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METHODS AND SYSTEM FOR EPIGENETIC ANALYSIS

CROSS-REFERENCE TO RELATED APPLICATIONS
[001] This application claims benefit of priority under 35 U.S.C. §119(e) of U.S. Serial
No. 62/351,056, filed June 16, 2016, the entire contents of which is incorporated herein by
reference in its entirety.
STATEMENT OF GOVERNMENT SUPPORT
[002] This invention was made in part with government support under Grant
Nos. DP1ES022579, RO1AG042187, RO1CA054348 and AGO021334, awarded by the
National Institutes of Health and Grant No. CCF-1217213 awarded by the National Science
Foundation. The United States government has certain rights in this invention.
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[003] The invention relates generally to epigenetics and more specifically to methods and
a system for analysis and classification of the epigenome in health and disease.
BACKGROUND INFORMATION
[004] The classical definition of epigenetics by Waddington is the emergence of a
phenotype that can be perturbed by the environment but whose endpoints are predetermined
by genes. Waddington used the language of ordinary differential equations, including the
notion of an “attractor”, to describe the robustness of deterministic phenotypic endpoints to
environmental perturbations, which he believed to be entirely governed by DNA sequence
and genes. However, a growing appreciation for the role that stochasticity and uncertainty
play in development and epigenetics has led to relatively simple probabilistic models that
take into account epigenetic uncertainty by adding a “noise” term to deterministic models or
probabilistically modelling methylation sites independently.
[005] Although some authors have recognized the importance of entropy in DNA
methylation, it has so far been defined in a non-model based empirical manner with limited
resolution and requiring extensive cell culture expansion and even molecular tagging for its
measurement. As such, there exists a need for new model-based methods of epigenetic
analysis that take into account the role of stochasticity and uncertainty, while accounting for

non-independent behavior among methylation sites.
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SUMMARY OF THE INVENTION

[006] In one embodiment, the invention provides a method for performing epigenetic
analysis that includes calculating an epigenetic potential energy landscape (PEL), or the
corresponding joint probability distribution, of a genomic region within one or more genomic
samples. Calculating the PEL includes: a) partitioning a genome into discrete genomic
regions; b) analyzing the methylation status within a genomic region by fitting a parametric
statistical model (hereafter referred to as The Model) to methylation data that takes into
account dependence among the methylation states at individual methylation sites, with the
number of parameters of The Model growing slower than geometrically in the number of
methylation sites inside the region, and c¢) computing and analyzing a PEL, or the
corresponding joint probability distribution, within the genomic region and/or its subregions
and/or merged super-regions, thereby performing epigenetic analysis.

[007] In another embodiment, the invention provides a method for performing epigenetic
analysis that includes the computation and analysis of the average methylation status of a
genome. The method includes: a) partitioning the genome into discrete genomic regions; b)
analyzing the methylation status within a genomic region by fitting The Model to methylation
data; and c) quantifying the average methylation status of the genomic region and/or its
subregions and/or merged super-regions, thereby performing epigenetic analysis.

[008] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that includes the computation and analysis of the epigenetic uncertainty of
a genome. The analysis includes: a) partitioning the genome into discrete genomic regions;
b) analyzing the methylation status within a genomic region by fitting The Model to
methylation data; and c¢) quantifying methylation uncertainty of the genomic region and/or its
subregions and/or merged super-regions, thereby performing epigenetic analysis.

[009] In another embodiment, the invention provides a method for performing epigenetic
analysis that includes the analysis of epigenetic discordance between a first genome and a
second genome (including but not limited to the analysis of epigenetic discordance between a
normal and a diseased state, such as cancer, with genomes procured from one or more
patients). The analysis includes: a) partitioning the first and the second genome into discrete
genomic regions; b) analyzing the methylation statuses within a genomic region of the first
and the second genomes by fitting The Model to methylation data in each genome; and ¢)

quantifying a difference and/or distance between the probability distributions and/or
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quantities derived therefrom for the genomic region and/or its subregions and/or merged
super-regions between the first and second genomes; thereby performing epigenetic analysis.
[0010] In still another embodiment, the invention provides a method for performing
epigenetic analysis that includes detecting the skewness and/or bimodality of the probability
distribution of the methylation level and classifying the average methylation status of a
genomic region into discrete classes, including bistability. Detection and classification
includes: a) partitioning the genome into discrete genomic regions; b) analyzing the
methylation status within a genomic region by fitting The Model to methylation data; and c)
detecting the skewness and/or bimodality of the probability distribution of the methylation
level and classifying the average methylation status of a genomic region into discrete classes,
including bistability, thereby performing epigenetic analysis.

[0011] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that includes classifying methylation uncertainty within a genomic region
into discrete classes. Classification includes: a) partitioning the genome into discrete
genomic regions; b) analyzing the methylation status within a genomic region by fitting The
Model to methylation data; and c¢) classifying the methylation uncertainty of a genomic
region into discrete classes, thereby performing epigenetic analysis.

[0012] In another embodiment, the invention provides a method for performing epigenetic
analysis that includes the computation of methylation regions and methylation blocks.
Computation includes: a) partitioning the genome into discrete genomic regions; b) analyzing
the methylation status within a genomic region by fitting The Model to methylation data; c)
classifying the methylation status of genomic regions across the entire genome; and d)
grouping the classification results into methylation regions and methylation blocks, thereby
performing epigenetic analysis.

[0013] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that includes the computation of entropy regions and entropy blocks.
Computation includes: a) partitioning the genome into discrete genomic regions; b) analyzing
the methylation status within a genomic region by fitting The Model to methylation data; c)
classifying the methylation uncertainty of genomic regions across the entire genome; and d)
grouping the classification results into entropy regions and entropy blocks, thereby
performing epigenetic analysis.

[0014] In another embodiment, the invention provides a method for performing epigenetic

analysis that includes the calculation of informational properties of epigenetic maintenance
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through methylation channels. The analysis includes: a) partitioning the genome into discrete
genomic regions; b) analyzing the methylation status within a genomic region by fitting The
Model to methylation data; and ¢) quantifying the informational properties of epigenetic
maintenance (including but not limited to the capacity and relative dissipated energy of
methylation channels) of a genomic region and/or its subregions and/or merged super-
regions, thereby performing epigenetic analysis.

[0015] In still another embodiment, the invention provides a method for performing
epigenetic analysis that includes computing the sensitivity to perturbations of
informational/statistical properties (including but not limited to entropy) of the methylation
system within a genomic region and/or its subregions and/or merged super-regions. The
analysis includes: a) partitioning a genome into discrete genomic regions; b) analyzing the
methylation status within a genomic region by fitting The Model to methylation data; and c)
quantifying the sensitivity to perturbations of informational/statistical properties (including
but not limited to entropy) of the methylation system within the genomic region and/or its
subregions and/or merged super-regions, thereby performing epigenetic analysis.

[0016] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that includes identifying genomic features (including but not limited to
gene promoters) in a genome that exhibit high entropic sensitivity or large differences in
entropic sensitivity between a first genome and a second genome (including but not limited to
between a normal and a diseased state, such as cancer, with genomes procured from one or
more patients). The analysis includes: a) partitioning the first and second genomes into
discrete genomic regions; b) analyzing the methylation status within a genomic region by
fitting The Model to methylation data; and c) identifying genomic features (including but not
limited to gene promoters) in a genome that exhibit high entropic sensitivity or large
differences in entropic sensitivity between a first genome and a second genome (including
but not limited to between a normal and a diseased state, such as cancer, with genomes
procured from one or more patients).

[0017] In another embodiment, the invention provides a method for performing epigenetic
analysis that identifies genomic features (including but not limited to gene promoters) with
potentially important biological functions (including but not limited to regulation of normal
versus diseased states, such as cancer) occult to mean-based analysis, while exhibiting
higher-order statistical differences (including but not limited to entropy or information

distances) in the methylation states between a first genome and a second genome.
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Identification includes: a) partitioning the first and second genomes into discrete genomic
regions; b) analyzing the methylation status within a genomic region for the first and second
genome by fitting The Model to methylation data in each genome; and c) identifying genomic
features (including but not limited to gene promoters) with relatively low mean differences
but relatively high epigenetic differences in higher-order statistical quantities (including but
not limited to entropy or informational distances) between the first and the second genome,
thereby performing epigenetic analysis.

[0018] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that identifies relationships between bistability in methylation and
genomic features (including but not limited to gene promoters) with potentially important
biological function. The analysis includes: a) partitioning the genomes of one or more
genomic samples into discrete genomic regions; b) analyzing the methylation status within a
genomic region by fitting The Model to methylation data; and c) identifying genomic features
(including but not limited to gene promoters) associated with high amounts of bistability in
their methylation status in one or more genomic samples and relating them to potentially
important biological function, thereby performing epigenetic analysis.

[0019] In another embodiment, the invention provides a method for performing epigenetic
analysis that detects boundaries of topologically associating domains (TADs) of the genome
without performing chromatin experiments. Detection includes: a) partitioning the genomes
of one or more genomic samples into discrete genomic regions; b) analyzing the methylation
status within a genomic region of each genome by fitting The Model to methylation data; and
¢) locating TAD boundaries, thereby performing epigenetic analysis.

[0020] In still another embodiment, the invention provides a method for performing
epigenetic analysis based on predicting euchromatin/heterochromatin domains (including but
not limited to compartments A and B) from methylation data. Prediction includes: a)
partitioning the genome into discrete genomic regions; b) analyzing the methylation status
within a genomic region by fitting The Model to the methylation data; and ¢) combining
results from multiple regions to estimate the euchromatin/heterochromatin domains
(including but not limited to A/B compartment organization) using a regression or
classification model trained on data for which A/B euchromatin/heterochromatin domain
information has been previously measured or estimated, thereby performing epigenetic

analysis.
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[0021] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that includes identifying genomic features (including but not limited to
gene promoters) for which a change in euchromatin/heterochromatin structure (including but
not limited to compartments A and B) is observed between a first genome and a second
genome (including but not limited to between a normal and a diseased state, such as cancer,
with genomes procured from one or more patients). The analysis includes: a) partitioning the
first and second genomes into discrete genomic regions; b) analyzing the methylation status
within a genomic region by fitting The Model to methylation data; and c) identifying
genomic features (including but not limited to gene promoters) for which a change in
euchromatin/heterochromatin structure (including but not limited to compartments A and B)
is observed between a first genome and a second genome (including but not limited to
between a normal and a diseased state, such as cancer, with genomes procured from one or
more patients).
[0022] In another embodiment, the invention provides a non-transitory computer readable
storage medium encoded with a computer program. The program includes instructions that,
when executed by one or more processors, cause the one or more processors to perform
operations that implement the method of the disclosure.
[0023] In yet another embodiment, the invention provides a computing system. The
system includes a memory, and one or more processors coupled to the memory, with the one
or more processors being configured to perform operations that implement the method of the
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS
[0024] Figures 1A-1C are graphical representations relating to potential energy
landscapes.
[0025] Figures 2A-2C are graphical representations relating to the genome-wide
distributions of the mean methylation level and methylation entropy in various genomic
samples.
[0026] Figures 3A-3D are graphical representations showing changes in mean
methylation level and methylation entropy between normal and cancer samples.
[0027] Figures 4A-4B are graphical representations showing the breakdown of mean
methylation level and methylation entropy within genomic features throughout the genome in

various genomic samples.
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[0028] Figures SA-5C are graphical representations showing that cultured fibroblasts may
not be appropriate for modeling aging.

[0029] Figure 6 is a pictorial representation showing that epigenetic distances delineate
lineages.

[0030] Figures 7A-7E are graphical representations showing differential regulation within
genomic regions of high Jensen-Shannon distance but low differential mean methylation
level near promoters of some genes.

[0031] Figure 8 is a graphical representation showing the relationship between
methylation entropy and bistable genomic subregions.

[0032] Figures 9A-9E are pictorial and graphical representations relating to methylation
bistability and imprinting.

[0033] Figures 10A-10B are pictorial and graphical representations showing that the
location of TAD boundaries is associated with boundaries of entropic blocks.

[0034] Figure 11 is a pictorial representation relating entropy blocks to TAD boundaries.
[0035] Figure 12 is a graphical representation showing the accuracy of locating TAD
boundaries within boundaries of entropic blocks.

[0036] Figure 13 is a graphical representation showing the genome-wide distribution of
information-theoretic properties of methylation channels in various genomic samples.

[0037] Figures 14A-14B is a graphical representation showing the breakdown of
information-theoretic properties of methylation channels within genomic features throughout
the genome in various genomic samples.

[0038] Figures 15A-15C is a graphical representation showing that information-theoretic
properties of methylation channels can be used to predict large-scale chromatin organization.
[0039] Figure 16 is a graphical representation showing switching of compartments A and
B in cancer.

[0040] Figure 17 is a graphical representation relating compartment A/B switching with
clustering of genomic samples.

[0041] Figures 18A-18B are graphical representations showing that compartment B
overlaps with hypomethylated blocks, lamina associate domains and large organized
chromatin K9-modifications, and is enriched for larger epigenetic differences between
normal and cancer .

[0042] Figures 19A-19D are graphical representations showing A/B compartmental

relocation of genes in cancer.
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[0043] Figures 20A-20C are graphical representations relating to the computation and
comparison of entropic sensitivity across the genome.
[0044] Figure 21 is a graphical representation showing the breakdown of entropic
sensitivity within genomic features throughout the genome in various genomic samples.
[0045] Figures 22A-22F are graphical representations showing a wide behavior of
entropic sensitivity in the genome.
[0046] Figure 23 is a graphical representation showing the breakdown of entropic
sensitivity within compartments A and B in various genomic samples.

DETAILED DESCRIPTION OF THE INVENTION
[0047] The present invention is based on innovative computational methods for
epigenomic analysis. Epigenetics is defined as genomic modifications carrying information
independent of DNA sequence heritable through cell division. In 1940, Waddington coined
the term “epigenetic landscape” as a metaphor for pluripotency and differentiation, but
epigenetic potential energy landscapes have not yet been rigorously defined. Using well-
grounded biological assumptions and principles of statistical physics and information theory,
the present disclosure describes derivation of potential energy landscapes from whole
genome bisulfite sequencing data, or other data sources of methylation status, which allow
quantification of genome-wide methylation stochasticity and epigenetic differences using
Shannon’s entropy and the Jensen-Shannon distance. The present disclosure further discusses
discovery of important developmental genes occult to previous mean-based methylation
analysis and the exploration of a relationship between entropy and chromatin structure.
Viewing methylation maintenance as a communications system, methylation channels are
introduced into the analytical methods and show that higher-order chromatin organization can
be predicted from their informational properties. The results herein provide a fundamental
understanding of the information-theoretic nature of the epigenome and a powerful
methodology for studying its role in disease and aging.
[0048] Before the present compositions and methods are described, it is to be understood
that this invention is not limited to particular methods and experimental conditions described,
as such compositions, methods, and conditions may vary. It is also to be understood that the
terminology used herein is for purposes of describing particular embodiments only, and is not
intended to be limiting, since the scope of the present invention will be limited only in the

appended claims.
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[0049]  Asused in this specification and the appended claims, the singular forms “a”, “an”,
and “the” include plural references unless the context clearly dictates otherwise. Thus, for
example, references to “the method” includes one or more methods, and/or steps of the type
described herein which will become apparent to those persons skilled in the art upon reading
this disclosure and so forth.

[0050] Unless defined otherwise, all technical and scientific terms used herein have the
same meaning as commonly understood by one of ordinary skill in the art to which this
invention belongs. Although any methods and materials similar or equivalent to those
described herein can be used in the practice or testing of the invention, the preferred methods
and materials are now described.

[0051] A foundational approach has been taken to understanding the nature of epigenetic
information by using principles of statistical physics and information theory to organically
incorporate stochasticity into the mathematical framework and applying it on primary whole
genome bisulfite sequencing (WGBS) datasets. The results allow one to combine “hard-
wired” mechanistic principles of epigenetic biology with the Ising model of statistical physics
and rigorously derive epigenetic potential energy landscapes that can be computed genome-
wide, in contrast to metaphorical “Waddingtonian” landscapes. These landscapes encapsulate
the higher-order statistical behavior of methylation in a biologically relevant manner, and not
just its mean as it has been customary.

[0052] Methylation uncertainty is quantified genome-wide using Shannon’s entropy.
Moreover, a powerful information-theoretic methodology for distinguishing epigenomes
using the Jensen-Shannon distance between sample-specific potential energy landscapes
associated with stem cells, tissue lineages and cancer is provided, which is used to discover
important developmental genes previously occult to mean-based analysis that exhibit higher-
order statistical differences in the methylation states between two genomes. A relationship
between entropy and topologically associating domains (TADs) is also established, which
allows one to efficiently predict their boundaries from individual WGBS samples.

[0053] Methylation channels are also introduced as models of DNA methylation
maintenance and show that their informational properties can be effectively used to predict
higher-order chromatin organization using machine learning. Lastly, a sensitivity index is
introduced that quantifies the rate by which environmental or external perturbations influence
methylation uncertainty along the genome, suggesting that genomic loci associated with high

sensitivity are those most affected by such perturbations.
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[0054]  This merger of epigenetic biology, statistical physics and information theory yields
many fundamental insights into the relationship between information-theoretic properties of
the epigenome and nuclear organization in normal development and disease, and
demonstrates that the inventors can precisely identify informational properties of individual
WGBS samples and their chromatin structure, as well as their differences among tissue
lineages, aging, and cancer.

[0055] COMPUTATIONAL METHODS

[0056] The present invention provides methods of epigenetic analysis that take into
account the role of stochasticity and uncertainty.

[0057]  Potential Energy Landscapes

[0058] In an embodiment, the invention provides a method for performing epigenetic
analysis that includes calculating an epigenetic potential energy landscape (PEL), or the
corresponding joint probability distribution, of a genomic region within one or more genomic
samples. Calculating the PEL includes: a) partitioning a genome into discrete genomic
regions; b) analyzing the methylation status within a genomic region by fitting a parametric
statistical model (hereafter referred to as The Model) to methylation data that takes into
account dependence among the methylation states at individual methylation sites, with the
number of parameters of The Model growing slower than geometrically in the number of
methylation sites inside the region, and c¢) computing and analyzing a PEL, or the
corresponding joint probability distribution, within the genomic region and/or its subregions
and/or merged super-regions, thereby performing epigenetic analysis.

[0059] Despite it being known that stochastic variation is a fundamental property of the
DNA methylome, genome-wide modeling and analysis of the methylation state continues to
focus on individual CpG dinucleotides and ignores statistical dependence among these sites.
However, DNA methylation is correlated, at least over small distances, due to the
processivity of the DNMT enzymes. Therefore, one cannot adequately analyze methylation
with methods that do not take into account such correlation. To this end, and to better
understand the relationship between stochastic epigenetic fluctuation and phenotypic
variability, a general path to methylation modeling and analysis is taken herein by developing
an information-theoretic approach based on the Ising model of statistical physics. This
approach leads to a rigorous definition of a potential energy landscape, which associates

each methylation state with a potential that quantifies the information content of that state.
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The Ising model provides a natural way of modeling statistically dependent binary
methylation data that is consistent with observed means and pairwise correlations.

[0060] Here, DNA methylation is viewed as a process that reliably transmits linear strings
of binary (0-1) data from a cell to its progeny in a manner that is robust to intrinsic and
extrinsic stochastic biochemical fluctuations. First, the methylation state within a given
genomic region containing N CpG sites is modeled by an N-dimensional binary-valued
random vector X whose n-th element X, takes value 0 or 1 depending on whether or not the
n-th CpG site is unmethylated or methylated, respectively. Then, the potential energy
landscape (PEL) of methylation is defined by

Vx(¥) = ¢, ~log £ (x), (1)

for some constant ¢, where P, (x)1s the joint probability of a methylation state x within the
genomic region. As a consequence, £ (x)1s the Boltzmann-Gibbs distribution of statistical

physics, given by
1
Pe(x)= — XP L] 2
with state energy / (x) and partition function

Z = exp{-Tx(x)}. 3)

The potential Vy (x)— ¢, quantifies the amount of information associated with the
methylation state x, which is given by — log £ (x).

[0061] By using the well-known maximum-entropy principle, it is determined that the
PEL which maximizes uncertainty about the particular choice of the Boltzmann-Gibbs
distribution that is consistent with the methylation means and pairwise correlations is given

by
V=3 a, (2%, -3 ¢,(2x, ~1)(2x, , -1, @

for some parameters {a,,...,a, }and {c,,...,c, }. This leads to a methylation probability F (x)

that 1s modeled by the one-dimensional nearest-neighbor Ising model. Parameter a,
influences the propensity of the n-th CpG site to be methylated due to non-cooperative
factors, with positive a, promoting methylation and negative a, inhibiting methylation,

whereas parameter ¢, influences the correlation between the methylation states of two

11
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consecutive CpG sites 7 and n — 1 due to cooperative factors, with positive ¢, promoting
positive correlation and negative ¢, promoting negative correlation (anti-correlation).

[0062] Computing the PEL requires estimating values for the parameters {a,,...,a, } and
{c,,...,c, } from methylation data. For a given chromosome containing a large number N of

CpG sites, one must estimate 2N —1 parameters, which is prohibitive for reliable estimation
in low to moderate coverage sequencing data. To address this problem, a chromosome is
partitioned into relatively small and equally sized non-overlapping regions (hereafter referred
to as genomic regions) whose lengths are taken to be 3000 base pairs each, a length that has
been determined by striking a balance between estimation and computational performance.

Moreover, the parameters a, and ¢, are taken to satisfy
a,=o+fBp, and ¢, =v/d, %)
where p, 1s the CpG density within a symmetric neighborhood of 1000 nucleotides centered

at a CpG site n, given by

1 . s .
p, = m[# of CpG sites within =500 nucleotides downstream and upstream of n], (6)

2

and d is the distance of CpG site n from its “nearest-neighbor” CpG site n-1, given by

d, =[# of base-pair steps between the cytosines of CpG sites n and n—1]. (7)

Parameter o accounts for intrinsic factors that uniformly aftect CpG methylation over a

genomic region, whereas parameter 3 modulates the influence of the CpG density on
methylation. The previous expression for ¢, accounts for the expectation that correlation

between the methylation of two consecutive CpG sites decays as the distance between these
two sites increases, since the longer a DNMT enzyme must move along the DNA the higher
is the probability of dissociating from the DNA before reaching the next CpG site. It can be

shown that, in this case, the PEL within a genomic region is given by

Pe() = o2, ~ ) -aY (2%, ) —a’(2x, -~ (2x, ~p,
n=2 . n=2 (8)
yY (2%, ~1)2x,,~1)/d,,

n=2
”

where N is the number of CpG sites within the genomic region and the parameters o’ and o

account for boundary effects that occur when restricting the PEL associated with the entire

12
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chromosome to the individual PELs associated with the genomic regions within the

chromosome.

[0063] The PEL encapsulates the view that methylation within a genomic region depends
on two distinct factors: the underlying CpG architecture of the genome at that location,

quantified by the CpG density p,, defined by Equation (6) and the distance d,, given by

Equation (7), whose values can be readily determined from the DNA sequence itself, as well
as by the current biochemical environment in the nucleus provided by the methylation
machinery, quantified by the parameters of the Ising model whose values must be estimated
from available methylation data.

