(54) Title: EXHAUST EMISSION PURIFIER OF INTERNAL COMBUSTION ENGINE

(57) Abstract: In the case where a pre-stage catalyst and a post-stage catalyst are arranged in series sequentially from the upstream side in the exhaust passage of an internal combustion engine, temperature of the post-stage catalyst is raised early while suppressing the poisoning of a reducing agent in the post-stage catalyst or discharge of the reducing agent to the outside. The pre-stage catalyst (4) is provided such that the exhaust gas flows between the outer circumferential surface thereof and the inner circumferential surface of the exhaust passage (2). A reducing agent adding valve (6) for adding the reducing agent such that the reducing agent passes through the pre-stage catalyst (4), is provided directly upstream of the pre-stage catalyst (4) in the exhaust passage (2). Furthermore, a holding catalyst (13) having a function for holding the reducing agent in the exhaust gas temporarily is provided in the exhaust passage (2) between the pre-stage catalyst (4) and the post-stage catalyst (14).
(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類：
— 国際調査報告書

(57) 要約：本発明は、内燃機関の排気通路に前段触媒と後段触媒が上流側から順に設置されている場合において、後段触媒の還元剤被毒や外部への還元剤の放出を抑制しつつ後段触媒を早期に昇温させることを課題とする。本発明においては、前段触媒4をその外周面と排気通路2の内周面との間を排気が流れるように設ける。また、前段触媒4を還元剤が通過するように還元剤を添加する還元剤添加弁5を排気通路2における前段触媒4の直上流に設ける。さらに、前段触媒4と後段触媒14との間の排気通路2に排気中の還元剤を一時的に保持する機能を有する保持触媒13を設ける。
明細書

内燃機関の排気浄化装置

技術分野

[0001] 本発明は内燃機関の排気浄化装置に関する。

背景技術

[0002] 内燃機関の排気浄化装置においては、内燃機関の排気通路に複数の触媒を直列に並べて設置する場合がある。例えば、特許文献1には、内燃機関の排気通路に、酸化触媒、HC吸着材およびNOx浄化触媒を上流側から順に直列に並べて設置する技術が記載されている。この特許文献1における酸化触媒には大口径の貫通孔が設けられている。この貫通孔は排気に含まれるHCが通るバイパス路を構成する。

[0003] また、特許文献2には、排気通路に設けられた吸収還元型NOx触媒よりも上流側に、燃料噴射手段から噴射された燃料を改質する改質触媒を設ける技術が記載されている。この特許文献2における改質触媒は排気通路の中央部に配置されており、これにより、該改質触媒の外周に排気が流れる迂回路が形成されている。

[0004] また、特許文献3には、内燃機関の排気通路に三元触媒およびHC吸着機能及びHC酸化機能を有する触媒を上流側から順に配置した構成が開示されている。

[0005] また、特許文献4には、内燃機関の排気通路に二つのHC吸着機能及びHC酸化機能を有する触媒を直列に配置した構成が開示されている。この特許文献4には、排気エミッション悪化を抑制するために各触媒の状態に応じて空燃比を制御する技術が記載されている。

特許文献1:特開2002－242665号公報
特許文献2:特開2005－127257号公報
特許文献3:特許第3470597号公報
特許文献4:特開2000－2133号公報

発明の開示

発明が解決しようとする課題

[0006] 内燃機関の排気通路に前段触媒と後段触媒とを上流側から順に直列に並べて設
置すると共に、前段触媒をその外周面と排気通路の内周面との間を排気が流れるように設ける場合がある。この場合、前段触媒を還元剤が通過するように還元剤を添加する還元剤添加弁を排気通路における前段触媒の直上流に設ける。このように還元剤添加弁が設けられることにより、還元剤添加弁から添加された還元剤の略全てが前段触媒に流入する。

[0007] 上記構成において、後段触媒を昇温させる場合、還元剤添加弁からの還元剤の添加を実行する。還元剤添加弁から還元剤が添加されると、添加された還元剤の一部が前段触媒において酸化される。このときに生じる酸化熱によって排気が昇温され、該排気によって後段触媒が昇温される。

[0008] ここで、上記構成の場合、前段触媒の排気の流れる方向に対して垂直方向の断面積が、排気通路の排気の流れる方向と垂直方向の断面積よりも小さい。そのため、前段触媒内を排気が通過するときの排気の流通抵抗が大きくなり、前段触媒内を流れる排気の流量が少なくなる。これにより、還元剤添加弁から還元剤が添加されたときに該還元剤が前段触媒内を通過するのにかかる時間が長くなるため、前段触媒における還元剤の酸化が促進され易くなる。その結果、排気の昇温が促進され易くなる。従って、後段触媒を早期に昇温させることができるとなる。

[0009] しかしながら、前段触媒の温度が比較的低いときに還元剤添加弁から還元剤が添加された場合、前段触媒において酸化されずに該前段触媒をより抜ける還元剤の量が多くなる。その結果、後段触媒に付着する還元剤が増加することで該後段触媒の性能が低下する還元剤被毒が生じたり、後段触媒をより抜けて外部に出される還元剤の量が増加したりする虞がある。

[0010] 本発明は、上記問題に鑑みてなされたものであって、後段触媒の還元剤被毒や外部への還元剤の放出を抑制しつつ後段触媒を早期に昇温させることが出来る技術を提供することを目的とする。

課題を解決するための手段

[0011] 本発明では、内燃機関の排気通路に前段触媒と後段触媒とを上流側から順に直列に並べて設置すると共に、前段触媒をその外周面と排気通路の内周面との間を排気が流れるように設ける。また、前段触媒を還元剤が通過するように還元剤を添加す
る還元剤添加弁を排気通路における前段触媒の直上流に設ける。さらに、前段触媒と後段触媒との間の排気通路に排気中の還元剤を一時的に保持する機能を有する保持触媒を設ける。

[0012] より詳しくは、本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路にその外周面と前記排気通路の内周面との間を排気が流れように設けられた酸化機能を有する前段触媒と、

該前段触媒よりも下流側の排気通路に設けられた酸化機能を有する後段触媒と、

前記排気通路における前記前段触媒の直上流に設けており、前記後段触媒を昇温させるときに前記前段触媒を還元剤が通過するように還元剤を添加する還元剤添加弁と、

前記排気通路における前記前段触媒より下流側且つ前記後段触媒よりも上流側に設けられ排気中の還元剤を一時的に保持する機能を有する保持触媒と、を備えることを特徴とする。

[0013] 本発明においては、後段触媒を昇温させるべく還元剤添加弁から添加された還元剤が前段触媒をすり抜けた場合、すり抜けた還元剤が保持触媒に一時的に保持される。該還元剤が保持触媒に一時的に保持されている間に、前段触媒の温度上昇に伴って後段触媒の温度が上昇する。そのため、保持触媒に一時的に保持された還元剤が放出される場合、温度が上昇した後段触媒に該還元剤が供給される。

