发明名称

湄公河三角洲鲶鱼油提取及应用及制备母乳脂肪替代物的方法

摘要

本发明提供一种湄公河三角洲鲶鱼油提取及应用及制备母乳脂肪替代物的方法。本发明的来源为湄公河三角洲鲶鱼 (Pangasianodon gigas) 的全鱼中提取或从去除鱼片以后的剩余部位提取的鲶鱼脂肪或其分提液体组分。所述鲶鱼油提取应用于制备母乳脂肪替代物。湄公河三角洲鲶鱼油提取的母乳脂肪替代物中的Sn-2位上的棕榈酸含量相对较高，可以达到与母乳脂肪中Sn-2位上棕榈酸含量一致，即达到60%以上。同时，由于湄公河三角洲鲶鱼脂肪或其分提液体组分存在AA和DHA，这种母乳脂肪替代物不需要额外添加AA和DHA或者只需要添加少量的AA或DHA。
1. 一种来源于湄公河三角洲鲶鱼的油脂，其特征在于：是从湄公河三角洲鲶鱼(Pangasianodon gigas)的全鱼中提取或从去除鱼片以后的其余部位提取的鲶鱼脂肪或所述鲶鱼脂肪的分提液体组分。

2. 根据权利要求1所述的来源于湄公河三角洲鲶鱼的油脂，其特征在于：所述鲶鱼脂肪的提取方法是，将湄公河三角洲鲶鱼原料清洗，将全鱼进行粉碎或去除鱼片后余下的原料进行粉碎，然后经过连续蒸煮，压滤，将滤液用蒸汽加热20~60分钟，然后离心，得到的粗脂肪进行脱水，然后精炼，即得鲶鱼脂肪。

3. 根据权利要求1或2所述的来源于湄公河三角洲鲶鱼的油脂，其特征在于：所述鲶鱼脂肪的分提液体组分的分提方法是，将湄公河三角洲鲶鱼脂肪加热到55~60℃，稳定20分钟后，以10℃/小时的速度降温至30℃，再以1.5~2.5℃/小时的速度降温至10~30℃，恒温结晶3~5小时，前述所有过程加带搅拌，析出的固体结晶部分达到总重量的10~50%后，在温度10~30℃下开始进行过滤分离，经过过滤后得到分提液体组分。

4. 根据权利要求1所述的来源于湄公河三角洲鲶鱼的油脂，其特征在于：所述湄公河三角洲鲶鱼(Pangasianodon gigas)是巴沙鲶鱼(basa catfish)和杂鲶鱼(trach catfish)。

5. 一种权利要求1至4任一权利要求所述的来源于湄公河三角洲鲶鱼的油脂在制备母乳脂肪替代物中的应用。

6. 一种采用权利要求1至4任一权利要求所述的来源于湄公河三角洲鲶鱼的油脂制备母乳脂肪替代物的方法，其特征在于包括如下步骤：

 (1) 提取来源于湄公河三角洲鲶鱼(Pangasianodon gigas)的脂肪；

 (2) 将上一步骤得到的鲶鱼脂肪在10~30℃温度条件下进行分提得到该分提液体组分；

 (3) 将步骤(1)或步骤(2)得到的油脂在脂肪酶催化下与混合脂肪酸或混合脂肪酸低级醇酯进行酯交换反应，或者将步骤(1)或步骤(2)得到的油脂与其它植物油混合所得到的混合油脂在脂肪酶催化下与混合脂肪酸或混合脂肪酸低级醇酯进行酯交换反应，所述油脂或混合油脂与混合脂肪酸或混合脂肪酸低级醇酯的重量比为(2：1)~(1：2)，酯交换反应后经减压蒸馏分离出反应所得到的油脂并精炼，即得母乳脂肪替代物。

