. N
N -2
e Y

L. .
*‘!‘.s- M >

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 93/20512

GO6F 12/02 Al (43) International Publication Date: 14 October 1993 (14.10.93)

(21) International Application Number: PCT/US93/03002 | (81) Designated States: AU, CA, JP, KR, European patent (AT,
BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,

(22) International Filing Date: 30 March 1993 (30.03.93) NL, PT, SE).
(30) Priority data: Published
07/860,443 30 March 1992 (30.03.92) Us With international search report.

(71) Applicant: ARBOR SOFTWARE CORPORATION [US/
US]; 3211 Scott Boulevard, Santa Clara, CA 95054 (US).

(72) Inventor: EARLE, Rabert, J. ; 930 Rockfeller Drive, #17A,
Sunnyvale, CA 94087 (US).

(74) Agent: SAWYER, Joseph, A., Jr.; Benman & Collins, 490
California Avenue, Suite 202, Palo Alto, CA 94306 (US).

(54) Title: METHOD AND APPARATUS FOR STORING AND RETRIEVING MULTI-DIMENSIONAL DATA IN COM-
PUTER MEMORY

(57) Abstract

A method and apparatus for storing and retrieving multi-dimensional data in which a multi-level data structure is defined
wherein one level contains those dimensions chosen by the user to result in dense data and the other level contains the remaining
sparse data combinations. The dense dimensions specified in any given case are used to determine the basic block size used to
store information. The remaining sparse dimensions are used to create the upper level structure which is used to point to the block
which contains the desired information. Depending upon the sparseness of the data, different types of upper level structure may
be used. Both the variable data block size and the choice of pointer structure may be used to balance the memory required against
the speed of retrieval. Once the data structure is created, the data in the data blocks, and the pointers in one type of upper level
pointer structure, may be retrieved by simple calculation of the offset of the desired cell in memory rather than requiring a search.

applications under the PCT.

cM

DE
DK

Fl

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Beain

Brazil

Canada
Central African Republic
Congo
Switzerland
Cote d’lvoire
Cameroon
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

FR
GA
GB
GN

HU
IE

JP
KP

KR
KZ
Ll
LK
LY
MC
MG
ML
MN

France

Gabon

United Kingdom
Guinca

Greeee

Hungary

Ireland

ltaly

Japan

Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Licchtenstein

Sri Lanka
Luxembourg
Monuaco
Muda;gascar

Mali

Mongolia

Mauritania

Malawi
Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovak Republic
Senegal

Sovicet Union

Chad

Tugo

Ukraine

United States of America
Vicet Nam

4,

b %

10

15

20

25

30

WO 93720512

METHOD AND APPARATUS FOR STORING AND RETRIEVING
MULTI~-DIMENSIONAL DATA IN COMPUTER MEMORY

DESCRIPTION

1. Field of the Invention
The present invention relates generally to computer memory °
and more specifically to a method and apparatus for storing
and retrieving multi-dimensional data, such as financial
data, in computer memory such that the speed of accessing
the memory is maximized and the amount of memory needed to
store such data is minimized.

2, Description of the Relevant Art

Financial data is often viewed in the form of a
spreadsheet containing rows and columns of figures, or
data. It has become common to img;ement such spreadsheets
on computers, so that changes to one item may be
automatically reflected in any other items which use the
altered item as a basis for a calculation. Before any such
manipulation of data can occur, however, the data must be
imported from storage or input by the user. Many companies
and individuals now routinely enter their basic financial
data into computers for such 1later retrieval and
manipulation.

A spreadsheet may be thought of as a "two dimensional"
array of data. For example, Company X might list income
and expense accounts along the vertical axis and the months
of the year along the horizontal axis, as shown in Figure
1. Each block in the spreadsheet corresponds to a
particular account and a particular month, and the amount
of that account in that month, if any, is entered in that
block. In this example, the 1list of accounts is one
"dimension" and time is the other dimension. In this
example, some accounts depend on other accounts; for
example, "Margin" is "Sales" less "Cost of Goods Sold."
One advantage of computerized spreadsheets is that once the

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

2

user defines this relationship, if any of the basic data is
changed, such as the entry for Sales or the entry for Cost
of Goods Sold, the computer can recalculate the data which
depends on the changed data, such as Margin. This saves

the user the effort of changing all entries which depend on

other entries.
In this example, the number of potential "cells" or

items of data is equal to the number of accounts times the’

number of time periods included on the spréadsheet. (Here
there are 17 time periods, not 12, because the user wishes
to summarize the accounts by quarter and year as well as
month; there could be many more time periods if more than
one year is to be included.) Each item of data may be
considered to have two ‘“attributes" or identifying
characteristics, one indicating the account to which the
indicated amounts are attributed and the second indicating
the time period in which the indicated receipts or
expenditures took place.

Another factor which becomes important in these
applications is the ability to "consolidate" data. For
example, in Figure 1, the summaries by quarter and year
mentioned above are consolidated data from the three months
of each quarter or the entire year, respectively. As with
the Margin example above, the data for the quarters or the
year need not be independently entered, but may be
calculated from the monthly data and the spreadsheet
instructed to recalculate these figures after any changes
to the basic monthly data.

However, many corporations have data which has more
than two dimensions. For example, Company X may have
several product lines, and‘may'wish.to be able to view data
showing the accounts by each product line over time, rather
than, or as well as, by total accounts for the company,
i.e. the total of all product lines. Thus, the product
lines of Company X make up a third dimension. In turn, the
value of each total account for a given time period
represents the sum of that account for each of the product

PCT/US93/03002

e

10

15

20

25

30

35

WO 93/20512

3

lines and thus is the result of consolidating the data from
the different product lines.

Now the potential number of data cells is greater, and
equal to the number of accounts times the number of months
times the number of product lines. Each item of data now
has three%attributes, one indicating the account, another
indicating the month, and the third indicating the product
line represented by the data. This may still be somewhat
manageable in terms of the storage needed.

Also, once the number of dimensions exceeds two, it is
useful to be able to view the relationship between any two
dimensions. That is, in this example, the user may wish to
view accounts over time for any or all product lines,
accounts by product line for any or all time periods, or
product lines over time for any or all accounts. This data
can be exhibited by a series of spreadsheets, each showing
one such relationship. Thus, the spreadsheet shown in
Figure 1 shows accounts over time; however, it only shows
the total accounts. While each account could be broken
down by product line, as shown in Figure 2, this greatly
increases the size of the spreadsheet and makes it more
difficult to find all of the entries related to, for
example, the Camera product line, since one dimension,
either accounts or product line, ends up being scattered
across the other dimension.

Similarly, Figure 3a shows accounts by product line.
However, this is for only one time period, here January.
If the user wishes to break the accounts down by time as
well, again the spreadsheet becomes much larger and the
entries for one dimension or the other are no longer
contiguous in the spreadsheet. Again in Figure 3b, which
shows the product lines over time, only one account is
shown, here Sales. To include other accounts again
increases the size and complexity of the spreadsheet.

If Company X also has geographic areas, this

. constitutes a fourth dimension. Each item of data now has

four attributes, and the total number of potential cells is

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

4
the three dimensional total times the number of geographic
areas. And if the company wishes to have different
"scenarios," for example, to make budget forecasts and then
compare the actual results to those forecasts, this is a
fifth dimension, and five attributes are needed, with the
number of potential cells is now multiplied again, this
time by the number of possible scenarios. '

In each of these cases, the number of cells required '
of a spreadsheet to show all possible relationships between
dimensions also increases dramatically. Figures 4a to 4d
show some possible views of such a five dimensional
database which a user might wish to see. For example, the
front "face" of Figure 4a is a spreadsheet showing the
actual figures for sales and profits for various products
as compared to the budgeted figures over time for the San
Francisco market. Behind that spreadsheet are other
spreadsheets showing the same information for other cities,
followed by a spreadsheet showing the same information for
the "West," i.e. the total for those cities. Figures 4b to
4d each show a similar "stack" of spreadsheets which
represents a three dimensional view of the five dimensional
database. Note that in each of these examples, there is
some intermingling of more than two dimensions, as shown in
Figure 2. Many more possible views could be constructed
from the five dimensions used here.

