Title: PRODUCTION OF HIGH PURITY BUTENE-1 FROM C4 OLEFINs/PARAFFINS MIXED GAS

Abstract: The present invention relates to a hybrid process comprising an adsorption process and a distillation process for the separation of butene-1 from a C4 hydrocarbon mixture gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. The above hybrid process comprises introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbents which adsorb olefins selectively to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins selectively adsorbed in the adsorption tower to produce high purity C4 olefins mixture gas in which isobutane and normal butane was removed, and separating the high C4 olefins mixture gas (a mixture of butene-1, trans-2-butene, cis-2-butene, and a trace amount of C4 paraffins) via distillation to obtain high purity butene-1 including a trace amount of isobutane in the top of the distillation tower and obtain a mixture gas including trans-2-butene, cis-2-butene and a trace amount of normal butane in the bottom of the tower.

Fig. 2

[Diagram showing the process flow with labels for C4 paraffin, Desorbent, Butene-1, and Butene-2/n-Butane]
Published: with international search report
Description

PRODUCTION OF HIGH PURITY BUTENE-1 FROM C4 OLEFINS/PARAFFINS MIXED GAS

Technical Field

The present invention relates to a method and its apparatus for the separation of butene-1 from a C4 hydrocarbon mixed gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. by using a hybrid process composed of an adsorption process and a distillation process.

Background Art

The known method for the separation of butene-1 from a C4 hydrocarbon mixed gas including C4 olefins (butene-1, trans-2-butene, cis-2-butene, et.) and C4 parafins (normal butane, isobutane, etc.) involves mainly a distillation process. However, the known method requires the use of distillation towers with a large number of fractionation plates due to the small boiling-point difference of the products to be separated and thus leads to high consumption of energy and to high investment costs.

Table 1

<table>
<thead>
<tr>
<th>Components</th>
<th>Molecular weight</th>
<th>Boiling point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isobutane</td>
<td>58.124</td>
<td>-11.7</td>
</tr>
<tr>
<td>Isobutene</td>
<td>56.108</td>
<td>-6.9</td>
</tr>
<tr>
<td>Butene-1</td>
<td>56.108</td>
<td>-6.3</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>54.092</td>
<td>-4.4</td>
</tr>
<tr>
<td>Normal-butane</td>
<td>58.124</td>
<td>-0.5</td>
</tr>
<tr>
<td>Trans-2-butene</td>
<td>56.108</td>
<td>0.3</td>
</tr>
<tr>
<td>Cis-2-butene</td>
<td>56.108</td>
<td>3.7</td>
</tr>
</tbody>
</table>

U.S. patent 4,718,986(1988) discloses a process for producing butene-1 of more than 99wt% from the C4 hydrocarbon mixture of butene-1/isobutane/normal butane/butene-2 by using two distillation towers. According to the above patent invention, the C4 mixture is introduced into the first distillation tower to remove isobutane from the top of the tower. The lower stream from the first distillation tower is introduced into
the second distillation tower, obtaining butene-1 with a purity of 99wt% from the top of the second tower and discharging a mixture of normal butane, butene-2 and butene-1 from the bottom of the second tower. However, since a considerable amount of butene-1 is discharged with the isobutane stream from the top of the first tower and also with the mixture of normal butane, butene-2 and butene-1 from the bottom of the second tower, the above process results in much loss of butene-1.

There are a number of known techniques relating to the adsorption-separation processes for a C4 hydrocarbon mixture, for example, a technique for separating butene-1 from a mixture including butene-1/butene-2/isobutylene by using type X or Y zeolite containing potassium ion or barium ion (US 3,723,561, Mar. 27, 1973), a technique for separating butene-1 from a liquid C4 hydrocarbon mixture by using type K-X zeolite (US 4,119,678, Oct. 10, 1978), a technique for separating normal C4 hydrocarbon mixture and isobutylene by using a molecular sieve selective to normal C4 hydrocarbon mixture (US 4,455,445, Jun. 19, 1984), a technique for selectively separating alfa olefin alone from olefins having more than 4 carbon atoms by a liquid adsorption process using a zeolite molecular sieve (US pat. 5,132,485, 1992), a pressure-swing adsorption process for the separation of olefins/paraffins having 2-6 carbon atoms in vapor phase by using type 4A zeolite (US pat. 5,365,011, 1994), and a technique for separating paraffins from a mixture of olefins/paraffins having 2-6 carbon atoms in vapor phase using type X or Y zeolite and reproducing the adsorbents used in the adsorption process by using desorbents (EP 0708070 B1, 1999). The U.S. patent no. 5,955,640 (1999) discloses a process of improving the yield of butene-1 by converting butene-2 components into butene-1 while removing a portion of paraffin components by using an adsorption process in order to prevent the accumulation of unreacted paraffin components in the process.

However, distillation using two towers connected in series as shown in the above U.S. patent no. 4,718,986 (1998) is the only process used for obtaining butene-1 with high purity from the C4 olefins/paraffins mixture gas. Till now, there is no adsorptive-separation techniques that can separate butene-1 with high purity from a mixture of C4 olefins/paraffins by selectively separating C4 olefin mixture gas from C4 olefins/paraffins mixture by an adsorption process and then obtaining high purity butene-1 from C4 olefin mixture gas selectively separated from the adsorption process by a distillation process, as can be achieved by the present invention.

