SE]; Eklanda Hage 57, S-431 39 Mölndal (SE). HANSSON, Roy [SE/SE]; Ålegårdsgatan 112, S-431 50 Mölndal (SE).		Published <i>With international search report. In English translation (filed in Swedish).</i>	
(74) Agents: BERG, S., A. et al.; Albihns Patentbyrå Stockholm AB, P.O. Box 5581, S-114 85 Stockholm (SE).			

(54) Title: METHOD AND DEVICE FOR FIXING PIECES OF MATERIAL ON A CONTINUOUS WEB**(57) Abstract**

The invention relates to a device and a method for producing a material laminate (1) by fixing pieces of material (2) at a given distance from one another on a first continuously advanced material web (4). The invention is characterized in that the pieces of material (2) are cut from a second continuous material web (7) in a first station (3) and are conveyed via a transport device (10) to the first web (4), to which the piece of material (2) is attached by means of ultrasonic welding over a limited attachment area (5) on the pieces of material (2), and the pieces of material (2) are subsequently fixed on the material web (4) by ultrasonic welding in a second station (6). The second station comprises an ultrasonic horn (18) at a fixed distance from a stay (19) designed as a rotating drum with a patterned outer surface.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Method and device for fixing pieces of material on a continuous web.

Technical field

5

The present invention relates to a method and a device for fixing fibrous pieces of material made of porous and springy material at a given distance from one another on one or more continuously advanced material webs and, for joining together, establishing an optional pattern on the piece of material, preferably for production of a material laminate for use in absorbent products. The absorbent products can consist of nappies, baby pants, incontinence pads, sanitary towels, panty liners or the like. The invention can also be used within other areas in which one or more shorter pieces of material are to be fixed on one or more continuous webs.

20 Background

It is previously known to fix pieces of material on a web by gluing. The gluing procedure has been found to have considerable disadvantages such as, for example, the handling of additional material which also involves undesirable costs. Other disadvantages in the process using glue are that glue residues are deposited in inappropriate places in the equipment and thus create problems, and also that the use of glue involves extra cost, and glue layers in a liquid-transporting material laminate impair the prerequisites for liquid flow.

It is also known to join one or more continuous webs together by means of ultrasound. This is disclosed in, for example, WO 97/23340 which describes the use of ultrasonic horns in combination with rotating stays for joining continuous webs together in a given pattern, where the purpose of the pattern is to make possible intermittent joining together of two or more continuous

webs. This known arrangement is not suitable for fixing short pieces of material to a continuous web.

5 The object of the invention and its most important characteristics

The object of the invention is to solve the problems associated with the techniques indicated above and to make it possible to use ultrasonic welding for fixing 10 pieces of material on a continuous web. Above all, the invention makes possible rapid, cost-saving and simple adjustments for adaptation to changed circumstances, for example a change of material or the exchange of various parts of the equipment, and adjustments in the 15 event of patterns being exchanged. Moreover, the invention results in short operational stoppages for service and maintenance.

According to the invention, this is achieved on the one 20 hand by a method in which each piece of material is attached to the continuous web by means of ultrasound in a first station, after which the piece of material is fixed by its entire contact surface by means of ultrasound in a second station, and on the other hand 25 by a device consisting of a first station for attaching the piece of material to the continuous web and a second station in which the piece of material is fixed over its entire surface to the continuous web.

30 The invention results in the advantages that the material can be produced without the use of glue and thus the costs and service requirements are reduced.

35 The invention also affords the advantage that, by means of continuous energy supply to ultrasonic horns, pieces of material are fixed to a continuous web and at the same time a pattern as described in, for example, Patent Application SE 9801038-2 is obtained.

Description of drawings

Fig. 1 shows a side view of processing equipment according to a first embodiment of the invention.

5 Fig. 2 shows a side view of a first welding station in the processing equipment according to Fig. 1.

Fig. 3 shows a perspective diagram of a second welding station in the processing equipment according to Fig. 1, and

10 Fig. 4 shows a second embodiment of the first welding station with a combined drum for a stay during cutting and transport.

The invention is not to be construed as being limited
15 to the details of the device and method described below, or to what is illustrated in the figures.