It is thus obvious that the number of possible data
cells rapidly becomes enormous if all combinations of data
are to be precalculated and ready for reporting (as is
necessary to avoid long waits for consolidation and special
calculation for even the simplest reports). For example,
suppose that there are seven dimensions in a particular
application, and that the number of items in each dimension
is 10. Each data cell must have seven attributes, each
attribute being one of the 10 members of each dimension,
and the total number of potential data cells is thus

10 x 10 x 10 x 10 x 10 x 10 x 10
or 10,000,000. Since a data cell containing a standard

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

5

double precision floating point number requires 8 bytes,
80,000,000 bytes are required to reserve a place for all of
the potential cells. Common practice in microcomputer

- spreadsheet implementation is to maintain all cells in

memory, if possible, to speed access time. But since most
microprocessors have less than 16 megabytes of memory, most
or all of the data would have to be kept on disk if a space
were reserved for each potential cellw This would slow the
speed of storage andaaccess drastically, but could be done
since an 80 megabytezdrive is a common fixture on personal
computers today.

But suppose that instead of 10 items in each
dimension, there are, respectively, 30, 50, 400, 300, 80,
10 and 50. Now the total number of potential cells is

30 x 50: x 400 x 300 x 80 x 10 x 50
or 7,200,000,000,000. Again, with 8 bytes per data cell,
a total of 57,600,000,000,000 bytes are required to store
all of the potential cells. No currently available disk
drive can hold this much data. Even with gigabyte size
disk drives, over 50,000 such drives would be needed. If
the dimensions have more items, or if there are more than
7 dimensions, the problem may be even worse.

Most databases which handle problems of this magnitude
keep only data which actually exists, i.e. they are
relational databases whose tables consist only of records
that need to exist, and thus do not waste space on
"potential" data records. But relational database tables
are basically two-dimensional structures (a series of
records each containing a fixed "field" dimension) and
cannot handle higher dimensionality in any straightforward
fashion. Worse, any time a specific data cell is needed,
some sort of search of the records must be done whether or
not an index is available. In fact, even an index must be
searched for the matching attributes. Because the table
records have "gaps", even if the records are organized in
some regular repeating order, an offset from the beginning
of the table cannot be calculated directly to find the

PCT/US93/03002

10

15

20

25

30

35

WO 93720512

6

desired record. Thus, by conserving space by keeping only
the actual data, whether on disk or in memory, speed of
access is drastically reduced. This is true of any data
structure which has discontinuities in the attributes of
adjacent blocks or records of data rather than reserving a
place, with a specific length, in a specific known order
for any potential data item.

Existing multidimensional databases (non-relational
and non-spreadsheet) which incorporate the ability to
directly calculate the offset to the desired data item do
so by one of two methods. One approach is to use a
one-level structure, i.e. to have one data block containing
all dimension combinations. The obvious drawback to this
is that most of the reserved space is wasted and the number
of dimensions and the numbers of members in each dimension
is severely limited. If the application is even of medium
size, operating in memory must be abandoned to use a disk,
and even disk, as slow as it is, cannot offer the space
required by typical corporate applications.

The other, more common approach uses a multi-level
structure, usually having two levels. The upper level is
some sort of index to existing data blocks, and the lower
level is either a 1 or 2 dimensional block of data, such as
a record representing a single dimension such as a time
series, or aAspreadsheet-like two-dimensional data block,
respectively. The upper level must be searched to find the
right index for a given set of attributes. 1In theory, the
upper level may be a list of all potential combinations in
a specific order so that the offset to the particular index
(pointer) may be calculated from the attributes in the
dimensions covered by the upper level structure, but no
products using such an upper level are known. Since the
potential number of combinations of the ugber level
attributes is often very large, it is believed that the
existing products in this group resort to a sorted list
which does not contain unused combinations, and therefore
a search of some kind must be employed to reach the proper

PCT/US93/03002

k3

10

15

20

25

30

35

WO 93/20512

pointer.

Besides the 1loss of speed due to this search
requirement, the biggest drawback to this type of design is
that the number of dimensions in the "block" of data
pointed to is fixed at either 1 or 2 dimensions, depending
on the database. Furthermore, the specific type of
dimension which forms the basic block of data is usually
fixed. For example, one product with a one-dimensional '
data block requires that this dimension be the Time
dimension. Another product which has a two-dimensional
block requires that the two dimensions represent "rows" and
"columns" (normally Accounts and Time, respectively). But
the operations which can be performed on "rows", "columns"
and the other dimensions are distinctly different and
therefore limiting as to which type of attribute can be
effectively and flexibly used as "rows" or "columns." For
example, the "rows" dimension has available a set of
calculation functions which are most appropriate for
Accounts, so if Accounts are not set up as the row
dimension, there is a severe 1limitation in performing
analytical calculations typically required for Account
relationships in financial applications. In the time-
series oriented structure, the block dimension must be
time.

However, the restriction that is most unfortunate is
that the user cannot select the number of dimensions which
make up the basic unit of data storage and usually cannot
even select the dimensions which comprise it. This is not
optimal for a number of reasons.

In multidimensional databases, as previously
discussed, the major problem is sparseness of data. More
often than not, the data for most potential combinations of
dimensional attributes does not and will not exist. But to
have the ability to directly calculate the location of a
required data item, all potential combinations must be
represented in the structure without discontinuities, or
else the irregularity prevents the direct calculation of

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

8

the offset to the desired cell.

A two level structure generally reduces this problem
somevwhat. If the basic unit of allocated storage (the
block), when created, is always allocated to have a space
for every combination of a subgroup of the dimensions, then

within those blocks, at least, the offset can be directly

calculated. If the upper level does not reserve a spot for

every combination of the remaining dimensions, its size can

be kept reasonable, although a slower search algorithm is
necessary to locate a pointer in the upper level structure
which gives the exact address of the block. Thus, in this
structure, at least half of the procedure of locating a
data item’s location can be done by direct calculation, and
blocks for which no data items exists need not be created.

The failure of the existing designs which use this
approach to allow the user to select how many and which
dimensions make up the block 1leads to some problems.
First, the dimension or dimensions which make up the block
may be very sparse for a given user’s application. For
example, if the user is forced to live with Accounts and
Time as the block dimensions, and (as is often the case)
there are hundreds or thousands of accounts, of which only
a small percentage have data for a given combination of the
other dimensions, each block that is allocated is still
mostly wasted space.

For example, a company may have 500 departments, 80
product lines, 1000 accounts, 12 scenarios (eg., Budget,
Actual, Variance, Forecastl, Forecast2, etc.), and in each
particular department/ product line/scenario combination,
only 20 of the accounts may have values, on average. Yet,
which 20 accounts each department uses may be any 20 of the
1000 accounts. Therefore, each block that is created is,
on average, comprised of 98% missing values. As a result,
many such applications- are impractical with existing
multidimensional databases given the hardware constraints.

On the other hand, a database using a one-dimensional
block which is fixed as the Time dimension will often make

PCT/US93/03002

g

10

15

20

25

30

35

WO 93/20512

9

fairly good use of the allocated space, because if there is
a data value for a particular combination of attributes in
June, there is usually an observation in August and the
remaining months. However, that leaves all the dimensions
except Time to be represented in the upper level
structure/index, and in a 7 dimensional application, this
is impractical because either (1) the design reserves a
fixed spot in the upper level structure for the pointer to
the block, which means that if 6 dimensions are forced to
go into the upper level structure, it is impossibly large;
or (2) the size of the upper level structure is reduced by
not reserving space for each possible combination.
Unfortunately, as above, if this is done, a search
algorithm must be used, and with small, one dimensional
Time blocks, even the number of actually existing blocks is
quite large, and the search is therefore very slow.
Finally, it is assumed that the usage of a Time-dimension
block is fairly dense (most cells used), but that might not
be the case in some applications.

There are other variations on these two approaches,
but all make use of a "fixed" block dimensional
composition, and most must use a search algorithm to locate
the index or pointer to the block containing the desired
data cell. However, experience shows to the contrary, that
there is no one fixed block design that effectively
addresses even most applications. Each application has a
different number of dimensions and of members in each
dimension, and most importantly, a different distribution
of data density/sparseness in relation to any specific
subset of dimensions in that application.