[0064] Computing the PEL within a genomic region requires estimating values for only

five parameters 0 =[c’ v o” By] from methylation data within the genomic region. This

estimation is performed by a maximum-likelihood approach, which computes the value of 0

M
that maximizes the average log-likelihood function (l/M)ZlogPX(xm |0), where

m=1

2

X,,X,,...,X,, are M independent observations of the methylation state within the genomic

1>
region. To take into account partially observable methylation states measured by current

experimental methods, the methylation probability £ (x, |0) is replaced by the joint

probability distribution over only those sites at which methylation information is measured.
Moreover, to avoid statistical overfitting, regions with less than 10 CpG sites are not
modeled, and the same applies for regions with not enough data for which the methylation
state of less than 2/3 of the CpG sites is measured or for which the average depth of coverage
is less than 2.5 observations per CpG sites. In addition, likelihood maximization is performed
by multilevel coordinated search (MCS), a general-purpose global non-convex and
derivative-free optimization algorithm.

[0065] Evaluating the joint probability of a methylation state x, requires calculating the
partition function Z of the Boltzmann-Gibbs distribution, which cannot be computed directly
from Equation (3), since Z is expressed as a sum over a large number of distinct states that
grows geometrically (as 2") in the number N of CpG sites within the genomic region.
However, it can be shown that

Z=7,0)+Z,), ©)
where Z,is computed using the following recursion:

13
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Zy 0)= ZN(l) =1
Z,(0)=9,(0,0)Z,,,(0)+¢,(0,D)Z,,, (1)

(10)
Z,)=9,(1,0Z,,00)+¢,1,DZ,, 1),
n=N-1N-2..1,
with
6, (%, %) =exp{a,(2x, —1) +a,(2x, - 1) +¢,(2x, ~1)(2x, 1)}
(I)n (xn > xn+1) = exp{an+1(2xn+l - l) + cn+1(2xn - 1)(2xn+1 - 1)}7 (1 1)

n=23.,N-1,

which provides a fast method for calculating the partition function. Knowledge of the

partition function allows evaluation of the probability of any methylation state x using

1 N-1
PX(x17"'7xN):EHd)n(xn’xnﬂ)' (12)
n=1

[0066] Since the Ising model depends on the CpG density and distance, its statistical
properties may vary within a genomic region suggesting that a smaller region of the genome
must be used for high-resolution methylation analysis. Consistent with the length of DNA
within a nucleosome, each genomic region is further partitioned into small and equally sized
non-overlapping regions (hereafter referred to as genomic subregions) of 150 base pairs each
and methylation analysis is performed at a resolution of one genomic subregion.
[0067] Within a genomic subregion, epigenetic regulation is most likely controlled by the
number of methylated sites and not by the particular configuration of methylation within the
genomic subregion. For this reason, methylation within a genomic subregion is quantified by
the methylation level L (the fraction of methylated CpG sites within a genomic subregion),
given by
1 X

L= ~ Z; X, (13)
where N is the number of CpG sites within the genomic subregion and X, is a binary random
variable that takes value O or 1 depending on whether or not the n-th CpG site in the genomic
subregion is unmethylated or methylated, respectively.

[0068] The methylation level within a genomic subregion with N CpG sites is statistically
characterized by the probability distribution P, (/)=PtL =[], /=0,1/N,..,1, which is
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computed from the probability distribution Pr[X =x] of the methylation state within the

genomic subregion by

P = Y PriX=x], (14)

xeS(N)
where S(MN/) is the number of methylation states within the genomic subregion with exactly
N x1I CpG sites being methylated and the methylation probabilities Pr[X =x] are computed
my marginalizing the Ising model.
[0069] Computing a marginalized form F(x,,..,x ), 1<r<r+s<N, of the Ising
probability distribution £ (x,,...,x, ) 1s done in a computationally efficient manner by means

of

r+s-1

Pyt ) =2 2,005,006 [ [, 15)

where Z and Z (x,) are computed using Equations (9) and (10), ¢, (x,,x,,,) is computed

using Equation (11), and Q. (x,) is computed by means of the following recursion:

QI(O) = Ql(l) =1
0,(0)=¢,.,(0,00, ,(0)+¢,,(1,0)J, , (1)
0,1)=4¢,,0.10,,0)+9,,(1LDO, D),

n=273..,r.

(16)

[0070] Mean Methylation Level

[0071] In another embodiment, the invention provides a method for performing epigenetic
analysis that includes the computation and analysis of the average methylation status of a
genome. The method includes: a) partitioning the genome into discrete genomic regions; b)
analyzing the methylation status within a genomic region by fitting The Model to methylation
data; and c) quantifying the average methylation status of the genomic region and/or its
subregions and/or merged super-regions, thereby performing epigenetic analysis.

[0072] The average methylation status within a genomic subregion is quantified by the
mean value of the methylation level, which is referred to as the mean methylation level

(MML), given by

E[Mz%Z_IPn(l), (17)
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where N is the number of CpG sites within the genomic subregion, and P (1) is the

probability that the n-th CpG site within the genomic subregion is methylated. The
probability P (1) is computed from the probability distribution £, (x) of the methylation

state within the genomic subregion by marginalization.

[0073] The MML is an effective measure of methylation status that can be reliably
computed genome-wide from low coverage methylation data using the Ising model.
Moreover, distributions of MML values can be computed over selected genomic features
(e.g., CpG islands, island shores, shelves, open sea, exons, introns, gene promoters, and the
like), thus providing a genome-wide breakdown of methylation uncertainty showing lower or
higher levels of methylation within said genomic features of a first genome as compared to a
second genome.

[0074]  Epigenetic Unceriainty

[0075] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that includes the computation and analysis of the epigenetic uncertainty of
a genome. The analysis includes: a) partitioning the genome into discrete genomic regions;
b) analyzing the methylation status within a genomic region by fitting The Model to
methylation data; and c¢) quantifying methylation uncertainty of the genomic region and/or its
subregions and/or merged super-regions, thereby performing epigenetic analysis.

[0076] Due to their first-order marginal nature, means and variances provide a narrow
view of methylation and its uncertainty. Previous methods of methylation analysis have
attempted to provide a more comprehensive view by using the notions of epipolymorphism
and combinatorial (Boltzmann) entropy. However, these methods rely on empirically
estimating probabilities of specific methylation patterns (epialleles). It has been demonstrated
that, in contrast to the model-based estimation of joint probabilities and Shannon entropy
employed here, empirical estimation of epiallelic probabilities, epipolymorphisms and
combinatorial entropies, requires much higher coverage than routinely available from WGBS
data. With regards to a previous study, it has been often found that the 95% confidence
intervals of empirically estimated epipolymorphisms will not include the true values resulting
in potentially large errors.

[0077] Methylation uncertainty within a genomic subregion that contains N CpG sites is
quantified by the normalized methylation entropy (NME)

H

“Ton, (V) (e
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where

H ==Y P,(h)log,F, (/) (19)

is the informational (Shannon) entropy of the methylation level within the genomic subregion
that provides an average assessment of the amount of epigenetic information conveyed by
any given genomic subregion. When all methylation levels are equally likely (fully
disordered state), the NME takes its maximum value of 1 regardless of the number of CpG
sites in the genomic subregion, whereas it achieves its minimum value of 0 only when a
single methylation level is observed (perfectly ordered state).

[0078] The NME is an effective measure of methylation uncertainty that can be reliably
computed genome-wide from low coverage methylation data using the Ising model.
Moreover, distributions of NME values can be computed over selected genomic features
(e.g., CpG islands, island shores, shelves, open sea, exons, introns, gene promoters, and the
like), thus providing a genome-wide breakdown of methylation uncertainty showing lower or
higher levels of methylation uncertainty within said genomic features of a first genome as
compared to a second genome.

[0079]  Lpigenetic Distances

[0080] In another embodiment, the invention provides a method for performing epigenetic
analysis that includes the analysis of epigenetic discordance between a first genome and a
second genome (including but not limited to the analysis of epigenetic discordance between a
normal and a diseased state, such as cancer, with genomes produced from one or more
patients). The analysis includes: a) partitioning the first and the second genome into discrete
genomic regions; b) analyzing the methylation statuses within a genomic region of the first
and the second genomes by fitting The Model to methylation data in each genome; and ¢)
quantifying a difference and/or distance between the probability distributions and/or
quantities derived therefrom for the genomic region and/or its subregions and/or merged
super-regions between the first and second genomes; thereby performing epigenetic analysis.
[0081] To understand the relationship between epigenetic information and phenotypic
variation, it is possible to precisely quantify epigenetic discordance between pairs of genomic
samples using the Jensen-Shannon distance (JSD), which measures the dissimilarity between
the probability distributions of the methylation level within a genomic subregion across two
genomic samples. This distance is used to distinguish between genomic samples from normal
tissue and genomic samples from tumors, and more generally to distinguish between genomic

samples from diverse tissue types.
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[0082] The JSD is given by

1 — _
Dy = \/E[DKL (B, P)+Da (B2, F)], (20)

where P,V and P;* are the probability distributions of the methylation level within a
genomic subregion in the two genomes, P, =[P, + P,*]/2is the average distribution of the

methylation level, and

Dy (P,0)=Y P(Dlog, {@} (21)
z o)
is the relative entropy or Kullback-Leibler divergence. The JSD is a normalized distance
metric that takes values between 0 and 1, whereas the square JSD is the average information
a value of the methylation level drawn from one of the two probability distributions P or O
provides about the identity of the distribution. The JSD equals O only when the two

distributions are identical and reaches its maximum value of 1 if the two distributions do not

overlap and can, therefore, be perfectly distinguished from a single genomic sample.

[0083] To quantify the epigenetic distance between two genomic samples, the JSD values
between all corresponding pairs of genomic subregions are computed genome-wide, the
values are ordered in increasing order, and the smallest value in the list is determined such
that 90% of the distances is less than or equal to that value (90-th percentile).

[0084] To visualize epigenetic similarities or dissimilarities between genomic samples, the
epigenetic distances between pairs of genomic samples are computed, the distances are used
to construct a dissimilarity matrix, and a two-dimensional representation is employed using
multidimensional scaling (MDS) based on Kruskal’s non-metric method, which finds a two-
dimensional configuration of points whose inter-point distances correspond to the epigenetic
dissimilarities among the genomic samples.

[0085]  Classification of Methylation Status

[0086] In still another embodiment, the invention provides a method for performing
epigenetic analysis that includes detecting the skewness and/or bimodality of the probability
distribution of the methylation level and classifying the average methylation status of a
genomic region into discrete classes, including bistability. Detection and classification
includes: a) partitioning the genome into discrete genomic regions; b) analyzing the
methylation status within a genomic region by fitting The Model to methylation data; and ¢)

detecting the skewness and/or bimodality of the probability distribution of the methylation
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level and classifying the average methylation status of a genomic region into discrete classes,
including bistability, thereby performing epigenetic analysis.
[0087] Classifying the methylation status of a genome is an important part of methylation
analysis. The methylation status within a genomic subregion is effectively summarized by
classifying the genomic subregion into one of seven discrete classes: highly unmethylated,
partially unmethylated, partially methylated, highly methylated, mixed, highly mixed, and
bistable. Classification is based on calculating the probability distribution of methylation
level within the genomic subregion and on classifying the genomic subregion into one of the
seven classes by analyzing the shape of this distribution and detecting its skewness and/or
bimodality. Analysis comprises computing the probabilities

p,=Pr[0<L<0.25]

p, =Pr[0.25 <L <0.5]+0.5xPr[L =0.5]

Py =0.5xPr[L =0.5]+Pr[0.5 <L <0.75]
p, =Pr[0.75< L <1]

(22)

from the probability distribution 7, (/) of the methylation level, and classifying the genomic

subregion using the following scheme:

e highly unmethylated: if 0.6 <p +p,<1 & p >0.6

e partially unmethylated: if 0.6 <p,+p,<1 & 0<p <0.6
e partially methylated: if 0< p +p, <04 & 0<p, <06
e highly methylated: if 0<p,+p, <04 & p,>06

e mixed: if 04<p +p, <06 & 0<p,/(p,+p,)<04 &

0<p,/(p;+p,)<04
] 1 mixed: 1ir 0.4< p, + < 0. 4 < + <.
highly mixed: if 04<p +p, <06 & 04<p,/(p, +p,)<0.6 &

04<p,/(p;,+p,)<0.6
e bistable: if 04<p +p, <06 & 06<p, /(p,+p,)<1 &

06<p,/(p;+p)<1

It turns out that a small number of genomic subregions will not be classified by this scheme,
and these genomic subregions are ignored as far as classification of methylation status is
concerned.

[0088]  Classification of Methylation Uncertainty

[0089] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that includes classifying methylation uncertainty within a genomic region

into discrete classes. Classification includes: a) partitioning the genome into discrete
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genomic regions; b) analyzing the methylation status within a genomic region by fitting The
Model to methylation data; and c) classifying the methylation uncertainty of a genomic
region into discrete classes, thereby performing epigenetic analysis.

[0090] Classifying methylation uncertainty in a genome is another important part of
methylation analysis. Methylation uncertainty within a genomic subregion is effectively
summarized by classifying the genomic subregion into one of five discrete classes: highly
ordered, moderately ordered, weakly ordered/disordered, moderately disordered, highly
disordered. This classification is based on calculating the NME /% within the genomic
subregion and on classifying the genomic subregion and using the following scheme:

highly ordered: if 0</4<0.28

moderately ordered: if 0.28 </ <0.44
weakly ordered/disordered: if 0.44 <h <092
moderately disordered: if 0.92</<0.99
highly disordered: if 0.99<h <1

[0091]  Methylation Regions and Blocks

[0092] In another embodiment, the invention provides a method for performing epigenetic
analysis that includes the computation of methylation regions and methylation blocks.
Computation includes: a) partitioning the genome into discrete genomic regions; b) analyzing
the methylation status within a genomic region by fitting The Model to methylation data; c)
classifying the methylation status of genomic regions across the entire genome; and d)
grouping the classification results into methylation regions and methylation blocks, thereby
performing epigenetic analysis.

[0093] In addition to methylation analysis at the level of genomic units, it is of great
interest to analyze the methylation status of a genome at the level of genomic features, such
as gene promoters, enhancers and the like, as well as at the level of chromatin organization,
such as lamina associated domains (LADs), large organized chromatin K9-modifications
(LOCKSs), and the like. This is accomplished by generating coarser versions of classification
of the methylation status than at the level of genomic subregions.

[0094]  For analysis at the level of genomic features, a window of 5 genomic subregions (5
times 150 = 750 base pairs in length) is slided along a genome. At each location, the window
is labeled as being methylated if at least 75% of the genomic subregions intersecting the
window are respectively classified as being partially/highly methylated, whereas the window
is labeled as being unmethylated if at least 75% of the genomic subregions touching the

window are respectively classified as being partially/highly unmethylated. All methylated
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windows are then grouped together using the operation of union followed by removal of
regions overlapping with unmethylated windows, and the same is done for all unmethylated
windows. This process generates methylation regions (MRs), classified as methylated or
unmethylated, along the entire genome.

[0095] For analysis at the level of chromatin organization, a window of 500 genomic
subregions (500 times 150 = 75,000 base pairs in length) is slided along a genome. At each
location, the window is labeled as being methylated if at least 75% of the genomic subregions
intersecting the window are respectively classified as being partially/highly methylated,
whereas the window is labeled as being unmethylated if at least 75% of the genomic
subregions touching the window are respectively classified as being partially/highly
unmethylated. All methylated windows are then grouped together using the operation of
union followed by removal of regions overlapping unmethylated windows, and the same is
done for all unmethylated windows. This process generates methylation blocks (MBs),
classified as methylated or unmethylated, along the entire genome.

[0096]  Entropy Regions and Blocks

[0097] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that includes the computation of entropy regions and entropy blocks.
Computation includes: a) partitioning the genome into discrete genomic regions; b) analyzing
the methylation status within a genomic region by fitting The Model to methylation data; c)
classifying the methylation uncertainty of genomic regions across the entire genome; and d)
grouping the classification results into entropy regions and entropy blocks, thereby
performing epigenetic analysis.

[0098] In addition to methylation analysis at the level of genomic units, it is of great
interest to analyze methylation uncertainty of a genome at the level of genomic features, such
as gene promoters, enhancers and the like, as well as at the level of chromatin organization,
such as lamina associated domains (LADs), large organized chromatin K9-modifications
(LOCKSs), and the like. This is accomplished by generating coarser versions of classification
of the methylation uncertainty than at the level of genomic subregions.

[0099] For analysis at the level of genomic features, a window of 5 genomic subregions (5
times 150 = 750 base pairs in length) is slided along a genome. At each location, the window
is labeled as being ordered if at least 75% of the genomic subregions intersecting the window
are respectively classified as being moderately/highly ordered, whereas the window is labeled

as being disordered if at least 75% of the genomic subregions touching the window are
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respectively classified as being moderately/highly disordered. All ordered windows are then
grouped together using the operation of union followed by removal of regions overlapping
disordered windows, and the same is done for all disordered windows. This process generates
entropy regions (ERs), classified as ordered or disordered, along the entire genome.

[00100] For analysis at the level of genomic features, a window of 500 genomic subregions
(500 times 150 = 75,000 base pairs in length) is slided along a genome. At each location, the
window is labeled as being ordered if at least 75% of the genomic subregions intersecting the
window are respectively classified as being moderately/highly ordered, whereas the window
is labeled as being disordered if at least 75% of the genomic subregions touching the window
are respectively classified as being moderately/highly disordered. All ordered windows are
then grouped together using the operation of union followed by removal of regions
overlapping disordered windows, and the same is done for all disordered windows. This
process generates entropy blocks (EBs), classified as ordered or disordered, along the entire
genome.

[00101] Informational Properties of Epigenetic Maintenance

[00102] In another embodiment, the invention provides a method for performing epigenetic
analysis that includes the calculation of informational properties of epigenetic maintenance
through methylation channels. The analysis includes: a) partitioning the genome into discrete
genomic regions; b) analyzing the methylation status within a genomic region by fitting The
Model to methylation data; and ¢) quantifying the informational properties of epigenetic
maintenance (including but not limited to the capacity and relative dissipated energy of
methylation channels) of a genomic region and/or its subregions and/or merged super-
regions, thereby performing epigenetic analysis.

[00103] Stable conservation of the DNA methylation state is essential for epigenetic
memory maintenance. To quantify this process, a noisy binary communication channel is
employed as a model, which dynamically updates the methylation state at a CpG site and
leads to an information-theoretic perspective that enables a fundamental understanding of the
relationship between reliability of methylation maintenance, energy availability, and
methylation uncertainty.

[00104] Transmission of methylation information at the n-th CpG site of a genome is

modeled by a Markov chainX (0)>X 1H)—> .. >X (k-1)—>X (k)—> ..., where

2

X,(0)is the initial methylation state before any maintenance steps and X (k) is the

methylation state after & maintenance steps. In this case,

22



WO 2017/218908 PCT/US2017/037900

PrLX, (k) = 01 =[1-, (K)IPILY, (k=) = O+, () PrLX, (k-D=1]
PHLY, (k) = 1]= v, (F)PILX, (k ~1) = 0] +[1 ~, (OIPALX, (kD=1 )

where p (k) is the probability of demethylation associated with the n-th CpG site during the
k-th maintenance step, v, (k) is the probability of de novo methylation, 1-p (k) is the
probability of maintenance methylation, and 1-v (k) is the probability of lack of de novo
methylation. The MC can be specified by the probabilities {u (k),v, (k)} of demethylation
and de novo methylation. These probabilities are thought to be regulated by the maintenance
and de novo methyltransferases (DNMT1, DNMT3A, and DNMT3B), by active (TET) and
passive demethylation processes, as well as by other potential mechanisms, which are
anticipated to be constrained by the free energy available for methylation maintenance.
[00105] To characterize a MC from methylation data, appropriate values for the
probabilities {u (k),v, (k)} must be specified. Transmission of methylation information
during maintenance is in general a dynamic process during which these probabilities may
vary. To address this problem, it is assumed that subject to relatively invariant conditions, the
biochemical properties of methylation transmission change slowly during successive
maintenance steps so that the values of the parameters of the Ising model and the

probabilities{u (k),v, (k)} do not change appreciably. As a consequence, Equations (23)

approximately become
£,(0)=(A=v,)F, )+, L5, 1)
LM)=v,B0)+A-w )P 1)

where P (0) is the probability that the n-th CpG site is unmethylated and P (1) is the

24)

probability that the site is methylated. This is based on the assumption that methylation
information is transmitted in a stable manner through maintenance and that this process can
be modeled by a stationary stochastic process operating near equilibrium. One can then show

from Equations (24) that

v, B
u, 1-B@1) 2

The ratio A, =v, /p, between the probability of de novo methylation and the probability of

demethylation is referred to as the turnover ratio. This ratio is calculated directly from

methylation data using Equation (25) with the probability P (1) of the n-th CpG site to be

methylated being computed from the Ising model using marginalization.
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[00106] The amount of methylation uncertainty associated with the input or output of a MC
at a particular CpG site n is given by the CG entropy (CGE)

S, ==[1 =£,M]log,[1 ~£,M)] £ Dlog,F, (1), (26)
where P (1)is the probability that the CpG site is methylated. The CGE is calculated directly
from methylation data using Equation (26) with the probability P (1) of the n-th CpG site to

be methylated being computed from the Ising model using marginalization.
[00107] Only a certain amount of methylation information can be transmitted by a MC at a
CpG site n of a genome, with the maximum possible amount given by the information
capacity (IC) of the MC, given by

C, =max, ,, [ (X X), (27)

where / (X', X) is the mutual information between the input and the output X' of the MC,
and P (1) is the probability that the CpG site is methylated. Although an exact formula can
be derived for C , implementation of this formula requires that the probabilities {1 ,v } of

demethylation and de novo methylation are known or estimated at each CpG site of a
genome, which is not possible using currently available technologies. However, it can be

shown that the IC of a MC can be approximately calculated by:

- 1-052[w(%, /A+%))] A, /A+2,)], whenk, <1

1 (28)
1-0.52[ w(A, /(A+2,)) ] [1/(A+2,)],  when), >1

2

where A, is the turnover ratio at the n-th CpG site and y(x) is the function
y(x)=—xlog,(x)—(1-x)log,(1—-x). The IC is calculated by computing the turnover ratio
A, directly from methylation data and using Equation (28).

[00108] Information processing by a MC and, as a matter of fact, by any biological system,
requires consumption of free energy. An amount of work is needed to correctly transmit the
methylation state during maintenance and this consumes energy that is dissipated to the
surroundings in the form of heat. Due to stochastic fluctuations in the underlying
biochemistry, the methylation system always drifts towards imperfect transmission of
information, characterized by a non-negligible probability of error.

[00109] Consistent with general engineering principles, it is postulated in this disclosure

that the (minimum) energy £ dissipated during maintenance of the methylation state at the
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n-th CpG site of a genome is approximately related to the probability of transmission error

by

En ~ _kB]:’l log Tcn > (29)
where k1is Boltzmann’s constant and 7, is the absolute temperature at the CpG site. Since

the proportionality factor is not known in this relationship, the relative dissipated energy
(RDE)
E, _ logm,

n

g =—21L = =—loe, & 30
n E;lmn 10g2 g2 n ( )

is used as a measure of reliability in methylation transmission, where /™"~ —k,7 log2is the

least possible energy dissipation. This implies that higher reliability (lower probability of
error) can only be achieved by increasing the amount of free energy available for methylation
maintenance, whereas reduction in free energy can lead to lower reliability (higher
probability of error). Notably, it is not physically possible for a MC to achieve exact
transmission of the methylation state (zero probability of error) since this would require an
unlimited amount of available free energy.

