(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
11 April 2002 (11.04.2002) PCT WO 02/29577 A2
(51) International Patent Classification’: GO6F 12/14 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US01/42469 CZ, DE, DK, DM, DZ, EC, EE, ES, HI, GB, GD, GE, GHi,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
(25) Filing Language: English ZW.

(22) International Filing Date: 5 October 2001 (05.10.2001)

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

(26) Publication Language: English

(30) Priority Data: patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
09/680,599 6 October 2000 (06102000) US IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

(71) Applicant: ORACLE CORPORATION [US/US]; 500 TG).

Oracle Parkway, Redwood Shores, CA 94065 (US).
Published:

— without international search report and to be republished

(72) Inventor: WESSMAN, Richard; 1 Stag Creek Trail, upon receipt of that report

Brockport, NY 14420-9487 (US).

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agent: PARK, Richard; 508 2nd Street, Suite 201, Davis, ance Notes on Codes and Abbreviations" appearing at the begin-
CA 95616 (US). ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR AUTOMATIC DATABASE ENCRYPTION

224] 226] 228 | 230
DATABASE SERVER 112 —212 ¥xx| NID | YvY] zzz
KEY MANAGEMENT
FUNCTION 114
OBFUSCATED —~
KEYFILE 116 TABLE 218
ENCRYPTION 232 234] 236 | 238
CLIENT 110 202 FUNCTION 204 214 999 | DES| 56 | SH1
DECRYPTION
FUNCTION 206
Fu%?:g:ezoa PROFILES 220~/
RETRIEVING 240 [242 | 244 | 246
FUNCTION 210 216 e 1100 1o5s e
METADATA 222 /

DATABASE 118

(57) Abstract: One embodiment of the present invention provides a system for managing encryption within a database system that is
managed by a database administrator, and wherein a user administrator not otherwise associated with the database system, manages
users of the database system. This system performs encryption automatically and transparently to a user of the database system.
The system operates by receiving a request to store data in a column of the database system. If a user has designated the column
as an encrypted column, the system automatically encrypts the data using an encryption function. This encryption function uses a
key stored in a keyfile managed by the security administrator. After encrypting the data, the system stores the data in the database
system using a storage function of the database system.

O 02/29577 A2

WO 02/29577 PCT/US01/42469

10

15

20

25

30

1
METHOD AND APPARATUS FOR AUTOMATIC

DATABASE ENCRYPTION

Inventor: Richard R. Wessman

BACKGROUND

Field of the Invention

The present invention relates to computer security and databases within
computer systems. More specifically, the present invention relates to a method and

apparatus for automatically encrypting and decrypting data to be stored in a database.

Related Art

Modern database systems store and retrieve vast quantities of information.
Some of this information is sensitive, such as credit card numbers, bank balances, and
nuclear secrets, and hence must be protected so that the information does not end up
in the wrong hands.

Some database systems are able to restrict access to specific information by
using access controls that are specified in security profiles assigned to each client.
Such systems prevent a client from accessing information other than what has been
authorized for the client. This normally protects the sensitive information and,
therefore, leads users to trust the database system to ensure that information stored
within the database system remains secret.

There is, however, a major weakness in these types of database systems. The
data base administrator (DBA) has access to everything that is stored within the
database system. This unrestricted access allows an unscrupulous DBA to steal
information from the database system and to use the stolen information for illicit

purposes. Note that is not practical to implement access controls for the DBA

WO 02/29577 PCT/US01/42469

10

15

20

25

30

2
because doing so prevents the DBA from performing necessary database maintenance

functions.

Sensitive information can be kept secret from the DBA by encrypting the
sensitive information within the user application at the client. In this approach, all
sensitive information is stored in an encrypted form within the database system and is
consequently protected from examination by the DBA. This approach has the
advantage that the DBA is not restricted from performing database maintenance
functions. A major drawback to this approach, however, is that all user applications
that handle sensitive information need to be able to encrypt and decrypt information.
Providing such encryption and decryption code in all of the numerous applications
that handle sensitive data is very inefficient.

What is needed is a method and an apparatus that allows a DBA to have
unrestricted access to the database system while protecting sensitive information

within the database system in an efficient manner.