SUMMARY OF THE INVENTION
In accordance with the illustrated breferred
embodiment, the present invention provides a method and
apparatus for storing and retrieving multi-dimensional data
in which a two-level data structure is defined wherein one
level contains those dimensions chosen by the user to

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

10

result in dense data and the other level contains the
remaining sparse data combinations.

For any given multidimensional application, it is
likely that the user, who is intimately familiar with his
company’s structure and the nature of the application’s
data, can select the specific dimensions which will form
the basic allocated data block, allowing a vastly wider
array of applications to be efficiently handled by the
database and to make optimal use of storage. A database
design which gives the wuser this freedom offers a
significant benefit and results in unparalleled speed of
access/calculation, and minimum memory/disk requirement for
each individual application, thus significantly expanding
the practical range of multidimensional applications which
can be run on existing hardware and software platforms.

The present invention allows the user to select the
specific dimensions, and any number of them organized in
any order, which will form the basic block of information.
Because of the huge potential data requirements of multi-
dimensional applications, this "variable block structure"
is the only way many such applications can be practical.
The variable block structure allows the user to select
those dimensions which, taken together, result in a densely
populated block, while balancing storage conservation with
other considerations such as block size (and its effect on
paging) and the size of the resulting upper level structure
(wvhich determines the optimal upper level structure type to
select). '

The remaining "sparse" dimensioné, in which many or
most member combinations will not exist, are used to create
the upper level structure which is used to point to the
block which contains the desired information. Depending
upon the sparseness of the data, different types of upper
level structure may be used to minimize the memory
required. Allowing the user to select the type of upper
level structure to "plug in" gives the user more control in
balancing the tradeoff between speed (direct calculation of

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

11

the upper level pointer versus searching) and the memory
required for the upper level structure.

Allowing the user to select the dimensions which
result in dense data, and thus in less empty or wasted
cells, helps minimize the overall size of storage needed
and the number and size of blocks which will be used in
calculation, reporting, paging (if required) and backup.
All of the dimensions, dense or sparse, are treated equally
from the view of the user.

The features and advantages described in the
specification are not all inclusive, and particularly, many
additional features and advantages will be apparent to one
of ordinary skill in the art in view of the drawings,
specification and claims hereof. Moreover, it should be
noted that the language used in the specification has been
principally selected for readability and instructional
purposes, and may not have been selected to delineate or
circumscribe the inventive subject matter, resort to the
claims being necessary to determine such inventive subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a prior art two-dimensional spreadsheet.

Fig. 2 shows the spreadsheet of Fig. 1 with one of the
two dimensions spread across a third dimension.

Figs. 3a and 3b show two-dimensional spreadsheets
representing relationships between dimensions of a
three-dimensional database.

Fig. 4a to 4d show stacks of spreadsheets representing
three-dimensional views of a five-dimensional database.

Fig. 5 is a flow chart of the method of allocating
memory and storing data of the present invention.

Fig. 6 shows a representative member structure for a
database in outline form.:

Fig. 7 shows a linked list created from the member
structure of Fig. 6.

Fig. 8 is a flow chart of the method of retrieving

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

12

data which has been stored by the method of the present
invention. '

Fig. 9 shows a representative binary tree which may be
used in the method of the present invention.

Fig. 10 shows an alternative upper 1level pointer
structure which may be used in the present invention. '

Fig. 11 shows a preferred embodiment of the present
invention, in which a server provides data stored by the
method of the present invention to multiple workstations.

Fig. 12 shows a member structure created in Excel®.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Figures 5 through 12 of the drawings depict various
preferred embodiments of the present invention for purposes
of illustration only. One skilled in the art will readily
recognize from the following discussion that alternative
embodiments of the structures and methods illustrated
herein may be employed without departing from the
principles of the invention described herein.

Figure 5 is a flow chart of the method of allocating
memory and storing data of the present invention. The
first step of defining the database structure is to create
the structure of the dimensions, or members, as shown at
step 1. A representative member structure is shown in
Figure 6, with the members being shown in the form of an
outline.

The members at the highest level are referred to as
the dimensions of the data, and are the highest 1level
members that can be attributes of data. Underneath each
dimension are descendant members, representing the various
attributes that data can have in each of the dimensions.
In this structure, the dimensions are FINANCIAL ACCOUNTS,
TIME, GEOGRAPHICAL, PRODUCT LINE, DISTRIBUTION CHANNELS and
TYPE.

Once this outline is created by the user, the database
creates a linked list representing the member structure as
shown in step 2 in Figure 5. An example of a linked list

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

13

is shown in Figure 6. For each member this linked 1list
contains member data such as tTthe member name, a
corresponding member number, level, generation, and
security and other status settings. It also contains links
to the parent members (next higher level), child members
(next lower level), and "left" and "right" siblings (same
level). (For ease in locating the members in the linked
list, once all the members are defined an alphabetical list °
is created, including alternative names, which can be
searched by a binary search, and which points to the member
in the linked 1list.)

The only other information needed to create the
database structure is the.dimension groups. The two types
of groups are "dense" and- "sparse." Dimensions cannc be
dense or sparse by themselves, but only when grouped with
other dimensions. 1In the example of Figure 6, if most
cities in the GEOGRAPHICAL dimension have only one
DISTRIBUTION CHANNEL and one, but not both, PRODUCT LINE,
and if Foods are sold only through Wholesale channels, then
most of the potential combinations of GEOGRAPHICAL/PRODUCT
LINE/ DISTRIBUTION CHANNEL will never exist, and these
dimensions would form a good sparse group.

On the other hand, FINANCIAL ACCOUNTS will generally
have data for each TIME period and for every TYPE. These
3 dimensions thus would make a good dense group. While
this grouping is transparent to the end user and thus of no
concern in and of itself, it does have significant
implications for the efficiency of data storage. As will
be seen below, this ability to select the dense dimensions
is an important feature of the present invention.

Users are generally familiar enough with the structure
of their data to select the dimensions which will be dense.
This is done at step 3 in Figure 5. The members of the
dense dimensions determine the basic block of data storage
allocated in the system. For example, if the three

- dimensions FINANCIAL ACCOUNTS, TIME and TYPE have 10, 5 and

3 members, respectively, the basic block of data will be 10

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

14

x 5 x 3, or 150, cells. (As above, a cell is typically 8
bytes to allow for a standard double precision floating
point number, but this may be altered if desired.) The
structure of the block is described below.

The remaining sparse dimension members are used to
create the block pointer structure, as shown at step 4 in’
Figure 5, by which a particular block header is located
which represents a specific combination of sparse dimension °
members. The specific block pointer structure is
configurable by the user at the time the database is
created.

In the preferred embodiment there are two block
pointer structures which may be used depending on the
sparseness of the data. The first of these is a block
pointer array. For most applications this is the preferred
structure because it is the fastest. The pointer array
contains a pointer for each possible combination of sparse
dimension members. Thus if in the above example, the
GEOGRAPHICAL, PRODUCT LINE, and DISTRIBUTION CHANNEL
dimensions contain 20, 10 and 4 members respectively, the
pointer array would contain 800 cells, each containing a
pointer. In most applications this array will be much
larger, perhaps 1 or 2 megabytes, but this is not unduly
large on a server with 16 to 64 megabytes of RAM.

The cells in the pointer array are ordered by
incrementing the "first" sparse dimension through its
members, then incrementing the "second" sparse dimension by
one member and incrementing the first sparse dimension
again, and so on until all sparse dimensions have been
completely incremented so that there are pointer cells for
all possible combinations. It does not matter which sparse
dimension is the first, second, etc. since the block
contains no structural information, only the pointer in
each cell. As a practical matter, the order set forth in
the member outline is used to determine the order of the
sparse dimensions, and the member outline thus indicates
which sparse dimension is first, second and so on so that

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

15

the 1location of any particular piece of data may be
located, as explained below. There is no need to store
member attributes in the block or anywhere else except the
member outline.

