In one example, a height adjustable desktop system is described that can include a work surface, a foot assembly and a linkage assembly that adjustably connects the work surface to the foot assembly allowing vertical adjustment of the work surface. The linkage assembly can include a pair of adjustment assemblies, each having a transverse linkage that maintains the work surface in a horizontal orientation as the work surface is elevated or lowered. A biasing mechanism, such as an extension spring or a torsion spring, biases the work surface toward the elevated position.
HEIGHT ADJUSTABLE DESKTOP WORK SURFACE

CLAIM OF PRIORITY

TECHNICAL FIELD

This document pertains generally, but not by way of limitation, to a desktop assembly for providing a height adjustable work surface.

BACKGROUND

Conventional desks include a planar desktop providing a work surface and for receiving a computer monitor, computer peripherals or other desktop items. Typically, the desktop is mounted at a horizontal position to provide a flat surface for receiving and returning desktop items. Similarly, the desktop is positioned at a height that corresponds to a position at which a seated person can comfortably use the desk. Recently, desk users have sought to use desks while standing to prevent back strain and other injuries that result from extended seated use of the desk and in particular computer use, which often results in the user being hunched over the desktop. In particular, recent information has indicated that alternating between standing and sitting while using a desk for extending periods of time has beneficial health benefits.

An approach for providing standing use of a desk for computer use is a computer mount including a vertical riser mountable to the work surface of a desk. Fixed or height adjustable mounts for a computer monitor and/or keyboard can be secured to the vertical riser at appropriate heights for standing or alternating between sitting and standing use of the computer. A drawback of this approach is that the monitor is typically fixed to the work surface to avoid tipping. Risers can be fixed to the work surface with an edge clamp, grommet mount or other clamping apparatuses. A drawback of clamping apparatus is that the existing desktop may have to be modified by drilling holes or removing edge sections of the desk. The substantial and permanent modification of the desk requires substantial investment and can render the desk unsuitable for its original intended use or other uses.

OVERVIEW

The present inventors have recognized, among other things, that a problem to be solved can include providing a stable, height adjustable work surface that is sufficiently sized for computer and other uses. In addition, the present inventors have recognized that a related problem to be solved can include converting fixed height desks to a sit-to-stand desk by incorporating a height adjustable work surface. In an example, the present subject matter can provide a solution to this problem, such as by providing a height adjustable work surface that can be set or located on a fixed height desk to convert the fixed height desk. In an example, the height adjustable work surface can include a foot assembly and a linkage assembly that adjustably connects the work surface to the foot assembly allowing vertical adjustment of the work surface relative to the foot assembly. In at least one example, the foot assembly can be placed on or releasably mounted to a work surface of a fixed height desk to provide a stable, height adjustable work surface on the fixed height desk.

In an example, the linkage assembly can include one or more adjustment assemblies, each having at least two parallel linkages and a transverse linkage that maintains the work surface in a generally horizontal orientation as the work surface is elevated or lowered. One of the parallel linkages can rotate in a first plane while the second rotating linkage can rotate in a second plane parallel to and offset from the first plane. The offset of the planes can reduce torquing of the of the work surface relative to the foot assembly. In at least one example, each adjustment assembly can include a gliding upper bar that moves a glide support to elevate and lower the work surface and can also operate to maintain the work surface in a generally horizontal orientation. In at least one example, each adjustment assembly can include a biasing mechanism such as an extension spring or a torsion spring that biases the work surface toward the elevated position. In at least one example, each adjustment assembly can include a gliding upper bar that moves a glide support to elevate and lower the work surface and can also operate to maintain the work surface in a generally horizontal orientation. In this configuration, the glide rod can include a plurality of indentations that can be rotated between a first position in which the notches engage the glider to prevent adjustment of the work surface and a second position allowing lowering and raising of the work surface.

In at least one example, each adjustment assembly can include a lock lever assembly including a plunger pin that engages one of a plurality of holes in the transverse linkage to fix adjustment assembly preventing elevating or lowering of the work surface.