[0014] 従って、本発明によれば、後段触媒の還元剤被毒や外部への還元剤の放出を抑制しつつ後段触媒を早期に昇温させることが出来る。

[0015] 本発明において、保持触媒は、酸化機能および還元剤吸着機能を有する還元剤吸着酸化触媒であってもよい。

[0016] この場合、前段触媒をすり抜けた還元剤が還元剤吸着酸化触媒に吸着される。そして、還元剤吸着酸化触媒に吸着された還元剤は、前段触媒の温度上昇に伴って還元剤吸着酸化触媒の温度が上昇することにより酸化される。

[0017] 従って、上記構成によれば、後段触媒の還元剤被毒や外部への還元剤の放出を抑制しつつ後段触媒をより早期に昇温させることができるもの。

[0018] 保持触媒が還元剤吸着酸化触媒である場合においては、後段触媒を昇温させると
きに、還元剤添加弁からの還元剤の添加開始時点から所定のタイミングまでの間に
おける単位時間当たりの還元剤の添加量を、該所定のタイミング以降における単位
時間当たりの還元剤の添加量より少なくしてもよい。

[0019] これによれば、前段触媒の温度が比較的低い間は、前段触媒の温度が比較的高
いときに比べて単位時間当たりの前段触媒に供給される還元剤の量が少ない。従っ
て、前段触媒をすり抜ける還元剤の量を抑制することが出来る。その結果、後段触媒
の還元剤被毒や外部への還元剤の放出をより抑制することが出来る。

[0020] また、上記によれば、前段触媒の温度が上昇すると前段触媒に供給される還元剤
の量が増加する。これにより、前段触媒において還元剤が酸化することで生じる熱量
が増加し、その結果、後段触媒の昇温が促進される。そのため、後段触媒をより早期
に昇温することが出来る。

[0021] 前段触媒の温度が高いほど、該前段触媒を流れる排気の温度も高くなり、それに
伴って該前段触媒を流れる排気の粘性係数が上昇する。そのため、前段触媒よりも
上流側の排気通路を流れる排気の流量が同一であっても、前段触媒の温度が高い
ほど該前段触媒内を通過する排気の流量は少なくなる。これにより、還元剤添加弁
から添加された還元剤が前段触媒内を通過するのにかかる時間がより長くなる。その
結果、前段触媒において還元剤の酸化がより促進され易くなり、還元剤が前段触媒
をすり抜け難くなる。

[0022] そこで、後段触媒の昇温実行時において単位時間当たりの還元剤添加量を増加さ
せる所定のタイミングを、前段触媒が第一所定温度以上となったタイミングとしてもよ
い。

[0023] ここで、第一所定温度は、前段触媒を流れる排気の粘性係数が上昇することで前
段触媒を通過する排気の流量が減少し、それによって前段触媒において酸化可能
な還元剤の量が十分に増加したと判断出来る温度である。

[0024] これによれば、前段触媒をすり抜ける還元剤の量をより抑制することが出来る。

[0025] 保持触媒が還元剤吸着酸化触媒である場合においては、還元剤添加弁から還元
剤が添加されると、前段触媒の温度と共に還元剤吸着酸化触媒の温度も上昇する。

[0026] そこで、後段触媒の昇温実行時において単位時間当たりの還元剤添加量を増加さ
せる所定のタイミングを、還元剤吸着酸化触媒が第二所定温度以上となったタイミングとしてもよい。

[0027] ここで、第二所定温度は、還元剤吸着酸化触媒の酸化能力が十分に高くなってい ると判断出来る温度である。

[0028] これによれば、還元剤吸着酸化触媒をすり抜ける還元剤の量を抑制することが出 来る。その結果、後段触媒の還元剤被毒や外部への還元剤の放出をより抑制することが 出来る。

[0029] 保持触媒が還元剤吸着酸化触媒である場合においては、後段触媒を昇温させるとき に、前段触媒の温度が第一所定温度以上となるまでは、還元剤添加弁から還元剤を 添加せずに内燃機関から排出されるHCの量を増加させる排出HC増加制御を実 行してもよい。そして、前段触媒の温度が第一所定温度以上となってから還元剤添 加弁から還元剤を添加してもよい。

[0030] 上記の場合、前段触媒の温度が第一所定温度以上となるまでは内燃機関から排 出され前段触媒に供給されるHCが増加する。そして、該HCが前段触媒において酸 化され前段触媒の温度が上昇する。また、内燃機関から排出されたHCのうち前段触媒に流入しなかったものは還元剤吸着酸化触媒に吸着される。還元剤吸 着酸化触媒に吸着されたHCは、前段触媒の温度上昇に伴って還元剤吸着酸化触 媒の温度が上昇することにより酸化される。そのため、内燃機関から排出されるHCを 増加することで前段触媒に供給されるHCを増加させた場合であっても、後段触媒に 付着するHCが増加することで後段触媒の性能が低下するHC被毒や外部へのHC の放出は抑制される。

[0031] 保持触媒が還元剤吸着酸化触媒である場合においては、還元剤吸着酸化触媒を 昇温させるときにも還元剤添加弁から前段触媒を還元剤が通過するように還元剤を 添加してもよい。この場合、還元剤吸着酸化触媒を昇温させるときに、還元剤添加弁 からの還元剤の添加開始時点から所定のタイミングまでの間における単位時間当たり の還元剤の添加量を、所定のタイミング以降における単位時間当たりの還元剤の 添加量より少なくしてもよい。

[0032] これによれば、前段触媒をすり抜ける還元剤の量を抑制することが出来る。そのた
め、還元剤吸着酸化触媒における還元剤の吸着量の増加を抑制することが出来る。その結果、後段触媒の還元剤被毒や外部への還元剤の放出を抑制することが出来る。また、上記によれば、還元剤吸着酸化触媒をより早期に昇温することが出来る。

[0033] また、還元剤吸着酸化触媒の昇温実行時において単位時間当たりの還元剤添加量を増加させる所定のタイミングを、前段触媒が第一所定温度以上となったタイミングとしてもよい。

[0034] これによれば、前段触媒をすり抜ける還元剤の量をより抑制することが出来る。そのため、還元剤吸着酸化触媒における還元剤の吸着量の増加をより抑制することが出来る。

[0035] 保持触媒が還元剤吸着酸化触媒である場合において、還元剤吸着酸化触媒を昇温させるときにも前段触媒を還元剤が通過するように還元剤添加弁から還元剤を添加する場合、還元剤吸着酸化触媒を昇温させるときに、前段触媒の温度が第一所定温度以上となるまでは、還元剤添加弁から還元剤を添加せずに排出HC増加制御を実行してもよい。そして、前段触媒の温度が第一所定温度以上となってから還元剤添加弁から還元剤を添加してもよい。

