(54)发明名称
一种耐高温降凝剂及其制备方法

(57)摘要
本发明公开了一种耐高温降凝剂及其制备方法。该耐高温降凝剂包括以下质量百分比的组分：聚甲基丙烯酸酯降凝剂23～25％，乙烯-醋酸乙烯酯共聚物1.0～2.5％，煤油50～54％。该耐高温降凝剂通过聚甲基丙烯酸酯降凝剂、乙烯-醋酸乙烯酯共聚物和煤油的合理配比，使产品与高凝油中蜡质具有良好的相溶性和共晶效果；在添加量为高凝油质量2％的情况下，降低凝固点达到8℃以上，同时该耐高温降凝剂的耐温性达到200℃，能够配合蒸汽吞吐开发，在稠油热采井上应用，从而达到降低高凝油凝固点，改善原油流动性的目标。
1. 一种耐高温降凝剂，其特征在于，包括以下质量百分比的组分：聚甲基丙烯酸酯降凝剂23～25%，乙烯-醋酸乙烯酯共聚物1.0～2.5%，煤油50～54%。

2. 如权利要求1所述的耐高温降凝剂，其特征在于，聚甲基丙烯酸酯降凝剂的闪点不低于170℃，粘度大于100mPa • s，分子量在10万以上。

3. 如权利要求1所述的耐高温降凝剂，其特征在于，乙烯-醋酸乙烯酯共聚物中醋酸乙烯酯的含量为20%～40%，分子量为1000～3000。

4. 如权利要求1所述的耐高温降凝剂，其特征在于，所述煤油为无味煤油。

5. 如权利要求1～4任一项所述的耐高温降凝剂，其特征在于，由以下质量百分比的组分组成：甲基丙烯酸酯降凝剂23～25%，乙烯-醋酸乙烯酯共聚物溶液23～25%，煤油50～54%；所述乙烯-醋酸乙烯酯共聚物溶液中乙烯-醋酸乙烯酯的质量含量为5～10%。

6. 如权利要求5所述的耐高温降凝剂，其特征在于，所述乙烯-醋酸乙烯酯共聚物溶液的溶剂为甲苯。

7. 一种如权利要求1所述的耐高温降凝剂的制备方法，其特征在于，包括：将乙烯-醋酸乙烯酯共聚物制成质量浓度为5～10%的溶液，再与聚甲基丙烯酸酯降凝剂、煤油在45～55℃下混合，即得。

8. 如权利要求7所述的制备方法，其特征在于，所述混合的时间不少于4h。
说明书

一种耐高温降凝剂及其制备方法

技术领域
[0001] 本发明属于降凝剂技术领域，具体涉及一种耐高温降凝剂及其制备方法。

背景技术
[0002] 高凝油是一类凝固点在40℃以上，含蜡量在30％以上的原油。目前河南油田高凝油藏含油面积为10.82平方千米，地质储量约339万吨，具有油层埋深浅（350米~650米），油层厚度薄（2~4米）的特点，而高凝油在开采过程中具有含蜡量高（平均含蜡量30％）、凝固点高（平均凝固点42℃）、原油粘度较高（40℃下脱水脱气原油粘度约1000mPa·s）等特性，因此在开采过程中需要注入蒸汽增加地层能量，单纯注入蒸汽提高采收率幅度较小，常需要辅助降凝剂改善高凝油流动性，提高采油采收率。

[0003] 高凝油中的石蜡分子定向排列，形成针状或者片状结晶并相互联接，形成三维的网状结构，将原油通过吸附或溶剂化包含其中，致使整个原油失去流动性。降凝剂可通过晶核作用，吸附作用，共晶作用，吸附～共晶，增溶作用等方式来降低含蜡原油的凝固点。

[0004] CN104530306A公开了一种聚甲基丙烯酸酯降凝剂的制备方法，其中以甲基丙烯酸十六酯、苯乙烯、马来酸酐为原料通过共聚合成聚甲基丙烯酸酯降凝剂。CN103184043A公开了一种原油降凝剂及其制备方法，该原油降凝剂为丙烯酸十八酯、苯乙烯、马来酸酐、乙酸乙酯或聚酯酸酯的三元聚合物。原油中蜡的含量及相对分子质量分布、胶质、沥青质的含量和性质随原油的种类不同而不同，降凝剂的性质与原油中蜡的性质相匹配，才能形成共晶，改变蜡晶的大小、形状，起到良好的降凝效果。