[00110] Although an exact formula can be derived for €, , implementation of this formula
requires that the probabilities {u ,v, } of demethylation and de novo methylation are known

or estimated at each CpG site of a genome, which is not possible using currently available
technologies. However, it can be shown that the RDE of a MC can be approximately
calculated by:

476+1log,[(1+X,)/(2X,)], when}, <1
g =
" 14.76+1og,[(1+1,)/2], when A >1

G

where A, is the turnover ratio at the n-th methylation site. The RDE is calculated by
computing the turnover ratio A, directly from methylation data and using Equation (31).
[00111] ICs, RDEs, and CGEs are effective measures of the informational behavior of
epigenetic maintenance that can be reliably computed genome-wide from low coverage
methylation data using the Ising model. Moreover, distributions of IC, RDE, and CGE values
can be computed over selected genomic features (e.g., CpG islands, island shores, shelves,
open sea, exons, introns, gene promoters, and the like), thus providing a genome-wide

breakdown of methylation uncertainty showing different aspects of the informational
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properties of epigenetic maintenance within said genomic features of a first genome as
compared to a second genome.

[00112] Epigenetic Sensitivity

[00113] In still another embodiment, the invention provides a method for performing
epigenetic analysis that includes computing the sensitivity to perturbations of
informational/statistical properties (including but not limited to entropy) of the methylation
system within a genomic region and/or its subregions and/or merged super-regions. The
analysis includes: a) partitioning a genome into discrete genomic regions; b) analyzing the
methylation status within a genomic region by fitting The Model to methylation data; and ¢)
quantifying the sensitivity to perturbations of informational/statistical properties (including
but not limited to entropy) of the methylation system within the genomic region and/or its
subregions and/or merged super-regions, thereby performing epigenetic analysis.

[00114] Methylation stochasticity, as quantified by the Ising model used in this disclosure,
is influenced by the values of the parameters 0=[a oo’ 3 y]within each genomic
subregion. Environmental and biochemical conditions may influence these values and thus
regulate the level of methylation stochasticity, for example, by increasing or decreasing the
entropy of methylation. An important aspect of methylation analysis is to determine the
sensitivity of informational/statistical properties of the methylation system to perturbations of
methylation parameters.

[00115] In this disclosure, a measure is used to quantify the effect of variations in
parameters 0 on the NME within a genomic subregion of a genome. It is assumed that,
within a genomic subregion, the Ising parameters fluctuate around their estimated values 0
by a random amount G x0, where G is a random variable that follows a zero-mean Gaussian
distribution with small standard deviation o . In this case, it can be shown that the standard

deviation &, of the NME within the genomic subregion is approximately related to the

standard deviation ¢ of the Ising parameters by ¢, = nxo, where

_ 5, ‘c%(g)

?: og

(32)

2

g=0

with A(g) being the NME within the genomic subregion when the values of the Ising
parameters are given by (1+ g)x0. Clearly, a small value of n implies that small variations
in parameter values result in a small variation in the NME, whereas a large value of n

implies that small variations in parameter values result in a large variation in NME. For this
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reason, 1 is used to quantify the sensitivity of NME within a genomic subregion to

perturbations. This measure is referred to as the entropic sensitivity index (ESI).

[00116] Calculating the ESI requires approximating the derivative in Equation (32). This is

accomplished by using a finite-difference derivative approximation, in which case m is

approximated by

g L0 )|
w

(33)

where w is a small number, which can be set equal to 0.01. Equation (33) is implemented by

computing the NME /(0) within a genomic subregion with parameter values 0, obtained by
estimation from methylation data, as well as the NME /(0) within the genomic subregion
with perturbed parameter values (1+w)x0.

[00117] Discovering Important Genomic Features Occult to Mean Methylation Analysis
[00118] In another embodiment, the invention provides a method for performing epigenetic
analysis that identifies important genomic features (including but not limited to gene
promoters) with potentially important biological functions (including but not limited to
regulation of normal versus diseased states, such as cancer) occult to mean-based analysis,
while exhibiting higher-order statistical differences (including but not limited to entropy or
information distances) in the methylation states between a first genome and a second genome.
Identification includes: a) partitioning the first and second genomes into discrete genomic
regions; b) analyzing the methylation status within a genomic region for the first and second
genome by fitting The Model to methylation data in each genome; and c) identifying genomic
features (including but not limited to gene promoters) with relatively low mean differences
but relatively high epigenetic differences in higher-order statistical quantities (including but
not limited to entropy or informational distances) between the first and the second genome,
thereby performing epigenetic analysis.

[00119] Current methods for the analysis of methylation are based on identifying genomic
features for which differences in mean methylation are observed between a first and a second
genome. However, identifying higher-order statistical differences in methylation between a
first and a second genome can result in discovering genomic features with potentially
important function that have not been previously found using mean-based methylation

analysis.
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[00120] To this end, a master ranked list of genomic features is constructed, with genomic
features located higher in the master rank list being associated with relatively low mean-
based differences in methylation but relatively high epigenetic differences between a first and
a second genome. To form the master list, a mean-based score is calculated for each genomic
feature and this score is then used to form a first rank list of genomic features, with genomic
features associated with larger mean-based scores being located higher in the first rank list.
Subsequently, a higher-order statistical score based on the JSD is calculated for each genomic
feature and this score is then used to form a second rank list of genomic features, with
genomic features associated with larger JSD-based scores being located higher in the second
rank list.

[00121] To score a genomic feature in terms of mean methylation, the absolute difference
between the MMLs observed for the first and the second genome are calculated for each
genomic subregion that intersects the genomic feature, and a score is formed by averaging all
such absolute differences, where missing data are accounted for setting the MML value equal
to 0. To score a genomic feature using the JSD, the JSD is calculated for each genomic
subregion that intersects the genomic feature, and a score is formed by averaging all such
JSD values, where missing data are accounted for setting the JSD value equal to 0.

[00122] Using the first and the second rank lists, each genomic feature is further scored
using the ratio of its ranking in the second rank list to its ranking in the first rank list. These
scores are then used to form the master rank list with genomic features associated with higher
scores being located lower in the master rank list. Genomic features located near the top of
the master rank list are characterized by high JSD values but little difference in mean
methylation level, indicating that the probability distributions of methylation level within
these genomic features are different between a first and a second genome, although these
probability distributions have similar means.

[00123] Bistability and Biological Function

[00124] In yet another embodiment, the invention provides a method for performing
epigenetic analysis that identifies relationships between bistability in methylation and
genomic features (including but not limited to gene promoters) with potentially important
biological function. The analysis includes: a) partitioning the genomes of one or more
genomic samples into discrete genomic regions; b) analyzing the methylation status within a
genomic region by fitting The Model to methylation data; and c) identifying genomic features

(including but not limited to gene promoters) associated with high amounts of bistability in
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their methylation status in one or more genomic samples and relating them to genomic
features of potentially important biological function, thereby performing epigenetic analysis.

[00125] As a direct consequence of known results of statistical physics that relate the
magnetization and covariance of the one-dimensional Ising model with its underlying
parameters, it was postulated that methylation within any given genomic subregion of a
genome can be subject to a form of phase transition. To this end, it was found that DNA
methylation can be subject to a bistable behavior that manifests itself as a coexistence of two
distinct epigenetic phases: a fully methylated and a fully unmethylated phase. This result was
attributed to a reallocation of the ground states (the states of lowest potential) of the PEL

V. (1) of the methylation level within the genomic subregion, given by
V() =log[maxiF; (u)}]-log £, (1), (34)

caused by a biochemically-induced deformation of its topographic surface, which results in a
bimodal probability distribution for the methylation level over the fully methylated and the
fully unmethylated states.

[00126] To investigate whether bistability in methylation might be associated with
important biological function, its possible enrichment in selected genomic features (e.g., CpG
islands, island shores, shelves, open sea, exons, introns, gene promoters, and the like) is
examined. To evaluate enrichment of bistability in a particular genomic feature, two binary
(0-1) random variables R and B are defined for each genomic subregion of a genome, such
that R =1, if the subregion overlaps the genomic feature, and B = 1, if the genomic subregion
is bistable. The null hypothesis that R and B are statistically independent is then tested by
applying the y’-test on the 2x 2 contingency table for R and B and the odds ratio (OR) is
calculated as a measure of enrichment.

[00127] To evaluate possible association between bistability and genomic features
associated with a specific biological phenomenon, a reference set of genomic features is
considered (e.g., all gene promoters in the genome) and one or more genomic samples are
employed. For each genomic sample, a score is computed for a genomic feature in the
reference set, by calculating the fraction of base pairs within the genomic feature that are
inside genomic subregions being classified as bistable in the genomic sample by the method
used to classify the methylation status of a genome. For each genomic feature in the reference
set, a bistability score is then calculated by averaging all scores obtained for the genomic
feature using one or more genomic samples. The bistability scores are then used to form a

rank list of the genomic features in the reference set in order of decreasing bistability.
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Subsequently, a test set of genomic features associated with a specific biological
phenomenon is considered and a p-value is then calculated for the test set to be ranked higher
in the bistability rank list of the reference set just by chance.

[00128] To do so, a p-value is first computed for each genomic feature in the test set to be
ranked higher in the bistability rank list of the reference set just by chance by testing against
the null hypothesis that the genomic feature appears at a random location in the bistability
rank list. The rank of the genomic feature is used as the test statistic which, under the null
hypothesis, follows a uniform distribution. This implies that the p-value of the genomic
feature in the test set can be calculated by dividing the ranking of the genomic feature in the
bistability rank list by the total number of genomic features in the list. The p-value for the test
set to be ranked higher in the bistability rank list of the reference set just by chance is finally
calculated by combining the individual p-values associated with the genomic features in the
test set using Fisher’s meta-analysis method.

[00129] TAD Boundary Detection

[00130] In another embodiment, the invention provides a method for performing epigenetic
analysis that detects boundaries of topologically associating domains (TADs) of the genome
without performing chromatin experiments. Detection includes: a) partitioning the genomes
of one or more genomic samples into discrete genomic regions; b) analyzing the methylation
status within a genomic region of each genome by fitting The Model to methylation data; and
¢) locating TAD boundaries, thereby performing epigenetic analysis.

[00131] Topologically associating domains (TADs) are structural features of the chromatin
that are highly conserved across tissue types and species. Their importance stems from the
fact that loci within these domains tend to frequently interact with each other, with much less
frequent interactions being observed between loci within adjacent domains. Genome-wide
detection of TAD boundaries is an essential but experimentally challenging task.

[00132] The NME can be effectively used to computationally locate TAD boundaries from
one or more genomic samples.

[00133] For genomic sample, ordered and disordered entropy blocks (EBs) are computed
genome-wide from WGBS data by employing the method for calculating entropy regions and
blocks. Regions of the genome predictive of the location of TAD boundaries are identified by
detecting the unclassified genomic space between successive ordered and disordered EBs or
between successive disordered and ordered EBs. For example, if an ordered EB located at

chrl: 1-1000 were followed by a disordered EB at chrl: 1501-2500, then chrl: 1001-1500 is
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deemed to be a “predictive region”. To reduce false identification of predictive regions,
successive EBs of the same type are not considered, since the genomic space between two
such EBs may be due to missing data or other unpredictable factors. To control the resolution
of locating a TAD boundary, only unclassified genomic spaces smaller than 50,000 base pairs
are considered. This results in a resolution of an order of magnitude smaller than the mean
TAD size (~900-kb).

[00134] “Predictive regions” obtained from methylation analysis of more than one genomic
sample are subsequently combined. The “predictive coverage” of each base pair is calculated
by counting the number of “predictive regions” containing the base pair. “Predictive regions”
are then combined by grouping consecutive base pairs whose predictive coverage is at least 4.
[00135] Prediction of Fuchromatin and Heterochromatin Domains

[00136] In still another embodiment, the invention provides a method for performing
epigenetic analysis that predicts euchromatin/heterochromatin domains (including but not
limited to compartments A and B of the three-dimensional organization of a genome) from
methylation data. Prediction includes: a) partitioning the genome into discrete genomic
regions; b) analyzing the methylation status within a genomic region by fitting The Model to
the methylation data; and c¢) combining results from multiple regions to estimate
euchromatin/heterochromatin domains (including but not limited to A/B compartment
organization) using a regression or classification model trained on data for which
euchromatin/heterochromatin domain information has been previously measured or
estimated, thereby performing epigenetic analysis.

[00137] The three-dimensional spatial organization of the genome allows for regions that
are linearly located far from each other to come into proximity and reside in the same
regulatory environment. Recent work seeking to understand this organization has
demonstrated the existence of cell-type specific compartments A and B, which are known to
be associated with gene-rich transcriptionally active open chromatin and gene-poor
transcriptionally inactive closed chromatin, respectively.

[00138] Despite the fact that identifying compartments A/B is becoming an increasingly
important aspect of fully characterizing the epigenome of a given genomic sample, the
availability of such data is limited by cost, technical difficulties, and the need for sizable
amounts of input material with intact nuclei required by conformation capture technologies

such as Hi-C. Furthermore, conformation capture measurements are not possible on frozen
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tissue or DNA. This is not a limitation of the method discussed in this disclosure, since
methylation data is readily captured from frozen samples using methods known in the art.
[00139] Computational prediction methods using data obtained by more routine
experimental methods show promise in addressing this problem. Local information-theoretic
properties of the methylome can be effectively used to computationally predict compartments
A/B in the genome of any given genomic sample by a machine learning approach based on a
random forest regression model applied directly to models built from WGBS data.

[00140] To do so, the entire genome is partitioned into discrete genomic bins of 100,000
base pairs each (to match training data) and 8 information-theoretic features of methylation
maintenance are computed within each genomic bin from WGBS data, which include the
median values and interquartile ranges of IC, RDE, NME and MML.

[00141] A random forest model with 1000 trees is trained on data consisting of input
WGBS data that are matched to output chromosome conformational capture data, such as Hi-
C, and/or measured or estimated compartment A/B data for one or more genomic samples.
Values of the regression/classification feature vector are computed from the input WGBS
data and all feature/output pairs are then used to learn a binary discriminant function that
maps input feature vector values to known output compartment A/B classification.

[00142] The trained random forest model is subsequently applied on a genomic sample.
The genomic sample is first partitioned into discrete genomic bins. The value of the feature
vector is then calculated from WGBS data for each genomic bin, and the genomic bin is
classified as being in compartment A or B by using the binary discriminant function learned
during training. Since regression takes into account only information within a 100,000 base
pair bin, predicted A/B values are averaged using a three-bin smoothing window and the
genome-wide median value is removed from the overall A/B signal.

[00143] The accuracy of the method depends on the training step. Availability of more
chromosome conformational capture and high quality measured or estimated compartment
A/B data is expected to result in better training, thus increasing classification performance.
[00144] SAMPLES

[00145] In various embodiments, a genome is present in a biological sample taken from a
subject. The biological sample can be virtually any biological sample, particularly a sample
that contains DNA from the subject. The biological sample can be a germline, stem cell,
reprogrammed cell, cultured cell, or tissue sample which contains 1000 to about 10,000,000

cells. However, it is possible to obtain samples that contain smaller numbers of cells, even a
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single cell, in embodiments that utilize an amplification protocol such as PCR. The sample
need not contain any intact cells, so long as it contains sufficient biological material (e.g.,
DNA) to assess methylation status within one or more regions of the genome. The sample
might also contain chromatin for analysis of euchromatin and heterochromatin by ATAC-seq
or similar methods.

[00146] In some embodiments, a biological or tissue sample can be drawn from any tissue
that includes cells with DNA. A biological or tissue sample may be obtained by surgery,
biopsy, swab, stool, or other collection method. In some embodiments, the sample is derived
from blood, plasma, serum, lymph, nerve-cell containing tissue, cerebrospinal fluid, biopsy
material, tumor tissue, bone marrow, nervous tissue, skin, hair, tears, fetal material,
amniocentesis material, uterine tissue, saliva, feces, or sperm. Methods for isolating PBLs
from whole blood are well known in the art.

[00147] As disclosed above, the biological sample can be a blood sample. The blood
sample can be obtained using methods known in the art, such as finger prick or phlebotomy.
Suitably, the blood sample is approximately 0.1 to 20 ml, or alternatively approximately 1 to
15 ml with the volume of blood being approximately 10 ml. Smaller amounts may also be
used, as well as circulating free DNA in blood. Microsampling and sampling by needle
biopsy, catheter, excretion or production of bodily fluids containing DNA are also potential
biological sample sources.

[00148] In the present invention, the subject is typically a human but also can be any
species with methylation marks on its genome, including, but not limited to, a dog, cat,
rabbit, cow, bird, rat, horse, pig, or monkey.

[00149] METHYLATION STATUS

[00150] While the present invention exemplifies use of WGBS for methylation analysis, in
fact many other methods for performing nucleic acid sequencing or analyzing methylation
status or chromatin status may be utilized including nucleic acid amplification, polymerase
chain reaction (PCR), bisulfite pyrosequencing, nanopore sequencing, 454 sequencing,
insertion tagged sequencing. In embodiments, the methodology of the disclosure utilizes
systems such as those provided by Illumina, Inc, (HiSeq™ X10, HiSeq™ 1000, HiSeq™
2000, HiSeq™ 2500, Genome Analyzers™, MiSeq™™ systems), Applied Biosystems Life
Technologies (ABI PRISM™ Sequence detection systems, SOLiD™ System, Ion PGM™
Sequencer, ion Proton™ Sequencer). Nucleic acid analysis can also be carried out by

systems provided by Oxford Nanopore Technologies (GridiON™, MiniON™) or Pacific
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Biosciences (Pacbio™ RS II). Sequencing can also be carried out by standard Sanger dideoxy
terminator sequencing methods and devices, or on other sequencing instruments, further as
those described in, for example, United States patents and patent applications U.S. Pat. Nos.
5,888,737, 6,175,002, 5,695,934, 6,140,489, 5,863,722, 2007/007991, 2009/0247414,
2010/01 11768 and PCT application WO2007/123744 each of which is incorporated herein
by reference in its entirety. Importantly, in embodiments, sequencing may be performed
using any of the methods described herein with, or without, bisulfite conversion.

[00151] Chromatin can be analyzed using similar analytical methodology after ATAC
sequencing and related methods. As illustrated in the Examples herein, analysis of
methylation can be performed by bisulfite genomic sequencing. Bisulfite treatment modifies
DNA converting unmethylated, but not methylated, cytosines to uracil. Bisulfite treatment
can be carried out using the METHYLEASY ™ bisulfite modification kit (Human Genetic
Signatures).

[00152] In some embodiments, bisulfite pyrosequencing, which is a sequencing-based
analysis of DNA methylation that quantitatively measures multiple, consecutive CpG sites
individually with high accuracy and reproducibility may be used. This can be done by whole
genome bisulfite sequencing or by MiSeq™ using primers for such analysis.

[00153] For bisulfite sequencing, 1% unmethylated Lambda DNA (Promega, cat # D1521)
can be spiked-in to monitor bisulfite conversion efficiency. Genomic DNA was fragmented
to an average size of 350bp using a Covaris S2 sonicator (Woburn, MA). Bisulfite
sequencing libraries can be constructed using the Illumina TruSeq™ DNA Library
Preparation kit protocol (primers included) or NEBNext™ Ultra (NEBNext'™ Multiplex
Oligos for Illumina module, New England BioLabs, cat # E7535L) according to the
manufacturer's instructions. Both protocols use a Kapa HiFi Uracil+ PCR system (Kapa
Biosystems, cat # KK2801).

[00154] For Illumina TruSeq™ DNA libraries, gel-based size selection can be performed to
enrich for fragments in the 300-400bp range. For NEBNext' ™ libraries, size selection can be
performed using modified AMPure XP™ bead ratios of 0.4x and 0.2x, aiming also for an
insert size of 300-400bp. After size-selection, the samples can be bisulfite converted and
purified using the EZ DNA™ Methylation Gold Kit (Zymo Research, cat # D5005). PCR-
enriched products can be cleaned up using 0.9X AMPure XP™ beads (Beckman Coulter, cat
# A63881).
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[00155] Final libraries can be run on the 2100 Bioanalyzer ™ (Agilent, Santa Clare, CA,
USA) using the High-Sensitivity DNA assay for quality control purposes. Libraries can be
quantified by qPCR using the Library Quantification Kit for Illumina sequencing platforms
(cat # KK4824, KAPA Biosystems, Boston, USA), using 7900HT Real Time PCR System ™
(Applied Biosystems) and sequenced on the Illumina HiSeq2000 (2x100bp read length, v3
chemistry according to the manufacturer’s protocol with 10x PhiX spike-in) and
HiSeq2500™ (2x125bp read length, v4 chemistry according to the manufacturer’s protocol
with 10x PhiX spike-in).

[00156] Altered methylation can be determined by identifying a detectable difference in
methylation. For example, hypomethylation can be determined by identifying whether after
bisulfite treatment a uracil or a cytosine is present a particular location. If uracil is present
after bisulfite treatment, then the residue is unmethylated. Hypomethylation is present when
there is a measurable decrease in methylation.

[00157] For WGBS, methylation calling can be performed using FASTQ files processed
using Trim Galore! v0.3.6 (Babraham Institute) to perform single-pass adapter- and quality-
trimming of reads, as well as running FastQC v0.11.2 for general quality check of sequencing
data. Reads can then aligned be aligned to the hg19/GRCh37 or other human or other species
builds using Bismark v0.12.3 and Bowtie2 v2.1.0 or comparable and/or updated software.
Separate mbias plots for read 1 and read 2 can be generated by running the Bismark
methylation extractor using the “mbias only” flag. These plots can be used to determine how
many bases to remove from the 5' end of reads. BAM files can subsequently be processed
with Samtools v0.1.19 for sorting, merging, duplicate removal and indexing, as well as for
methylation base calling.

[00158] In an alternative embodiment, the method for analyzing methylation status can
include amplification after oligonucleotide capture, MiSeq™ sequencing, or MinTON™ long
read sequencing without bisulfite conversion.

[00159] DIAGNOSTICS

[00160] The methods described herein may be used in a variety of ways to predict,
diagnose and/or monitor diseases, such as cancer. Further, the methods may be utilized to
distinguish various cell types from one another as well as determine cellular age. These
aspects may be accomplished by performing the respective epigenetic analysis method for a
test genome and comparing the obtained epigenetic measure to a corresponding known

measure for a reference genome; i.e., a measure for a known cell type or disease.
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[00161] COMPUTER SYSTEMS

[00162] The present invention is described partly in terms of functional components and
various processing steps. Such functional components and processing steps may be realized
by any number of components, operations and techniques configured to perform the specified
functions and achieve the various results. For example, the present invention may employ
various biological samples, biomarkers, elements, materials, computers, data sources, storage
systems and media, information gathering techniques and processes, data processing criteria,
statistical analyses, regression analyses and the like, which may carry out a variety of
functions. In addition, although the invention is described in the medical diagnosis context,
the present invention may be practiced in conjunction with any number of applications,
environments and data analyses; the systems described herein are merely exemplary
applications for the invention.

