
United States Patent (19)
Derovanessian et al.

54) VARIABLE LENGTH CODEWORD PACKER
75 Inventors: Henry Derovanessian, La Jolla;

Vincent Liu, San Gabriel, both of
Calif.

73 Assignee: GI Corporation, Hatboro, Pa.
21 Appl. No.: 31,011
22 Filed: Mar. 26, 1993
I51l Int. Cl. .. HO3M 7/40
52 U.S. Cl. 395/800; 364/DIG. 1;

364/239.3; 34.1/67; 341/65; 341/50, 341/60;
375/242; 375/240

58) Field of Search 395/800; 341/67, 65,
341/50, 60,364/DIG. 1, 239.3; 375/25, 122

56) References Cited
U.S. PATENT DOCUMENTS

3,651,516 3/1972 Andreae 341/67
3,701,1 10/1972 Cocke et a 340/172.5
4,914,675 4/1990 Fedele 375/25
5,079,548 1/1992 Fujiyama et al. 341/67
5,119,092 6/1992 Sumi et al. 341/60
5,150,430 9/1992 Chu 382/56
5,73,695 12/1992 Sun et al. 341/67
5,233,348 8/1993 Pollmann et al. 341/67
5,321,398 6/1994 Ikeda 341/67

CODE WORD

HUFFMAN
CODE TABLE 54

SAGE

USOO544691.6A

11 Patent Number:
45 Date of Patent:

5,446,916
Aug. 29, 1995

Primary Examiner-Alyssa H. Bowler
Assistant Examiner-Walter D. Davis, Jr.
Attorney, Agent, or Firm-Barry R. Lipsitz
57 ABSTRACT

A variable length codeword packer communicates
codeword data in successive m-bit bytes. A binary sum
is accumulated indicative of a total number of code
word bits received over time. A byte pointer is derived
from at least one most significant bit of the binary sum.
A bit pointer is derived from a plurality of least signifi
cantbits of the binary sum. A first data storage array has
a plurality of m-bit first storage bytes and is responsive
to the byte pointer for storing received codeword data
in the first storage bytes. A second data storage array
has a plurality of n-bit second storage bytes and is re
sponsive to the byte and bit pointers for filling the sec
ond storage bytes with codeword data from the first
data storage array. m-bit bytes of codeword data are
output from each filled second storage byte to provide
successive m-bit bytes of codeword data. The use of a
multistage approach in packing variable length code
words substantially reduces the complexity as com
pared to single stage designs.

9 Claims, 4 Drawing Sheets

22

8 25

7.
BYTES

STAGE 2

92

94.
Wk -
OUTPUT STROBES

W

U.S. Patent Aug. 29, 1995 Sheet 1 of 4 5,446,916

S. S Q N
rf) CN e N on Ny

rah Ooon dry SNY Cn Hoooon drys NYCN ro
m cNcNcNcNcNcNCNCN can carr-r-rpm rare threr 00 N. YS enri

&

SN
& S

CN u N. yme

Hoohoo Nuounsrinci - looool Nuounsrna -o CD NYNCSCN on NcNCNNN NcNA - P - P. in dyny in
(scarciscs.cccsicscscocccs.cccsicscaccc.cccs.<<c ce ca e ca. F

(f) 1
(V N S

N Q
M N Q

O as

cond Y STN, CN red Os
- R -- Hood Ndly SNACN 92 Aaaaaaaaaaaaaaaaas N

su1

SV N

rid on on to try Sny cn to lood nudy Sny n-d
NY. NoncNcNCN. cn on NcN CNN rarm r-them man - hr-O n Srm? can
cale ecce acco ecca cacci ce caca c ce ea

C

-

H
N 1 cv. 2 92

O 2

3 O dS
la S G 2

O
in - C. C.