In an example, the height adjustable desktop can include at least one clamping member such as a clamp, a grommet, a vise, a clip, or an alternative type of fastener for securing the height adjustable desktop to a desktop, table, desk frame, wall or other structure. Securing the base foot assembly or other portion of the height adjustable desktop assembly to the desktop can improve the stability of the work surface during uses such as typing. In at least one example, each clamping members can be located in the front of the foot assembly or base and in another example; one or more clamping members can be located at the rear. In another example, a grommet mount can be used to attach the base to the desktop. The grommet mount can allow the height adjustable desk assembly to be rotated relative to the underlying supporting surface.

In an example, a height adjustable desktop system can include a work surface, a foot assembly and an adjustment assembly. The work surface can define an underside and include a glide support and a support bracket positioned on the underside of the work surface. The foot assembly can include at least one foot bracket. The adjustment assembly can include a glider slidably on the glide support, a first linkage rotatably connected to the glider and rotatably connected to the foot bracket, a second linkage rotatable with the first linkage, the second linkage rotatably connected to the
glider and rotatably connected to the foot bracket, and a transverse linkage rotatably connected to the support bracket and rotatably connected to the second linkage. The glider can be slid on the glide support between a first position proximate to the support bracket and a second position distal to the support bracket; wherein the first, second and transverse linkages can be extended when the glide is positioned in the first position to position the work surface at an elevated position, wherein the first, second and transverse linkages can be collapsed when the glide is positioned in the second position to position the work surface at a lowered position.

In an example, the glide support can include a glide rod defining a plurality of indentations. In this configuration, the glide can define a first glide hole and a second glide hole aligned with the first glide hole, wherein the glide rod can be receivable in the first and second glide hole such that the glide is slidable on the glide rod. The second glide hole can define a flat edge. The glide rod can be rotated between a first position in which the indentations can be aligned to engage the flat edge to prevent sliding of the glide on the glide rod and a second position in which the indentations are out of alignment with the flat edge to allow sliding of the glide on the glide rod.

In an example, the transverse linkage can include a fan portion and defines a plurality of holes in the fan portion arranged in an arc. The height adjustable desktop system can also include a piston having a piston pin. The piston pin can be moved between an extended position in which the pin intersects one of the holes to prevent rotation of the transverse linkage and fixing elevation of the work surface and a retracted position allowing rotation of the transverse linkage permitting movement of the work surface.

This overview is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the present subject matter. The detailed description is included to provide further information about the present patent application.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.

FIG. 1 is a schematic side view of a height adjustable desktop system having a work surface in an elevated position, according to an example of the present disclosure.

FIG. 2 is a schematic side view of the height adjustable desktop system depicted in FIG. 1 having the work surface positioned in an intermediate lowered position, according to an example of the present disclosure.

FIG. 3 is a schematic side view of the height adjustable desktop system depicted in FIG. 1 having the work surface including a shelf positioned in a lowered position, according to an example of the present disclosure.

FIG. 4 is a front view of the height adjustable desktop system depicted in FIG. 1 in accordance to an example of the present disclosure.

FIG. 5 is a schematic front view of the height adjustable desktop system having a work surface in an elevated position, according to an example of the present disclosure.

FIG. 6 is a schematic front view of the height adjustable desktop system having a work surface in an elevated position, according to an example of the present disclosure.

FIG. 7 is a schematic side view of a height adjustable desktop system having a work surface including a shelf positioned in a lowered position, according to an example of the present disclosure.

FIG. 8 is a schematic side view of a height adjustable desktop system having a work surface including a shelf positioned in a lowered position, according to an example of the present disclosure.

FIG. 9 is a schematic side view of a height adjustable desktop system having a clamping member, according to an example of the present disclosure.

FIG. 10 is a schematic side view of a height adjustable desktop system having a clamping member, according to an example of the present disclosure.

FIG. 12 is a schematic side view of a height adjustable desktop system having a work surface in an elevated position, according to an example of the present disclosure, wherein an extension spring operably linking a slider to a transverse linkage.

FIG. 13 is a schematic side view of a height adjustable desktop system having a work surface in an elevated position, according to an example of the present disclosure, wherein an extension spring operably linking a slider to a transverse linkage.

FIG. 14 is a schematic side view of the height adjustable desktop system depicted in FIG. 7 having a work surface position in an intermediate lowered position, according to an example of the present disclosure.

FIG. 15 is a schematic side view of a height adjustable desktop system having a work surface in an elevated position, according to an example of the present disclosure, wherein a torsion spring is positioned bias the work surface to the elevated position.