Disclosure of Invention
Technical Problem

The existing distillation processes for separating butene-1 from a mixture of olefins/
paraffins use two sequential distillation towers to remove isobutane from the first distillation and obtain high purity butene-1 from the second distillation tower. However, a significant amount of butene-1 is discharged together with an isobutane stream to the top of the first tower and also discharged to the bottom of the second distillation tower and thus butene-1 loss is large. In addition, since the difference in relative volatilities among C4 components is small, the above distillation processes require high consumption of energy and high investment costs.

[H]

Technical Solution

[12] In the above circumstance, the inventors of the present invention have designed a hybrid process of removing paraffins by the C4 olefins/paraffins adsorption separation process and thereafter separating the C4 olefins via distillation to obtain high purity butene-1.

[13] If olefins are selectively separated from the C4 olefins/paraffins mixture gas by using the adsorption separation process, the paraffin components are selectively removed, butene-1 loss which is accompanied at the time of removing isobutane can be reduced, also the concentration of the normal butane in the gas introduced into the distillation process for the production of high purity butene-1 is lowered, and thus the production of butene-1 is easy and the yield of butene-1 in the whole process increases.

[14]

Advantageous Effects

[15] The present invention can reduce the butene-1 loss and investment costs over the process consisted only of multi-stage distillation tower by using a hybrid process consisted of a olefins/paraffins adsorption separation process and a olefin distillation process.

[16] Now, some embodiments of the present invention are illustrated with reference to the drawings accompanied. However, it is understood that the illustrated embodiments of the present invention are intended to be examples only and the invention is not limited to any embodiments.

[17]

Brief Description of the Drawings

[18] Fig. 1 is a schematic view of the process of obtaining high purity butene-1 from a mixture gas of C4 olefins/paraffins according to the method of the present invention. The method of the present invention comprises an adsorption process (A) for separating the C4 olefins via selective adsorption and a distillation process (B) for producing butene-1 from the olefin components.

[19] Fig. 2 is a schematic view of the apparatus for the production of high purity butene-1
by separating the olefins from C4 olefins/paraffins mixture gas and then distilling the C4 olefins separated according to the method of the invention.

[20] Fig. 3 is a table showing a cycle sequence of the adsorption process (A) for selectively separating the olefins according to the method of the present invention.

[21] Fig. 4 is a schematic view of another method of the present invention comprising the hybrid process of a adsorption process (A) and a distillation process (B).

Best Mode for Carrying Out the Invention

[23] The present invention provides a method of performing a adsorption process for the adsorption of C4 olefins from a C4 olefins/paraffins mixture gas to obtain high purity C4 olefins mixture gas (a mixture gas including betene-1, trans-2-butene, cis-2-butene and a trace amount of C4 paraffins) and then performing a distillation process for the distillation separation of the obtained high purity C4 olefins mixture gas to obtain high purity butene-1 including a trace amount of isobutane in the top of the distillation tower and obtain a mixture gas including trans-2-butene, cis-2-butene and a trace amount of normal butane in the bottom of the tower, and an apparatus for practicing said method.

[24] Preferably, the present invention provides a method for production of butene-1 by separating C4 olefins from a mixture gas composed of C4 olefins/paraffins via displacement desorption with desorbents (desorption agents) and then distilling the separated C4 olefins, in an apparatus including an adsorption facility composed of three adsorption towers loaded with adsorbents which adsorb olefins selectively and two distillation towers (one distillation tower for the separation of olefins/desorbents and another distillation tower for the separation of paraffins/desorbents), and a distillation tower for obtaining butene-1 by distilling C4 olefins produced from the adsorption facility, which comprises

[25] an adsorption process including an adsorption step for introducing the mixture gas of C4 olefins/paraffins into the adsorption towers loaded with olefin selective adsorbent to adsorb olefins on the adsorbents, discharge non-adsorbed paraffins and the desorbents retained in the adsorption tower to the distillation column for separation of paraffins and the desorbents through the outlet of the adsorption tower; a C4 olefin rinse step to remove a small amount of paraffins adsorbed together with olefins on the adsorbents by introducing a portion of high purity C4 olefins resulting from the distillation process of olefins/desorbents into the adsorption tower after the completion of the adsorption step and thus increasing the purity of olefins; and a desorption step of obtaining high purity olefins by introducing desorbents into the adsorption towers after the completion of the rinse step to desorb the C4 olefins and introduce the olefins/
desorbents mixture to the distillation tower for the separation of the olefins and the desorbents; and

[26] a distillation process for production of butene-1 by distilling the C4 olefins obtained in the adsorption process,

[27] wherein said sequential adsorption, olefin rinse and desorption steps are repeatedly performed in each of the adsorption towers, and

[28] wherein each adsorption towers are operated to perform the different steps with each other at the same time point.

[29] In the above method, C4 olefins/paraffins mixture gas can be firstly distilled to separate isobutane and butene-1 and discharge normal butane and butene-2 and then the resulting isobutane and butene-1 mixture can be fed into the adsorption process to obtain high purity butene-1, in place of obtaining high purity butene-1 by first processing the C4 olefins/paraffins mixture gas via the adsorption process to separate C4 olefins and then separating butene-1 from the resulting C4 olefins via the distillation process. In this case, isobutane and butene-1 are separated as paraffins and olefins respectively by the same process as said adsorption process.