[00163] Methods for epigenetic analysis according to various aspects of the present
invention may be implemented in any suitable manner, for example using a computer
program operating on the computer system. An exemplary epigenetic analysis system,
according to various aspects of the present invention, may be implemented in conjunction
with a computer system, for example a conventional computer system comprising a processor
and a random access memory, such as a remotely-accessible application server, network
server, personal computer or workstation. The computer system also suitably includes
additional memory devices or information storage systems, such as a mass storage system
and a user interface, for example a conventional monitor, keyboard and tracking device. The
computer system may, however, comprise any suitable computer system and associated
equipment and may be configured in any suitable manner. In one embodiment, the computer
system comprises a stand-alone system. In another embodiment, the computer system is part
of a network of computers including a server and a database.

[00164] The software required for receiving, processing, and analyzing biomarker
information may be implemented in a single device or implemented in a plurality of devices.
The software may be accessible via a network such that storage and processing of
information takes place remotely with respect to users. The epigenetic analysis system
according to various aspects of the present invention and its various elements provide
functions and operations to facilitate biomarker analysis, such as data gathering, processing,
analysis, reporting and/or diagnosis. The present epigenetic analysis system maintains

information relating to methylation and samples and facilitates analysis and/or diagnosis, For
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example, in the present embodiment, the computer system executes the computer program,
which may receive, store, search, analyze, and report information relating to the epigenome.
The computer program may comprise multiple modules performing various functions or
operations, such as a processing module for processing raw data and generating supplemental
data and an analysis module for analyzing raw data and supplemental data to generate a
disease status model and/or diagnosis information.

[00165] The procedures performed by the epigenetic analysis system may comprise any
suitable processes to facilitate epigenetic analysis and/or disease diagnosis. In one
embodiment, the epigenetic analysis system is configured to establish a disease status model
and/or determine disease status in a patient. Determining or identifying disease status may
comprise generating any useful information regarding the condition of the patient relative to
the disease, such as performing a diagnosis, providing information helpful to a diagnosis,
assessing the stage or progress of a disease, identifying a condition that may indicate a
susceptibility to the disease, identify whether further tests may be recommended, predicting
and/or assessing the efficacy of one or more treatment programs, or otherwise assessing the
disease status, likelihood of disease, or other health aspect of the patient.

[00166] The epigenetic analysis system may also provide various additional modules
and/or individual functions. For example, the epigenetic analysis system may also include a
reporting function, for example to provide information relating to the processing and analysis
functions. The epigenetic analysis system may also provide various administrative and
management functions, such as controlling access and performing other administrative
functions.

[00167] The epigenetic analysis system suitably generates a disease status model and/or
provides a diagnosis for a patient based on raw biomarker data and/or additional subject data
relating to the subjects. The epigenetic data may be acquired from any suitable biological
samples.

[00168] The following example is provided to further illustrate the advantages and features
of the present invention, but it is not intended to limit the scope of the invention. While this
example is typical of those that might be used, other procedures, methodologies, or

techniques known to those skilled in the art may alternatively be used.
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EXAMPLE
EPIGENOME ANALYSIS USING POTENTIAL ENERGY LANDSCAPES TO REVEAL
THE INFORMATION-THEORETIC NATURE OF THE EPIGENOME

[00169] In this example, using well-grounded biological assumptions and principles of
statistical physics and information theory, potential energy landscapes are derived from
whole genome bisulfite sequencing data that allow quantification of genome-wide
methylation stochasticity and epigenetic differences using Shannon’s entropy and the Jensen-
Shannon distance. This example details the discovery of a “developmental wheel” of germ
cell lineages and the identification of developmentally critical genes characterized by low
differential mean methylation but high epigenetic differences, a relationship between
bistability in methylation level and imprinting, the relationship between entropy and
information-theoretic properties of methylation channels and chromatin structure, and the
importance of quantifying environmental influences on epigenetic stochasticity using
entropic sensitivity analysis. The example illustrates the main capabilities of the invention,
which can be used to achieve a fundamental understanding of the information-theoretic
nature of the epigenome by provided a powerful computational methodology and a
computing system for the analysis and classification of epigenetic information in health and
disease.

[00170] EXPERIMENTAL MATERIALS AND METHODS

[00171] Whole Genome Bisulfite Sequencing Samples

[00172] Previously published WGBS data corresponding to 10 genomic samples are used,
which include H1 human embryonic stem cells, normal and matched cancer cells from colon
normal and cancer, cells from liver, keratinocytes from skin biopsies of sun protected sites
from younger and older individuals, and EBV-immortalized lymphoblasts (Supplementary
Table 1 below). Additional WGBS data corresponding to 25 genomic samples were also
generated that include normal and matched cancer cells from liver and lung, pre-frontal
cortex, cultured HNF fibroblasts at 5 passage numbers, and sorted CD4™ T-cells from
younger and older individuals, all with IRB approval (Supplementary Table 1 below). Pre-
frontal cortex samples were obtained from the University of Maryland Brain and Tissue
Bank, which is a Brain and Tissue Repository of the NIH NeuroBioBank. Peripheral blood
mononuclear cells (PBMCs) were isolated from peripheral blood collected from healthy
subjects and separated by using a Ficoll density gradient separation method (Sigma-Aldrich).
CD4" T-cells were subsequently isolated from PBMCs by positive selection with MACS
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magnetic bead technology (Miltenyi). Post-separation flow cytometry assessed the purity of
CD4" T-cells to be at 97%. Primary neonatal dermal fibroblasts were acquired from Lonza
and cultured in Gibco’s DMEM supplemented with 15% FBS (Gemini BioProducts).

[00173] DNA Isolation

[00174] Genomic DNA was extracted from samples using the Masterpure’™ DNA
Purification Kit (Epicentre). High molecular weight of the extracted DNA was verified by
running a 1% agarose gel and by assessing the 260/280 and 260/230 ratios of samples on
Nanodrop. Concentration was quantified using Qubit 2.0 Fluorometer ™ (Invitrogen).

[00175] Generation of WGBS Libraries

[00176] For every sample, 1% unmethylated Lambda DNA (Promega, cat # D1521) was
spiked-in to monitor bisulfite conversion efficiency. Genomic DNA was fragmented to an
average size of 350 base pairs using a Covaris S2™ sonicator (Woburn, MA). Bisulfite
sequencing libraries were constructed using the Illumina TruSeq"™ DNA Library Preparation
kit protocol (primers included) or NEBNext Ultra™ (NEBNext Multiplex Oligos for Illumina
module, New England BioLabs, cat # E7535L) according to the manufacturer’s instructions.
Both protocols use a Kapa HiFi Uracil+ PCR system (Kapa Biosystems, cat # KK2801).
[00177] For Illumina TruSeq™ DNA libraries, gel-based size selection was performed to
enrich for fragments in the 300-400 base pair range. For NEBNext ™ libraries, size selection
was performed using modified AMPure XP™ bead ratios of 0.4x and 0.2x, aiming also for
an insert size of 300-400 base pairs. After size-selection, the samples were bisulfite converted
and purified using the EZ DNA™ Methylation Gold Kit (Zymo Research, cat # D5005).
PCR-enriched products were cleaned up using 0.9x AMPure XP™ beads (Beckman Coulter,
cat # A63881).

[00178] Final libraries were run on the 2100 Bioanalyzer™ (Agilent, Santa Clare, CA,
USA) using the High-Sensitivity DNA assay for quality control purposes. Libraries were then
quantified by qPCR using the Library Quantification Kit™ for Illumina sequencing platforms
(cat # KK4824, KAPA Biosystems, Boston, USA), using 7900HT Real Time PCR System ™
(Applied Biosystems) and sequenced on the Illumina HiSeq2000™ (2x 100 base pair read
length, v3 chemistry according to the manufacturer’s protocol with 10xPhiX spike-in) and
HiSeq2500™ (2x 125 base pair read length, v4 chemistry according to the manufacturer’s
protocol with 10 x PhiX spike-in).

[00179] Quality Control and Alignment
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[00180] FASTQ files were processed using Trim Galore! ™ v0.3.6 (Babraham Institute) to
perform single-pass adapter- and quality-trimming of reads, as well as running FastQC™
v0.11.2 for general quality check of sequencing data. Reads were then aligned to the
hg19/GRCh37 genome using Bismark ™ v0.12.3 and Bowtie2 ™ v2.1.0. Separate mbias plots
for read 1 and read 2 were generated by running the Bismark methylation extractor using the
“mbias_only” flag. These plots were used to determine how many bases to remove from the
5" end of reads. The number was generally higher for read 2, which is known to have poorer
quality. The amount of 5' trimming ranged from 4 to 25 base pairs, with most common values
being around 10 base pairs. BAM files were subsequently processed with Samtools™ v0.1.19
for sorting, merging, duplicate removal, and indexing.

[00181] FASTQ files associated with the EBV sample were processed using the same
pipeline described for the in-house samples. BAM files associated with some colon and liver
normal samples, obtained from [Ziller, M. J. et al. Nature 500, 477-481 (2013)], could not be
assessed using the Bismark'™ methylation extractor due to incompatibility of the original
alignment tool (MAQ) used on these samples. Therefore, the advice of Ziller et al. was
followed and 4 base pairs were trimmed from all reads in those files.

[00182] Genomic Features and Annotations

[00183] Files and tracks bear genomic coordinates for hgl9. CpG islands (CGIs) were
obtained from [Wu, H. et al. Biostatistics 11, 499-514 (2010)]. CGI shores were defined as
sequences flanking 2000 base pairs on either side of islands, shelves as sequences flanking
2000 base pairs on either side of shores, and open seas as everything else. The R
Bioconductor™ package “TxDb.Hsapiens.UCSC.hg19.knownGene” was used for defining
exons, introns and transcription start sites (TSSs). Promoter regions were defined as
sequences flanking 2000 base pairs on either side of TSSs. A curated list of enhancers was
obtained from the VISTA™ Enhancer Browser (http://enhancer.lbl.gov) by downloading all
human (hgl9) positive enhancers that show reproducible expression in at least three
independent transgenic embryos. Hypomethylated blocks (colon and lung cancer) were
obtained from [Timp, W. et al. Genome Med. 6, 61 (2014)]. H1 stem cell LOCKs and Human
Pulmonary Fibroblast (HPF) LOCKs were obtained from [Wen, B. et al. BMC Genomics 13,
566 (2012)]. LAD tracks associated with Tig3 cells derived from embryonic lung fibroblasts
were obtained from [Guelen, L. et al. Nature 453, 948-951 (2008)]. Gene bodies were
obtained from the UCSC genome browser. H1 and IMR90 TAD boundaries were obtained
from http://chromosome.sdsc.edu/mouse/hi-c/download. html. BED files for Hi-C data

40



WO 2017/218908 PCT/US2017/037900

processed into compartments A and B were provided by Fortin and Hansen
(https://github.com/Jfortin1/HiC_AB_Compartments). CTCF and EZH2/SUZ12 binding data
were obtained from the UCSC Genome Browser [Transcription Factor ChIP-seq track (161
factors) from ENCODE].

[00184] Data Access

[00185] Raw files have been deposited to NCBI’s Sequencing Read Archive (SRA) under
Accessions SRP072078, SRP072071, SRP072075, and SRP072141, each of which is
incorporated herein by reference in its entirety.

[00186] RESULTS

[00187] Stochastic Epigenetic Variation and Potential Energy Landscapes

[00188] The methylation PEL V (x) was estimated from WGBS data corresponding to 35

genomic samples, including stem cells, normal cells from colon, liver, lung, and brain tissues,
matched cancers from three of these tissues, cultured fibroblasts at 5 passage numbers, CD4"
lymphocytes and skin keratinocytes from younger and older individuals, and EBV-
immortalized lymphoblasts (Supplementary Table 1 below). To this end, the genome was
partitioned into consecutive non-overlapping genomic regions of 3000 base pairs in length
each, and the maximum-likelihood estimation method introduced earlier was used to estimate
the PEL parameters within each genomic region. The strategy capitalizes on appropriately
combining the full information available in multiple methylation reads, especially the
correlation between methylation at CpG sites, as opposed to the customary approach of
estimating marginal probabilities at each individual CpG site (Fig. 1A).

[00189] Due to its dependence on a small number of parameters, one can estimate the joint
probability distribution of methylation from low coverage WGBS data (as low as 7x in the
data used in this example). In turn, this allows reliable calculation of marginal probabilities at
individual CpG sites, computation of PELs, evaluation of correlations, and computation of a
number of new methylation measures that have not been considered before.

[00190] Since the size of the methylation state-space within a genomic region with N CpG
sites grows geometrically (2V) in terms of N, visualization of the PEL is chosen to be
performed within a region of a CpG island (CGI) near the promoter of a gene containing 12
CpG sites. To plot a PEL, the 22 computed values are distributed over a 64x 64 square grid
using a two-dimensional version of Gray’s code, so that methylation states located adjacent to

each other in the east/west and north/south directions differ in only one bit.
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[00191] Computed PELs demonstrate that most methylation states associated with the CGI
of WNT1, an important signaling gene, in colon normal exhibit high potential (Fig. 1B, three-
dimensional and violin plots), implying that significant energy is required to leave the fully
unmethylated state, which is the state of lowest potential (ground state). Any deviation from
this state will rapidly be “funneled” back, leading to low uncertainty in methylation. Notably,
the methylation states of WNT/ in colon cancer demonstrate low potential (Fig. 1B, three-
dimensional and violin plots), implying that relatively little energy is required to leave the
fully unmethylated ground state. In this case, deviations from this state will be frequent and
long lasting, leading to uncertainty in methylation.

[00192] Similarly, the methylation states associated with the CGI of EPHA4, a key
developmental gene, exhibit low potential in stem cells (Fig. 1B, three-dimensional and
violin plots), suggesting that low energy is needed to leave the fully unmethylated ground
state, thus leading to uncertainty in methylation. In contrast, FPHA4 shows high potential in
the brain (Fig. 1B, three-dimensional and violin plots), implying that appreciable energy is
required to leave the fully unmethylated ground state, thus leading to low uncertainty in
methylation.

[00193] Global distributions of the PEL parameters a, and ¢, (Fig. 1C) show that the
motivation for using the Ising model is well founded. Specifically, more than 75% of the ¢,

parameters along the genome are positive, showing extensive cooperativity in methylation

(Fig. 1C). Interestingly, a global increase in the values of the ¢, parameters is consistently

observed in cancer, implying an overall increase in methylation cooperativity in tumors. In

addition, most genomic samples demonstrate positive median a, values, indicating that

methylation is more common than non-methylation, except in two liver cancer samples that

were subject to extended extreme hypomethylation. Even in those cases, however, ¢, is

increased in the tumors.

[00194] FEpigenetic Entropy Quantifies Methylation Uncertainty in Biological States
[00195] The NME is an effective measure of methylation uncertainty that can be reliably
computed genome-wide from low coverage WGBS data using the Ising model, together with
the mean methylation level (MML), which is the average of the methylation means at
individual CpG sites within a genomic subregion. The genome-wide distributions of MML
and NME values were calculated and compared among genomic samples. Consistent with

previous reports, the MML in stem cells and brain tissues was globally higher than in normal
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colon, liver, and lung and that the same was true for CD4" lymphocytes and skin
keratinocytes (Fig. 2A). Moreover, the MML was reduced in all seven cancers studied
compared to their matched normal tissue (Fig. 2A,B), and was also progressively lost in
cultured fibroblasts (Fig. 2A). Low NME was also observed in stem and brain cells, as well
as in CD4" lymphocytes and skin keratinocytes associated with young subjects, and a global
increase of NME in most cancers except for liver cancer, which exhibited profound
hypomethylation leading to a less entropic methylation state (Figs. 2 & 3). While changes of
NME in cancer were often associated with changes in MML (Fig. 3A), this was often not the
case (Fig. 3B,C,D), indicating that changes in stochasticity are not necessarily related to
changes in mean methylation, and demanding that both be assessed when interrogating
biological samples.

[00196] MML and NME distributions were also computed over selected genomic features
and provided a genome-wide breakdown showing lower and more variable methylation levels
and entropy values within CGIs and TSSs compared to other genomic features, such as
shores, exons, introns and the like (Fig. 4A,B).

[00197] Global hypomethylation and gain in entropy was found in all three CD4"
lymphocyte samples from older people compared to three from younger individuals, as well
as in both skin keratinocyte samples compared to younger samples (Fig. 2A,C), with the
percentage change in entropy being more pronounced. For example, an average 23% increase
(11%-38% range) in median NME genome-wide was found between young and old CD4
samples but only an average 5.6% decrease (3.2%-8.5% range) in median MML.

[00198] To account for biological and statistical variability, using the three young CD4
samples, the absolute NME differences (AINMEs) was first computed at each genomic
subregion associated with all three pairwise comparisons and, by pooling these values, an
empirical null distribution was constructed that accounted for biological and statistical
variability of differential entropy in the young samples. Subsequently, he absolute dNME
values corresponding to a young-old pair (CD4-Y3, CD4-O1) were computed and multiple
hypotheses testing was performed to reject the null hypothesis that the observed NME
difference is due to biological or statistical variability. By using the “qvalue” package of
Bioconductor™ with default parameters, false discovery rate (FDR) analysis was performed
and the probability that the null hypothesis is rejected at a randomly chosen genomic

subregion was estimated. This resulted in approximately computing the fraction of genomic
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subregions found to be differentially entropic for reasons other than biological or statistical
variability among the young samples.

[00199] It was statistically estimated that up to 34% of the genomic subregions were
differentially entropic, demonstrating that profound changes in entropy can result in old
individuals. Notably, striking differences were observed between true aging and cultured
fibroblasts. Although passage number in fibroblasts was also associated with progressive
global hypomethylation, the entropy distribution was relatively stable (Figs. 2A & SA). For
example, the promoters of CYP2E/ and FLNB, two genes which are known to be
downregulated with age, exhibited noticeable gain in methylation level and entropy in old
CD4" lymphocytes. This was in stark contrast to the lack of changes with passage in CYP2E!
and the noticeable loss of entropy in FLNB (Fig. 5B,C) in cultured fibroblasts. Therefore,
age-related PELs in multiple tissues are not well characterized by increasing fibroblast
passage number, and aging appears to be associated with a gain in entropy.

[00200] /Informational Distances Delineate Lineages and Identify Developmentally Critical
Genes

[00201] To understand the relationship between epigenetic information and phenotypic
variation, it was sought to precisely quantify epigenetic discordance between pairs of
genomic samples using the Jensen-Shannon distance (JSD). It was then asked if this distance
could be used to distinguish colon, lung, and liver from each other and from matched cancers,
as well as from stem, brain, and CD4" lymphocytes. For computational feasibility, the study
was limited to 17 representative cell and tissue samples and computed all 136 pairwise
epigenetic  distances genome-wide. The results were visualized by performing
multidimensional scaling. The samples fell into clear categories based on developmental
germ layers (Fig. 6), with clusters of ectoderm (brain), mesoderm (CD4), and endoderm
(normal colon, lung, and liver) derived tissues located roughly equidistant from stem cells.
On the other hand, cancerous tissues were far removed from their normal matched tissues as
well as from the stem cells (Fig. 6).

[00202] Given the interesting relationship between the stem cell sample and the three germ
layers, genes that exhibited appreciable differential methylation level (dIMML) and/or JSD in
stem cells compared to differential tissues were examined. To this end, genes were ranked
based on the absolute value of the dMML as well as on the JSD within their promoters
(Supplementary Data 1 described below and attached) and it was surprising to find that many

genes known to be involved in development and differentiation showed relatively small
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changes in dMML vyet very high JSD, indicating that the probability distributions of
methylation level within their promoters were appreciably different, despite little difference
in mean methylation level.

[00203] To explore this further, it was investigated whether non-mean related methylation
differences could identify genes between sample groups that would have been previously
occult to mean-based analyses by employing a relative JSD-based ranking scheme (RJSD)
that assigned a higher score to genes with higher JSD but smaller AIMML. Many key genes
were found at the top of the RJSD list, such as IGF2BP 1, FOXD3, NKX6-2, SALLI, EPHA4,
and OTX/, with RJSD-based GO annotation ranking analysis revealing key categories
associated with stem cell maintenance and brain cell development (Supplementary Data 1 &
2 described below and attached). Notably, similar results were obtained when stem cells were
compared to normal lung, with RJSD-based GO annotation analysis revealing key
developmental categories and genes in both mesodermal and stem cell categories
(Supplementary Data 1 & 2 described below and attached). Comparing stem cells to CD4"
lymphocytes, showed enrichment for immune-related functions driven by dMML and many
developmental and morphogenesis categories driven by RJSD (Supplementary Data 2
described below and attached). In contrast, when differentiated tissues were compared, it was
noticed that AIMML-based GO annotation analysis resulted in a higher number of significant
categories than RJSD-based analysis, and these were closely related to differentiated
functions, such as immune regulation and neuronal signaling in the case of brain and CD4
(Supplementary Data 2 described below and attached). Interestingly, when lung normal was
compared to cancer, it was noticed that RJSD-based GO annotation analysis produced a
higher number of significant categories than dMML-based analysis, and these were again
related to developmental morphogenesis categories.

[00204] These previous results show that PEL computation can reveal major changes in the
probability distributions of DNA methylation associated with developmentally critical genes,
and that the shape of these distributions, rather than their means per se, may often be closely
related to pluripotency and fate lineage determination in development and cancer.

[00205] Next the link between changes in the probability state, as reflected by the JSD and

the values of the PEL parameters a, and ¢, , was explored. For example, a CGI near the

promoter of EPH4A showed high JSD when comparing stem cells with brain (Fig. 7A).
Although this region exhibited comparable mean methylation levels, it displayed high JSD
over the entire CGI and especially over its shores. Notably, the JSD is not driven by
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methylation propensity, since the PEL parameters a, are strongly negative in both stem and

brain, in which case the fully unmethylated state is the PEL’s ground state (Fig. 1B, lower
panel), resulting in low methylation level within the CGI. However, it is driven by

methylation cooperativity at the CGI shores in brain, since the PEL parameters ¢, are

strongly positive, compared to low methylation cooperativity in stem (almost zero ¢,’s) that
flattens the PEL (Fig. 1B, lower panel) and results in higher entropy than in brain (Fig. 7A).
Intriguingly, the region shows binding of EZH2 and SUZI2, functional enzymatic
components of the polycomb repressive complex 2 (PRC2), which regulates heterochromatin
formation.

[00206] Likewise, SIM2, a master regulator of neurogenesis, is associated with high JSD
regions with similar EZH2/SUZ12 binding, which span several CGIs located near its
promoter (Fig. 7B). In this case, a gain of entropy is observed in brain, corresponding to a
simultaneous loss in methylation propensity (through reduced a,’s) and a gain in methylation
cooperativity (through increased ¢,’s). Similar remarks hold for other developmental genes,
such as ASCL2, SALL1, and FOXD3 (Fig. 7C,D,E).

[00207] The presence of EZH2 and SUZ12 binding sites was repeatedly observed in areas
of high JSD, suggesting that they may play a critical role in generating increased entropy with
minimal change in mean methylation. To determine whether this association was significant,
the Fisher’s exact test was used and promoters and enhancers with high dMML were
compared to those with low dMML as well as promoters and enhancers with high JSD to
those with low JSD. Several-fold greater enrichments for both EZH2 and SUZ12 binding
sites at promoters and enhancers with high JSD vs. low JSD were observed, which provided
further evidence of JSD’s importance (Supplementary Table 2 below). Binomial logistic
regression of EZH2/SUZ12 binding data on JSD scores at promoters and enhancers was then
performed and significant positive association (EZH2: score = 5.6 for promoters & 18.1 for

enhancers, p-value < 2.2x107"°; SUZ12: score = 6.2 for promoters & 23 for enhancers, p-

value <2.2x107'°; see Supplementary Table 2 below) was found.