FIG. 16 is a schematic side view of the height adjustable desktop system depicted in FIG. 15 having a work surface positioned in an intermediate lowered position, according to an example of the present disclosure.

FIG. 17 is a schematic side view of a height adjustable desktop system having a work surface in an elevated position and having a wall bracket for mounting the system to a wall, according to an example of the present disclosure.

FIG. 18 is a perspective view of a height adjustable desktop system having a work surface in an elevated position, according to an example of the present disclosure.

FIG. 19 is a side view of the height adjustable desktop system having a work surface depicted in FIG. 18.

FIG. 20 is a front view of the height adjustable desktop system having a work surface depicted in FIG. 18.

FIG. 21 is a side view of the height adjustable desktop system depicted in FIG. 18 having the work surface positioned in an intermediate lowered position, according to an example of the present disclosure.

FIG. 22 is a side view of the height adjustable desktop system depicted in FIG. 18 having the work surface positioned in an intermediate lowered position, according to an example of the present disclosure.

FIG. 23 is partial front view of a height adjustable desktop system illustrating a lever for a glide rod, according to an example of the present disclosure.
FIG. 24 is a partial perspective view of a height adjustable desktop system, according to an example of the present disclosure.

FIG. 25 is a perspective view of a glider rod, support frame and glider assembly, according to an example of the present disclosure.

FIG. 26 is a perspective view of a glider, according to an example of the present disclosure.

FIG. 27 is a perspective view of a glider rod, according to an example of the present disclosure.

FIG. 28 is a top view of a lever of a glider rod, according to an example of the present disclosure.

FIG. 29 is a partial cross-sectional view of a glider rod, according to an example of the present disclosure.

FIG. 30 is a perspective view of a height adjustable desktop system having a work surface in an elevated position, according to an example of the present disclosure.

FIG. 31 is a side view of the height adjustable desktop system having a work surface depicted in FIG. 30 of the present disclosure.

FIG. 32 is a side view of the height adjustable desktop system depicted in FIG. 30 having the work surface positioned in an intermediate lowered position, according to an example of the present disclosure.

FIG. 33 is a front view of the height adjustable desktop system having a work surface depicted in FIG. 24 of the present disclosure.

FIG. 34 is a partial perspective view of a lock lever assembly according to an example of the present disclosure.

FIG. 35 is a partial cross-sectional side view of a lock lever assembly according to an example of the present disclosure.

FIG. 36 is a perspective view of a height adjustable desktop system having a lower lock assembly, with a work surface positioned in an elevated position, according to an example of the present disclosure.

FIG. 37 is a perspective view of a height adjustable desktop system having a lower lock assembly, with a work surface positioned in a lowered and locked position, according to an example of the present disclosure.

FIG. 38 is a perspective view of a lever having a locking arm according to an example of the present disclosure.

FIG. 39 is a partial perspective view of a height adjustable desktop system locked into a lowered position according to an example of the present disclosure.

FIG. 40 is a cross-sectional perspective view of a height adjustable desktop system locked into a lowered position according to an example of the present disclosure.

DETAILED DESCRIPTION

As depicted in FIGS. 1-3, a height adjustable desktop system 100, according to an example of the present disclosure, can include a work surface 102, a linkage assembly 104 and a foot assembly 106. The work surface 102 provides a planar surface for writing or receiving desktop items such as computer peripherals. The foot assembly 106 is configured to be placed on a desk 99 of a desk, secured to the frame of the desk or secured to a wall or other structure. The linkage assembly 104 operatively connects the work surface 102 to the foot assembly 106. The linkage assembly 104 is configured to position the work surface 102 for vertical height adjustment of the work surface 102 and permitting use of the work surface 102 while seated, standing or in other positions. As illustrated in FIG. 2, in an example, the linkage assembly 104 can elevate as depicted in FIG. 1 or lower the work surface 102 relative to the foot assembly 106 as depicted in FIG. 3.

As depicted in FIGS. 1-6, the work surface 102 can define a primary top surface 108 and an underside 110. The top surface 108 can be planar to provide a flat surface for writing or receiving desktop items. In an example, the primary top surface 108 can include a high friction surface to prevent desktop items from sliding on the primary top surface 108 while the work surface 102 is being elevated or lowered by the linkage assembly 104. As depicted in FIG. 4, in at least one example, the work surface 102 can include at least one glide support 112 and a support bracket 114 arranged on the underside 110 of the work surface 102 along an axis. In this configuration, a first adjustment assembly 120a can be located proximate the center of the work surface 102. The foot assembly 106 can be large enough to maintain stability of the work surface 102 during use of the height adjustable desktop system 100.