Each pointer in the array has three possible settings.
Upon creation of the array, all pointers are set to point’
to a dummy empty data block to indicate that no data yet
exists. If the user wants to define any combination of"
sparse dimension members as invalid, the pointer
corresponding to that combination can be set to a dummy
invalid data block. (There need only be one dummy empty
data block and one dummy invalid data block for the entire
database, since the purpose is only to indicate those
combinations os sparse dimension members which are invalid
or for which no data hzs yet been recorded.) The third
possible setting is a p:inter to an actual data block which
contains all the data containing the particular combination
of sparse dimension members represented by the location of
the pointer in the pointer array.

The specification of various combinations of
dimensions which are invalid serves two purposes. It is
first a safety feature which prevents accidental entry of
data for combinations which are known to be impossible.
For example, if a company makes widgets (product 1line
dimension) and the also have operations in Taiwan (country
dimension), but they don’t happen to make widgets in
Taiwan, then- Taiwan/Widgets is an invalid combination for
which there should never be any data, regardless of the
attributes of other dimensions. Second, when data is
consolidated, certain rollups of data in differing
dimensions may make sense, but some of these rollup
combinations may be of no interest to the user. By
specifying them as invalid, the creation of those blocks
does not occur during consolidation, saving time and
storage.

When an item of data input by the user (Figure 5, step
5) is to be stored, the sparse dimension members are first

PCT/US93/03002

10

15

20

25

30

35

WO 93720512

16

used to calculate a "section number" which indicates the
position of the cell in the pointer array which corresponds
to those sparse dimension members. This is a simple
mathematical calculation based upon the member numbers,
which reflect the order of dimensions and the number and
order of members in each and are contained in the linked
list. The corresponding cell is then checked to see what
pointer exists for the desired combination of dense
dimension members (step 6).

If the pointer points to the dummy invalid data block,
an error message is generated since the data is presumed to
be invalid (step 7). If the pointer points to the dummy
empty data block, then a data block is created (step 8).
As above, this data block contains a number of cells
corresponding to each possible combination of the dense
dimension members. In addition to the actual cells, each
block has a block header which contains the pointer to the
actual data block, and may also contain additional
information as desired by the user.

As with the pointer array, the cells in the data block
are ordered by incrementing through all members of the
"first" dense dimension, then incrementing the "second"
dense dimension and incrementing through the first dense
dimension again, and so on until all dimensions have been
incremented so that there are cells for all possible
combinations. Again it does not matter which dense
dimension is the first, second, etc. since the data block
also contains no structural information, only the numeric
data in each cell (rather than the pointers of the pointer
array). As with the pointer array, the order of dimensions
in the member outline determines which dimension is first,
second and so on, so that the location of any particular
piece of data may be located in the same way that the
pointer 1is 1located, but from the dense dimension
attributes. Again there is no need to store member
attributes in the data block or anywhere else except the
member outline.

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

17

Once an actual data block is created for a set of
sparse dimension attributes, a pointer to the block header
replaces the pointer to the dummy empty data block in the
corresponding cell in the block pointer array. (Figure 5,
step 9). All of the cells in the data block are initially
set to a null or "missing" value. Individual cells may
also again be designated as invalid. The location of the
data cell which corresponds to the dense dimensions of the °
input data is then calculated from the member numbers in
the 1linked 1list, which again contains the order of
dimensions and number and order of dimension members, and
the input data value is inserted into that cell (step 10).

When subsequent data values are input, the sparse
dimensions are again used to find the corresponding pointer
in the block pointer array. If the selected pointer points
to the dummy empty data block, a new dense data block is
again created. If the pointer points to an actual data
block which has already been created, the dense dimensions
are then used to determine where in the indicated block to
insert the new input data. (Figure 5, step 10.) If there
is more data to input, the system returns to step 5.

A flowchart for the retrieval of data is shown in
Figure 8. To locate a particular piece of data, one need
only specify the desired member attributes (step 11). The
sparse dimension attributes are used to 1locate the
corresponding member numbers from the linked list (step
12), which then are used to calculate the cell in the block
pointer array which contains the pointer to the data block
where the data is stored (step 13). Once the appropriate
data block is located by retrieving the pointer from the
block pointer array (step 14), the dense dimension
attributes are used to locate the member numbers (step 15)
from which the offset in the block is calculated (step 16),
and the desired data retrieved from the indicated cell
(step 17).

In some instances, however, such as large applications
with many sparse dimensions, even the block pointer array

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

18

can become prohibitively large, possibly even gigabytes.
In such cases the block pointer array may not even fit into
memory or may occupy too much of the available memory.
Moving the array to a disk, even if possible, drastically
slows down operation. Thus, an alternative is desirable.

The second type of block pointer structure which may’
be used in the preferred embodiment is a binary tree. A
representative binary tree is shown in Figure 9. In this:
approach, no memory is allocated for pointers until the
first data block is created, at which time the top link of
the tree is created. Each additional block which is
created causes another link in the tree to be created as
well. Each link has four elements to it. These are the
block number, a pointer to the next link with a Ilower
section number, a pointer to the next link with a higher
section number, and a pointer to the data block header
associated with the section number.

As each piece of data to be input is received, the
sparse dimension attributes are examined first, as in the
block pointer array approach, and the section number
calculated. The section number is the same as the offset
would be in the block pointer array, and is calculated the
same way from the order of the members as represented by
the member numbers in the linked list. The binary tree is
scanned as explained below to determine whether there is
already a data block corresponding to the specified
combination of sparse dimension attributes. If there is
such a data block, the dense dimension attributes are then
used to calculate the offset in the data block where the
data is to be stored.

If no data block exists for the sparse dimension
attributes of the data, a new data block is created, just
as in the block pointer array method. Here, however, since
there is no existing cell in which to put the pointer, a
new link in the binary tree is created, which contains the
pointer to the new data block. If the section number of
the new data block is greater than the section number of

PCT/US93/03002

10

15

20

25

30

35

W0 93/20512

19

the previous link, the new link is placed to the right of
the previous link. The appropriate pointers of each link
are set to point to the other link as having a higher or
lower section number, respectively. As more 1links are
established, the binary tree is created, as shown in Figure
9. Thus, in Figure 9 the first 1link 21 established has a
section number, based on the member numbers of the sparse
dimension members, of 500. If the section number for the °
next link 22 is 495, the next 1link is located as the left
child of link 21. The next link 23 having a section number
of 603 becomes the right child of 1link 21, and so on, such
that all of the descendant links to the left of each link
have lower section numbers than the parent link, and all
descendant links to the right of each link have higher
section numbers than the parent link. Periodically the
tree may be "balanced" or reorganized to make it easier to
search, if, for example, the section numbers continually
happen to increase, resulting in only right child members.
In such a case, a point somewhere in the center of the tree
is chosen to become the new top link so that the number of
left children and right children is roughly equal.

To locate a piece of data, the section number is
calculated from the sparse dimension attributes, just as in
the block pointer array approach. However, instead of
using this as an offset in the block pointer array as
above, ths computer now looks to the binary tree to find
the section number. Starting at the top link, the computer
looks to see if the current 1link has the same section
number as that desired. If so, the computer retrieves the
pointer stored in the link, which points to the data block
corresponding to the combination of sparse dimension
members represented by that section number. If the top
link does not contain the desired section number, the
computer looks left or right depending upon whether the
desired section number is lower or higher than that of that

- link. This process continues until the link containing the

desired section number is located, and the pointer

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

20

contained in the link which points to the corresponding
data block is retrieved. The computer then proceeds as in
the case of the block >pointer array above, and uses the
dense dimension attributes to calculate the offset of the
cell in the data block which contains the specific data
desired which corresponds to the combination of all of the’
specified dimension members.

While the binary tree is somewhat slower than the
block pointer array approach, in very sparse applications
it has sufficient speed that the user should not notice the
difference. Since the binary tree is designed to be used
only when the sparse dimensions are very sparse, the
maximum number of levels of the binary tree which need to
be searched is thus expected to be fairly small.

However, the advantage of the binary tree is that only
entries for those combinations of the sparse dimension
attributes which actually have corresponding data are
created, whereas in the block pointer array space must be
reserved for every possible sparse dimension member
combination. Thus, the binary tree results in greater
memory savings than the block pointer array, at some cost
in speed.