7. 根据权利要求6所述的采用来源于湄公河三角洲鲶鱼的油脂制备母乳脂肪替代物的方法，其特征在于：所述第(1)步的提取方法是，将湄公河三角洲鲶鱼原料清洗，将全鱼进行粉碎或去除鱼片后余下的原料进行粉碎，然后经连续蒸煮，压滤，将滤液用蒸汽加热20~60分钟，然后离心，得到的粗脂肪进行脱水，然后精炼，即得鲶鱼脂肪。

8. 根据权利要求6或7所述的采用来源于湄公河三角洲鲶鱼的油脂制备母乳脂肪替代物的方法，其特征在于：所述第(2)步油脂分提的温度优选为15~25℃。

9. 根据权利要求6或7所述的采用来源于湄公河三角洲鲶鱼的油脂制备母乳脂肪替代物的方法，其特征在于：所述脂肪酸低级醇酯优选为脂肪酸乙酯。

10. 根据权利要求6或7所述的采用来源于湄公河三角洲鲶鱼的油脂制备母乳脂肪替代物的方法，其特征在于：所述第(3)步中的混合脂肪酸来源于大豆油、低芥酸菜籽油、葵花籽油、玉米油、椰子油、棕榈仁油的任意混合油脂的水解产物，所述混合脂肪酸低级醇酯
来源于大豆油、低芥酸菜籽油、葵花籽油、玉米油、椰子油、棕榈仁油的任意混合油脂的酯解产物。
湄公河三角洲鲶鱼油脂及应用及制备母乳脂肪替代物的方法

技术领域
[0001] 本发明属于食用油脂领域，尤其涉及一种来源于湄公河三角洲鲶鱼的油脂及其在制备母乳脂肪替代物中的应用。

背景技术
[0002] 母乳是适合婴儿生长发育的最完美的食物。因此WHO提倡在婴儿出生后母乳哺育至少6个月，以保证婴儿生长发育、提高免疫力和预防传染疾病。母乳中含有约4～4.5%的脂肪，其中98%是甘油三酯。母乳中脂肪酸的种类复杂，饱和脂肪酸包括，中链、中长链及长链饱和脂肪酸，如月桂酸（5～7%）、棕榈酸（20～24%），硬脂酸（7.1～9%）；单不饱和脂肪酸包括油酸（31～38%）、棕榈油酸（2.5～3.8%）、n-3多不饱和脂肪酸含亚油酸和亚麻酸，n-3多不饱和脂肪酸中含α-亚油酸，还含有二十二碳六烯酸（DHA，0.3～1.9%）。

[0003] 最初婴儿配方奶粉中的脂肪主要是全脂奶粉中的牛乳脂肪，但是牛乳脂肪中无论是脂肪酸组成还是脂肪结构，都与母乳脂肪有着显著的差异。牛乳脂肪中低碳链的饱和脂肪酸（C4-C10）含量较高，而多不饱和脂肪酸如C18:2含量较低，其它的多不饱和脂肪酸C18:3、C20:4和C22:6等几乎没有。另外，牛乳中的饱和脂肪酸主要集中在Sn-1, 3位上，而母乳中的饱和脂肪酸主要是C16:0，而大部分在Sn-2位上。

[0004] 如前所述，母乳脂肪中饱和脂肪酸（SFA）含量显著低于牛乳脂肪，不饱和脂肪酸（PUFA）含量显著高于牛乳脂肪。在婴儿配方食品中添加植物油可消除这些差异。目前，国内婴儿配方奶粉中所占的油脂来源主要有：1. 使用单一品种的一级精炼植物油与牛乳脂肪混合；2. 使用的多种精炼植物油与牛乳脂肪混合；3. 全部采用植物油脂，其中的棕榈酸由棕榈油提供。涉及的植物油种类有：高油酸葵花籽油，芥酸菜籽油、大豆油、棕榈油、棕仁油、椰子油、葵花籽油、红花油等多种油料。