As depicted in FIGS. 7-8, in an example, the work surface 102 can include a shelf 116 defining a secondary top surface 118 for use as a keyboard tray or other purposes providing a bi-level work surface. In at least one example, the secondary top surface 118 can be located at a lower height than the primary top surface 108. In this configuration, the lower secondary top surface 118 can permit use of certain peripherals at a lower height relative to the primary top surface 108 to position the peripherals at a more ergonomic operating position for the user’s hands while the relatively higher primary top surface 108 positions other peripherals, such as computer monitors, at a more ergonomic viewing position for the user’s head and eyes. For example, the peripherals for use on the secondary top surface 118 can include, but not limited to computer monitors, keyboards, mice, speakers, booms microphones and other peripherals commonly used with computers. As depicted in FIG. 7, in an example, the secondary top surface 118 can rest against the foot assembly 106 on the desktop 99 in the lowered position 144. As depicted in FIG. 8, in an example, the secondary top surface 118 can extend forward from the front 140 of the desktop 99 and can include a lowered position 144 that can be lower than the surface of the foot assembly 106 or the surface of the desktop 99. In this configuration, the secondary top surface 118 can be positioned at a height about or below the primary top surface 108. As depicted in FIGS. 18-22 and 30, in at least one example, the work surface 102 can include at least one attachment bracket 119 for releasably securing the shelf 116 to the work surface 102. As depicted in FIG. 5, in at least one example,

As depicted in FIGS. 5-6, in at least one example, the work surface 102 can include a first glide support 112a and a first support bracket 114a arranged on the underside 110 of the work surface 102 along a first axis. In this configuration, the work surface 102 also can include a second glide support 112b and a second support bracket 114b arranged on the underside 110 of the work surface 102 along a second axis parallel to the first axis. In this configuration, the first support bracket 114a and the second support bracket 114b cooperate to support the work surface 102. In at least one example, the work surface 102 further can include a back bracket 115 joining the first and second glide supports 112a, 112b.

As depicted in FIGS. 5-6, the linkage assembly 104 can include a first adjustment assembly 120a and a second adjustment assembly 120b. Whether the linkage assembly
includes only one adjustment assembly or additional adjustment assemblies, the following description may use the “first adjustment assembly” nomenclature and element numbering in various examples. The work surface 102 can include a first glide support 112a and a first support bracket 114a arranged on the underside 110 of the work surface 102 along a first axis. Each adjustment assembly 120a, 120b can include a first parallel linkage 122, a second parallel linkage 124 and a transverse linkage 126. Each adjustment assembly 120a, 120b also can include a glider 128 configured to slide on one of the glide supports 112a, 112b. The first adjustment assembly 120a can be located proximate to a first edge 145a of the work surface 102. The second adjustment assembly 120b can be located proximate to a second edge 145b of the work surface 102 which can be opposite the first edge 145a. The first and second adjustment assemblies 120a, 120b can be operationally connected to the work surface 102 on the upper end, such as at the underside 110, and operationally connected to the foot assembly 106 at the lower end. The foot assembly 106 can include an individual foot portion 132 for each adjustment assembly 120a, 120b as illustrated in FIG. 5, or in some configurations, the foot assembly 106 can be formed as a base 147 that spans from the first adjustment assembly 120a to the second adjustment assembly 120b as illustrated in FIG. 6.

[0058] A first lower bar 130a can be formed as part of the foot assembly 106. The first lower bar 130a can extend upward from the foot assembly 106 and can be formed separately or integrally with the foot assembly 106. The first lower bar 130a can be an attachment structure, a bracket, a foot bracket, or similar structure. Similarly, the second adjustment assembly 120b can include a second lower bar 130b such that the first and second parallel linkages 122, 124 of the second adjustment assembly 120b can be individually mounted to the foot portion 132.