The binary tree has one additional disadvantage. It
is not possible to mark invalid block pointers, i.e.
invalid combinations of sparse dimension attributes, at the
time of creation of the data base as can be done with the
block pointer array, since only 1links which represent
blocks with actual data are created. This may be handled
with a table of such invalid combinations which are then be
evaluated each time a block is about to be created.
Specification of invalid combinations of dense dimension
members is handled the same way with either upper level
structure.

Thus, the dimensions selected as dense, and the number
of members in each dimension, determine the size of the
dense data blocks. This "variable block size" is not
believed to have been implemented previously in such-

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

21

applications and allows the user to choose a very careful
balancing of several factors. First, the selection of the
specific dimensions for the block should be such that the
density of the data relative to those dimensions is high
and wasted storage is thus minimal. Second, enough
dimensions may be selected for the data blocks so that the
number of combinations of the remaining (i.e. non-data
block) dimensions is small enough that they can be stored
in the upper level block pointer array to allow direct
calculation of addresses, or, in extremely large
applications where direct calculation is not possible, that
at least the size of the binary tree or other upper level
structure can be kept to a reasonable, customizable size so
that the search algorithm is fast. Third, it is desirable
to keep the block size within a reasonable range for very
large problems where some disk paging may be required. If
paging is required, access of a single cell may require
that the whole block be moved back into memory, and if the
block size is too large, paging becomes very slow. As
above, once the dense and sparse dimensions are selected,
the blocks are created automatically and the user is not
aware of it.

Also incorporated in this new database design is a
method of both specifying data for input to the database
and for extracting required data which is unique. This is
a "natural ordering syntax" which allows the database to
read and understand standard reports, tables, and
spreadsheets without requiring a separate speéification of
how to map these objects to the data structure. For
example, the input object (or desired output report) might
be a spreadsheet which deals with widgets (Product Line) in
Taiwan (Country) and a selection of members from the
Accounts, Time, and Scenario (Budget/ Actual/Variance)
dimensions such as the following:

Taiwan Widgets
Budget Actual
Jan Feb Mar Jan Feb Mar

PCT/US93/03002

5

10

15

20

25

30

WO 93/20512 PCT/US93/03002

22
Revenues 10 12 13 10 9 12
Expenses 8 9 7 8 8 8
Profit 2 3 6

Or the spreadsheet could contain the same information,

but in a very different layout:

Widgets Taiwan

Revenues Expenses Profit

Jan

Budget 10

Actual 10
Feb

Budget 12 9 3

Actual 9 8 1
Mar

Budget 13
Actual 12 8

Or, it might be a general ledger output file or an SQL

(relational database) table containing the same data in
still another form:

Taiwan Widgets Budget Jan Revenues 10
Taiwan Widgets Budget Feb Revenues 12
Taiwan Widgets Budget Mar Revenues 13
Taiwan Widgets Actual Jan Revenues 10
Taiwan Widgets Actual Feb Revenues 9

Taiwan Widgets Actual Mar Revenues 12

Taiwan Widgets Budget Jan Expenses
Taiwan Widgets Budget Feb Expenses

8
9
Taiwan Widgets Budget Mar Expenses 7
Taiwan Widgets Actual Jan Expenses 8
Taiwan Widgets Actual Feb Expenses 8
Taiwan Widgets Actual Mar Expenses 8

Taiwan Widgets Budget Jan Profit 2

10

15

20

25

30

35

WO 93/20512

23

Taiwan Widgets Budget Feb Profit
Taiwan Widgets Budget Mar Profit

3
6
Taiwan Widgets Actual Jan Profit 2

Taiwan Widgets Actual Feb Profit 1

Taiwan Widgets Actual Mar Profit 4

The "natural ordering syntax" method is an ideal
interface between the multidimensional database and°*
commonly used external objects because it can "understand"
these objects precisely the way they are naturally laid out
by users and other software products, without the user
having to specify a separate definitional mapping of how to
relate each cell in the varying objects to the database.

This method of analyzing the input/output object works
in the following way. The object records are scanned from
left to right on each line, from the first line to the
last. All of the items found are identifiable as either
(1) data values; (2) dimension member names or pseudonyms;
(3) tokens to skip; (4) tokens to ignore; or (5) invalid
tokens which generate an error.

The database creates a structure which is called an
"odometer" because it operates similar to an automobile
odometer in that each dimension is represented by one
barrel (ring) on the odometer, and the numbers on each of
these barrels represent the dimension member indices of the
currently "selected" or active members of the dimension
represented by that barrel. The odometer differs from an
automotive odometer in that the numbers (indices) on a
barrel are not necessarily consecutive, and in that the
number of indices on a barrel may differ from the number on
the other barrels. Further, the number of indices on a
particular barrel can change at any point in the operation,
varying from 1 to the total number of members in the
dimension represented by that barrel. Finally, the order
of the barrels in the odometer can also change during the
load/extract operation.

The odometer is initially empty. As the object is

PCT/US93/03002

10

15

20

25

30

WO 93/20512

24

scanned, the odometer is modified according to the
following rules.

1. When a member token is encountered, its index is
looked up in the database (as above, there is a sorted
binary search list containing all member names, aliases,
skip tokens, and ignore tokens, which gives a pointer to’
the member 1link of that token’s name in the outline
structure, which contains the index) and the index is added’
to the odometer barrel for that dimension.

2. If the member token encountered is from the same
dimension as the preceding token (with no data value tokens
intervening), the previous indices on the barrel remain,
and the new index is simply added. Otherwise, that barrel
is reset to contain only the current member token’s index.
When a barrel contains more than one index, it represents
a data range. When a barrel gets a second index and
becomes a range, it is moved to the first barrel position
on the odometer and the other barrels are shifted back (to
the right). This causes the most recently created ranges
to be ordered first on the odometer. For example, at the
point where "Jan," "Feb," and "Mar" have been encountered
and processed in the first example spreadsheet above, the
odometer would look like:

Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5

Jan Budget Widgets Taiwan = ====——--
Feb Actual
Mar

After the next token, Revenues, is encountered, the
odometer would have "Revenues" as the only member in Barrel
5. (Note that it is the members’ indices that are actually
stored in the barrels, not their names, which are shown
here only for illustration.)

Thus, the odometer now looks like this:

Barrel 1 Barrel 2 Barrel 3 Barrel 4 Barrel 5

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

PCT/US93/03002
25
-==> Jan Budget Widgets Taiwan =t: Revenues
Feb Actual
Mar
3. When a data item is encountered, it:triggers a

store or retrieve operation :based on the current odometer’
setting (indicated by the members on the line pointed to by
the ---> above). If this is a data load (store), then the"
data value is stored into the data cell whose attributes
match the members whose indices are reflected in the
current odometer setting. In other words, the value 10 is
stored in the data cell whose attributes are "Jan Budget
Widgets Taiwan Revenues." This store operation can be done
very rapidly by calculating offsets based on the barrel
indices (except in the case where the upper level structure
is a binary tree, in which case a search must be performed
to get the upper level block pointer; the offset in the
block is still obtainable by direct calculation). If the
operation is retrieval, the data value encountered in the
object is replaced by the current database cell, which is
looked up in the same way.

4, When a data item is encountered, and one or more
of the barrels have ranges (more than one index on the
barrel), it can be assumed that there will be a consecutive
range of data values in the object being scanned, directly
following the one just found. The odometer is therefore
incremented, starting with the leftmost barrel, and a data
cell is transferred for each increment. When the first
barrel has incremented through its entire range, the next
increment is back to its first index (just like a car
odometer), and the next barrel increments. If that barrel
is at the end of its range, the next increments, and so on.
The result is that a consecutive range of data values in
the object are transferred to or from the proper locations
in the database and object as intended. After all the
barrels have incremented through their ranges, the odometer
has returned to the state it was in prior to encountering

10

15

20

25

30

35

WO 93/20512

26

that first data value.

In this example, since two ranges have been
encountered (Jan/ Feb/Mar and Budget/Actual), with 3 and 2
members, respectively, it is expected that there will be

six consecutive data items which need no further

description to understand how to map them. Of course, this
technique is not limited to the illustrated example, but

can be used with any logical arrangement of data which is

to be loaded or retrieved.

