US 20020073043A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2002/0073043 A1l

Herman et al.

(43) Pub. Date: Jun. 13, 2002

(54

(76)

@D
(22

(63)

G
(52)

SMART ELECTRONIC RECEIPT SYSTEM

Inventors: Gary Herman, San Francisco, CA
(US); Theodore Charles Goldstein,
Palo Alto, CA (US); Ronald G.
Martinez, San Francisco, CA (US)

Correspondence Address:
GLENN PATENT GROUP
3475 EDISON WAY

SUITE L

MENLO PARK, CA 94025 (US)

Appl. No.: 10/006,476

Filed: Dec. 6, 2001

Related U.S. Application Data
Continuation of application No. 09/467,545, filed on
Dec. 10, 1999, now patented, which is a non-provi-
sional of provisional application No. 60/111,988, filed
on Dec. 12, 1998.

Publication Classification

Int. CL7 oo HO04L 9/00, HO4K 1/00;
GO6F 17/60
US. Clo e 705/64

20
D L

57 ABSTRACT

A smart electronic receipt system that provides intelligent
receipts, called Smart Receipts, that electronically document
a transaction between two parties and maintains a persistent
connection between the two parties following a successful
online transaction. A Trusted Agent on the Buyer’s client
system creates an order record which is stored in a database
on a Trusted Agent Server and starts the transaction process
with the merchant. A Smart Receipt is delivered by a Smart
Receipt Agent over a secure connection from the merchant
to the Trusted Agent Server upon successtful completion of
a purchase and reflects the details of the transaction. It is
stored in a secure database on the Trusted Agent Server and
is made available to the Buyer (user) through a Trusted
Agent located on his machine. The Trusted Agent Server
compares the order record Limited Edition Digital Objects
(LEDOs) stored in database with the Smart Receipt’s LEDO
to find the corresponding order record. The Smart Receipt
provides the customer with detailed information about an
online purchase in a standardized format. Hyperlinks
embedded in the Smart Receipt enable the customer to
access customer service and order status. The merchant may
also embed additional services within the Smart Receipt,
including special offers for future purchases. Offers pro-
vided in a Smart Receipt can be personalized to a user’s
preferences which are stored on the Trusted Agent Server.
Each Smart Receipt is comprised of a chain of LEDOs with
each LEDO object having a unique owner. A Smart Receipt
is a dynamic entity and is continuously updated until the
Buyer deletes it from the Trusted Agent Server.

Database Transactor The
Server Internet
0 60
40 50
7
Transactor
Broker Peer Trust Game Server
Session Owner Relationship Keeper of
(Trusted 3rd party) Game Rules

Internet

The

30

Patent Application Publication Jun. 13,2002 Sheet 1 of 20 US 2002/0073043 A1

S T

Database Transactor
" Server

—

The
Internet

60

40\ /”50
) 7
Transactor
Broker Peer Trust Game Server
Session Owner Relationship Keeper of
(Trusted 3rd party) Game Rules

The
Internet

End-users
30

L-c——————————..—n-——l—-n»———_—-——d

FIG. 1

Patent Application Publication Jun. 13,2002 Sheet 2 of 20 US 2002/0073043 A1

Transistor Servers,
& Databases

Broker
40

Transactor—enabled
Vendors (web sites)

The
Internet

60

Consumer
End—users

30

FIG. 2

Patent Application Publication

104 \

106 "\

STEP 3. Consumer decides fo /

register as Transactor user.

108
/ﬁ

STEP 4. Consumer fills out|
reqistration form including Charge
Account and Bank Account info.

/r710

STEP 5. Registration is submilled
to Tronsactor Server from site.

/—712

STEP 6. Transactor Server creates
new account and issues private deta:

User key, password, etc.
to Consumer.

[114

STEP 7. Consumer receives and

stores keys and doto. Downloads or f—

receives client software in mail,

118
r

STEP 8. Consumer is already
a Transactor user.

Jun. 13,2002 Sheet 3 of 20 US 2002/0073043 Al
STEP 1. Consumer (35) logs
onto Internet
102
@x
The
Internet
STEP 2. Consumer logs onto Transactor—enabled
service provider or directly on to ¢ Transacltor Server.
/—LZB

STEP 14. Consumer leaves site.

116
s

STEP 9. Consumer logs into the
client-side Transactor Object

Monager (TOM) as a valid user.

/—120

STEP 10. Consumer decides to

make a purchase. See FIG. 4

122

STEP 11. Consumer decides to check

124~

his Transactor account. See £16. 5

STEP 12. Consumer decides to

post an object thet he created
for sale. See F1G. 6

126 ~JSTEP 15. Consumer decides to post

a previously acquired object

FIG. 3

for resale. See FIG. 7

Patent Application Publication

202

STEP 1. Consumer (35) decides
to make a purchase.

L

STEP 2. Consumer’s TOM sends
intent to purchase (and appropriate
IDs) to vendor’s web site.

Jun. 13, 2002 Sheet 4 of 20

JZZO

1 /206

STEP 3. Vendor’s Transactor Broker
Moduele creates Transaction Record
that incorporates necessary vendor
IDs, product info and vendor
signature with Consumer’s info.

{208

STEP 4. Vendor sends Transaction
Record to Consumer’s TOM
for signature.

{20

STEP 5. Consumer’s TOM confirms
vendor’s signature and

Transcoction Record contents.

N

STEP 6. Consumer's TOM signs
the record and forwards it
to the Transactor Server

] /214

STEP 7. Consumer’s TOM also
notifies vendor’s server that
transaction has been signed
and recorded has been forwarded

to the Transactor Server

i 216

STEP 8. Transactor Server
validates Transaction Record
and contents, then issues

OK or rejection.

It

STEP 9b. Transactor Server changes
object’s ownership in database.

It also determines all splits and fees
for all accounts involved-buyer,
reseller, maker, service, efc.

Transactions for each account
are logged and new account
balances are computed.

i 222

STEP 10. Transactor Server sends
purchase OK to vendor’s server.

i 224

STEP 11. Vendor’s server receives
purchase OK, and repackages the

existing unit with Consumer’s ID.

i 226

STEP 12. Vendor’s server sends
object to Consumer or sends

notification of where to download
the object via FTP. Sale is
jogged as complete.

}

STEP 13. Consumer’s TOM server
receives notice of the sale and

downloads the object. A Transactor
Server will verify the ownership of the

object whenever it is used online.

Loog

validation is OK

218

STEP 9a. The operation is
not performed and the user
is notified of the failure.

If validation

is not OK

FIG. 4

US 2002/0073043 A1

Patent Application Publication Jun. 13,2002 Sheet 5 of 20 US 2002/0073043 A1

2
[30

STEP 1. Consumer (35) decides
to check his Transactor account.
! /304

STEP 2. Consumer’s TOM sends
intent to “"purchase" account info
(and appropriate 1Ds) to Transactor

Server directly or via server. The
TOM may operate independently or
through other Transactor-enabled client software.

! 306

STEP 3. Transactor Server sends
validation challenge to
Consumer’s TOM.

{308

STEP 4. Consumer’s TOM responds
to validation challenge.

i 310 If vaildation is not OK
STEP 5. Transactor Server STEP 6a. The operation is not
Freceives response. performed and the user is
31~ Tf validation is OK notified of the failure.
STEP 6b. Transactor Server allows \—312

Java applets (or other client software)

to "download" Consumer’s

account info (not persistent).
! 316

STEP 7. Consumer’s TOM downloads,
decrypts, and displays account

info using applets (or other
client software) imbedded in web
page (part of Broker Module).

{ 318
STEP 8. Consumer reviews account
info (and perhaps other client
communications from Transactor
Server). Consumer logs off or

proceeds to other Transactor activity.

FIG. 5

Patent Application Publication

Jun. 13, 2002 Sheet 6 of 20

STEP 1. Registered Transactor
User (35) decides to post an
Jobject that he created for sale

402 i 7404

STEP 2. User logs into the client—
side Transactor Object Manager
(TOM) to "package" his object.

] 406

STEP 3. The TOM enters user 1D (AIA1AT)
into the object package fields.

The User inputs data regarding price,
revenue model, number available, etc.

{408

STEP 4. The User logs into @ Transactlor
Server directly or a Transactor—enables

service provider, and is validated
by a Transactor Server.

i 410

STEP 5. The User uploads the packaged
object and fields with instructions for the

Transactor Server 1o create a new product.

! 412

STEP 6. The Trasactor Server verifies
that it received the data correctle, then
proceeds to create a product, giving

it a unique produce ID (BIB1B1).

| 414

STEP 7. The Transactor Server sends

the unique product 1D, and other product-
related information, back to the user.

{416

STEP 8. When copies of the product are
sald, the Transactor Server will verify
buyer’s {37) Transactor User status and
the existence of availoble unsold units
for the buyer-designated product 1D.

US 2002/0073043 A1

STEP 9b. The Transactor Server creates a
new unique unit ID and ossigns ownership
of that unit to the buyer in its
internal ownership database.

420 7 {2

STEP 10. The Transactor Server then
packages the unit ID with ownership
information and the digital product itself,
encrypts protions of the resulting data,
them sends the result to the user or
informs the user where the packaged
object may be downloaded.

|

STEP 11. The Transactor Server will
also update all relevant accounts,

compute and distribute splits, etc.

\ 24

418

STEP 9a. The operation is not performed
and the user is notified of the
failure. There is no sale.

If validation of User ID or product ID is OK

{ If vafidation of User ID or product ID is not OK

FIG. 6

Patent Application Publication

/*502

Jun. 13, 2002 Sheet 7 of 20

/574

STEP 1. Consumer decides to post a
previously acquired object for resale.

504~

STEP 6b. Transactor Server includes
object posting in log of objects
currently for sale “"classifieds."

STEP 2. Using the TOM, Consumer
indicates asking price for object
and sends posting (and appropriate
IDs including TOM signatlure) to
Transactor Server.

506~ |

STEP 3. Tansactor Server sends
validation challenge lo Consumer's TOM.

508~ |

STEP 4. Consumer’s TOM responds
to validation challenge.

&

STEP 5. Transactor Server

The object, or pointer to the
original object, is stored at a
Broker Server for resale.

i 516

STEP 7. Another valid Transactor user,
Consumer (36), logs onto @ Transactor
enabled web site and activates her
TOM to search for an object to purchase.

{

STEP 8. Consumer (36) searches the

Transactor "classifieds” by object
name, universe, price, etc. to

receives response.

If validation k5m

is not OK

ISTEP 6a. The operation is not
performed and the user is
notified of the failure.

MS%Z

5228—

If validation
is OK

find the desired object.

US 2002/0073043 A1

\Lﬁﬁ?
/920

STEP 9. Consumer (36) locates the

object posted by Consumer (35)
and decides to make a purchase.

i

STEP 10. Consumer’s (36) TOM
sends intent to purchase (and
appropriate IDs) to Broker Server
via Transactor—enabled web site.

#

STEP 11. Purchase process continues
as in FIG. 4, with Broker Server
acting as vendor.

\524

FIG.7

Patent Application Publication Jun. 13,2002 Sheet 8 of 20 US 2002/0073043 A1

602 604
i Tt —_\- ——————————————— 1 H L i
! Unit ID . Owner 1D !
i*Assigned to unit during Object | leAssigned to user during User |
| creation. |1 Registration. |
S-Incorporoted in LEDO during | jelncorporated in LEDO during E
Liniﬁcl Object Purchase. i | Object Purchase. }
__________ —— H i -
—‘l ’r
\ !
\ I
‘I II
602 604
Unit ID | Owner ID
Payload
60 \\\
0 \
\
LEDO \
- . - . 5 606
("Limited Edition” Digital Object) o L .
; Payload |
; Data which defines object i
{ (textures, data pointers, |
; Al, object attributes, etc.) i

FIG. 8

Patent Application Publication

/35

i

User ID: (A1A1A1)

Jun. 13, 2002 Sheet 9 of 20

A Digital Object
(o file containing

binary data)

e
S,
¥/

US 2002/0073043 A1
710
/_
Transactor
Package

1)

740~

700/ 720 72
PRODUCT ID| B1B1B1 |

Transactor SELLER ID[_ AATAT 1 7#4
Server OWNER D] AniAT H— 726
PRICE[” $5.00 - /%

MAKER ID| Aawnia1 730
REVENUE MODEL [STRATGHT SALEH—"H
TOTAL AVAILABLE[1000 H— 7%

FTP [WWW_TRANSACTOR.COM]

750 \\
Packaged Digital 736
Object
Product ID (B1B1B1) ‘
User (37) sends
intent to bu
760\ Y /37
PRODUCT ID| BiBIB] i
SELLER ID| A1AIAI
OWNER 1D cicict
N1 S User ID: (CICICT)
770\ User (37) receives

New Unit of

oy

BUYT

Product ID (DIDIDY)

Digital
Object

packaged object with
his Owner ID (CICICY)

FIG. 9

Patent Application Publication Jun. 13,2002 Sheet 10 of 20 US 2002/0073043 Al

1. Customer visits any
Merchant website that
contains an HIML form

[

2. Customer invokes the 3. Customer types name
Trusted Agent service & password and submits
using a URL request to Trusted
9 Agent server

1

4. Trusted Agent Appears

6. HTML form is sent 9. Customer selects a
up from browsing card and the form
using Normal HTTP is filled out

FIG. 10

Patent Application Publication Jun. 13,2002 Sheet 11 of 20 US 2002/0073043 Al

1029 1023
0 1 \ _ [1024

Business 1 Business 2 Business 3

1021 N

Trust Agent Server

at bank server

Client at client browser

\1020
FIG. 11

1022 1\

Business 1

1021 N\

Trust Agent Server

S\ at bank server
Step 3 Step 1\‘

/—Step 2

Client at client browser

\-1020
FIG. 12

Patent Application Publication Jun. 13,2002 Sheet 12 of 20 US 2002/0073043 Al

1023 ‘\

Business 2

Step Z\t
/’1021

Trust Agent Server

at bank server

Step 1\1

Client at client browser

1020

FIG. 13

021~ Trust Agent Server at bank server

Credit | Credit | Credit |
Card Card 2 Card 3
~N N
I Warranty l Receipt Contract

1020
r

il

Client at client browser

FIG. 14

Patent Application Publication Jun. 13,2002 Sheet 13 of 20 US 2002/0073043 Al

1. Customer visits a Trusted
Agent Service Provider

running the Trust Agent Server,

such as bank.com using a
web browser

2. Customer selects an account
name & password and fills in
preference info & one or more
bank card accounts and other
instruments

2a. LEDOs are populated
into the Trust Agent
Server database

3. Customer is prompted to
bookmark the URL of their Trust
Agent Service Provider as
a button

FIG. 15

US 2002/0073043 A1

Jun. 13, 2002 Sheet 14 of 20

Patent Application Publication

94 OId

jonsn sp 8b6od qam
JUDY2.JoU §53004d JUDYDIBN "]

abod qom
1UDYoJau 8y} syluqgns Jasn *g)

abod gom
1no |1} yusby paysni] ‘gl

abod jusby psysni] 8y} woly
uoijpsado 8y} $}99]9S Jasn “y|

JoA1ag usby psysni] Aq pajoieush si
wpibosq yusby paysniy meu vy °ij

afnd QoM JubyDJaw oy} SjusunJ}sul
yual|d 8y} Aq panisass up.boud
juebp paysniy pajpJoush oyl "7

1usby paysnij Jdisy}

Ul U0J}28|9S %00G S83.PpPD JO
U0l }03]9S P4DD }1pald SD Yons
suoi}psado Jo 388 D 935 Jasp "¢

abpd ay} sezjoup
Janiag Jusby paysnal Ol

Janles jusby paysni|

ay} 0} papoojdn si abod
QoM JUDYoJsW By} ‘plomssod
pup awWpu oy} yyim buoy '6

JaAaes juaby pajsni) 0}
abnd qam sy} syiugns Jesn ‘g

19SK0Jq §,40unsuod ay) u abod
qoM §,]UDYo.8j 8y} S}03dsu]
wpibosd yusby peysni) 'g

piomssod pup awpu jusby
paysni] J1ay} ul sadfy Jesp "L

woibosg yusby paisni) 8y}
spoo| umop Jaalag jusby peysniy *G

140 buisn 821alas juaby
PaSNi] 8y} SAOAUL I9Sf) ¥

198N pus 0}
sbpd D SPDO|UMOP JUDYIJBHN ‘¢

JEETROL
U0ISSBS D S}ONPUOD JUDUDIBY T

8115 QoA JUDYDJAW D
0] oM 8y} SasMOIq Jas) ‘|

Jsalag jusby
paisni] % JUDYIIaN

yueby paysnd|

18SM0Jg S,49SN

Patent Application Publication Jun. 13,2002 Sheet 15 of 20 US 2002/0073043 Al

7100“\
RUN BROWSER
WITH CRYPTOGRAPHY (170
ENABLED /
10 IDENTIFY THE
—— FOR& CERTIFICATE LOCATION
CERTIFICATE /1780
Vel RUN THE
AND RETRIEVE
THE CERTIFICATE 1190~
1130 THE SIGNING TOOL
DOWNLOAD OBJECT CREATES THE TRUSTED
SIGNING TOOL AGENT FILE TO BE STORED
40 ON WEB SERVER
~

PLACE DOCUMENT TO
BE SIGNED IN "TRUSTED-
AGENTDIR"; SIGN
THE DOCUMENTS

1150
Vs

NAME THE FILE WHERE
SIGNATURES ARE STORED

/1160

ASSIGN ID TO
JAVASCRIPT CODE

FIG. 17

Patent Application Publication

1200
r

CUSTOMER REQUESTS
FORM FROM MERCHANT

1210
[

FORM IS DOWNLOADED
TO CUSTOMER

/-1220

Jun. 13, 2002 Sheet 16 of 20

MERCHANT SERVER SENDS
REQUESTS FOR CUSTOMER
REGISTRATION TO
TRUSTED AGENT SERVER

[1230

TRUSTED AGENT SERVER

REGISTERS/NOTIFIES
CUSTOMER

1240
r

CUSTOMER COMPLETES
AND UPLOADS FORM
TO MERCHANT

FIG. 18

US 2002/0073043 A1

US 2002/0073043 A1

Jun. 13, 2002 Sheet 17 of 20

Patent Application Publication

6L "O0Id

806}

L06} r06}
\ [
/ el T
\\Mmoo_Boo) 2SDAD}D(]
10}0DSUDJ | s, JUDYOIB
IS | [oue 84noss yusby JEYNELR
wi oM | | 40 ¥sod sdpy || jdisosy qeMm
INL [~ }4PWS JUDYDJON
"~ 306/ 7
8}1G J0}ODSUDI | 5061~ 811G JUDUOIBIN
/.NQ@ /:8@

Patent Application Publication Jun. 13,2002 Sheet 18 of 20 US 2002/0073043 Al

2002
/_
Merchant
Server
2007\ Smart Receipt
Buyer Agent
Site N\-2003
Trusted Agent 2005
2004_/ Trusted Agent
Server
2006
DB
FIG. 20
2701‘\
Receipt
ecelp /2104
2102 ~
Offers CustO{ner
Service
Warranties Follow-on
/ Preferences
2103 L2105

FIG. 21

Patent Application Publication Jun. 13,2002 Sheet 19 of 20 US 2002/0073043 Al

Smart Receipt | 2201
2202

Order

Simple 2203
Receipt

Smart 2204

Receipt

22056
Offers —

Customer | —2206
Service

FIG. 22

2302
r

/12303

2301ﬂ\
Trusted
Party X Agent |- Party Y

Server

FIG. 23

Patent Application Publication Jun. 13,2002 Sheet 20 of 20

Smart Receipt

2402
Negotiate?

l
Agree 2403
$300 2404
$7tOO 2405
$E! 0 _— 2406
2404

Accept a

US 2002/0073043 A1

2401

FIG. 24

US 2002/0073043 Al

SMART ELECTRONIC RECEIPT SYSTEM

[0001] This application is a continuation of U.S. Ser. No.
09/467,545 filed Dec. 10, 1999.