[0059] As depicted in FIG. 1, the first and second parallel linkages 122, 124 can be rotatably mounted at one end to the first lower bar 130a at a first hinge 148 and a second hinge 149 such that the first and second parallel linkages 122, 124 rotate in parallel on the first lower bar 130a. The first and second parallel linkages 122, 124 can be rotatably mounted at an opposite end to the glider 128 at a third hinge 150 and a fourth hinge 151 such that the first and second parallel linkages 122, 124 rotate in parallel on the glider 128. Similarly, the transverse linkage 126 can be rotatably mounted at one end to the second parallel linkage 124 by a sixth hinge 153 and rotatably mounted to the corresponding support brackets 114a, 114b through a fifth hinge 152. In an example, the transverse linkage 126 is about half the length of the second parallel linkage 124.

[0060] As depicted in FIGS. 30 and 33, in an example, the first parallel linkages 122 of the adjustment assemblies 120a, 120b can be connected by a first cross-piece 123. Similarly, the second parallel linkages 124 of the adjustment assemblies 120a, 120b can be connected by a second cross-piece 125.

[0061] As depicted in FIGS. 4-6, in an example, the first and second parallel linkages 122, 124, the transverse linkage 126 and combinations thereof can be offset along an axis transverse to plane of rotation of the first and second parallel linkages 122, 124 and the transverse linkage 126. In this configuration, the offset prevents contact or pinching of the linkages 122, 124, and 126 during rotation of the linkages 122, 124, and 126. As illustrated in FIG. 4, in at least one example, the first parallel linkage 122 can rotate in a first plane and the second parallel linkage 124 can rotate in a second plane. The second plane can be parallel to and offset from the first plane. The offsetting of the first and second planes can prevent torqueing of the work surface 108 relative to the foot assembly 147 during use of the work surface 108.

[0062] FIGS. 1-3 illustrate side views of a height adjustable desktop system 100 and a linkage assembly 104. FIG. 1 illustrates an elevated position 142, FIG. 2 illustrates an intermediate position 143 and FIG. 3 illustrates a lowered position 144. As depicted in FIGS. 1-3, the linkage assembly 104 can be configured with a 4-bar linkage 105 to keep the platform in horizontal orientation during the height adjustment.

[0063] FIGS. 1-3 illustrate the operation of the height adjustable desktop system 100. In operation, the gliders 128 of the first and second adjustment assemblies 120a, 120b can each slide along the corresponding first and second glide support 112a, 112b between a first position 138 and a second position 139, which correspondingly moves the work surface 102 between an elevated position 142 and a lowered position 144. FIG. 2 illustrates the work surface 102 in an intermediate position 143 as the first glide support 112a is between a first position 138 and a second position 139. In the first position 138, each glider 128 can be positioned proximate to the corresponding support bracket 114a, 114b along the corresponding first and second glide support 112a, 112b such that the work surface 102 can be raised to an elevated position 142 (see FIG. 1). In the elevated position 142, the first, second and transverse linkages 122, 124, 126, can be extended when the glider 128 is positioned in the first position 138. In the second position 139, each glider 128 can be located distal to the corresponding support bracket 114a, 114b along the corresponding first and second glide support 112a, 112b such that the work surface 102 can be located in a lowered position 144 (see FIG. 3). As the work surface 102 moves from elevated position 142 to lowered position 144 by means of the linkage assembly 104, parallel linkages 122 and 124 can maintain the horizontal orientation of the work surface 102, and the transverse linkage 126 can maintain the vertical orientation of the work surface 102. The first parallel linkage 122, the second parallel linkage 124 and the transverse linkage 126 can be collapsed toward the foot assembly 106 when the glider 128 is positioned in the second position 139. When the glider 128 reaches the second position, the work surface 102 can be at the lowered position 144.

[0064] The height adjustable desktop system 100 can also be configured with a work surface 102 that is angled, such as a drafting table. The linkage assembly 104 can be configured to maintain the angle of the work surface 102 relative to the foot assembly 106 during a height adjustment.