5. If a skip token is encountered, it means that
although this is (or once was) a valid member token, it is
not germane to the database at this point and no data with
this attribute is to be loaded or extracted. This is
handled by skipping the token, and scanning the object as
before, ignoring all intervening tokens until another
member token from the same dimension as the skip token is
encountered. This effectively skips all data which has the
unwanted attribute, and ensures that the odometer does not
have a skip token index as one of its index values.

6. Ignore tokens are ignored as if they had not even
been found. This is useful if, for example, reports or
spreadsheets being examined have title or notes information
which has no bearing on the data being loaded/extracted.

This natural ordering syntax has been shown to be an
effective method with which to interface user objects such
as spreadsheets, reports, tables, etc. to the database and
handles most such objects because that is the natural way
in which most people organize their information. ‘'Provision
can easily be made for cases where, for example, the "row
names" are placed in the middle of a data row. The
assumption that member attributes are always on the left
and the data is on the right in spreadsheet rows or table
records is not critical to the method, since that can be
taken into account when the record is being scanned. Also,
when an "unnatural" or inconsistent arrangement is
encountered there can.be a method of handling errors. This
method makes possible a very seamless integration of data

PCT/US93/03002

"

10

15

20

25

30

35

WO 93/20512

27

retrieval and store operations within existing popular
commercial spreadsheets, word processors, etc., with
minimal development difficulty.

While the preferred embodiment discussed herein
utilizes a two-level structure, in which the upper 1level
points directly to the data blocks, there is no reason that
the upper level pointer structure could not consist of more
than one level, so that the top level points to one or more
intermediate 1levels, which in turn point to the data
blocks. For example, in a very large application of 6 or
more dimensions, it might be appropriate to create a
structure of the variable data blocks of dense dimension
data, an intermediate level containing a set of pointer
arrays each of which represents the combinations of 2 or 3
dimensions which are somewhat sparse, and a top level of
pointers representing the combinations of 2 or 3 dimensions
which are extremely sparse.)

Thus, assume that there are six dimensions, A to F,
and each has 3 members, represented by 1 to 3, so that the
members of A are Al, A2 and A3, with the members of B to F
similarly designated. If A and B are the most dense, C and
D are sparse, and E and F are very sparse, under the two
level structure, the data blocks would contain all
combinations of A and B and the upper level block point
pointer structure would contain combinations of C to F, of
which there are 81 possible combinations.

On the other hand, a three level structure might be as
shown in Figure 10. Pointers to actual data are indicated
by arrows, and the combinations from which there are no
arrows are filled with pointers to the dummy empty or
invalid data blocks. The top level 31 contains the nine
possible combinations of dimensions E and F. Only three of
these combinations are represented by actual data, and thus
show pointers to a lower level. The intermediate level 32
shows the nine possible combinations of dimensions C and D
for each of the three combinations of dimensions E and F
for which there is data. In turn, of the 27 shown

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

28

combinations of dimensions C and D, there are pointers to
5 actual data blocks 33, each of which contains the nine
possible combinations of dimensions A and B, again for the
combinations of dimensions C to F indicated.

If a block pointer array is used, this structure
requires less memory than the two level structure above,’
since the two level structure would require all possible
combinations of dimensions C to F to be represented in the:
array. Thus, since there are 81 possible combinations of
dimensions C to F (3 x 3 x 3 x 3), if each pointer uses 4
bytes, a total of 81 x 4 or 324 bytes would be needed for
the array. In the three level structure of Figure 10, the
top level 31 has 9 pointers, and the intermediate level 32
has 27 pointers, for a total of 36. Thus, 36 x 4 or 144
bytes are required, and the size of the two levels is
significantly less than the size of one four-dimensional
pointer array.

If a two level structure is used with a binary tree,
only 5 links are required (i.e., one to each of the five
data blocks), with each 1link containing information
representing the members of the four dimensions C to F
which are represented. However, each link requires more
information, 4 bytes for the section number, 4 bytes for
the left pointer, 4 bytes for the right pointer, and 4
bytes for the block pointer, for a total of 16 bytes per
1ink. TFor five links, a total of 80 bytes is thus needed.
While the size of the binary tree is somewhat smaller than
the three level structure in this example, the difference
is less than with the two level structure. Also, a search
and compare is required to find the link having the desired
section number, a problem which gets worse the larger the
binary tree becomes, while in the three level structure
only one more calculation of a section number or offset is

' necessary.

In very sparse applications, it is possible that the
three level structure could even be smaller than the binary
tree. Given that the binary tree must also be searched,

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

29

there is no question that the three level structure would
be preferable in such a case. Also, it is possible to mix
pointer structures, so that where there is more than one
upper level pointer structure, one or more may be block
pointer arrays and one or more may be binary trees,
depending upon the application.

In the preferred embodiment, the system runs on a
server which allows a number of users with workstations to
access the database simultaneously, as shown in Figure 11.
The user uses a workstation 41 which contains the
spreadsheet he or she is using, and which has a keyboard or
other input device 42 and a display or other output device
43. The user interfaces with the server 44 through the
workstation 43, so that other then the appropriate commands
for retrieving data the server 44 is completely transparent
to the user once the data is loaded. The server controls
access to the data in memory, which contains the block
pointer structure 46 and data blocks 47 as described above,
for a number of workstations. This presents no problem
even where more than one user wishes to access the same
cell unless the data in the cell is being changed. In that
situation, the system can be instructed to "lock" the cell
until the data is changed so that only one change is fnade
at a time. Each workstation is preferably a personal
computer containing a standard spreadsheet program, such as
Excel® from Microsoft or 1-2-3® from Lotus. The
spreadsheet works as the front end to the database, and
once the database is created the user never sees anything
but the spreadsheet, with which he or she is presumably
already familiar. Even the member structure of Figure 6
can be created in the spreadsheet. Figure 12 shows a
sample member structure defined in Excel®, in fact the
member structure represented by Figures 1 to 4d.

As with computerized spreadsheets, formulas may be
used in the present invention. However, unlike
spreadsheets, where a formula is "attached" to a specific
cell, in the present invention all formulas, which are

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

30

merely relationships with other cells, are performed by the
computer use of the section numbers or offsets of the cells
in question. Thus, a formula will tell the computer to
obtain data corresponding to one or more offsets, perform
some specified operation on it and store the result in the
cell corresponding to another offset. Similarly,’
consolidation of data is accomplished by simply specifying
the "range" of items desired to be consolidated, i.e. the-
offsets of the desired data items, and the computer
retrieves and adds them automatically. The speed with
which data may be retrieved in the present invention makes
possible very rapid calculation and consolidation, believed
to be unmatched by any presently available multi-
dimensional database.

Another advantage to the present invention is that all
dimensions, and all data, are treated equally. Thus,
unlike some of the prior art products described above,
there is no difference, from dimension to dimension, in the
functionality for performing calculations or otherwise
manipulating or reporting data. If the user wishes to view
only data relating to units sold, rather than dollar sales,
for example for forecasting purposes, this is possible by
simply specifying the appropriate dimension members.
Appropriate "twisting" of the dimensions of the member
structure of Figure 10 results in the views shown in
Figures 4a to 4d.

From the above description, it will be apparent that
the invention disclosed herein provides a novel and
advantageous apparatus for storing and retrieving
multi-dimensional data, such as financial data, in computer
memory which maximizes the speed of accessing the memory
while minimizing the amount of memory needed to store such
data. The foregoing discussion discloses and describes
merely exemplary methods and embodiments of-the present
invention. As will be understood by those familiar with
the art, the invention may be embodied in other specific
forms without departing from the spirit or essential

PCT/US93/03002

WO 93/20512 PCT/US93/03002

31

characteristics thereof. For example, other types of upper

level structure, such as a HASH type incorporating levels

of bit maps, could be used for even more sparse

applications, although no application has yet been found

which the binary tree cannot handle with reasonable speed,

even with 12 to 15 dimensions. Accordingly, the disclosurel
of the present invention is intended to be illustrative,

but not limiting, of the scope of the invention, which is
set forth in the following claims.