Description of embodiments

20 Fig. 1 illustrates processing equipment according to an embodiment of the invention for producing a material laminate 1, in which a piece of material 2 is in a first station 3 placed in the desired position on a first continuous material web 4 and is attached in this position by ultrasonic welding in a pattern within at least an area 5 which covers a part of the contact surface of the piece of material 2 against the material web 4, and is subsequently fixed on the material web 4 by ultrasonic welding in a second station 6 with a pattern which covers essentially the entire contact surface against the material web, by means of which a material laminate 1 is formed for use in absorbent products.

35 The continuous and continuously advanced first continuous web 4 can constitute, for example, an outer layer in an absorbent product and then usually consists of a thin material of the nonwoven type. The first material web 4 can consist of nonwoven material

containing at least 5% thermoplastic fibres, usually more than 40% thermoplastic fibres. All thermofibres commonly used in the branch which can be softened and/or fused when subjected to ultrasonic energy can be

5 used in the invention described here. The first material web 4 which is fed into the machine can consist of a prefabricated material and can be produced by a number of different methods, for example by carding or spinning a fibre web which is subsequently

10 bound with a binder. What is known as the melt-blown technique can also be used in order to lay short fibres down in the form of a fibre mat. Heat-fusible components in the material can also be used for binding by means of ultrasound. The material web 4 can also

15 consist of a composite nonwoven material. The substance of the material in the first material web 4 for use according to the invention is usually between 10 and 80 g/m², preferably between 10 and 50 g/m².

20 The pieces of material 2 are attached to the material web 4 in the first station 3 at a given distance from one another, and they are produced from a second continuous material web 7. The material in this web can consist of the same material as that in the first

25 material web 4 or of a different material. The second continuous material web 7 can likewise consist of a number of webs lying one on another and/or two or more, preferably three, parallel webs with the same or a different material composition. Material for the pieces

30 of material 2 which is especially suitable for use in absorbent products is wadding material with a substance greater than 10 g/m², preferably between 10 and 250 g/m² or in particular between 20 and 100 g/m², consisting mainly of springy fibres and comprising thermoplastic

35 material or at least a surface structure of thermoplastic material.

The second continuous material web 7 is fed continuously by feed rollers 8 at a feed speed which

can be regulated in the conventional manner, by means of which the material web 7 is imparted a considerably reduced feed speed in relation to the first continuous material web 4. By suitable selection of the feed speed 5 of the second material web 7 and synchronization of the cutting unit 9, the distance between the pieces of material 2 when they are positioned on the first material web 4 can be defined.

10 When the material in the second continuous material web 7 has been advanced by the feed rollers 8 to a given length, it will be arranged on the transport drum 10 over a part of the length of a piece of material 2. By creating a negative pressure in the transport drum, 15 suction is generated through holes 11 in the outer surface of the transport drum 10, which suction ensures the continued transport of the second continuous material web 7 after the feed rollers 8. When the given length of a piece of material has been advanced, the 20 material web is cut by a cutting unit 9 with a cutting tool in the form of a cutting roller 12 which interacts with a fixed or rotating stay 13, after which the transport speed of the piece of material 2 produced increases to the speed constituting the peripheral 25 speed of the transport drum, which essentially corresponds to the speed of the first continuous web 4.

By means of fastening devices, easily exchangeable jaws 30 14 are mounted on the transport drum 10. These jaws are preferably made of a different type of material with superior wear and strength properties than the material in the rest of the outer surface of the transport drum. The jaws 14 can advantageously be made of metal, 35 preferably hardened steel. The number of jaws 14 on the drum 10 can be one or more and depends on inter alia the interrelationship between the length of the pieces of material 2 and the diameter of the drum 10. The raised part of the pattern on the stay jaws 14 establishes binding points when the piece of material 2

is attached to the material web 4. The flexibility and softness of the material are retained to a high degree when the binding points account for 2-20% of the attachment area.

