06/078446 A2 IR 0 O 0 KOO OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

s ote e
(19) World Intellectual Property Organization e Iﬂ | EI

29 |00 00 00O 0 OO0

International Bureau

(43) International Publication Date
27 July 2006 (27.07.2006)

(10) International Publication Number

WO 2006/078446 A2

(51) International Patent Classification:

GOGF 12/14 (2006.01)

(21) International Application Number:
PCT/US2006/000081

(22) International Filing Date: 6 January 2006 (06.01.2006)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

11/037,695 18 January 2005 (18.01.2005) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, NY 10504
(US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHARI, Suresh,
N. [IN/US]; 12 Crossway, Scarsdale, NY 10583 (US).
CHENG, Pau-Chen [US/US]; 3103 High Ridge Rd,
Yorktown Heights, NY 10598 (US). RAO, Josyula. R.
[IN/US]; 161 Orchard Rd, #1IN, Briarcliff Manor, NY
10510 (US). ROHATGI, Pankaj [IN/US]; 703 Pelham
Rd, #404, New Rochelle, NY 10805 (US). STEINER,

Michael [CH/US]; 525 East 72nd Street, Apt 31D, New
York, NY 10021 (US).

(74) Agent: PETERSON, Charles, W., Jr.; Law Office of
Charles W. Peterson, Jr., Suite 100, 11703 Bowman Green
Dr., Reston, VA 20190 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: INTRUSION DETECTION SYSTEM

164
160

136

APPLICATION ’\/1 32
BEING
ATTACKED

x

140

/

/

SY#CALL AP

/ SIRH

130

ESTRICTE
RESOURCE
ACCESS

RESOURCES

138

OPERATING SYSTEM

& (57) Abstract: An intrusion detection system (IDS), method of protecting computers against intrusions and program product there-
for. The IDS determines which applications are to run in native environment (NE) and places the remaining applications in a sandbox.
Some of the applications in sandboxes may be placed in a personalized virtual environment (PVE) in the sandbox. Upon detecting an
attempted attack, a dynamic honeypot may be started for an application in a sandbox and not in a PVE. A virtualized copy of system
resources may be created for each application in a sandbox and provided to the corresponding application in the respective sandbox.

e
=

WO 2006/078446 A2 [N NN NDVOH0 AT YK 00 O D AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

WO 2006/078446 PCT/US2006/000081

INTRUSION DETECTION SYSTEM

FIELD OF THE INVENTION
[0001] The present invention is related to Intrusion Detection Systems (IDS)
and particularly to IDSs that detect and isolate malicious attacks on computer
systems.
BACKGROUND DESCRIPTION
[0002] Computer security has become a major concern. The FBI has

recognized cyber-terrorism as its number 3 priority in protecting the U.S. from
terrorist threats. See, e.g., “Cyber Terrorism,” Testimony of Keith Lourdeau, Deputy
Assistant Director, Cyber Division, FBI, Before the Senate Judiciary Subcommittee
on Terrorism, Technology, and Homeland Security
(www.fbi.gov/éongress/congressO4/10urdeau022404.htm), February 24, 2004. An
attack on a computer system or on a virtual machine (VM) running within the system
(whether cyber terror or not) is an intentional and malicious act (or code) that tries to
gain access to certain resources on the system in a way that is not intended by the
system’s security policy. A successful attack usually exploits defects in an
application program, defects in the security policy, or both. For example, an attacker
may take control of an application program that has special privileges for accessing
resources. By exploiting defects in the program, the attacker can access resources
using the program’s special privileges, even though system security policies or the

application itself may normally prevent such accesses.

[0003] An attack usually is characterized by a signature, e.g., characteristic
steps that constitute the exploitation, data that the attack sends to the application, the
target of the attack and etc. One well-known attack is a worm. A typical worm
inserts code into an attacked computer system, e.g., piggy backing on an e-mail or
spam. Then, the worm causes the inserted code to be executed on the attacked

system. The attacked system repeats the attack against other computer systems, e.g.,

WO 2006/078446 PCT/US2006/000081

sending out emails to everyone listed in a local address book. So, the worm copies
and spreads itself from one computer to another. Other types of well-known attacks

include “Trojan Horses” and Denial of Service (DOS) attacks.

[0004] All of these attacks, at the very least, waste valuable resources. A
typical worm, for example, wastes computer system time, storing itself, executing,
generating copies and forwarding those copies to other computers. Sufficient volume
of e-mails from such a worm may slow traffic and clog an e-mail server for, in effect,
a denial of service. While extra e-mails, slow web response times and/or the inability
to surf certain sites may be an annoyance for the typical cyber surfer; these same
results on a mission critical computer may prove disastrous. Locking an air traffic
control system or a nuclear power plant control system, for example, could result in
serious consequential damage. With more and more systems connected to the

Internet, the likelihood of such a disaster is becoming increasingly likely.

[0005] However, stopping cyber attack as they occur and before they can
cause any damage, is only a half measure. Once an attack is identified, sufficient data
must be collected about the attack to determine the origin of the attack, modes of
operation and intention of the attacks, to facilitate identification of attack signatures,
to identify the particular methods of spreading (e.g., for worm attacks) and etc. As
Director Lourdeau noted, however, collecting such data can be extremely difficult and
requires “research and development involving basic security, such as developing
cryptographic hardware which will serve to filter attempts to introduce malicious code
or to stop unauthorized activity. Continued research in these areas will only serve to

assist the FBI in its work against cyberterrorism.” Id.