[0036] この場合も、内燃機関から排出されたHCのうち前段触媒に流入しなかったものは還元剤吸着酸化触媒に吸着される。そして、還元剤吸着酸化触媒に吸着されたHCは、前段触媒の温度上昇に伴って還元剤吸着酸化触媒の温度が上昇することにより酸化される。そのため、後段触媒のHC被毒や外部へのHCの放出は抑制される。

[0037] 保持触媒が還元剤吸着酸化触媒である場合においては、還元剤吸着酸化触媒における還元剤の吸着量が許容範囲の上限値を超えたか否かを判定する判定手段をさらに備えてもよい。この場合、判定手段によって還元剤吸着酸化触媒における還元剤の吸着量が許容範囲の上限値を超えたと判定されたときには、還元剤添加弁による還元剤の添加を停止してもよい。

[0038] これによれば、前段触媒をすり抜けた還元剤が還元剤吸着酸化触媒をすり抜け後段触媒に到達することを抑制することが出来る。従って、後段触媒の還元剤被毒や外部への還元剤の放出をより抑制することが出来る。

[0039] 本発明において、保持触媒は、その温度が吸着温度上限値以下の場合は排気中
の還元剤を吸着し、その温度が吸着温度上限値より高いときは吸着された還元剤を放出する機能を有する還元剤吸着触媒であってもよい。

【0040】この場合、還元剤吸着触媒の温度が吸着温度上限値以下のときは前段触媒をすり抜けて還元剤が還元剤吸着触媒に吸着される。そして、前段触媒の温度上昇に伴って還元剤吸着触媒及び後段触媒の温度が上昇する。そのため、還元剤吸着触媒の温度が吸着温度上限値より上昇し吸着されていた還元剤が放出されたときは後段触媒の温度も上昇している。これにより、還元剤吸着触媒から放出され後段触媒に供給された還元剤が後段触媒において酸化される。

【0041】従って、上記構成の場合においても、後段触媒の還元剤被毒や外部への還元剤の放出を抑制しつつ後段触媒を早期に昇温させることができる。

【0042】保持触媒が還元剤吸着触媒である場合においても、保持触媒が還元剤吸着酸化触媒である場合と同様、前段触媒を昇温させるときに、還元剤添加弁からの還元剤の添加開始時点から所定のタイミングまでの間に吸する単位時間当たりの還元剤の添加量を、該所定のタイミング以降における単位時間当たりの還元剤の添加量より少なくてもよい。これによれば、後段触媒の還元剤被毒や外部への還元剤の放出をより抑制することが出来、また、後段触媒をより早期に昇温することが出来る。

【0043】上記の場合、後段触媒の昇温実行時において単位時間当たりの還元剤添加量を増加させる所定のタイミングを、保持触媒が還元剤吸着酸化触媒である場合と同様、前段触媒が第一所定温度以上となったタイミングとしてもよい。これによれば、前段触媒をすり抜ける還元剤の量をより抑制することが出来る。

【0044】保持触媒が還元剤吸着触媒である場合においても、保持触媒が還元剤吸着酸化触媒である場合と同様、前段触媒を昇温させるときに、前段触媒の温度が第一所定温度以上となるまでは、還元剤添加弁から還元剤を添加せずに内燃機関から排出されるHCの量を増加させる排出HC増加制御を実行してもよい。そして、前段触媒の温度が第一所定温度以上となってから還元剤添加弁から還元剤を添加してもよい。

【0045】この場合においても、内燃機関から排出されたHCのうち前段触媒に流入しなかったものは還元剤吸着触媒に一旦吸着される。そして、前段触媒の温度上昇に伴って還元剤吸着触媒の温度が吸着温度上限値より高くなると、吸着されていたHCが放
出される。放出されたHCは、前段触媒の温度上昇に伴って温度が上昇した状態の後段触媒において酸化される。そのため、内燃機関から排出されるHCを増加することで前段触媒に供給されるHCを増加させた場合であっても、後段触媒のHC被毒や外部へのHCの放出は抑制される。

[0046] 保持触媒が還元剤吸着触媒である場合においても、保持触媒が還元剤吸着酸化触媒である場合と同様、還元剤吸着酸化触媒における還元剤の吸着量が許容範囲の上限値を越えたか否かを判別する判定手段をさらに備えてもよい。そして、判定手段によって還元剤吸着酸化触媒における還元剤の吸着量が許容範囲の上限値を越えたときには、還元剤添加弁による還元剤の添加を停止してもよい。これによれば、後段触媒の還元剤被毒や外部への還元剤の放出をより抑制することが出来る。

発明の効果

[0047] 本発明によれば、後段触媒の還元剤被毒や外部への還元剤の放出を抑制しつつ後段触媒を早期に昇温させることが出来る。

図面の簡単な説明

[0048] [図1]実施例1に係る内燃機関の吸排気系の概略構成を示す図である。
[図2]実施例1に係るNOx触媒昇温制御のルーチンを示すフローチャートである。
[図3]実施例2に係るNOx触媒昇温制御のルーチンを示すフローチャートである。
[図4]実施例3に係るNOx触媒昇温制御のルーチンを示すフローチャートである。
[図5]実施例4に係る内燃機関の吸排気系の概略構成を示す図である。

符号の説明

[0049] 1・・・内燃機関
2・・・排気通路
3・・・吸気通路
4・・・酸化触媒
5・・・パティキュレートフィルタ
6・・・HC添加弁
9・・・第一温度センサ
10・ECU
13・HC吸着酸化触媒
14・NOx触媒
15・第二温度センサ
16・第三温度センサ
発明を実施するための最良の形態

[0050] 以下、本発明に係る内燃機関の排気浄化装置の具体的な実施形態について図面に基づいて説明する。

[0051] ＜実施例1＞
＜内燃機関の吸排気系の概略構成＞
ここでは、本発明を車両駆動用のディーゼルエンジンに適用した場合を例に挙げて説明する。図1は、本実施例に係る内燃機関の吸排気系の概略構成を示す図である。

[0052] 内燃機関1は車両駆動用のディーゼルエンジンである。内燃機関1には、吸気通路3および排気通路2が接続されている。吸気通路3にはスロットル弁7およびエアフローメータ8が設けられている。

[0053] 排気通路2には、排気中の粒子状物質（Particulate Matter：以下、PMと称する）を捕集するパティキュレートフィルタ（以下、フィルタと称する）5が設けられている。該フィルタ5には吸収還元型NOx触媒（以下、NOx触媒と称する）14が搭載されている。