5

The jaws 14 are provided with a suitable raised pattern and also a number of through-holes, by means of which the negative pressure in the drum sucks the first end 15 of the piece of material 2 firmly against the jaw 14. The through-holes in the jaws 14 are located in suitable positions in relation to the selected pattern on that side of the jaw which constitutes a part of the periphery of the transport drum 10, while the holes in said periphery are independent of both the pattern defined at the time for welding by means of ultrasonic energy and the thickness of the material and its extent in the transverse direction of manufacture. The pattern depth of the jaws 14 for manufacturing material for absorbent products suitably varies between 0.3 mm and 1.5 mm and preferably 0.5 and 1.0 mm for thin material with a thickness of between 0.2 mm and 2.0 mm.

The jaws 14 on the transport drum 10 are arranged so that the radius R' from the centre of the drum to the patterned surface of the jaw is greater than the radius R'' from said centre to the outer surface of the drum. The recommended magnitude of the difference $(R' - R'')$ can be expressed as $(R' - R'') \geq 1.5 \times$ the thickness of the material laminate 1.

30

The synchronization between the positions of the cutting roller 12 and the transport drum 10 at the time of cutting is selected so that the piece of material 2, on cutting in the cutting station 9, does not completely cover the jaw 14 over its extent in the machine direction, as can be seen from Fig. 2, and affords the great advantage that the requirement for precise control of the cutting roller 12 is reduced. The patterned surface 16 of the jaws 14 has an extent

in the transverse direction of the machine which exceeds the width of the finally joined-together area 5 between the pieces of material 2 and the continuous web 4, which to some extent reduces the requirement for 5 precise guidance of the material around an imaginary longitudinal centre line in the machine direction.

The peripheral speed of the transport drum 10 corresponds essentially to the linear speed of the 10 material web 4 when the two materials 2, 4 meet. Attachment of the piece of material 2 to the web 4 is effected by ultrasonic energy generated by an ultrasonic horn 17 positioned on the other side of the material web 4 in relation to the transport drum 10 15 with the jaws 14 which constitute a stay for the ultrasonic horn 17 which is continuously fed with energy.

The prerequisite for attaching the first end 15 of the 20 piece of material 2 to the material web 4 according to the present invention can be defined by the following parameters:

Thickness of the first material web 4	= A
25 Thickness of the second material web 7	= B
Distance between ultrasonic horn 17 and stay/jaw 14	= C
Width of the second material web 7	= D
Smallest width of jaw 14, or width of 30 ultrasonic horn 17	= E
width of the jaw 14 is constituted by its extent in the transverse direction of the device.	
Extent of the jaw 14 in the machine direction	= F
Extent of the attachment area 5	
35 in the machine direction	= G

Using the definitions listed above, the following applies:

A+B>C F>G D<E

When the piece of material 2 is attached to the continuous material web 4 in one or more places over a part of its length, it is transported together with the material web 4 to the second station 6. This second 5 station includes a second ultrasonic horn 18 and a stay in the form of a roll or drum 19 arranged on the opposite side of the web. The ultrasonic horn 18 is fed continuously with energy and is fixed during operation at a given distance from the stay roll 19. This 10 position is defined in the same way as described above with regard to the ultrasonic horn in the first station 3.

The pattern on the stay 19 constitutes a surface 15 structure on the outer surface, in which the appearance and depth of the pattern are defined on the basis of requirements relating to the appearance of the final material laminate. For material for absorbent products, where the first continuous material web 4 can consist 20 of nonwoven with a thickness of less than 0.5 mm, the thickness is preferably within the range 0.2-0.5 mm, the pieces of material 2 can consist of wadding with a thickness of less than 2.0 mm, preferably within the range 0.5-2.0 mm. When materials of the type described 25 are joined together, use is made of a pattern depth of 0.3-2.0 mm, preferably 0.5-1.0 mm. The raised part of the pattern on the stay 19 establishes binding points when the piece of material 2 is fastened to the material web 4. The flexibility and softness of the 30 material are retained to a high degree when the binding points account for 2-20% of the attachment area. The extent of the pattern in the transverse direction on the stay 19 exceeds the width of the material laminate or has preferably greater width than the piece of 35 material 2, resulting in precise guidance of the material web 4 in the transverse direction of the machine not being required. The ultrasonic horn 18 does not have to be wider than the patterned part of the stay 19.

Fig. 4 shows a second embodiment which is characterized in that the cutting roller 12 in the cutting unit 9 works directly against the transport drum.