[0006] Thus, there is a need for tight computer security that adequately filters
attempts to introduce malicious code, stops unauthorized activity before damage

occurs and collects data for analyzing attacks.

WO 2006/078446 PCT/US2006/000081

SUMMARY OF THE INVENTION

[0007] It is a purpose of the invention to protect computer resources from
attacks;
[0008] It is another purpose of the invention to minimize wasted resources in

computers protected against attacks;

[0009] It is another purpose of the invention to collect data on malicious

attacks to computer systems.

[0010] The present invention relates to an intrusion detection system (IDS),
method of protecting computers against intrusions and program product therefor. The
IDS determines which applications are to run in native environment (NE) and places
the remaining applicationé in a sandbox. Some of the applications in sandboxes may
be placed in a personalized virtual environment (PVE) in the sandbox. Upon
detecting an attempted attack, a dynamic honeypot may be started for an application
in a sandbox and not in a PVE. A virtualized copy of system resources may be
created for each application in a sandbox and provided to the corresponding

application in the respective sandbox.
BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The foregoing and other objects, aspects and advantages will be better
understood from the following detailed description of a preferred embodiment of the

invention with reference to the drawings, in which:

[0012] Figure 1 shows an example of a flow diagrarh of a preferred
embodiment method of protecting computers against malicious attacks according to

the present invention;

[0013] Figure 2 show examples of a computer running an application in native

environment;

WO 2006/078446 PCT/US2006/000081

[0014] Figure 3 shows an example of the computer running an application in a

virtual machine or VM initiated in step with like elements labeled identically;

[0015] Figures 4A — B show before and after examples of a preferred
computer wherein an application running in a sandbox has restricted access to

resources and is the subject of an attack;

[0016] Figure 4C shows a multi-tasking example of the same computer;

[0017] Figures SA — B show an example of starting an application in Figure 1

in more detail;

[0018] Figure 6 shows an example of the steps of requesting resources and

handling the requests in Figure 1 in more detail;

[0019] Figures 7A — B show an example of virtualizing resources for a

requesting application in a PVE and providing the virtualized resources;

[0020] Figure 8A shows an example opening a dynamic honeypot, if
necessary;
[0021] Figure 8B shows an example of providing virtualized resources to an

application in a dynamic honeypot contained within a sandbox;

[0022] Figure 9 shows an example of constructing a dynamic honeypot in the
sandbox around the application when more than one honeypot plan may have been

pre-defined.

DESCRIPTION OF PREFERRED EMBODIMENTS

[0023] Turning now to the drawings and more particularly Figure 1 shows an
example of a flow diagram 100 of a preferred embodiment method of protecting

computers against malicious attacks according to the present invention. In particular,

WO 2006/078446 PCT/US2006/000081

as each application starts in 102, the starting application is checked in step 104 to
determine whether it may safely run directly by the operating system (OS) in what is
known as Native Environment (NE). For purposes of discussion herein, a computer
or computer system refers to a collection of hardware and software resources, such as
processors, memory, disk storage, executable, programs, files, input/output devices,
network interfaces, etc., cooperatively performing computing tasks. The operating
system manages computer operation, mediates and controls access to the computer
and, ensures fair and adequate use of computer resources by application programs or,
simply, applications. If in step 104 the application is not to run in NE, then in step
106 a contained environment is created for the application. So at this point, a rigid
behavior boundary, known as a SandBox (SB), may be erected around the application
to prohibit or limit external (to the application) resources, e.g., by intercepting system
calls. Any attempt to violate the SB boundary is considered an intrusion.
Additionally, the computer system may be partitioned into one of more “Virtual
Machines” (VM) by a “Virtual Machine Monitor” (VMM). Each virtual machine is
allocated a subset of the system resources and functions as a self-contained computer
system, running an instance of an Operating System in its own environment. For an
OS inside a virtual machine, the virtual machine looks like any normal individual
computer system. Since a virtual machine functions like an individual computer
system, a VMM may be running inside a VM that was itself created by another
VMM.

[0024] Then, the application opens in NE, a Personal Virtualized Environment
(PVE) or a SB and operates normally, waiting in step 108 until the application
initiates a request for external (to the application) resources, e.g., through a system
call. Once an application requests external resources, then continuing to step 110, a
System call interceptor, Intrusion detection, Resource access control/switch,
Honeypot/illusion generator (SIRH) intercepts the system call and determines the
correct response. If the SIRH determines that the application is operating in native
environment and that the request does not present a threat, then in step 112, the
system handles the request normally. Otherwise, the SIRH recognizes that the system

call could, potentially, be an attack and must be treated accordingly.

WO 2006/078446 PCT/US2006/000081

[0025] ' If in step 108 the requesting application is running ina PVE, then in
step 114 the SIRH virtualizes the requested resources, e.g., by creating a virtual copy
of the requested resources. In step 116 the requesting application is granted access to
the virtual resources within the PVE. However, if in step 108 the requesting
application is contained in a sandbox, the SIRH opens a virtualized environment
known as a honeypot in step 118 and places the application in the newly opened
dynamic honeypot. Essentially, the honeypot virtualized environment appears to the
application and, correspondingly, to any attack launched through the application, as
though the application is operating in NE. Thus, the dynamic honeypot requires all
typical computer system resources. Once in the dynamic honeypot in step 118 or, if
in step 110 the requesting application is already operating in a dynamic honeypot,
then in step 120 the requested resources are virtualized, e.g., by creating a virtual copy
of the requestéd resources. In step 122 the requesting application is granted access to
the virtual resources within the dynamic honeypot. Thus, advantageously, the present
invention minimizes the overhead for continuously operating a honeypot, while
continuing to protect potentially vulnerable applications and resources with little, if

any, apparent impact on the application.