[0005] 国际上已经有不少专利，如US5, 601, 860等，是以植物油直接调和的方法。主要用富含C16:0的油（如棕榈油等）与其它的含必需脂肪酸的油（如大豆油等）调和所得。以牛奶直接代替人乳脂，如前所述，其中的甘油三酯脂肪酸与人乳脂有差异。如再配以植物油，也会使甘油三酯结构很难符合要求。以植物油为原料，用化学催化剂如甲醇钠进行随机酯交换，如专利EP0376628。

[0006] 通过几种植物油脂的混合可以得到脂肪酸组成与母乳脂肪相接近的产品，但是由于母乳脂肪具有特殊的脂肪结构（甘油三酯类型主要为USU型，且棕榈酸主要存在于Sn-2位上），所以以棕榈油为棕榈酸主要来源的混合植物油只能达到脂肪酸组成与母乳脂肪接近，但不能达到与母乳脂肪结构相接近的水平。这种混合油脂经酶脂肪酶水解成游离脂肪酸和单甘酯。而小肠内的游离棕榈酸易与金属离子形成不溶性的钙皂，从而导致钙离子和能量的双重流失。近二十年来，一些营养学和临床医学研究者对比了这两类结构的油脂（棕榈酸主要位于Sn-2位置和Sn-1, 3位置）对婴儿营养吸收的影响，发现棕榈酸主要位于Sn-2位的油脂优于以棕榈油为主要棕榈酸来源的混合植物油脂。即与母乳脂肪结构类似的棕榈
酸主位于 Sn-2 位的油脂，有利于提高脂肪的吸收率、增强钙的吸收、提高骨密度及减少婴幼儿便秘。

【0007】 早在上世纪八十年代随着婴儿营养吸收的研究的深入，关于棕榈酸主要位于 Sn-2 位的结构油脂的制备研究已经展开。制备母乳脂肪替代物的关键是要找到 Sn-2 位高棕榈酸含量的油脂。目前报道的高 Sn-2 位高棕榈酸含量油脂原料有两类：棕榈油硬脂和酯交换的棕榈油。猪油也是一种 Sn-2 棕榈酸含量较高的油脂，脂肪酸组成中棕榈酸的比例为 20-30%，而 Sn-2 位上的棕榈酸含量则高达 60% 以上。而猪油作为食用油存在宗教禁忌，不能作为油脂原料被广泛使用。植物油中饱和脂肪酸（主要是硬脂酸和棕榈酸）天然分布于 Sn-1 或 Sn-3 位上，Sn-2 位上的棕榈酸含量很少。棕榈油的脂肪酸组成中棕榈酸比例高达 40% 以上，但绝大部分棕榈酸分布于 Sn-1 或 Sn-3 位上，Sn-2 位上的棕榈酸含量不到 10%。

【0008】 为了得到 Sn-2 位高棕榈酸含量的植物油脂，可以采用油脂改性的方法；酯交换和分提。(1) 酯交换，将棕榈油在化学催化合（甲醇钠或乙醇钠）的作用下，进行随机酯交换反应，将棕榈酸平均分布于甘油酯的 Sn-1、Sn-3 和 Sn-3 位上，从而使得 Sn-2 位上棕榈酸的含量达到总的脂肪酸组成中棕榈酸 40% 以上的水平。(2) 油脂分提：在一定温度下利用构成棕榈油的各种甘三酯的熔点差异及溶解度的不同，把棕榈油分成固、液两部分，使得固体部分中的 PPP (三棕榈酸甘油酯) 的含量提高，从而 Sn-2 位上的棕榈酸含量提高到预期水平。但这种方法所得到的油脂原料中 Sn-2 位上的棕榈酸含量不会超过 33.3%。