5,446,916 Sheet 2 of 4 1995 Aug. 29, U.S. Patent

5,446,916

2//

Aug. 29, 1995 U.S. Patent

U.S. Patent Aug. 29, 1995 Sheet 4 of 4 5,446,916

c
care

- true ran
Rearara AA

SSNS SS

CN O
minin can can can can an rare err- -- O) O
testees as see ecca eace

S-1 N S

NNNNNNNNNNNN O
C 9ondly sm cared on condurs mr \o SSSSSSSS) O

NN NCN Niccon on cann arrar Cr- gags Nd a a AA appaea praea a rada caaaaaaaa a PMMANNNNS
NSNSN SSNS as 48 f

SNNNNN-25 C CO not in n- NSNSS t29
32.33333333GSSSSSSS fit

s
S f CN spurs C S C2

Q st 5 (S & S. g. N \ an 2 C.

5,446,916
1.

VARABLE LENGTH CODEWORD PACKER

BACKGROUND OF THE INVENTION

The present invention relates to the communication
of compressed digital data, and more particularly to
apparatus for arranging variable length codewords for
transmission in successive fixed length data bytes.

In order to efficiently use the available radio fre
quency spectrum for the communication of digital data,
such as high definition television data, it is advanta
geous to compress the digital signals to minimize the
amount of data that must be transmitted. One well
known compression technique is referred to as variable
length coding. A coding scheme of this type will cause
bit strings of fixed length to be encoded into bit strings
of variable length, with the more commonly occurring
codes being represented by bit strings having lengths
shorter than those of the fixed length codes. If the as
signment of variable length codes is properly made, the
average length of such codes in a given data stream will
be much less than that of the corresponding fixed length
codes, even though many of the variable length codes
are much longer than the corresponding fixed length
codes. One such variable length coding scheme is
known as Huffman coding.

In order to transmit variable length encoded mes
sages through a fixed bit rate system, a buffer that can
store the messages should be maintained. In this man
ner, the variable length codewords can be accumulated
and transmitted in fixed length bytes at a fixed bit rate.

Prior art input/output buffer interfaces are config
ured in a byte format. The variable bit codes are packed
and formatted in the proper byte boundaries prior to
writing them into the appropriate buffers. In such prior
art schemes, each cell in a buffer array must be mapped
to every single incoming data line, in order to pick off
and store the variable length codes in a sequential order
that enables the fixed rate output of fixed length bytes.
Where the maximum codeword length is, for example,
19 bits, a 32-cell buffer array would require 608 electri
cal connections (19x32) in order to enable each cell to
store any one of the 19 incoming bits. The implementa
tion of such a structure is very complex, and requires a
large amount of real estate in an integrated circuit in
plementation. Such complexity increases the cost of the
device significantly.

It would be advantageous to provide a variable
length codeword packer that reduces the required num
ber of electrical connections. Such a codeword packer
would be less complex than prior art structures, result
ing in a lower cost.
The present invention provides a multistage variable

codeword packer that facilitates the organization of the
variable length codeword bits into appropriate byte
boundaries.

SUMMARY OF THE INVENTION

In accordance with the present invention, a
variable length codeword packer is provided for use

in communicating codeword data in successive m-bit
bytes. Means are provided for accumulating a binary
sum indicative of a total number of codeword bits re
ceived over time. A byte pointer is derived from at least
one most significant bit of the binary sun. A bit pointer
is derived from a plurality of least significant bits of the
binary sum. A first data storage array has a plurality of
m-bit first storage bytes and is responsive to the byte

O

15

25

30

35

45

50

55

65

2
pointer for storing codeword data in the first storage
bytes. A second data storage array has a plurality of
n-bit second storage bytes and is responsive to the byte
and bit pointers for filling the second storage bytes with
codeword data from the first data storage array. Means
are provided for outputting an m-bit byte of codeword
data from each filled second storage byte to provide
successive m-bit bytes of codeword data. Incoming
variable length codewords are successively stored in
the first data storage array, wherein each codeword
commences at the beginning of a first storage byte iden
tified by the byte pointer based on the binary sum of
preceding codeword bit lengths. Each of the variable
length codewords stored in the first data storage array
is transferred to the second data storage array com
mencing at a location. Within a second storage byte
identified by the byte pointer and the bit pointer based
on the binary sum of preceding codeword bit lengths.