[00208] The previous results show a significant association of EZH2 and SUZI12 with
promoters and enhancers at high JSD regions of the genome, suggesting the intriguing
possibility that the PRC2 complex controls stochastic variability in DNA methylation at
selected genomic loci by regulating the methylation PEL.

[00209] Methylation PELs Uncover Bistable Behavior Associated to Imprinting
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[00210] To investigate whether bistability in methylation might be associated with
important biological functions, its possible enrichment was examined in several genomic
features.

[00211] To identify bistable genomic subregions in a given WGBS sample, bimodality was

detected in the probability distribution P, (/)of the methylation level within a genomic

subregion. To evaluate enrichment of bistability in a particular genomic feature, two binary
(0-1) random variables R and B were defined for each genomic subregion, such that R = 1, if
the genomic subregion overlaps the genomic feature, and B = 1, if the genomic subregion is
bistable. It was then tested against the null hypothesis that R and B are statistically
independent by applying the x’-test on the 2x 2 contingency table for R and B and calculated
the odds ratio (OR) as a measure of enrichment.

[00212] Bistability enrichment was evaluated within CGlIs, shores, promoters, and gene
bodies. It was found (Supplementary Table 3 below) that bistable genomic subregions were

in general enriched in CpG island shores (ORs > 1 in 29/34 phenotypes, p-values
<22x10") and promoters (ORs > 1 in 26/34 phenotypes, p-values <168x10”), but
depleted in CGIs (ORs < 1 in 26/34 phenotypes, p-values <2.2x10'°) and gene bodies (ORs

< 1 in 29/34 phenotypes, p-values < 3.06x10™"*). Moreover, it was noticed that bistable
genomic subregions were associated with appreciably higher NME than the rest of the
genome [Fig. 8; comparing the bistable regions (yellow) to the rest of the genome (purple)].

[00213] To investigate whether methylation bistability is associated with specific genes,
each gene was rank-ordered in the genome using a bistability score, which was calculated as
the average frequency of methylation bistability within the gene’s promoter in 17 normal
genomic samples. Surprisingly, a substantial number of genes that have been known to be
imprinted were highly ranked (Supplementary Data 3 described below and attached), which
was attributed to the fact that full methylation on one chromosome and complete
unmethylation on the other would give rise to bistable methylation. In fact, 82 curated
imprinted genes from the Catalogue of Parent of Origin Effect (CPOE) were much more
highly ranked in the list than would be expected by chance (p-value 2.89x107'°), with
notable overrepresentation of imprinted genes near the top of the list. Interestingly, more than
8% of imprinted genes in CPOE appeared in the top 25 bistable genes (SNRPN, SNURF,
MEST, MESTITI, ZIM2, PEG3, MIMT1I), raising the possibility that imprinting of these
genes may be associated with allele-specific methylation of selective loci near their

promoters.
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[00214] The possibility that genes subject to monoallelic expression (MAE) are associated
with bistability was also investigated. By using a recently created data set of 4227 MAE
genes, only a slight enrichment of bistability in these genes was detected, likely because
MAE is not a result of silenced expression from one of the two alleles. It was noticed,
however, that 10 MAE genes, not classified in CPOE as being imprinted, exhibited
methylation bistability (score > 0.1), raising the possibility that these genes might be
imprinted, and one of these, C//ORF21, is known to lie within the Beckwith-Wiedemann
syndrome (BWS) domain but is not known to be imprinted.

[00215] Considerable effort was previously expended to identify imprinted genes in the
11p15.5 chromosomal region related to Beckwith-Wiedemann syndrome (BWS) and loss of
imprinting in cancer. The position of bistable marks in this well-studied imprinted locus was
therefore assessed and revealed a correspondence with known imprinting control regions
(ICRs) and CTCF binding sites just upstream of H/9, as well as near the promoter of
KCNQIOTI (Fig. 9A,B). Bistable marks were also found near the SNURF/SNRPN promoter,
which matched the location of a known ICR (Fig. 9C), as well as near the PEG3/ZIM?2 and
MEST/MESTITI promoter regions (9D,E).

[00216] Entropy Blocks Predict TAD Boundaries

[00217] It was also investigated whether the NME can be effectively used to
computationally locate TAD boundaries.

[00218] It was observed that, in many genomic samples, known TAD boundary annotations
were visually proximal to boundaries of entropy blocks (EBs), i.e., genomic blocks of
consistently low or high NME values (Fig. 10). This suggested that TAD boundaries may be
located within genomic regions that separate successive EBs.

[00219] To determine whether this is true, EBs were computed in the WGBS stem data and
404 regions were generated to predict the location of TAD boundaries. It was then found,
using “GenometriCorr”, a statistical package for evaluating the correlation of genome-wide
data with given genomic features, that the 5862 annotated TAD boundaries in H1 stem cells
were located within these predictive regions or were close in a statistically significant
manner. These EB-based predictive regions correctly identified 6% of the annotated TAD
boundaries (362 out of 5862) derived from 90% of computed predictive regions.

[00220] Subsequently, the analysis was extended by combining the TAD boundary
annotations for H1 stem cells with available annotations for IMR90 lung fibroblasts (a total

of 10,276 annotations). Since TADs are largely thought to be cell-type invariant, it was
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realized that it is possible to predict the location of more TAD boundaries by combining
information from EBs derived from additional phenotypes (Fig. 11). Therefore, WGBS data
from 17 different cell types (stem, colonnormal, coloncancer, livernormal-1, livercancer-1,
livernormal-2, livercancer-2, livernormal-3, livercancer-3, lungnormal-1, lungcancer-1,
lungnormal-2, lungcancer-2, lungnormal-3, lungcancer-3, brain-1, brain-2) was employed,
the corresponding EBs computed, predictive regions for each cell type determined, and these
regions were appropriately combined to form a single list encompassing information (6632
predictive regions) from all genomic samples. Analysis using “GenometriCorr” produced
results similar to those obtained in the case of stem cells and demonstrated that TAD
boundaries that fell within identified predictive regions did so significantly more often than
expected by chance, resulting in 62% correct identification of the annotated TAD boundaries
(6408 out of 10,276) derived from 97% of computed predictive regions. This performance
can be further improved by considering additional phenotypes.

[00221] To further assess TAD boundary predictions, it was noted that it is natural to locate
a TAD boundary at the center of the associated predictive region in the absence of prior
information. The errors of locating TAD boundaries were small when compared to the TAD
sizes as demonstrated by estimating the probability density and the corresponding cumulative
probability distribution of the location errors as well as of the TAD sizes using a kernel
density estimator (Fig. 12). Computed cumulative probability distributions implied that the
probability of the location error being smaller than N base pairs was larger than the
probability of the TAD size being smaller than &, for every N. It was therefore concluded that
the location error was smaller than the TAD size in a well-defined statistical sense (stochastic
ordering). It was also observed that the median location error was an order of magnitude
smaller than the median TAD size (94,000 vs. 760,000 base pairs). Finally, a boundary
prediction was considered to be “correct” when the distance of a “true” TAD boundary from
the center of a predictive region was less than the first quartile of the “true” TAD width
distribution (Fig. 12 insert — green).

[00222] Taken together, the previous observations provide strong statistical evidence that
there is an underlying relationship between EBs and TADs, and that this relationship can be
easily harnessed to effectively predict TAD boundaries from WGBS data.

[00223] [Information-Theoretic Properties of Methylation Channels

[00224] Information capacities (ICs), relative dissipated energies (RDEs), and CpG

entropies (CGEs) of methylations channels (MCs) were computed in individual genomic
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samples and comparative studies were performed genome-wide (Fig. 13). A global trend of
IC and RDE loss was observed in colon and lung cancer, accompanied by a global gain in
CGE, although this was not true in liver cancer. Moreover, stem cells demonstrated a narrow
range of relatively high IC and RDE values, whereas brain cells, CD4 " lymphocytes, and skin
keratinocytes exhibited high levels of IC and RDE, with noticeable loss in old individuals.
Notably, the methylation state within CpG islands (CGIs) and transcription start sites (TSSs)
is maintained by MCs whose capacities are appreciably higher overall than within shores,
shelves, open seas, exons, introns and intergenic regions, and this is accomplished by
significantly higher energy consumption (Fig. 14A,B).

[00225] These results reveal an information-theoretic view of genome organization,
according to which methylation within certain regions of the genome is reliably transmitted
by high capacity MCs leading to low uncertainty in the methylation state at the expense of
high energy consumption, while methylation within other regions of the genome is
transmitted by low capacity MCs that consume less energy but leading to high uncertainty in
the methylation state.

[00226] [Information-theoretic Prediction of Chromatin Changes

[00227] Calculating methylation channels (MCs) from WGBS data and comparing results
to available A/B compartment tracks for EBV cells derived from Hi-C experiments, revealed
enrichment of low IC, high NME, and low RDE within compartment B, and the opposite was
globally observed for compartment A (Fig. 15A,B). These results led to the hypothesis that
information-theoretic properties of methylation maintenance can be effectively used to
predict the locations of compartments A and B. To test this prediction, a random forest
regression model was employed to learn the informational structure of compartments A/B
from available “ground-truth” data. That included a small number of available Hi-C data
associated with EBV and IMR90 samples, obtained from [Dixon, J. R. et al. Nature 518,
331-336, (2015)], as well as A/B tracks produce using a method developed by Fortin and
Hansen (FH) [Fortin, J. P. & Hansen, K. D. Genome Biol. 16, 180, (2015)] based on long-
range correlations computed from pooled 450k array data associated with colon cancer, liver
cancer and lung cancer samples. Due to the paucity of currently available Hi-C data, the FH
data were included in order to increase the number of training samples and improve the
accuracy of performance evaluation.

[00228] First, the Hi-C and FH data were paired with WGBS EBYV, fibro-P10, and colon

cancer samples, as well as with samples obtained by pooling WGBS liver cancer
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(livercancer-1, livercancer-2, livercancer-3) and lung cancer (lungcancer-1, luncancer-2,
lungcancer-3) data. Subsequently, the entire genome was partitioned into 100,000 base pair
bins (to match the available Hi-C and FH data) and 8 information-theoretic features of
methylation maintenance were computed within each bin (median values and interquartile
ranges of IC, RDE, NME and MML). By using all feature/output pairs, a random forest
model was trained using the R package “randomForest” with its default settings, except that
the number of trees was increased to 1,000. Then, the trained random forest model was
applied on each WGBS sample and A/B tracks were produced that approximately identified
A/B compartments associated with the samples. Since regression takes into account only
information within a 100-kb bin, the predicted A/B values were averaged using a three-bin
smoothing window and the genome-wide median value was removed from the overall A/B
signal, as suggested by Fortin and Hansen [Fortin, J. P. & Hansen, K. D. Genome Biol. 16,
180, (2015)].

[00229] To test the accuracy of the resulting predictions, a 5-fold cross validation was
employed, which involved training using four sample pairs and testing on the remaining pair
for all five combinations. Performance was evaluated by computing the average correlation
as well as the average percentage agreement between the predicted and each of the “ground-
truth” A/B signals within 100-kb bins, where the absolute values of the predicted and
“ground-truth” signals were both greater than a calling margin. A non-zero calling margin
can be used to remove unreliable predictions. Finally, agreement was calculated by testing
whether the predicted and the “ground-truth” A/B values within a 100-kb bin had the same
sign.

[00230] Random forest regression was capable of reliably predicting A/B compartments
from single WGBS samples (see Fig. 15C for an example), resulting in cross-validated
average correlation of 0.74 and an average agreement of 81% between predicted and true A/B
signals when using a calling margin of zero, which increased to 0.82 and 91% when the
calling margin was set equal to 0.2.

[00231] These results suggest that a small number of local information-theoretic properties
of methylation maintenance can be highly predictive of large-scale chromatin organization,
such as compartments A and B. Once properly trained, the random forest A/B predictor can
be applied robustly on any WGBS sample.

[00232] Consistent with the fact that compartments A and B are cell-type specific, and in

agreement with results of a previous study that demonstrated extensive A/B compartment
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reorganization during early stages of development, many differences between predicted
compartments A/B were observed (see Fig. 16 for an example). In order to comprehensively
quantify observed differences in compartments A and B, percentages of A to B and B to A
switching were computed in all sample pairs (Supplementary Data 4 described below and
attached).

[00233] For each pair of WGBS samples, the percentage of A to B compartment switching
was computed by dividing the number of 100-kb bin pairs for which an A prediction was
made in the first sample and a B prediction made in the second sample by the total number of
bins for which A/B predictions were available in both samples, and similarly for the case of B
to A switching.

[00234] High levels (> 20%) of A to B and B to A compartment switching were observed
between stem and most of the remaining genomic samples, at least 10% switching between
brain and most of the remaining samples, and low levels (< 10%) of switching between most
normal colon, liver and lung samples. Also, at least 10% compartment B to A switching was
noticed between colon, liver and lung normal and most cancer samples.

[00235] It was subsequently noticed that the net percentage of A/B compartment switching
can be employed as a dissimilarity measure between two genomic samples, and used this
measure to cluster samples (Fig. 17). These percentages were summed and the sums were
employed to form a matrix of dissimilarity measures, which was then used as an input to a
Ward error sum of squares hierarchical clustering scheme that was implemented using the R
package “hclust” by setting the method variable to ward.D2. The clustering results provided
evidence that stem cell differentiation is associated with high levels of chromatin
reorganization. In particular, differentiated lineages and cancer were clustered together but
they were distinguished from each other, while the brain was clustered closest to stem cells,
as has been suggested by recent biochemical studies. Notably, young CD4 samples formed
one cluster, whereas old CD4 samples formed another, and the same was true for skin.
[00236] Intriguingly, normal lung showed strikingly different chromatin organization from
lung cancer, as did colon normal from colon cancer (Fig. 17). For this reason, it was
attempted to relate these changes to known chromatin or methylation structures.

[00237] Previous studies have demonstrated the presence of large hypomethylated blocks
in cancer that are remarkably consistent across tumor types. These blocks have been shown to
correspond closely to large-scale regions of chromatin organization, such as lamin-associated

domains (LADs) and large organized chromatin K9-modifications (LOCKs). Consistent with
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observations on the information-theoretic properties of compartment B and of carcinogenesis
(Figs. 13 & 15A,B), it was asked whether hypomethylated blocks are associated mainly with
compartment B.

[00238] To test this hypothesis, available hypomethylated blocks, LOCKs, and LADs were
matched to their most closely related random-forest-predicted compartment B data, which
came from the lungnormal-1, lungnormal-2, and lungnormal-3 samples. To evaluate
enrichment of hypomethylated blocks (and similarly for LADs and LOCKSs) within
compartment B, two binary (0-1) random variables R and B were defined for each genomic
subregion, such that R = 1 if the genomic subregion overlapped a block, and B = 1 if the
genomic subregion overlapped compartment B. Then, a test was performed against the null
hypothesis that R and B are statistically independent by applying the y’-test on the
2x2 contingency table for R and B and the odds ratio (OR) was calculated as a measure of
enrichment.

[00239] Significant overlap (Fig. 18) with compartment B in normal lung was found with
the hypomethylated blocks (OR = 3.3, p-value < 2.2x107"), and the same was true for

LADs (OR = 4, p-value < 2.2x10 '°) and LOCKs (OR = 5.3, p-value < 2.2x10 ).

[00240] Interestingly, compartment B in normal tissue may exhibit regions of large JSD
values between normal and cancer (Fig. 18A), suggesting that considerable epigenetic
changes may occur within this compartment during carcinogenesis. This observation was
further supported by the observed differences in the genome-wide distributions of JSD values
between normal and cancer within compartments A and B in normal (Fig. 18B).

[00241] Compartment B to A switching in colon cancer included the HOXA and HOXD
gene clusters, whereas, in lung cancer, it included the HOXD gene cluster but not HOXA (Fig.
19A,B). It also included SOX9 in colon cancer and the tyrosine kinase SYK in both colon and
lung cancer (Fig. 19C). Fewer regions showed compartment A to B switching in cancer,
consistent with the directionality of LAD and LOCKs changes in cancer. Interestingly, this
included MGMT in colon but not lung, a gene implicated in the repair of alkylation DNA
damage that is known to be methylated and silenced in colorectal cancer, as well as the
mismatch repair gene MSH4 (Fig. 19D).

[00242] Together with the previous observation of significant compartment B to A
switching between normal/cancer samples, these results suggest that compartment B
demarcates genomic regions in which it is more likely for methylation information to be

degraded during carcinogenesis.
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[00243] FEntropic  Sensitivity Quantifies Environmental Influences on Epigenetic
Stochasticity

[00244] Epigenetic changes, such as altered DNA methylation and post-translational
modifications of chromatin, integrate external and internal environmental signals with genetic
variation to modulate phenotype. In this regard, it was sought to investigate the influence of
environmental exposure on methylation stochasticity by following a sensitivity analysis
approach that enables quantification of the effect of environmental variability on methylation
entropy. To this end, environmental variability was viewed as a process that directly
influences the methylation PEL parameters and a stochastic approach was developed that
allowed use of the entropic sensitivity index (ESI) as a relative measure of NME to parameter
variability. Calculation of the ESI values genome-wide from single WGBS data allowed
quantification of the influence of environmental fluctuations on epigenetic uncertainty in
individual genomic samples as well as comparative studies (Figs. 20, 21 & 22). For example,
in colon normal, appreciable entropic sensitivity was observed within the CGI associated
with WNT1, with part of the CGI exhibiting a gain in entropy and loss of sensitivity in colon
cancer (Fig. 20A).

[00245] Globally, differences in ESI among tissues were observed (Fig. 20B,C), with stem
and brain cells exhibiting higher levels of entropic sensitivity than the rest of the genomic
samples. Together with the fact that brain cells are highly methylated (Fig. 2A), high levels of
entropic sensitivity would predict that brain can show high rates of demethylation in response
to environmental stimuli, consistent with recent data showing that the DNA demethylase 7et3
acts as a synaptic activity sensor that epigenetically regulates neural plasticity by active
demethylation, and a similar observation could be true for stem cells and CD4" lymphocytes.
Colon and lung cancer exhibited global loss of entropic sensitivity, whereas gain was noted in
liver cancer. Moreover, CD4~ lymphocytes and skin keratinocytes exhibited global loss of
entropic sensitivity in older individuals (Fig. 20C), while cultured fibroblasts showed
noticeably lower ESI without any downward trend in passage number.

[00246] Higher and more variable ESI values were observed within CGIs and at TSSs,
compared to other genomic features, such as shores, exons, and introns (Fig. 21). However,
some unmethylated CGIs exhibited low entropic sensitivity (Fig. 22A), whereas gain or loss
of entropic sensitivity within CGIs was observed between normal and cancer (Fig. 22B,C), as
well as in older individuals (Fig. 22D,E). Notably, differences in ESI were not simply due to
entropy itself, as many regions of low entropy showed small ESI values (Fig. 22A,B,C),
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while other such regions exhibited noticeable ESI values (Fig. 22B,D,E), indicating
substantial sensitivity to environmental perturbations.
[00247] The relationship of entropic sensitivity to higher-order chromatin structure was
also examined. It was found that entropic sensitivity within compartment A was appreciably
higher than in compartment B in all genomic samples except stem cells (Fig. 23), consistent
with the notion that the transcriptionally active compartment A would be more responsive to
stimuli. Moreover, observed differences among normal tissues and between normal and
cancer were largely confined to compartment B (Fig. 23). One could notice substantial loss of
entropic sensitivity in compartment B in older CD4" lymphocytes and skin keratinocytes, but
not in compartment A. This is in contrast to cell culture that showed a sensitivity gain in
compartment B (Fig. 23).
[00248] To further investigate entropic sensitivity changes between tissues, genes were
ranked according to their differential ESI (dESI) within their promoters between colon
normal and colon cancer (Supplementary Data 5 described below and attached). Colon cancer
showed several LIM-domain proteins, including ZIMD2 (ranked 4™), which transduce
environmental signals regulating cell motility and tumor progression, as well as genes
implicated in colon and other types of cancer, such as OK/ (ranked 1%), a critical regulator of
colon epithelial differentiation and suppressor of colon cancer that was recently discovered to
be a fusion partner with AMYB in glioma leading to an auto-regulatory feedback loop, HOXA9
(ranked 8"™), a canonical rearranged homeobox gene that is dysregulated in cancer, and
FOXQ!I (ranked 9™), which is overexpressed and enhances tumorigenicity of colorectal
cancer.
[00249] Together, the previous results suggest that environmental exposure can influence
epigenetic uncertainty in cells with a level of sensitivity that varies along the genome and
between compartments in a cell-type specific manner, and present the intriguing possibility
that disease, environmental exposure, and aging are associated with substantial loss or gain of
entropic sensitivity that could compromise the integration of environmental cues regulating
cell growth and function.

DISCUSSION
[00250] In this document, the Ising model of statistical physics was employed to derive,
from whole genome bisulfite sequencing, epigenetic potential energy landscapes (PELs)
representing intrinsic epigenetic stochasticity. Rather than epigenetic landscapes with

external “noise” terms, biologically sound principles of methylation processivity, distance-
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dependent cooperativity, and CpG density were employed to build a rigorous approach to
modeling DNA methylation landscapes. This approach was not only capable of modeling
stochasticity in DNA methylation from low coverage data, but also allowed genome-wide
analysis of Shannon entropy at high resolution. By incorporating fundamental principles of
information theory into a framework of methylation channels, it was also possible to predict
in detail, high-order chromatin organization from single WGBS samples without performing
Hi-C experiments.

[00251] Several significant insights ensued from this analysis. It was found that Shannon
entropy varies markedly among tissues, across the genome and across features of the genome.
Loss of methylation and entropy gain in cells from older individuals was consistently
observed, in contrast to cell culture, which exhibited large losses of methylation level and a
relatively stable entropy distribution with passage. Genes associated with entropy gain
appeared to be highly relevant to aging, although the full implications of this observation
requires further investigation. In some instances, it was observed that high entropy is due to
the coexistence of a fully methylated and a fully unmethylated state, which is termed
bistability. Bistability in methylation level was found to be associated with many known
imprinted regions, presumably because of allele-specific methylation.

[00252] Rather than identifying differentially methylated regions (DMRs) among compared
genomic samples using marginal statistics, the Jensen-Shannon distance (JSD) was employed
to compute information-theoretic epigenetic differences genome-wide. This approach allows
one to determine epigenetic differences between individual genomic samples with the
potential clinical advantage of identifying specific epigenetic differences, which are unique to
that genomic sample compared to a matched normal tissue. Analysis of a panel of tissues of
diverse origins revealed a “developmental wheel” of the three germ cell lineages around a
stem cell hub. Consistently, cancers are extremely divergent and most importantly not
intermediate in their methylation properties between stem cells and normal tissue.