Patent Claims

1. Method for fixing pieces of material (2) at a given distance from one another on a continuously 5 advanced material web (4), preferably for production of a material laminate (1) for use in an absorbent product, characterized in that each piece of material (2) is in a first station (3) placed in the desired position on the material web (4) and is attached in 10 this position by ultrasonic welding in a pattern within at least an area (5) which covers a part of the contact surface of the piece of material (2) against the material web (4), and is subsequently fixed on the material web (4) by ultrasonic welding in a second 15 station (6) with a pattern which covers essentially the entire contact surface against the material web (4).

2. Method according to Claim 1, characterized in that the pieces of material (2) are fed to the first 20 station (3) in the form of a second continuous web (7) which is divided into separate pieces of material (2) in the first station (3), which are placed in the desired position on the first continuous web (4).

25 3. Method according to Claim 2, characterized in that the speed of the second continuous web (7) is set lower than the speed of the first continuous web (4) to such an extent that the desired distance between the pieces of material (2) is obtained.

30

4. Method according to any one of the preceding Claims 1-3, characterized in that the ultrasonic welding (5) in the first station (3) and the second station (6) is performed by ultrasonic horns (17, 18) 35 which are fed continuously with energy.

5. Method according to any one of Claims 1-4, characterized in that the attachment (5) of the piece of material (2) in the first station is carried out in

the front part (5) of the piece of material, seen in the feed direction of the first continuous web (4).

6. Method according to Claim 5, characterized in
5 that the attachment (5) has an extent in the machine
direction of 3-24 mm, preferably 5-15 mm, from the
front edge of the piece of material (2).

7. Method according to any one of Claims 4-6,
10 characterized in that connection points are produced
within the area of attachment (5) in a pattern in which
the connection points account for 2-20% of the
attachment area.

15 8. Device for fixing pieces of material (2) at a
given distance from one another on a continuously
advanced material web (4), preferably for production of
a material laminate (1) for use in an absorbent
20 product, characterized by on the one hand a first
station (3) with an ultrasonic horn (17) positioned on
one side of the material web and a transport and stay
device (10) positioned on the opposite side of the
material web (4) and intended for placing a piece of
material (2) in the desired position on the material
25 web (4) and attaching the piece of material (2) to the
material web (4) within a limited area (5) in
interaction with the ultrasonic horn (17), and on the
other hand a second station (6) with a second
ultrasonic horn (18) on one side of the material web
30 and a stay device (19) on the opposite side of the
material web (4), which stay device (19) is designed
with a patterned surface which faces the material web
(4) and is intended, in interaction with the second
ultrasonic horn (18), to fix the piece of material (2)
35 to the material web (4) with the desired welding
pattern which covers essentially the entire contact
surface of the piece of material (2).

9. Device according to Claim 8, characterized in that the stay device (14) in the first station (3) is mounted on the transport device (10).

5 10. Device according to any one of Claims 8-9, characterized in that the transport and stay device (10) in the first station (3) comprises a drum with internal negative pressure and through-holes (11) in the outer surface.

10 11. Device according to Claim 9, characterized in that the stay device (14) in the first station (3) has through-holes, the positioning of which is adapted to the desired attachment pattern, in order to secure the 15 piece of material (2) by means of the negative pressure in the drum (10).

12. Device according to any one of Claims 8-11, characterized in that the first station (3) comprises a 20 cutting unit (9) with a cutting tool (12) and a fixed or rotating stay (13) for interaction with the tool.

13. Device according to Claim 12, characterized in that the stay (13) of the cutting unit (9) is 25 integrated into the transport and stay device (10).

14. Device according to any one of Claims 8-13, characterized in that the stay (13) and the ultrasonic horn (17) in the first station (3) have an extent in 30 the feed direction of the material web which is greater than the attachment (5) produced.

15. Device according to any one of Claims 8-14, characterized in that the stay (14) and the ultrasonic horn (17) in the first station (3) have an extent in 35 the transverse direction of the material web which is greater than the extent of the piece of material in this direction.

16. Device according to any one of Claims 8-15, characterized in that the stay device (19) for the ultrasonic horn (18) in the second station (6) consists of a cylindrical drum with a continuously patterned 5 outer surface.