[0026] Figure 2 shows an example of a computer 130 running an application
132 in native environment. A client 134 (e.g., a remote computer) communicates
with the computer 130 over a typical communications network 136, e.g., a Local Area
Network (LAN) or the Internet. So, in a preferred embodiment computer 130,
applications 132 operating in NE, operate substantially unchanged. Communications
pass from the client 134 to the application 132. In response to a request for resources
in step 108 of Figure 1, the application 132 receives controlled access to system
resources 138 under OS supervision, which exports a well-defined application
programming interface (or API). The application 132 runs on top of the OS and
accesses system resources 138 by making function calls. These function calls are
called system calls (or syscall) and the API is called the system call API (syscall API)
140.

[0027] The OS treats each system call made by the application 132 as a

request to access certain resources in certain “access modes,” e.g., read, write, delete,

WO 2006/078446 PCT/US2006/000081

create and etc. The OS can either grant or deny each request according to the
system’s security policy. The security policy defines access-control rules to resources
and provides restricted resource access to the application 132. These access-control
rules may be defined in terms of application attributes, requested access modes,
resource attributes, environmental parameters, and etc. Application attributes may
include, for example, application privileges, the identity of the user on behalf of
which the application is being executed and, etc. The requested access mode
includes, for example, read or write access. Resource attributes may include, for
example, the identities of the resource owners, allowed resource access modes and,
etc. Environmental parameters may include, for example, time of day and, etc.
Normally, the system call API 140 is the one and only entry point (or gate) through
which the resources 138 can be accessed and each such access attempt is controlled
by the security policy. Also, normally, the syscall API 140 is the only interface

through which an application program can get a view of the system.

{0028] Figure 3 shows an example of the computer 130 of Figure 2 (with like
elements labeled identically) running the application 132 in a virtual machine or VM
150, created and monitored by VMM 142, and operating inside system hardware 144.
Typically, the VM 150 houses an instance of the OS and one or more particular
applications (132 in this example) running on top of the OS with the SIRH 152 active.
Further in this example, the application 132 is running a virtual environment that is
personalized for the particular application, i.e., ina PVE 153. It should be noted that
the VM 150 may be created through the VMM 142 in step 106 just to house the PVE
153. Further, although a single VM 150 is shown running on top of VMM 142 in this
example, this is for example only and other VMs (not shown in this example) may be
running on the VMM 142, each with an instance of an OS and one or more PVEs or
dynamic honeypots. Also although in this example the VMM 142 is shown running
on top of the system hardware 144, this is for example only and there is no intended
restriction for VMM 142 implementation. The VMM 142 may be implemented in
any other suitable manner, e.g., the OS may be running on top of the hardware 144
and the VMM 142 running inside the OS creating and managing VMs. The OS may
be further operating within another VM.

WO 2006/078446 PCT/US2006/000081

[0029] Each partition 150 acts as a single independent system and with
independently running applications 132 active in the partition 150. Normally, the OS
and resident applications 132 function in the VM 150 as if they were on an
independent computer with exclusive use of computer system resources 138. So, both
the OS and applications 132 in one partition 150 may be different from other
partitions. When the client 134 communicates with the application 132, the
application 132 may request resources e.g., through a function call. The SIRH 152
intercepts calls from the application 132 in step 110 of Figure 1 and, upon
determining that the PVE requires the requested resources 138 to be virtualized, in
step 114 the SIRH 152 creates a virtual copy 154 of the requested resources 138.
Then, the SIRH 152 grants access to the virtualized resources 154 in step 116.

[0030] Figures 4A — B show before and after examples of a preferred
computer 130 wherein an application running in a sandbox 160 has restricted access
to resources 162 and is the subject of an attack 164. Figure 4C shows a multi-tasking
example of the same computer 130. A sandbox 160 is considered an Intrusion
Detection System (IDS). An IDS monitors and/or examines the behavior of active
programs to detect malicious intrusions into system resources, €.g., 138. Typical such
IDSs also include Misuse Detection IDSs, Anomaly Detection IDSs, as well as
honeypots. The sandbox 160 is implemented on top of a well-defined API, the system
call API 140. Since the system call API 140 under security policy control is the one
and only entry point (or gate) through which syétem resources can be accessed, it is
the only interface through which an application can view the system and access
resources. So, by monitoring system calls to the API 140, suspicious activity can be
identified and contained. Thus, in step 106 of Figure 1, the sandbox 160 may be
implemented as code inserted in to the system call API 140 to enforce the security
policy for the particular application to control the application’s access to system
resources and confine application behaviors. The typical sandbox 160 is a very low
overhead IDS, requiring only security policy changes and, perhaps some additional
code. Notably, the sandbox 160 can normally very accurately identify, block and stop
attacks in action and as detected. Usually, sandboxes 160 have low false alarm (false

positive) rates and low false negative rates. Previously, however, while blocking the

WO 2006/078446 PCT/US2006/000081

attack in a prior art sandbox might have protected the particular computer or computer
resources, it did not collect much useful information, if any. Such information might

be used for improving system integrity and anticipating future attacks.