【0009】 根据上述的 Sn-2 位高棕榈酸含量的油脂与母乳之间的脂肪酸差异，选择合理配比的混合脂肪酸或脂肪酸低级醇酯混合物，在 Sn-1,3 特异性脂肪酶的催化下进行酯交换反应，反应物在真空条件下脱水，去除多余及反应置换出来的混合脂肪酸或脂肪酸低级醇酯混合物，即可得到与母乳脂肪结构接近的油脂。但是由于原料中 Sn-2 位上的棕榈酸含量的局限，采用这种方法得到的最终产品的 Sn-2 位上的棕榈酸含量也不高。

【0010】 目前母乳脂肪替代物的制备，主要有两种方法：混合油脂在脂肪酶催化下的酯交换反应和油脂与混合脂肪酸在脂肪酶催化下的酯交换反应。

【0011】 混合油脂在脂肪酶催化下的酯交换反应制备：Unilever 公司专利 WO1994/268551 中报道，将一定比例的棕榈油与棕榈仁油在 1,3 位选择性脂肪酶催化下进行酯交换，酯交换产物与高油酸葵花籽油、葵花籽油以及椰子油按一定比例进行调配，得到饱和脂肪酸占 30% 的甘三酯混合物，其中 Sn-2 位上的饱和脂肪酸占总的饱和脂肪酸的 40% 以上，与母乳脂肪接近。

【0012】 油脂与混合脂肪酸在脂肪酶催化下的酯交换反应制备：

【0013】 美国专利 US 4876107 中将棕榈油高熔点分提组成 (成分全为 80% PPP 和 20% POP) 与油酸以重量比 3：1 混合，溶解到正已烷中，40℃下在来源于毛霉的脂肪酶作用下发生油脂重排反应。过滤去除酶，再通过蒸馏提除正己烷，真空条件下脱水除去游离脂肪酸，产物再与乳脂、葵花籽油、大豆油和椰子油等调配，得到母乳脂肪替代物。

【0014】 美国专利 US 5658768 中将棕榈油硬脂与高油酸葵花籽油脂肪酸按重量比 1：0.75 混合，在固定化 Novo SP-392 脂肪酶催化下反应，再通过蒸馏除去多余的脂肪酸，产物在二甘酯特异性脂肪酶 Amanolipase G 作用下与脂肪酸反应，减少生成物中二甘酯的含量。50%该产物与 30% 液体植物油、20% 椰子油混合后在脂肪酶 Novo SP-392 催化下酯交换反应，降低油膏中的三饱和甘油酯的含量，从而得到母乳脂肪替代物。
说明书

[0015] 欧洲专利 EP 0496456 中将 Sn-2 位高棕榈酸含量（≥90％）的甘三酯与卡诺拉油脂肪酸以重量比 1:1 混合，通过装有固定化脂肪酶 NovoSP-392 的填充柱反应，反应温度 70℃，不添加溶剂。反应结束，93％的脂肪酸转移到甘三酯中，同时产生了5％的甘二酯。多余的脂肪酸通过蒸馏除去，并经过中和去除痕量的游离脂肪酸。甘二酯则经过硅胶填充柱吸附去除。上述产物加入酸法中，-5℃低温下溶剂分提，得到的液体部分精炼后即为母乳脂肪替代物。

[0016] 另外，与上述专利类似，也有将高纯度三棕榈酸甘三酯（PPP）与油酸或油酸甲酯在脂肪酶催化下进行酸解反应的报道。

[0017] 但上述制备方法都有各种各样的缺陷，如混合油脂在脂肪酶催化下的酯交换反应制备的母乳脂肪替代物 Sn-2 位上的棕榈酸占总的比例酸只能达到 40％左右，与母乳脂肪实际的 Sn-2 位上的棕榈酸占总的棕榈酸比例达到 67％以上相距甚远。而采用油脂与混合脂肪酸在脂肪酶催化的酯交换反应，由于原料主要采用棕榈油，棕榈油中 Sn-2 位上的棕榈酸占总的棕榈酸的比例较低（不高于 33.3％），酶法酯交换后产物中 Sn-2 位上的棕榈酸含量也不高。