In an illustrated embodiment, the incoming code
words are grouped in sets (i.e., "superblocks') contain
ing a plurality of codewords. The codeword packer
further comprises means for resetting the accumulating
means to zero at the beginning of each new set of code
words.

Also in the illustrated embodiment, the codewords
have a maximum length of n bits. Each of the first and
second data storage arrays comprise k storage bytes,
each containing m cells, where

The accumulating means can comprise a q-bit accu
mulator with the pleast significant bits thereof forming
the bit pointer and the remaining (q-p) most significant
bits forming the byte pointer. p is the number of bits
required to identify any one of m cells in a storage byte
and (q-p) is the number of bits required to identify any
one of k storage bytes.
Codewords are sequentially clocked into the variable

length codeword packer. Clock means are provided for
clocking the codeword data into the first data storage
array one codeword at a time. The byte pointer is also
clocked into the first data storage array when a corre
sponding codeword is clocked therein. The codeword
data from the first data storage array is clocked into the
second data storage array one codeword at a time. The
byte and bit pointers are clocked into the second data
storage array when a corresponding codeword is
clocked therein. In the illustrated embodiment, the
codeword data is clocked into the second data storage
array one clock cycle after it is clocked into the first
data storage array. Means are provided for delaying the
clocking of the byte and bit pointers into the second
data storage array by one clock cycle so that the proper
byte and bit pointers are provided to the second data
storage array when it receives the corresponding code
word data.
The means for outputting m-bit bytes of codeword

data from each filled second storage byte can be respon
sive to an incrementing of the byte pointer. In this man
ner, each time codeword data that is input to the second
data storage array crosses a byte boundary, the preced
ing full byte of data will be output from the array.
BRIEF DESCRIPTION OF THE DRAWENGS

FIG. 1 is a diagrammatic illustration of a prior art
codeword packer;

5,446,916
3

FIG. 2 is a diagrammatic illustration of a two-stage
codeword packer in accordance with the present inven
tion;
FIG. 3 is a block diagram illustrating an implementa

tion of the two-stage codeword packer of FIG. 2;
FIG. 4 is a more detailed block diagram of the accu

mulator stage of the block diagram of FIG. 3; and
FIGS. 5a to 5d are diagrams showing examples of

incoming codewords being loaded into the first stage
array and the loading of the codewords from the first
stage array into the second stage array.
DETAILED DESCRIPTION OF A PREFERRED

EMBODIMENT

Variable length coding of digital data is often advan
tageous in order to reduce the average bit rate neces
sary to communicate large amounts of data. Such
Schemes are typically used in image processing systems,
such as high definition television systems, for transmit
ting video data within a limited bandwidth.
A prior art approach to packing variable length code

words into fixed byte lengths for transmission is illus
trated in FIG. 1. An incoming codeword 10 which, for
example, can comprise from one to 19 bits (D0 to D18)
is loaded into a data storage array 12 that contains 32
cells (A0 to A31). Each codeword is transmitted to
gether with information identifying the length of the
codeword. The identifying information enables the
loading of a current codeword into the data storage
array 12 commencing at a cell which is immediately
above the last cell filled by the previous codeword data.
Thus, for example, if a three-bit codeword stored at A0
to A2 is followed by a five-bit codeword, the five-bit
codeword will be stored at cells A3 to A7, completing
an eight-bit byte (A0 to A7) which can then be output
from the data storage array 12.

In order to load a new codeword commencing with
any of the 32 registers contained in the array, it is neces
sary for each individual cell of the array to be con
nected to all 19 possible bit locations of each incoming
codeword. This requires each of the 32 cells to be con
nected to 19 different codeword bit locations, for a total
of 608 electrical connections. If longer codewords and
/or a larger data storage array are required for a partic
ular system implementation, the number of electrical
connections will increase correspondingly. The com
plexity required by such prior art structures in terms of
the number of electrical connections to each cell of the
data storage array presents difficult implementation
problems.
The present invention overcomes the prior art need

for n connections to each cell, where n is the maximum
possible codeword length. This is accomplished using a
multistage approach for packing the variable length
codewords. Such an approach is illustrated in FIG. 2.