BACKGROUND OF THE INVENTION
[0002] 1. Technical Field

[0003] The invention relates to electronic commerce in a
computer environment. More particularly, the invention
relates to the creation of intelligent receipts for electronic
commerce and impartial intermediation for electronic nego-
tiations in a computer environment.

[0004] 2. Description Of The Prior Art

[0005] Electronic commerce systems have grown dramati-
cally in popularity in a very short time. More and more
consumers are switching from shopping in the local shop-
ping malls to shopping online across the Internet.

[0006] The current models for electronic commerce deal
mostly with secure transactions at the purchase stage. Digi-
tal certificates and Secure Socket Layers (SSL) are used to
ensure that the buyer’s transaction is secure from outside
eyes.

[0007] However, the receipt stage of the transaction where
the buyer receives confirmation of a purchase is still rather
primitive. The current approaches to issuing a receipt for a
transaction are simply to send an email to the buyer describ-
ing the transaction details or force the buyer to print out a
transaction summary web page. These approaches do not
take advantage of the power of the Internet and the buyer’s
computer system.

[0008] Issuing a dynamic receipt to a buyer gives mer-
chants and manufacturers an opportunity to supply the buyer
with more information about their products and services,
both present and future. Further, it gives the buyer a chance
to give merchants and manufacturers valuable feedback.

[0009] 1t would be advantageous to provide a smart elec-
tronic receipt system that creates dynamic, smart receipts
that allow merchants and manufacturers to present value
added services to the buyer. It would further be advanta-
geous to provide a smart electronic receipt system that
allows merchants and manufacturers to constantly update
the smart receipt to keep the buyer up to date with current
changes and information.

SUMMARY OF THE INVENTION

[0010] The invention provides a smart electronic receipt
system. The system creates smart receipts that allow mer-
chants and manufacturers to include value added services to
the smart receipts. In addition, the invention provides a
system that allows the smart receipts to be dynamically
updated with new information from merchants and manu-
facturers.

[0011] A preferred embodiment of the invention provides
intelligent receipts, called Smart Receipts, that electroni-
cally document a transaction between two parties. Smart
Receipts maintain a persistent connection between two
parties following a successful online transaction. A Trusted
Agent on the Buyer’s client system creates an order record
which is stored in a database on a Trusted Agent Server. The
order record starts the transaction process with the merchant.

Jun. 13, 2002

[0012] A Smart Receipt is delivered by a Smart Receipt
Agent over a secure connection from the merchant to the
Trusted Agent Server upon successful completion of a
purchase. The Smart Receipt reflects the details of the
transaction. It is stored in a secure database on the Trusted
Agent Server and is made available to the Buyer (user). The
user can sort and browse his Smart Receipts through a
Trusted Agent located on his machine.

[0013] The Trusted Agent Server compares the order
record Limited Edition Digital Objects (LEDOs) stored in
database with the Smart Receipt’s LEDO to find the corre-
sponding order record. A transaction cannot be completed
without a matching order and Smart Receipt record pair.

[0014] The Smart Receipt provides the customer with
detailed information about an online purchase in a standard-
ized format. Hyperlinks embedded in the Smart Receipt
enable the customer to access customer service and order
status. The merchant may also embed additional services
within the Smart Receipt, including special offers for future
purchases. Offers provided in a Smart Receipt can be
personalized to a user’s preferences which are stored on the
Trusted Agent Server.

[0015] Each Smart Receipt is comprised of a chain of
LEDOs with each LEDO object having a unique owner.
Smart Receipts are dynamic entities and are continuously
updated until the Buyer deletes it from the Trusted Agent
Server.

[0016] The dynamic nature of Smart Receipts allow a
merchant or manufacturer to update a Smart Receipt at any
time to notify a customer of new events. A merchant can
specify that a return receipt be sent to the merchant when the
user receives the associated Smart Receipt. Merchants can
also provide post-purchase services to a customer by embed-
ding additional information within a Smart Receipt.

[0017] A further embodiment of the invention provides a
Trusted Agent Server to act as an impartial trusted interme-
diary between parties involved in a negotiation. each step of
the negotiation process is recorded as a LEDO in a Smart
Receipt. The Smart Receipt is stored on a secure database on
the Trusted Agent Server in the same manner as normal
Smart Receipts. A Trusted Agent on each party’s client
system submits a party’s offer, counter-offer, or acceptance
LEDO to the Trusted Agent Server. Each party can browse
the Smart Receipt through their Trusted Agent.

[0018] Other aspects and advantages of the invention will
become apparent from the following detailed description in
combination with the accompanying drawings, illustrating,
by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 is an overview of an embodiment of a
virtual property system according to the invention;

[0020] FIG. 2 illustrates the basic relationships among
elements of an embodiment of a virtual property system
according to the invention;

[0021] FIG. 3 illustrates a consumer login scenario used
in connection with an embodiment of a virtual property
system according to the invention;

[0022] FIG. 4 illustrates a web purchase scenario used in
connection with an embodiment of a virtual property system
according to the invention;

US 2002/0073043 Al

[0023] FIG. 5 illustrates an account checking procedure
used in connection with an embodiment of a virtual property
system according to the invention;

[0024] FIG. 6 illustrates a procedure for posting a newly
created object for sale in connection with an embodiment of
a virtual property system according to the invention;

[0025] FIG. 7 illustrates a procedure for posting a previ-
ously acquired object for resale in connection with an
embodiment of a virtual property system according to the
invention;

[0026] FIG. 8 illustrates the structure of a limited edition
digital object used in connection with an embodiment of a
virtual property system according to the invention;

[0027] FIG. 9 illustrates aspects of a procedure according
to FIG. 6;

[0028] FIG. 10 is a flow diagram showing a trusted agent
process according to the invention;

[0029] FIG. 11 is a block schematic diagram showing a
customer in communication with both a trust agent server
and various business according to the invention;

[0030] FIG. 12 is a block schematic diagram that depicts
the indirect technique according to the invention;

[0031] FIG. 13 is a block schematic diagram that depicts
the direct techniques according to the invention;

[0032] FIG. 14 is a block schematic diagram that depicts
the trusted agent storing business objects on behalf of the
customer according to the invention;

[0033] FIG. 15 is a block schematic diagram that depicts
the customer sign up process according to the invention;

[0034] FIG. 16 is a flow diagram that depicts the use of the
trusted agent by a customer during a commercial transaction
with a merchant according to the invention;

[0035] FIG. 17 is a flow diagram showing the creation of
a trusted agent according to the invention;

[0036] FIG. 18 is a flow diagram showing merchant
initiated user trusted service registration according to the
invention.

[0037] FIG. 19 is a block schematic diagram that depicts
a merchant site communicating with a trusted agent server
according to the invention;

[0038] FIG. 20 is a block schematic diagram of a buyer/
merchant transaction with a trusted agent server hosting the
smart receipt according to the invention;

[0039] FIG. 21 is a block schematic diagram of an exem-
plary smart receipt according to the invention;

[0040] FIG. 22 is a block schematic diagram of a Limited
Edition Digital Object (LEDO) chain in a smart receipt
according to the invention;

[0041] FIG. 23 is a block schematic diagram of a trusted
agent server acting as a trusted intermediary between two
parties according to the invention; and

[0042] FIG. 24 is a block schematic diagram of an exem-
plary LEDO chain in a smart receipt containing negotiation
events according to the invention.

Jun. 13, 2002

DETAILED DESCRIPTION OF THE
INVENTION

[0043] The invention is embodied in a smart electronic
receipt system in a computer environment. A system accord-
ing to the invention creates smart receipts that are capable of
presenting dynamic information to a buyer after the comple-
tion of a transaction. In addition, the invention provides a
system that allows merchants and manufacturers to make
value added services readily accessible to customers through
the smart receipts.

[0044] Overview of a Virtual Property System

[0045] A preferred embodiment of a property ownership
and transfer system according to the present invention is
illustrated in FIG. 1 and FIG. 2 and referred to herein as a
“Transactor” system. The illustrated Transactor system
involves a database 10, a Transactor server 20, end-users 30,
a Transactor broker 40, and an application service provider
(e.g., a game server) 50. End users 30 comprise end-user
computers (or “terminals”) 31, 32, and 33, and end-user
individuals 35, 36, 37, and 38.

[0046] The illustrated Transactor system may include any
number of end-users and/or end-user terminals; an addi-
tional terminal and an additional user labeled “. . .” are
included in FIG. 1 to illustrate this fact. Database 10 and
Transactor server 20 may each comprise a plurality of
databases and servers, respectively. Embodiments of the
system optionally may include any number of Transactor
brokers and application service providers with any number
of associated end users.

[0047] The application service provider may be a general
Internet service provider (e.g., AOL, CompuServe, Pacific
Bell), a game specific service provider (e.g., Mpath, Heat,
TEN), an open network market-specific service, a closed or
private network service, or any other service provided over
a computer network. For illustrative purposes only, the
below discussion emphasizes the example of a Transactor
system in which the application service provider comprises
a game server, and the end-users comprise game clients.

[0048] End users 30 interact with one another and with
game server 50 over a computer network (e.g., the Internet)
60 in a virtual world (e.g., an interactive environment
governed by a prescribed set of rules) provided by game
server 50 and supported by Transactor server 20. In this
virtual world, digital property can be owned by, used, and
transferred among end users. End users can also transfer
digital property while offline (i. e., not in communication
with the game or Transactor servers). Transactor server 20
communicates with Transactor broker 40 over the Internet
60 or, optionally, by a direct communications link.

[0049] As illustrated in FIG. 2, other optional participants
in the illustrated Transactor system include Transactor-
enabled vendors (e.g., web sites) 70, a consumer’s credit
account holder 80, and a consumer’s bank account 90.
Transactor-enabled vendors preferably are accessible via the
Internet 60, as are consumer’s credit account holder 80 and
consumer’s bank account 90. The illustrated Transactor
entities can be categorized broadly as clients and/or servers.
Some entities may act as both a client and a server at the
same time, but always as one or the other with regard to
other specific entities. For example, a game server acts as a
client to a Transactor server, but as a server to its game
clients.

US 2002/0073043 Al

[0050] The main categories of computing entities in the
overall Transactor hierarchy are:

[0051] (1) Transactor servers;
[0052] (2) Transactor clients;
[0053] (3) game servers; and

[0054] (4) game clients (who are implicitly also
Transactor clients).

[0055] 1t should be noted that these computing entities do
not necessarily map directly onto individuals, companies, or
organizations. An individual, for example, may have more
than one Transactor account. Similarly, a game company
may set up game servers with more than one Transactor
account.

[0056] 1. Transactor Servers

[0057] As described further below, Transactor servers
provide transaction and ownership authentication to their
clients, who may be other Transactor servers, game servers,
game users (which are game clients acting through a game
server) and Transactor users (which are not acting through
any game server). Transactor servers operate on Transactor
user accounts and encapsulated Transactor objects; they
need not know the details of any particular game world that
may exist.

[0058] The Transactor servers essentially define a market-
place in which safe transactions may occur, and existence
and ownership may be asserted and verified under rules (i e.,
“Transactor Laws ofNature”) defined for the Transactor
system as a whole. The primary purpose of the Transactor
system is to provide a safe marketplace for objects and
owners outside the scope of any game in which those objects
and owners might participate. If a potential game does not
require its game objects to exist outside the scope of its game
universe, then using Transactor to determine authenticity
and ownership is not necessary. It may, however, be more
convenient or easier to use Transactor services than to create
a special-purpose property ownership and transfer system
for that game.

[0059] A given Transactor server is responsible for the
objects and users defined in its own database. A Transactor
server trusts other Transactor servers for validation of all
other objects and users. It can, however, detect certain kinds
of cheating that might occur in its conversations with those
other Transactor servers.

[0060] In some embodiments, a group of Transactor serv-
ers have secure access to a shared distributed database. In
such embodiments, the group of servers appears, for most
purposes, as a single large Transactor server acting on a
single database.

[0061] 2. Transactor Users

[0062] Transactor users are users that are in direct com-
munication with a Transactor server rather than in commu-
nication through an intermediary game server. Thus, they are
limited to the core Transactor activities of creating objects,
making transactions, and authenticating ownership and
existence. All other activities are performed through a game
server.

Jun. 13, 2002

[0063] 3. Game Servers

[0064] To a Transactor server, a game server is a Trans-
actor user that performs transactions and limited types of
authentications (e.g., verify game membership). Among
themselves, however, game servers define, in a conventional
manner, a game “universe” or “virtual world” for their
clients, and operate on a set of game objects using game
rules that the game designer defines for that game. A game
universe includes all servers that run the game, the game
software’s behavior, and the rules that define possible
behavior for that game.

[0065] 4. Game Users

[0066] Game users are the participants in a game universe
that exists on one or more game servers. Preferably, most
Transactor operations on the game’s owned objects are
brokered by the game server, acting on behalf of the game
user. In such embodiments, the only time a game user
appears as a Transactor user is when object ownership must
be authenticated or changed. Even then, however, this
activity may be brokered by the game server acting within
the scope of the game universe’s possible actions.

[0067] The components of the illustrated Transactor sys-
tem, along with their implementation and use, are described
in more detail herein. Prior to such description, however,
basic operations and transactions in an embodiment of a
Transactor system are described.

[0068] Scenario Examples

[0069] This section describes various uses of a Transactor
system in the form of exemplary “scenarios,” which are
illustrated in FIGS. 3, 4, 5, 6, and 7. A scenario is an
exemplary use of Transactor technology to accomplish some
purpose for a user. A user may be a consumer, a vendor, or
any other user of the Transactor technology, including an
intermediate server program that subscribes to Intemet-
based Transactor services, for convenience, the user is
referred to consistently in these scenarios as a consumer.

[0070] The illustrated scenarios are representative
examples only. Other scenarios and their implementation
will be apparent to those of ordinary skill in the art based on
the present disclosure. The scenarios refer to the elements of
the Transactor system illustrated in FIGS. 1 and 2, along
with certain details and components described further
herein.

[0071] The Login Scenario (FIG. 3)

[0072] FIG. 3 describes a process in which a user logs on,
and optionally registers as a Transactor user, in an exemplary
embodiment of a Transactor system. As illustrated in FIG.
3, the following steps take place:

[0073] In step 1 (illustrated at 102), the consumer
(e.g., user 35) logs onto the Internet 60.

[0074] In step 2 (at 104), the consumer logs onto a
Transactor enabled service provider (or onto a Trans-
actor server).

[0075] At this point, there are several possibilities. The
consumer may decide to register as a Transactor user (step
3, at 106). Alternatively, the consumer may decide not to
register as a Transactor user and, consequently, leave the site
(step 14, at 128). Alternatively, the consumer may already be

US 2002/0073043 Al

a registered Transactor user (step 8, at 118) and have no need
to register as a Transactor user.

[0076] Assuming the consumer decides to register as a
Transactor user, the consumer fills out a registration form
(step 4, at 108), identifying his or her charge account and
bank account information. When the consumer has entered
the requested information, the information is submitted to a
Transactor server (step 5, at 110). The Transactor server
creates a new account and issues private data (e.g., user key,
password) to the consumer (step 6, at 112). The consumer
receives and stores the keys and other data, and obtains the
Transactor client software (e.g., by download or mail) (step
7, at 114).

[0077] After the consumer has become a registered Trans-
actor user (after completing step 7 or step 8), the consumer
logs into the client-side Transactor object manager (which is
described further herein and abbreviated “TOM”) as a valid
user (step 9, at 116).

[0078] After logging in as a valid user, the consumer has
a variety of options. The consumer may decide (Step 10) to
make a purchase (illustrated at 120 and in FIG. 4). The
consumer may decide (step 11) to check his Transactor
account (illustrated at 122 and in FIG. 5). The consumer
may decide (step 12) to post an object that he has created for
sale (illustrated at 124 and in FIG. 6). The consumer may
decide (step 13) to post a previously acquired object for
resale (illustrated at 126 and in FIG. 7).

[0079] The Consumer Web-Purchase Scenario (FIG. 4)

[0080] FIG. 4 describes the process in which a user makes
a simple purchase from a web sales site and uses the new
object on the network in an exemplary embodiment of a
Transactor system. As illustrated in FIG. 4, the following
steps take place:

[0081] In step 1 (at 202), a consumer (e.g., user 35)
decides to make a purchase. The consumer’s TOM sends
(step 2, at 204) signals indicating an intent to purchase,
along with the appropriate user ID and product information,
to the vendor’s web site. The vendor’s Transactor broker
module creates (step 3, at 206) a transaction record that
incorporates necessary vendor IDs, product information and
vendor signatures with consumer’s information.

[0082] The vendor then sends (step 4, at 208) a transaction
record, as described further herein, to the Consumer’s TOM
for signature. The consumer’s TOM confirms (step 5, at
210)the vendor’s signature and transaction record contents,
and signs and forwards (step 6, at 212) the transaction record
to the Transactor server. The consumer’s TOM also notifies
(step 7, at 214) the vendor’s server that the transaction has
been signed and a record has been forwarded to the Trans-
actor server.

[0083] The Transactor server then validates (step 8, at
216) the Transaction record and contents, issuing an OK
(ie., transaction is valid) or a rejection (transaction is
invalid). If the validation is not OK, the operation is not
performed and the user is so notified (step 94, at 218). If the
validation is OK, the Transactor changes (step 9b, at 220) the
object’s ownership in the relevant database and determines
all splits and fees for all accounts involved (e.g., buyer,
reseller, maker, service provider); transactions for each
account are then logged and new account balances are
computed.

Jun. 13, 2002

[0084] The Transactor server then sends (step 10, at 222)
a purchase OK to the vendor’s server, and the vendor’s
server receives (step 11, at 224) the OK and repackages the
existing unit with the consumer’s ID.

[0085] The vendor’s server then sends (step 12, at 226) the
object to the consumer or sends notification of where to
download the object via FTP. The sale is logged as complete.

[0086] Finally, the consumer’s TOM server receives (step
13, at 228) notice of the sale and downloads the object
according to the instructions received in step 12. When the
object is subsequently used online, a Transactor server will
verify the ownership of the object.

[0087] The Consumer Account-Check Scenario (FIG. 5)

[0088] FIG. 5 describes the process in which a consumer
checks his Transactor account. As illustrated in FIG. 5, the
following steps take place:

[0089] In step 1 (at 302), a consumer (e.g., user 35)
decides to check his Transactor account.

[0090] The consumer’s TOM sends (step 2, at 304) intent-
to-purchase account information (with appropriate user IDs)
to the Transactor Server, either directly or via a Transactor
enabled web site or broker server. The TOM may operate
independently or through other Transactor enabled client
software. The Transactor server then sends (step 3, at 306)
a validation challenge to the consumer’s TOM, and the
consumer’s TOM responds (step 4, at 308) to the validation
challenge. The Transactor server receives the response (step
5, at 310).

[0091] If the validation is not OK, the operation is not

performed and the user is notified of the failure (step 6a, at
312).

[0092] If the validation is OK, the Transactor server
allows (step 6D, at 314Phe client software (e.g. Java applets)
to download the consumer’s account information (not per-
sistent). The consumer’s TOM downloads (step 7, at 316),
decrypts and displays account information using applets (or
other client software) embedded in the web page (part of
broker module, described herein).

[0093] The consumer then reviews (step 8, at 318) account
information (along with other communications from the
Transactor server, if any have been received) and logs off or
proceeds to other Transactor activity.