[0005] 现有技术的降凝剂多针对常规原油品种，并无针对高凝固点、高含蜡的高凝油降凝剂，一方面降凝剂的性质与高凝油中蜡的性质不匹配，另一方面，降凝剂的耐温性较差，无法满足稠油热采蒸汽吞吐开发的需要，导致降凝效果差。

发明内容
[0006] 本发明的目的是提供一种耐高温降凝剂，从而解决现有的降凝剂与高凝油的成分不匹配，耐温性差的问题。
[0007] 本发明的第二个目的是提供上述耐高温降凝剂的制备方法。
[0008] 为了实现以上目的，本发明所采用的技术方案是：

[0009] 一种耐高温降凝剂，包括以下质量百分比的组分：聚甲基丙烯酸酯降凝剂23～25％，乙烯～醋酸乙烯酯共聚物（EVA）1.0～2.5％，煤油50～54％。

[0010] 优选的，聚甲基丙烯酸酯降凝剂的闪点不低于170℃，粘度大于100mPa·s，分子量（Mn）在10万以上。乙烯～醋酸乙烯酯共聚物中醋酸乙烯酯的含量（VA含量）为20％～40％，分子量（Mn）为1000～3000。可通过控制上述指标，使耐高温降凝剂的主体与高凝油中的蜡质相匹配，具有较好的相溶性和共晶效果，并满足耐温性的要求。

[0011] 所述煤油为无味煤油。煤油作为聚甲基丙烯酸酯降凝剂和乙烯～醋酸乙烯酯共聚物的溶剂，在降凝体系中也具有重要的作用，其能够调节体系极性和相溶性，从而对蜡晶的
形成和生长造成影响。煤油优选为无味煤油，可更好的发挥上述作用。

【0012】该耐高温降凝剂，还包括用于溶解EVA溶液，优选的，所述溶剂为甲苯。当EVA为EVA溶液的形式存在时，本发明的耐高温降凝剂，由以下质量百分比的组分组成：甲基丙烯酸酯降凝剂23～25%，乙烯-醋酸乙烯酯共聚物溶液23～25%，煤油50～54%；所述乙烯-醋酸乙烯酯共聚物溶液中乙烯-醋酸乙烯酯的质量含量为5～10%。

【0013】本发明提供的耐高温降凝剂，能够增强聚合物的空间网络结构，更好地阻止蜡晶形成结晶网；聚甲基丙烯酸酯降凝剂与EVA配比合理，实现与高凝油的蜡质相匹配，与蜡晶共同析出或吸附在蜡晶表面上，从而阻止蜡晶分子集合体间相互粘结，防止生成连续的网状结构；聚甲基丙烯酸酯降凝剂、EVA、煤油三者共同作用的结果使蜡晶颗粒更加细致且不连续、不结块，从而使稠油流动性变好，凝固点下降，从而改善高凝油区块开发效果。同时，该耐高温降凝剂的耐温性达到200℃，降低高凝油的凝固点在8℃以上，能够配合蒸汽吞吐开发，完善化学辅助吞吐技术体系，满足河南油田稠油开发的需要。

【0014】本发明的耐高温降凝剂，经济实用、价格低廉，同时对系统后续原油脱水和水质处理不产生影响。

【0015】上述耐高温降凝剂的制备方法，包括：将乙烯-醋酸乙烯酯共聚物制成质量浓度为5～10%的溶液，再与聚甲基丙烯酸酯降凝剂、煤油在45～55℃下混合，即得。

【0016】所述混合的时间不少于4h。

【0017】本发明提供的耐高温降凝剂的制备方法，由EVA溶液、聚甲基丙烯酸酯降凝剂、煤油在45～55℃下混合制备而成，所得产品均一稳定，对高凝油的降凝效果好；该制备方法工艺简单，操作简便，适合大规模推广应用。

【0018】该耐高温降凝剂在使用时，每100质量份高凝油中加入2质量份的降凝剂，即可将高凝油的凝固点降低8℃以上，同时该降粘剂能够配合蒸汽吞吐开发，在稠油热采井上应用，可降低高凝油凝固点，改善原油流动性，提高油井产油和油品比。