[0031] By contrast, the SIRH 152 allows the attack to proceed in a
quarantined environment so that each attack can be monitored collecting data (attack
signatures or attack statistics) for subsequent attack identification. So, in this
example, the SIRH 152 intercepts calls from the application 132 in step 110 of Figure
1 and, upon identifying the possibility of an attack 164 (and because the application
132 is not in a PVE), opens a dynamic honeypot 166 inside the sandbox 160 in step
118. Like any typical state of the art honeypot, the dynamic honeypot 166 emulates
system behavior, providing a realistic image of a target of interest and an illusion of
successful attacks. Since normally operating applications do not act in such a way as
to be attracted to or be lured into a honeypot; any attempt to access the dynamic
honeypot’s resources 138 in a way that is inconsistent with the expected behavior of a
normally operating application 132, most likely, is an attack. So, in step 120, as an
action of the dynamic honeypot 166, the SIRH 152 creates a virtual copy 168 of
restricted resources, i.e., the part of resources 138 being requested. Then, the SIRH
152 grants access to the virtual copy 168, creating the illusion that the attack 164 is
successful, while the resources 138 are still protected. With the application 132
running in the dynamic honeypot 166, grants access to the restricted virtualized

resources 168 in step 122.

[0032] Advantageously, system resources are not consumed by a honeypot
until a dynamic honeypot 166 is started. This is a significant advantage over a state of
the art honeypot that constantly consumes resources that may divert some attacks

from other systems to itself, but cannot catch attacks mounted against other computer
systems. Further, attacks 164 on a preferred embodiment system proceed under the
illusion that they have successfully invaded the system; and, because they are isolated
within the system, may be observed safely without damaging system resources 138.
Thus, the present invention identifies activity that indicates an attack 162 may be
eminent and forgoes starting a dynamic honeypot 166, until such an eminent attack

162 is recognized. Additionally, the dynamic honeypot 166 consumes no part of the

WO 2006/078446 PCT/US2006/000081

system resources 138 until the dynamic honeypot 166 is opened and system resources
are so dedicated for the dynamic honeypot 166, i.e., only when the need arises.
Thereafter, a preferred dynamic honeypot 166 may monitor and collect attack

information for analysis and subsequent protection.

[0033] Similarly, in the multi-tasking example of Figure 4C, individual
applications 170, 172, 174 are active and running in parallel, independently of each
other. Applications 170, 174, which are being attacked by attacks 176, 178, are
operating in previously constructed dynamic honeypots 180, 182. A client 184 is
communicating with application 172, which is operating in a PVE 186. Since each
application 170, 172, 174 has requested access to resources 138 through a system call
API 140, the SIRH 152 intercepted the calls, and in this example, created virtualized
resources 188, 190, 192 and granted each application 170, 172, 174 access to the
respective virtualized resources 188, 190, 192. Thus, each application 170, 172, 174
operates on its own virtualized resources 188, 190, 192, independent of and
unhindered by other active applications. Further, the SIRH 152 can monitor
responses from each application 170, 174 to its respective attacks 176, 178, e.g., for
subsequent study. Even as these attacks 176, 178, are allowed to ravage the
virtualized resources 188, 192, system resources 138 remain protected and

uninterrupted.

[0034] Figures 5A — B show an example of starting an application (e.g., 132)
as in steps 102 — 106 of Figure 1 in more detail. When the application starts in step
102, the SIRH determines in step 1040 whether it should run in a native environment
in 1042. If so, it is placed in native environment 1042 and passed to step 108 where it
operates normally. Otherwise, in step 1060 a predefined sandbox plan 1062 may be
retrieved and erected around the application. Next, in step 1064, a determination is
made whether the application should be run in a PVE. If so, a PVE is constructed in
step 1066, preferably, based on a predefined PVE plan 1068. Once the application is
placed in the PVE, it is passed to step 108 where it operates normally within the PVE.
Otherwise, the application begins running inside the sandbox in step 1070 and then, is

passed to step 108 where it operates normally within the sandbox.

10

WO 2006/078446 PCT/US2006/000081

[0035] Optionally, when there may be more than one PVE plan 1068, a single
PVE may be selected as shown in the example of Figure 5B. In step 1072, pre-
defined PVE plans 1068 are checked to determine if more than one exist. If not, in
step 1074, the single pre-defined plan is selected and passed to step 108. Otherwise,
in step 1076, one of the available pre-defined PVE plans 1068 is selected. Preferably,
a PVE plan is selected based on certain parameters that may include but are not
limited to: the application program identity; environmental parameters such as time of
day; attributes of the application such as the identity of the user on behalf of which the
application is being executed; the intended usage of the application; the identity of the
computer system on which the application is to run; and etc. The selected plan is

passed to step 108.

[0036] Figure 6 shows an example of the steps of requesting resources 108
and handling the requests 110 in Figure 1 in more detail. So, in step 108 an
application requests resources by making a system call. The operating system
receives the request through a system call API in step 1100. In step 1102 the SIRH
intercepts the request and selects the correct response based upon the requesting
application’s current operating environment. So, if the requesting application is not in
a PVE or a sandbox or has not already been placed in a dynamic honeypot, it is
operating in NE and, in step 112 the OS handles the request. Otherwise, if the
application is in a PVE it is passed to step 114; if the application is operating in a
sandbox, it is passed to step 118 where a dynamic honeypot may be opened around

the application; or else, it is already in a dynamic honeypot and passed to step 120.