[0094] The Sale of Created Object Scenario (FIG. 6)

[0095] FIG. 6 describes the process in which a registered
Transactor user posts an object that he created for sale. As
illustrated in FIG. 6, the following steps take place:

[0096] Instep 1 (at 402), a registered Transactor user
(e.g., user 35) decides to post an object that he has
created for sale. The user the (step 2, at 404) logs into
the TOM to “package” his object, the TOM enters
(step 3, at 406) the user ID (e.g., AIA1Al) into the
object package fields, and the user inputs data
regarding, for example, price, revenue model, and
number available.

[0097] The user logs on (step 4, at 408) to a Transactor
Server directly or a Transactor-enabled service provider, and
is validated by a Transactor Server. The user then uploads

US 2002/0073043 Al

(step 5, at 410) the packaged object and fields with instruc-
tions for the Transactor Server to create a new product.

[0098] The Transactor Server then verifies (step 6, at 412)
that it received the data correctly, and proceeds to create a
product, giving it a unique product ID (B1B1B1). The
Transactor Server then sends (step 7, at 414) the unique
product ID, and other product-related information, back to
the user.

[0099] When copies of the product are sold, the Transactor
Server will verify (step 8, at 416) buyer’s (37) Transactor
User status and the existence of available unsold units for the
buyer-designated product ID.

[0100] If the validation of user ID or product ID is not OK,
the operation is not performed and the user is so notified
(step 9, at 418).

[0101] 1If the user ID and product ID are OK (step 9b, at
420) to produce a new unit of the product, the Transactor
Server creates a new unique unit ID and assigns ownership
of that unit to the buyer in its internal ownership databases.
The Transactor Server then packages (step 10, at 422) the
unit ID with ownership information and the digital product
itself, encrypts portions of the resulting data, and sends the
result to the user or informs the user where the packaged
object may be downloaded. The Transactor Server also
updates (step 11, at 424) all relevant accounts, computes and
distributes splits.

[0102] The Sale of Previously Acquired Object Scenario
(FIG. 7).

[0103] FIG. 7 describes the process in which a registered
Transactor user posts a previously acquired object for sale.
As illustrated in FIG. 7, the following steps take place:

[0104] In step 1 (at 502), the Consumer decides to
post a previously acquired object for resale. Using
the TOM, the Consumer then indicates (step 2, at
504) the asking price for the object and sends posting
(and appropriate IDs including TOM signature) to
the Transactor Server.

[0105] The Transactor Server then sends (step 3, at 506) a
validation challenge to the Consumer’s TOM. The Consum-
er’s TOM responds (step 4, at 508) to the validation chal-
lenge. The Transactor Server receives (step 5, at 510) the
response.

[0106] If the validation is not OK, the operation is not
performed and the user is so notified (step 6a, at 512).

[0107] If the validation is OK, the Transactor Server
includes (step 6b, at 514) the object posting in a log of
objects currently for sale “classifieds.” The object, or a
pointer to the object, is stored at a Broker Server for resale.

[0108] Another valid Transactor user, for example Con-
sumer 36, logs on (step 7, at 516) to a Transactor enabled
web site and activates her TOM to search for an object to
purchase. Consumer 36 searches (step 8, at 518) the Trans-
actor “classifieds” by object name, universe, price, or any
other conventional search criteria to find the desired object.

[0109] Consumer 36 then locates (step 9, at 520) the object
posted by Consumer 35 and decides to make a purchase. The
TOM for Consumer 36 then sends (step 10, at 522) its intent
to purchase (and appropriate IDs) to the Broker Server via

Jun. 13, 2002

the Transactor-enabled web site. The purchase process con-
tinues (step 11, at 524) as in FIG. 4, with the Broker Server
acting as vendor.

[0110] Limited Edition Digital Object

[0111] The Transactor system allows for the ownership
and sale of limited edition digital objects. An exemplary
limited edition digital object (a “LEDO”) 600 is illustrated
in FIG. 8.

[0112] As shown in FIG. 8, LEDO 600 comprises a
payload 606, a unit ID 602, and an owner ID 604. Each of
these elements are illustrated in corresponding dashed
boxes. Examples of LEDOs for use in game environment in
connection with an embodiment of a Transactor system
comprise tools, characters, keys, spells, levels, abilities,
behaviors. A variety of additional types of LEDOs for use
with embodiments of a Transactor system will be apparent
to those skilled in the art from the present disclosure. In this
example, each LEDO has a unique, immutable unit ID, an
owner ID indicating the current owner of the object and a
payload comprising binary data which defines the object
characteristics.

[0113] Unit ID 602 is assigned to the unit during object
creation and incorporated in the LEDO during the initial
object purchase. The owner ID 604 is assigned to the user
during User Registration and incorporated in the LEDO
during object purchase. Payload 606 comprises data which
defines the object (e.g., textures, data pointers, Al, object
attributes). In preferred embodiments, the objects are per-
sistent such that they are accessible both when the user is in
communication with a server (e.g., a game server) and when
the user is not in communication with the server.

[0114] The number of LEDOs of a particular type can be
closed or limited (e.g., the product run is capped at a
predetermined number) or open-ended. The unit ID for each
LEDO is assigned at its creation and is unique. The unit ID
is immutable in the sense that a change in the unit ID for a
particular LEDO can be detected and, in preferred embodi-
ments, the LEDO loses functionality (e.g., it cannot be used
in the relevant game world) if it has been altered.

[0115] Additional Aspects of the Sale of Created Object
Scenario (FIG. 9)

[0116] FIG. 9 describes the process in which a registered
Transactor user posts an object that he has created for sale
in accordance with the previous description in FIG. 6. The
following description of the steps in this process uses the
FIG. 6 reference numerals and step numbers, along with the
FIG. 9 reference numerals:

[0117] Instep 1 (at 402), a registered Transactor user (e.g.,
user 35) decides to post an object that he has created for sale.
The user the (step 2, at 404) logs into the TOM to “package”
his object, the TOM enters (step 3, at 406) the user ID (e.g.,
AIAIA1) into the object package fields, and the user inputs
data regarding, for example, price, revenue model, and
number available.

[0118] The user logs on (step 4, at 408) to a Transactor
Server directly or a Transactor-enabled service provider, and
is validated by a Transactor Server.

[0119] Steps 1 through 4 above are further illustrated in
FIG. 9 by User 35 (identified by code A1A1A1), digital

US 2002/0073043 Al

object 700 (e.g., a file containing binary data), transactor
package 710 which wraps the object as described herein, and
data fields 720. Data fields 720 include a product ID field
722 for the identification code associated with the object (in
this case, BIBIB1), a seller ID field 724 for entering an
identification code associated with the seller of the object (in
this case, A1A1A1), an owner ID field 726 for entering an
identification code associated with the owner of the object
(in this case, A1A1Al), a price field 728 for entering the
requested price for the object (in this case, $5.00), a maker
ID field 730 for indicating the identity of the maker of the
object (in this case, A1A1A1, the owner), a revenue model
field 732 to indicate financial terms associated with the sale
of the object (in this case, a straight sale), a total available
field 734 indicating the total number of objects of this type
that are available for sale, and an FTP field 736 indicating
the delivery details for the object. In this case, for example,
the field shows a URL for a web site from which the buyer
can download his purchased object. The object is encrypted
so that it can only be “unpacked” (opened) by the buyer.

[0120] The user then uploads (step 5, at 410) the packaged
object and fields with instructions for the Transactor Server
(illustrated at 740) to create a new product.

[0121] The Transactor Server (740) then verifies (step 6, at
412) that it received the data correctly, and proceeds to
create a product (illustrated at 750), giving it a unique
product ID (B1BIBI) shown in data field 762. The Trans-
actor Server then sends (step 7, at 414) the unique product
ID, and other product-related information, back to the user.

[0122] When copies of the product are sold, the Transactor
Server will verify (step 8, at 416) buyer’s (in this case, user
37) Transactor User status and the existence of available
unsold units for the buyer-designated product ID.

[0123] If the validation of user ID or product ID is not OK,
the operation is not performed and the user is so notified
(step 9, at 418).

[0124] 1If the user ID and product ID are OK (step 9b, at
420) to produce a new unit of the product, the Transactor
Server creates a new unique unit ID (illustrated at data field
768 and, in this case, D1D1D1) and assigns ownership of
that unit from the seller (A1A1Al, illustrated in data field
764) to the buyer (C1C1C1 illustrated in data field 766) in
its internal ownership databases and in the new object
(relevant data is illustrated in data fields 760). The Trans-
actor Server then packages (step 10, at 422; also illustrated
at 770) the unit ID with ownership information and the
digital product itself, encrypts portions of the resulting data,
and sends the result to the user or informs the user where the
packaged object (illustrated at 770) may be downloaded.
The Transactor Server also updates (step 11, at 424) all
relevant accounts, computes and distributes splits.

[0125] Trust Relationships

[0126] The illustrated Transactor system is predicated
upon various trust relationships among the Transactor enti-
ties illustrated in FIGS. 1 and 2. These trust relationships
are as follows:

[0127] 1. Transactor Servers

[0128] A Transactor Server trusts other Transactor Servers
to correctly authenticate objects and accounts which are
outside its own knowledge. This trust is mutual.

Jun. 13, 2002

[0129] A Transactor Server does not trust a Transactor
User. Accordingly, a Transactor Server does not trust a game
Server. All transactions and authentication must be valid
according to the Transactor protocol rules, or a transaction
request will be rejected. Both participants in any transaction
are independently authenticated by the Transactor Server.

[0130] 2. Transactor Users

[0131] A Transactor User trusts all Transactor Servers to
give correct information about transactions, objects, and
accounts.

[0132] A Transactor User does not trust another Transactor
User, except to the extent authenticated by a Transactor
Server.

[0133] 3. Game Servers

[0134] Game Servers, like other Transactor Users, trust
their Transactor Servers to perform valid ownership trans-
fers, and to correctly authenticate user-accounts and object
ownership. Game Servers also trust the Transactor Server to
authenticate game objects themselves (i.e., detect data tam-
pering), but only insofar as the originally registered game
object was itself correct in the game universe. That is, if the
originally registered game object was flawed or illegal for
the game universe, it will be “correct” as far as the Trans-
actor Server is concerned, but will be “incorrect” when the
game server tries to use it.

[0135] Game servers need not trust their game users, In
some embodiments, however, game servers may trust game
users without a Transactor server authentication.

[0136] Game servers trust other game servers that help
create the game universe.

[0137] 4. Game Users

[0138] Game users trust game servers to “play a fair
game” (i. e., follow the rules of the game universe). Game
servers that do not play a fair game are unlikely to be
successful in the game market, but there is no final Trans-
actor arbiter of what constitutes a “fair game.”

[0139] A game user need not trust another game user,
except insofar as confirmed by the game server for the given
game universe.

[0140] Transactor Brokering

[0141] This section includes a description of how, in an
embodiment of a Transactor system according to the present
invention, objects may be bought, sold, and traded using a
mutually trusted third party (a broker) in order to effect
transactions in other than real-time. For illustrative pur-
poses, this is described in terms of a “game,” the rules of
which define a model of conventional real-world brokering
and agency. A typical problem involving a game, game-
players, and ownership transfer is first presented. This
example is followed by a brief analysis of a “simple solu-
tion,” which can be used in simple embodiments of a
Transactor system. Finally, there is a discussion of brokers,
their actions, rules, and how this solves the basic ownership-
transfer problem when implemented in more complex
embodiments of a Transactor system.

US 2002/0073043 Al

[0142] 1. An Exemplary Game Scenario and Implemen-
tation Problem

[0143] This example involves a simple multi-player game,
running on a server machine. The players own some Trans-
actor objects, which reside on their own machines. A few
players decide to play a game using some (but not all) of
their owned objects, using the game server to run the “game
world.”

[0144] The rules of this game allow game objects (encap-
sulated as Transactor objects and initially existing on the
player’s machines) to be involuntarily “plundered” by the
brute force or trickery of any player, as well as voluntarily
traded away, or simply lost or dropped. In this game,
possession equals ownership. Lost or dropped objects not
picked up by another player are “owned” by the game (or
game service provider). A Transactor server is contacted and
a transaction (a Transactor ownership transfer) made each
time a game-object changes ownership (e.g., it is plundered,
traded away, lost, dropped).

[0145] To begin playing the game, users upload (or oth-
erwise identify) their objects to the game server, which
authenticates ownership and validity with the Transactor
server. During play, an object changes hands, so an owner-
ship transfer occurs, and the Transactor server is again
contacted, with all the overhead such an ownership change
entails. Each transaction also requires the owner’s client
machine to participate, since that is where the user’s digital
keys, required for ownership transfer, reside.

[0146] The basic problem is how a game server or anyone
else in the above scenario can truly enforce transferring
ownership involuntarily; that is, without the active assent of
the object’s original owner. Under ordinary circumstances,
the owner cannot be compelled to use or disclose his private
key and, without it, ownership cannot be taken away. Even
if the game-client software running on the player’s machine
automatically responded to a game server request to transfer
ownership, the user could have hacked the software to not
permit ownership transfers. Thus, in conventional circum-
stances, the game server would have no way to enforce
ownership transfer to the object’s new owner.

[0147] One conceivable solution might be to have the
game server certify to the Transactor server that a new player
is the actual owner, and to somehow confirm that it really is
the game server requesting this. This approach appears
simple, but would require greater underlying complexity in
the overall Transactor system. There would then be two
kinds of transactions: a voluntary kind where both partici-
pants willingly state that a transaction should occur (normal
sale or trade), and one where a third participant (the game
server) says that a transaction should occur, even if the
owner doesn’t agree. This arrangement would also require
that Transactor servers trust all game servers, thus opening
up potential holes in the overall system security model and
greatly expanding the required trust relationships in the
overall system. It would also require that Transactor servers
distinguish a game-server account from other kinds of
accounts, and treat them differently.

[0148] In a large game with a persistent universe, this
apparent solution would force the Transactor servers to
process huge numbers of transactions (one for every trade,
steal, plunder, or take), and require that the game servers

Jun. 13, 2002

certify that each involuntary trade was legal (to guard
against fraud or hacking). All this network traffic must occur
in real-time, or at least with an asynchronous capability. But
that asynchronicity can propagate to any depth, since objects
may rapidly change owners again before a prior ownership
transfer has completed. This quickly leads to a large “roll-
back” problem that a game server must handle on its own.

[0149] 2. The “Simple” Solution

[0150] In some embodiments, to solve the above-de-
scribed problem, a game player gives a “power of attorney”
privilege to a game server during game play, and rescinds it
when the game ends or the player withdraws from play.
Under these “powers of attorney,” the game server takes
ownership of every object brought into play, keeping track
of the “true” owner. The game server then runs the game
according to its rules for who owns what and how they got
it, and finally resolves end-game ownership by transferring
the objects to their most recent game-level owners.

[0151] During game play, the game server must tag each
object with it’s current “designated owner,” starting with the
ID of the original owner. The game server still owns the
object, as far as the Transactor system is concerned, so the
designated owner is just a part of how the game is played.
The tag is simply the Transactor user-ID of whoever has
game-level ownership of the object. Plundered objects are
tagged with the user-ID of the plunderer. Objects traded
voluntarily are tagged with the new owner’s ID. Lost or
dropped objects are tagged with the Transactor user-ID of
the game itself (i.e. the game service provider’s ID). When
a player withdraws and takes his objects out of play, the
game server (which owns all in-play objects) transfers actual
Transactor-level ownership to the player. If a player’s con-
nection goes out, the game server maintains the “designated
owner” tags, subject to plundering by other players within
the game context.

[0152] This arrangement requires only that game players
trust the game server, which is already required as described
above. No additional trust is required between game servers
and Transactor servers. All transactions still involve only
two equal parties. The Transactor server need not distinguish
between game-server ID’s and ordinary-user ID’s, nor treat
any user in a special way.

[0153] One downside to this arrangement is that, if a game
is played and no objects change “true” owners, there is an
initial ownership transfer from the players to the game
server, plus a closing transfer back to the original owner. In
embodiments employing this “simple solution,” there is no
way to avoid this, because without it the game server has no
enforceable authority to transfer objects that are in play.
Fortunately, this activity is largely confined to game start-
ings and endings.

[0154] These “power-of-attorney” transfers can occur
asynchronously at the beginning of the game, but players
will probably want them to occur synchronously at game-
end. Mid-game “cash-outs” that remove objects from play
(assuming the game rules allow this) can be performed
asynchronously, to minimize impact on game play. In some
embodiments, servers spawn sub-processes or call on con-
current server-side programs to perform cash-outs synchro-
nously, rather than burdening the game-program with such
non-game details.

US 2002/0073043 Al

[0155] In some embodiments, a game server provides
“free parking” to game players who want to keep their
objects on the server and avoid most uploading and down-
loading. The server retains ownership of the objects, but they
are not active in any game. These “parked objects” are not
available to the player for out-of-game trading, but can be
reacquired by the player at any time.

[0156] 3. Brokers and Brokering

[0157] The term broker in this description refers to any
mutually trusted third party who acts on behalf of two other
parties to effect some pre-determined action. A broker is
trusted to act on behalf of the original authority, but only
within the boundaries defined at the time of the brokering
agreement, and only for specific designated objects. In order
to actually complete a transaction, both participants in the
brokered transaction must trust the brokering agent to act on
their behalf. Thus, a broker is a mutually trusted interme-
diary in a transaction that occurs between two other indi-
viduals, neither one of whom need trust the other.

[0158] As described below, a Transactor Server provides a
means by which an individual may grant trust to another
individual in the Transactor system. This will become clear
from the following description of a “brokering game.”

[0159] In a “Brokering Game,” a broker is an agent. Its
actions result in a safe trustworthy transaction between two
other parties, who are the “players” in the Brokering Game.

[0160] A broker operates on an object, acting as interme-
diary in transferring ownership between the original owner
and the buyer. Users (players) in the Brokering Game
participate voluntarily, and willingly transfer ownership of
their objects to the broker with the understanding that they
will get them back if the broker does not sell the object.

[0161] The Game Universe of the Brokering Game con-
sists of all the objects that a given broker has for sale or
trade, and the identity of each object’s original owner (the
“designated owner”). The Brokering Universe may also
contain requests by players for the broker to seek out and
obtain a certain kind or class of object. These requests would
require a more sophisticated Brokering Game program.

[0162] There may be any number of different Brokering
Game Universes running at once, on any number of different
servers from different providers. They need not communi-
cate with one another directly, since each is only responsible
for its own objects and players (users).

[0163] Any particular instance of the Brokering Game
may charge a fee to “play”. That is, it may charge a fee in
order to broker a transaction. This fee is different from the
Maker’s Fee computed by the Transactor Server. Fees are
defined by whoever creates a particular Brokering Game.

[0164] Brokers are typically connected through the Inter-
net to a number of other brokers (although they need not be).
These brokers may communicate requests to one another in
order to complete transactions. These inter-broker commu-
nication protocols are yet to be defined, but must be stan-
dardized for all brokers.

[0165] Brokers that do not communicate directly with
other brokers behave as simple public or private store-fronts
for the sale of their users’ objects (sort of a “consignment
store”). This may entail a web connection (HTTP server) in

Jun. 13, 2002

addition to the brokering services, or it may be a “closed
game” in which only registered users can log on and
participate. That is a decision to be made by the game
designer. It is not a Transactor rule or law.

[0166] The basic rules of the Brokering Game, or of any
other game which acts as a broker for its users, are as
follows.

[0167] (1) All objects actively being brokered must
first have their Transactor-ownership transferred to
the broker itself. This confers the power to sell the
object on the brokering agent and have the owner-
ship transferred to the buyer immediately, without
requiring the original owner to participate directly or
in real-time.