[0018] 还有报道使用中国廉价易得的猪油原料（甘三酯主要为 USU 型）在 Lipzyme IM 脂肪酶催化下与大豆油脂肪酸进行酸解反应，酶添加量 13.6％，猪油与脂肪酸的摩尔比为 1：2.4，反应温度 61℃，可得到成本低廉的母乳脂肪替代物。但猪油作为食用油存在宗教禁忌，不能作为油脂原料被广泛使用。

发明内容

[0019] 本发明的目的在于针对现有用于婴儿配方食品的母乳脂肪替代物及其制备方法存在的以上所述问题，提供一种可用于制备与母乳脂肪组成接近的母乳脂肪替代物的来源与湄公河三角洲鲶鱼的油脂并将该油脂应用于制备母乳脂肪替代物。

[0020] 本发明的来源于湄公河三角洲鲶鱼的油脂，是从湄公河三角洲鲶鱼 (Pangasianodon gigas) 的全鱼中提取或从去除鱼片以后的其余部位提取的鲶鱼脂肪或所述鲶鱼脂肪的分提液体组分。

[0021] 所述湄公河三角洲鲶鱼 (Pangasianodon gigas) 是指巴沙鲶鱼 (basca catfish) 和楂鲶鱼 (tra catfish)。可采用其中一种或两种。

[0022] 作为优选方案，所述鲶鱼脂肪的提取方法是：将湄公河三角洲鲶鱼原料清洗，将全鱼进行粉碎或将去除鱼片余下的原料进行粉碎，然后经过连续蒸煮，压滤，将滤液用蒸汽加热 20-60 分钟，然后离心，得到的粗脂肪进行脱水，然后精炼，即得鲶鱼脂肪。

[0023] 作为优选方案，所述鲶鱼脂肪的分提液体组分的分提方法是：将湄公河三角洲鲶鱼脂肪加热到 60℃，稳定 20 分钟后，以 10℃/小时的速度降温至 30℃，再以 1.5-2.5℃/小时的速度降温至 15℃，恒温结晶 3-5 小时，前述所有过程加常搅拌，待析出的固体结晶部分达到总重量的 10-50％后，在温度 15℃下开始进行过滤分离，经过过滤后得到分提液体组分。

[0024] 一种采用本发明的来源于湄公河三角洲鲶鱼的油脂制备母乳脂肪替代物的方法，包括如下步骤：

[0025] (1) 提取来源于湄公河三角洲鲶鱼 (Pangasianodon gigas) 的脂肪；
将上一步骤得到的鲸鱼脂肪在10〜30℃温度条件下进行油脂分提得到其分提液体组分；

将步骤 (1) 或步骤 (2) 得到的油脂在脂肪酶催化下与混合脂肪酸或混合脂肪酸低级醇酯进行酶法酯交换反应，或者将步骤 (1) 或步骤 (2) 得到的油脂与其他植物油混合所得的混合油脂在脂肪酶催化下与混合脂肪酸或混合脂肪酸低级醇酯进行酶法酯交换反应，所述油脂或混合油脂与混合脂肪酸或混合脂肪酸低级醇酯的重量比为 2 ： 1 — (1 ： 2)，酯交换反应后经减压蒸馏分离出反应得到的油脂并精炼，即得母乳脂肪代用品。

所述第 (3) 步的提取方法是，将湄公河三角洲鲸鱼原料清洗，将全鱼进行粉碎或将去鱼片后留下的原料进行粉碎，然后进行连续煮煮、压滤，将滤液用蒸汽加热 20〜60 分钟，然后离心，得到的粗脂肪进行脱水，然后精炼，即得鲸鱼脂肪。

所述第 (2) 毛油分提的温度优选为 15〜25℃。

所述脂肪酸低级醇酯优选为脂肪酸乙酯。

所述第 (3) 步中的混合脂肪酸来源于大豆油、低芥酸菜籽油、葵花生油、玉米油、椰子油、棕榈油的任意混合油脂的水解产物；所述混合脂肪酸低级醇酯来源于大豆油、低芥酸菜籽油、葵花籽油、玉米油、椰子油、棕榈油的任意混合油脂的醇解产物。