[0054] 排気通路2におけるフィルタ5より上流側には酸化触媒4が設けられている。酸化触媒4は、円柱状の形状であって、その外径は排気通路2の内径よりも小さくなっている。つまり、酸化触媒4の排気を流れる方向に対して垂直方向の断面積は、排気通路2の排気を流れる方向に対して垂直方向の断面積よりも小さくなっている。このような構成により、酸化触媒4の外周面と排気通路2の内周面との間を排気が流れる。

[0055] 排気通路2における酸化触媒4よりも下流側且つフィルタ5よりも上流側には、酸化機能およびHC吸着機能を有するHC吸着酸化触媒13が設けられている。

[0056] なお、本実施例においては、酸化触媒4が本発明に係る前段触媒に相当し、NOx触媒14が本発明に係る後段触媒に相当し、HC吸着酸化触媒13が本発明に係る保持
触媒又は還元剤吸着酸化触媒に相当する。HC吸着酸化触媒13としては、三元触媒、酸化触媒、NOx触媒等を用いることが出来る。また、酸化触媒4およびNOx触媒14は酸化機能を有する触媒であればよい。

排気通路2における酸化触媒4の直上流には還元剤としてHC（燃料）を添加するHC添加弁6が設けられている。HC添加弁6からは、添加されたHCが酸化触媒4を通るように、酸化触媒4の上流側端面に向けてHCが噴射される（図1においては、斜線部が燃料の噴霧を表している）。これにより、HC添加弁6から添加されたHCの至全が酸化触媒4に流入する。尚、本実施例においては、HC添加弁6が本発明に係る還元剤添加弁に相当する。

排気通路2における、酸化触媒4とHC吸着酸化触媒13との間、HC吸着酸化触媒13とフィルタ5との間、および、フィルタ5より下流側には、排気の温度を検出する第一温度センサ9、第二温度センサ15、第三温度センサ16がそれぞれ設けられている。

以上述べたように構成された内燃機関1には、この内燃機関1を制御するための電子制御ユニット（ECU）10が併設されている。ECU10には、エアフローメータ8、第一温度センサ9、第二温度センサ15、第三温度センサ16、クラシグボジションセンサ11およびアクセル開度センサ12が電気的に接続されている。これらの出力信号がECU10に入力される。

クラシグボジションセンサ11は、内燃機関1のクラシグ角を検出するセンサである。アクセル開度センサ12は、内燃機関1を搭載した車両のアクセル開度を検出するセンサである。ECU10は、クラシグボジションセンサ11の出力値に基づいて内燃機関1の機関回転数を算出し、アクセル開度センサ12の出力値に基づいて内燃機関1の機関負荷を算出する。

また、ECU10は、第一温度センサ9の検出値に基づいて酸化触媒4の温度を算出し、第二温度センサ15の検出値に基づいてHC吸着酸化触媒13を推定し、第三温度センサ16の検出値に基づいてフィルタ5およびNOx触媒14の温度を算出する。尚、本実施例においては、各温度センサ9、15、16を用いずに、内燃機関1の運転状態やHC添加弁6からのHCの添加履歴等に基づいて、各触媒4、13、14および
フィルタ5の温度を推定してもよい。

[0062] また、ECU10にはストロット弁7、HC添加弁6および内燃機関1の燃料噴射弁が電気的に接続されている。ECU10によってこれらが制御される。

[0063] ＜NOx触媒昇温制御＞

本実施例では、未活性の状態のNOx触媒14を活性化させるときや、NOx触媒14に吸着されたSOxを放出させて還元するとき、フィルタ5に捕集されたPMを酸化させて除去するときに、NOx触媒14を昇温させるNOx触媒昇温制御を実行する。

[0064] 本実施例に係るNOx触媒昇温制御は、HC添加弁6からHCが添加されることで実現される。本実施例においては、上述したように、酸化触媒4の排気の流れる方向に対して垂直方向の断面積、排気通路2の排気の流れる方向に対して垂直方向の断面積よりも小さい。そのため、酸化触媒4の外径が排気通路2の内径以上であるときに比べて酸化触媒4内を排気が通過するときの排気の流速が小さく、酸化触媒4内を流れる排気の流量が少ない。これにより、HC添加弁6からHCが添加されたときに該HCが酸化触媒4内を通過するのにかかる時間が長くなるため、酸化触媒4におけるHCの酸化が促進され易い。その結果、HCの酸化熱による排気の昇温が促進され易い。

[0065] また、HC添加弁6から添加されたHCが酸化触媒4をすり抜けた場合、すり抜けたHCがHC吸着酸化触媒13に吸着される。HC吸着酸化触媒13の温度は酸化触媒4の温度上昇に伴って上昇する。HC吸着酸化触媒13に吸着されたHCは該HC吸着酸化触媒13の温度が上昇することにより酸化される。そのため、HC添加弁6から添加されたHCが酸化触媒4をすり抜けた場合であっても、該HCがフィルタ5まで到達することを抑制することが出来る。

[0066] 従って、本実施例によれば、NOx触媒14のHC被覆や外部へのHCの放出を抑制しつつNOx触媒14を早期に昇温させることができる。

[0067] ここで、本実施例に係るNOx触媒昇温制御の実行時におけるHC添加弁6からのHC添加方法について説明する。酸化触媒4の温度が高いほど、該酸化触媒4を流れる排気の温度も高くなり、それに伴って該酸化触媒4を流れる排気の粘性係数が上昇する。そのため、内燃機関1から排出される排気の流量が同一であっても、酸化
触媒4の温度が高いほど該酸化触媒4内を通じる排気の流量は少なくなる。従って、HC添加弁6からHCが添加されたときに、酸化触媒4の温度が高いほど、該酸化触媒4内をHCが通過するのにかかる時間が長くなる。その結果、酸化触媒4においてHCの酸化がより促進され易くなり、HCが酸化触媒4をすり抜けて難くなる。

[0068] そこで、本実施例では、NOx触媒昇温制御の実行時において、酸化触媒4の温度が第一所定温度より低いときは、酸化触媒4の温度が第一所定温度以上のときよりも単位時間当たりのHC添加量を少なくしてHCの添加を実行する。ここで、第一所定温度は、酸化触媒4を流れる排気の粘性係数が上昇することで酸化触媒4を通過する排気の流量が減少し、それによって酸化触媒4において酸化可能なHCの量が十分に増加したと判断出来る温度である。このような第一所定温度は、実験等に基づいて予め求めることが出来る。

[0069] これによれば、酸化触媒4をすり抜けるHCの量を抑制することが出来る。その結果、NOx触媒14のHC被毒や外部へのHCの放出をより抑制することが出来る。