[00253] It was investigated whether the JSD simply embodies mean differences that have
been exhaustively characterized in the past, or if it reveals new insights independent of the
mean. To address this question, genomic regions with high JSD but low mean differences
between sample pairs were identified, with greater enrichment for many categories of stem
cell maintenance or lineage development than found for regions with mean differences per se,
suggesting a key role of stochasticity in development. In turn, this type of stochasticity

appears to be driven by localized regions of high cooperativity, which tends to flatten the
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PEL with little change in mean methylation. Regions with high JSD and low mean
methylation differences were found to be enriched in Polycomb repressive complex (PRC2)
binding sites, suggesting a possible role for PRC2 in stochastic switching during
development. Intriguingly, PRC2 components are critical for stochastic epigenetic silencing
in an early area of the field of epigenetics, position effect variegation, which also involves
stochasticity. It is suggested that PRC2 is important not only for gene silencing but also for
regulating epigenetic stochasticity in general.

[00254] A new insight was achieved by discovering a relationship between TAD
boundaries and entropy blocks. It was demonstrated that TAD boundaries can be located
within transition domains between high and low entropy in one or more genomic samples.
This suggests a model in which TAD boundaries, which are relatively invariant across cell
types and are associated with CTCF binding sites, are potential transition points at which
high and low entropy blocks can be demarcated in the genome, and the particular
combination of TAD boundaries that transition between high and low entropy define, in large
part, the A/B compartments distinguishing tissue types.

[00255] An information-theoretic approach to epigenetics was also introduced by means of
methylation channels, which allows one to estimate the information capacity of the
methylation machinery to reliably maintain the methylation state. A close relationship was
found between information capacity, CG entropy, and relative dissipated energy, as well as
between regional localization of high information capacity and attendant high energy
consumption (e.g., within CpG island shores and compartment A). It was realized that
informational properties of methylation channels can be used to predict A/B compartments
and a machine learning algorithm was designed to perform such predictions on widely
available WGBS samples from individual tissues and cell culture. This algorithm can be used
to predict large-scale chromatin organization from DNA methylation data on individual
genomic samples. Single paired WGBS data sets of normal and cancer were used to predict
A/B compartment transitions. Both colon and lung cancers showed marked compartment
switching, most often from B to A, with regions of B to A switching corresponding closely to
LADs and LOCKs. Domains of B to A and A to B switching include many genes that are
activated or silenced in cancer, suggesting that compartment switching could contribute to
cancer.

[00256] Lastly, by viewing environmental variability as a process that directly influences

the methylation PEL parameters, the concept of entropic sensitivity was introduced,
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identifying genomic loci where external factors are likely to influence the methylation PEL.
While the inventors have only begun to explore the epigenetic implications of entropic
sensitivity, it appears that aging and some cancers are associated with global loss of entropic
sensitivity and thus to less responsive PELs. If this observation holds true on further study, it
could be related to the well-known reduced physiological plasticity of aging, as well as to the
autonomous nature of tumor cells.
[00257] This study demonstrates a potential relationship between epigenetic information,
entropy and energy that may maximize efficiency in information storage in the nucleus.
Pluripotent stem cells require a high degree of energy to maintain methylation channels, with
certain regions of the genome containing highly deformable PELs corresponding to
differentiation branch points, as suggested metaphorically by Waddington, which can now be
identified and their parameters responsible for plasticity be mapped. In differentiated cells,
large portions of the genome (compartment B, LADs, LOCKs) need not maintain high
information capacity and attendant high energy consumption, with their relative sequestration
thus providing increased efficiency. However, when domains within compartment B switch
to compartment A, previously accumulated epigenetic errors become deleterious and,
compounded with reduced entropic sensitivity, may decrease the chance for homeostatic
correction.
[00258] Finally, the stochastic nature of DNA methylation and the close relationship
between methylation entropy, channel capacity, dissipated energy and chromatin structure
demonstrated herein raises the intriguing possibility that DNA methylation in a given tissue
may carry information about both the current state and the possibility of stochastic switching.
This information could then be propagated in part through methylation channels over many
cycles of DNA replication, even for higher order chromatin organization where the chromatin
post-translational modifications themselves may be lost during cell division. This could imply
that epigenetic information is carried by a population of cells as a whole, and that this
information not only helps to maintain a differentiated state but to also help mediate
developmental plasticity throughout the life of an organism.

FIGURE LEGENDS
[00259] Figure 1 relates to potential energy landscapes. 1A: Multiple WGBS reads of the
methylation state within a genomic locus are used to form a methylation matrix whose entries
represent the methylation status of each CpG site (1: methylated, O: unmethylated, ND: no

data). Most methods for methylation analysis estimate marginal methylation probabilities and
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means at individual CpG sites by using the methylation information only within each column
associated with a CpG site. The statistical physics approach presented in this disclosure
computes the most likely PEL by determining the likelihood of each row of the methylation
matrix, combining this information across rows into an average likelihood, and maximizing
this likelihood with respect to the PEL parameters. 1B: PELs associated with the CpG islands
(CGIs) of WNT in colon normal and colon cancer and ZPHA4 in stem and brain. Point (m,n)
marks a methylation state, with (0,0) indicating the fully unmethylated state, which is also the
ground state (i.e., the state of lowest potential) in both examples. 1C: Boxplots of the Ising
PEL parameter distributions for all genomic samples used in this study. The boxes show the
25% quantile, the median, and the 75% quantile, whereas each whisker has a length of
1.5 x the interquartile range.

[00260] Figure 2 relates to the mean methylation level (MML) and the normalized
methylation entropy (NME). 2A: Boxplots of MML and NME distributions for all genomic
samples used in this study. The boxes show the 25% quantile, the median, and the 75%
quantile, whereas each whisker has a length of 1.5xthe interquartile range. 2B: Genome-
wide MML and NME densities associated with two normal/cancer samples show global
MML loss in colon and lung cancer, accompanied by a gain in entropy. 2C: Genome-wide
MML and NME densities associated with young/old CD4" lymphocytes and skin
keratinocytes show global MML loss in old individuals, accompanied by a gain in entropy.
[00261] Figure 3 relates to changes in mean methylation level and methylation entropy in
cancer. 3A: Genome browser image showing significant loss in mean methylation level
(dMML) in colon and lung cancer, accompanied by gain in methylation entropy (dNME).
Liver cancer exhibits loss of methylation entropy within large regions of the genome due to
profound hypomethylation. 3B: The CGI near the promoter of CDH/, a tumor suppressor
gene, exhibits entropy loss in colon cancer. 3C: The CGI near the promoter of NEU! shows
gain of methylation entropy in lung cancer. NEU/ sialidase is required for normal lung
development and function, whereas its expression has been implicated in tumorigenesis and
metastatic potential. 3D: Noticeable loss of methylation entropy is observed in liver cancer at
the shores of the CGI near the promoter of ENSA, a gene that is known to be hypomethylated
in liver cancer.

[00262] Figure 4 pertains to the breakdown of mean methylation level (MML) and
normalized methylation entropy (NME) within genomic features throughout the genome in

various genomic samples. Boxplots of genome-wide distributions of methylation measures
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for all genomic samples used in this study within CGIs, shores, shelves, open seas, TSSs,
exons, introns, and intergenic regions. 4A: Mean methylation level (MML). 4B: Normalized
methylation entropy (NME). The boxes show the 25% quantile, the median, and the 75%
quantile, whereas each whisker has a length of 1.5 x the interquartile range.

[00263] Figure 5 shows that cultured fibroblasts may not be appropriate for modeling
aging. S5A: Unmethylated blocks (MB-green) progressively form with passage in HNF
fibroblasts and this process is similar to the one observed during carcinogenesis in liver cells.
However, entropic blocks (EB-red) remain relatively stable. SB: An example of the
potentially misleading nature of HNF fibroblasts as a model for aging is CYP2FE/, a gene that
has been found to be downregulated with age. The differential mean methylation level
(dMML) track shows methylation gain in old CD4" lymphocytes near the promoter of this
gene, whereas no appreciable change in methylation level is observed with passage.
Similarly, the CYP2EI promoter demonstrates large entropy differential (INME) in old CD4"
lymphocytes, but virtually no entropy change with passage in HNF fibroblasts. 5C:
Noticeable gain in methylation entropy is also observed near the promoter of FLNB in old
CD4" lymphocytes, a gene found to be downregulated with age. However, the FLNB
promoter exhibits loss of entropy with passage in fibroblasts.

[00264] Figure 6 shows that epigenetic distances delineate lineages. Multidimensional
scaling (MDS) visualization of genomic dissimilarity between 17 diverse cell and tissue
samples, evaluated using the Jensen-Shannon distance (JSD), reveals grouping of genomic
samples into clear categories based on lineage.

[00265] Figure 7 shows differential regulation within genomic regions of high Jensen-
Shannon distance (JSD) but low differential mean methylation level (IMML) near promoters
of some genes. 7A: The promoter of FPHA4 shows binding of EZH2 and SUZ12, key
components of the histone methyltransferase PRC2, and demonstrates negligible differential
methylation between stem cells and brain but high JSD, driven by the PEL parameters, which
leads to gain of entropy in brain. 7B: The promoter of S/AM2, a master regulation of
neurogenesis, exhibits low level of dMML but high JSD between stem cells and brain,
demonstrating large epigenetic distance. Regulation of the PEL parameters results in low
methylation level in both stem and brain but in gain of entropy in brain. This region also
shows binding of EZH2 and SUZ12. 7C: A similar behavior is observed within a 14,000 base
pair region that contains FOXD3, a transcription factor associated with pluripotency. 7D: The

promoter of SALLI, a key developmental gene, exhibits differential behavior between stem
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and brain that is similar to the one exhibited by SIM2. 7E: The promoter of ASCL2, a
developmental gene involved in the determination of the neuronal precursors in the peripheral
and central nervous systems, exhibits a similar behavior as the promoters of SIM2 and SALL1
but shows entropy loss in brain.

[00266] Figure 8 relates to methylation bistability and entropy. Boxplots of NME
distributions within bistable genomic subregions (yellow) as compared to the rest of the
genome (purple). The boxes show the 25% quantile, the median, and the 75% quantile,
whereas each whisker has a length of 1.5 x the interquartile range.

[00267] Figure 9 relates to bistability in methylation level and imprinting. 9A: Genome
browser image displaying part of the 11p15.5 chromosomal region associated with /9. 9B:
A portion of the 11p15.5 chromosomal region associated with KCNQO/OT1. 9C: The 15q11.2
chromosomal region near the SNURF promoter. 9D: Genome browser image displaying part
of the 19q13.43 chromosomal region around the PEG3/ZIM?2 promoter. Bistable methylation
marks, shown for a number of normal tissues, coincide with the location of the PEG3/ZIM?2
ICR that exhibits CTCF binding. Note that the ICR also includes the transcriptional start site
of the imprinted gene MIMTI. 9E: Genome browser image displaying part of the 7q32.2
chromosomal region around the MFEST/MESTITI promoter. Bistable methylation marks,
shown for a number of normal tissues, coincide with areas rich in CTCF binding sites.
[00268] Figure 10 relates to entropy blocks and TAD boundaries. 10A: In the
normal/cancer panel, a subset of known TAD boundary annotations in Hl stem cells
appeared to be associated with boundaries of entropic blocks (green: ordered, red:
disordered), suggesting that TADs may maintain a consistent level of methylation entropy
within themselves. 10B: Another example showing that the location of TAD boundaries may
associate with boundaries of ordered (green) or disordered (red) blocks.

[00269] Figure 11 relates to entropy blocks and TAD boundaries. Regions of entopic
transitions can be effectively used to identify the location of some TAD boundaries (black
squares). Since TADs are cell-type invariant, the location of more TAD boundaries can be
identified by using additional WGBS data corresponding to distinct phenotypes.

[00270] Figure 12 relates to entropy blocks and TAD boundaries. Probability densities and
cumulative probability distributions (insert) of TAD boundary location error and TAD sizes.
[00271] Figure 13 relates to information-theoretic properties of methylation channels

(MCs). Boxplots of genome-wide ICs, RDEs and CGEs at individual CpG sites show global
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differences among genomic samples. The boxes show the 25% quantile, the median, and the
75% quantile, whereas each whisker has a length of 1.5 x the interquartile range.

[00272] Figure 14 pertains to the breakdown of information-theoretic properties of
methylation channels (MCs) within genomic features throughout the genome in various
genomic samples. Boxplots of information-theoretic properties of MCs for all genomic
samples used in this study within CGIs, shores, shelves, open seas, TSSs, exons, introns, and
intergenic regions. 14A: Information capacity (IC). 14B: Relative dissipated energy (RDE).
The boxes show the 25% quantile, the median, and the 75% quantile, whereas each whisker
has a length of 1.5 x the interquartile range.

[00273] Figure 15 shows that information-theoretic properties of methylation channels
(MCs) can be used to predict large-scale chromatin organization. 15A: Analysis of Hi-C and
WGBS data reveals that maintenance of the methylation state within compartment B (blue) in
EBYV cells is mainly performed by MCs with low information capacity (IC) that dissipate low
amounts of energy (RDE) resulting in a relatively disordered (NME) and less methylated
(MML) state than in compartment A (brown). 15B: Boxplots of genome-wide distributions of
IC, RDE, NME and MML demonstrate their attractiveness as features for predicting
compartments A/B using WGBS data from single genomic samples. The boxes show the 25%
quantile, the median, and the 75% quantile, whereas each whisker has a length of 1.5xthe
interquartile range. 15C: An example of random forest based prediction of A/B compartments
(AB) in EBV cells using information-theoretic properties of methylation maintenance.
[00274] Figure 16 relates to A/B compartment switching. An example of switching
between predicted compartments A (brown) and B (blue) observed in cancer, with B to A
compartment switching being more frequent than A to B switching.

[00275] Figure 17 relates to A/B compartment switching and clustering of genomic
samples. Net percentage of A/B compartment switching was used as a dissimilarity measure
in hierarchical agglomerative clustering. At a given height, a cluster is characterized by lower
overall compartment switching than an alternative grouping of genomic samples.

[00276] Figure 18 relates to compartment B overlapping hypomethylated blocks, LADs,
and LOCKs, as well as its enrichment in high epigenetic distances. 18 A: Genome browser
images of two chromosomal regions show significant overlap of compartment B in normal
lung (blue) with hypomethylated blocks, LADs, and LOCKs. Gain in JSD is observed within
compartment B (blue) in normal lung during carcinogenesis. 18B: Boxplots of genome-wide

JSD distributions within compartments A (brown) and B (blue) in normal colon, liver and
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lung demonstrate gain in JSD within compartment B in cancer. The boxes show the 25%
quantile, the median, and the 75% quantile, whereas each whisker has a length of 1.5xthe
interquartile range.

[00277] Figure 19 relates to the relocation of compartments A and B in cancer. 19A: The
HOXA cluster of developmental genes is within compartment B in normal colon, liver and
lung. It is however relocated to compartment A in colon and liver cancer but not in lung
cancer. Compartmental reorganization of the HOXA genes is accompanied by marked
hypomethylation and entropy loss within selected loci, implicating a role of chromatin
reorganization in altered HOXA gene expression within tumors. 19B: The HOXD genes are
within compartment B in normal colon, liver and lung and are relocated to compartment A in
all three cancers. 19C: SOX9 is within compartment B in colon and lung normal and is
relocated to compartment B only in colon cancer. This is accompanied by marked
hypomethylation and entropy loss. SYK is within compartment B in colon and lung normal
and it is relocated to compartment B both in colon and lung cancer. 19D: MGMT and MSH4
are within compartment A in colon and lung normal and they are relocated to compartment B
only in colon cancer. Compartmental reorganization is accompanied mostly by
hypomethylation and a marked gain in entropy.

[00278] Figure 20 relates to computing and comparing entropic sensitivity. 20A: Gain of
entropy and loss in the entropic sensitivity index (ESI) is observed within a portion of the
CGI associated with WNT/. 20B: Large differences in entropic sensitivity (dESI) may be
observed genome-wide between normal and cancer tissues (visualized here for a large section
of chromosome 1), exhibiting alternate bands of hyposensitivity and hypersensitivity. 20C:
Boxplots of genome-wide ESI distributions corresponding to the genomic samples used in
this study reveal global differences in entropic sensitivity across genomic samples. The boxes
show the 25% quantile, the median, and the 75% quantile, whereas each whisker has a length
of 1.5x the interquartile range.

[00279] Figure 21 pertains to the breakdown of entropic sensitivity within various genomic
features throughout the genome in various genomic samples. Boxplots of genome-wide
distributions of the entropic sensitivity index (ESI) for all genomic samples used in this study
within CGIs, shores, shelves, open seas, TSSs, exons, introns, and intergenic regions. The
boxes show the 25% quantile, the median, and the 75% quantile, whereas each whisker has a

length of 1.5 x the interquartile range.
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[00280] Figure 22 shows a wide behavior of entropic sensitivity in the genome. 22A: An
example of ESI values in colon normal tissue shows wide-spread entropic sensitivity along
the genome. However, unmethylated CGIs may exhibit low entropic sensitivity. KLHL2/ is a
substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex
required for efficient chromosome alignment and cytokinesis. PHF/3 regulates chromatin
structure. 7THAP3 1s required for regulation of RRM 1 that may play a role in malignancies and
disease. 22B: In liver normal cells, substantial entropic sensitivity is observed within the CGI
near the promoter of the polycomb target gene ENSA, which is significantly reduced in liver
cancer. ENSA is known to be hypomethylated in liver cancer. 22C: In lung normal cells, the
CGI near the promoter of NEU! exhibits low entropic sensitivity, which is significantly
increased in lung cancer. NEU! sialidase is required for normal lung development and
function, whereas its expression has been implicated in tumorigenesis and metastatic
potential. 22D: In young CD4" lymphocytes, substantial entropic sensitivity is observed
within the CGI near the promoter of CYP2FE/, which is lost in old individuals. CYP2EL is
known to be downregulated with age. 22E: The CGI near the promoter of //LNB exhibits gain
in entropic sensitivity in old CD4" lymphocytes. FLNB is known to be downregulated with
age.

[00281] Figure 23 pertains to the breakdown of entropic sensitivity within compartments A
and B in various genomic samples. Boxplots of genome-wide ESI distributions within
compartment A (brown) and compartment B (blue) show that entropic sensitivity is higher
within compartment A than within compartment B. The boxes show the 25% quantile, the
median, and the 75% quantile, whereas each whisker has a length of 1.5xthe interquartile

range.
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SUPPLEMENTARY TABLES

[00350] SUPPLEMENTARY TABLE 1
[00351] Supplementary Table 1 provides a list of all WGBS genomic samples used in this

disclosure.

errbryofiic sterr: [ 111 srPoT2ar]

colonnormel 1 on normai ]

coloncance 1 colon-cancer 2]

liveernorinal-1 2 livernermal SRPOTI07S 9
lvercancer-1 2 liver cancer SRPO72078 g
v ernormal-Z a liver normal SRPO72078 7
lwercancar-2 3 [liver cancer SRROVZQTS 3
lefriorrma-3 4 liver nermal SRRO72078 18
fviercancer-3 4 livercancer SRPO72078 18
Ivernormal4 liver nofmal 2] 50
lwernormal-5 [liver norrral 2] 41
jungnorinal-1 ) ung nermal SREGT2078 14
lungcancer-1 5 lung.cancer SRPO72078 15
lungrormal-2 5] lurg normal SRPO72078 10
lurigcantar-2 3 lung cancer SRPOTZ07TE 10
ungnermat-3 ¥ lungnermal SRRO72078 15
lungeancer-3 T lungcancer SRPOT2078 18
brain-1 post-mortem brain, pre-frontal cortex, normal SRPOT2071 H
Brain-2- cortex; normal SRPOFZ0TL 12

ﬁb

P4 human neonatal , passaged SRPOT2075
fibro-P7 human-neanatal fibroblasts, passage 7 SRPOT2075 1
tibro-P 0 higran neonatal fibroblasts, passage 40 SRRPO7Z0TS 11
fibre-P3 human:neonatal fibroblasts, passage 31 SRROF2075 11

hurman neonatal fitroblasts, passage-33. senescent SRPOT2075

froniatt 18 year oidfertiaie SRPO7ZQTS 8
flove-sorted pefipheral CO4T-cells from & 25 year old femsle SRROF2075 g
flovi-sorted periphersl COd T-cells from a-25 vear oldfemale SRPO72075 7
flewesorted peripheral. 0w Tocells froman 82 year-oldfemale SRPOT2075 T
f‘ow-aor[ed peripheral CE4 T-cnllq fromm.an 82 year cid feralz SRRO7ZQTS 5
li | SRROF2075 7

zfrom.a skinbiopsy of & sun-protected site on - ayoung indvida
ker 2 kerat|nocyte~ frora skift Liopsy.of a sun-protécted site onayoang indivic
[CIR SN, keratinocytes froma skribiopsy of a sun-exposad sitd onan dider mdmdua

1SRP atceasions dorraspond to NEEl Seqliendria Read Archive SRAN
Hiriginal sequence dlongwith additional coverage have.baen deposited i the refarerice SR accasson

REFERENCES

fa
f
ol

seape gl e rman qencme Na{m» SUNITAR3EATT.
"u}""?”“ tation i

P

13} Vardiver J‘-J'\ fnzal MR L qal Agesar sun expes

Al Hangen D Sabuncian S Langmiead Bt @ Largessedle iynoms

70



WO 2017/218908 PCT/US2017/037900

[00352] SUPPLEMENTARY TABLE 2
[00353] Supplementary Table 2 provides the results of statistical analysis for EZH2/SUZ12

binding association with promoters and enhancers at genomic loci characterized by high

Jensen-Shannon distance (JSD).

*90% of data was randomly selected for training, while the remaining was used-for sstimating performance.
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[00354] SUPPLEMENTARY TABLE 3
[00355] Supplementary Table 3 provides the results of odds ratio (OR) analysis of

bistability enrichment in CGls, shores, promoters, and gene bodies.

7.62E-02 . 6.95E-293
3:36E-02 : 7.61E-217

1A5E-147 : 2:39E-184
9.99E-218
1.19E-39
3.21E-24
6:01E-10 1.43E:02
2.62E-05 9.26E-01
1.50E-03 2.82E:27
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SUPPLEMENTARY DATA

[00356] SUPPLEMENTARY DATA 1

[00357] Supplementary Data 1 provides gene rankings for some genomic sample pairs
based on the magnitude of the differential methylation level (IMML), the Jensen-Shannon
distance (JSD), and the relative Jensen-Shannon distance (RJISD). Supplementary Data 1 as
attached hereto includes a portion of the collective data set as a representative sample and is

incorporated herein by reference in its entirety.
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Suppismentary Dala 1

stea-VS-train- 1

74



WO 2017/218908 PCT/US2017/037900

75



WO 2017/218908 PCT/US2017/037900

76



WO 2017/218908 PCT/US2017/037900

77



WO 2017/218908 PCT/US2017/037900

78



WO 2017/218908 PCT/US2017/037900

79



WO 2017/218908 PCT/US2017/037900

80



WO 2017/218908 PCT/US2017/037900

81



PCT/US2017/037900

WO 2017/218908

82



WO 2017/218908 PCT/US2017/037900

[00358] SUPPLEMENTARY DATA 2
[00359] Supplementary Data 2 provides Gene Ontology (GO) annotation results for some

genomic sample pairs using gene rankings based on the magnitude of the differential mean
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methylation level (IMML), the Jensen-Shannon distance (JSD), and the relative Jensen-
Shannon distance (RJSD). Supplementary Data 2 as attached hereto includes a portion of the
collective data set as a representative sample and is incorporated herein by reference in its

entirety.
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[00360] SUPPLEMENTARY DATA 3

[00361] Supplementary Data 3 provides a list of ranked genes based on a bistability score
and its association with a list of imprinted genes (CPOE) as well as a list of genes exhibiting
monoallelic expression (MAE). Supplementary Data 3 as attached hereto includes a portion
of the collective data set as a representative sample and is incorporated herein by reference in

its entirety.
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[00362] SUPPLEMENTARY DATA 4
[00363] Supplementary Data 4 shows a matrix of A/B compartment switching frequencies
among 34 genomic samples. Supplementary Data 4 is attached hereto in its entirety and is

incorporated herein by reference in its entirety.
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[00364] SUPPLEMENTARY DATA 5

[00365] Supplementary Data 5 provides a list of gene rankings based on a decreasing
differential entropic sensitivity index (dESI) when comparing colon normal to colon cancer.
Supplementary Data 5 as attached hereto includes a portion of the collective data set as a
representative sample and is incorporated herein by reference in its entirety.