SUMMARY

One embodiment of the present invention provides a system for managing
encryption within a database system that is managed by a database administrator, and
wherein a user administrator not otherwise associated with the database system,
manages users of the database system. This system performs encryption
automatically and transparently to a user of the database system. The system operates
by receiving a request to store data in a column of the database system. If a user has
designated the column as an encrypted column, the system automatically encrypts the
data using an encryption function. This encryption function uses a key stored in a
keyfile managed by the security administrator. After encrypting the data, the system
stores the data in the database system using a storage function of the database system.

In one embodiment of the present invention, the system manages decrypting
encrypted data stored in the database systefn. The system operates by receiving a
request to retrieve data from the encrypted column of the database system. If the
request to retrieve data is from an authorized user of the database system, the system

allows the authorized user to decrypt encrypted data, otherwise, the system prevents

WO 02/29577 PCT/US01/42469

10

15

20

25

30

3
decrypting encrypted data if the request to retrieve data is received from the database

administrator, the security administrator, or the user administrator.

In one embodiment of the present invention, the security administrator selects
the mode of encryption for the column. The mode of encryption can be, but is not
limited to, data encryption standard (DES) or triple DES.

In one embodiment of the present invention, the security administrator, the
database administrator, and the user administrator are distinct roles. A person
selected for one of these roles is not allowed to be selected for another of these roles.

In one embodiment of the present invention, the security administrator
manages the keyfile. In doing so, the security administrator creates the keyfile. Next,
the security administrator establishes how many keys are to be stored in the keyfile.
The security administrator then establishes a relationship between a key identifier and
the key stored in the keyfile. The keyfile can be stored in a location such as an
encrypted file in the database system, or a location separate from the database system.

Finally, the security administrator moves an obfuscated copy of the keyfile to a
volatile memory within a server associated with the database system.

In one embodiment of the present invention, the security administrator
specifies a column to be encrypted. If the column currently contains encrypted data,
the system decrypts the data using the previous key. After decrypting the encrypted
data or if the column contains clear-text data, the system encrypts the data using a
new key.

In one embodiment of the present invention, the key identifier associated with
the encrypted column is stored as metadata associated with a table contaihing the
encrypted column within the database system.

In one embodiment of the present invention, the security administrator
establishes encryption parameters for the encrypted column. These encryption
parameters include, but are not limited to, encryption mode, key length, and integrity
type. The security administrator can manually enter the encryption parameters for an
encrypted column. The security administrator can also establish a profile table in the
database system for saving and recovering encryption parameters for the encrypted

column.

WO 02/29577 PCT/US01/42469

10

15

20

25

30

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a database system in accordance with an embodiment of the
present invention.

FIG. 2 illustrates details of a database system in accordance with an
embodiment of the present invention.

FIG. 3 is a flowchart illustrating the process of creating a keyfile in
accordance with an embodiment of the present invention.

FIG. 4 is a flowchart illustrating the process of creating an encryption profile
in accordance with an embodiment of the present invention.

FIG. 5 is a flowchart illustrating the process of establishing a column in the
database as an encrypted column in accordance with an embodiment of the present
invention.

FIG. 6 is a flowchart illustrating the process of storing data in the database
system in accordance with an embodiment of the present invention.

FIG. 7 is a flowchart illustrating the process of retrieving data from the

database system in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art
to make and use the invention, and is provided in the context of a particular
application and its requirements. | Various modifications to the disclosed embodiments
will be readily apparent to those skilled in the art, and the general principles defined
herein may be applied to other embodiments and applications without departing from
the spirit and scope of the present invention. Thus, the present invention is not
intended to be limited to the embodiments shown, but is to be accorded the widest
scope consistent with the principles and features disclosed herein.

The data structures and code described in this detailed description are typically
stored on a computer readable storage medium, which may be any device or medium
that can store code and/or data for use by a computer system. This includes, but is not

limited to, magnetic and optical storage devices such as disk drives, magnetic tape,

WO 02/29577 PCT/US01/42469

10

15

20

25

30

5
CDs (compact discs) and DVDs (digital versatile discs or digital video discs), and

computer instruction signals embodied in a transmission medium (with or without a
carrier wave upon which the signals are modulated). For example, the transmission

medium may include a communications network, such as the Internet.