[30] The adsorption process used in the method of the present invention is a process for separating C4 olefins from a mixture gas composed of C4 olefins/paraffins by displacement desorption with desorbents (desorption agents), in a facility composed of three adsorption towers loaded with adsorbents which adsorb olefins selectively and two distillation towers (one distillation tower for the separation of olefins/desorbents and another distillation tower for the separation of paraffins/desorbents), which comprises

[31] an adsorption step for introducing the mixture gas of C4 olefins/paraffins into the adsorption towers loaded with olefin selective adsorbent to adsorb olefins on the adsorbents, discharge non-adsorbed paraffins and the desorbents retained in the adsorption tower to the distillation column for separation of paraffins and the desorbents through the outlet of the adsorption tower; a C4 olefin rinse step of cleaning a small amount of paraffins adsorbed together with olefins on the adsorbents by introducing a portion of high purity C4 olefins resulting from the distillation process of olefins/desorbents into the adsorption tower after the completion of the adsorption step and thus increasing the purity of olefins; and a desorption step of obtaining high purity olefins by introducing desorbents into the adsorption towers after the completion of the rinse step to desorb the C4 olefins and introduce the olefins/desorbents mixture to the distillation tower for the separation of the olefins and the desorbents,

[32] wherein said sequential adsorption, olefin rinse and desorption steps are repeatedly performed in each of the adsorption towers, and

[33] wherein each adsorption towers are operated to perform the different steps with each
other at the same time point.

[34] The adsorption process used in the method of the present invention may carry out a sequence of adsorption step, rinse step and desorption step in a predetermined time period in more than three adsorption towers respectively in such a way that a part of the same step overlaps to each other among the towers.

[35] Preferably, the adsorption process used in the method of the present invention further includes a cocurrent depressurization step of discharging the paraffin component residue present in the adsorption towers before the olefin rinse step.

[36] Also preferably, the method of the present invention further includes a pressure equalization step at which the paraffin components present in the interior of the adsorption tower after the completion of the adsorption step is transferred to the another adsorption tower which just completed the desorption step by connecting the two adsorption towers so that the pressure of the adsorption towers becomes equalized.

[37] Also preferably, the method of the present invention further includes a cocurrent depressurization step of discharging the paraffin components present in the adsorption towers after the pressure reduction through the pressure equalization step, and a pressure reduction step which pressurize the adsorption tower to the adsorption pressure by introducing the mixture gas of C4 olefins/paraffins into the adsorption tower partially pressurized through the pressure equalization step.

[38] Also preferably, olefin selective adsorbents for use in the adsorption process of the method of the present invention is π-complex adsorbent forming π-complex selectively with olefins, type X zeolite or type Y zeolite, and preferably type 13X zeolite.

[39] Also preferably, the adsorbent for use in the adsorption process of the method of the present invention is C5 hydrocarbon or C6 hydrocarbon.

[40] Also preferably, in the adsorption process of the method of the present invention, the desorbent separated from the olefin/desorbent distillation tower and the paraffin/desorbent distillation tower is recirculated into adsorption tower.

[41] Also preferably, in the adsorption process of the method of the present invention, the operating pressure of the adsorption tower in the C4 olefin/paraffin separation process is 1 to 10 atm (absolute pressure) and the temperature is 20 to 150°C.

[42] The present invention also provides an adsorption facility and a distillation tower for separating butene-1 from C4 olefins discharged from the distillation tower (D2) in the adsorption facility.

[43] Preferably, the present invention provides an apparatus for the separation of butene-1 from a mixture gas of C4 olefins/paraffins by carrying out repeated sequential adsorption, olefin rinse and desorption steps to separate C4 olefins from the mixture gas of C4 olefins/paraffins in such a way of performing displacement desorption with desorbents, in an adsorption facility including three adsorption towers (AD-I, AD-2
and AD-3) loaded with adsorbents which adsorb olefins selectively and two distillation
towers (one distillation tower (D2) for the separation of olefins/desorbents and another
distillation tower (Dl) for the separation of paraffins/desorbents), and by distilling the
separated C4 olefins in the distillation tower (B) to separate butene-1 from the C4
olefins, said apparatus comprising

[44] the adsorption tower (AD-I) in which the bottom of the tower is connected with the
feeding conduit (1) for the mixture gas of C4 olefins/paraffins through the valve (Ia),
with the C4 olefin/desorbent discharging conduit (2) through the valve (2a) which is
connected to the distillation tower (D2), and with the conduit (3) through the valve (3a)
which feeds an amount of C4 olefins produced by the distillation tower (D2), and in
which the top of the tower is connected with the conduit (4) through the valve (4a)
which introduces paraffins and deserbents from the olefin rinse step into the distillation
tower (DI), with the conduit (5) through the valve (5a) which feeds paraffins and
desorbents discharged from the adsorption step into the distillation tower (DI), and
with the conduit (6) through the valve (6a) which feeds the desorbents into the
adsorption tower;

[45] the adsorption tower (AD-2) in which the bottom of the tower is connected with the
feeding conduit (1) for the mixture gas of C4 olefins/paraffins through the valve (Ib),
with the C4 olefin/desorbent discharging conduit (2) through the valve (2b) which is
connected to the distillation tower (D2), and with the conduit (3) through the valve
(3b) which feeds an amount of C4 olefins produced by the distillation tower (D2), and
in which the top of the tower is connected with the conduit (4) through the valve (4b)
which introduces paraffins and deserbents from the olefin rinse step into the distillation
tower (DI), with the conduit (5) through the valve (5b) which feeds paraffins and
desorbents discharged from the adsorption step into the distillation tower (DI), and
with the conduit (6) through the valve (6b) which feeds the desorbents into the
adsorption tower;