[0065] The height adjustable desktop system 100 can be used as free standing on the top of a desktop 99 as illustrated in FIGS. 1-8. However, in some configurations, the base 147 or foot assembly 106 of the work surface 102 can be secured to the desktop 99 as illustrated in FIGS. 9-11. The securement can be accomplished by a clamping member such as a clamp, a grommet, a vise, a clamp, a dog, a clip, or an alternative type of fastener. In some configurations, one or more clamping members 154 can be located in front 140 of the base 147 as illustrated in FIG. 9. In other configurations, one or more clamping members 154 can be located at the rear 141 of the base 147 as illustrated in FIG. 10. Clamping members 154 can be located on any edge of the base 147 and in any number
desired. Still in other configurations, a grommet mount 155 can be used to attach the base 147 to the desktop 99 as illustrated in FIG. 11. The grommet mount 155 can allow the height adjustable desktop system 100 to be rotated to the right or left. The grommet mount 155 can be located at the center of the base 147 or at other locations of the base 147. The grommet mount 155 can form a rotation center of the base 147. Multiple grommet mounts 155 can also be used. Various clamping devices are disclosed as part of the patent application Ser. Nos. 13/191,170, published as 2012/0187056 which is hereby incorporated by reference herein in its entirety. Clamping the base 147 of the height adjustable desktop system 100 to the desktop 99 can improve the stability of the work surface 102 during uses such as typing.

[0066] A counterbalance mechanism can be used for lift assist during the height adjustment to reduce the force exerted by the user. As depicted in FIGS. 12-14, in an example, each adjustment assembly 120a, 120b can include a counterbalance mechanism such as an extension spring 157. The extension spring 157 can operably connect the glider 128 to the corresponding transverse linkage 126 as depicted in FIG. 12. As the work surface 102 is lowered and the glider 128 moves away from the corresponding support bracket 114a, 114b, the extension spring 157 can be stretched (see FIG. 14) to bias the work surface 102 toward the elevated position 142 (see FIGS. 12-13). In certain examples, the work surface 102 can further include a spring holding bracket 158 located on the underside 110 of the work surface 102. FIGS. 13-14 illustrate the extension spring 157 can be operably connected to the spring holding bracket 158 rather than the transverse linkage 126 as depicted in FIG. 12.

[0067] As depicted in FIGS. 15-16, in an example, each adjustment assembly 120a, 120b can include a counterbalance mechanism such as a torsion spring 159. The torsion spring 159 operably engages the transverse linkage 126 and the underside 110 of the work surface 102. As the work surface 102 is lowered and the transverse linkage 126 collapses (see FIG. 16), the torsion spring 159 is tensioned biasing the work surface 102 toward the elevated position 142 (see FIG. 15).

[0068] As depicted in FIGS. 5-6 and 18, the foot assembly 106 can include a first foot bracket 130a, a second foot bracket 130b and a foot portion 132. The foot brackets 130a, 130b can be fixed to the foot portion 132. In this configuration, the first and second parallel linkages 122, 124 of the first adjustment assembly 120a can be rotatably mounted to the foot bracket 130a through a hinge connection. Similarly, the first and second parallel linkages 122, 124 of the second adjustment assembly 120b can be rotatably mounted to the foot bracket 130b through a hinge connection. In an example, the foot portion 132 comprises a planar element for interfacing a top surface of a desktop as depicted in FIGS. 1-16. In an example, the foot portion 132 comprises a wall bracket 134 for receiving a fastener for securing the foot assembly 106 to a wall or other vertical surfaces such as depicted in FIG. 17. In at least one example, the wall bracket 134 can be configured to attach to shelf or other mounting bracket attached to the wall. In an example, the foot portion 132 comprises a U-shape element 136 having a pair of arms 137 for stabilizing the foot assembly 106 as depicted in FIGS. 18-22 and 30-33. In at least one example, the foot assembly 106 can include a plurality of first foot brackets 130a such that the first and second parallel linkages 122, 124 of the first adjustment assembly 120a can be individually mounted to the foot portion 132. Similarly, the second foot assembly 106 can include a plurality of second foot brackets 130b such that the first and second parallel linkages 122, 124 of the second adjustment assembly 120b can be individually mounted to the foot portion 106.

[0069] As depicted in FIGS. 6-8, in an example, each adjustment assembly 120a, 120b can include a counterbalance mechanism such as an extension spring 157. The extension spring 157 operably connects the glider 128 to the corresponding transverse linkage 126 as depicted in FIG. 6. As the work surface 102 is lowered and the glider 128 moves away from the corresponding support bracket 114a, 114b, the extension spring 157 is stretched to bias the work surface 102 toward the elevated position.