In the FIG. 2 embodiment, a first stage data storage
array20 and second data storage array 22 are provided.
Each array can comprise, for example, a conventional
dynamic random access memory (DRAM) array hav
ing L cells that can be loaded in parallel. The L cells are
stacked similar to a first-in-first-out register, and will
roll over from the last cell to the first cell. In other
words, once cell A31 of array 20 has been loaded, the
next cell loaded will be A0. The number of cells Lin the
array is directly related to the maximum possible length
n of an input codeword, and is described as follows:

10

15

20

25

30

35

45

50

55

65

4.

In the example illustrated herein, the maximum length
codeword (n) is 19 bits and each byte (m) output from
the codeword packer is eight bits in length. Therefore,
each stage 20, 22 will require 32 cells (A0 to A31, B0 to
B31), which is eight times the upper limit of (19+7)/8,
1.e.

Each of the arrays 20, 22 is divided into k bytes,
where k=L/m. Thus, in the illustrated embodiment,
k=32/8=4. The four bytes of the stage one array are
illustrated in FIG. 2 by reference numerals 24 (input
byte 0), 26 (input byte 1), 28 (input byte 2), and 30 (input
byte 3). Similarly, the stage two data storage array
contains four bytes represented by reference numerals
34 (output byte 0), 36 (output byte 1), 38 (output byte 2),
and 40 (output byte 3).

Unlike the prior art, each of the cells in the stage one
array of FIG. 2 only needs to have up to three connec
tions to the incoming codeword. For example, cell A8
(which is the first cell in input byte 1) only needs to be
connected to receive input bit D0, input bit D8, or input
bit D16 from an input codeword 10. In the event that a
new codeword of more than eight bits in length is to be
stored commencing with cell A0 of input byte 0, A8
will be loaded with bit DS of the incoming codeword,
as indicated at 70. In the event that a new codeword is
to be loaded commencing at cell A8 of byte 1, cell A8
will receive bit DO of the new codeword as indicated at
72. In the event that a new codeword of more than 16
bits in length is to be loaded commencing at cell A24 of
byte 3, A8 will receive bit D16 of the incoming code
word as indicated at 74. It should be noted that the
storage of each new codeword commences at the begin
ning of a byte of the stage one array. Therefore, in the
illustrated embodiment, there are only four stage one
cells with which the loading of a new codeword can
start. These are cells A0, A8, A16, and A24 which
represent the start of byte 0, byte 1, byte 2 and byte 3,
respectively. The actual byte in which the loading of a
new codeword will be commenced is determined by a
byte pointer, described in greater detail below.
The stage two data storage array 22 loads codeword

data from the stage one array in response to the byte
pointer as well as a bit pointer. Each cell (B0 to B31) of
the stage two array is connected to its corresponding
cell in the stage one array as well as the seven previous
cells in the stage one array. Thus, each cell in the stage
two array requires eight connections. This is illustrated
at 32 for cell B11.
The particular first stage cell that will be used as the

input for a second stage cell is determined by the bit
pointer. Within each byte,

the bit pointer will be incremented from 0 to 7, as
illustrated at 60 in FIG. 2. If the bit pointer is zero and
the byte pointer points to byte zero, each of cells B0 to
B7 will be loaded with the contents of cells A0 to A7. If
the codeword being loaded into the second stage array
is greater than eight bits in length, the one-to-one corre
spondence between the stage one and stage two arrays
will continue into the successive byte(s).

If the bit pointer is not pointing to zero, the second
stage cells will look back by the number of cells re
ferred to by the bit pointer to obtain data from the first
stage array. Thus, for example, if the bit pointer is three
and cell B11 is being loaded, cell B11 will receive the