[0070] また、上記によれば、HC添加弁6からのHC添加開始後、酸化触媒4の温度が第一所定温度以上となると、単位時間当たりのHC添加量が増加される。これにより、酸化触媒4においてHCが酸化することで発じる熱量が増加し、その結果、NOx触媒14の昇温が促進される。そのため、NOx触媒14をより早期に昇温することが出来る。

[0071] ここで、本実施例に係るNOx触媒昇温制御のルーチンについて図2に示すフローチャートに基づいて説明する。本ルーチンは、ECU10を予め記憶されており、NOx触媒14の昇温実行条件が成立したときに実行される。

[0072] 本ルーチンでは、ECU10は、先ずS101において、酸化触媒4の温度Tcが活性温度の下限値Tc0以上であるか否かを判別する。S101において、肯定判定された場合、ECU10はS102に進み、否定判定された場合、ECU10は本ルーチンの実行を一旦終了する。

[0073] S102において、ECU10は、HC添加弁6により微小HC添加を実行する。本実施例に係る微小HC添加とは、単位時間当たりのHC添加量を第一所定量として実行されるHC添加のことである。ここで、第一所定数は、後述する、酸化触媒4の温度Tcが第一所定温度Tc1以上となった後における単位時間当たりのHC添加量である第
二所定量よりも少ない量である。第一所定量は、酸化触媒4の温度Tcが第一所定量温度Tc1より低い状態であっても酸化触媒4をすり抜けるHCの量が許容範囲内となる量として設定されている。このような第一所定量は、実験等に基づいて予め求めることが出来る。

S104において、ECU10は、HC添加弁6からの単位時間当たりのHC添加量を第二所定量に増量する。ここで、第二所定量を、酸化触媒4の温度Tcが第一所定量温度Tc1以上の温度であるときに酸化触媒4をすり抜けるHCの量が許容範囲内となる範囲で最大のHC添加量として設定してもよい。このような第二所定量は、実験等に基づいて予め求めることが出来る。

次に、ECU10は、S105に進み、HC吸着酸化触媒13におけるHCの吸着量Qabを推定し、該吸着量Qabが許容範囲の上限値Qlimit以下であるか否かを判別する。HC吸着酸化触媒13におけるHCの吸着量Qabは、内燃機関1の運転状態、HC添加弁6からのHC添加量およびHC吸着酸化触媒13の温度等の履歴に基づいて推定することが出来る。尚、排気通路2における酸化触媒4より下流側且つフィルタ5より上流側に排気のHC濃度を検出するHCセンサを設け、該HCセンサの出力値に基づいて、HC吸着酸化触媒13におけるHCの吸着量Qabが許容範囲の上限値Qlimit以下であるか否かを判別してもよい。S105において、肯定判定された場合、ECU10はS106に進み、否定判定された場合、ECU10はS107に進む。

S106において、ECU10は、NOx触媒14の温度Tnが目標温度Tnt以上となったか否かを判別する。目標温度Tntは、NOx触媒昇温制御の実行目的に応じて予め定められている。S106において、肯定判定された場合、ECU10はS107に進み、否定判定された場合、ECU10はS105に戻る。

次に、ECU10は、S107に進み、HC添加弁6からのHCの添加を停止する。その後、ECU10は、本ルーチンの実行を終了する。
[0079] 以上説明したルーチンによれば、酸化触媒4の温度Tcが第一所定温度Tc1以上となるタイミングの前後で、上記したようにHC添加弁6からの単位時間当たりのHC添加量が変更される。

[0080] また、上記ルーチンによれば、HC吸着酸化触媒13における吸着量Qabが許容範囲の上限値Qlimitを越えたときは、HC添加弁6によるHCの添加が停止される。これにより、酸化触媒4をずり抜けてHCがHC吸着酸化触媒13をずり抜けてNOx触媒14に到達することを抑制することが出来る。従って、NOx触媒14のHC被毒や外部へのHCの放出をより抑制することが出来る。

[0081] ＜HC吸着酸化触媒昇温制御＞

本実施例においては、HC吸着酸化触媒13の酸化能力を上昇させるときに、HC吸着酸化触媒13を昇温させるHC吸着酸化触媒昇温制御を実行する。本実施例に係るHC吸着酸化触媒昇温制御は、NOx触媒昇温制御と同様、HC添加弁6からHCが添加されることで実現される。

[0082] 本実施例によれば、HC吸着酸化触媒昇温制御の実行時においても、HC添加弁6から添加されたHCが酸化触媒4をずり抜けての場合、ずり抜けたHCがHC吸着酸化触媒13に吸着される。また、HC吸着酸化触媒13に吸着されたHCは該HC吸着酸化触媒13の温度が上昇することにより酸化される。従って、NOx触媒14のHC被毒や外部へのHCの放出を抑制しつつHC吸着酸化触媒13を早期に昇温させることが出来る。

[0083] また、本実施例に係るHC吸着酸化触媒昇温制御の実行時においては、NOx触媒昇温制御の実行時におけるHC添加弁6からのHC添加方法と同様の方法でHCの添加が行われる。つまり、HC吸着酸化触媒昇温制御の実行時において、酸化触媒4の温度が第一所定温度より低いときは、酸化触媒4の温度が第一所定温度以上とのときよりも単位時間当たりのHC添加量を少なくしてHCの添加を実行する。

[0084] これによれば、酸化触媒4をずり抜けるHCの量を抑制することが出来る。そのため、HC吸着酸化触媒13におけるHCの吸着量の増加を抑制することが出来る。その結果、NOx触媒14のHC被毒や外部へのHCの放出をより抑制することが出来る。

[0085] また、上記によれば、HC添加弁6からのHC添加開始後、酸化触媒4の温度が第
一所定温度以上になると、単位時間当たりのHC添加量が増加される。そのため、HC吸着酸化触媒13をより早期に昇温することが出来る。

【0086】また、本実施例においては、HC吸着酸化触媒昇温制御の実行時においても、NOx触媒昇温制御の実行時と同様、HC吸着酸化触媒13における吸着量Qabが許容範囲の上限値Qlimitを超えたときには、HC添加弁6によるHCの添加が停止される。

【0087】＜実施例2＞
本実施例に係る内燃機関の吸排気系の概略構成は実施例1と同様である。

【0088】＜NOx触媒昇温制御＞
本実施例においても、HC添加弁6からHCが添加されることでNOx触媒昇温制御が実現される。ここで、本実施例に係るNOx触媒昇温制御の実行時におけるHC添加弁6からのHC添加方法について説明する。HC添加弁6からHCが添加されて酸化触媒4の温度が上昇すると、それに伴ってHC吸着酸化触媒13の温度も上昇する。HC吸着酸化触媒13の温度が上昇すると該HC吸着酸化触媒13の酸化能力が上昇する。