[00366] Although the invention has been described with reference to the above examples, it
will be understood that modifications and variations are encompassed within the spirit and
scope of the invention. Illustrative examples of the invention are attached herein as
Supplementary Data 1-5 which are herein incorporated by reference in their entireties.

Accordingly, the invention is limited only by the following claims.
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[00367] Although the invention has been described with reference to the above examples, it
will be understood that modifications and variations are encompassed within the spirit and

scope of the invention. Accordingly, the invention is limited only by the following claims.
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CLAIMS OF THE INVENTION

What is claimed is:
1. A method for performing epigenetic analysis comprising calculating an epigenetic
potential energy landscape (PEL), or the corresponding joint probability distribution, of a

genomic region within one or more genomic samples, wherein calculating the PEL

comprises:
a) partitioning a genome into discrete genomic regions;
b) analyzing the methylation status within a genomic region by fitting a

parametric statistical model (The Model) to methylation data that takes into account
dependence among the methylation states at individual methylation sites and has the number
of parameters growing slower than geometrically in the number of methylation sites inside
the region; and
) computing and analyzing a PEL, or the corresponding joint probability
distribution, within the genomic region and/or its subregions and/or merged super-regions,
thereby performing epigenetic analysis.
2. The method of claim 1, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.
3. The method of claim 1, wherein the PEL is defined by
Vx(x) =, — log K (x),
wherein:
» J,(x)is the PEL within a genomic region,
* PF.(x)is the joint probability of the random variable X, representing the

methylation state of the modeled methylation sites, taking a value x within the
genomic region, and
" ¢ 1s a constant.

4. The method of claim 3, wherein the PEL is calculated as follows:
N N
VX (X) = _Z an (2xn - l) _Z cn (2xn - l)(zxn—l - l) >
n=1 n=2

wherein:
» J,(x)is the PEL within a genomic region,
* Nis the number of modeled methylation sites within the genomic region, and

» {a,,...ay}and {c,,...,cy} are parameters of the model.
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The method of claim 4, wherein the PEL parameters {a,,...,ay} and {ca,...,cn} are

specified by setting a, =a+Pp, and ¢, =y/d, , wherein p,  is the CpG density of
the n-th modeled methylation site and d 1is the distance of the n-th modeled

methylation site from its “nearest-neighbor” modeled methylation site n—1.

The method of claim 5, wherein the parameters o,[3,y are estimated from
methylation data using a maximum-likelihood approach.

The method of claim 1, wherein the joint probability distribution of a genomic region

is computed by:
1
P(x)= E exp{—Vx(x)},

wherein:

* PF.(x) 1s the joint probability of the random variable X, representing the

methylation state of the modeled methylation sites, taking a value x within the
genomic region,
» J(x)is the PEL within the genomic region, and

= Zis the partition function computed by a recursive method.
The method of claim 1, further comprising comparing the PEL or its associated joint
probability distribution, calculated for a genomic region of a first genome, with
another PEL or its associated joint probability distribution, calculated for the
corresponding genomic region of a second genome.
The method of claim 8, wherein PEL comparisons are performed for genomic regions
across the entire first and second genome.
The method of claim 1, wherein analyzing the PEL further comprises quantifying the
methylation level within genomic subregions.
The method of claim 10, wherein the methylation level within a genomic subregion is

quantified using:

wherein:
» [ is the methylation level within a genomic subregion,
* N is the number of modeled methylation sites within the genomic subregion,
and
» X, is arandom variable that takes value O if the n-th modeled methylation site

of the genomic subregion is unmethylated and 1 if said site is methylated.
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12.  The method of claim 10, further comprising calculating a probability distribution for
the methylation level within a genomic subregion.
13.  The method of claim 12, wherein the probability distribution of the methylation level

is computed as follows:

P =2 R(x),

xeS(NI)
wherein:

* P (/)is the probability of the random variable L for the methylation level

taking a value / within a genomic subregion,

* PF.(x) 1s the joint probability of the random variable X, representing the

methylation state of the modeled methylation sites, taking a value x within the
genomic region, calculated by the method of claim 7,
=  S(IN) is the set of all methylation states within the genomic subregion with
exactly /x N modeled methylation sites being methylated, and
* Nisthe number of modeled methylation sites within the genomic subregion.
14.  The method of claim 1, further comprising annotating genomic features by analyzing
the joint probability distribution or derivative summaries that overlap said genomic features.
15.  The method of claim 14, wherein the genomic features are selected from the group
consisting of genes, gene promoters, introns, exons, transcription start sites (TSSs), CpG
islands (CGIs), CGI island shores, CGI shelves, differentially methylated regions (DMRs),
entropy blocks (EBs), topologically associating domains (TADs), hypomethylated blocks,
lamin-associated domains (LADs), large organized chromatin K9-modifications (LOCKs),
imprinting control regions (ICRs), and transcription factor binding sites.
16.  The method of claim 1, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.
17. A method for performing epigenetic analysis comprising computing and analyzing
the average methylation status of a genome, wherein computing and analyzing the average
methylation status comprises:
a) partitioning the genome into discrete genomic regions;
b) analyzing the methylation status within a genomic region by fitting The Model

to methylation data; and
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c) quantifying the average methylation status of the genomic region and/or its
subregions and/or merged super-regions, thereby performing epigenetic analysis.
18.  The method of claim 17, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.
19.  The method of claim 17, wherein (c) comprises quantifying the average methylation
status within a genomic subregion by calculating the average methylation status from the
probability distribution of the methylation level within the genomic subregion.
20.  The method of claim 19, wherein the methylation level is quantified by the method of
claim 11.
21.  The method of claim 19, wherein the probability distribution of the methylation level
is calculated using the method of claim 13.
22.  The method of claim 19, further comprising calculating the mean methylation level
(MML) based on the methylation level and its probability distribution.
23.  The method of claim 22, wherein the MML is computed using

1 N
E[L]—ﬁ;Pn(l),

wherein:
» E[L]is the MML within a genomic subregion,
* Nisthe number of modeled methylation sites within the genomic subregion,
and
* P,(1)is the probability that the #-th modeled methylation site within the
genomic subregion is methylated.
24,  The method of claim 23, wherein the probability that the n-th modeled methylation
site within the genomic subregion is methylated is computed by marginalizing the joint
probability distribution of methylation calculated by the method of claim 7.
25.  The method of claim 17, further comprising comparing the average methylation status
calculated for a genomic region and/or its subregions and/or merged super-regions of a first
genome with the average methylation status calculated for the corresponding genomic region

and/or its subregions and/or merged super-regions of a second genome.

26.  The method of claim 25, wherein comparing the average methylation status within a
genomic region and/or its subregions and/or merged super-regions of a first genome with the
average methylation status within the corresponding genomic region and/or its subregions
and/or merged super-regions of a second genome comprises calculating differences between

MMLs for genomic subregions across the entire first and second genomic samples.
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27.  The method of claim 17, further comprising annotating a genomic feature by
analyzing the average methylation status or derivative quantities of a genomic region and/or
its subregions and/or merged super-regions that overlap the genomic feature.

28.  The method of claim 27, wherein genomic features are selected from the group
consisting of genes, gene promoters, introns, exons, transcription start sites (TSSs), CpG
islands (CGIs), CGI island shores, CGI shelves, differentially methylated regions (DMRs),
entropy blocks (EBs), topologically associating domains (TADs), hypomethylated blocks,
lamin-associated domains (LADs), large organized chromatin K9-modifications (LOCKs),
imprinting control regions (ICRs), and transcription factor binding sites.

29.  The method of claim 17, further comprising forming a rank list of genomic features,
with genomic features located higher in the rank list being associated with lower mean-based
methylation in a genome or with larger differences in mean-based methylation status between
a first genome and a second genome.

30.  The method of claim 29, wherein forming the rank list comprises calculating, for each
genomic feature, a mean-based score or a differential mean-based score and forming a rank
list with genomic features associated with smaller mean-based scores or larger differential
mean-based scores being located higher in the rank list.

31.  The method of claim 30, wherein calculating, for each genomic feature, a mean-based
score or a differential mean-based score comprises:

a) calculating the MML within each genomic subregion of a genome or a first
and a second genome;

b) calculating the absolute value of the MML within each genomic subregion of a
genome, or the absolute value of the difference between the mean methylation levels
(dIMML) in a first and a second genome;

) scoring a genomic feature by combining (including but not limited to
averaging) the absolute MML values or the absolute IMML values of all genomic subregions
that overlap the genomic feature.

32.  The method of claim 31, wherein (a) and (b) comprise calculating the MML using the
method of claim 23.

33.  The method of claim 17, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode

sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.
q g q g gg q g
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34. A method for performing epigenetic analysis comprising computing and analyzing
epigenetic uncertainty in a genome, wherein computing and analyzing epigenetic uncertainty
comprises:

a) partitioning the genome into discrete genomic regions;

b) analyzing the methylation status within a genomic region by fitting The Model
to methylation data; and

) quantifying methylation uncertainty for the genomic region and/or its
subregions and/or merged super-regions, thereby performing epigenetic analysis.
35.  The method of claim 34, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.
36. The method of claim 34, wherein (c) further comprises quantifying methylation
uncertainty within a genomic subregion by the normalized methylation entropy (NME).
37.  The method of claim 36, wherein the NME is computed using

1

h:—mzli(l)logz b,

wherein:
* ) is the NME within a genomic subregion,
* N is the number of modeled methylation sites within the genomic subregion,
and

* P is the probability distribution of the methylation level within the genomic

subregion.
38.  The method of claim 37, wherein the probability distribution of the methylation level
within a genomic subregion is computed by the method of claim 13.
39.  The method of claim 34, further comprising comparing the NME calculated for a
genomic region and/or its subregions and/or merged super-regions of a first genome with the
NME calculated for the corresponding genomic region and/or its subregions and/or merged
super-regions of a second genome.
40.  The method of claim 39, wherein comparing the NME within a genomic region and/or
its subregions and/or merged super-regions of a first genome with the NME within the
corresponding genomic region and/or its subregions and/or merged super-regions of a second
genome comprises calculating differences between the NMEs for genomic region and/or its
subregions and/or merged super-regions across the entire first and second genome.
41.  The method of claim 34, further comprising annotating a genomic feature by
analyzing the methylation uncertainty or derivative summaries of a genomic region and/or its

subregions and/or merged super-regions that overlap the genomic feature.
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42.  The method of claim 41, wherein genomic features are selected from the group
consisting of genes, gene promoters, introns, exons, transcription start sites (TSSs), CpG
islands (CGIs), CGI island shores, CGI shelves, differentially methylated regions (DMRs),
entropy blocks (EBs), topologically associating domains (TADs), hypomethylated blocks,
lamin-associated domains (LADs), large organized chromatin K9-modifications (LOCKs),
imprinting control regions (ICRs), and transcription factor binding sites.
43.  The method of claim 34, further comprising forming a rank list of genomic features,
with genomic features located higher in the rank list being associated with higher methylation
uncertainty in a genome or with larger differences in methylation uncertainty between a first
genome and a second genome.
44.  The method of claim 43, wherein forming the rank list comprises calculating, for each
genomic feature, an uncertainty-based score or a differential uncertainty-based score and
forming a rank list with genomic features associated with larger uncertainty-based scores or
differential uncertainty-based scores being located higher in the rank list.
45.  The method of claim 44, wherein calculating, for each genomic feature, an
uncertainty-based score or a differential uncertainty-based score comprises:

a) calculating the NME within each genomic subregion of a genome or a first
and a second genome;

b) calculating the difference in NME (dNME) values within each genomic
subregion in a first and a second genome;

) scoring a genomic feature by combining (including but not limited to
averaging) the NME or dNME values of all genomic subregions that overlap the genomic

feature.

46.  The method of claim 45, wherein (a) and (b) comprise calculating the NME using the
method of claim 37.

47.  The method of claim 34, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.

48. A method for performing epigenetic analysis comprising analyzing epigenetic
discordance between a first genome and a second genome (including but not limited to the

analysis of epigenetic discordance between a normal and a diseased state, such as cancer,
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with genomes procured from one or more patients), wherein analyzing epigenetic discordance

comprises:
a) partitioning the first and the second genome into discrete genomic regions;
b) analyzing the methylation statuses within a genomic region of the first and

second genomes by fitting The Model to methylation data in each genome; and

c) quantifying a difference and/or distance between the probability distributions
(including but not limited to the Jensen-Shannon distance) and/or quantities derived
therefrom for the genomic region and/or its subregions and/or merged super-regions between
the first and second genomes; thereby performing epigenetic analysis.
49, The method of claim 48, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.
50. The method of claim 48, wherein (c) comprises quantifying the methylation level and

calculating its probability distribution within a genomic subregion.

51. The method of claim 50, wherein the methylation level is quantified by the method
of claim 11.
52. The method of claim 50, wherein the probability distribution of the methylation level

is calculated using the method of claim 13.

53. The method of claim 48, wherein (c) further comprises computing the Jensen-
Shannon distance (JSD) between the probability distribution of the methylation level within a
genomic subregion of the first genome and the probability distribution of the methylation
level within the corresponding genomic subregion of the second genome.

54.  The method of claim 53, wherein the JSD is computed using

1 _ _
Dy = \/E[DKL (B P)+ D (B F)].

wherein:
» Djgis the Jensen-Shannon distance,
= P, is the probability distribution of the methylation level of the first
genome within the genomic subregion,
= P,® is the probability distribution of the methylation level of the second

genome within the genomic subregion,

» P= [PL(I) + PL(Z)]/ 2is the average probability distribution of the

methylation level within the genomic subregion, and

» Dk is the relative entropy or Kullback-Leibler divergence, given by
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P()
D (P,0)=>» P(l)log {—}
- Zz: Lo
5S. The method of claim 48, wherein differences and/or distances between the

probability distributions and/or quantities derived therefrom are calculated for
genomic subregions across the entire first and second genomes.

56.  The method of claim 48, further comprising annotating a genomic feature by
analyzing differences and/or distances between the probability distributions and/or
quantities derived therefrom that overlap the genomic feature.

57.  The method of claim 56, wherein genomic features are selected from the
group consisting of genes, gene promoters, introns, exons, transcription start sites
(TSSs), CpG islands (CGlIs), CGI island shores, CGI shelves, differentially
methylated regions (DMRs), entropy blocks (EBs), topologically associating domains
(TADs), hypomethylated blocks, lamin-associated domains (LADs), large organized
chromatin K9-modifications (LOCKSs), imprinting control regions (ICRs), and
transcription factor binding sites.

58.  The method of claim 48, further comprising forming a rank list of genomic
features, with genomic features located higher in the rank list being associated with
higher epigenetic discordance between a first and a second genome (including but not
limited to epigenetic discordance between a normal and a diseased state, such as
cancer, with genomes procured from one or more patients).

59.  The method of claim 58, wherein forming the rank list of genomic features
comprises calculating, for each genomic feature, a discordance-based score and
forming a rank list with genomic features associated with larger discordance-based
scores being located higher in the rank list.

60.  The method of claim 59, wherein calculating, for each genomic feature, a

discordance-based score comprises:

a) calculating the JSD within each genomic subregion of a first and a second
genome;
b) scoring a genomic feature by combining (including but not limited to

averaging) the JSD values of all genomic subregions that overlap the genomic feature.
61.  The method of claim 60, wherein (a) comprises calculating the JSD using the
method of claim 54.
62.  The method of claim 48, comprising acquiring methylation data from one or
more techniques selected from the group consisting of whole genome bisulfite DNA
sequencing, PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing,

127



WO 2017/218908 PCT/US2017/037900

nanopore-based sequencing, single molecule real-time sequencing, bisulfite
pyrosequencing, GemCode sequencing, 454 sequencing, insertion tagged sequencing,
or other related methods.
63. A method for performing epigenetic analysis comprising classifying the average
methylation status within genomic subregions, wherein the method comprises:
a) partitioning the genome into discrete genomic regions;
b) analyzing the methylation status within a genomic region by fitting The Model
to methylation data; and
) classifying the average methylation status of a genomic subregion into discrete
classes (including but not limited to bistability), thereby performing epigenetic analysis.
64.  The method of claim 63, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.
65.  The method of claim 63, wherein (c) comprises:
a) quantifying the methylation level within a genomic subregion,
b) calculating the probability distribution of methylation level within the
genomic subregion, and
) classifying the genomic subregion into a discrete class.
66.  The method of claim 65, wherein (a) comprises quantifying the methylation level
using the method of claim 11.
67.  The method of claim 65, wherein (b) comprises calculating the probability
distribution of the methylation level within a genomic subregion using the method of claim
13.
68.  The method of claim 65, wherein (c) comprises classifying the genomic subregion
into the following discrete classes: highly unmethylated, partially unmethylated, highly
methylated, partially methylated, mixed, highly mixed, and bistable.
69.  The method of claim 68, wherein classifying the genomic subregion into a discrete
class is performed by detecting the skewness and/or bimodality of the probability distribution
of the methylation level within the genomic subregion.
70.  The method of claim 69, wherein detecting the skewness and/or bimodality of the
probability distribution of the methylation level within the genomic subregion is performed

by computing the probabilities p,, p,, p;, and p, of the methylation level within the genomic

subregion to be between 0 and 4, V4 and 14, % and %4, as well as between % and 1.
71.  The method of claim 68, wherein classifying a genomic subregion into a discrete class

is performed by the following scheme:
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highly unmethylated: if 0.6 <p,+p, <1 & p,>0.6

* partially unmethylated: if 0.6 <p, +p, <1 & 0<p <0.6
* partially methylated: if 0<p, +p, <04 & 0<p, <06

* highly methylated: if 0<p, +p, <04 & p,>0.6

e mixed: if 04<p +p, <06 & 0<p,/(p,+p,)<04 &

0<p,/(p;+p,)<04

e highly mixed: if 0.4<p +p, <06 & 04<p, /(p +p,)<06 &
04<p,/(p;,+p,)<0.6

e bistable: if 04<p +p, <06 & 06<p, /(p,+p,)<1 &

0.6<p,/(ps+p,)<],
wherein, the probabilities p,, p,,p;, and p,of the methylation level within the

genomic subregion are computed using the method of claim 70.
72.  The method of claim 69, wherein classification of the methylation status of a genomic
subregion takes place for genomic subregions across the entire genome.
73.  The method of claim 63, further comprising annotating a genomic feature by
analyzing the discrete methylation classifications that overlap the genomic feature.
74.  The method of claim 73, wherein genomic features are selected from the group
consisting of genes, gene promoters, introns, exons, transcription start sites (TSSs), CpG
islands (CGIs), CGI island shores, CGI shelves, differentially methylated regions (DMRs),
entropy blocks (EBs), topologically associating domains (TADs), hypomethylated blocks,
lamin-associated domains (LADs), large organized chromatin K9-modifications (LOCKs),
imprinting control regions (ICRs), and transcription factor binding sites.
75.  The method of claim 63, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.
76. A method for performing epigenetic analysis comprising classifying methylation
uncertainty within genomic subregions, wherein the method comprises:

a) partitioning the genome into discrete genomic regions;

b) analyzing the methylation status within a genomic region by fitting The Model

to methylation data; and
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c) classifying the methylation uncertainty of a genomic subregion into discrete
classes, thereby performing epigenetic analysis.
77.  The method of claim 76, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.
78.  The method of claim 76, wherein (c) comprises:

a) quantifying the methylation level within a genomic subregion,

b) calculating the probability distribution of methylation level within the

genomic subregion,

) computing the NME within the genomic subregion, and
d) classifying the genomic subregion into a discrete class.
79.  The method of claim 78, wherein (a) comprises quantifying the methylation level

within a genomic subregion using the method of claim 11,
80. The method of claim 78, wherein (b) comprises calculating the probability
distribution of the methylation level within a genomic subregion using the method of claim
13.
81.  The method of claim 78, wherein (¢) comprises computing the NME within a
genomic subregion using the method of claim 37.
82.  The method of claim 78, wherein (d) further comprises using the computed NME
value within a genomic subregion to classify the genomic subregion into one of the following
discrete classes: highly ordered, moderately ordered, weakly ordered/disordered, moderately
disordered, highly disordered.
83.  The method of claim 82, wherein classification of a genomic subregion into a discrete
class is performed by the following scheme:

. highly ordered: if 0</<0.28

. moderately ordered: if 0.28 </ <0.44

. weakly ordered/disordered: if 0.44 <h <092

. moderately disordered: if 0.92 </ <0.99

. highly disordered: if 0.99 <A <1,

wherein 4 is the NME within the genomic subregion.
84. The method of claim 76, wherein classification of methylation uncertainty of a
genomic subregion takes place for genomic subregions across the entire genome.
85. The method of claim 76, further comprising annotating a genomic feature by
analyzing the classifications of methylation uncertainty that overlap the genomic feature.
86. The method of claim 85, wherein genomic features are selected from the group

consisting of genes, gene promoters, introns, exons, transcription start sites (TSSs), CpG
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islands (CGIs), CGI island shores, CGI shelves, differentially methylated regions (DMRs),
entropy blocks (EBs), topologically associating domains (TADs), hypomethylated blocks,
lamin-associated domains (LADs), large organized chromatin K9-modifications (LOCKs),
imprinting control regions (ICRs), and transcription factor binding sites.

87.  The method of claim 76, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.

88. A method for performing epigenetic analysis comprising computing methylation
regions (MRs) and methylation blocks (MBs), wherein the method comprises:

a) partitioning the genome into discrete genomic regions;

b) analyzing the methylation status within a genomic region by fitting The Model
to methylation data;

c) classifying the methylation status of genomic subregions across the entire
genome; and

d) grouping the classification results into MRs and MBs, thereby performing
epigenetic analysis.

89.  The method of claim 88, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.

90.  The method of claim 88, wherein (c) comprises classifying the methylation status of a
genomic subregion by using the method of claim 63.

91.  The method of claim 88, wherein (d) comprises grouping the classification of
genomic subregions by:

a) sliding a window of a given length along the genome;

b) labeling the sliding window as being methylated or unmethylated if some
percentage of the genomic subregions that intersect the sliding window are respectively
classified to be partially/highly methylated or partially/highly unmethylated; and

c) grouping all methylated and unmethylated windows using the operations of
union and intersection of windows to determine the final consensus groupings.

92.  The method of claim 91, wherein the percentage of the genomic subregions within the
sliding window is about 75% and the sliding window is about 750 base pairs in length when
computing MRs and 75,000 base pairs in length when computing MBs.

93.  The method of claim 88, comprising acquiring methylation data from one or more

techniques selected from the group consisting of whole genome bisulfite DNA sequencing,

131



WO 2017/218908 PCT/US2017/037900

PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.