5,446,916
5

data from cell A8 of the first stage array. A more de
tailed operational example of the codeword packer in
accordance with the present invention is provided
below in connection with the discussion of FIGS. 5a to
5d.
FIG. 3 is a block diagram of an implementation of a

two-stage codeword packer in accordance with the
present invention. Variable length codewords (for ex
ample Huffman codewords) are output from a code
table 80 into the stage one data storage array 20 via line
82. Storage array 20 receives a system clock via termi
nal 21, which refreshes the cells of the array continu
ously every clock cycle as their content is transferred to
the second stage array 22 vial=line 83. The stage two
array receives the system clock via terminal 23. Each
time a byte has been filled in the stage two array, it is
output via one of K lines 25 to a conventional first-in
first-out buffer register (not shown) where it is held for
transmission.
At the same time codeword data is input to stage one

array 20, data indicative of the code length n of the
codeword is input to an accumulator/stack 86 via line
84. The accumulator/stack receives the system clock
via terminal 87. The accumulator/stack outputs a byte
pointer and a bit pointer, derived from the accumulated
total of codeword bits input to stage one array 20 over
time. The byte pointer is immediately used by the stage
one array to identify in which byte storage of the cur
rent codeword should commence in the stage one array.
The byte pointer and bit pointer are delayed by exactly
one clock cycle by a conventional delay circuit 88
which receives the system clock via terminal 89. The
delayed byte pointer is input to the stage two array 22
via line 90. The delayed bit pointer is input to the stage
two array via line 92. Accumulator/stack 86 also pro
vides output strobes W.1 to Wik on lines 94 which strobe
the output buffer to receive the output bytes from lines
25 of the stage two array. An appropriate output strobe
will be provided each time a byte boundary is crossed in
the stage two array. This will output the just completed
full byte of data from the second stage array.
The accumulator/stack 86 is illustrated in greater

detail in FIG. 4. The code length n from the Huffman
code table 80 for each codeword is input to an accumu
lator 104 via terminal 102. Accumulator 104 accumu
lates the total number of bits into a binary number. In
the illustrated embodiment, where each of the stage one
and stage two arrays comprise four eight-bit bytes,
accumulator 104 is a five-bit accumulator. The accumu
lator is initialized at the commencement of operation by
a reset signal applied to terminal 100 of multiplexer 108,
connecting the feedbackinputs 110, 112 of the accumu
lator to ground (i.e., zero). Thus, when the accumulator
is reset, the next codeword will be loaded into the stage
one array commencing at AO and into the stage two
array commencing at B0. In a preferred embodiment, a
plurality of codewords will be grouped together form
ing a block, and a plurality of blocks will be grouped to
form a macroblock. The accumulator is reset at the
commencement of each new macroblock.
The output of accumulator 104 is a q-bit binary word

with the pleast significant bits thereof forming the bit
pointer and the remaining (q-p) most significant bits
forming the byte pointer. In the illustrated embodiment,
where the codeword packer outputs eight-bit bytes, and
each of the first and second storage arrays holds four
such bytes, the three least significant bits of the five-bit
accumulator output are used as the bit pointer and the

O

5.

20

25

30

35

45

50

55

65

6
two most significant bits are used as the byte pointer. It
should be appreciated that a bit pointer of three bits can
be used to point to any one of the eight bits within a
byte, and a byte pointer of two bits can be used to define
any one of the four bytes contained in an array. The
five-bit word output from accumulator 104 continues to
accumulate as the lengths of new codewords are added
to the accumulated lengths of past codewords. As the
sum of codeword lengths accumulates, the most signifi
cant bits above a total offive bits are discarded. A latch
106 holds the bit pointer and byte pointer for output on
a cyclical basis according to the system clock, input at
terminal 105.
The byte pointer and bit pointer output from latch

106 are fed back to multiplexer 108 for use in accumulat
ing the code lengths over time. They are also output to
delay 88 (FIG. 3) for delayed input into the stage two
array 22. Delay 88 compensates for the latency caused
by the stage one array and thereby matches the correct
bit and byte pointers to the incoming data for use in the
stage two array. As indicated above, the delay is exactly
equal to one clock cycle.
FIGS. 5a-5d provide an example showing how the