【0089】そこで、本実施例では、NOx触媒昇温制御の実行時において、HC吸着酸化触媒13の温度が第二所定温度より低いときは、HC吸着酸化触媒13の温度が第二所定温度以上のときよりも単位時間当たりのHC添加量を少なくしてHCの添加を実行する。ここで、第二所定温度は、HC吸着酸化触媒13の酸化能力が十分に高くなっていると判断出来る温度である。このような第二所定温度は、実験等に基づいて予め求めることが出来る。

【0090】これによれば、HC吸着酸化触媒13をより抜けるHCの量を抑制することが出来る。その結果、NOx触媒14のHC被毒や外部へのHCの放出をより抑制することが出来る。

【0091】また、上記によれば、HC添加弁6からのHC添加開始後、HC吸着酸化触媒13の温度が第二所定温度以上となると、単位時間当たりのHC添加量が増加される。これにより、NOx触媒14をより早期に昇温することが出来る。

【0092】ここで、本実施例に係るNOx触媒昇温制御のルーチンについて図3に示すフローチャートに基づいて説明する。本ルーチンは、ECU10に予め記憶されており、NOx
触媒14の昇温実行条件が成立したときに実行される。尚、図3に示すフローチャートは、図2に示すフローチャートのS102～S104をS202～S204に置き換えたものである。そのため、S202～S204についてのみ説明し、その他のステップの説明を省略する。

[0093] 本ルーチンでは、S101において肯定判定された場合、ECU10は、S202に進む。S202において、ECU10は、HC添加弁6により微小HC添加を実行する。本実施例に係る微小HC添加とは、単位時間当たりのHC添加量を第四所定量として実行されるHC添加のことである。ここで、第四所定量は、後述する、HC吸着酸化触媒13の温度Tabが第二所定量温度Tab2以上となった後における単位時間当たりのHC添加量である第四所定量よりも少ない量である。第三所定量は、HC吸着酸化触媒13の温度Tabが第二所定量温度Tab2より低い状態であってもHC吸着酸化触媒13をすり抜けるHCの量が許容範囲内となる量として設定されている。このような第三所定量は、実験等に基づいて予め求めることができる。

[0094] 次に、ECU10は、S203に進み、HC吸着酸化触媒13の温度Tabが第二所定量温度Tab2以上であるか否かを判別する。S203において肯定判定された場合、ECU10はS204に進む。一方、S203において否定判定された場合、ECU10はS202に戻る。つまり、微小HC添加を継続する。

[0095] S204において、ECU10は、HC添加弁6からの単位時間当たりのHC添加量を第四所定量に増量する。ここで、第四所定量を、HC吸着酸化触媒13の温度Tabが第二所定量温度Tab2以上の温度であるときに酸化触媒4をすり抜けると共にHC吸着酸化触媒13の温度Tabをすり抜けるHCの量が許容範囲内となる範囲で最大のHC添加量として設定してもよい。このような第四所定量は、実験等に基づいて予め求めることができる。ECU10は、S204の次にS105に進む。

[0096] 以上説明したルーチンによれば、HC吸着酸化触媒13の温度Tabが第二所定量温度Tab2以上となるタイミングの前後で、上述したようにHC添加弁6からの単位時間当たりのHC添加量が変更される。

[0097] また、本実施例に係るNOx触媒昇温制御の実行時においても、HC吸着酸化触媒13における吸着量Qabが許容範囲の上限値Qlimitを越えたときは、HC添加弁6に
よるHCの添加が停止される。

[0098] ＜実施例3＞

本実施例に係る内燃機関の吸排気系の概略構成は実施例1と同様である。

[0099] ＜NOx触媒昇温制御＞

以下、本実施例に係るNOx触媒昇温制御のルーチンについて図4に示すフローチャートに基づいて説明する。本ルーチンは、ECU10に予め記憶されており、NOx触媒14の昇温実行条件が成立したときに実行される。尚、図4に示すフローチャートは、図2に示すフローチャートのS102、S104をS302、S304、S305に置き換えたものである。そのため、S302、S304、S305についてのみ説明し、その他のステップの説明を省略する。

[0100] 本ルーチンでは、S101において肯定判定された場合、ECU10は、S302に進む。S302において、ECU10は、内燃機関1から排出されるHCの量が増加する排出H C増加制御を実行する。本実施例に係る排出HC増加制御としては、内燃機関1の吸入空気量を減少させる制御や内燃機関1での燃料噴射時期を遅角させる制御等を例示することが出来る。このとき、HC添加弁6からのHCの添加は実行されない。ECU10は、S302の次にS103に進む。

[0101] 本実施例では、S103において肯定判定された場合、ECU10はS304に進む。S304において、ECU10は、排出HC増加制御を停止する。

[0102] 次に、ECU10は、S305に進み、HC添加弁6からのHCの添加を実行する。その後、ECU10はS105に進む。

[0103] 以上説明したルーチンによれば、酸化触媒4の温度Tcが第一所定温度Tc1以上となるまでは、内燃機関1から排出されるHCが増加することで酸化触媒4に供給されるHCが増加する。そして、該HCが酸化触媒4において酸化されることで酸化触媒4の温度Tcが上昇する。

[0104] 本実施例においては、内燃機関1から排出されたHCのうち酸化触媒4に流入しなかったものはHC吸着酸化触媒13に吸着される。HC吸着酸化触媒13に吸着されたHCは、酸化触媒4の温度上昇に伴ってHC吸着酸化触媒13の温度が上昇することにより酸化される。そのため、酸化触媒4に供給されるHCを増加させるべく内燃機関
1から排出されるHCを増加させた場合であっても、NOx触媒14のHC被毒や外部へのHCの放出は抑制される。

[0105] そして、上記ルーチンにおいても、酸化触媒4の温度Tcが第一所定温度Tc1以上となると、HC添加弁6からのHCの添加が実行される。これにより、NOx触媒14の昇温が促進される。

[0106] 従って、本実施例に係るNOx触媒昇温制御によっても、NOx触媒14のHC被毒や外部へのHCの放出を抑制しつつNOx触媒14をより早期に昇温することが出来る。

[0107] ＜HC吸着酸化触媒昇温制御＞

本実施例においては、HC吸着酸化触媒昇温制御においても、酸化触媒4の温度Tcが第一所定温度Tc1以上となるまでは、HC添加弁6からのHCの添加を実行せずに排出HC増加制御を実行する。そして、酸化触媒4の温度Tcが第一所定温度Tc1以上となったときに、排出HC増加制御を停止してHC添加弁6からのHCの添加を実行する。