Database System

FIG. 1 illustrates a database system in accordance with an embodiment of the
present invention. As illustrated in FIG. 1, client 110 is coupled to database server
112. Client 110 and database server 112 may include any type of computer system,
including, but not limited to, a computer system based on a microprocessor, a
mainframe computer, a digital signal processor, a personal organizer, a device
controller, and a computational engine within an appliance.

Database server 112 is also coupled to database 118. Database 118 can
include any type of system for storing data in non-volatile storage. This includes, but
is not limited to, systems based upon magnetic, optical, and magneto-optical storage
devices, as well as storage devices based on flash memory and/or battery-backed up
memory.

Database server 112 includes key management function 114 and obfuscated
keyfile 116. Obfuscated keyfile 116 contains a copy of the data in keyfile 120.
Keyfile 120 contains keys and key identifiers for encrypting and decrypting data.
Keyfile 120 is stored on a system separate from the database system or can be stored
as an encrypted table in database 118.

User 102 accesses database 118 through client 110. User administrator 104
grants privileges to user 102 for accessing database 118. User administrator 104 is
not allowed to access the database.

Security administrator 106 manages the encryption system through database
server 112. Managing the encryption system includes, but is not limited to managing
keyfile 120 and specifying which columns of tables in database 118 are encrypted.

Database administrator 108, manages the database system by performing

services such as data backup, data recovery, storage allocation, and the like.

WO 02/29577 PCT/US01/42469

10

15

20

25

30

6
Within the database system, user administrator 104, security administrator

106, and database administrator 108 are distinct roles. A person selected for any one

of these roles may not be selected to perform any of the other roles.

Database Details

" FIG. 2 illustrates details of a database system in accordance with an
embodiment of the present invention. In addition to key management function 114
and obfuscated keyfile 116, database server 112 also includes, but is not limited to,
encryption function 204, decryption function 206, storing function 208, and retrieving
function 210.

Encryption function 204 uses keys from obfuscated keyfile 116 to encrypt data
202 received from client 110. Decryption function 206 uses keys from obfuscated
keyfile 116 to decrypt data 212 received from database 118. Storing function 208
stores data 212 in database 118, while retrieving function 210 retrieves data 212 from
database 118.

Database 118 includes, but is not limited to, table 218, profiles 220, and
metadata 222. Table 218 is organized with related data located in a single row that
spans columns 224, 226, 228, and 230. As illustrated in FIG. 2, the first row of table
218 contains XXX in column 224, national identifier NID in column 226, YYY in
column 228, and ZZZ in column 230. Data 212 is stored and retrieved from rows of
table 218.

Metadata 222 stores encryption parameters for table 218 in columns 240, 242,
244, and 246. The first row of metadata 222 relates to column 226 in table 218.
Column 240 identifies column 226 as encrypted. Column 242 contains the key
identifier for the key within obfuscated keyfile 116 that is used to encrypt data in
column 226. Column 244 indicates the encryption mode. In this example, data
encryption standard (DES) encryption is being used. Column 246 indicates the data
integrity mechanism to be used to detect tampering with the encrypted data. In this
example, message digest 5 (MD5) is being used. Encryption parameters are supplied

to database server 112 as parameters 216 for storing in metadata 222.

WO 02/29577 PCT/US01/42469

10

15

20

25

30

7
Profiles 220 stores encryption profiles created by security administrator 106 in

columns 232, 234, 236, and 238. The first row of profiles 220 contains a profile.
Column 232 indicates the name, 999, of the profile. Column 234 indicates the
encryption mode. In this example, the profile indicates that data encryption standard
(DES) encryption is being used. Column 236 indicates the key-length to use. This
example indicates a key-length of 56 bits. Column 238 indicates the data integrity
mechanism to be used with the profile. This example indicates that secure hash
algorithm 1 (SHA-1) is being used. Profiles are supplied to database 118 as profile
214.

Creating a Keyfile

FIG. 3 is a flowchart illustrating the process of creating keyfile 120 in
accordance with an embodiment of the present invention. The system starts when key
management function 114 receives a request from security administrator 106 to create
keyfile 120 (step 302). Key management function 114 receives the number of keys to
create from security administrator 106 (step 304). Next, key management function
114 receives the name of keyfile 120 from security administrator 106 (step 306). Key
management function 114 also receives a random key generator seed from security
administrator 106 (step 308).