[46] the adsorption tower (AD-3) in which the bottom of the tower is connected with the
feeding conduit (1) for the mixture gas of C4 olefins/paraffins through the valve (Ic),
with the C4 olefin/desorbent discharging conduit (2) through the valve (2c) which is
connected to the distillation tower (D2), and with the conduit (3) through the valve (3c)
which feeds an amount of C4 olefins produced by the distillation tower (D2), and in
which the top of the tower is connected with the conduit (4) through the valve (4c)
which introduces paraffins and deserbents from the cleaning step into the distillation
tower (DI), with the conduit (5) through the valve (5c) which feeds paraffins and
desorbents discharged from the adsorption step into the distillation tower (DI), and
with the conduit (6) through the valve (6c) which feeds the desorbents into the
adsorption tower;
the distillation tower (D1) which separates C4 paraffins and desorbents introduced from the adsorption towers (AD-I, AD-2 and AD-3);

the distillation tower (D2) which separates C4 olefins and desorbents introduced from the adsorption towers (AD-I, AD-2 and AD-3); and

the distillation tower (B) which separates butene-1 by distillation of the C4 olefins from the distillation tower (D2).

Preferably, the adsorption facility of the apparatus of the present invention further includes the valve (7) in the conduit (4) connected to the distillation tower (D1).

In addition, the apparatus of the present invention may include more than three adsorption towers which are adapted to carry out a sequence of adsorption step, cleaning step and desorption step in a predetermined time period in three adsorption towers respectively in such a way that a part of the same step overlaps to each other among the towers.

Mode for the Invention

The detailed description of the invention with reference to the drawings is as follows.

Fig. 1 is a schematic view of the process constitution for separating C4 olefins from a mixture gas of C4 olefins/paraffins according to the present invention. The process of the present invention comprises an adsorption process for separating the mixture of C4 olefins/paraffins and a distillation process for separating high purity butene-1 from the C4 olefins mixture gas separated from the adsorption process. The mixture of C4 olefins/paraffins is introduced into the adsorption process through the conduit (1). The paraffin components which were not adsorbed on the adsorbents from the mixture of C4 olefins/paraffins is discharged through conduit (2), and the adsorbed olefin components is desorbed by the desorbents and introduced into the distillation process(B) through conduit (3). If the olefin mixture gas containing butene-1 and butene-2 together with small amount of isobutane and normal butane is introduced into the distillation process, butene-1 and isobutane having lower boiling points is discharged to the top (conduit (4)) of the distillation tower and normal butane and butene-2 components having relatively higher boiling points is discharged to the bottom (conduit (5)) of the distillation tower. The olefin rich mixture gas produced from the adsorption process has about 0 to 0.5wt% level of isobutane and 0 to 5wt% of normal butane as a much amount of isobutane and normal butane is removed. If necessary, isobutane and normal butane may be completely removed.

The hybrid process of the present invention can be described with reference to Fig. 2 including the adsorption facility composed of three adsorption towers and two distillation tower and the distillation tower (B) as follows.
The adsorption facility used in the apparatus of the invention is a facility for the separation of C4 olefins from a mixture gas of C4 olefins/paraffins, by carrying out repeated sequential adsorption, olefin rinse and desorption steps in such a way of performing displacement desorption with the desorbents to separate C4 olefins from the mixture gas, in three adsorption towers (AD-I, AD-2 and AD-3) loaded with olefin selective adsorbents and two distillation towers (one distillation tower (D2) for the separation of olefins/desorbents and another distillation tower (D1) for the separation of paraffins/desorbents), which comprises

the adsorption tower (AD-I) in which the bottom of the tower is connected with the feeding conduit (1) for the mixture gas of C4 olefins/paraffins through the valve (1a), with the C4 olefin/desorbent discharging conduit (2) through the valve (2a) which is connected to the distillation tower (D2), and with the conduit (3) through the valve (3a) which feeds an amount of C4 olefins produced by the distillation tower (D2), and in which the top of the tower is connected with the conduit (4) through the valve (4a) which introduces paraffins and desorbents from the cleaning step into the distillation tower (D1), with the conduit (5) through the valve (5a) which feeds paraffins and desorbents discharged from the adsorption step into the distillation tower (D1), and with the conduit (6) through the valve (6a) which feeds the desorbents into the adsorption tower;

the adsorption tower (AD-2) in which the bottom of the tower is connected with the feeding conduit (1) for the mixture gas of C4 olefins/paraffins through the valve (1b), with the C4 olefin/desorbent discharging conduit (2) through the valve (2b) which is connected to the distillation tower (D2), and with the conduit (3) through the valve (3b) which feeds an amount of C4 olefins produced by the distillation tower (D2), and in which the top of the tower is connected with the conduit (4) through the valve (4b) which introduces paraffins and desorbents from the cleaning step into the distillation tower (D1), with the conduit (5) through the valve (5b) which feeds paraffins and desorbents discharged from the adsorption step into the distillation tower (D1), and with the conduit (6) through the valve (6b) which feeds the desorbents into the adsorption tower;

the adsorption tower (AD-3) in which the bottom of the tower is connected with the feeding conduit (1) for the mixture gas of C4 olefins/paraffins through the valve (1c), with the C4 olefin/desorbent discharging conduit (2) through the valve (2c) which is connected to the distillation tower (D2), and with the conduit (3) through the valve (3c) which feeds an amount of C4 olefins produced by the distillation tower (D2), and in which the top of the tower is connected with the conduit (4) through the valve (4c) which introduces paraffins and desorbents from the cleaning step into the distillation tower (D1), with the conduit (5) through the valve (5c) which feeds paraffins and
desorbents discharged from the adsorption step into the distillation tower (D1), and with the conduit (6) through the valve (6c) which feeds the desorbents into the adsorption tower;

[60] the distillation tower (D1) which separates C4 paraffins and desorbents introduced from the adsorption towers (AD-I, AD-2 and AD-3); and

[61] the distillation tower (D2) which separates C4 olefins and desorbents introduced from the adsorption towers (AD-I, AD-2 and AD-3).