94. A method for performing epigenetic analysis comprising computing entropy regions
(ERs) and entropy blocks (EBs), wherein the method comprises:

a) partitioning the genome into discrete genomic regions;

b) analyzing the methylation status within a genomic region by fitting The Model
to methylation data;

) classifying the methylation uncertainty of genomic subregions across the
entire genome; and

d) grouping the classification results into ER and EBs, thereby performing
epigenetic analysis.

95.  The method of claim 94, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.

96.  The method of claim 94, wherein (c) comprises classifying the entropy status of a
genomic subregion by using the method of claim 76.

97.  The method of claim 94, wherein (d) comprises grouping the classification of
genomic subregions by:

a) sliding a window of a given length along the genome;

b) labeling the sliding window as being ordered or disordered if some percentage
of the genomic subregions that intersect the sliding window are respectively classified to be
moderately/highly ordered or moderately/highly disordered; and

c) grouping all ordered and disordered windows using the operations of union
and intersection of windows to determine the final consensus groupings.

98.  The method of claim 97, wherein the percentage of the genomic subregions within the
sliding window is about 75% and the sliding window is about 750 base pairs in length when
computing ERs, and 75,000 base pairs in length when computing EBs.

99.  The method of claim 94, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.

100. A method for performing epigenetic analysis comprising calculating informational
properties of epigenetic maintenance, wherein computing these properties comprises:

d) partitioning the genome into discrete genomic regions;
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e) analyzing the methylation status within a genomic region by fitting The Model
to methylation data; and

f) quantifying informational properties of epigenetic maintenance (including but
not limited to the capacity and relative dissipated energy of methylation channels) of the
genomic region and/or its subregions and/or merged super-regions, thereby performing
epigenetic analysis.
101. The method of claim 100, wherein each discrete genomic region is about 3000 base

pairs in length and the subregions are about 150 base pairs in length.
102. The method of claim 100, wherein (c) comprises quantifying informational properties
of epigenetic maintenance within a genomic subregion by calculating:

a) the information capacity (IC) of a methylation channel;

b) the relative dissipated energy (RDE) of the methylation channel; and

) the CG entropy (CGE) of the methylation channel.
103. The method of claim 102, wherein (a) comprises calculating the IC of a methylation

channel by:

- 1-052[w(%, /A+2))] ' [A, /A+2,)], whenk, <1
" 1-0.52] y(A, /(1+xn))]’1 [1/(A+2x,)],  when}, >1
wherein:
» (,1s the IC of the methylation channel at a modeled methylation site #,
» J,1sthe turnover ratio of the methylation site », and
* y(x) is the function — x logx(x) — (1—x) logy(1—x).
104. The method of claim 103, wherein the turnover ratio 4, of a modeled methylation site

n is computed using
RO
BN AN
wherein
* P,(1)1s the probability that the modeled methylation site # is methylated.
10S. The method of claim 104, wherein the probability that the n-th modeled methylation
site 1s methylated is computed by marginalizing the joint probability distribution of
methylation, calculated by the method of claim 7.
106. The method of claim 102, wherein (b) comprises calculating the RDE of a

methylation channel by:

n

_ [476+1og,[(1+2,)/(2),)], when A, <1
1476 +10g,[(1+1,) /2], when A, >1’
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wherein:
» g, 1s the RDE of the methylation channel at a modeled methylation site », and
* J,1s the turnover ratio of the methylation site #» computed by the methods of
claims 104 and 105.
107. The method of claim 102, wherein (¢) comprises computing the CGE of a methylation
channel by:
S, =v, /(1+4,)),
wherein:
= S, is the CGE of the methylation channel at a modeled methylation site »,
* /i, 1s the turnover ratio of the methylation site #» computed by the methods of
claims 104 and 105, and

* y(x) is the function — x logx(x) — (1—x) logy(1—x).
108. The method of claim 100, further comprising comparing informational properties of
epigenetic maintenance (including but not limited to the capacity and relative dissipated
energy of methylation channels) calculated for a genomic region and/or its subregions and/or
merged super-regions of a first genome with informational properties of epigenetic
maintenance (including but not limited to the capacity and relative dissipated energy of
methylation channels) calculated for the corresponding genomic region and/or its subregions
and/or merged super-regions of a second genome.
109. The method of claim 108, wherein comparing the informational properties of
epigenetic maintenance within a genomic region and/or its subregions and/or merged super-
regions of a first genome with informational properties within the corresponding genomic
region and/or its subregions and/or merged super-regions of a second genome comprises
calculating differences between ICs, RDEs, and the like, for genomic subregions across the
entire first and second genomic samples.
110. The method of claim 100, further comprising annotating a genomic feature by
analyzing the informational properties of epigenetic maintenance, or derivative summaries, of
a genomic region and/or its subregions and/or merged super-regions that overlap the genomic
feature.
111. The method of claim 110, wherein the genomic features are selected from the group
consisting of genes, gene promoters, introns, exons, transcription start sites (TSSs), CpG
islands (CGIs), CGI island shores, CGI shelves, differentially methylated regions (DMRs),
entropy blocks (EBs), topologically associating domains (TADs), hypomethylated blocks,
lamin-associated domains (LADs), large organized chromatin K9-modifications (LOCKs),

imprinting control regions (ICRs), and transcription factor binding sites.
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112. The method of claim 100, further comprising forming a rank list of genomic features,
with genomic features located higher in the rank list being associated with higher values of a
measure of informational properties of epigenetic maintenance (including but not limited to
the capacity and relative dissipated energy) between a first and a second genome.

113. The method of claim 112, wherein forming the rank list of genomic features
comprises calculating, for each genomic feature, a informational-based score and forming a
rank list with genomic features associated with larger informational-based scores being
located higher in the rank list.

114. The method of claim 113, wherein calculating, for each genomic feature, an
informational-based score comprises:

a) calculating the information capacity (IC) or the relative dissipated energy
(RDE) of a methylation channel (MC) within each genomic subregion of a first and a second
genome;

b) scoring a genomic feature by combining (including but not limited to
averaging) the IC or RDE values of all genomic subregions that overlap the genomic feature.
115. The method of claim 114, wherein (a) comprises calculating the IC using the method
of claim 103 or the RDE using the method of claim 106.

116. The method of claim 100, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.

117. A method for performing epigenetic analysis comprising computing the sensitivity to
perturbations of informational/statistical properties (including but not limited to entropy) of
the methylation system within a genomic region and/or its subregions and/or merged super-
regions, wherein the method comprises:

a) partitioning the genome into discrete genomic regions;

b) analyzing the methylation status within a genomic region by fitting The Model
to methylation data; and

) quantifying the sensitivity to perturbations of informational/statistical
properties (including but not limited to entropy) of the methylation system within a genomic
region and/or its subregions and/or merged super-regions, thereby performing epigenetic
analysis.

118. The method of claim 117, wherein each discrete genomic region is about 3000 base

pairs in length and the subregions are about 150 base pairs in length.
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119. The method of claim 117, wherein (c) comprises quantifying the sensitivity to
perturbations of informational/statistical properties (including but not limited to entropy) of
the methylation system within a genomic subregion by calculating the entropic sensitivity
index (ESI) of the genomic subregion.
120. The method of claim 119 wherein the ESI of a genomic subregion is computed by
= | h(W)‘; h©O)| ’
wherein:

* 7 1is the ESI of the genomic subregion,

*  /h(0) is the NME of the genomic subregion with PEL parameters 0,

*  h(w) is the NME of the genomic subregion with “perturbed” PEL parameters

(1+w)x0, and

* y is a small parameter perturbation.
121. The method of claim 120, wherein the NME of a genomic subregion is computed by
the method of claim 37.
122. The method of claim 117, further comprising comparing the entropic sensitivity
within a genomic region and/or its subregions and/or merged super-regions of a first genome
with the entropic sensitivity of the corresponding genomic region and/or its subregions and/or
merged super-regions of a second genome.
123. The method of claim 122, wherein comparing entropic sensitivity within a genomic
region and/or its subregions and/or merged super-regions of a first genome with entropic
sensitivity within the corresponding genomic region and/or its subregions and/or merged
super-regions of a second genome comprises calculating differences between ESIs for
genomic subregions across the entire first and second genomes.
124, The method of claim 117, further comprising annotating a genomic feature by
analyzing entropic sensitivity or derivative quantities of a genomic region and/or its
subregions and/or merged super-regions that overlap the genomic feature.
125. The method of claim 124, wherein the genomic features are selected from the group
consisting of genes, gene promoters, introns, exons, transcription start sites (TSSs), CpG
islands (CGIs), CGI island shores, CGI shelves, differentially methylated regions (DMRs),
entropy blocks (EBs), topologically associating domains (TADs), hypomethylated blocks,
lamin-associated domains (LADs), large organized chromatin K9-modifications (LOCKs),
imprinting control regions (ICRs), and transcription factor binding sites.
126. The method of claim 117, comprising acquiring methylation data from one or more

techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
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PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.
127. A method for performing epigenetic analysis that includes identifying genomic
features (including but not limited to gene promoters) in a genome that exhibit high entropic
sensitivity or large differences in entropic sensitivity between a first genome and a second
genome (including but not limited to between a normal and a diseased state, such as cancer,
with genomes procured from one or more patients). The analysis includes: a) partitioning the
first and second genomes into discrete genomic regions; b) analyzing the methylation status
within a genomic region by fitting The Model to methylation data; and c) identifying
genomic features (including but not limited to gene promoters) in a genome that exhibit high
entropic sensitivity or large differences in entropic sensitivity between a first genome and a
second genome (including but not limited to between a normal and a diseased state, such as
cancer, with genomes procured from one or more patients).
128. The method of claim 127, wherein each discrete genomic region is about 3000 base

pairs in length and the subregions are about 150 base pairs in length.
129. The method of claim 127, wherein (c) comprises forming a rank list of genomic
features, with genomic features located higher in the rank list being associated with higher
entropic sensitivity in a genome or with larger differences in entropic sensitivity between a
first genome and a second genome.
130. The method of claim 129, wherein the genomic features are selected from the group
consisting of genes, gene promoters, introns, exons, transcription start sites (TSSs), CpG
islands (CGIs), CGI island shores, CGI shelves, differentially methylated regions (DMRs),
entropy blocks (EBs), topologically associating domains (TADs), hypomethylated blocks,
lamin-associated domains (LADs), large organized chromatin K9-modifications (LOCKs),
imprinting control regions (ICRs), and transcription factor binding sites.
131. The method of claim 129, wherein forming the rank list comprises calculating, for
each genomic feature, a sensitivity-based score or a differential sensitivity-based score and
forming a rank list with genomic features associated with larger sensitivity-based scores or
larger differential sensitivity-based scores located higher in the rank list.
132. The method of claim 131, wherein calculating, for each genomic feature, a sensitivity-
based score or a differential sensitivity-based score comprises:

a) calculating the ESI within each genomic subregion of a genome or a first and a

second genome;
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b) calculating the absolute difference between two ESI values (dESI) from a first
and a second genome;

) scoring a genomic feature by combining (including but not limited to
averaging) the absolute dESI values of all genomic subregions that overlap the genomic
feature.

133. The method of claim 132, wherein (a) comprises calculating the ESI using the method
of claim 120.

134. The method of claim 127, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.

135. A method for performing epigenetic analysis comprising identifying genomic features
(including but not limited to gene promoters) with potentially important biological functions
(including but not limited to regulation of normal versus diseased states, such as cancer)
occult to mean-based analysis, while exhibiting higher-order epigenetic discordance
(including but not limited to the Jensen-Shannon distance) in the methylation states between
a first genome and a second genome, wherein the method comprises:

a) partitioning the first and second genomes into discrete genomic regions;

b) analyzing the methylation status within a genomic region of the first and
second genome by fitting The Model to methylation data in each genome; and

) identifying genomic features (including but not limited to gene promoters)
with relatively low mean differences in methylation status but relatively large high-order
discordance (including but not limited to the Jensen-Shannon distance) between the first
genome and the second genome, thereby performing epigenetic analysis.

136. The method of claim 135, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.

137. The method of claim 135, wherein (c) comprises forming a master rank list of
genomic features, with genomic features located higher in the master rank list being
associated with relatively low mean-based differences in methylation status but relatively
large high-order discordance (including but not limited to the Jensen-Shannon distance)
between a first genome and a second genome.

138. The method of claim 137, wherein forming the master rank list comprises calculating

a differential mean-based score for each genomic feature and forming a first rank list, with
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genomic features associated with larger differential mean-based scores being located higher
in the first rank list.
139. The method of claim 138, wherein calculating a differential mean-based score for
each genomic feature is performed by the method of claim 31.
140. The method of claim 137, wherein forming the master rank list further comprises
calculating a high-order discordance-based score for each genomic feature and forming a
second rank list, with genomic features associated with larger high-order discordance-based
scores being located higher in the second rank list.
141. The method of claim 140, wherein calculating a discordance-based score for each
genomic feature is performed by the method of claim 48.
142. The method of claim 137, wherein forming the master rank list comprises scoring a
genomic feature using the ratio of its ranking in the second rank list formed by the method of
claim 140 to its ranking in the first rank list formed by the method of claim 138, and using
these scores to form a master rank list with genomic features associated with larger scores
being located lower in the master rank list.
143. The method of claim 135, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.
144. A method for performing epigenetic analysis comprising identifying relationships
between bistability in methylation and genomic features (including but not limited to gene
promoters) of potentially important biological function, wherein the method comprises:

a) partitioning the genomes of one or more genomic samples into discrete
genomic regions;

b) analyzing the methylation status within a genomic region of each genome by
fitting The Model to methylation data; and

) identifying genomic features (including but not limited to gene promoters)
associated with high amounts of bistability in their methylation status in one or more genomic
samples and relating them to genomic features of potentially important biological function,
thereby performing epigenetic analysis.
145. The method of claim 144, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.
146. The method of claim 144, wherein (c) comprises calculating a bistability score for

each genomic feature in a reference set of genomic features and relating those genomic
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features with the highest bistability score to genomic features of potentially important
biological function in a test set of genomic features.

147. The method of claim 146, wherein calculating a bistability score for a genomic feature
in the reference set comprises classifying each genomic subregion of a genome as being
bistable using the method of claim 63.

148. The method of claim 146, wherein calculating a bistability score for a genomic feature
in the reference genome further comprises calculating the fraction of base pairs within the
genomic feature that are inside genomic subregions classified as being bistable by the method
of claim 147.

149. The method of claim 146, further comprising calculating a bistability score for a
genomic feature in the reference set by combining (including but not limited to averaging) all
base pair fractions computed for one or more genomic samples by the method of claim 148.
150. The method of claim 149 further comprising forming a bistability-based rank list of
the genomic features in the reference set by ranking all such genomic features in order of
decreasing bistability.

151. The method of claim 146, wherein relating genomic features with the highest
bistability score in the reference set to genomic features of potentially important biological
function in the test set comprises statistically testing against the null hypothesis that the test
set of genomic features is ranked higher in the bistability-based list of the genomic features in
the reference set.

152. The method of claim 151, wherein statistically testing against the null hypothesis that
the test set of genomic features is ranked higher in the bistability-based list of the genomic
features in the reference set comprises statistically testing, for each genomic feature in the
test set, against the null hypothesis that the genomic feature is ranked higher in the bistability-
based list of the genomic features in the reference set and by combining the individual results
of hypothesis testing using Fisher’s meta-analysis method.

153. The method of claim 144, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.

154. A method for performing epigenetic analysis comprising locating the boundaries of
topologically associating domains (TADs) without performing chromatin experiments,

wherein the method comprises:
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a) partitioning the genomes of one or more genomic samples into discrete
genomic regions;

b) analyzing the methylation status within a genomic region of each genome by
fitting The Model to methylation data; and

) locating TAD boundaries, thereby performing epigenetic analysis.
155. The method of claim 154, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.
156. The method of claim 154, wherein (¢) comprises identifying “predictive regions” of
the genome within which TAD boundaries are located.
157. The method of claim 156, wherein identifying a “predictive region” of a genome
within which a TAD boundary is located comprises computing ordered and disordered
entropy blocks (EBs) for the genome using the method of claim 94.
158. The method of claim 157, wherein a “predictive region” of a genome corresponds to
the unclassified genomic space between successive ordered and disordered EBs or between
successive disordered and ordered EBs of the genome.
159. The method of claim 156, wherein “predictive regions” of the genome within which
TAD boundaries are located are computed by combining the “predictive regions” obtained
from the method of claim 158 applied on all genomic samples.
160. The method of claim 159, wherein combining “predictive regions” comprises the
grouping of consecutive base pairs whose “predictive coverage” is at least as large as a given
threshold.
161. The method of claim 160, wherein the “predictive coverage” of a base pair is
computed as the number of “predictive regions” containing the base pair, obtained by the
method of claim 159 applied on all genomic samples.
162. The method of claim 154, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.
163. A method for performing epigenetic analysis comprising predicting
euchromatin/heterochromatin domains (including but not limited to compartments A and B of
the three-dimensional organization of a genome) from methylation data, wherein the method
comprises:

a) partitioning the genome into discrete genomic regions;
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b) analyzing the methylation status within a genomic region of the genome by
fitting The Model to methylation data;

) predicting euchromatin/heterochromatin domains (including but not limited to
compartments A and B of the genome), thereby performing epigenetic analysis.
164. The method of claim 163, wherein each discrete genomic region is about 3000 base
pairs in length and the subregions are about 150 base pairs in length.
165. The method of claim 163, wherein (c) comprises predicting
euchromatin/heterochromatin domains (including but not limited to compartments A and B of
the genome) by training a regression or classification model (including but not limited to a
random forest model) to input training data and by applying the trained regression or
classification model to methylation data.
166. The method of claim 165, wherein the input training data consist of methylation data
matched to output chromosome conformational capture data (including but not limited to Hi-
C data) and/or measured or estimated euchromatin/heterochromatin domain data (including
but not limited to compartment A/B data) for one or more genomic samples.
167. The method of claim 165, wherein values of the regression/classification feature
vectors are calculated by computing statistical/informational properties of the methylation
system within discrete genomic bins, including but not limited to median and interquartile
ranges of IC, RDE, NME and MML within the discrete genomic bins.
168. The method of claim 167, wherein the size of the discrete genomic bins is taken to
match the resolution of available output chromosome conformational capture data (including
but not limited to Hi-C data) and/or measured or estimated euchromatin/heterochromatin
domains (including but not limited to compartment A/B) data for one or more genomic
samples.
169. The method of claim 165, wherein training comprises pairing, within discrete
genomic bins, methylation data with chromosome conformational capture data (including but
not limited to Hi-C data) and/or measured or estimated euchromatin/heterochromatin domain
data (including but not limited to compartment A/B data) for one or more genomic samples
and learning a binary discriminant function specific to the regression or classification model
that maps input feature vector values to known output euchromatin/heterochromatin domain
classification (including but not limited to compartment A/B classification).
170. The method of claim 165, wherein prediction of euchromatin/heterochromatin
domains (including but not limited to compartments A/B) from available methylation data
comprises:

a) partitioning methylation data into discrete genomic bins,
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b) calculating the feature vector within each discrete genomic bin using the
method of claim 167, and

) classifying a discrete genomic bin as being within a euchromatin or
heterochromatin domain (including but not limited to compartment A or B) by using the
binary discriminant function learned using the method of claim 169.
171. The method of claim 163, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.
172. A method for performing epigenetic analysis that includes identifying genomic
features (including but not limited to gene promoters) for which a change in
euchromatin/heterochromatin structure (including but not limited to compartments A and B)
is observed between a first genome and a second genome (including but not limited to
between a normal and a diseased state, such as cancer, with genomes procured from one or
more patients). The analysis includes: a) partitioning the first and second genomes into
discrete genomic regions; b) analyzing the methylation status within a genomic region by
fitting The Model to methylation data; and c) identifying genomic features (including but not
limited to gene promoters) for which a change in euchromatin/heterochromatin structure
(including but not limited to compartments A and B) is observed between a first genome and
a second genome (including but not limited to between a normal and a diseased state, such as
cancer, with genomes procured from one or more patients).
173. The method of claim 172, wherein (c¢) comprises computing changes in
euchromatin/heterochromatin domains (including but not limited to compartments A/B)
between two genomes (including but not limited to a normal and disease pair, such as
cancer) from available methylation data, wherein the method comprises:

a) computing euchromatin/heterochromatin domains (including but not limited to
compartments A/B) in a first and a second genome, and

b) identifying genomic subregions where a difference is observed in the status of
euchromatin or heterochromatin (including but not limited to compartments A/B) between
the first and the second genome.

c) identifying genomic features (including but not limited to gene promoters) for

which a change in chromatin structure is observed between a first and a second genome.
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174. The method of <claim 173, wherein (a) comprises predicting
euchromatin/heterochromatin domains within the first and the second genome using the
method of claim 170.

175. The method of claim 173, wherein (b) comprises assigning a first indicator to a
genomic subregion in the first genome and a second indicator to the genomic subregion in the
second genome, with each indicator taking value 1 if the genomic subregion overlaps within
a euchromatic domain and value O if the genomic subregion overlaps within a
heterochromatic domain, wherein the euchromatin/heterochromatin domains are computed by
the method of claim 174.

176. The method of claim 173, wherein (b) further comprises identifying a genomic
subregion where a difference is observed in the status of euchromatin and heterochromatin
between the first and the second genome by combining the first indicator associated with the
genomic subregion in the first genome and the second indicator associated with the genomic
subregion in the second genome, computed by the method of claim 175, using the Exclusive
OR (XOR) operator.

177. The method of claim 173, wherein (¢) comprises computing, for each genomic
subregion that overlaps the genomic feature, the XOR value of the first indicator associated
with the genomic subregion in the first genome and the second indicator associated with the
genomic subregion in the second genome, computed using the method of claim 176, and by
appropriately combining (including but not limited to taking the minimum) all such XOR
values.

178. The method of claim 177, wherein the genomic features are selected from the group
consisting of genes, gene promoters, introns, exons, transcription start sites (TSSs), CpG
islands (CGIs), CGI island shores, CGI shelves, differentially methylated regions (DMRs),
entropy blocks (EBs), topologically associating domains (TADs), hypomethylated blocks,
lamin-associated domains (LADs), large organized chromatin K9-modifications (LOCKs),
imprinting control regions (ICRs), and transcription factor binding sites.

179. The method of claim 172, comprising acquiring methylation data from one or more
techniques selected from the group consisting of whole genome bisulfite DNA sequencing,
PCR-targeted bisulfite DNA sequencing, capture bisulfite sequencing, nanopore-based
sequencing, single molecule real-time sequencing, bisulfite pyrosequencing, GemCode
sequencing, 454 sequencing, insertion tagged sequencing, or other related methods.

180. A non-transitory computer readable storage medium encoded with a computer
program, the program comprising instructions that when executed by one or more processors

cause the one or more processors to perform operations to perform the method according to
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claims 1-16, 17-33, 34-47, 48-62, 63-75, 76-87, 88-93, 94-99, 100-116, 117-126, 127-134,
135-143, 144-153, 154-162, 163-171, or 172-179.

181. A computing system comprising: a memory; and one or more processors coupled to
the memory, the one or more processors configured to perform operations to perform the
method according to claims 1-16, 17-33, 34-47, 48-62, 63-75, 76-87, 88-93, 94-99, 100-116,
117-126, 127-134, 135-143, 144-153, 154-162, 163-171, or 172-179.
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