[0168] (2) The broker can own objects that are not
actively being brokered because one or more criteria
of the brokering agreement have lapsed. For
example, an agreement may place an end-date
beyond which the object cannot be sold. Since the
user will probably not be logged in at that exact
moment, the broker must immediately take the
object out of active brokering “play”, and hold it in
“parking” or “escrow” until the user reclaims the
object. The broker can’t simply email the object back
to the owner, because the owner’s keys are required
for the ownership transfer.

[0169] (3) players must trust the broker to return
unsold objects on demand, or according to some
predetermined criteria, such as after an expiration
date. This requires that the broker keep a record of
the original owner, along with all necessary relevant
Transactor information about the owner, and the
criteria of the brokering agreement. The broker must
return these objects as requested by the original
owner, as authenticated by a Transactor Server.

[0170] (4) Brokers must notify the original owner
with all due haste when an object has been sold. This
is more than just a courtesy to players, since the
original owner may be a game server that requires
some real-time notification of a sales transaction in
order to run its game in something approaching real
time.

[0171] Brokers should also notify the original owner
when one of the limiting criteria of the brokering
agreements lapses, when the brokering agreement
itself expires, or some other criterion takes the object
out of active brokering “play.

[0172] The basic rules of brokering given above define a
fundamental set of ground rules by which brokers act for
users. But they are not limited just to game servers that only
play the Brokering Game. If any game implements these
rules using a game-as-broker design, it can act as a broker
on behalf of all its users, for whatever purpose the game
designers choose. One important such purpose is to imple-
ment “plundering” (also called “stealing”) and borrowing
within a Game Universe.

[0173] Plundering is a game rule that allows a game user
to gain ownership of a Transactor object simply by taking it
(possession equals ownership). Normally Transactor objects
are useless to those who would simply take them (i e. copy

US 2002/0073043 Al

the file), because the object itself is encrypted under the
owner’s key, and because a Transactor server would disal-
low the object’s use except by the owner. If, however, a
game universe acts as a broker, then it owns all objects that
are in play, and no Transactor server is needed to “change
owners”. Instead, the game servers maintain a “designated
owner,” which starts out as the object’s original Transactor
owner, but may be altered according to the game rules for
plundering when another user encounters the object. Since
the game server is acting as a broker, the player who brings
the object into play must voluntarily transfer ownership to
the game server, fully agreeing that the game-play rules
determine who will eventually get actual Transactor-certi-
fied ownership of the object. If the game design allows
objects to be taken out of play, then the most recent
“designated owner” receives actual Transactor-certified
ownership of the object, and receives the object from the
game-as-broker, not from the object’s original owner.

[0174] Borrowing is a game rule or rules that define how
an object may be used by someone other than its owner, and
perhaps how ownership of the borrowed object may be
transferred without the owner’s direct permission should the
borrower “lose” the object. As with plundering, the game
server acts as a broker and actually owns the object as far as
a Transactor server is concerned. Thus, any rules that the
game designer makes will be carried out on objects already
owned. Also as with plundering, there is a “designated
owner” who can take the object out of play and become the
“actual owner” (i e. the Transactor-certified owner). A bor-
rower would typically be prevented from taking the object
out of play by the game rules. If this is not done, then there
is no difference in fact between a borrower and a plunderer
(since possession would equal ownership), and a borrower
would simply be a plunderer to whom you gave the object
voluntarily rather than involuntarily.

[0175] Other games that involve brokering comprise the
following:

[0176] (1) Sales: More than just a neutral broker, a
Sales agent would earn its fee by actively seeking out
buyers for the goods it has been charged with selling.
Like any broker, it owns the goods it is trying to cell,
at least according to an authenticating Transactor
server. The “designated owner” is the individual who
wants the goods sold, and to whom ownership will
revert according to the agreed-upon rules and con-
straints, should the item not be sold.

[0177] (2) Collectors and Searchers: A collector
agent would seek out sellers of goods described or
designated to it by its users. It would then buy or
trade to acquire those goods, according to the
instructions it was given by a particular user. A
Collector agent may have several users who all want
the same object. The arbitration rules for deciding
who actually gets an object are for the designer to
define. They are not a Transactor law or rule. First-
come first-served is one example of such a rule.
Highest finder’s-fee is another. Bribery might be
another. These are all valid Collector rules in the
Transactor universe.

[0178] (3) Gambling/Gaming: A casino or gambling
house acts as a broker for its patrons. It may charge
a fee, or it may take a cut of winnings, or any other

Jun. 13, 2002

arrangement. The objects wagered can be private
currency or barterable objects, depending on the
house rules.

[0179] The above rules of brokering can be altered to give
different fundamental play experiences. For example, if the
“designated owner” concept was eliminated, then all objects
brought into play would be in one large pool of unowned
objects. A raffle or other gambling situation might then
distribute objects based on some game-play rules, or just
randomly. In this game, players would be willing to relin-
quish all ownership claims to an object in the hope of getting
some better object brought into play by someone else. The
game broker would retain ownership of all unclaimed or
unwanted objects. Users would have no expectation of
getting any of their own objects back.

[0180] Some brokering agreements may ignore the “return
on demand” rule, and only return objects to their owners
when the brokering agreement expires. Certain commercial
operations such as auction houses might need this rule
variation, to guarantee to bidders that an object remained “in
play” until all bids were in or the brokering agreement
expired. This would apply for real-time as well as delayed
auctions. These agreements will also probably have a mini-
mum price that the object must be sold for, just as real-world
auctions do.

[0181] Services, Capabilities and Support Modules

[0182] Services, capabilities, and support modules used in
an embodiment of a Transactor system according to the
present invention are set forth below, along with a descrip-
tion of how these elements interact to produce the desired
outcome.

[0183] It will be apparent to those skilled in the art, based
on the present disclosure, that embodiments of Transactor
server and client software may be implemented in many
computer languages such as, for example, C/Ca or Java, and
that embodiments may be implemented in a manner that is
portable across Window/Windows NT and selected UNIX
environments.

[0184] 1. Transactor Elements and Services

[0185] A Transactor system according to the present
invention can be broken down into several elements and
services. The primary division is into client-side elements
(termed tools) and server-side elements (termed services).
Some elements, such as embedded applets, can be viewed as
lying somewhere between these two elements, because they
originate from and communicate with a server yet run and
operate on a client machine.

[0186] A tool is a distinct identifiable program or capa-
bility residing on a client’s computer. It is invoked directly
by a user to accomplish a specific purpose. It is more like a
tool in a Word toolbar, rather than like a command-line tool
in Unix.

[0187] Publicly accessible server-side elements appear
simply as services on a network, with no specific require-
ment that they be implemented as separate server processes
on a particular server machine or cluster of machines. A
particular service may be provided by a class or thread
within a single server program, or by a distinct server
process on a machine, or by a group of server machines, or
even or by a distributed self-updating service like the

US 2002/0073043 Al

Internet’s Domain Name System (DNS). As long as the
client users and other servers know how to obtain the
service, the details of providing it can vary.

[0188] In addition to supplying or integrating with Trans-
actor services, a typical Transactor merchant will also need
to supply other conventional vendor services as appropriate
(e.g., a sales mechanism or metaphor, a stocking mecha-
nism, billing).

[0189] 2. Transactor Client-Side Tools

[0190] Transactor client-side tools, discussed below,
reside on and run from the client’s machine. Preferably, they
are not embedded in web pages. A wide variety of tech-
niques for constructing the below tools will be apparent to
those skilled in the art, based on the present disclosure.

[0191] (a) Object Manager: The object manager col-
lects objects into lists and groups, examines or
browses objects, including unowned ones, etc. This
is the “root” Transactor tool from which all other
actions (owner acceptance, wrapping, unwrapping,
etc.) can be performed.

[0192] (b) Owner Acceptor: The owner acceptor
accepts a password or pass-phrase typed in, applies
it to a Transactor “keychain”, and allows use of
resulting Transactor keys, if successful. In some
embodiments, this tool is implemented as an inherent
part of the Object Manager.

[0193] (c) Object Trader: The object trader enables an
accepted owner to engage in object trading (selling
or buying) directly with another Transactor user. In
some embodiments, this tool is implemented as an
inherent part of the Object Manager.

[0194] (d) Wrapper: The wrapper wraps a raw digital
object (which may be an existing digital object in the
user’s possession or a digital object newly created by
the user) with an owner’s Transactor info, resulting
in a Transactor object.

[0195] (e) Unwrapper: The unwrapper unwraps an
owned object, resulting in a raw digital object and a
separate file holding the data from the Transactor
fields.

[0196] 3. Transactor Server-Side Services

[0197] These services are provided to both end-user cli-
ents as well as to other distributed servers that need inter-
mediate access to the service (i.e. vendor-servers subscrib-
ing to the Transactor services). A wide variety of techniques
for implementing the below services will be apparent to
those skilled in the art, based on the present disclosure.

[0198] (a) User Registrar: The user registrar register
new users, issuing Transactor ID’s (TID’s); allows
registered users to edit their info; and responds to a
Bookkeeper’s requests to validate TID’s. It does not
validate objects or ownership, only the identity of
users.

[0199] (b) Bookkeeper: The bookkeeper receives,
confirms, and logs all transactions and transfers of
objects; maintains accounts (distributes splits to
other users, etc.); and performs collect-and-forward
transactions to other mercantile servers (bank-cards
and bank-deposits).

Jun. 13, 2002

[0200] (c) Object Registrar: The object registrar reg-
ister new objects, issuing Object ID’s (OID’s); vali-
dates objects and ownership thereof, for Book-
keeper; and performs ownership transfers in support
of Bookkeeper.

[0201] 4. Vendor’s Server-Side Services

[0202] In some embodiments, a Transactor vendor will
have utilize a Storekeeper service, which keeps an inventory
list; keeps a sales log of transactions; and communicates
with the User Registrar, Bookkeeper, and Object Registrar.

[0203] (a) Transactor Support Modules:

[0204] The above tools and services are built upon a
common set of support modules. A module should be treated
as a related set of facilities or capabilities, not necessarily as
a software-design element corresponding to a library, pack-
age, or class. The core support modules are:

[0205] Database Module

[0206] Cryptography/Security Module
[0207] Transactor-field Module
[0208] Logging Module

[0209] Financial Module

[0210] Not all client-side tools or networked services will
use every support module, but they all use the same module
whenever there is a need for shared data. For example, all
parts of Transactor use the same cryptography and Trans-
actor-field modules (and the same revision-level thereof);
otherwise any exchange would appear as gibberish to one
side or the other.

[0211] Networking software may be provided either as a
standard library (e.g., as for C or C++), or as a standard part
of the language system (e.g., as for Java).

[0212] (b) Database Module:

[0213] All information about transactions, users, objects,
etc. is kept in databases. Because some information is very
valuable or sensitive, while other information may change at
a rapid rate, several actual databases preferably are main-
tained, rather than a single all-encompassing database.

[0214] (c) Cryptography/Security Module:

[0215] This module is responsible for encrypting and
decrypting all Transactor objects and communications. It is
also responsible for generating unique cryptography keys,
Transactor ID’s, and Object ID’s. Finally, it validates a
password or pass-phrase entered by a user to gain access to
the Transactor “key-chain” file (i. e., it provides client-side
key-management functions).

[0216] (d) Transactor-Field Module:

[0217] This module allows other modules to read or write
the Transactor fields of a given object’s Transactor wrapper
independent of any actual game or other use. This module
also performs wrap and unwrap of raw digital objects.

[0218] (e) Financial Module:

[0219] Using the values from an object’s Transactor fields,
as received from the Transactor-Field Module, this module
computes splits, fees, etc. for all the participants in a sales
transaction according to an object’s predetermined Revenue

US 2002/0073043 Al

Model. This module also distributes those amounts to each
user account in the database, and writes entries in the log.
This module also interfaces to third-party “bankware” to
perform payments and billing of all user accounts. A policy
is defined so as to determine when, how often, at what
amount, what activity level, etc, to actually initiate a banking
transaction involving the bankware.

[0220] ARevenue Model is a server-side software element
that determines how revenues accrue to Owners, Makers,
etc. In some embodiments, it is preferable to define several
standard Revenue Models. In some embodiments, a “plug-
in” type architecture for additional Revenue Model compo-
nents is also used.

[0221] () Logging Module:

[0222] A log provides a complete serialized list of every
change to any Transactor database. This acts not only as a
backup in case of database corruption, but also as an
independent accounting audit trail for all transactions. The
Logging module maintains several such logs, serving dif-
ferent purposes as outlined in more detail later. Most logging
occurs on the server-side, but a client-side Logging Module
is responsible for logging a user’s transaction history in the
local transaction log. This is purely for user information
purposes.

[0223] Additional Features of Modules
[0224] 1. The Cryptography/Security Module

[0225] Cryptography provides several features within
Transactor: data invisibility, data integrity, authentication,
etc. Data invisibility means that the data is not visible to any
but an authorized user/owner. This is accomplished with
encryption. Data integrity means that data can be determined
as being in an untampered form. This is accomplished with
secure hashing and digital signatures. Authentication means
that two parties who do not trust each other can each
determine that the other entity is who it claims to be. This is
accomplished with authenticating protocols that may
employ encryption, hashing, digital signatures, etc.

[0226] This module is responsible for encryption and
decryption of objects and other data, as well as creation of
cryptography keys. A Transactor ID and an Object ID are
part of the authentication system and, preferably, are
uniquely identifiable and cryptographically secure. User
ID’s may simply be sequentially assigned numbers, from a
pre-determined range allotted to a particular Transactor
server. Uniqueness is the only requirement. Object ID’s may
include a sequentially assigned number, as well as hashed
information about the object’s contents, maker, registration
time, etc. These values are essentially impossible to forge or
fake, nor do they allow an altered or forged object or user to
be improperly recognized as valid. Since the user and object
databases contain every known ID, all objects and users can
always be verified.

[0227] A Transactor user’s data may change over time,
such as from a change of address. This does not alter the
originally issued Transactor ID. The registered user simply
enters the new data, while using the same ID originally
calculated and assigned.

[0228] A Transactor object does not change over time, so
its Object ID (or a related message digest or hash) can
always be recalculated to verify that it has not been tampered

Jun. 13, 2002

with. This is how objects can be verified as unaltered even
without transferring their entire contents to the Transactor
Bookkeeper service.

[0229] The fact that objects are, in this sense, immutable
once registered does not prevent time-varying properties
from accruing to the object. It only prevents that variable
property from being verified by the Bookkeeper. For
example, a game weapon may have a variable power level,
but that variable must be kept outside the “wrapper” pro-
vided for Transactor object validation. The weapon itself
may define internal constants that limit valid power levels,
and these would be inside the wrapper to prevent tampering.
Thus, the worst effect from tampering is to gain a full power
level.

[0230] One variable property that the Bookkeeper does
track is existence (e.g. was the object destroyed). Destroyed
objects are still kept in the database, but are marked as
destroyed (or are moved to a separate “destroyed” database).
This makes such objects recognizable but unusable. An
administrator may enact a retirement policy that removes the
majority of a destroyed object’s data after some period of
time, to keep database size manageable. As long as Object
ID’s, message digests, or hashes are retained so an object
can be recognized as destroyed, the object’s entire original
data-package need not be preserved.

[0231] 2. The Transactor-Field Module

[0232] Every Transactor digital object preferably contains
several data fields in the object itself that identify the object
and its owner, its original creator, the revenue model, and
how sales splits are computed. The Transactor registered-
object database holds the correct values of all unalterable
fields, so any tampered field can be easily identified and set
right.

[0233] Other Transactor modules use the Transactor-field
values to determine how to handle the object, or how to
handle transactions involving the object. This module pro-
vides uniform access to all readable fields, and constrained
but uniform access to writable fields. For example, anyone
can read the Current Owner field and retrieve the ID kept
there, but only the accepted and verified owner can write to
that field. But even the owner can’t do everything. An owner
can set a new price, but can’t change the Maker or Split
fields. The latter can only be changed by the original Maker.

[0234] 3. The Financial Module

[0235] The Financial Module acts as the intermediary
between Transactor transactions and actual banking or pay-
ment-system (bankware) transactions. This module’s main
purpose is to calculate and distribute the fee splits desig-
nated by the object being sold. In the simplest case, this is
basically a “calculate and forward” module, and every
Transactor transaction immediately results in one or more
bankware transactions. Such a simple implementation might
not even need to keep any account-balance information of its
own, instead relying entirely on the bank-maintained
accounts to determine a user’s balances.

[0236] A more sophisticated Financial Module might
instead maintain its own “summary” accounts for every user,
and only perform bankware transactions at the end of the
day, and only for those accounts whose resulting daily
balance was larger than some predefined amount (e.g. more

US 2002/0073043 Al

than $2.00 credit or deficit), or had gone longer than 30 days
without a transaction. By aggregating the bankware trans-
actions in this way, users and vendors are spared the
overhead of large numbers of tiny banking transactions. The
detailed transaction logs and the corresponding reporting
tools provide a complete audit trail to determine every detail
that went into any aggregated banking transaction.

[0237] In such a “summary account” system, the user’s
current account balance is either a positive or negative
amount. At the end of each day (or other policy-defined
billing period), the current balance is zeroed out, and trans-
lated into an appropriate credit deposit or debit charge
against the user’s designated outside financial accounts.
That is, a single bankware transaction occurs. If the amount
is small enough, it is simply carried forward to the next
billing period and no bankware transactions are performed
for that user’s account. The precise details of “small
enough”, as well as other particulars such as a small balance
carried for a long enough period of time, will be determined
by further research or an arbitrary decision in the design. In
any case, these parameters must be tunable.

[0238] There are advantages and disadvantages to any
particular Financial Module design, anywhere along the
continuum between the two possible methods presented
above. These benefits and risks must be completely enumer-
ated and analyzed in further Financial Module design. In
particular, issues of security, expected server load, and
customer or bank liability will be considered, along with any
legal or financial responsibility requirements.

[0239] A Revenue Model is a software element that cal-
culates how ownership transfers generate revenue for sellers
or makers. A Revenue Model is designated by an ID in the
Transactor object itself, designated when the object was
created by its maker. The Revenue Model software compo-
nent is passed information about the object, the sale price,
etc. and is responsible for calculating how much of the sale
price goes to seller, maker, broker, etc. These values are then
returned to the main Financial Module for actual disburse-
ment. Thus, the Revenue Model software component has no
knowledge or interaction with accounts, bankware, etc. It
only calculates shares in a revenue stream.

[0240] The above variations in underlying design should
not be interpreted as uncertainty in the Transactor design or
bankware interfaces. Rather, they should be treated as avail-
able options or modules determined either by the vendor
who installs a Transactor system, or as required to support
different payment options that may operate under different
constraints (e.g., credit-cards, debit-accounts, DigiCash).

[0241] 4. The Logging Module

[0242] Depending on the capabilities of the database
selected (for example, Oracle), most data collected and
processed by the different Transactor services is kept in
redundant form. The primary storage facilities are the vari-
ous databases. Redundant information is kept by time-
stamping and logging every transaction that alters any
database. This log acts as both an accounting audit trail and
as a backup mechanism.

[0243] As an audit trail, the log can be searched (off-line
using yet-to-be-defined tools) to discover reasons for prob-
lems like, for example, account balance disparities or con-
tested purchases. It also clearly shows the time at which each
transaction was made.

Jun. 13, 2002

[0244] As a backup mechanism, the log can be used to
restore the databases should they become corrupted. This is
accomplished by starting with a valid backup database and
sequentially applying every logged alteration. The result is
an up-to-date database. In the safest setup, all log files are
kept on a different physical hard disk than the database files.

[0245] Note that separately implemented logging facilities
may be eliminated as redundant, as fault tolerance services
of the Oracle database may more easily or simply meet these
requirements. However, the logging module is nonetheless
described here to illuminate the required functionality.

[0246] Rules of Logging

[0247] Log-files must always be secured—they hold
sensitive or valuable data.