Key management function 114 generates the keys and matching key identifiers
(step 310). Next, key management function 114 stores keyfile 120 (step 312). Note
that keyfile 120 may be stored in a location remote to the database system or may be
stored as an encrypted table within database 118.

Finally, key management function 114 makes an obfuscated copy of keyfile
120 and stores it as obfuscated keyfile 116 in volatile memory of database server 112
(step 314).

Creating a Profile

FIG. 4 is a flowchart illustrating the process of creating an encryption profile
in accordance with an embodiment of the present invention. The system starts when

key management function 114 receives a request from security administrator 106 to

WO 02/29577 PCT/US01/42469

10

15

20

25

30

8
create an encryption profile (step 402). Key management function 114 receives the

name of the profile to create from security administrator 106 (step 404). Next, key
management function 114 receives the encryption algorithm to associate with the
profile (step 406). Key management function 114 then receives the key-length to
associate with the profile (step 408). Next, key management function 114 receives
the type of data integrity to associate with the profile (step 410). Key management
function 114 creates the profile (step 412). Finally, key management function 114
stores the profile, consisting of the profile name, encryption mode, key-length, and
integrity type in columns 232, 234, 236, and 238, respectively, in the next available
row of profiles 220 (step 414).

Establishing an Encrypted Column

FIG. 5 is a flowchart illustrating the process of establishing a column in the
database as an encrypted column in accordance with an embodiment of the present
invention. The system starts when database server 112 receives a request to encrypt a
column, say column 226, of table 218 in database 118 (step 502). Database server
112 first determines how security administrator 106 specified the encryption
parameters (step 504).

If the encryption parameters are supplied by using a profile, database server
112 retrieves the profile 214 from profiles 220 in database 118 (step 506). After
retrieving the encryption parameters form profile 214 or if the parameters were
supplied in the request at step 504, database server 112 determines if the column
already contains data (step 508).

If the column already contains data in step 508, database server 112 inspects
metadata 222 to determine if the data in the column was previously encrypted (step
510). If the data in the column was previously encrypted in step 510, retrieving
function 210 retrieves the cipher-text data from table 218 (step 512). Next,
decryption function 206 decrypts the data using the previous key obtained from
metadata 222 (step 514).

If the data is not encrypted at step 510, retrieving function 210 retrieves the
clear-text data from table 218 (step 516). When the clear-text is available after step

WO 02/29577 PCT/US01/42469

10

15

20

25

30

9
514, or step 516, encryption function 204 encrypts the data (step 518). Next, storing

function 208 stores the cipher-text data in table 218 (step 520).
If the column does not contain data at step 508 or after the cipher-text data is
stored in step 520, database server 112 stores the encryption pareimeters for the

column in metadata 222 (step 522).

Storing Data in the Database

FIG. 6 is a flowchart illustrating the process of storing data in database 118 in
accordance with an embodiment of the present invention. The system starts when
database server 112 receives a request to store data 202 from client 110 (step 602).
Database server 112 examines metadata 222 to determine if the column where the
data will be stored is encrypted (step 604). If the column is encrypted (step 606),
database server 112 retrieves the encryption parameters for the column from metadata
222 (step 608). Iiatabase server 112 then retrieves the encryption key related to the
key identifier (KID) from obfuscated keyfile 116 (step 609). Next, encryption
function 204 encrypts the data (step 610). After the data is encrypted in step 610 or if
the column is not encrypted at step 606, storing function 208 stores the data in table
218 (step 612).

Retrieving Data from the Database

FIG. 7 is a flowchart illustrating the process of retrieving data from database
118 in accordance with an embodiment of the present invention. The system starts
when database server 112 receives a request from client 110 to retrieve data from
database 118 (step 702). Retrieving function 210 retrieves the data from table 218 in
database 118 (step 704). Next, database server 112 determines if the request is from
an authorized user (step 709).

If the request is from an authorized user at step 709, database server 112
examines metadata 222 to determine if the column related to the data is encrypted
(step 708). If database server 112 determines that the data is encrypted in step 708,

database server 112 retrieves the encryption parameters from metadata 222 (step 710).