[62] The distillation tower (B) in the present invention is a distillation tower for separating high purity butene-1 from C4 olefin mixture gas produced from the adsorption facility.

[63] Fig. 2 is a schematic view of the apparatus of producing butene-1 from a mixture gas of C4 olefins/paraffins according to the present invention. The adsorption facility of the apparatus of the present invention comprises three adsorption towers for separating C4 olefins via selective adsorption and two distillation towers for separating C4 olefins/desorbents and C4 paraffins/desorbents respectively. The basic process of the adsorption tower used in the present invention includes an adsorption step of selectively adsorbing C4 olefins from feed, a C4 olefin rinse step of removing a small amount of C4 paraffins adsorbed together with C4 olefins; and a C4 olefin desorption step using the desorbents and the process further can includes pressure equalization step, cocurrent depressurization step, and pressurization step. The desorbent discharged from the adsorption step along with olefins or paraffins is separated in the distillation tower and then recycled into the adsorption tower. The preferable desorbents is C5 hydrocarbon or C6 hydrocarbon which has a large difference in boiling point from that of the C4 mixture.

[64] A cycle operation of the adsorption process can be described with reference to Fig 2 on the basis of Fig. 3 which includes the operation steps of all the preferable adsorption process as follows.

[65] The mixture gas containing C4 olefins/paraffins is introduced into the adsorption tower (AD-I) loaded with olefin selective adsorbents through the conduit (1) and valve (1a) to adsorb C4 olefins thereon (adsorption step), and the olefin free paraffin stream separated from the mixture is introduced together with the desorbents retained in the adsorption tower before the adsorption step into the distillation tower (D1) through the conduit (5) and the valve (5a) to separate paraffins and desorbents. The adsorption tower (AD-2) carries out the step (desorption step) of desorbing olefin components with the desorbent while the adsorption tower (AD-I) carries out the adsorption step. The desorbents used in the desorption step is obtained from the bottoms of the distillation tower (D1) and the distillation tower (D2) and is introduced into adsorption tower (AD-2) through the conduit (6) and the valve (6b). The olefins discharged with the desorbents is introduced into the distillation tower (D2) through the valve (2a) and
the conduit (2) to separate the olefins and the desorbents. The adsorption tower (AD-3) is provided with a portion of the olefins separated from the distillation tower (D2) through the conduit (3) and the valve (3c) to remove a small amount of paraffins adsorbed together with the olefins for the improvement of the purity of olefins (C4 olefin rinse step). At that time, the gas discharged from the adsorption tower (AD-3) is introduced into the distillation tower (D1) through the valve (4c) and the conduit (4).

The adsorption tower (AD-I) at high pressure which just carried out the adsorption step is connected with the adsorption tower (AD-2) at low pressure through the valve (4a) and the conduit (4) and thus a process (pressure equalization step) that allows the pressures of both towers to be in the same pressure is carried out. During the pressure equalization step, the valve (7) is closed. The adsorption tower (AD-3) after the rinse step carries out a desorption step of recovering olefins by introducing the desorbents thereto through the conduit (6) and the valve (6c). The olefins discharged together with the desorbents from the adsorption tower (AD-3) is sent to the distillation tower (D2) through the valve (2c) and the conduit (2) and thus separated from the desorbent.

In addition, in the adsorption process, the adsorption tower (AD-I) after the pressure equalization step is depressurized through the valve (4a) and the conduit (4), and at that time, the discharged gas is introduced into the distillation tower (D1) (cocurrent depressurization step). During the cocurrent depressurization of the adsorption tower (AD-I), a C4 mixture gas is introduced into the adsorption tower (AD-2) through the conduit (1) and the valve (1b) and the adsorption tower (AD-2) carries out a step (pressurization step) of increasing the pressure to the adsorption pressure. At that time, the adsorption tower (AD-3) continues to carry out the desorption step.

The adsorption tower (AD-I) which just finished the cocurrent depressurization step carry out a C4 olefin rinse step, the adsorption tower (AD-2) carries out the adsorption step, and the adsorption tower (AD-3) continues to carry out the desorption step.

In this way, each adsorption tower carries out a sequential adsorption step - pressure equalization step - cocurrent depressurization step - C4 olefin rinse step - desorption step - pressure equalization step - pressurization step.

The pressure equalization step, the cocurrent depressurization step or the pressurization step can be omitted from the constitution of the process depending on the processing pressure of the adsorption step.

In addition, as can be seen in Fig. 4, the C4 olefins/paraffins mixture gas can be firstly distilled to give isobutane/butene-1 rich stream and normal butane/butene-2 rich stream and then the resulting isobutane/butene-1 rich stream can be fed into the adsorption process to obtain high purity butene-1, in place of obtaining high purity butene-1 by first processing the C4 olefins/paraffins mixture gas via the adsorption process to separate C4 olefins and then separating butene-1 from the resulting C4
olefins via the distillation process. In this case, paraffins, i.e., isobutane and olefin, i.e., butene-1 are separated by the same process as that described in said adsorption process.