[0248] Data is only appended to a log-file, never
deleted.

[0249] Every log-entry is automatically
stamped with its entry-time into the log.

time-

[0250] Every transaction is logged, both valid and
invalid ones.

[0251] One log entry may correspond to several
changes in the databases.

[0252] Log-file formats should be compact (i.e.
binary, not ASCII text).

[0253] Note that even rejected transactions are logged,
since they indicate some kind of problem (data loss, theft
attempt, etc.). To prevent the log file from growing too large,
the Logging Module can switch to another log-file at any
time, under administrative direction (manually, at a sched-
uled time (e.g. midnight), etc.). A log-file switch is per-
formed using the algorithm outlined below. Log entries
received during the switch are queued up and eventually
written to the new log-file. The logger must never overwrite,
truncate, or delete a file itself. If it fails to create a new empty
unique log-file, it will refuse to switch log files.

[0254] TLog-files need not be kept forever. They can be
moved off-line after some period of time and retained only
until their backup media is reused. The scheduling of this
should be one of the policies determined by the Transactor
administrators or owners, and implemented as a configura-
tion option of the Transactor software.

[0255] Since log-files contain valuable sensitive data, they
must be kept secure at all times, even when off-line. Log
files may be encrypted to protect against possible snooping.
This option must only alter the data written to the log, not
any other aspect of its nature.

[0256] 5. Log-File Switchover

[0257] A log may be ‘reset’ so that log-files do not grow
too large. This does not actually delete any data from the log.
Instead, the logger switches to a new log-file, leaving the
prior log-file intact. Failure at any point aborts the log-
switch, and logging continues in the original file, with a
log-entry made that a log-switch failed. This switch is
accomplished as follows:

[0258] 0) a memory-based queue is created to hold
log-entries received during the switch. Entries are
time-stamped with their entry-time into the queue.

US 2002/0073043 Al

[0259] 1) a new file is created under a temporary
name. It will be automatically renamed after a suc-
cessful log-switch has occurred. Failing file creation,
no log-switch occurs, so stop now.

[0260] 2) On successful file creation, a transfer time-
stamp is made. This time-stamp will be used in
several following operations.

[0261] 3) A “transfer entry” is written to the new log
file, stamped with the transfer time-stamp.

[0262] 4) The prior log-file is written with an iden-
tical “transfer entry”, and the file is flushed to disk.

[0263] 5) The prior log-file is closed.

[0264] 6) The prior log-file is renamed by appending
the transfer time-stamp to the existing name, in an
acceptable ASCII format (i e. no illegal characters
for the machine).

[0265] 7) The new log-file is renamed to the old
log-file’s name. Depending on the platform, this may
require closing the new log-file, renaming it, then
reopening it and seeking to the end.

[0266] 8) The new log-file is written with a “linkage
entry” noting the new name of the prior log-file. This
entry is time-stamped with the actual time of log-
switch completion, not the earlier transfer time.

[0267] 9) All queued log-entries are appended to the
new log-file.

[0268] After completion of the above steps, the old log-file
can be moved off-line, or to backup media, or whatever.
New log entries will be appended to the new log-file, which
starts out with at least two entries: the transfer entry and the
linkage entry. Any log-entries received during switchover
are also in the new log-file.

[0269] Transactions and Transaction Records

[0270] A Transactor transaction occurs whenever owner-
ship of an object is transferred from its current owner to a
new owner. A transaction record is the collection of data that
describes all the entities involved in that transaction and the
type of transaction requested. Transaction records can be
valid or invalid, solely depending on their contents. A
critical Transactor service is to recognize and prohibit all
invalid transfers by rejecting invalid transaction records. It
is the Bookkeeper that performs this service, with support
from the Object and User Registrars.

[0271] A transaction record basically looks like this:

[0272] Type: Seller sold Buyer this Object on Date
for Price, by time X; signed by Seller, then Buyer.

[0273] This directly translates into a data representation
format:

[0274] T: S sold B this O on D for P, by X; signed:
SS, BB.

[0275] T is the type of transaction record, identifying the
rest of the data for the Transactor server. S is the Seller’s
TID, which must also be the original owner of the object. B
is the Buyer’s TID, which will be the new owner of the
object. O is the transferred object’s unique Object ID (OID),
or some yet-to-be-determined unforgeable token represent-

Jun. 13, 2002

ing the object itself (e.g. a message digest or secure hash).
D is the date and time (expressed in GMT for uniformity) at
which the transaction occurred. P is the agreed-upon price,
if it was a sale for money as opposed to barter. X is an
expiration-time a short time after the transaction record is
completed. Its purpose is explained below. The entire trans-
action record is then digitally signed by the Seller SS, then
by the Buyer BB. This collection of data is then sent to the
Bookkeeper service for wvalidation and approval. If
approved, the given object’s ownership is transferred to the
buyer, and the new ownership is recorded in the database. If
rejected, there is no ownership transfer, but the Bookkeeper
retains the record so it can detect patterns of fraud or other
difficulties.

[0276] The Seller constructs the transaction record and
fills in all fields, then signs it. The transaction record is then
sent to the Buyer, who decrypts it, verifies the Seller’s
signature, then signs it, encrypts it again, and sends it to the
Bookkeeper service. These last steps requires the Buyer’s
cooperation, so the Seller must trust the buyer to actually
sign and forward the transaction record. Without the expi-
ration-time X, this would be a security flaw, since Sellers are
not required to trust Buyers. Adding an expiration-time
declares a deadline after which the transaction record is
automatically invalid, so the Seller is no longer entirely
dependent on the Buyer’s good behavior. The Buyer must
submit the transaction record to the Transactor server before
this deadline, otherwise it will be rejected, even if all other
data is correct. This deadline prevents the Buyer from
holding the Seller’s object “hostage™ for an indeterminate
time, effectively preventing its sale or use elsewhere. After
the deadline, the Seller can sell the object to someone else
without fear that a bogus delayed transaction record will be
sent in by an unscrupulous Buyer. A short deadline (say 30
seconds) can be used as the initial time-out, but if network
delays cause rejection, this can be automatically increased
by some increment up to some reasonable upper limit (say
3 minutes) that both Seller and Buyer agree on first.

[0277] Because both the Buyer and the Seller sign the
transaction record with their private digital-signatures, nei-
ther one can later claim ignorance of the transaction and
demand that ownership be restored tie. the protocol provides
non-repudiation). If either one detects cheating or improper
data using its own knowledge, it can simply refuse to sign
the transaction record. Both signings are voluntary.

[0278] In preferred embodiments, rather than validating
individual users or objects, only entire transaction records
are validated. If any part of the transaction record is invalid,
the entire transaction is rejected and a reason returned. If the
complete transaction is validated, then approval is given,
and the clients then transfer the data.

[0279] When a transaction record is rejected, it can be for
various reasons. Invalid ID’s for any participant is one
reason, invalid signatures is another, and unintelligible data
is yet another.

[0280] Some reasons may be embarrassing for either
Buyer or Seller, such as “insufficient funds”, so not all
reasons for rejection are sent to the clients, only some. A
detailed design must list all rejection reasons and which are
sent to clients.

[0281] When a transaction record is accepted, the Book-
keeper tells the Financial Module to calculate and distribute

US 2002/0073043 Al

sales splits, fees, etc. It also updates the object and owner-
ship databases to reflect the resulting object transfer. All
intelligible transaction records, whether accepted or
rejected, are logged to a transaction log-file. Certain patterns
of rejections may send a security notification to an admin-
istrator, or take some other predefined action. Garbled
transaction-record attempts are not logged to the transaction
log, but may append an entry to a “problem with host H” file
for later perusal and action by an administrator.

[0282] 1. Identifying Authentic Objects

[0283] The value of O in a transaction record must be
something more than just the OID of the object. This is to
prevent various fraud schemes whereby having an object’s
ID would be equivalent to having the object. One way to
avoid such problems is to have the O value be a collection
or composite of several values that not only identify the
object, but also act as an assurance that the object is really
in S’s possession, and really owned by S. One part of this
composite is the OID. The “assurance value” needs to be
something that can only be calculated by the object’s true
owner, such as a message-digest of the object’s decrypted
contents (only possible for the owner and the Bookkeeper)
combined with the values for B and D to introduce unpre-
dictability. Without the unpredictable values of B & D (and
perhaps some other random strings), a cheater could have
precalculated the object’s message-digest, and it would
never change even after the object was sold or destroyed.
Thus, the main reason for using a message-digest would be
lost.

[0284] 2. Transaction Types

[0285] Although entire transaction records are the only
thing validated by the Bookkeeper, each transaction record
has a type identifier in it, and certain idiomatic patterns of
data in the records. Here are some obvious forms, although
there are probably more that are useful.

[0286] All the following patterns have idiomatic values
defined in the transaction record formed as:

T: S sold B this O on D for P, by X; signed: SS, BB.

[0287] Only the idiomatic distinctions are pointed out,
while all other fields retain their normal meaning. In par-
ticular, the D field always contains the date/time of the
request, and the content are always signed by at least one
participant. Some fields have no meaning outside of sales
transactions, such as the price P, which is zero on all the
following.

[0288] Verify a User (TID) S is the user making the
request. B is the TID being checked. O is all zeros. The
record is only signed by SS. An “OK” response means that
B is a valid TID. Rejection may mean any error.

[0289] WValidate an Owned Object S equals B, and is the
user making the request. O is the object identifier/digest. The
record is only signed by SS. An “OK” response means that
the object is valid and is owned by S. Rejection may mean
any error.

[0290] Validate an Unowned Object S is all zeros. B is the
user making the request. O is the object identifier/digest. The
record is only signed by BB. An “OK” response means that
the object itself is valid, but its ownership t undetermined.

Jun. 13, 2002

This prevents non-owners from inferring another user’s
owned objects by probing with valid Object ID’s. Rejection
may mean any error.

[0291] Special Object Properties and Situations

[0292] The Transactor software system is a flexible gen-
eral-purpose system for establishing ownership and for
conveying products and payments. It is not limited to
real-world monetary transactions, nor to purely digital
objects. Following are some specialized features that are
available, in some embodiments, as options to Transactor
service providers.

[0293] 1. Preview Objects

[0294] When an ordinary user is offering an owned object
for sale or trade, it is useful for the buyer to examine the
on-screen representations of the actual object tie. its image
or sound) on his own machine. These may be beauty shots
or the actual images that are part of the object. It does not
include any of the object’s behaviors, however.

[0295] These previews are one use of a special property
that can be given to a Transactor object: the transient
property. Transient objects provide a mechanism to allow
exchange of data between users or client and server that
exploits the security and consistency of the Transactor
protocols, while not transferring ownership or utility to the
receiver. Transient objects cannot be stored in a user’s
inventory, and they automatically disappear when the con-
nection with their originator is broken.

[0296] To create a previewable object without transferring
the entire real object (which could be much larger), the
original complete object may contain or refer to a small
embedded transient “preview” of itself which can be sepa-
rately extracted and sent to the prospective buyer. This
transient object has no value, is unusable in play, and cannot
be traded or retained in the user’s inventory. It is purely for
examination before purchase. Its Object ID does not exist in
any Transactor-server database, since it is created on-the-fly,
so it cannot be traded.

[0297] Not all Transactor objects must contain previews.
The user may already have all the previewable images or
elements possible for a game or other scenario (e.g. on the
original CD-ROM), and it would suffice for the buyer to
know that a Model X41 Laser Pistol was being offered. The
software would then load the previewing images or other
representations from the buyer’s local machine (hard disk or
CD-ROM), and no preview object would be needed.

[0298] 2. Membership Cards

[0299] In principle, a membership card is a persistent
“entry visa” to other services or privileges. It is persistent in
that it cannot be spent or expended like currency, and has no
inherent value as currency (but may have collectible value).
It allows entry or access to services, because the service
provider can see the user present a valid card. Membership
cards usually have an expiration date, nor are they transfer-
able to another user except by the issuer. A passport is one
example of a “membership card”, as is a driver’s license.

[0300] A membership card also identifies the holder as a
member of the issuing organization, but this is primarily for
use by other organizations, since in an electronic world an
organization may be presumed to have an available database

US 2002/0073043 Al

of members, making membership cards superfluous. As a
real-world example, membership cards may be used across
organizations, such as showing a specific airline’s frequent-
flyer card to receive a discount at a particular car-rental
agency. The car-rental agency can’t redeem miles, but can
give a discount after seeing a valid card. Thus possession of
the card has value, even if not as currency.

[0301] Membership cards are one application of a special
property of Transactor objects: the assigned property. An
assigned object is owned like any other Transactor object,
but its ownership cannot be changed by the owner, only by
the maker/issuer. Specifically, the assigned object cannot be
sold or traded away until after it expires (thus not interfering
with any potential collectibles market). If the issuer creates
the object with an expiration date, then the object is only
valid until that date.

[0302] All assigned objects contain the normal Transactor
fields identifying the owner, maker, etc. But since these
fields are inherently alterable, the assigned object must have
an override mechanism. That override is contained in the
digitally-signed and inherently unalterable body of the
object. It consists of an additional packet of data labeled as
“assignment data” and appearing in a standardized form,
which contains the TID of the issuing organization, the TID
of the assigned owner, and an assignment expiration date.
These unalterable fields automatically override the normal
Transactor fields, and thus prevent the object from being
traded away or transferred. Since the issuer and assignee
TID’s are visible, the user’s membership in that particular
issuing organization is confirmed to any third party who
requests a membership card.

[0303] The assignment data packet may also hold an
expiration date. When used beyond that date, the object is no
longer valid, and should be treated as if the object did not
exist. For the case of membership cards, this represents the
membership expiration date. For other kinds of assigned
objects, it may represent a deadline or some other fixed date
or timestamp, as defined by that kind of object’ s unique
requirements.

[0304] Membership cards may be defined by the issuer/
maker to hold preferences or other demographic data about
the assigned owner. This data may be encrypted, visible only
to the issuer, or it may be cleartext, visible to any organi-
zation that the card is presented to. In the real world, for
example, driver’s licenses are effectively membership cards.
A “motorcycle” endorsement or “corrective lenses” restric-
tion are owner-specific information encoded on the card
itself.

[0305] 3. Private Currencies

[0306] A private currency is any fungible valuable
medium of exchange that does not represent actual money.
The term fungible means that the nature of the object makes
it replaceable and non-unique, such as grain or cash is in the
real world. The term valuable simply means that people
might have a reason to collect pieces of the exchange
medium, other than as collector’s items. So private curren-
cies do have real value, even if not directly convertible to
cash. Some real-world examples are frequent-flyer miles
that accrue and earn airline tickets or hotel stays, or the
“bonus points” awarded by some long-distance phone car-
riers that can be redeemed for phone-time or merchandise.

Jun. 13, 2002

But perhaps the best-known example is S&H green
stamps—they are fungible and valuable, but have no actual
cash value.

[0307] When a Transactor system is installed, its medium
of exchange is defined as either money or a private currency.
If the private currency option is chosen, then a Currency-
Conversion supporting module is configured and installed in
the system. This module converts private currency amounts
into money amounts, as needed by other modules in the
system (e.g. the billing department). The actual conversion
data is defined in a vendor-specific database, which is kept
secure on the vendor’s servers, and can be edited by the
vendor at any time.

[0308] A private-currency Transactor system requires con-
version into and out of the private currency. Conversion into
private currency is made as a money-purchase of some
number of units of the private currency. For example, a user
spends $10 and has 1000 quatloos credited to his account.
This can be a straight linear conversion, or it can be tiered
(e.g. spend $20 and get 2500 quatloos), all as defined in the
conversion database.

[0309] Normal spending of the private currency is simply
a “redemption” of the private currency in exchange for an
object. This needs no conversion, only the price of the object
expressed in the private currency, e.g. 200 quatloos to
purchase a new laser-pistol digital object. The buyer’s
account is debited and the object is transferred to the new
owner. If the seller were another user, then the seller’s
account would be credited. Nowhere is a conversion out of
the private currency required. Note that this is true even
when physical objects are being purchased (e.g. the example
of S&H green stamps did not require cash, either).

[0310] Conversions out of the private currency only occur
when outside organizations are involved. For example, if a
phone company were offering conversion of quatloos at 50
per minute of long-distance time, then a conversion would
need to be performed. This information is contained in the
database, and identifies not only the conversion rate, but the
identity of the offerer (phone company), the expiration date
of the offer, and any other limits on conversion (not more
than 5000 quatloos per individual). All this data is used to
perform an outside transaction, according to the protocols
for physical objects (described next).

[0311] Purchasing Physical Objects

[0312] Physical objects can be bought and sold on a
Transactor system, in addition to or as an alternative to
purely digital objects. For example, a user can buy a T-shirt
or a game accessory as easily as a new digital game object.
The user immediately receives an assigned digital object
representing the purchase of the physical object, and later
receives the actual physical object via a shipping channel.
Any conventional shipping channel may be used for this
purpose.

[0313] The purchase of physical objects requires an inter-
face between the Transactor server and a merchandise
supplier. This is similar in concept to the interface between
the Transactor server and financial institutions, and is
accomplished using identical supporting software and inter-
faces; that is, the merchandise supplier appears to the system
as just another outside organization providing “financial”
services. The only difference is that the middleware deals in

US 2002/0073043 Al

merchandise orders rather than in monetary transfers. Both
types of transactions involve transfer of value, account
reconciling, security aspects, etc.

[0314] When a user purchases a physical object, his
account is debited in the normal way. A new digital object
is created and transferred to the user. This digital object
represents the merchandise order, and contains all the infor-
mation one would find on a regular order receipt: date of
order, price, tracking number, buyer, seller, shipper, shipping
address, etc. Thus, the digital object serves as a digital
receipt. The digital object, however, can also contain other
elements, such as beauty shots of the purchased physical
object (e.g. JPEG images), preferably rendered to match any
optional features, like color or size. This digital object is an
assigned object having no intrinsic value (described above,
under “Membership Cards”). Since it is assigned only to the
buyer, it cannot be traded away, although it can be deleted
from the owner’s inventory at any time, if desired.

[0315] When the user’s account is debited, an order is
placed with the merchandise supplier, as if that supplier were
being “credited” with the amount deducted from the user. In
reality, the “credit transaction” is an order for the merchan-
dise, incorporating all the shipping information and other
account information needed to process the order. At that
point, it is the supplier’s responsibility to ship the order to
the user, and the Transactor system is not involved any
further.

[0316] This protocol for purchasing physical objects
works for any Transactor-supported sales mechanism,
including direct object sales as well as flyers. The flyer for
a physical object is no different than that for a digital object,
since both actually refer to a service provided by a supplier,
as outlined above.

[0317] Cryptographic Protocols

[0318] A variety of cryptographic protocols to provide
security for the above-described Transactor system and other
Transactor systems according to the present invention will
be apparent to those skilled in the art based on the present
disclosure. This section presents a preferred set of mecha-
nisms and protocols used to provide security in connection
with the Transactor system discussed above. These security
features are discussed in the context of, and are particularly
useful in embodiments, involving interactive games which
may allow ownership and transfer of various kinds of
objects, both online and offline.

[0319] In the game setting, objects are typically owned by
players (in some cases, they may be simply lying discarded
somewhere, owned by no player, in which case ownership
may be assigned to the game server). An object is not
necessarily represented by an “object” in some program-
ming language (though this would be a natural way to
represent it). Game objects are usually owned by someone,
and have specific attributes, which may change over time.

[0320] Insome game embodiments, objects are owned by
independent agents acting in the game world. This can be
considered to be a form of ownership by the game server. In
the worldview of the players, however, the objects will be
owned by another entity.

Jun. 13, 2002

[0321] Objects and Cheating

[0322] Tt is desirable to resist several kinds of cheating,
which include:
[0323] a. Unauthorized creation—Most objects can-

not be created by players.