[0037] Figures 7A — B show an example of virtualizing resources for a
requesting application in a PVE in step 114 and granting access to the virtualized
resources in step 116. First in step 1140, the SIRH 152 checks to determine whether
the requested resources have already been virtualized. If not, in step 1142 the SIRH
152 checks the PVE plan 1144 to determine whether the requested resources should
be virtualized. If not, the SIRH 152 checks whether the request violates the sandbox
boundary in step 1146 and, if not, allows the OS to handle the request in 1148.
Otherwise in step 1150, the SIRH 152 denies the request. If in step 1142, however,
the SIRH 152 determines that the requested resources should be virtualized, then in

11

WO 2006/078446 PCT/US2006/000081

step 1152 a virtual image 1154 is created of the requested resources. If it was
determined in step 1140 that resources had already been virtualized, that image is
used as virtualized image 1154. Finally in step 1160, the SIRH 152 determines
whether the PVE plan 1144 allows access to the virtualized image 1154 and, if so,
grants access in step 1162. Otherwise, in step 1164, the SIRH 152 denies access.

[0038] Figure 8A shows an example of opening a dynamic honeypot, if
necessary, in step 118 of Figure 1 and Figure 8B shows an example of providing
virtualized resources to an application in a dynamic honeypot contained within a
sandbox in steps 120 and 122. First in step 1180, the request from an application
operating in a sandbox is checked to determine if it is a violation of the sandbox
boundary. If not, in step 1182 the application handles the request normally. If in step
1180 the request is a violation of the sandbox boundary, then in step 1184 predefined
honeypot plans 1186 are checked to determine if one is available. If not, in step 1188
the request is denied. Otherwise, in step 1190 a dynamic honeypot is constructed in

the sandbox around the application according to the predefined plan 1186.

[0039] Once a dynamic honeypot is constructed or, if the application was
already operating in the dynamic honeypot, resources may be virtualized. So, in step
1200 the SIRH 152 checks to determine whether the requested resources have already
been virtualized. If not, in step 1202 the SIRH 152 checks the honeypot plan 1204 to
determine whether the requested resources should be virtualized. If not, the SIRH
152 checks whether the request violates the sandbox boundary in step 1206 and, if
not, allows the OS to handle the request in 1208. Otherwise, in step 1210 the SIRH
152 denies the request. If in step 1202, however, the SIRH 152 determines that the
requested resources should be virtualized, then in step 1212 a virtual image 1214 is
created of the requested resources. If it was determined in step 1200 that resources
have already been virtualized, that image is used as virtualized image 1214. Finally in

step 122 the SIRH 152 grants access to the virtualized image 1214.

[0040] Figure 9 shows an example of the step 1190 of constructing a dynamic
honeypot in the sandbox around the application when more than one honeypot plan

1186 may be selected. In step 1192, predefined honeypot plans are checked to

12

WO 2006/078446 PCT/US2006/000081

determine if more than one exist. If not, in step 1194, the single pre-defined plan is
selected and passed to step 118. Otherwise, in step 1196, one of the available pre-
defined honeypot plans is selected. Preferably, a honeypot plan is selected based on
certain parameters that may include but are not limited to: environmental parameters
such as time of day; attributes of the application such as the identity of the user on
behalf of which the application is being executed; the intended usage of the

application; and etc. The selected plan is passed to step 118.

[0041] Advantageously, a dynamic honeypot provides a realistic illusion to
convince an attacker that the attack is successful and, thereafter luring the attacker to
stay in the illusion, i.e., the dynamic honeypot. The honeypot can be dynamically
provided because the SIRH 152 intercepts every call that the attacked application
makes to access resources and the SIRH 152 has complete discretion to chose how to
respond, such as granting access to a copy of the requested resources and etc.
Similarly, the SIRH 152 may duplicate the image of the entire system (including the
requested resources) onto another dedicated computer system or a VM. Further,
although the dynamic honeypot is described as being implemented in a dedicated

computer system or a VM, this is for example only and not intended as a limitation.

[0042] Further, once an application is contained in a dynamic honeypot, in a
PVE or enclosed in a sandbox, the SIRH 152 can monitor application activity and
collect data for subsequent use, €.g., for other IDS systems such as misuse detection
and anomaly detection systems. Moreover, a typical misuse detection or anomaly
detection system may be installed inside the dynamic honeypot, for example, to
collect attack signatures for misuse detection or to collect characterize “normal”
behavior pattern statistics for anomaly detection. Since the application is operating on
virtualized resources in a dynamic honeypot within sandbox, the system is protected
from an attack. The system is protected even though the attack has been allowed to
progress normally under an illusion of operating covertly, e.g., in NE and even
beyond the point where the attack might otherwise have been detected by a match to
known attack signatures or statistics. Additionally, unlike prior misuse detection

systems, a preferred embodiment system can detect previously unknown attacks with

13

WO 2006/078446 PCT/US2006/000081

unknown signatures and so, does not require up-to-date signatures or statistical

profiles to detect newly surfaced attacks.