WO 02/29577 PCT/US01/42469

10

15

10
Database server uses the key identifier (KID) to retrieve the decryption key from

obfuscated keyfile 116.

Next, decryption function 206 decrypts the data (step 712). After the data is
decrypted in step 712 or if the data was determined to not be encrypted in step 708,
database server 112 returns the data to client 110 (step 714). If the request is not from
an authorized user at step 709, the data is not returned to the client. Specifically, the
database administrator, the security administrator, and the user administrator are not
authorized users and, therefore, are prevented from decrypting and receiving

encrypted data stored within the database.

The foregoing descriptions of embodiments of the invention have been
presented for purposes of illustration and description only. They are not intended to
be exhaustive or to limit the present invention to the forms disclosed. Accordingly,
many modifications and variations will be apparent to practitioners skilled in the art.
Additjonally, the above disclosure is not intended to limit the present invention. The

scope of the present invention is defined by the appended claims.

WO 02/29577 PCT/US01/42469

10

15

20

25

30

11
What Is Claimed Is:

L. A method for managing encryption within a database system that is
managed by a security administrator, wherein encryption is performed automatically
and transparently to a user of the database system, wherein users of the database
system are managed by a user administrator, the method comprising:

receiving a request to store data in a column of the database system, wherein
the column is designated as an encrypted column;

in response to receiving the request, automatically encrypting data using an
encryption function, wherein the encryption function uses a key stored in a keyfile
managed by the security administrator; and

storing data in the database system using a storage function of the database

system.

2. The method of claim 1, further comprising:

receiving a request to retrieve data from the encrypted column of the database
system,;

if the request to retrieve data is received from the database administrator,
preventing the database administrator from decrypting encrypted data;

if the request to retrieve data is received from the security administrator,
preventing the security administrator from decrypting encrypted data; and

if the request to retrieve data is from an authorized user of the database

system, allowing the authorized user to decrypt encrypted data.

3. The method of claim 1, wherein the security administrator selects one
of, data encryption standard (DES) and triple DES as a mode of encryption for the

column.

4. The method of claim 1, wherein the security administrator, the

database administrator, and the user administrator are distinct roles, and wherein a

WO 02/29577 PCT/US01/42469

10

15

20

25

30

12
person selected for one of these roles is not allowed to be selected for another of these
roles.
5. The method of claim 1, wherein managing the keyfile includes, but is

not limited to:
creating the keyfile;
establishing a plurality of keys to be stored in the keyfile;
establishing a relationship between a key identifier and the key stored in the
keyfile;
storing the keyfile in one of,
an encrypted file in the database system, and
a location separate from the database system; and
moving an obfuscated copy of the keyfile to a volatile memory within a server

associated with the database system.

6. The method of claim 1, wherein upon receiving a request from the
security administrator specifying the column to be encrypted, if the column currently
contains data, the method further comprises:

decrypting the column using an old key if the column was previously
encrypted; and

encrypting the column using a new key.

7. The method of claim 5, wherein the key identifier associated with the
encrypted column is stored as metadata associated with a table containing the

encrypted column within the database system.

8. The method of claim 5, further comprising establishing encryption
parameters for the encrypted column, wherein the encryption parameters include
encryption mode, key length, and integrity type by:

entering encryption parameters for the encrypted column manually; and

WO 02/29577 PCT/US01/42469

13
recovering encryption parameters for the encrypted column from a profile

table in the database system.

9. A computer-readable storage medium storing instructions that when
5 executed by a computer causes the computer to perform a method for managing
encryption within a database system that is managed by a security administrator,
wherein encryption is performed automatically and transparently to a user of the
database system, wherein users of the database system are managed by a user
administrator, the method comprising:
10 receiving a request to store data in a column of the database system, wherein
the column is designated as an encrypted column;
in response to receiving the request, automatically encrypting data using an
encryption function, wherein the encryption function uses a key stored in a keyfile
managed by the security administrator; and
15 storing data in the database system using a storage function of the database

system.