[0324] b. Unauthorized transfer—Some objects can
only be transferred under special conditions.

[0325] c. Unauthorized destruction—Most objects
cannot be destroyed by players, or can only be
destroyed under special conditions.

[0326] d.Impermissible multiple transfers—A player
may try to transfer the same object sequentially to
many other players, which is inappropriate for most
objects as a previously transferred object is no longer
in the first player’s possession.

[0327] e. Queries—A player may try to determine
what objects are in the possession of other players, or
those objects’ attributes.

[0328] f. Unwanted Transfer—A player may try to
transfer an object to or from another player, without
that player’s approval.

[0329] g. Resurrection—A player may try to bring
back an object that has been destroyed.

[0330] h. Alteration—A player may try to alter the
attributes of an object, 1. e. increasing the number of
charges some magic item has.

[0331] i. Multiple Play—A player may try to play in
many different games (in any mode but Server-
Mode), and use the same objects in each. This is an
extension of the idea of multiple transfers.

[0332] The following protocols and data structures allow
the Transactor system to resist unauthorized creation, que-
ries, and unwanted transfers at all times. All the other attacks
can be resisted in real-time only in Server-Mode, and
otherwise will allow the cheating to be caught later.

[0333] Notation

[0334] In this section, several protocols are described
using the following simple notation:

[0335] a. Encryption using a symmetric algorithm,
such as DES, 3DES, or RC4, is shown as
E_{Key}(Data), where Key is the key and Data is the
data being encrypted.

[0336] b. Hashing using a one-way hash function,
such as MD5 or SHA1, is shown as hash(Data).

[0337] c. Public-key signing using an algorithm such
as RSA, DSA, or ElGamal, is shown as
Sign_{PrivateKey}(Data), where PrivateKey is the
signer’s private key, and Data is the data being
signed.

[0338] d. Public-key encryption, using an algorithm
such as RSA or ElGamal,is shown as
PKE_{PublicKey}(Data), where PublicKey is the
public key of the message’s intended recipient, and
Data is the data being encrypted.

US 2002/0073043 Al

[0339] Typically, this is used only to send random encryp-
tion keys for symmetric algorithms.

[0340] e. All protocol steps start with a header value,
labeled something like:

[0341] Ul=hash(“Transactor
Request”).

[0342] This is used to ensure that both the sender and the
receiver always can immediately tell which message of
which protocol they have received. These can be precom-
puted and stored in the source code as constants, or the
actual text string can be used to calculate this at run time.

System-Exit Visa

[0343] f. Many protocols require some random num-
bers or keys. These are assumed to be coming from
a high-quality cryptographic random bit generator.
Good cryptographic libraries, such as BSAFE,
RSAREF, and CryptoLib, have good software rou-
tines for starting with a random seed value too
unpredictable to be guessed, and using it to derive a
long sequence of unpredictable values. Typically, the
problem is in getting a sufficiently random initial
seed. Methods to do this are described in the last part
of this section. A variety of protocols and algorithms
are known to those skilled in the art (see, Scheier,
Applied Cryptography, 2nd Edition (John Wiley &
Sons, 1996)) and, based on the present disclosure,
may be used in connection with embodiments of the
present invention.

[0344]

[0345] Each protocol message has a unique 160-bit iden-
tifier at its beginning, followed by a 32-bit version identifier,
and a 32-bit value giving the length of the whole final
message. This is intended to allow an implementation to
parse each incoming message immediately.

Implementation of the Protocols

[0346] Preferably, there is one universally-accepted mes-
sage:
[0347] UO=hash(“Transactor System-Error Message”)

[0348] VO=version

[0349] T1O=total message length

[0350] Usx=the header of the previous message
[0351] CO=error code

[0352] TLOa=Length of freeform error recovery data

(may be zero).

[0353] DO=freeform error recovery data X0 UO,VO,
L0,hash(prev message *),C0,L0 a,DO

[0354] *When there is no previous message, this is an
all-zero field.

[0355] The total message is:
[0356] MO0=XO0,Sign{SK_{Sender} }(X0).

[0357] As stated below, all lengths are given in bits (to
accommodate odd lengths of key or data), but all fields are
padded out with zeros to the next full byte boundary.

[0358] The above described bit fields are examples only.
Other embodiments having different bit fields and protocol
implementations will be apparent to those skilled in the art
based on the present disclosure.

Jun. 13, 2002

[0359] Programming Models

[0360] A variety of interactive game design approaches for
use in connection with a Transactor system will be apparent
to those skilled in the art based on the present disclosure. In
some embodiments, there is one central server, which holds
the “world,” and with which all players’ machines interact
to learn about and influence their world. This is an inherently
simple way of implementing a game. It suffers from the
problems that it may be hard to find a trusted server machine
which has the computational ability and bandwidth to and
from each player’s machine to do this effectively. Essen-
tially, this is related to centrally maintaining one big data-
base with various kinds of access restrictions. The security
model described below is most effective in connection with
this type of game setting.

[0361] Modes of Play

[0362] This security system relates to the following four
basic modes of play:

[0363] (1) Server-Mode: The most secure design for
all of the security issues is simply to have each player
interacting constantly with the server. The server can
always arbitrate in disputes.

[0364] (2) Proxy-Mode: Some other entity is acting
as proxy for the server. This would typically be the
case when a small group of users wanted to play a
“local” game. The proxy will prevent unwarranted
creation, destruction, and alteration of objects in the
local game, and will try to guarantee that no cheating
done in the local game (even involving all partici-
pants) can allow cheating in the global game. Note
that in many circumstances, one player in a group
might be trusted enough to be the proxy.

[0365] (3) Group-Mode: A small group of players is
interacting without even a proxy server. In this case,
the group themselves must probably take on the
proxy server’s tasks, probably by delegating one of
their machines to server as the proxy server.

[0366] (4) Player-Mode: In Player Mode, there is a
single player playing the game alone. His machine is
effectively the proxy server.

[0367] In any of these modes, objects may be transferred
around between players, and may also (in some cases) be
discarded or picked up. It may make sense to have a user ID
for a player called “nobody,” and have this user ID possess
things that have been discarded. There may be one such user
ID used for each different game or “world” that’s going on,
i.e. each Proxy Server may have its own.

[0368] Server-Mode

[0369] In Server-Mode, security concerns almost disap-
pear. Presenting users with signed versions of their owner-
ship certificates is unimportant, as is verifying those signa-
tures; instead, the server keeps track of everything. This
mode needs only two protocols-the one for preparing to
leave this mode for some other mode, and the one for
coming back to this mode from some other mode. Here, we
also discuss the format of object ownership documents and
object transfer documents.

US 2002/0073043 Al

[0370] 1. Ownership Documents

[0371] Anownership document is a signed document from
the server, affirming that at some time, T, a given player was
in possession of a given object, with a given set of attributes
and conditions.

[0372] Thus, it is structured as:
[0373] field name

a. hash(“Transaction System-Ownership Document™ 160

b. Version 32

c. length of document 32

d. PlayerID 64

e. PlayerPublic Key 1024-2048
f. ObjectID 64

g. Object Data and Attributes variable*,**
h. Attribute Transfer Condition variable*
i. Time at which this document was made. 32

j. Time at which this document expires. 32

k. Signature on fields a..j. 1024-2048

*Variable length fields always start with a 32-bit length identifier. All
lengths are given in bits, but all fields are continued out to the next full
byte. If the length field is zero, then that’s all the data in that field.
**Object Data and Attributes may change after this document is issued in
some cases, i.¢., a gun with a limited number of bullets. Implementations
need to be flexible enough to allow this, while doing some object-type
specific tests to ensure that (for example) the magic lamp hasn’t wound up
with more wishes than it started with.

[0374] A variety of different implementations and struc-
tures for ownership documents used in connection with
embodiments of a Transactor system will be apparent to
those skilled in the art based on the present disclosure.

[0375] 2. Exit Protocol

[0376] The player wants to be able to play at some other
mode. Therefore, he requests an “exit visa” from the central
server, to allow him to take part in other games. This works
as follows:

[0377] a. The Player forms

[0378] UO=hash(“Transactor System-Exit Visa
Request™)

[0379] VO=version

[0380] LO=length of final message, including signa-
ture.

[0381] RO=a random number of 64 bits

[0382] X0=U0,V0,LO,RO

[0383] and sends to the Server

[0384] MO L X0,Sign_{SK_P}(X0)

[0385] b. The Server forms

[0386] Ul=hash(“Transactor System-Challenge for
Exit Visa Request”)

[0387] Vl=version

[0388] Ll=length of final message, including signa-
ture.

[0389] R1=a random number of 64 bits

[0390] XI=U1,V1,L1,hash(MO),R1

Jun. 13, 2002

[0391] and sends to the Player M1=X1,
Sign_{SK_S}(X1).
[0392] c. The Player forms

[0393] U2=hash(“Transactor System-Response for
Exit Visa Request”)

[0394] V2=version
[0395] I2=length of whole final message, including

signature.
[0396] X2=U2,v2,1.2hash(M1)
[0397] and sends to the Server

[0398] M2=X2,Sign_{SK_P}(X2).
[0399] d. The Server forms

[0400] U3=hash(“Transactor
Transmission”)

[0401] U3a=hash(“Transactor System-Exit Visa™)
[0402] V3=version

System-Exit Visa

[0403] L3=length of whole message, including sig-
nature.

[0404] TL3a=length of whole ExitVisa, including sig-
nature.

[0405] SO[1 . . . n], where SO[i]=signed object
ownership statement for object 1, and n=the number
of objects owned by the user.

[0406] TS=valid time span

[0407] C'=certificate of P’s public key

[0408] R3=a random number of 64 bits

[0409] K3=a random encryption key

[041]0] X3=U3a,V3,L3a,hash(M2),R3,CP,TS,SO[1...
n

[0411] ExitVisa=X3,Sign_{SK_S}(X3)

[0412] and sends to the Player

[0413] M3=U3,V3,L3,PKE_{PK P}K3),

E_{K3}(ExitVisa)
[0414] 3. Entrance Protocol
[0415]

[0416] UO=hash(“Transactor System-Entrance Visa
Request3

[0417] VO=version

a. The Player forms

[0418] LO=length of whole final message, including
signature

[0419]
[0420]
[0421]
[0422]
[0423]

[0424] Ul=hash(“Transactor System-Entrance Visa
Challenge™)

RO=a random number of 64 bits
X0=U0,V0,LO,RO

and sends to the Server
M0=XO0,Sign_{SK_P}(X0)

b. The Server forms

US 2002/0073043 Al

[0425] Vl=version

[0426] Ll=length of whole final message, including
signature.

[0427] Rl=a random number of 64 bits
[0428] X1=U1,V1,L1,hash(MO),R1

[0429] and sends to the Player
[0430] M1=X1,Sign {SK_S}X1)
[0431] c. The Player forms

[0432] U2=hash(“Transactor System-Entrance Visa
Transmission”)

[0433] U2a=hash(“Transactor
Visa”)

[0434] V2=version

System-Entrance

[0435] I2=length of whole signed and encrypted
message

[0436] TI2a=length of EntranceVisa

[0437] ProxyExitVisa=the exit visa from the proxy
server or the central server.

[0438]
[0439]
[0440]
[0441]

[0442] M2-U2,V2,L2,PKE_{PK_S}
E_{K2}(EntranceVisa)

K2=a random encryption key
X2=U2a,V2,1.2a,hash(M1),ProxyExitVisa
EntranceVisa=X2,Sign(X2)

and sends to the Server

(K2)>

[0443] d. After this message has been decrypted and
verified, the Server checks to see if any of the changes are
in contradiction with other things (restrictions on objects,
existing ownership records, etc.). If not, then the Server
forms:

[0444] U3=hash(“Transactor System-Entrance Visa
Acknowledgment”)

[0445] V3=version
[0446] T13=final length of M3

[0447] MESSAGE=any message that needs to be
sent to the Player (This could be encrypted if nec-
essary),

[0448] X3=U3,V3,13,hash(M2),MESSAGE

[0449]

[0450] M3=X3,Sign {SK_S}(X3)
[0451] Proxy-Mode

[0452] Proxy-Mode is also relatively easy to secure. The
Proxy takes on the tasks of the Server-so long as these are
done honestly, the whole system should work almost exactly
like Server-Mode. However, if the Proxy is dishonest, then
its dishonesty (at least in changing around object owner-
ships) should be easily detected.

and sends back to the Player

Jun. 13, 2002

[0453] 1. Transfer Documents in Proxy-Mode

[0454] In this mode, transfers without revealing objects’
histories directly to the receiving users are allowed. This
prevents our system revealing things which players might
want to keep secret.

[0455] (For example, if Alice really hates Bob, she may
not want to trade with Carol, if she knows that Carol is also
trading with Bob. In the real world, objects usually don’t
know their previous owners.)

[0456] In Proxy-Mode, the Proxy Server issues transfer
documents. These are of the following general format:

[0457] a. hash(“Transactor System-Transfer Docu-
ment”)

[0458] b. Version

[0459] c. Length of whole transfer document, includ-

ing signature

[0460] d. FromPlayerID—ID of the player from
whom object was transferred.

[0461] e. ToPlayerID—ID of the player to whom the
object was transferred.

[0462] f. Proxy Server ID and Certificate.

[0463] g. ObjectID

[0464] h. Object Data and Attributes

[0465] i. Conditions on Transfers

[0466] j. Time of Transfer

[0467] k. Time this Document Expires

[0468] 1. AuditTrail, as discussed below.

[0469] m. Sign_{SK_{ProxyServer}}(Ficldsa...]).

[0470] 2. AuditTrails

[0471] Audit trails to ensure that the Server can untangle
fraud or errors in object transfers can be implemented in this
mode. An audit trail contains the previous transfer docu-
ment, encrypted under the server’s public key. This docu-
ment will get larger for each transfer, which will leak
information about this object’s past. This limited informa-
tion leakage does not present a problem, however, in many
embodiments.

[0472] The structure of an AuditTrail is:

[0473] a. UO=hash(“Transactor System-AuditTrail
(Proxy)”)

[0474] b. version

[0475] c. length of whole AuditTrail.

[0476] d. PKE_{PK_S}(KO0), where KO is a random
encryption key.

[0477] e. E_{KO}(Previous TransferDocument)

[0478] Note that if there is no previous transfer document,
we simply set the length field here to 224, which makes it
clear that there’s nothing that follows this field.

[0479] 3. Entrance Protocol

[0480] Entrance into the game being run by the proxy
server occurs as follows:

US 2002/0073043 Al

[0481]

[0482] UO=hash(“Transactor System-Entry Request
(Proxy)”)
[0483] VO=version

[0484] T10=length of whole final message, including
signature

[0485] RO=a random number of 64 bits

a. The Player forms

[0486] CP=certificate of player’s public key, from
ExitVisa.

[0487] X0=U0,V0,L0,R0,CP
[0488]
[0489] MO=XO0,Sign_{SK_P}(X0)

[0490] b. The Proxy Server verifies the certificate and
signature, and then forms:

[0491] Ul=hash(“Transactor
lenge (Proxy)”)

[0492] V1=version

and sends to the Proxy Server

System-Entry Chal-

[0493] Ll=length of whole final message, including
signature.

[0494] RI=a random number of 64 bits

[0495] C_Q=certificate of the proxy server’s public
key, given by the central server.

[0496] X1=U1,VLLI hash(MO),R1,CS
[0497]
[0498] M1=X1,Sign_{SK_Q}X1).
[0499]

[0500] U2=hash(“Transactor
Response Envelope (Proxy)”)

[0501] U2a=hash(“Transactor
Response (Proxy)”)

[0502]
[0503]
[0504]
[0505]
[0506]

[0507] ExitVisa=the Exit Visa given by the central
server earlier.

[0508] X2=U2a,V2,L.2 a,hash(M1),R2,ExitVisa
[0509] Y2=X2,Sign {SK P}(X2)
[0510]

[0511] M2=U2,V212,PKE_{PK_Q}K2).E
x2}H(Y2).

[0512] d. The Proxy Server forms

[0513] U3=hash(“Transactor System-Entry Accep-
tance Envelope (Proxy)”)

[0514] U3a=hash(“Transactor System-Entry Accep-
tance (Proxy)”)

and sends to the Player

c. The Player forms
System-Entry

System-Entry

V2=version

L2=final length of M2
[2a=final length of Y2

K2=a random encryption key

R2=a random number of 64 bits

and sends to the Proxy Server

20

Jun. 13, 2002

V3=version
L3=final length of M3
L3a=final length of Y3

[0515]
[0516]
[0517]

[0518] PlayerData=Data needed by the player to join
the game.

[0519] X3=U3a,V3,L3a,hash(M2),PlayerData
[0520] Y3=X3,Sign_{SK_QNX3)

[0521]
[0522] and sends to the Player

[0523] M3=U3,V3,L.3,PKE_{PK
{x3}(¥3).

K3=a random encryption key

PHK3),E

[0524] e. The Proxy makes some kind of note to tell the
central Server that the Player joined the game at this time.
When this is delivered, the central Server is able to detect
various kinds of cheating. To form this note (whose method
of delivery is still unspecified), the Proxy forms:

[0525] U4=hash(“Transactor System-Entry Accep-
tance Note (Proxy)3

[0526]
[0527]
[0528]
[0529]
[0530]
[0531] and sends to the central Server
[0532] M4=X4,Sign {SK_Q}(X4).
[0533] 4. Exit Protocol

[0534] Exit from the game being run by the proxy server
is relatively simple. The transfers have all been sent, and the
Proxy Server knows enough to form the messages needed to
convince the Server that things are on the level.

[0535]

[0536] UO=hash(“Transactor
Request (Proxy)”)

[0537]

[0538]

[0539]

[0540]

[0541] and sends to the Proxy

[0542] MO=XO0,Sign_{SK_P}(X0).
[0543] b. The Proxy forms

[0544] Ul=hash(“Transactor System-Exit Visa Chal-
lenge (Proxy)”)

[0545]
[0546]
[0547]
[0548]

V4=version

L4—Afinal length of M4
IDP=ID of player
T=timestamp

X4=U4,V4,L4ID_P,T,hash(ExitVisa)

a. The Player forms

System-Exit Visa

RO=a random number of 64 bits
VO0=version

LO=final length of MO
X0=U0,V0,LO,RO

R1=a random number of 64 bits
Vl1=version

L1=final length of M1
X1=U1,V1,L1 ,hash(MO),R1

US 2002/0073043 Al

[0549]
[0550] M1=X1,Sign {SK_Q}(X1).
[0551] C. The Player forms

[0552] U2=hash(“Transactor
Response (Proxy)q

[0553]
[0554]
[0555]

and sends to the Player

System-Exit Visa

V2=version

L2=final length of M2

X2=U2,V2,1.2,hash(M1)
[0556] and sends to the Proxy
[0557] M2=X2,Sign_{SK P}(X2).

[0558] d. The Proxy forms

[0559] U3=hash(“Transactor
Response Envelope (Proxy)”)

[0560] U3a=hash(“Transactor
Response (Proxy)”)

[0561]
[0562]
[0563]

[0564] TO[1...n]transfer chains for all n objects the
Player has transferred.

[0565] ExitVisa=the ExitVisa issued to this Player by
the central Server.

[0566] X3=U3a,V3,L3a,hash(M2),ExitVisa, TO[1. ..
n]
[0567]
[0568]
[0569]
[0570] and sends to the Player

[0571] M3=U3,V3,L3,
E_{K3}(ProxyExitVisa),

System-Exit Visa

System-Exit Visa

V3=version
L3=final length of M3
L3a=final length of Y3

ProxyExitVisa=X3,Sign{SK_Q}(X3)
K3=a random encryption key

K4=a random encryption key

PKE_{PK P}(K3),

[0572] and sends to the central Server (possibly through a
slower channel)

[0573] M3a=U3,V3,W,
E_{K4}(ProxyExitVisa).