codeword packer of the present invention operates in an
implementation where the maximum codeword length
is 19 bits and it is desired to output the codeword data
in eight-bit bytes. In such an implementation, each of
the first and second stage arrays will contain 32 cells,
divided into four eight-bit bytes. In the example illus
trated in FIGS. 5a-5d, four consecutive codewords
have lengths of seven bits, nine bits, three bits and eight
bits. In FIG. 5a, the codeword packer has been reset so
that both the bit pointer and byte pointer are zero. Thus,
the five-bit word output from code length accumulator
104 is 00000. The three least significant bits “000” indi
cate that the bit pointer is zero. The two most signifi
cant bits "00” indicate that the byte pointer is zero. As
al

result, the seven-bit codeword received at time t by
first array 20 is loaded into byte zero in cells A0 to A6,
as indicated at 120a. At time t2 (one clock cycle after t1)
the seven-bit codeword is transferred from first array 20
into cells B0 to B6 of second array 22, as illustrated at
120b.
Also at time t2, the next codeword, which has a

length of nine bits, is received at first array 20 as illus
trated in FIG. 5b. At this point, the output from accu
mulator 104 will be "00111’ due to the addition of the
seven-bit code length of the first codeword to the prior
value 00000 fedback from latch 106 via multiplexer 108.
Since the two most significant bits of the current accu
mulator value 00111 are '00'’ the new nine-bit code
word is loaded into input byte zero of array 20, com
mencing at cell A0. Since the new codeword is nine bits
in length, it will completely fill byte zero (A0 to A7)
with the final bit extending into cell A8 of input byte
one, as illustrated at 122a.
At time t3, the nine-bit codeword from first array 20

will be transferred to second array 22. Although data
input to the first array 20 overwrites the prior data
contained therein, data in the second array 22 cannot be
overwritten until it is output. And, since data is only
output from the second array 22 in full eight-bit bytes,
the prior seven-bit codeword stored in cells B0 to B6
must be saved. Therefore, it is necessary to commence
the writing into second array 22 during time t3 at cell
B7. This requirement is indicated by the accumulated
codeword length 00111, which instructs the second

5,446,916
7

array 22 to commence receiving the next codeword at
cell B7 of byte zero. This is clear because the byte
pointer formed by the most significant bits of the accu
mulated code length 00111 is "00” and the bit pointer
formed by the least significant bits points to cell B7
(“111”). Consequently, the nine-bit codeword trans
ferred into the second array at time t3 will fill cells B7 to
B15. Note that once the second codeword has been
transferred to the second array, a total of 16 bits of
codeword data will have been received, completely
filling both output byte zero and output byte one, as
illustrated at 120b, 122b in FIG. 5b. Since both of these
bytes are completely full, they will be off-loaded from
the second array 22 into a buffer for transmission, under
the control of output strobes W1 and Wk from ac
cumulator/stack 86, which knows that first byte bound
ary 121 and second byte boundary 123 have been
reached.
Also at time t3, the first array 20 will be receiving the

next codeword, which is three bits in length. The accu
mulator value at this point in time will be 10000 due to
the summation of the prior accumulated value (00111)
with the length of the previous nine-bit codeword
(O1001). Since the byte pointer “10” formed by the two
most significant bits of the accumulated code length
10000 is indicative of input byte two, illustrated at 124a
in FIG. 5c, the three-bit codeword arriving at time t3
will be loaded into byte two commencing at cell A16.
As indicated in FIG. 5c, this will result in cells A16 to
A18 being filled with the three-bit codeword. At time
t, this three-bit codeword is transferred to cells B16 to
B18 of the second array 22, in response to the bit pointer
portion "000” of accumulated code length value 10000.
Since at time t, none of the bytes in the second array 22
is completely full, no data will be off-loaded from the
second array at this time.
As indicated in FIG. 5d., the first array 20 will receive

the next codeword, which is eight bits in length, during
t4. The accumulated code length will now be 10011,
resulting from the addition of the prior accumulated
value 10000 and the three-bit length (011) of the prior
code word. Since the two most significant bits of the
current accumulated code length are “10”, the byte
pointer will continue to point to input byte two in array
20, and the current eight-bit codeword will be loaded
into cells A16 to A23.
At time t5, the second array 22 will receive the eight