[0108] 本実施例に係るHC吸着酸化触媒昇温制御によっても、NOx触媒14のHC被毒や外部へのHCの放出を抑制しつつHC吸着酸化触媒13をより早期に昇温することが出来る。

[0109] ＜実施例4＞

＜内燃機関の吸排気系の概略構成＞

図5は、本実施例に係る内燃機関の吸排気系の概略構成を示す図である。本実施例に係る構成は、実施例1に係る構成におけるHC吸着酸化触媒13をHC吸着触媒17に置き換えたものであり、この点以外は実施例1に係る構成と同様である。

[0110] HC吸着触媒17は、酸化機能を有せず、その温度が吸着温度上限値以下の場合は排気中のHCを吸着し、その温度が吸着温度上限値より高いときは吸着されたHCを放出する機能を有する触媒である。HC吸着触媒17としては、アンモニアを還元剤として排気中のNOxを選択的に還元する選択還元型NOx触媒を例示することが出来る。HC吸着触媒17として選択還元型NOx触媒を用いた場合は、HC吸着触媒17に尿素を供給するための尿素添加弁を排気通路2に設けてもよい。
においては、HC吸着触媒17が本発明に係る保持触媒又は還元剤吸着触媒に相当する。

[0111] ＜NOx触媒昇温制御＞

本実施例においても、HC添加弁6からHCが添加されることでNOx触媒昇温制御が実現される。そして、本実施例においては、実施例1と同様、図2に示すNOx触媒昇温制御のルーチンがECU10に予め記憶されており、該ルーチンが実行されることによりNOx触媒昇温制御が実現される。

[0112] 本実施例において、HC吸着触媒17の温度が吸着温度上限値以下のときは、HC添加弁6から添加されたHCが酸化触媒4をすり抜けた場合、すり抜けたHCがHC吸着触媒17に吸着される。これにより、NOx触媒14のHC被毒や外部へのHCの放出が抑制される。

[0113] そして、酸化触媒4の温度上昇に伴ってHC吸着触媒17の温度が上昇すると、HC吸着触媒17に吸着されたHCが放出され、該HCがNOx触媒14に供給される。このとき、NOx触媒14の温度は酸化触媒4の温度上昇に伴って上昇している。そのため、NOx触媒14に供給されたHCは該NOx触媒14において酸化される。これにより、NOx触媒14の昇温が促進される。

[0114] 従って、本実施例によっても、NOx触媒14のHC被毒や外部へのHCの放出を抑制しつつNOx触媒14を早期に昇温させることが出来る。

[0115] また、本実施例においても、図2に示すルーチンによってNOx触媒昇温制御を行うことにより、実施例1の場合の同様の効果を得ることが出来る。

[0116] ＜実施例5＞

本実施例に係る内燃機関の吸排気系の概略構成は実施例4と同様である。

[0117] ＜NOx触媒昇温制御＞

本実施例においては、実施例3と同様、図4に示すNOx触媒昇温制御のルーチンがECU10に予め記憶されており、該ルーチンが実行されることによりNOx触媒昇温制御が実現される。

[0118] 本実施例においても、内燃機関1から排出されたHCのうち酸化触媒4に流入しなかったものはHC吸着触媒17に一旦吸着される。そして、酸化触媒4の温度上昇に
伴ってHC吸着触媒17の温度が吸着温度上限値より高くなると、吸着されていたHCが放出される。このとき、NOx触媒14の温度も酸化触媒4の温度上昇に伴って上昇している。そのため、放出されたHCは温度が上昇した状態のNOx触媒14に供給される。そのため、該HCがNOx触媒14において酸化される。

[0119] 従って、本実施例においても、実施例3の場合と同様、NOx触媒14のHC被毒や外部へのHCの放出を抑制しつつNOx触媒14をより早期に昇温することが出来る。

[0120] 尚、上記各実施例においては、酸化触媒4よりも上流側の排気通路2にさらにNOx触媒等の別の触媒を設けた構成を採用してもよい。

[0121] 上記各実施例は可能な限り組み合わせることが出来る。
請求の範囲

[1] 内燃機関の排気通路にその外周面と前記排気通路の内周面との間を排気が流れるように設けられた酸化機能を有する前段触媒と、

該前段触媒よりも下流側の排気通路に設けられた酸化機能を有する後段触媒と、

前記排気通路における前記前段触媒の直上流に設けられており、前記後段触媒を昇温させるときに前記前段触媒を還元剤が通過するように還元剤を添加する還元剤添加弁と、

前記排気通路における前記前段触媒より下流側且つ前記後段触媒よりも上流側に設けられ排気中の還元剤を一時的に保持する機能を有する保持触媒と、を備えることを特徴とする内燃機関の排気浄化装置。

[2] 前記保持触媒が、酸化機能および還元剤吸着機能を有する還元剤吸着酸化触媒であることを特徴とする請求項1記載の内燃機関の排気浄化装置。

[3] 前記後段触媒を昇温させるときに、前記還元剤添加弁からの還元剤の添加開始時点から所定のタイミングまでの間における単位時間当たりの還元剤の添加量を、前記所定のタイミング以降における単位時間当たりの還元剤の添加量より少なくすることを特徴とする請求項2記載の内燃機関の排気浄化装置。

[4] 前記所定のタイミングが、前記前段触媒が第一所定温度以上となったタイミングであることを特徴とする請求項3記載の内燃機関の排気浄化装置。

[5] 前記所定のタイミングが、前記還元剤吸着酸化触媒が第二所定温度以上となったタイミングであることを特徴とする請求項3記載の内燃機関の排気浄化装置。

[6] 前記後段触媒を昇温させるときに、前記前段触媒の温度が第一所定温度以上となるまでは、前記還元剤添加弁から還元剤を添加せずに前記内燃機関から排出されるHCの量を増加させる排出HC増加制御を実行し、前記前段触媒の温度が前記第一所定温度以上となってから前記還元剤添加弁から還元剤を添加することを特徴とする請求項2記載の内燃機関の排気浄化装置。

[7] 前記還元剤添加弁が、前記還元剤吸着酸化触媒を昇温させるときにも前記前段触媒を還元剤が通過するように還元剤を添加するものであって、

前記還元剤吸着酸化触媒を昇温させるときに、前記還元剤添加弁からの還元剤の
添加開始時点から所定のタイミングまでの間における単位時間当たりの還元剤の添加量を、前記所定のタイミング以降における単位時間当たりの還元剤の添加量より少なくすることを特徴とする請求項2記載の内燃機関の排気浄化装置。