PKE_{PK_S}(K4),

[0574] Instep d, it is not a security problem if K3=K4-the
protocol is specified this way to allow implementations
where it would be harder to use the same key for both
messages. Also note that if K3=K4, it is very important that
proper padding schemes be used in some public key
schemes, such as RSA, to avoid various kinds of problems.

[0575] 5. Transfer of Object

[0576] Transference of an object during play is simple: In
the following, Alice is the player that starts out owning the
object, and Bob is the player that ends up owning the object.

[0577]

[0578] UO=hash(“Transactor
Request Envelope (Proxy)”)

[0579] UOa=hash(“Transactor
Request (Proxy)”)

a. Alice forms

System-Transfer

System-Transfer

21

Jun. 13, 2002

[0580] VO=version
[0581]
[0582]
[0583]
[0584]

[0585] ObjectDocument=the current object owner-
ship document

[0586] X0=U0a,V0,L0 a,R0,IDB,ObjectDocument
[0587] Y0=XO0,Sign_{SK_A}(X0)

[0588] KO=a random encryption key

[0589] and sends to the Proxy

[0590] MO0=U0,V0,LO,PKE_{PK_Q}(KO0),
E_{KO0}(YO0).

[0591] b. The Proxy decrypts and verifies the message. If
all is well, it forms:

[0592] Ul=hash(“Transactor System-Transfer Chal-
lenge 1 Envelope (Proxy)”)

[0593] Ul a=hash(“Transactor
Challenge 1 (Proxy)”)

[0594]
[0595]
[0596]
[0597]

[0598] Description=A description of the requested
transfer, including descriptions of the object and any
changes or costs from the Proxy Server.

[0599] X1=U1 a,V1,L.1a,R1,Description
[0600] Y1=X1,Sign {SK_QMX1)
[0601] Kl=a random encryption key
[0602] and sends to Bob

[0603] MI1=U1,V1,L1PKE_{PK B}KL),
E_{K1}(Y1).

[0604] c. Bob decrypts and verifies the message. If he
doesn’t want to allow the transfer, he can send any message
that isn’t the expected response, and the transfer will fail. If
he does want to allow the transfer, then he forms”

[0605] U2=hash(“Transactor
Response 1 (Proxy)”)

[0606]
[0607]
[0608]
[0609]
[0610] and sends to the Proxy Server
[0611] M2=X2,Sign_{SK_B}(X2).

[0612] d. The Proxy verifies this message. If all is well,
then it next forms:

[0613] U3=hash(“Transactor System-Transfer Chal-
lenge 2 (Proxy)”)

LO=final length of MO including encryption.
LOa=final length of YO
IDB=Bob’s ID

RO=a random number of 64 bits

System-Transfer

Vl1=version
L1=final length of M1
L1la=final length of Y1

R1=a random number of 64 bits

System-Transfer

V2=version
L2=final length of M2
R2=a random number of 64 bits

X2=U2,V2,L.2,hash(M1),R2

US 2002/0073043 Al

[0614] T13=final length of M3
[0615] V3=version
[0616] R3=a random number of 64 bits
[0617] X3=U3,V3,13,hash(MO),R3
[0618] and sends to Alice
[0619] M3=X3,Sign {SK_Q}(X3).
[0620] e. Alice verifies this message. If all is well, she then

forms:

[0621] U4=hash(“Transactor
Response 2 (Proxy)”)

System-Transfer

[0622] T4=final length of M4
[0623] V4=version

[0624] X4=U4,V4,14 hash(M3)
[0625] and sends to the Proxy
[0626] M4=X4,Sign {SK_A}(X4).

[0627] f. The Proxy verifies this message. If all is well, it
then forms:

[0628] U5=hash(“Transactor System-Transfer Noti-
fication Envelope (Proxy)”)

[0629] U5a=hash(“Transactor System-Transfer Noti-
fication (Proxy)”)

[0630] V5=version
[0631] L5=final length of M5
[0632] T.5a=final length of Y5

[0633] TransferDocument=a
described above.

[0634] X5=U5a,V5,L5a,hash(M2),TransferDocu-
ment

[0635] Y5=X5,Sign_{SK Q}(X5) K5=a
encryption key

[0636]

[0637] M5=U5,V5,L5PKE_{PK B}
E_{K5}(Y5).

[0638] Group-Mode

[0639] In Group-Mode, a group of two or more players get
together without a mutually trusted server. This makes the
protocols much harder to make resistant to various kinds of
cheating. The preferred solution is to designate one of the
players’ machines as the Proxy Server, and implement the
proxy mode security system described above.

[0640] Player-Mode

[0641] In Player-Mode, the Player controls his own com-
puter. There are many opportunities for cheating here, but
none of them should involve transfer of objects between this
Player and others.

transfer document, as

random

and sends to Bob
(K5),

[0642] A wide variety of error message formats in all these
protocols will be apparent to those skilled in the art based on
the present disclosure. A simple set of exemplary error codes
are set forth below.

22

Jun. 13, 2002

[0643] Error Code Meaning

0x00000000 No Error - Generally Not Used

0x00000001 Ownership document version invalid

0x00000002 Ownership document structure invalid

0x00000003 Ownership document signature invalid

0x00000004 Ownership document time range invalid

0x00000005 Ownership document length field invalid

0x00000006 Ownership document - miscellaneous error

0x00000007 Message length invalid

0x00000008 Message version invalid

0x00000009 Message signature invalid

0x0000000a Message hash chain invalid

0x0000000b Message header invalid

0x0000000c Message not decrypted successfully

0x0000000d Message format invalid

0x0000000e Message out of sequence

0x0000000f Message - miscellaneous error

0x00000011 Wrapped message length invalid

0x00000012 Wrapped message version invalid

0x00000013 Wrapped message signature invalid

0x00000014 Wrapped message hash chain invalid

0x00000015 Wrapped message header invalid

0x00000016 Wrapped message not decrypted successfully

0x00000017 Wrapped message format invalid

0x00000018 Wrapped message out of sequence

0x00000019 Wrapped message - - miscellaneous error

0x0000001a Certificate signature invalid

0x0000001b Certificate expired

0x0000001e Certificate format invalid

0x0000001d Certificate - - miscellaneous error

0x0000001e Transfer Document version invalid

0x0000001f Transfer Document length invalid

0x00000020 Transfer Document ID invalid

0x00000021 Transfer Document Proxy Server ID invalid

0x00000022 Transfer Document Object ID invalid

0x00000023 Transfer Document Object Data/Attributes invalid

0x00000024 Transfer Document Conditions on Transfers
invalid

0x00000025 Transfer Document Time of Transfer Invalid

0x00000026 Transfer Document Expired

0x00000027 Transfer Document Signature Invalid

0x00000028 Transfer Document - Miscellaneous Error

0x00000029 Player ID invalid

0x0000002a Object ID invalid

0x0000002b Miscellaneous error

0x0000002¢ Internal error

[0644] Trusted Agent

[0645] The trusted agent server can be thought of as a third
party that holds and manages the user’s business affairs,
such as a credit card, a product warranty, an insurance card,
or any business contract. Users contact the server by way of
a network access device, such as a browser on a personal
computer, a browser on a network computer, a browser on
a cell phone, or using a voice response unit on a telephone.

[0646] The trusted agent client is a small client program
that augments the user’s network access device to perform
business transactions on behalf of the user. The user controls
these transactions through the trusted agent server.

[0647] The Trusted Agent Service

[0648] The trusted agent service is the trusted agent client
application which operates in conjunction with the trusted
agent server. The trusted agent service in its first embodi-
ment is a Internet-based mechanism that makes single-click
buying available on any commercial Web site. This mecha-
nism brings the speed and simplicity of credit card use in the
real world to its users on the Internet. The secure nature, and

US 2002/0073043 Al

bank and credit card company branding, provided by this
mechanism projects the trust association necessary at the
point-of-sale to address consumer fears about security. This
mechanism is a browser-based service that requires no
download or installation, and may always be made available
to the consumer free of charge.

[0649] The trusted agent also provides consumers with
access to personal and credit card information used during
single-click transactions, smart receipts used for ongoing
customer support, merchant and product preference settings,
and direct response product offerings keyed to these pref-
erences. Because this information is all stored on the trusted
agent server (similar to popular Web portal personal pref-
erences), it is available on any device connected to the
Internet, from desktop to laptop, even to PDA. The trusted
agent service is implemented by accessing the trusted agent
server. Typically, trusted agent servers are operated by
banks, government agencies, credit card companies, and
other contractually trustable trusted agent service providers.

[0650] Other Commerce Servers

[0651] The trusted agent server communicates with other
commerce servers. Some of these servers are designed to
work closely with the trusted agent server. In the preferred
embodiment of the invention, two such commerce servers
are the direct response server and relationship marketing
servers. Merchants and banks use these servers to commu-
nicate to customers who have accounts on a trusted agent
service. These products enable such merchants and banks to
conduct ongoing business relationships with customers by
sending and making use of information stored online in the
consumer’s trusted agent.

[0652] The direct response server enables the creation,
delivery, and single-click redemption of direct response
offers from anywhere on the Internet. These offers can be
delivered to trusted agents according to consumer prefer-
ences, or found in a banner-like format on Web sites. The
direct response server can deliver online any one of at least
three classic forms of traditional direct response.

[0653] First, they can handle a direct order by con-
cluding a transaction for the product they represent
without requiring a jump to any other site.

[0654] Second, they can generate a lead by transmit-
ting a request to a merchant for additional informa-
tion.

[0655] Third, they can generate store traffic, either
through a link to redemption at an online commerce
site, or by being printed on paper and taken for
redemption to an actual retailer location.

[0656] The relationship marketing server uses smart
receipts as the basis for after-market consumer care. When
a consumer buys a product, the merchant’s relationship
marketing server generates a unique digital object in the
form of a smart receipt which contains all of the information
needed for consumer care. The relationship marketing server
sends this information to the customer’s trusted agent. The
customer can open his trusted agent using a URL, click on
the smart receipt, and be presented with a number of
services, such as automatically routed requests for customer
service or return authorizations, 800 number listings to call
for help, order status tracking (for example, offered in

Jun. 13, 2002

eventual partnership with such shipping companies as Fed-
eral Express or UPS), and pre-formatted and routed requests
for related product offers.

[0657] Other commerce servers enable point-based loyalty
programs and club cards for discounted purchases and
volume purchase rewards.

[0658] The trusted agent process is depicted in FIG. 10. In
a typical transaction, a customer visits any merchant Web
site that contains an HTML form (1). The customer invokes
a trusted agent service provider service using a specific URL
that links the customer to the trusted agent service provider’s
server (2). The customer types in his name and password,
and the customer request is submitted to the trusted agent
server (3). The trusted agent appears (4). The customer
selects a card and the form is automatically filled out for the
customer by the trusted agent (5). The HTML form is then
sent to the merchant from the customer’s browser using the
standard HTTP transport protocol (6).

[0659] While the invention is described herein in connec-
tion with the HTML and HTTP protocols, it will be appre-
ciated by those skilled in the art that other protocols may be
used to implement the invention.

[0660] Entities and their Communication Techniques

[0661] FIG. 11 is a block schematic diagram that depicts
the trusted agent service provider client 1020 in communi-
cation with both the trusted agent server 1021 and various
businesses 1022-1024. The trusted agent server performs
certain actions on behalf of the client. These actions may be
done using two techniques (discussed below), referred to
herein as the indirect technique and the direct technique.
This communication may be based on known Internet pro-
tocols, such as the World-Wide-Web consortium’s HTTP
protocol. However, those skilled in the art will appreciate
that alternative protocols are possible.

[0662] There are three types of business that may be
associated with the presently preferred embodiment of the
invention:

[0663] Businesses of type 1 are legacy businesses
that are not yet enabled with the more modern direct
techniques. Therefore, type 1 businesses use the
indirect technique exclusively.

[0664] Businesses of type 2 only use the direct tech-
niques.

[0665] Businesses of type 3 can use both the direct
and indirect techniques.

[0666] The Indirect Technique

[0667] The indirect technique communicates command
operations from the trusted agent server first to the user’s
browser and then to a business. FIG. 12 is a block schematic
diagram that depicts the indirect technique. The process flow
applied by the indirect technique is as follows:

[0668] The customer (client) invokes the trusted
agent service.

[0669] Interaction between the client and the trusted
agent server.

[0670] The client submits Web page to business.

US 2002/0073043 Al

[0671] The Direct Technique

[0672] The direct technique communicates operations
directly from the trusted agent server to the business. FIG.
13 is a block schematic diagram that depicts the direct
technique. In the preferred embodiment of the invention, the
trusted agent server communicates to the business server
either using HTML or using the technology of Transactor
Networks Inc. of San Francisco, California referred to as the
Limited Edition Digital Object (LEDO) system. Those
skilled in the art will appreciate that other protocols are
possible.

[0673] Business Instruments and Their Embodiments

[0674] The customer understands that what they are
manipulating is a familiar business instrument such as a
credit card, a receipt, a coupon, a warranty, a contractual
offer, a medical insurance card, or other well known com-
mercial construct. It is simple to use a credit card number to
charge goods and services to a credit card account without
using the actual plastic card provided by the bank. The
following definitions are applied to the different embodi-
ments of these business instruments:

[0675] Business Document: the entity as it is embod-
ied on paper or plastic.

[0676] Business Affair: the entity embodied in legal
and business terms.

[0677] Business Object: the entity embodied in a
computer.

[0678] Business Instrument: the entity overall.

[0679] Each business instrument can be represented in
several ways. In the preferred embodiment of the invention,
a business object is stored as a LEDO. Those skilled in the
art will appreciate that other implementations are possible,
e.g. the business affair may be stored as a record in a
database. A LEDO is a network digital object that has
ownership that can be verified over a network. LEDOs
provide efficient techniques to implement many of the legal
and business issues of the instrument’s business affairs.
However, other, less efficient techniques may be applied to
manage the instrument’s business affairs.

[0680] In the preferred embodiment of the invention, the
business affairs are represented as LEDOs that are stored at
the trusted agent server. FIG. 14 is a block schematic
diagram that depicts the trusted agent storing business
objects on behalf of the client.

[0681] Customer Creation of the Trusted Agent Service

[0682] Customers sign up for the trusted agent service by
visiting a trusted agent service provider Web site. FIG. 15 is
a block schematic diagram that depicts the customer sign up
process. The customer first visits a trusted agent service
provider that is running the trust agent server, for example
a bank, using the customer’s Web browser (1). The customer
selects an account name and password and fills in preference
information, as well as one or more bank card accounts, and
other instruments (2). In the presently preferred embodiment
of the invention, LEDOs are populated into the trust agent
server database (2a). The customer is then prompted to
bookmark the URL of their trust account service provider as
a browser button (3).

Jun. 13, 2002

[0683] Customer Use of the Trusted Agent, Indirect Tech-
nique

[0684] As described earlier, a customer can use their
trusted agent service on any merchant Web site that is
HTML compliant. The process requires an exchange
between the customer browser, the merchant’s Web server,
and the trusted agent’s Web server. FIG. 16 is a flow
diagram that depicts the use of the trusted agent by a
customer during a commercial transaction with a merchant.

[0685] To use the trusted agent, the customer first browses
the Web until he finds a merchant Web site that provides
goods and/or services of interest to him (1). The merchant
server begins a session with the customer’s client (2).
Pursuant to the session, the merchant’s server downloads a
page to the customer (3). The page presumably includes an
HTML form that requests various information from the
customer as part of an on-line commercial transaction. The
user invokes the trusted agent service by accessing a URL
associated with the trusted agent service (4). The trusted
agent server downloads the trusted agent program to the
customer (5). The trusted agent then inspects the merchant’s
Web page which is displayed in the customer’s browser (6).
To use the trusted agent, the customer types in their trusted
agent user name and password (7). The customer then
submits the Web page to the trusted agent server (8). The
customer’s name and password, as well as the merchant
page, is uploaded to the trusted agent server (9). The trusted
agent server then analyzes the page (10). Thereafter, a new
trusted agent program is generated by the trusted agent
server (11). The generated trusted agent program received by
the client instruments the merchant Web page (12). The
customer sees a set of operations, such as credit card
selection or address book selection, occur in their trusted
agent (13). The customer selects the desired operation from
the trusted agent page (14) and the trusted agent fills out the
Web page (15). The Web page is now complete and the user
can submit same to the merchant (16) who can then process
the page as usual, unaware of the assistance provided to the
customer by the trusted agent (17).

[0686] Creating a Trusted Agent

[0687] The trusted agent is a small program that is written
in a portable language, such as JavaScript, Java, C, C++,
Visual Basic, Dynamic HTML program, or any other similar
language. These programs are trusted because they are
digitally signed by an authority that the end user trusts.

[0688] The following discussion explains the presently
preferred method of creating a trusted agent using JavaScript
in the popular Netscape Navigator browser application (see
FIG. 17). Those skilled in the art will appreciate that
substantially similar forms can be implemented using
Microsoft’s Internet Explorer or any other browser.

[0689] To create and run signed JavaScript under Netscape
Navigator, the developer must have be in possession of the
private key and a certificate issued to an authority that the
consumer is willing to trust, such as Verisign (verisign.com).

[0690] Run a Navigator 4.05 or higher browser with
128-bit cryptography enabled (1100). The browser may
be downloaded from www.netscape.com by filling in a
form with the user name and address and stating that
the user is a U.S. national (U.S. government export
controls apply to this level of cryptography). The

US 2002/0073043 Al

standard export-approved browser has only 40 bit bulk
encryption and 512 bit RSA, accordingly such certifi-
cate provides much less security. The actual level of
cryptography obtained is a matter of choice.

[0691] Apply for a class 2 or 3 code signing certificate
by using the above-mentioned browser to visit http://
digitalid.verisign.com, clicking on “Developers,” and
following the instructions for getting a Netscape object-
signing certificate (1110). Class 2 certificates are for
individuals, cost $20.00, and take a few minutes to
obtain. Class 3 certificates are for companies, cost
$400.00, and take longer (it is necessary to fax the
company’s incorporation papers and other documents
to Verisign). It is necessary to provide personal infor-
mation similar to a credit card application (e.g. social
security number, current and previous addresses) to
obtain a class 2 certificate. Getting the class 2 certificate
involves obtaining a hexadecimal access code by email
and pasting it back into Verisign’s Web page. Instruc-
tions are provided on the page provided by Verisign.

[0692] Follow the instructions for generating a key in
the browser and retrieving the certificate (1120). The
browser creates a key pair and uploads the public
component to Verisign through a secure socket layer
(SSL) channel. Verisign signs the public key and
returns the certificate, and Navigator stores the key
components and certificates in the Program
Files\Netscape\Users directory. As a result, there is a
secret key on the Windows 95 (or Macintosh) hard disk.
The certificate has an identifying string, such as “The-
odore C Goldstein’s Verisign Trust network ID,” which
is used by the signing tool (and other programs) to
locate the certificate after Navigator installs the certifi-
cate in its database (along with whatever other certifi-
cates it has). Note this string is independent of the user
name, which appears in the signed portion of the
certificate and cannot be changed. Similarly, Navigator
prompts the user for a password to access the secret key
once it is in the database.

[0693] Download Netscape’s object signing tool (1130)
from http://developer.netscape.com/software/
signedobj/jarpack.html#signtooll.1 and install the tool.
This program has a Windows 95-friendly interface,
which means it can be run from a command line in a
DOS box as if it were a Unix program.