bit codeword from cells A16 to A23 of the first array
20. Cells B16 to B18 of the second array still contain the
three-bit codeword loaded at time ta. Accordingly, the
current eight-bit codeword will be loaded into cells B19
to B26, as directed by the byte pointer ("10") pointing
to output byte two and the bit pointer (“11”) pointing to
the cell above the third cell in output byte two. As
shown in FIG. 5d, the current eight-bit codeword ex
tends from byte two into byte three, as indicated at
126b. Since byte two of the second array has been filled,
as determined by the crossing of byte boundary 125, the
eight bits contained in byte two of the second array 22
will be off-loaded at this time.
At time t5, the accumulated code length will be

11011, resulting from the addition of the eight-bit length
(1000) of the prior codeword to the prior accumulated
code length of 10011. The new accumulated code
length value of 11011 will establish a byte pointer of
“11” pointing to input byte three (126a) of the first array
for the loading of the next codeword (not shown). The

10

15

20

25

35

45

50

55

65

8
bit pointer "011” will instruct the second array 22 to
commence loading of the next codeword at cell B27.
The process will continue in this manner, with data

that would extend above cells A31 and B31 wrapping
around and being written into cells A0 and B0, respec
tively. After all of the codewords for a macroblock
have been received, the codeword packer is reinitial
ized by applying a reset signal to terminal 100 of multi
plexer 108 (FIG. 4). This will result in the first code
word of the next macroblock being written into the first
array20 commencing at cell A0 and the second array 22
commencing at cell B0.
The calculation of the accumulated code lengths used

in the example of FIGS. 5a to 5d(successive codeword
lengths of seven, nine, three and eight bits) is summa
rized as follows:

Starting Accum. Value 00000
+ 7-bit length OO111
Time t2. Accum. Value 00.11
-- 9-bit length 01.001
Time t3. Accum. Value 10000
- 3-bit length 00011
Time ta. Accum. Value 10011
-- 8-bit length 0000
Time t5Accum. Value 11011

Since each of the cells in the first array 20 will have
a maximum of three connections to the incoming code
word, as illustrated at 70, 72, 74 of FIG. 2, and each of
the second array cells will have only eight connections
to cells in the first array20 as illustrated at 32 in FIG. 2,
the complexity of the design as compared to prior art
single stage codeword packers is substantially reduced.
In the illustrated embodiment, only 57 connections will
be required between the input codewords and the cells
of the first array, with 256 connections required be
tween the cells of the second array and cells of the first
array. This totals 313 connections, which is nearly a
50% reduction in complexity over the prior art, which
required 608 electrical connections to the cells of the
single stage array. In counting the number of connec
tions required between the input codewords and each
cell of the first stage array, it must be appreciated that
not all of the first array cells will require three separate
connections as illustrated at 70, 72, 74 in FIG. 2. This
occurs because the maximum length codeword in the
embodiment illustrated is only 19 bits, and the loading
of each new codeword commences at a byte boundary
(i.e., A0, AS, A16, or A24). Thus, for example, cells
A19 to A23 will only have to look at two possible bits
in the incoming codewords. A9 would look at bits D3
and D11, A20 would look at bits D4 and D12, A21
would look at bits D5 and D13, etc. A 19-bit codeword
commencing at either A0 or cell A24 would not extend
into cells A19 to A23.

It should now be appreciated that the present inven
tion provides a multistage approach to packing variable
length codewords into equal size bytes for transmission.
In the illustrated embodiment, the codewords are
packed and organized into eight-bit byte boundaries.
Codeword data is written into a first stage data array
commencing with the first location of a byte designated
by a byte pointer. The codeword data is transferred to
a second stage data storage array commencing at a
particular cell designated by a bit pointer within the
byte designated by the byte pointer. The bit and byte