10. The computer-readable storage medium of claim 9, the method
further comprises:
20 receiving a request to retrieve data from the encrypted column of the database
system;
if the request to retrieve data is received from the database administrator,
preventing the database administrator from decrypting encrypted data;
if the request to retrieve data is received from the security administrator,
25 preventing the security administrator from decrypting encrypted data; and
if the request to retrieve data is from an authorized user of the database

system, allowing the authorized user to decrypt encrypted data.

11. The computer-readable storage medium of claim 9, wherein the
30 security administrator selects one of, data encryption standard (DES) and triple DES

as a mode of encryption for the column.

WO 02/29577 PCT/US01/42469

10

15

20

25

30

14

12. The computer-readable storage medium of claim 9, wherein the
security administrator, the database administrator, and the user administrator are
distinct roles, and wherein a person selected for one of these roles is not allowed to be

selected for another of these roles.

13. The computer-readable storage medium of claim 9, wherein managing
the keyfile includes, but is not limited to:
creating the keyfile;
establishing a plurality of keys to be stored in the keyfile;
establishing a relationship between a key identifier and the key stored in the
keyfile;
storing the keyfile in one of,
an encrypted file in the database system, and
a location separate from the database system; and
moving an obfuscated copy of the keyfile to a volatile memory within a server

associated with the database system.

14. The computer-readable storage medium of claim 9, wherein upon
receiving a request from the security administrator specifying the column to be
encrypted, if the column currently contains data, the method further comprises:

decrypting the column using an old key if the column was previously
encrypted; and

encrypting the column using a new key.

15. The computer-readable storage medium of claim 13, wherein the key
identifier associated with the encrypted column is stored as metadata associated with a

table containing the encrypted column within the database system.

16. The computer-readable storage medium of claim 13, wherein the

method further comprises establishing encryption parameters for the encrypted

WO 02/29577 PCT/US01/42469

10

15

20

25

30

15
column, wherein the encryption parameters include encryption mode, key length, and

integrity type by:
entering encryption parameters for the encrypted column manually; and
recovering encryption parameters for the encrypted column from a profile

table in the database system.

17. An apparatus that facilitates managing encryption within a database
system that is managed by a security administrator, wherein encryption is performed
automatically and transparently to a user of the database system, wherein users of the
database system are managed by a user administrator, comprising:

a receiving mechanism that is configured to receive a request to store data in a
column of the database system, wherein the column is designated as an encrypted
column;

an encrypting mechanism that is configured to encrypt data using an
encryption function, wherein the encryption function uses a key stored in a keyfile
managed by the security administrator; and

a storing mechanism that is configured to store data in the database system

using a storage function of the database system.

18. The apparatus of claim 17, further comprising:

the receiving mechanism that is further configured to receive a request to
retrieve data from the encrypted column of the database system;

an access mechanism that is configured to prevent the database administrator
and the security administrator from decrypting encrypted data; and

wherein the access mechanism is configured to allow an authorized user of

the database system to decrypt encrypted data.

19. The apparatus of claim 17, further comprising a selection mechanism
that is configured to select one of, data encryption standard (DES) and triple DES as a

mode of encryption for the column.

WO 02/29577 PCT/US01/42469

10

15

20

25

30

16
20. The apparatus of claim 17, wherein the security administrator, the

database administrator, and the user administrator are distinct roles, and wherein a
person selected for one of these roles is not allowed to be selected for another of these

roles.

21. The apparatus of claim 17, further comprising:
a creating mechanism that is configured to create the keyfile;
an establishing mechanism that is configured to establish a plurality of keys to
be stored in the keyfile;
wherein the establishing mechanism is further configured to establish a
relationship between a key identifier and the key stored in the keyfile;
a storing mechanism that is configured to store the keyfile in one of,
an encrypted file in the database system, and
a location separate from the database system; and
a moving mechanism that is configured to move an obfuscated copy of the

keyfile to a volatile memory within a server associated with the database system.

22. The apparatus of claim 17, further comprising:

a decrypting mechanism that is configured to decrypt the column using a
previous key if the column was previously encrypted; and

wherein the encrypting mechanism is further configured to encrypt the column

using a new key.

23. The apparatus of claim 21, wherein the key identifier associated with
the encrypted column is stored as metadata associated with a table containing the

encrypted column within the database system.