所述脂肪酶为 Sn-1, 3 位专性脂肪酶，优选 LIPOZYME RL11。

所述酶法酯交换反应中，直接向反应物中添加脂肪酶进行间歇式反应，或将反应物通过酶填充反应柱进行。

本发明的技术效果在于：本发明通过在 1, 3 位特异脂肪酶催化下混合脂肪酸或混合脂肪酸低级醇酯与湄公河三角洲鲸鱼脂肪或其分提液体组分反应得到的甘三酯混合物。由于湄公河三角洲鲸鱼脂肪或其分提液体组分 Sn-2 位上的棕榈酸含量相对较高，反应终产物中的 Sn-2 位上的棕榈酸含量也相对较高，可以达到与母乳脂肪中 Sn-2 位上棕榈酸含量一致，即达到 60% 以上。同时，由于湄公河三角洲鲸鱼脂肪或其分提液体组分存在 AA 和 DHA，这种母乳脂肪代用品不需要额外添加 AA 和 DHA 或者只需要添加少量的 AA 或 DHA。

具体实施方式

实施例一：

1. 提取湄公河三角洲鲸鱼脂肪；

将湄公河三角洲巴沙鲸鱼（basal catfish）和植鲸鱼（tracatfish）清洗，然后去掉鱼片，将余下的原料进行粉碎，然后经过连续烹煮机内进行连续烹煮，压滤，除渣后用蒸汽加热 20〜60 分钟，然后将得到的粗脂肪离心，再经过闪蒸工序脱水，最后精炼，得到湄公河三角洲鲸鱼脂肪成品。

本发明实施例中所述精炼采用成熟技术，具体步骤包括：脱胶、脱酸、脱色和脱臭。其中的脱臭阶段按温度 240℃、停留时间 65 分钟、真空度 2.3 mbar 条件下进行。

2. 油脂分提：

将上述步骤得到的湄公河三角洲鲸鱼脂肪加热到 55〜60℃，稳定 20 分钟后，以 10℃ / 小时的速度降温至 30℃，再以 1.5〜2.5℃ / 小时的速度降温至 15℃，恒温结晶 3〜5 小时，前述所有过程加带搅拌，待析出的固体结晶部分达到总重量的 10〜50% 后，在温度 15℃
下开始进行过滤分离，起始过滤压力为 3bar，加压至 12bar 停止。经过过滤后得到分提液体组分。

[0041] 3. 制备混合脂肪酸乙酯：
[0042] 将葵花籽油、紫苏油和椰子油按 6：2：2 的重量比混合，加热升至 100℃，同时搅拌，保持 20 分钟，然后脱水。将脱水后油重的 1% 催化剂 KOH 加入到乙醇中，乙醇与油脂的摩尔比为 6：1，搅拌溶解。待油脂冷却到 60℃，加入上述含有催化剂的乙醇溶液，开始反应，时间 3 小时。反应后加入浓度为 8% 的柠檬酸溶液水洗，柠檬酸与 KOH 的摩尔比为 1：1，再第二次水洗。60℃下真空抽气 1-2 小时。得终产物混合脂肪酸乙酯。

[0043] 4. 酶法制备：
[0044] 将上述第 2 步所得的湄公河三角洲鲶鱼分提液体组分与上述第 3 步骤得到的混合脂肪酸乙酯按重量比为 1：1 混合，将混合物通过填充有脂肪酶 LIPOZYME RMIM 的反应柱，反应温度 55℃，流量为每小时通过与酶等量的反应物。反应产物再在 120-150℃下蒸发浓缩。精炼，得到母乳脂肪替代物。