17. Device according to any one of Claims 8-16, characterized in that the stay device (19) and the ultrasonic horn (18) in the second station (6) have an 10 extent in the transverse direction of the machine which is greater than the extent of the piece of material (2) in the same direction.

18. Device according to any one of Claims 8-17, 15 characterized in that the pattern depth of the stay device (14, 19) in the first station (3) and the second station (6) is within the range 0.3-2.0 mm, preferably 0.5-1.0 mm.

1 / 3

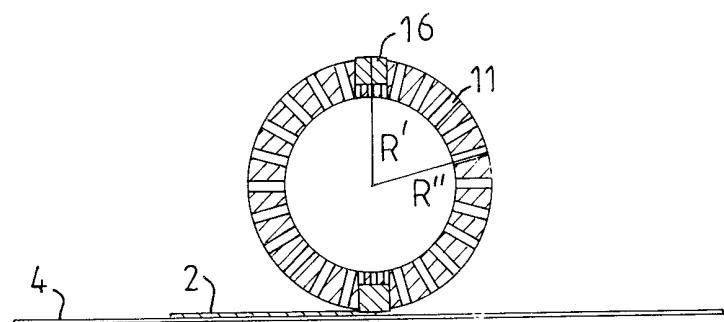
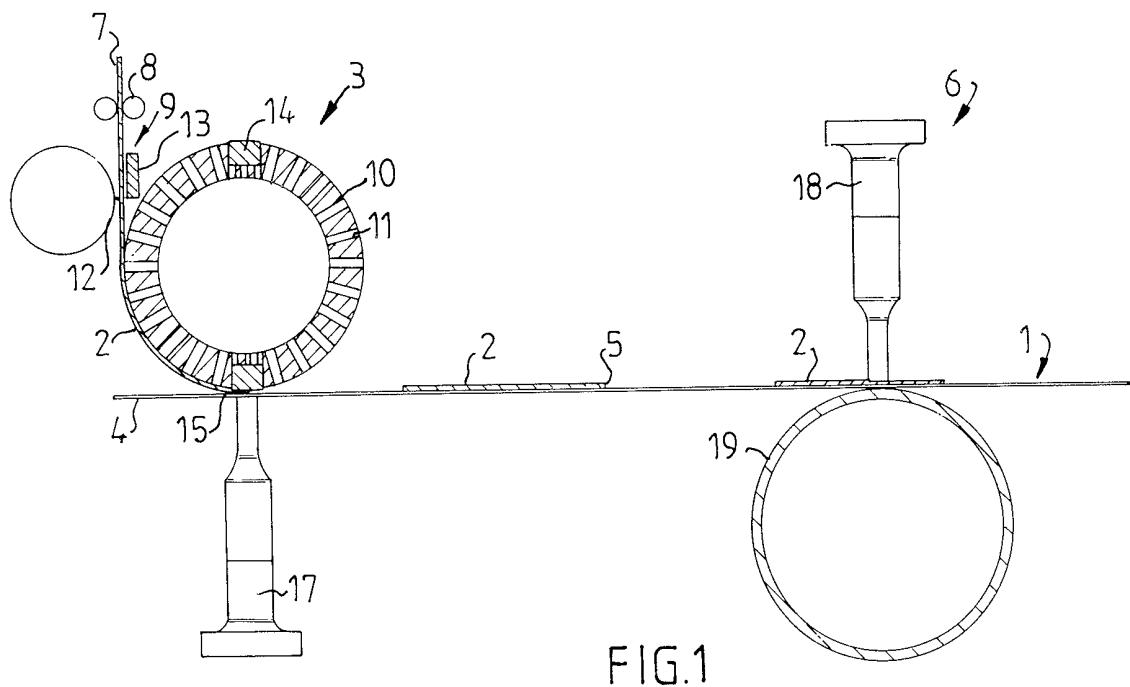
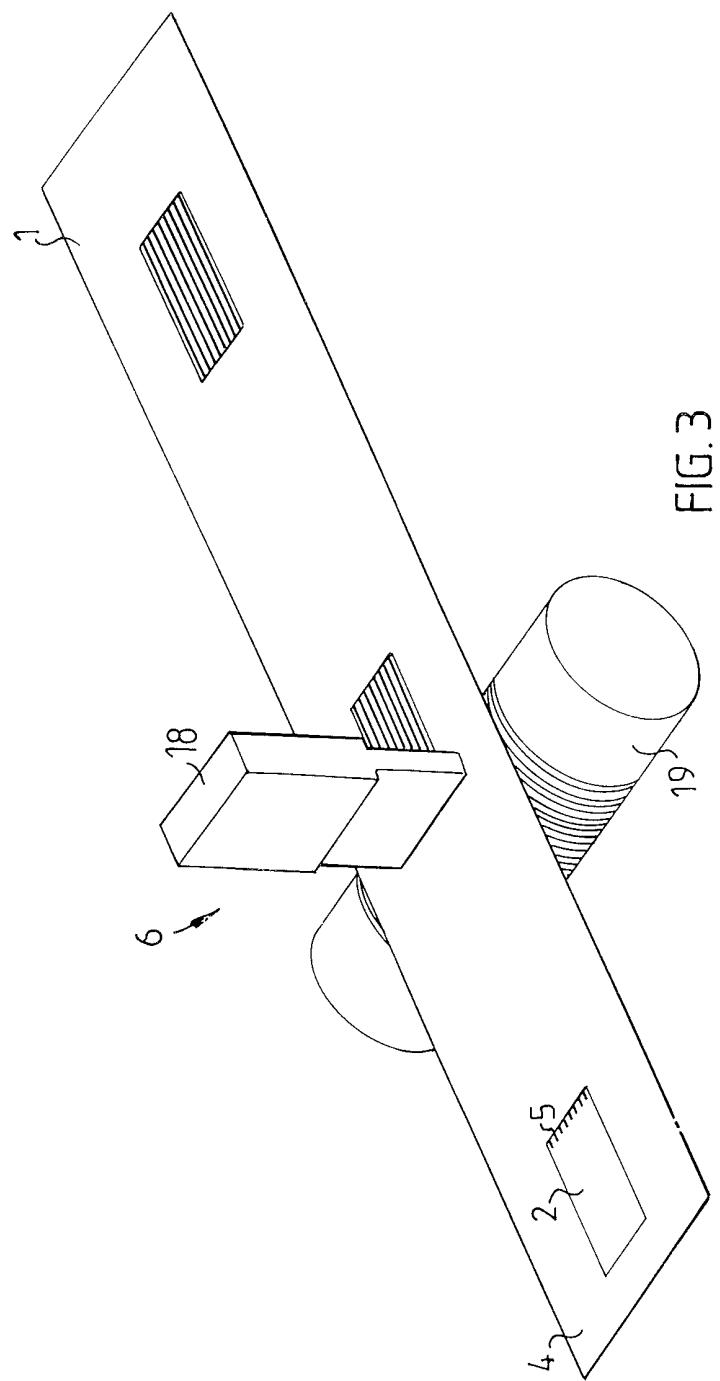