具体实施方式

【0019】下面结合具体实施例对本发明作进一步说明。

【0020】实施例1

【0021】本实施例的耐高温降凝剂，由以下质量百分比的组分组成：聚甲基丙烯酸酯降凝剂23%，EVA溶液23%，无味煤油64%，EVA溶液的质量浓度为5%（对应耐高温降凝剂中EVA质量含量为1.15%），溶剂为甲苯。聚甲基丙烯酸酯降凝剂的闪点为175℃，分子量为1万，比重为0.86g/L，粘度为102mPa·s；EVA中VA含量为20%～30%，分子量为1000。

【0022】本实施例的耐高温降凝剂的制备方法，包括：将230kg的EVA溶液加入反应釜中，加入230kg的聚甲基丙烯酸酯降凝剂和640kg无味煤油，在50℃下搅拌混合4h，即得。

【0023】实施例2

【0024】本实施例的耐高温降凝剂，由以下质量百分比的组分组成：聚甲基丙烯酸酯降凝剂24%，EVA溶液24%，无味煤油62%，EVA溶液的质量浓度为10%（对应耐高温降凝剂中EVA质量含量为2.4%），溶剂为甲苯。聚甲基丙烯酸酯降凝剂的闪点为180℃，分子量为1万，比重0.9g/L，粘度为110mPa·s；EVA中VA含量为30%～40%，分子量为3000。

【0025】本实施例的耐高温降凝剂的制备方法，包括：将230kg的EVA溶液加入反应釜中，加
入230Kg的聚甲基烯酸酯降凝剂和640Kg无味煤油，在45℃下搅拌混合5h，即得。

【0026】 实施例3

【0027】 本实施例的耐高温降凝剂，由以下质量百分比的组分组成：聚甲基烯酸酯降凝剂25%、EVA溶液25%，无味煤油50%。EVA溶液的质量浓度为7%（对应耐高温降凝剂中EVA质量含量为1.75%），溶剂为甲苯。聚甲基烯酸酯降凝剂的闪点为175℃，分子量为13万，比重0.88g/mL，粘度为105mPa•s；EVA中VA含量为25%～35%，分子量为1500。

【0028】 本实施例的耐高温降凝剂的制备方法，包括：将230Kg的EVA溶液加入反应釜中，加入230Kg的聚甲基烯酸酯降凝剂和640Kg无味煤油，在55℃下搅拌混合4h，即得。

【0029】 实验例1

【0030】 本实验例对实施例1～3的耐高温降凝剂的性能进行检测，高凝油的含蜡量为30%，凝固点为42℃。40℃下运动粘度为1000mPa•s。加入高凝油质量为2%的耐高温降凝剂，检测高凝油的凝固点降低值，结果如表1所示，对比为市售常规酸油降粘剂，SHF系列，购自胜利油田胜利化工有限责任公司。

【0031】 表1实施例1～3的耐高温降凝剂的降凝试验结果

<table>
<thead>
<tr>
<th>项目</th>
<th>实施例1</th>
<th>实施例2</th>
<th>实施例3</th>
<th>对比例</th>
</tr>
</thead>
<tbody>
<tr>
<td>凝固点下降值</td>
<td>8.2℃</td>
<td>8.8℃</td>
<td>8.5℃</td>
<td>4.6℃</td>
</tr>
</tbody>
</table>

【0032】 由表1的试验结果可知，本发明的耐高温降凝剂对高凝油凝固点的降低至在8℃以上，耐温性佳，可有效配合蒸汽吞吐开发，提高油井产油和油气比。

【0033】 实验例2

【0034】 以实施例2的耐高温降凝剂于2015年1月份进行现场使用。在河南油田采油二厂选出了凝固点为36℃～45℃，含蜡量为27%～36%的5口高凝油井。将质量浓度为2%的耐高温降凝剂与中温为150℃～200℃，质量为400～600吨的蒸汽注入地层。进行现场试验，截止目前，5口高凝油井均取得了较好的效果，油井周期生产时间延长34d、周期产油量平均单井提高25t，油气比由工艺实施前0.20提高至0.22，现场应用效果如表2所示。

【0036】 表2耐高温降凝剂现场应用效果

<table>
<thead>
<tr>
<th>井次</th>
<th>工艺实施前</th>
<th>工艺实施后</th>
<th>增油</th>
<th>延长生产天数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>平均生产时间/d</td>
<td>平均生产量/t</td>
<td>油气比</td>
<td>平均生产时间/d</td>
</tr>
<tr>
<td>5</td>
<td>51</td>
<td>329</td>
<td>78</td>
<td>0.20</td>
</tr>
</tbody>
</table>