[0070] As depicted in FIGS. 18-29, in an example, each glide support 112a, 112b can include a glide rod 146 and a support frame 157. The glide rod 146 further can include a lever 150 that can be actuated to rotate the glide rod 146. The support frame 157 defines a pair of opposing bore holes 152 for rotatably receiving the glide rod 146. In this configuration, each glide rod 146 also can include a first glide hole 154 and a second glide hole 156 wherein the first glide hole 154 is aligned with the second glide hole 156 such that the glide rod 146 is slidable along the glide rod 146.

[0071] As depicted in FIGS. 24-26 and 27-29, in an example, the glide rod 146 defines a plurality of indentations 161. In this configuration, the first glide hole 154 of the glide rod 146 comprises a circular shape and is configured to receive a bushing 160 allowing the glide rod 146 to slide through the first glide hole 154 regardless of the rotational orientation of the glide rod 146. The second glide hole 156 comprises a flat edge 162 positioned to engage the indentations 161 of the glide rod 146 to prevent movement of glider 128 along the glide rod 146. In operation, the glide rod 146 is adapted to rotate the glide rod 146 between a first position in which the indentations 161 can be aligned with the flat edge 162 of the second glide hole 156 preventing the glider 128 from moving on the glide rod 128 and a second position in which the indentations 161 are out of alignment with the flat edge 162 allowing the glider 128 to move along the glide rod 146.

[0072] As depicted in FIGS. 30-35, in an example, each transverse linkage 126 can include a fan portion 164 defining a plurality of holes 166 arranged in an arc. In this configuration, each adjustment assembly 120a, 120b can include a plunger 168 having a moving pin 170 extendable to engage one of the holes 166 in the transverse linkage 126 to prevent rotation of the transverse linkage 126 and raising or lowering of the work surface 120 as depicted in FIGS. 31-32 and 35. Similarly, the moving pin 170 can be retracted to disengage from the transverse linkage 126 to allow raising or lowering of the work surface 120 as depicted in FIGS. 31-32 and 35.

[0073] As depicted in FIGS. 33-35, in an example, each adjustment assembly 120a, 120b can include a lock lever assembly 172 that can include a plunger bracket 174, rotating 176 and a lever bracket 178. The plunger bracket 174 can be operably connected to the plunger pin 170 at one end and the rotatably connected to one end of the rotating linkage 176. The lever bracket 178 can be rotatably connected to the other end of the rotating linkage 176. In operation, pulling the lever bracket 178 rotates the rotating linkage 176 in a first direction, thereby pulling the plunger bracket 174 and retracting the pin 170 from the transverse linkage 126. Similarly, pushing the lever bracket 178 rotates the rotating linkage 176
in a second direction, thereby pushing the plunger bracket 174 and pushing the plunger pin 170 into engagement with the transverse linkage 126.

[0074] As depicted in FIGS. 33-35, in an example, the lock lever assembly 172 can include a lever 180 rotatably mounted to the lever bracket 178. The lever 180 can be pulled or pushed to operate the lever bracket 178 and correspondingly the plunger pin 170. In example, the lever 180 further can include an extended rod 182 for operably connecting the lever 180 to the lever bracket 178. The extended rod 182 can be sized to position the lever 180 at a convenient position relative to the work surface 102 for access to the lever 180.

[0075] As depicted in FIGS. 36-40, in an example, the height adjustable desktop system 100 can further include a lock lever assembly 184 that can lock the work surface 102 in the lowered position. The lever 180 can further include a hook arm 186 rotatable between a lock position (shown in FIG. 38) and a release position. The foot portion 132 can also include at least one lock housing 188 corresponding to each hook arm 186. Each lock housing 188 can define at least one lock notch 190. In operation, the work surface 102 can be positioned in the lowered position and the lever 180 rotated to position the hook arm 186 in the lock position such that the hook arm 186 engages the lock notch 190. The engagement of the hook arm 186 to the lock housing 188 maintains the work surface 102 in the lowered position. The lever 180 can be rotated to position the hook arm 186 into the release position in which the hook arm 186 disengages from the hook arm 186 allowing the work surface 102 to be raised into the elevated position.

[0076] Each of these non-limiting examples can stand on its own, or can be combined in any permutation or combination with any one or more of the other examples.