[0043] Thus, the present invention combines a much improved low false
alarm rate over both misuse detection systems and anomaly detection systems with
the added protection of a sandbox IDS and a honeypot. These advantages are realized
without incurring the inflexibility of the sandbox or the high overhead of a prior art
resident honeypot that uses all of the normal computer resources. Accordingly, the
present invention provides a low overhead approach that attracts attacks. The attacks
can then proceed to attack the virtualized resources rather than the computer’s

resources, even as data is collected about the attacks.

[0044] While the invention has been described in terms of preferred
embodiments, those skilled in the art will recognize that the invention can be
practiced with modification within the spirit and scope of the appended claims. It is
intended that all such variations and modifications fall within the scope of the
appended claims. Examples and drawings are, accordingly, to be regarded as

illustrative rather than restrictive.

14

WO 2006/078446 PCT/US2006/000081

CLAIMS

What is claimed is:
1. A method of protecting a computer against attacks, said method comprising
the steps of:

a) monitoring application requests for resources;

b) selectively virtualizing requested said resources; and

c) granting a requesting application access to virtualized said resources.
2. A method of protecting a computer as in claim 1, the step (a) of monitoring
said application requests comprises:

i) determining whether said requesting application is operating in a
sandbox; and

if) creating a virtual copy of said requested resources for a selected said

requesting application determined to be operating in a sandbox, access to said

virtualized resources being granted within said sandbox.

3. A method of protecting a computer as in claim 1, wherein the step (b) of
selectively virtualizing comprises determining whether said requested resources have
been previously virtualized, access being granted to previously virtualized said

requested resources.

4. A method of protecting a computer as in claim 1, wherein the step (b) of
selectively virtualizing comprises the steps of:

i) determining whether a defined plan calls for virtualizing said requested
resources; and, whenever said defined plan calls for virtualizing,

i) creating a virtual image of said requested resources responsive to said

defined plan.

15

WO 2006/078446 PCT/US2006/000081

5. A method of protecting a computer as in claim 4, wherein for each said
defined plan that does not call for virtualizing said requested resources, the step (b) of
selectively virtualizing further comprises the steps of:

iii) determining whether said request violates sandbox boundaries; and

iv) granting access to said requested resources for a determination that

said request does not violate said sandbox boundaries.

6. A method of protecting a computer as in claim 5, wherein said defined plan is
a personalized virtual environment (PVE) plan and when a plurality of PVE plans
may be selected, one of said plurality of PVE plans is selected responsive to operating

parameters.

7. A method of protecting a computer as in claim 6, wherein said operating
parameters comprise:

the identity of said requesting application;

environmental parameters;

application attributes;

an intended usage for said requesting application; and

the identity of a computer system running said requesting application.

8. A method of protecting a computer as in claim 4, wherein for said requesting
application determined operating in other than a personalized virtual environment,
said method further comprising before the step (b) of selectively virtualizing
resources:

bl) constructing a honeypot; and

b2) placing said requesting application in said honeypot, said requesting

application being granted access to said virtualized resources in said honeypot.

9. A method of protecting a computer as in claim 8, wherein said pre-defined
plan is a pre-defined honeypot plan and when said pre-defined honeypot plan does not
call for virtualizing said requested resources, the step (b) of selectively virtualizing

further comprises the steps of:

16

WO 2006/078446 PCT/US2006/000081

iy determining whether said request violates sandbox boundaries; and
iv) granting access to said requested resources for a determination that

said request does not violate said sandbox boundaries.

10. A method of protecting a computer as in claim 9, wherein when a plurality of
pre-defined honeypot plans may be selected, one of said plurality of pre-defined

honeypot plans is selected responsive to operating parameters.

11. A method of protecting a computer as in claim 10, wherein said operating
parameters comprise:

environmental parameters;

application attributes; and

an intended usage for said requesting application.

12. A method of protecting a computer as in claim 8, before the step (a) of
monitoring applications, said method further coniprising the steps of:
al) determining whether an application should be placed in a sandbox;
a2) erecting said sandbox; and A

a3) starting said application in said sandbox.

13. A method of protecting a computer as in claim 12, wherein the step (a3) of
starting said application comprises the steps of:
i) determining whether said application should be placed in a PVE;
i) building said PVE; and
iii) starting said application in said PVE.

14. A computer system protected against external attacks, said computer system
comprising:

processing means for processing applications;

an application interface interfacing said applications with system resources,

said applications requesting system resources through said application interface;

17

WO 2006/078446 PCT/US2006/000081

an intrusion detector monitoring application requests and identifying ones of
said application requests as being potential attacks;

a system resource virtualizer selectively virtualizing requested said system
resources responsive to an identified potential attack; and

means for granting access to virtualized said resources to a requesting one of
said applications, said requesting one operating on said virtualized resources, said

system resources being protected from said identified potential attack.

15. A computer system as in claim 14, further comprising:

sandbox storage storing at least one defined sandbox plan;

personal virtualized environment (PVE) storage storing at least one defined
PVE plan; and

honeypot storage storing at least one defined honeypot plan.

16. A computer system as in claim 15, wherein said intrusion detector erects a
sandbox around selected starting said applications according to a stored said defined
sandbox plan, unselected ones of said starting applications being started in native

environment.

17. A computer system as in claim 16, further comprising a virtual machine
monitor (VMM) selectively building a virtual machine (VM) and a PVE inside said
VM according to a stored said defined PVE plan, one of said selected starting

applications starting in said PVE contained in said erected sandbox.

18. A computer system as in claim 17, wherein said intrusion detector builds
honeypots around selected suspected attacking applications according to stored

defined honeypot plans.