As shown in Fig. 1, the C4 mixture gas (table 2) was introduced into the adsorption process to separate C4 olefins and paraffins and then the separated C4 olefins was introduced into the distillation process to produce butene-1. The adsorption process was carried out by the facility of Fig. 2 according to the process constitutions of Fig. 3. With the cycle sequence as shown in Fig. 3 by using the apparatus as shown in Fig. 2, an experiment for separating olefins from a mixture gas of C4 olefins/paraffins was performed while using type 13X zeolite as an adsorbent for the separation of olefins/paraffins and using C5 mixture gas as a desorbent. The compositions of the C4 mixture gas and of the C5 mixture gas were shown in table 2. The C4 mixture gas was introduced into the adsorption process at the conditions of 60°C, 2000 mmHg and the flow rate of 1675 ml/min. A portion of high purity olefin containing gas obtained from the top of the distillation (D2) as shown in Fig 2 was used in the C4 olefin rinse step, and the rinse flow rate was 300 ml/min. The high purity olefin containing gas obtained from the adsorption process was introduced into the distillation tower having 115-stage tray and thus obtained 99.54wt% of butene-1 with a yield of 99.54wt% at reflux ratio of 9. The composition of the products obtained from each of the conduits according to the method of Fig. 1 is presented in table 3.

Table 2
Composition of C4 mixture gas and desorbents

<table>
<thead>
<tr>
<th>Components of mixture gas</th>
<th>Composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso-butane</td>
<td>4.73</td>
</tr>
<tr>
<td>Normal-butane</td>
<td>15.3</td>
</tr>
<tr>
<td>1-Butene</td>
<td>50.0</td>
</tr>
<tr>
<td>Trans-2-butene</td>
<td>19.0</td>
</tr>
<tr>
<td>Cis-2-butene</td>
<td>10.4</td>
</tr>
<tr>
<td>Trace components</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Components of desorbents

<table>
<thead>
<tr>
<th>Components of desorbents</th>
<th>Composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal-pentane</td>
<td>80.65</td>
</tr>
<tr>
<td>Iso-pentane</td>
<td>18.69</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>0.56</td>
</tr>
<tr>
<td>Trace components</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Process performance obtained from Example 1

<table>
<thead>
<tr>
<th>Components</th>
<th>ml/m in</th>
<th>wt%</th>
<th>ml/m in</th>
<th>wt%</th>
<th>ml/m in</th>
<th>wt%</th>
<th>ml/m in</th>
<th>wt%</th>
<th>wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isobutane</td>
<td>4.73</td>
<td>21.02</td>
<td>0.16</td>
<td>0.26</td>
<td>trace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal butane</td>
<td>15.3</td>
<td>69.97</td>
<td>2.23</td>
<td>0.06</td>
<td>5.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>butene-1</td>
<td>50.0</td>
<td>6.73</td>
<td>60.52</td>
<td>99.52</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans-2-butene</td>
<td>19.0</td>
<td>2.27</td>
<td>22.15</td>
<td>0.15</td>
<td>58.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cis-2-butene</td>
<td>10.4</td>
<td>0.9</td>
<td>12.90</td>
<td>1ppm</td>
<td>34.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1675</td>
<td>375</td>
<td>1300</td>
<td>27.20</td>
<td>16.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In order to compare the process of the present invention with the process of the existing process, the yield and the purity of the butene-1 obtained by the hybrid process composed of the adsorption process and the distillation process according to the present invention and those of butene-1 obtained only by distillation as described in U.S. patent no. 4,718,986 are presented in table 4. The existing distillation process comprised a series of two distillation towers and these towers had the number of stages of 120 and 115 respectively, reflux ratio of 103 and 9 (on mass basis). The number of stage of the distillation tower used in the hybrid process of the adsorption process and the distillation process was 115 and the reflux ratio was 9. The yield increased by the hybrid process according to the present invention, and also installation costs and operation costs are reduced due to the reduction of one distillation tower with a large number of stage and a high reflux ratio.

Table 4

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Yield (wt%)</th>
<th>Purity (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing process (two distillation tower)</td>
<td>91.35</td>
<td>99.50</td>
</tr>
<tr>
<td>Adsorption tower + distillation tower</td>
<td>93.00</td>
<td>99.58</td>
</tr>
</tbody>
</table>

Industrial Applicability

The present invention is useful in reducing the butene-1 loss on eliminating isobutane and increasing the yield of butene-1 in the separation of butene-1 by using the hybrid process consisting of the adsorption process and the distillation process, as proved in the Examples of the present invention, since a portion of normal butane is removed together at the time of removing isobutane and thus the concentration of the normal butane introduced into the distillation tower for production of butene-1 is lowered.