10

15

20

25

30

35

WO 93/20512 " PCT/US93/03002

32

What is claimed is:

1. A method of storing multi-dimensional data, each
unit of which is identified by one or more members of each
of a plurality of dimensions, in computer memory,
comprising: _

selecting a first group of a number of dimensions
and a second group of a number of dimensions;)

allocating a first portion of memory which
contains cells corresponding to combinations of the
members of the first group of dimensions;

allocating a second portion of memory which
contains a plurality of data blocks, each containing
cells corresponding to combinations of the members of
the second group of dimensions, wherein each data
block corresponds to a different combination of the
first group of dimensions, and the size of the data
blocks depends upon the dimensions selected and the
number of members in each;

storing each unit of data in the data block which
corresponds to the combination of members of the first
group of dimensions which identifies that unit of
data, and in the location within that data block which
corresponds to the combination of members of the
second group of dimensions which identifies that unit
of data; and

inserting a ©pointer to each data block
corresponding to a particular combination of members
of the first group of dimensions in the cell in the
first portion of memory which corresponds to the same
combination of members of the first group of
dimensions.

2. The method of claim 1 wherein the step of
inserting a pointer to each data block further comprises
the step of selecting the manner in which the cells in the
first portion of memory are to be organized.

10

15

20

25

30

WO 93/20512

33

3. The method of claim 1 wherein the first portion
of memory is a block pointer array which contains all
possible combinations of the members of the first group of
dimensions.

4, The method of claim 1 wherein the first portion'
of memory is a binary tree containing only those
combinations of the members of the first group of’
dimensions for which data exists.

5. The method of claim 1 further comprising the step
of selecting an order for the dimensions and their members,
and wherein the step of creating a plurality of data blocks
further comprises ordering the cells in each data block in
the same order established for the dimensions and members.

6. The method of claim 5 wherein the step of
selecting an order for the dimensions and their members
comprises the step of creating an outline of the dimensions
and their members in the desired order.

7. The method of claim 5 wherein the step of
allocating a second portion of memory further comprises
arranging the cells contained in each block in an order
corresponding to the order of the dimensions and their
members.

8. The method of claim 7 wherein the multi-
dimensional data is organized in a regular pattern, and the
step of storing the data further comprises the step of
recognizing the pattern in which the data is organized and
inserting each unit of data into the corresponding cell in
the corresponding data block based upon that pattern.

9. An apparatus for storing multi-dimensional data,
each unit of which is identified by one or more members of
each of a plurality of dimensions, in computer memory,

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512 PCT/US93/03002

34
comprising:

‘input means for selecting a first group of a
number of dimensions and a second group of a number of
dimensions;

means for allocating a first portion of memory
which contains cells corresponding to combinations of
the members of the first group of dimensions;

means for allocating a second portion of memory
which contains a plurality of data blocks, each of
which contains cells corresponding to combinations of
members of the second group of dimensions, and wherein
each data block corresponds to a different combination
of the first group of dimensions, and the size of the
data blocks depends upon the dimensions selected and
the number of members in each;

means for storing each unit of data in the data
block which corresponds to the combination of members
of the first group of dimensions which identifies that
unit of data, and in the location within that data
block which corresponds to the combination of members
of the second group of dimensions which identifies
that unit of data; and

means for inserting a pointer to each data block
corresponding to a particular combination of members
of the first group of dimensions in the cell in the
first portion of memory which corresponds to the same
combination of members of the first group of
dimensions.

10. The apparatus of claim 9 further comprising means
for selecting the manner in which the cells in the first
portion of memory are to be organized.

11. The apparatus of claim 9 wherein the first
portion of memory is a block pointer array which contains
all possible combinations of the members of the first group
of dimensions. '

10

15

20

25

30

WO 93/20512

35

12. The apparatus of claim 9 wherein the first
poz+<ion of memory is a binary tree containing only those
combinations of the members of the first group of
dimensions for which data exists.

13. The apparatus of claim 9 further comprising means
for selecting an order for the dimensions and their
members, and wherein the means for creating a plurality of
data blocks further comprises ordering the cells in each
data block in the same order established for the dimensions
and members.

14-; The apparatus of claim 13 wherein the step of
selecting an order for the dimensions and their members
comprises means for creating an outline of the dimensions
and their members in the desired order.

15. The apparatus of claim 13 wherein the means for
allocating a second portion of memory further comprises
means for arranging the cells contained in each block in an
order corresponding to the order of the dimensions and
their members. '

16. The apparatus of claim 15 wherein the multi-
dimensional data is organized in a regular pattern, and the
means for storing the data further comprises the means for
recognizing the pattern in which the data is organized and
inserting each unit of data into the corresponding cell in
the corresponding data block based upon that pattern.

17. An apparatus for retrieving multi-dimensional
data, each unit of which is identified by one or more
members of each of a plurality of dimensions, comprising:

memory means containing the multi-dimensional
data, in which a first portion of the memory contains
cells corresponding to combinations of the members of

a first group of one or more of the dimensions and a

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512

36

second portion of the memory contains a plurality of
data blocks, each having cells corresponding to
combinations of the members of a second group of one
or more of the remaining dimensions, and wherein the
cells in the first portion of memory contain pointers
to the data blocks which correspond to the
combinations of the members of the first group of
dimensions represented by the cells;

input means for receiving input signals from a
user which indicate the members of the dimensions of
the data desired by the user; and

processing means responsive to the input signals
for calculating the location of the cell in the first
portion of memory containing the pointer to the block
of data which contains the desired data, then
calculating which cell within the block of data
indicated by the pointer contains the data, and
retrieving the data from the indicated cell.

18. An apparatus for allowing a plurality of users to

retrieve mnulti-dimensional data, each unit of which is
identified by one or more members of each of a plurality of

dimensions, comprising:

memory means containing the multi-dimensional
data, in which a first portion of the memory contains
cells corresponding to combinations of the members of
a first group of one or more of the dimensions and a
second portion of the memory contains a plurality of
data blocks, each having cells corresponding to
combinations of the members of a second group of one
or more of the remaining dimensions, and wherein the
cells in the first portion of memory contain pointers
to the data blocks which correspond to the
combinations of the members of the first group of
dimensions represented by the cells;

a plurality of input means for receiving input
signals from users which indicate the members of the

PCT/US93/03002

10

15

20

25

30

35

WO 93/20512 PCT/US93/03002

37

dimensions of the data desired by the users;

a plurality of processing means responsive to the
input signals for generating command signals;

Server means responsive to the command signals
from the plurality of processing means for calculatlng
the location of the cell in the first portion of
memory containing the pointer to the block of data
which contains the data desired by each user, then-
calculating which cell within the block of data
indicated by the pointer contains the data, and
retrieving the data from the indicated cell.

19. A method of retrieving multi-dimensional data,
each unit of which is identified by one or more members of
each of a plurality of dimensions, and which is stored in
memory in which a first portion of the memory contains
cells corresponding to combinations of the members of a
first group of one or more of the dimensions and a second
portion of the memory contains a plurality of data blocks,
each having cells corresponding to combinations of the
members of a second group of one or more of the remaining
dimensions, and wherein the cells in the first portion of
memory contain pointers to the data blocks which correspond
to the combinations of the members of the first group of
dimensions represented by the cells, comprising:

means for receiving input signals from a user
which indicate the members of the dimensions of the
data desired by the user;

means for calculating from the input signals the
location of the cell in the first portion of memory
containing the pointer to the block of data which
contains the desired data;

means for calculating from the input signals
which cell within the block of data indicated by the
pointer contains the desired data; and

retrieving the data from the indicated cell.

WO 93/20512

2 [] I [1]

T SN ST | N 7
(S I L
I R

l e 26 sy 87
| i

3081 274

b LTI

313

nd NS, R

342l 22921 1394l 307 2748

Fie,

‘ 1
8248 §1 20 611y g1l §1221 6181

2085,

6229: SI811 618« 61@al 4270 6251

PCT/US93/03002

BRTERBHATRIRETR
QOwld l Owd Yewr
11320 382, 13027

et

T8 2271 _woia

TIN5
23002301~ 3012301230 3301 230 ml 330
CN | eyt — TN DS T
o LT T YL 3 :
[05,

109 I 4 32161 321 IV 7] 38081 1) 83

82
3425)19y

2870 3t 70

PCT/US93/03002

WO 93/20512

e 2y

*0}19

olpny

HOA

AL

ejaue)

uibse

oipny

HOA

AL

elawe)

SH0J

o|pny

HOA

AL

eiawe)

sajeg

IENN

148

€0

cU

19

39

AON

190

dag

bny] (]

ung

Aepn

1dy

e

qo

uef]

PCT/US93/03002

WO 93/20512

Qe "2l

jelo]]

olpnyf

HOAN

Ad

‘Blawe’

Jea

o 12]

AO

10

da

bny Inn

un Ae

dyj e

qo

ue

saje

ve ‘949

% 140.