19. A computer system as in claim 18, wherein for each requesting application in
one said PVE, said means for granting access selectively creates said virtualized
resources in said one PVE and grants access to selectively created said virtualized

resources in said PVE responsive to said stored defined PVE plan.

18

WO 2006/078446 PCT/US2006/000081

20. A computer system as in claim 19, wherein said intrusion detector selectively
denies access to system resources to ones of said requesting applications associated

with request for resources violating sandbox boundaries.

21. A computer system as in claim 19, wherein for each requesting application in
one said honeypot, said means for granting selectively access creates said virtualized
resources in said one honeypot and grants access to selectively created said virtualized

resources in said honeypot responsive to said stored defined honeypot plan.

22. A computer system as in claim 21, wherein said intrusion detector selectively
denies access to system resources to ones of said requesting applications associated

with request for resources violating sandbox boundaries.

23. A computer program product for protecting a computer system against
external attacks, said computer program product comprising a computer usable
medium having computer readable program code thereon, said computer readable
program code comprising:

computer readable program code means for an application interface
interfacing running applications with system resources, said running applications
requesting system resources through said application interface;

computer readable program code means for monitoring application requests
and identifying ones of said application requests as being potential attacks;

computer readable program code means for selectively virtualizing requested
said resources responsive to identified potential attacks; and

computer readable program code means for granting access to virtualized said
resources to a requesting one of said running applications, said requesting one
operating on said virtualized resources, said system resources being protected from

said identified potential attacks.

24. A computer program product as in claim 23, wherein said computer readable

program code means for monitoring application requests comprises:

19

WO 2006/078446 PCT/US2006/000081

computer readable program code means for identifying starting applications as
being susceptible to attacks;

computer readable program code means for erecting intrusion detection
around identified susceptible said applications;

computer readable program code means for intercepting system calls from said
identified susceptible applications and determining whether intercepted system calls
indicate a potential attack; and

computer readable program code means for selecting whether to virtualize

resources for each indicated said potential attack.,

25. A computer program product as in claim 24, further comprising computer
readable program code means for a virtual machine monitor (VMM) initiating virtual
machines (VMs) in erected said intrusion detection, at least one said starting

application being started in each initiated said virtual machines.

26. A computer program product as in claim 25, wherein said VMM creates a

personalized virtual environment (PVE) for each said at least one starting application.

27. A computer program product as in claim 25, wherein said computer readable
program code means for erecting intrusion detection around identified susceptible said
applications comprises:

computer readable program code means for identifying starting applications as
being susceptible to attacks;

computer readable program code means for erecting a sandbox around
identified said starting applications;

computer readable program code means for intercepting system calls from said
identified susceptible applications and determining whether intercepted system calls
indicate a potential attack;

computer readable program code means for selectively building a honeypot
responsive to indicated potential attacks, selected ones of said identified susceptible

applications being placed in honeypots; and

20

WO 2006/078446 PCT/US2006/000081

computer readable program code means for selecting whether to virtualize
resources for each indicated said potential attack, access being granted to virtualized

said resources in a corresponding said sandbox.

28. A computer program product as in claim 27, further comprising:

computer readable program code means for providing at least one defined
sandbox plan, each said sandbox being erected responsive to one said at least one
defined sandbox plan;

computer readable program code means for providing at least one defined
personal virtualized environment (PVE) plan, PVEs being selectively erected in one
said sandbox responsive to one said at least one defined PVE plan; and

computer readable program code means for providing at least one defined
honeypot plan, honeypots being selectively erected in one said sandbox responsive to

one said at least one defined honeypot plan.

29. A computer program product as in claim 28, wherein said computer readable
program code means for identifying starting applications starts ones of said starting
applications in native environment, remaining said ones of said starting applications

being identified as susceptible to attacks.

30. A computer program product as in claim 28, wherein said computer readable
program code means for detecting intrusions selectively denies access to system
resources to ones of said requesting applications associated with request for resources

violating sandbox boundaries.

21

WO 2006/078446 PCT/US2006/000081

1/14

102
APPLICATION
STARTED

104

RUN IN NATIVE
NVIRONMENT?2

R YES

PVE/SB

106

118

112

<

HANDLE 114

y

VIRTUALIZE VIRTUALIZE
RESOURCES RESOURCES
122
1 16\ ~
GRANT ACCESS GRANT ACCESS
TO VIRTUAL TO VIRTUAL
RESOURCES RESOURCES

-
o
o

Fig. 1

WO 2006/078446 PCT/US2006/000081

2114

134

SERER

APPLICATION 132
N O\

NE

136 i i f140

SYSCALL API

y

™~
RESOURCES },/ 138

OPERATING SYSTEM

130

Fig. 2

WO 2006/078446 PCT/US2006/000081

3/14

150
/ PVE L~ \
134
SERVER ™
AppLIcATION [132
IN ITS PVE
136 1
7 f14o
, SYSCALL API
1152
II[LU ION SIRH i
|
15< ;
"~~~ RESTRICTED
VIRTUALIZED |
RESOURCE 138
" \ ACCESS RESOURCES
130
\ OPERATING SYSTEM
142
VMM S
HARDWARE —144