Although the present invention has been described with respect to the exemplary embodiments in detail, these embodiments are intended only to be illustrative of the present invention and it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the spirit and scope of the present invention.
Claims

[1] A method for production of butene-1 by separating C4 olefins from a mixture gas composed of C4 olefins/paraffins via displacement desorption with desorbents (desorption agents) and then distilling the separated C4 olefins, in an apparatus including an adsorption facility composed of three adsorption towers loaded with adsorbents which adsorb olefins selectively and two distillation towers (one distillation tower for the separation of olefins/desorbents and another distillation tower for the separation of paraffins/desorbents), and a distillation tower for obtaining butene-1 by distilling C4 olefins produced from the adsorption facility, which comprises

an adsorption process including an adsorption step to introduce the mixture gas of C4 olefins/paraffins into the adsorption towers loaded with olefin selective adsorbent to adsorb olefins on the adsorbents, discharge non-adsorbed paraffins and the desorbents retained in the adsorption tower to the distillation cloumn for separation of paraffins and the desorbents through the outlet of the adsorption tower; a C4 olefin rinse step to remove a small amount of paraffins adsorbed together with olefins on the adsorbents by introducing a portion of high purity C4 olefins resulting from the distillation process of olefins/desorbents into the adsorption tower after the completion of the adsorption step and thus increasing the purity of olefins; and a desorption step of obtaining high purity olefins by introducing desorbents into the adsorption towers after the completion of the rinse step to desorb the C4 olefins and introduce the olefins/desorbents mixture to the distillation tower for the separation of the olefins and the desorbents; and a distillation process for production of butene-1 by distilling the C4 olefins obtained in the adsorption process,

wherein said sequential adsorption, olefin rinse and desorption steps are repeatedly performed in each of the adsorption towers, and

wherein each adsorption towers are operated to perform the different steps with each other at the same time point.

[2] The method according to claim 1, wherein the olefin selective adsorbents is π-complex adsorbent forming re-complex selectively with olefins, type X zeolite or type Y zeolite adsorbent or metal ion exchanged type X or Y zeolite adsorbent.

[3] The method according to claim 1 or 2, wherein the operating pressure of the adsorption tower is 1 to 10 atm (absolute pressure) and the temperature is 20 to 150°C.

and a mixture gas of isobutane and butene-1, and by displacement desorption with desorbents in the apparatus comprising three adsorption towers loaded with adsorbents which adsorb butene-1 selectively and two distillation towers (one distillation tower for the separation of olefins/desorbents and another distillation tower for the separation of paraffins/desorbents), which comprises a step of distilling a mixture gas composed of C4 olefins/paraffins to obtain a mixture gas of normal butane/butene-2 and a mixture gas of isobutane/butene-1, an adsorption step to introduce the mixture gas of butene-1/isobutane into the adsorption tower loaded with the adsorbents to adsorb betene-1 and discharge non-adsorbed isobutane and the desorbents retained in the adsorption tower to the distillation column for the separation of isobutane and the desorbents through the outlet of the adsorption tower; a butene-1 rinse step to remove a small amount of isobutane adsorbed together with butene-1 and thus increasing the purity of butene-1 by introducing a portion of high purity butene-1 resulting from the distillation tower for the separation of butene-1/desorbents into the adsorption tower after the completion of the adsorption step; and a desorption step of obtaining high purity butene-1 by introducing desorbents into the adsorption towers after the completion of the butene-1 rinse step to desorb butene-1 and introduce the butene-1/desorbents mixture to the distillation tower for the separation of butene-1 and the desorbents; wherein said sequential adsorption, cleaning and desorption steps are repeatedly performed, and wherein each adsorption towers are operated to perform the different steps with each other at the same time point.

The method according to any one of claims 1 to 3, wherein a sequence of adsorption step, olefin rinse step and desorption step is carried out in a predetermined time period in more than three adsorption towers respectively in such a way that a part of the same step overlaps to each other among the towers.

An apparatus for the separation of butene-1 from a mixture gas of C4 olefins/paraffins by carrying out repeated sequential adsorption, olefin rinse and desorption steps to separate C4 olefins from the mixture gas of C4 olefins/paraffins in such a way of performing displacement desorption with desorbents, in an adsorption facility including three adsorption towers (AD-1, AD-2 and AD-3) loaded with adsorbents which adsorb olefins selectively and two distillation towers (one distillation tower (D2) for the separation of olefins/desorbents and another distillation tower (D1) for the separation of paraffins/desorbents), and by distilling the separated C4 olefins in the distillation tower (B) to separate butene-
from the C4 olefins, said apparatus comprising
the adsorption tower (AD-I) in which the bottom of the tower is connected with
the feeding conduit (1) for the mixture gas of C4 olefins/paraffins through the
valve (Ia), with the C4 olefin/desorbent discharging conduit (2) through the
valve (2a) which is connected to the distillation tower (D2), and with the conduit
(3) through the valve (3a) which feeds an amount of C4 olefins produced by the
distillation tower (D2), and in which the top of the tower is connected with the
conduit (4) through the valve (4a) which introduces paraffins and desorbents
from the cleaning step into the distillation tower (Dl), with the conduit (5)
through the valve (5a) which feeds paraffins and desorbents discharged from the
adsorption step into the distillation tower (Dl), and with the conduit (6) through
the valve (6a) which feeds the desorbents into the adsorption tower;
the adsorption tower (AD-2) in which the bottom of the tower is connected with
the feeding conduit (1) for the mixture gas of C4 olefins/paraffins through the
valve (Ib), with the C4 olefin/desorbent discharging conduit (2) through the
valve (2b) which is connected to the distillation tower (D2), and with the conduit
(3) through the valve (3b) which feeds an amount of C4 olefins produced by the
distillation tower (D2), and in which the top of the tower is connected with the
conduit (4) through the valve (4b) which introduces paraffins and desorbents
from the cleaning step into the distillation tower (Dl), with the conduit (5)
through the valve (5b) which feeds paraffins and desorbents discharged from the
adsorption step into the distillation tower (Dl), and with the conduit (6) through
the valve (6b) which feeds the desorbents into the adsorption tower;
the adsorption tower (AD-3) in which the bottom of the tower is connected with
the feeding conduit (1) for the mixture gas of C4 olefins/paraffins through the
valve (Ic), with the C4 olefin/desorbent discharging conduit (2) through the
valve (2c) which is connected to the distillation tower (D2), and with the conduit
(3) through the valve (3c) which feeds an amount of C4 olefins produced by the
distillation tower (D2), and in which the top of the tower is connected with the
conduit (4) through the valve (4c) which introduces paraffins and desorbents
from the cleaning step into the distillation tower (Dl), with the conduit (5)
through the valve (5c) which feeds paraffins and desorbents discharged from the
adsorption step into the distillation tower (Dl), and with the conduit (6) through
the valve (6c) which feeds the desorbents into the adsorption tower;
the distillation tower (Dl) which separates C4 paraffins and desorbents
introduced from the adsorption towers (AD-I, AD-2 and AD-3);
the distillation tower (D2) which separates C4 olefins and desorbents introduced
from the adsorption towers (AD-I, AD-2 and AD-3); and
the distillation tower (B) which separates butene-1 by distillation of the C4 olefins from the distillation tower (D2).
A. CLASSIFICATION OF SUBJECT MATTER