[0694] Put the html files and JavaScript files that are to
be signed in a directory (1140), which may be called,
for example, “TrustedAgentDir.” Next, run the signing
tool. The signing tool searches the TrustedAgentDir
directory for JavaScript components. It signs each
piece separately and stores the signatures in a jar file,
which is similar to a zip file

[0695] Select the name of the jar file where the signa-
tures are stored, e.g. “TrustedAgent.jar”. Every file
containing JavaScript that must be signed must have a
SCRIPT tag with the ARCHIVE attribute specifying
the name of the .jar file, e.g.:

[0696] <SCRIPT ARCHIVE=“TrustedAgent.jar”
ID=“aJ’>

[0697] [JavaScript code]
[0698] </SCRIPT>

Jun. 13, 2002

[0699] More information on this step of the process is
available at:

[0700] http:H/developer. netscape.com/docs/manu-
als/communicator/isguide4/sec.htm

[0701] Every piece of JavaScript code must have a
unique ID attribute (1160). The ID is a label that the
browser uses to find the signature for that particular
piece of code. For the above piece of code, the ID is
“a.” Somewhere further down in the file, there a button
may be provided that runs other code when the button
is clicked. That other code must also have its own
signature. Accordingly, the other code needs its own
unique ID tag:

[0702] <INPUT TYPE=“button” NAME=“check”
VALUE=“Click and Buy” onClick=“JavaScript:up-
dateOpener()” ID="b">

[0703] Here, the tag “b” is assigned to the (small) piece of
code “updateopener()” that is run when the button is
clicked. Each piece of code must be signed because one is
not allowed to run signed code from unsigned code.

[0704] Find the certificate location (1170) by using
Windows Explorer’s “find file” command to locate a
file called “cert7.db”. This file should be in a directory,
such as c:\program files\netscape\usersitedg. It is nec-
essary to supply this directory name to the signing tool
in the next step.

[0705] Use a command to run the signing program
(1180), such as:

[0706] signtool -d “C:program
files\netscape\usersitedg”
[0707] -k “Theodore C Goldstein’s Verisign Trust

Network ID”

[0708] -J TrustedAgentDir

[0709] where the above command line arguments are all
on one line. This command may be saved in a .bat file, if it
is necessary to run it often. The -J argument indicates the
name of a directory that contains JavaScript code. The -d
argument indicates where the private key and certificate are
located. The user is prompted for the pass phrase as part of
this operation.

[0710] The signing tool creates an TrustedAgent.jar file
(1190) which must be stored on the Web server along
with the user scripts.

[0711] Alternative Embodiment of the Invention

[0712] The embodiment of the invention provides mer-
chant initiated user trusted service registration (see FIG.
18).

[0713] The customer requests a form from merchant
Web site (1200).

[0714] The form is downloaded from merchant Web site
to the customer (1210). The form includes a button that
the customer can click to request registration with
trusted agent service.

[0715] The merchant server sends a request for cus-
tomer registration to the trusted agent server (1220).

US 2002/0073043 Al

[0716] The trusted agent server registers and notifies the
customer (1230).

[0717] The customer completes the form and uploads it
to the merchant (1240).

[0718] Smart Receipts

[0719] A preferred embodiment of the invention provides
intelligent receipts, called Smart Receipts, that electroni-
cally document a transaction between two parties. Smart
Receipts maintain a persistent connection between two
parties following a successful online transaction.

[0720] A Smart Receipt is delivered over a secure con-
nection from the merchant to a Trusted Agent Server, where
it is stored and is made available to the customer. The Smart
Receipt provides the customer with detailed information
about an online purchase in a standardized format. Hyper-
links embedded in the Smart Receipt enable the customer to
access customer service and order status. The merchant may
also embed additional services within the Smart Receipt,
including special offers for future purchases.

[0721] The invention does not require a new and indepen-
dent trust system. It uses existing Secure Socket layer (SSL)
certificates for secure identification.

[0722] Referring to FIG. 19, the invention provides an
entity to entity communications path. Here, the communi-
cations path is between the Merchant’s site 1901 and the
Transactor site 1902. The Merchant Web Server 1903
accepts orders and records the transaction on the Merchant’s
Database 1904.

[0723] The invention enables a merchant to generate a
Smart Receipt at the conclusion of a successful transaction.
A Receipt Generation package (Smart Receipt Agent) 1905
is installed on the merchant’s server. Once the merchant’s
server is satisfied that the transaction is complete, the Smart
Receipt Agent 1905 retrieves from the Merchant’s Database
1904 the representation of the purchase. The Smart Receipt
Agent 1905 creates an XML representation of the purchase
that is consistent with Transactor Networks Inc.’s Smart
Receipt Document Type Description (DTD).

[0724] The XML representation of the Smart Receipt is
transmitted over a secure connection to the Trusted Agent
Server 1906. The invention offers multiple options for
transport, including Email and SSL. Authentication that uses
SSL should use SSL certificates. The identity of the certifi-
cates are recorded on the Trusted Agent Database 1907.
Email transport is also secure.

[0725] The Smart Receipt is stored on the secure Trusted
Agent Database 1907 located on the Transactor site 1902.
The Smart Receipt is transported and stored in a LEDO in
XML format. Information about the purchase is parsed out
and stored as well.

[0726] The Smart Receipts are available to the user for
sorting and browsing using Transactor Networks’ Trusted
Agent.

[0727] With respect to FIG. 20, a typical transaction
scenario is depicted. The Trusted Agent 2004 observes that
the Buyer 2001 is attempting a transaction. The Trusted
Agent 2004 creates an order record containing:

26

Jun. 13, 2002

[0728] Shipping address
[0729] Billing Address

[0730] Purchase
expiration date

[0731] Merchant
[0732] Key-unique hidden field (LEDO)

instrument—credit card#,

type,

[0733] The user can also add personal notes so he can
easily identify the purchase. The Trusted Agent 2004 fills in
the merchant’s order forms using the order record informa-
tion. The order record is sent to the Trusted Agent Server
2005 and is stored in the Trusted Agent Database 2006. Once
the transaction is completed, the Smart Receipt Agent 2003
located on the merchant’s site 2002 creates a smart receipt
and sends the XML representation to the Trusted Agent
Server 2005. The Smart Receipt object that is created
contains:

[0734] Merchant verification of transaction with Key

(LEDO)
[0735] Detailed list of items purchased
[0736] Description of items
[0737] Discounts—if applicable
[0738] Shipping address

[0739] The Trusted Agent Server 2005 receives the Smart
Receipt and validates the receipt using the merchant’s SSL.
It then compares the order record LEDOs in the Database
2006 with the Smart Receipt LEDO to find the matching
record pair. The records are persistent because there must be
a matching pair to complete the transaction. The Trusted
Agent Server 2005 verifies the following information with
the order record:

[0740] 1.Domain name—must match the merchant’s

[0741] 2. SSL ID—contained in merchant’s SSL cli-
ent

[0742] 3. LEDO Key—unique key provides a shared
secret—always required

[0743] The Smart Receipt is made available to the Buyer
through the Trusted Agent. The Smart Receipt is a dynamic
entity; it is continuously updated until the Buyer deletes it
from the Trusted Agent Server. The Buyer can, at any time,
examine the Smart Receipt, check for warranty information,
product updates, merchant specials, manufacturer discounts,
or answer feedback questions.

[0744] Referring to FIG. 21, the Smart Receipt 2101 can
contain: offers 2102; warranties 2103; customer service
information 2104; and follow-on preference choices 2105.

[0745] A conventional receipt offers: 1) customer service;
non-repudiation from the merchant; and 3) customer record
keeping. The Smart Receipt offers the following advantages
above and beyond the conventional receipt: 1) uniquely
identifies the transaction; and 2) allows valve-added services
to be offered to the customer.

[0746] With respect to FIG. 22, the Smart Receipt 2201 is
comprised of a collection of LEDO objects. Each LEDO
object has a unique owner. Multiple owners exist within a
chain of LEDO objects. Here, the Smart Receipt 2201

US 2002/0073043 Al

comprises: an order object 2202 owned by the Buyer; a
simple receipt object 2203 owned by the merchant; a Smart
Receipt object 2204 owned by the merchant; an offer object
2205 owned by the manufacturer; and a customer service
object 2206 owned by the merchant.

[0747] Smart receipts offer the merchant centralized
record keeping and inventory management. Orders are kept
in a standardized format. The merchant can also track if a
user uses an offer in a Smart Receipt. The offers in a Smart
Receipt can be personalized to a user’s preferences which
are kept secure on the Trusted Agent server. The personal-
ized offers can be customized to follow certain specifica-
tions, such as:

[0748] Timeliness—limited-time offers
[0749] Matching offers to user preferences
[0750] Merchant specified offer conditions

[0751] User preferences include information directly
obtained from the user (e.g., through a questionnaire) and
may also include information gathered from observing the
user’s purchasing habits and preferences.

[0752] Smart receipts also offer the merchant the ability to
receive return receipts when the user receives the Smart
Receipt. The merchant and manufacturer can also receive
valuable feedback information from the customer. The cus-
tomer can fill in or select answers to questions contained in
LEDOs. The questions can pertain to whether the customer
received the product in a timely manner, is satisfied with the
product, or merchant customer service.

[0753] The Smart Receipt can contain a warranty regis-
tration card that is automatically filled out when the Buyer
indicates that he has received the product.

[0754] The dynamic nature of the Smart Receipt allows
merchants to notify Buyers of certain events. For example,
airlines, hotels, and cruise lines can update the Smart
Receipt to indicate a change of schedule, room or seating
changes, delays, and cancellations. Car rental agencies can
indicate rental options or availability by simply updating the
Smart Receipt. The Buyer is automatically notified when he
checks the Smart Receipt through the Trusted Agent.

[0755] The interaction with the buyer that is gained from
Smart Receipts allows the merchant to provide good cus-
tomer service; customers are more assured that they will
receive prompt, reliable service. It simplifies user record
keeping and gives the manufacturer another route to notify
customers of product updates.

[0756] Post-Purchase Services

[0757] The Smart Receipt enables the merchant to provide
post-purchase services to the customer by embedding addi-
tional information within the XML representation of the
receipt. Each of these embedded components may be URLs
or they may be LEDOs that represent:

[0758] Offers (see Offers section)
[0759] Warranties

[0760] Extended Warranties (an offer than sells a
warranty)

Jun. 13, 2002

[0761] Customer Service request—web form that
contains frequent problems and assists in routing an
email message to the correct department

[0762] Merchant preferences
[0763] Merchant Server Component

[0764] The merchant server should support the top mer-
chant servers including:

[0765] MS Site Server Commerce Edition
[0766] Netscape

[0767] Open market

[0768] Mercantec’s SoftCart

[0769] General CGI interface

[0770] Preferences and Offers
[0771] 1. Offer Preferences

[0772] A web-based form for creating, viewing and edit-
ing preferences is provided for the marketing department.
The form for creating preferences has a scrollable list for
parent categories and type, and empty fields for description
and notes. Submitting a new preference will create a LEDO
and commit it to the database. The program also generates
pages of preferences organized by category and subcategory
similar to the intended functionality of the PCM.

[0773] However, the users will also need to be able to
delete preferences from the database and edit the parent,
description, notes, and type fields.

OfferPreferenceTable

Uniquekey varchar2(40) unique ledo key

Ownerid number (tbd, perhaps indicator of
marketing personnel)

Objectid number unique within table

create_ date date

db_ delete date date

parent number index into OfferPreferenceTable of
parent category, 0 for root

description varchar2(250) name of category, subcategory, or
merchant

notes varchar(2000) notes for marketing person

type varchar(20) constrain to “category”,

“subcategory” or “merchant”
<potential columns to be added>

SIC number
categoryKey

number
number

standard industry code
index into categories table

[0774] 2. Offer Registry

[0775] The end-user will have the ability to set and unset
offer preferences, according to the set of preferences in the
OfferPreferenceTable. Setting or unsetting a preference will
look up any existing match between the user and the
preference. If a record is found, the create date and or delete
date are modified as appropriate. This way, it is possible to
track use of the offer registry more accurately.

US 2002/0073043 Al

OfferRegistryTable

OwnerID number index into identity table
PreferencelD number index into OfferPreferenceTable
Create date date

Delete date date

[0776] <ownerlD/preferencelD pair must be unique>
[0777] 3. Offers

[0778] Offers are stored as LEDOs in the database. A
web-based system for submission and viewing of offers is
supplied for merchants and marketing.

[0779] Merchants are able to submit text and images for
offers at any time for review. Marketing has the ability to
view newly entered offers and sign off on their acceptability.

[0780] The Offer table contains the information for the
individual offers, including availability dates and separate
fields for the distinct text areas and images in the offer page.
Since a single offer may match several preferences, there
will be a secondary preferencelD field in the offer record.
Alternatively, it could be organized such that multiple offer
LEDOs represent the same offer, with different preferen-
celD’s.

Uniquekey varchar2(40) ledo unique key

OwnerID number (tbd, perhaps merchant index or
marketing personnel index)

Preference number index into preference table

Title varchar(50) bold text title of offer

Header varchar(50) textual description above Offer__ gif

Description varchar(1000) textual description of item

Footer varchar(50) bold footer after description

LocationURL varchar(1000) url with affiliate link of offer on
merchant site

Logo_ GIF varchar(250) url (local or external) of logo gif

Offer GIF varchar(250) url (local or external) of central offer
gif

Start date date first day offer is valid

End date date last day offer is valid

Create date date date entered into system

Signoffdate date date ok’d by marketing

Db_ delete_ date date date removed from system

[0781] 4. Delivered Offers

[0782] For each user, there will be a set of viewed offers.
These records contain information about the progress of the
user in relation to the offer.

DeliveredOffers

Uniquekey
OwnerLD
OfferID

varchar2(40) ledo unique key

number index into identity table

number index into offer table - constrained

to be unique per ownerID

time index of last visit to offer page
time index of last click of affiliate link
time index of purchase of advertised
item

Viewed date date
Followed date date
Execute date date

Jun. 13, 2002

[0783] Trusted Intermediary

[0784] The invention acts as an trusted intermediary. This
is particularly useful when multiple parties that do not
necessarily trust each other to interact are involved in a
transaction.

[0785] A further embodiment of the invention acts as an
impartial fair witness in negotiation situations. Using the
Smart Receipt constructs described above, the invention
provides a detailed record of the chain of events that occur
during a negotiation.

[0786] Referring to FIG. 23, a Trusted Agent Server 2302
sits between a client X 2301 and a client Y 2303. The Trusted
Agent Server 2302 acts as the trusted intermediary between
the two parties X 2301 and Y 2303.

[0787] With respect to FIG. 24, this scenario example has
user X offering to enter negotiations with user Y. The order
object in the Smart Receipt chain 2401 is X’s offer to enter
into negotiations 2402. Y then responds with a positive
confirmation 2403. Each LEDO has a unique owner, here, X
owns the offer LEDO 2402 and Y owns the acceptance
LEDO 2403.

[0788] X then begins the negotiations by issuing an offer
object 2404 which is a LEDO attached to the current Smart
Receipt chain. Y issues a counter-offer object 2405. X then
issues another offer object 2406. Y decides that the offer is
acceptable and issues an acceptance object 2407.

[0789] As noted above, the Smart Receipt provides a
detailed record of each step of the negotiations. Each step is
a LEDO object in the Smart Receipt chain.

[0790] Although the invention is described herein with
reference to the preferred embodiment, one skilled in the art
will readily appreciate that other applications may be sub-
stituted for those set forth herein without departing from the
spirit and scope of the present invention. Accordingly, the
invention should only be limited by the Claims included
below.

1. A process for creating and maintaining smart electronic
receipts that document online transactions, comprising the
steps of:

creating a smart receipt on a merchant site upon success-
ful completion of a transaction;

sending said smart receipt to a trusted agent server; and

storing said smart receipt on a secure database on said
server;

wherein said smart receipt is comprised of a chain of
limited edition digital objects (LEDOs).
2. The process of claim 1, further comprising the step of:

providing a smart receipt agent on a merchant’s server;
and

said smart receipt agent creating a representation of a
purchase transaction in a smart receipt format.
3. The process of claim 1, wherein the user can sort and
browse smart receipts through a trusted agent.
4. The process of claim 1, wherein a trusted agent creates
an order record.

US 2002/0073043 Al

5. The process of claim 1, further comprising the steps of:

storing said order record on a database on said trusted
agent server; and

comparing order record LEDOs in said database with said
smart receipt’s LEDO to find a matching record pair.

6. The process of claim 1, wherein said smart receipt is a
dynamic entity and is continuously updated until it is deleted
it.

7. The process of claim 1, wherein each LEDO has a
unique owner.

8. The process of claim 1, wherein any of a merchant and
a manufacturer can track whether a user uses an offer
provided in a smart receipt.

9. The process of claim 1, further comprising the step of:

sending a merchant a return receipt when a user receives

an associated smart receipt.

10. The process of claim 1, wherein said smart receipt
contains a warranty registration card that is automatically
filled out when a buyer indicates that the product has been
received.

11. The process of claim 1, wherein any of merchant and
a manufacturer updates said smart receipt to notify a cus-
tomer of new events.

12. The process of claim 1, wherein a merchant provides
post-purchase services to a customer by embedding addi-
tional information within said smart receipt.

13. A process for implementing an electronic trusted
intermediary between parties in a computer environment,
comprising the steps of:

providing a trusted agent server to act as an impartial
trusted intermediary between said parties;

recording each interaction between said parties as a
limited edition digital object (LEDO) in a smart receipt;
and

storing said smart receipt on a secure database;

wherein said smart receipt is comprised of a chain of
LEDOs.
14. The process of claim 13, wherein a party can browse
said smart receipt through a trusted agent.
15. An apparatus for creating and maintaining smart
electronic receipts that document online transactions, com-
prising:

a module for creating a smart receipt upon successful
completion of a transaction;

a module for sending said smart receipt to a trusted agent
server; and

a module for storing said smart receipt on a secure
database on said server;

wherein said smart receipt is comprised of a chain of
limited edition digital objects (LEDOs).

Jun. 13, 2002

16. The apparatus of claim 15, further comprising:
a smart receipt agent on a merchant’s server;

wherein said smart receipt agent creates a representation
of a purchase transaction in a smart receipt format.
17. The apparatus of claim 15, wherein a user can sort and
browse smart receipts through a trusted agent.
18. The apparatus of claim 15, wherein a trusted agent
creates an order record.
19. The apparatus of claim 18, further comprising:

a module for storing said order record on a database on
said trusted agent server; and

a module for comparing order record LEDOs in said
database with said smart receipt’s LEDO to find a
matching record pair.

20. The apparatus of claim 15, wherein said smart receipt
is a dynamic entity and is continuously updated until a buyer
deletes it

21. The apparatus of claim 15, wherein each LEDO has a
unique owner.

22. The apparatus of claim 15, wherein any of a merchant
and a manufacturer can track whether a user uses an offer
provided in a smart receipt.

23. The apparatus of claim 15, further comprising:

a module for sending a merchant a return receipt when the

user receives the associated smart receipt.

24. The apparatus of claim 15, wherein said smart receipt
contains a warranty registration card that is automatically
filled out when a buyer indicates a product has been
received.

25. The apparatus of claim 15, wherein any of a merchant
and a manufacturer updates said smart receipt to notify a
customer of new events.

26. The apparatus of claim 15, wherein a merchant
provides post-purchase services to a customer by embedding
additional information within said smart receipt.

27. An apparatus for implementing an electronic trusted
intermediary between parties in a computer environment,
comprising:

a trusted agent server that acts as an impartial trusted
intermediary between said parties;

a module for recording each interaction between said
parties as a limited edition digital object (LEDO) in a
smart receipt; and

a module for storing said smart receipt on a secure
database;

wherein said smart receipt is comprised of a chain of
LEDOs.
28. The apparatus of claim 27, wherein a party can browse
said smart receipt through a trusted agent.

#* #* #* #* #*