[0045] 脂肪酶 LIPOZYME RMIM 由丹麦的诺维信公司。

[0046] 实施例二：
[0047] 1. 湄公河三角洲鲶鱼脂肪的提取：
[0048] 将湄公河三角洲巴沙鲶鱼（basca catfish）和湄鲶鱼（tracatfish）清洗，经过连续蒸煮，压滤，除渣后用蒸汽加热 20-60 分钟，然后将得到的粗脂肪离心，再经过闪蒸工序脱水，最后精炼，得到湄公河三角洲鲶鱼脂肪成品。

[0049] 2. 混合脂肪酸的制备：
[0050] 将低芥酸菜油、大豆油和椰子油按 6：2：2 的重量比混合，加热升至 100℃，同时搅拌，保持 20min，脱水。先加入碱液进行皂化，分离出甘油，再加入盐酸进行酸化，得到混合脂肪酸。

[0051] 3. 酶法制备：
[0052] 湄公河三角洲鲶鱼脂肪与混合脂肪酸的重量比为 1：1，脂肪酶 LIPOZYME RMIM 的添加量为油脂重量的 5%，反应温度 55℃，酯交换反应时间 4 小时。反应结束后再在 150-180℃下分子蒸馏，精炼，得到母乳脂肪替代物。

[0053] 实施例三：
[0054] 1. 提取湄公河三角洲鲶鱼脂肪：
[0055] 具体提取步骤见实施例一。

[0056] 2. 油脂分提：
[0057] 具体分提步骤见实施例一。

[0058] 3. 混合脂肪酸乙酯的制备：
[0059] 将玉米油、亚麻籽油和椰子油按 6：2：2 的重量比混合，加热升至 100℃，同时搅拌，保持 20min，脱水。油重的 1% 催化剂 KOH 加入到乙醇中（乙醇与油脂的摩尔比为 6：1），搅拌溶解。待油脂冷却到 60℃，加入有催化剂的乙醇溶液，开始反应，时间 3 小时。加入 柠檬酸溶液（柠檬酸与 KOH 的摩尔比为 1：1）水洗。60℃下真空抽气 1-2 小时。得终产物混合脂肪酸乙酯。

[0060] 4. 酶法制备：
[0061] 湿公河三角洲鲶鱼的分提液体组分与上述步骤得到的混合脂肪酸乙酯的重量比为 1：1，脂肪酶 LIPOZYM_RLM 的添加量为油脂重量的 5%，反应温度 55℃，反应时间 4 小时。酯交换反应结束后再在 120-150℃下分子蒸馏，精炼，得到母乳脂肪替代物。

[0062] 实施例四：

[0063] 1. 湿公河三角洲鲶鱼脂肪的提取：

[0064] 具体提取步骤见实施例一。

[0065] 2. 混合脂肪酸乙酯的制备：

[0066] 将葵花籽油、亚麻籽油和棕榈仁油按 6：1：2 重量比混合，加热升温到 100℃，同时搅拌，保持 20min，脱水。油重的 1% 催化剂 KOH 加入到乙醇中（乙醇与油脂的摩尔比为 6：1），搅拌溶解。待油脂冷却到 60℃，加入加有催化剂的乙醇溶液，开始反应，时间 3 小时。加入柠檬酸溶液（柠檬酸与 KOH 的摩尔比为 1：1）水洗。60℃下真空抽气 1-2 小时。得终产物混合脂肪酸乙酯。

[0067] 3. 酶法酯交换：

[0068] 将湿公河三角洲鲶鱼脂肪按 5：1 的重量比例与随机酯交换后的棕榈油混合，混合油脂与上述步骤 2 中得到的混合脂肪酸乙酯的重量比为 1：1，将混合油脂与混合油脂肪酸乙酯的混合物通过充填有脂肪酶 LIPOZYM_RLM 的反应柱，反应温度 55℃，流速为每小时通过与酶同等重量的反应物。反应产物再在 120-150℃下分子蒸馏，精炼，得到母乳脂肪替代物。