9, uibie

1jo.d

dx3 |e10]]

dx3 2si

[101Ae

Bunaie

uibie

S90J

sajeg

|elo

oipn

< }0)

eijswe

Asenueq]

PCT/US93/03002

WO 93/20512
7 Wan 7 ya 4
Las dngalas // Towi Epanses” /
Sevnis / A Mergia / Z
Duams 7 [/
3an Prenciens lﬂu:.:icn mhn'u.a Sales A:;:-xhi:: davamt Bdent
Salas | Comare TV |den
™ —
=3 Mar
dve =i
Profis| Camre VER | Jou
v T
vex oz
Andan " Cewm
FlG. Ya Fie. 4b
v 4 7 yA D L Z
T 7 : YT y
[/ Mar 7 7 £ Mar Z Z
[7 7 23 yd yd
don s.;.fn'nl..a. s.z..."’a'..;. don ™v N"vcl ﬂ.”-:ﬂ
IV | Zan Loat | Arvuai
Weey Budget
[Jovowsst
Toml - Verisnee
VEX | T Wort | Acvasl
West }
' Sewta FJoruwest
Tem| Verianee

fic. Ye Fic. 4 d

WO 93720512

5 PCT/US93/03002
(MPUT ~ \
. 0€f g MemMaER STRLLTIIE
y
_ >
CREATE Lwied UST
NP ~ k
INPTT S€léeT Qense NiMENSIONS
~ 4
cneat€ UPled (Ewel STRueT NG
: s
ivPyT ' ; Z
5 INPVT 0aTA
—_— . -
A 2
e =L
CHECK FOR PO1wTER TO IovALID | €RROR
DATA Jack Mg SSAge
vallD ¢mrry
{ ' -
D INMVSET 0ATA W Rt
p ¥ neATE 'Y
\'\I 1Y Leive€ PARAMETERS gonn ~

ALK

N /

INSERT POINTIA T AL W
UPPCR LEvEL STRUCTURE

Yes

Fie. S

WO 93/20512

Financial_Accounts
Income_Statement
Sales_Revenue

Fixed_Expen se
Rents
Leases
Variable_Expense
COGS
Sales_Expense
Time
FY89
Qtr1_89
Qur2_89
FY%
Qtr1_%0
Geographical
Western_Hemisphere
uUs
S_America
Venezuela
Brazil
Europe
France
Paris
Marseilles
Italy
Asia
Taiwan
Singapore
Hong_Kong
Total_Product Line
Electronics
Radios
v
Foods
Beverages
Canned_Goods
Cereals
Distribution_Channels
‘Wholesale
Mail_Order_Houses
Chains '
Distributors
Retail

Wholly_Owned_Electronics_Outlets

Catalog_Sales

Cle. b

PCT/US93/03002

WO 93/20512

[uuwm: |mm st ltum]
]

1.
Fiosmuuu,nmu nn'mu 'mﬂ._

|
1

Fl- lntum na lmnl.xrl

Fiaxu 1nmn wa |- 1

.
Flmtr imm nn ':m: I

1
E&mcrs KENIIZ Data ‘mum |

*]
Flg. 7

PCT/US93/03002

WO 93/20512

InvPUT

8

|
|

SPecCIfFY ATTRIBVTES
O€ 0GSIRED (NMFOMATOW

L

LocATe Memmen MumBers

€on SPANSE DIMENSION
ATTRI8YTES

|

CALULATE SEcTiov MUMBAeR

of SPANSE OImgNS1ON i.Q.

LocATion OF POIWTCAL TO
0ATA o wexK

v

RETRCVE MOINTER FlomM
CALCULATED el

y.

.o oy

LOCATE M ML wUMACRS
fol DEnCE QIMENS oy
ATTRBVIES

i

CALLWATE s€cTiov MUMBEKL,

OF 0CNVSE pimevSionS 1.€

OFESET OF CELL ConTAIMNG
0€S1RcQ 0A°TA

RETRIEYE DATA

Fle,

I

~ o=

—~ M

(5

|6

o~

~ 17

PCT/US93/03002

WO 93/20512

Fle, 1

9 PCT/US93/03002
, poIvTEk O | poiurer T | 10 WTER T >
555:3?2 EFT eBILD | aieiT cril) | DATA Block —
(s23)
» B~
= luas l 403 a3
B
oo | | 447 $Is 48

PCT/US93/03002

WO 93/20512

—

A 5ty | 19ty

i)

P SuY| v g% | otV
ty'v n....\ 2yl W'

W _nar.. Y Sof o [™

\\

L

o) oy

M«:ﬂ—\ .n.en.,\ .mr-.\ .ﬁm:\ .wﬁn—.\ .mn.\.

o ~

ﬂQ.Q ‘@ .Q .M\ -n\ Mﬁ;\ .ﬂ.ﬁ. v —‘.—\ _

F Y SR D —
e oo [
| . NPV yruvieg nw AVWY ¥ MIog €,y)

/

|
' wa Lb dﬁw‘ 1 .nm Fb..-— -.L-u_ -c.'\,,_

MUY dw...r.....s 'y 3

WO 93/20512 PCT/US93/03002

11

KeYeonrs AnD/oR

Y | TR WWIT usen
oeviels

$

T ?

i = | WIRKsTaTuLA us
ProccssoR. | A siseLay -

———
oTHEA
ORUSTATING

genyiR "|q

MCAORY

—-‘l DATA glac kS ,
DS 11 4
PoIvTER ‘ '
o — sT AVETLN¢)

[

Fig, 1

WO 93/20512
PCT/US93/03002

12

i
Jan.Feb.Mar
ovgf | !
IApr. Mey, Jun

Ly

.M..Aug.'Scp
ovd | !
Oanl. Dsc

{Market i %

jEast |
{New_York Boston Chicago
west | | .
iSen_Francisco. Denver. Seetis. Los_Angsles .
{South 1 |

%Dalllas. Phoenix. Housten
iProduct |
Audio |
ISterao, Compect_Disc
visud | |
[Television, VCR. Camsra

AcCCounts

Proft |
i

1

n
iSales
OGS {Cost_of_Goods_Soid
<Totel_Expenses
~iProft_% = Proft % Seles
© Mergin,,%lc » Margin % Seles
i

[7]
]
3
8
&
e e vome
r—

INTERNATIONAL SEARCH REPORT

PCT/US93/03002

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :GO6F 12/02
US CL :395/425

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 395/400, 425

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US,A, 4,570,236 (REBEL ET AL) 1-19
11 FEBRUARY 1986
See col. 1, line 1- col. 4, line 57
A US,A, 4,809,156 (TABER) 1-19
28 FEBRUARY 1989
See col. 1, line 1- col. 4, line 11
D Further documents are listed in the continuation of Box C. D See patent family annex.
d Special categories of cited documents: T later d d after the inter | filing date or priority
A document defining the general state of the art which is not considered :::::;;:;I 33,;?:2:;;;3:?&:::2: utcited to underatand the

1o be part of particular relevance

ope X document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or cannot be considered 1 involve an inventive step
°L* document which may throw doubts on pnonty claim(s) or which is when the document is taken alone
cited to establish the publication date of ion or other v . of particul . the claimed " be
ial reaso ified claimed invention cannot
#ped 0 (12 specified) considered w involve an inventive step when the document is
"o" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
P document published prior to the international filing date but later than -, document member of the same patent family
the priority date claimed

Date of the actual completion of the international search

26 APRIL 1993

Date of mailing of the international search report

28 JUN 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks

Authorized officer M W /"‘
DAVID L. ROBERTSON

Box PCT
Washington, D.C. 20231
Facsimile No. NOT APPLICABLE Telephone No. (703) 305-3825

Form PCT/ISA/210 (second sheet)(July 1992)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