5,446,916
9

pointers are derived from the accumulated length of
received codewords. The cells of the first stage array
are refreshed continuously every clock cycle and their
content is transferred to the second stage array. The
cells of the second stage array are continuously re
freshed from the previous stage array with the excep
tion of cells that are within the current byte boundary
with data that has not yet been output from the second
array. Once a byte boundary has been reached and
passed in the second stage array, the corresponding byte
is off-loaded into a buffer using write strobes generated
by the code length accumulator. A separate buffer is
provided for each of the bytes defined in the second
stage array. The buffers hold the off-loaded bytes for
transmission.
Although the invention has been described in connec

tion with a specific embodiment thereof, those skilled in
the art will appreciate that numerous adaptations and
modifications may be made thereto without departing
from the spirit and scope of the invention as set forth in
the claims.
We claim:
1. A variable length codeword packer for use in com

municating codeword data in successive m-bit bytes
comprising:
means for accumulating a binary sum indicative of a

total number of codeword bits received over time;
means for deriving a byte pointer from at least one
most significant bit of said binary sum;

means for deriving a bit pointer from a plurality of
least significant bits of said binary sum;

a first data storage array having a plurality of m-bit
first storage bytes and responsive to said byte
pointer for storing full variable length codewords
among designated ones of said first storage bytes;

a second data storage array having a plurality of m-bit
second storage bytes and responsive to said byte
and bit pointers for filling said second storage bytes
with codeword data from said first data storage
array;

clock means for:
clocking said codeword data into said first data

storage array one codeword at a time.
inputting said byte, pointer to said first data storage

array when a corresponding codeword is
clocked therein,

clocking said codeword data from said first data
storage array into said second data, storage array
one codeword at a time, and

inputting said byte and bit pointers to said second
data storage array when a corresponding code
word is clocked therein; and

means for outputting an m-bit byte of codeword data
from each filled second storage byte to provide
successive m-bit bytes of codeword data; wherein:

incoming variable length codewords are successively
stored in said first data storage array, each code
word commencing at the beginning of a particular
first storage byte identified by said byte pointer

5

10

15

20

25

30

35

45

50

55

60

65

10
based on the binary sum of preceding codeword bit
lengths, and

each of the variable length codewords stored in said
first data storage array is transferred to said second
data storage array commencing at a location within
a second storage byte identified by said byte
pointer and bit pointer based on the binary sum of
preceding codeword bit lengths.

2. A variable length codeword packer in accordance
with claim 1 wherein said incoming codewords are
grouped in sets containing a plurality of codewords,
said codeword packer further comprising:
means for resetting said accumulating means to zero

at the beginning of each new set of codewords.
3. A variable length codeword packer in accordance

with claim 1 wherein said codewords have a maximum
length of n bits, each of said first and second data stor
age arrays comprise k storage bytes, and each storage
byte contains m cells, where

k= (n-i-m-1)/m).

4. A variable length codeword packer in accordance
with claim 3 wherein said accumulating means com
prise a q-bit accumulator with the pleast significant bits
thereof forming said bit pointer and the remaining (q-p)
most significant bits forming said byte pointer, where p
is the number of bits required to identify any one of m
cells in a storage byte and (q-p) is the number of bits
required to identify any one of k storage bytes.

5. A variable length codeword packer in accordance
with claim 4 wherein the codeword data is clocked into
said second data storage array one clock cycle after it is
clocked into said first data storage array, said codeword
packer further comprising:
means for delaying the inputting of said byte and bit

pointers to said second data storage array by one
clock cycle.

6. A variable length codeword packer in accordance
with claim 1 wherein said outputting means are respon
sive to an incrementing of said byte pointer for output
ting data from a second storage byte that has been filled.

7. A variable length codeword packer in accordance
with claim 1 wherein the codeword data is clocked into
said second data storage array one clock cycle after it is
clocked into said first data storage array, said codeword
packer further comprising:
means for delaying the inputting of said byte and bit

pointers to said second data storage array by one
clock cycle.

8. A variable length codeword packer in accordance
with claim 7 wherein said incoming codewords are
grouped in sets containing a plurality of codewords,
said codeword packer further comprising:
means for resetting said accumulating means to zero

at the beginning of each new set of codewords.
9. A variable length codeword packer in accordance

with claim 8 wherein said outputting means are respon
sive to an incrementing of said byte pointer for output
ting data from a second storage byte that has been filled.

: ck k ::