C07C 7/12(2006.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 8 C07C 7/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
e-KIPASS, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4,362,537 A (Robert G Werner) 07 December 1982 See Figure 1 and claims 1-7</td>
<td>1-4, 6</td>
</tr>
<tr>
<td>A</td>
<td>US 4,119,678 A (Richard W Neužil, et al) 10 October 1978 See column 1, line 53-column 2, line 24, column 2, lines 38-41, claim 1</td>
<td>1-4, 6</td>
</tr>
<tr>
<td>A</td>
<td>US 4,718,986 A (Renzo Comiotto, et al) 12 January 1988 See Figure, column 3, line 6-column 4, line 24</td>
<td>1-4, 6</td>
</tr>
<tr>
<td>A</td>
<td>JP 61-115033 A (Hirai Hidefumi) 02 June 1986 See claim 1 and example 7</td>
<td>1-4, 6</td>
</tr>
</tbody>
</table>

- End of documents

Date of the actual completion of the international search

12 AUGUST 2008 (12 08 2008)

Date of mailing of the international search report

12 AUGUST 2008 (12.08.2008)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seogu, Daejeon 302-701, Republic of Korea
Facsimile No 82-42-472-7140

Authorized officer

KIM, Dong Seok
Telephone No 82-42-481-8147

Form PCT/ISA/210 (second sheet) (July 2008)
INTERNATIONAL SEARCH REPORT

PCT/KR2008/002038

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos**
 - because they relate to subject matter not required to be searched by this Authority, namely

2. **Claims Nos**
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically

3. **Claims Nos**
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 64(a)

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims**

2. **As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee**

3. **As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos**

4. **No required additional search fees were timely paid by the applicant** Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos

Remark on Protest
- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation
- No protest accompanied the payment of additional search fees

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2008)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 520 15 1 B2</td>
<td>14.01.1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 28306 17 A1</td>
<td>01.02.1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 28306 17 C2</td>
<td>19.11.1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 471610 A1</td>
<td>16.10.1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2397382 A1</td>
<td>09.02.1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 200 1100 A1</td>
<td>24.01.1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 200 1100 B2</td>
<td>27.01.1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1099570 A</td>
<td>18.09.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 7825572 AO</td>
<td>11.07.1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 54-041803 A2</td>
<td>03.04.1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61-041899 B4</td>
<td>18.09.1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 5544 U</td>
<td>03.10.1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7807397 A</td>
<td>16.01.1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SU 912042 A3</td>
<td>07.03.1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7803793 A</td>
<td>25.07.1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 900249 A1</td>
<td>28.01.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8403666 A</td>
<td>02.07.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 12326 17 A1</td>
<td>09.02.1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD 22230 1 A5</td>
<td>15.05.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3426359 A1</td>
<td>14.02.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 369684 AO</td>
<td>27.07.1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 369684 A</td>
<td>29.01.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 534968 A5</td>
<td>15.07.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8505826 A1</td>
<td>16.10.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2549824 A1</td>
<td>01.02.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2549824 B1</td>
<td>19.12.1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2 144145 A1</td>
<td>27.02.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2 144145 B2</td>
<td>18.02.1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 8417308 AO</td>
<td>08.08.1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 8265 1 A</td>
<td>07.02.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 36763 A2</td>
<td>28.10.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1194350 A</td>
<td>14.09.1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 8322293 AO</td>
<td>28.07.1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60-05 1130 A2</td>
<td>22.03.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1985-000 1142</td>
<td>16.03.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 8700582 B1</td>
<td>23.03.1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 85467 A</td>
<td>17.04.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 8402385 A</td>
<td>18.02.1985</td>
</tr>
</tbody>
</table>

---continued in the next page---
INTERNATIONAL SEARCH REPORT

International application No
PCT/KR2008/002038

NO 843021 A 29.01.1985
PH 20654 A 16.03.1987
PL 248947 A1 24.04.1985
PT 78989 A 01.08.1984
PT 78989 B 23.10.1986
RO 90564 B3 10.12.1986
SE 8403427 A0 27.06.1984
SE 8403427 A 29.01.1985
TR 22072 A 01.03.1986
US 4718986 A 12.01.1988
DO 284108 03.06.1986
YU 132084 A 31.12.1987
ZA 8405089 A 27.02.1985

JP 61-115033 A 02.06.1986 None