Fig. 3

WO 2006/078446 PCT/US2006/000081

4114

164
160\\
APPLICATION ’\/132
BEING
ATTACKED
136 IT /J“O
SYSICALL API
152 / SIRH
T ~162
ESTRICTE
RESOURCE
ACCESS TN

RESOURCES
130

OPERATING SYSTEM

Fig. 4A

WO 2006/078446

164

136

130

PCT/US2006/000081

5/14

HONEYPOT
APPLICATION
BEING 4‘\/1 32
ATTACKED
l* IMO
/ SYSCALL API
j\ ILLAJSIION SIRH
152 <
RESTRICTED,
VIRTUALIZED /\ 138
RESOURCE
ACCESS
RESOURCES
J
OPERATING SYSTEM

Fig. 4B

PCT/US2006/000081

WO 2006/078446

6/14

OF "bi4

e WILSAS ONILVHIdO N

SSINOVY SSIDOV $5300V
z6, (308NOSIM A04NOS3AY 308NOSIY
aIzivnLdin Q3ZIVNLYIA aIZIVNIIA
‘a31014.1S3 o6 ‘A3LOIY1STY ‘A3LOLSTY
]
zoﬂm_ﬁ.: NGisnTH huis INQIENTH] -1
\ IdY TIVOSAS ’
) W |
aDIOVLLY 3Ad NI
ONISE T~ NOILYOddV omw_m_u_m_m._b\
NOILYOIddY N\ EEACES Al NOILYOITddY
A1) 0l
And
Z 10dA3NOH ﬁ} L LOdAINOH
) 981 X
/\Nﬁ /\/OE

CAHAOVLLY

9.4

K

8.1

WO 2006/078446

PCT/US2006/000081

7114

C

START 102
APPLICATION

BN

SIRH

1040

NO PLACE
APPLCATION 1062
IN A SANDBOX? <
' PRE-DEFINED
START APPLICATION SANDBOX PLAN
NATIVE ENVIRONMENT
1060
ERECT THE SANDBOX
ACCORDING TO
1042 PRE-DEFINED SANDBOX PLAN
1064
NO
PLACE APPLICATION
IN A PVE?
PRE-DEFINED '
PVE PLAN START THE
1070 APPLICATION
| INSIDE THE
SANDBOX
1068
BUILD THE PVE ACCORDING TO A
PRE-DEFINED PVE PLAN;
START THE APPLICATION
/S INSIDE THE PVE
1066
Y
108

Fig. 5A

WO 2006/078446

PCT/US2006/000081

8/14

10Z

MORE THAN

ONE?

; \} 0% 108
USE SOLE ;
PVE PLAN,
CHOOSE PVE PLAN BASED
ON OPERATING
PARAMETERS
Y
108

Fig. B

WO 2006/078446 PCT/US2006/000081

9/14
132
APPLICATION ~
PROGRAM

REQUEST ACCESS " "108

TO RESOURCES
* —~_1100
0S
RECEIVE THE REQUEST
THROUGH THE SYSTEM
: CALL API APPLICATION
APPLICATION IS IN A SANDBOX
IS IN A PVE
\ HP
118
y
114 APPLICATION
— IN NE
APPLICATION
IS IN A HONEYPOT
| 0S| 112
HANDLE [120
THE REQUEST

Fig. 6

WO 2006/078446

NO

SIRH|

SANDBOX
BOUNDARY
YIOLATED?Y,

1146

HANDLE

N}48

PCT/US2006/000081

10/14

—_
e
o

|

YES

ALREADY
IRTUALIZED?
PREDEFINED
PVE PLAN
SIRH
PVE PLAN 1144
CALL FOR
VIRTUALIZING?
1142
CREATE
VIRTUAL 1152
IMAGES
YES @
1154
» 116
DENY

—\/1150

Fig. 7A

WO 2006/078446 PCT/US2006/000081

11/14

114

1160 1164

PVE PLAN ALLOW
ACCESS TO THE
VIRTUALIZED

DENY

IMAGES?

YES 1162

GRANT ACCESS TO
VIRTUAL IMAGES

116

Fig. 7B

WO 2006/078446 PCT/US2006/000081

12114
THE APPLICATION
IS IN A SANDBOX
SB
1180
SIRH
VIOLATE NO
SANDBOX
OUNDARY? ;
. YES HANDLE
1184
SIRH
DENY NO 7 bRE-DEFINED 1182
HONEYPOT
l?
PLAN 1150
1186
YES
CONSTRUCT A HONEYPOT (ILLUSION) PREDEEINED
AROUND THE APPLICATION HONEYPOT
ACCORDING TO THE PLAN PLAN
120

WO 2006/078446

PCT/US2006/000081

13/14

a5
1200
SIRH

ALREADY
IRTUALIZED?2

PREDEFINED
PVE PLAN
SIRH
NO HONEYPOT PLAN 1204
CALL FOR
VIRTUALIZING?
1202
YES
“ SIRH CREATE 1212
SANDBOX VIRTUAL 1214
BOUNDARY IMAGES
VIOLATED? @
y
YES| 1206 |GRANT ACCESS TO
VIRTUAL IMAGES
DENY
\,1210 e
122
1208 \
HANDLE \/
120

Fig. 8B

WO 2006/078446 PCT/US2006/000081

14/14

SIRH

NO MORE THAN ONE

PRE-DEFINED
ONEYPOT PLAN2

y

ONE
1 1941/ HONEYPOT
PLAN

CHOOSE ONE OF THE
HONEYPOT PLANS
BASED ON OPERATING
PARAMETERS

1196

120 |e

Fig. 9

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