FIG. 2

SUBSTITUTE SHEET (RULE 26)

2/3

SUBSTITUTE SHEET (RULE 26)

3/3

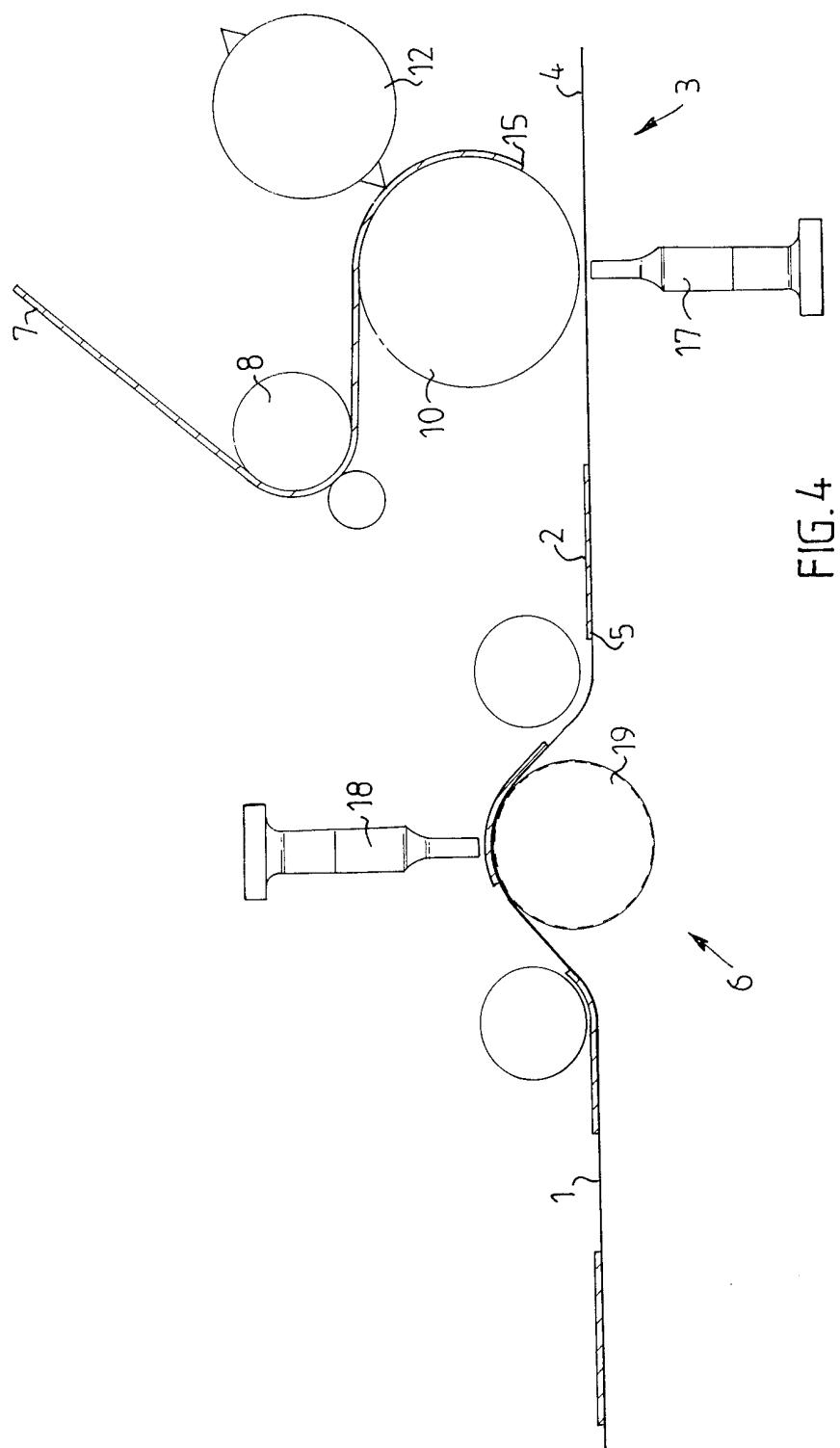


FIG. 4

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE 99/01169

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: B32B 31/10, B29C 65/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: B32B, A61F, B29C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 9828123 A1 (KIMBERLY-CLARK WORLDWIDE, INC.), 2 July 1998 (02.07.98), abstract --	1-18
A	US 5059277 A (WILLIAM WILLHITE, JR. ET AL), 22 October 1991 (22.10.91), abstract --	1-18
A	GB 2145970 A (SMITH & NEPHEW ASSOCIATED COMPANIES PLC), 11 April 1985 (11.04.85), figure 3, abstract -- -----	1-18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
1 November 1999	03 NOV 1999
Name and mailing address of the ISA: Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Facsimile No. + 46 8 666 02 86	Authorized officer Monika Bohlin/EÖ Telephone No. + 46 8 782 25 00

INTERNATIONAL SEARCH REPORT

Information on patent family members

28/09/99

International application No.

PCT/SE 99/01169

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9828123 A1	02/07/98	AU 5457798 A		17/07/98
		US 5817199 A		06/10/98
US 5059277 A	22/10/91	CA 1306932 A		01/09/92
		CA 1313923 A		02/03/93
		EP 0234658 A,B		02/09/87
		JP 2730575 B		25/03/98
		JP 62270320 A		24/11/87
		US 4823783 A		25/04/89
GB 2145970 A	11/04/85	AU 563398 B		09/07/87
		AU 3222184 A		28/02/85