24. The apparatus of claim 21, wherein the establishing mechanism is
further configured to establish encryption parameters for the encrypted column,
wherein encryption parameters include encryption mode, key length, and integrity

type, and wherein the establishing mechanism includes:

WO 02/29577 PCT/US01/42469

17
an entering mechanism that is configured to enter encryption parameters for

the encrypted column manually; and
a recovering mechanism that is configured to recover encryption parameters

for the encrypted column from a profile table in the database system.

WO 02/29577

USER

ADMINISTRATOR 104°.

1/6

A
SECURITY / V-
ADMINISTRATOR 106

DATABASE SERVER 112

PCT/US01/42469

DATABASE
ADMINISTRATOR 108

®

KEY MANAGEMENT
..... CLIENT 110 FUNCTION 114
OBFUSCATED
USER 102 KEYFILE 116
/
_ >/
KEVFILE 120 DATABASE 118
224 | 226 [228 [230
DATABASE SERVER 112 |—212 xxx| N [yyy | zzz
KEY MANAGEMENT
FUNCTION 114
OBFUSCATED >
KEYFILE 116 TABLE 218
ENCRYPTION 232 2341236 [238
CLIENT 110 292 FUNCTION 204 214 999 | DES| 56 | SH1
DECRYPTION
FUNCTION 206
STORING -
FUNCTION 208 PROFILES 220
RETRIEVING 240 [242 [244 [246
FUNCTION 210 216 o5 T Toss e
METADATA 222

FIG.

2

DATABASE 118

WO 02/29577

2/6

START

RECEIVE REQUEST TO CREATE KEYFILE
302

RECEIVE NUMBER OF KEYS TO CREATE
304

RECEIVE NAME OF KEYFILE
306

RECEIVE RANDOM KEY GENERATOR SEED
308

!

GENERATE KEYS AND KEY IDENTIFIERS
310

STORE KEYFILE
312

MOVE OBFUSCATED KEYFILE TO SERVER
314

FIG. 3

PCT/US01/42469

WO 02/29577

3/6

START

RECEIVE REQUEST TO CREATE A PROFILE
402

RECEIVE NAME OF PROFILE TO CREATE
404

RECEIVE ALGORITHM TO USE
406

1

RECEIVE KEY LENGTH TO USE
408

RECEIVE INTEGRITY TO USE
410

CREATE PROFILE
412

STORE PROFILE IN PROFILE TABLE
414

FIG. 4

PCT/US01/42469

WO 02/29577 PCT/US01/42469
4/6

START

RECEIVE REQUEST TO ENCRYPT A COLUMN
502

HOW ARE
PARAMETERS
SPECIFIED?
504

BY PROFILE

y

RETRIEVE PARAMETERS FROM PROFILE

IN REQUEST 506

DOES
COLUMN CONTAIN
DATA?
508

IS DATA

ALREADY YES
ENCRYPTED?
510

NO

h

RETRIEVE CLEAR-TEXT DATA I RETRIEVE CIPHER-TEXT DATA
516 512
- T

ENCRYPT DATA
518

DECRYPT DATA
514

STORE CIPHER-TEXT DATA
520

>
STORE PARAMETERS IN METADATA |

522

END

FIG. 5

WO 02/29577 PCT/US01/42469
5/6
START
RECEIVE CLEAR-TEXT FROM CLIENT
602
EXAMINE METADATA FOR COLUMN D
604
IS
COLUMN YES
ENCRYPTED? 1
606 RETRIEVE ENCRYPTION PARAMETERS
608
NO 1 N
RETRIEVE ENCRYPTION KEY

609

ENCRYPT THE DATA
610

STORE DATA IN DATABASE
612

FIG. 6

WO 02/29577

6/6

(START ’

RECEIVE REQUEST FOR DATA FROM CLIENT
702

704

L

EXAMINE METADATA FOR COLUMN ID
708

RETRIEVE THE DATA I

IS

COLUMN YES

ENCRYPTED?
708

PCT/US01/42469

REQUEST
NO FROM AUTHORIZED
USER?
709
RETRIEVE ENCRYPTION PARAMETERS
710
RETRIEVE THE DECRYPTION KEY
711
DECRYPT THE DATA
712
.
RETURN DATA TO CLIENT
714
Cnses—
END

FIG. 7

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