[8] 前記所定のタイミングが、前記前段触媒が第一所定温度以上となったタイミングであることを特徴とする請求項7記載の内燃機関の排気浄化装置。

[9] 前記還元剤添加弁が、前記還元剤吸着酸化触媒を昇温させるときにも前記前段触媒を還元剤が通過するように還元剤を添加するものであって、前記還元剤吸着酸化触媒を昇温させるときに、前記前段触媒の温度が前記第一所定温度以上となるまでは、前記還元剤添加弁から還元剤を添加せずに前記内燃機関から排出されるHCの量を増加させる排出HC増加制御を実行し、前記前段触媒の温度が前記第一所定温度以上となってから前記還元剤添加弁から還元剤を添加することを特徴とする請求項2記載の内燃機関の排気浄化装置。

[10] 前記還元剤吸着酸化触媒における還元剤の吸着量が許容範囲の上限値を越えたか否かを判別する判定手段をさらに備え、前記判定手段によって前記還元剤吸着酸化触媒における還元剤の吸着量が許容範囲の上限値を越えたと判定されたときには、前記還元剤添加弁による還元剤の添加を停止することを特徴とする請求項2から9のいずれか1項に記載の内燃機関の排気浄化装置。

[11] 前記保持触媒が、その温度が吸着温度上限値以下の場合は排気中の還元剤を吸着し、その温度が前記吸着温度上限値より高いときは吸着された還元剤を放出する機能を有する還元剤吸着触媒であることを特徴とする請求項1記載の内燃機関の排気浄化装置。

[12] 前記後段触媒を昇温させるときに、前記還元剤添加弁からの還元剤の添加開始時点から所定のタイミングまでの間における単位時間当たりの還元剤の添加量を、前記所定のタイミング以降における単位時間当たりの還元剤の添加量より少なくすることを特徴とする請求項11記載の内燃機関の排気浄化装置。

[13] 前記所定のタイミングが、前記前段触媒が第一所定温度以上となったタイミングであることを特徴とする請求項12記載の内燃機関の排気浄化装置。
【14】前記後段触媒を昇温させるときに、前記前段触媒の温度が第一所定温度以上となるまでは、前記還元剤添加弁から還元剤を添加せずに前記内燃機関から排出されるHCの量を増加させる排出HC増加制御を実行し、前記前段触媒の温度が前記第一所定温度以上となってから前記還元剤添加弁から還元剤を添加することを特徴とする請求項11記載の内燃機関の排気浄化装置。

【15】前記還元剤吸着酸化触媒における還元剤の吸着量が許容範囲の上限値を越えたか否かを判別する判定手段をさらに備え、前記判定手段によって前記還元剤吸着酸化触媒における還元剤の吸着量が許容範囲の上限値を越えたと判定されたときには、前記還元剤添加弁による還元剤の添加を停止することを特徴とする請求項11から14のいずれか1項に記載の内燃機関の排気浄化装置。

【16】前記第一所定温度が、前記前段触媒を流れる排気の粘性係数が変化することで前記前段触媒を通過する排気の流量が減少し、それによって前記前段触媒において酸化可能な還元剤の量が十分に増加したと判断出来る温度であることを特徴とする請求項4、6、8、9、13及び14に記載の内燃機関の排気浄化装置。

【17】前記第二所定温度が、前記還元剤吸着酸化触媒の酸化能力が十分に高くなっていくと判断出来る温度であることを特徴とする請求項5に記載の内燃機関の排気浄化装置。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
F01N3/20 (2006.01)i, B01D53/94 (2006.01)i, F01N3/02 (2006.01)i, F01N3/08 (2006.01)i, F01N3/24 (2006.01)i, F01N3/28 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996
Jitsuyo Shinan Toroku Koho 1996-2008
Kokai Jitsuyo Shinan Koho 1971-2008
Toroku Jitsuyo Shinan Koho 1994-2008

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2005-127257 A (Toyota Motor Corp.), 19 May, 2005 (19.05.05), Full text; all drawings (Family: none)</td>
<td>1-17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2002-242665 A (Mazda Motor Corp.), 28 August, 2002 (28.08.02), Par. No. [0010] (Family: none)</td>
<td>1-17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2006-329020 A (Hino Motors, Ltd.), 07 December, 2006 (07.12.06), Full text; all drawings (Family: none)</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search
12 August, 2008 (12.08.08)

Date of mailing of the international search report
26 August, 2008 (26.08.08)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (April 2007)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2004-036543 A (Mitsubishi Fuso Truck and Bus Corp.), 05 February, 2004 (05.02.04), Claim 6 (Family: none)</td>
<td>10, 15</td>
</tr>
<tr>
<td>A</td>
<td>JP 2005-264868 A (Toyota Motor Corp.), 29 September, 2005 (29.09.05), Fig. 1 (Family: none)</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>JP 08-100632 A (Suzuki Motor Corp.), 16 April, 1996 (16.04.96), Full text; all drawings (Family: none)</td>
<td>1-17</td>
</tr>
</tbody>
</table>
国際調査報告

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. F01N3/20 (2006. 01)i, B01D53/94 (2006. 01)i, F01N3/02 (2006. 01)i, F01N3/08 (2006. 01)i, F01N3/24 (2006. 01)i, F01N3/28 (2006. 01)i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

最小限資料以外の資料で調査を行った分野に含まれるもの

- 日本国実用新案公報 1922-1996年
- 日本国公開実用新案公報 1971-2008年
- 日本国実用新案登録公報 1996-2008年
- 日本国登録実用新案公報 1994-2008年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する求める範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2005-127257 A（トヨタ自動車株式会社）2005.05.19, 全文, 全図（ファミリーなし）</td>
<td>1-17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2002-242665 A（マツダ株式会社）2002.08.28, 段落【0010】（ファミリーなし）</td>
<td>1-17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2006-329020 A（日野自動車株式会社）2006.12.07, 全文, 全図（ファミリーなし）</td>
<td>1-17</td>
</tr>
</tbody>
</table>

引用文献のカテゴリ

- 「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張が成立しなかった出願
- 「Q」求める範囲の文献
- 「T」国際出願日又は優先日後に公表された文献であって出願を矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献との1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

12.08.2008

国際調査報告の発送日

26.08.2008

国際調査機関の名称及び住所

- 日本国特許庁（ISA／JP）
 - 郵便番号100-8915
 - 東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

- 山本 信平
- 電話番号 03-3581-1101 内線 3395

様式PCT／ISA／210（第2ページ）（2007年4月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び部分の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2004-036543 A（三菱ふそうトラック・バス株式会社）2004.02.05、【請求項6】（ファミリーなし）</td>
<td>10、15</td>
</tr>
<tr>
<td>A</td>
<td>JP 2005-264868 A（トヨタ自動車株式会社）2005.09.29、【図1】（ファミリーなし）</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>JP 08-100632 A（スズキ株式会社）1996.04.16、全文、全図（ファミリーなし）</td>
<td>1-17</td>
</tr>
</tbody>
</table>