[0077] The above detailed description can include references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the present subject matter can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.

[0078] In the event of inconsistent usages between this document and any documents so incorporated by reference, the usage in this document controls.

[0079] In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” can include “A but not B,” “B but not A,” and “A and B;” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, composition, formulation, or process that can include elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.

[0080] The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description as examples or embodiments, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

What is claimed is:

1. A height adjustable desktop system, comprising:
 a work surface defining an underside and including a glide support and a support bracket positioned on the underside of the work surface;
 a foot assembly including at least one foot bracket;
 an adjustment assembly including:
 a glider slidable on the glide support;
 a first linkage rotatably connected to the glider and rotatably connected to the foot bracket, wherein the first linkage is rotatable within a first plane;
 a second linkage rotatable with the first linkage, the second linkage rotatably connected to the glider and rotatably connected to the foot bracket, wherein the second linkage is rotatable within a second plane parallel to and offset from the first plane; and
 a transverse linkage rotatably connected to the support bracket and rotatably connected to the second linkage;
 wherein the glider is slidable on the glide support between a first position proximate to the support bracket and a second position distal to the support bracket; wherein the first, second and transverse linkages are extended when the glide is positioned in the first position to position the work surface at an elevated position, wherein the first, second and transverse linkages are collapsed when the glide is positioned in the second position to position the work surface at a lowered position.

2. The height adjustable desktop system of claim 1, wherein the work surface defines a primary top surface opposite the underside.

3. The height adjustable desktop system of claim 2, wherein the work surface includes a shelf defining a secondary top surface lower than the primary top surface.

4. The height adjustable desktop system of claim 3, wherein the shelf includes an attachment bracket for positioning the secondary top surface below the primary top surface.
5. The height adjustable desktop system of claim 1, wherein the foot assembly includes a foot portion.

6. The height adjustable desktop system of claim 5, wherein the foot portion includes a planar element for interfacing with a desktop.

7. The height adjustable desktop system of claim 5, wherein the foot portion includes a wall bracket secureable to a wall.

8. The height adjustable desktop system of claim 5, wherein the foot portion includes a U-shaped element having a pair of arms for stabilizing the foot assembly.

9. The height adjustable desktop system of claim 1, wherein the adjustment assembly includes an extension spring operably connected to the glider.

10. The height adjustable desktop system of claim 9, wherein the extension spring operably connects the glider to the transverse linkage.

11. The height adjustable desktop system of claim 9, wherein the extension spring operably connects the glider to a spring holding bracket affixed to the underside of the work surface.

12. The height adjustable desktop system of claim 1, wherein the adjustment assembly includes a torsion spring that is tensioned between the underside of the work surface and the transverse linkage as the work surface is lowered to bias the work surface toward an elevated position.

13. The height adjustable desktop system of claim 1, wherein the glide support includes a glide rod defining a plurality of indentations.

14. The height adjustable desktop system of claim 13, wherein the glide rod defines a first glide hole and a second glide hole aligned with the first glide hole, wherein the glide rod is receivable in the first and second glide hole such that the glider is slidably on the glide rod.

15. The height adjustable desktop system of claim 14, wherein the second glide hole defines a flat edge; wherein the glide rod is rotatable between a first position in which the indentations are aligned to engage the flat edge to prevent sliding of the glider on the glide rod and a second position in which the indentations are out of alignment with the flat edge to allow sliding of the glider on the glide rod.

16. The height adjustable desktop system of claim 15, wherein the glide rod includes a lever operable to rotate the glide rod.

17. The height adjustable desktop system of claim 1, wherein the transverse linkage includes a fan portion and defines a plurality of holes in the fan portion arranged in an arc.

18. The height adjustable desktop system of claim 17, wherein the height adjustable desktop system includes a piston having a piston pin; wherein the piston pin is movable between an extended position in which the pin intersects one of the holes to prevent rotation of the transverse linkage and fixing elevation of the work surface and a retracted position allowing rotation of the transverse linkage permitting movement of the work surface.

19. A height adjustable desktop system, comprising:
 a work surface;
 a foot assembly;
 a linkage assembly rotatably coupled to the work surface and rotatable to the foot assembly, wherein the linkage assembly is configured to rotate the work surface between a lowered position and an elevated position generally perpendicular to the work surface.

* * * * *