
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0205645 A1

US 20150205645A1

NCHES et al. (43) Pub. Date: Jul. 23, 2015

(54) SELECTIVE LOCKING OF OPERATIONS ON Related U.S. Application Data
JOINT AND DISUOINT SETS (63) Continuation of application No. 14/159.242, filed on

(71) Applicant: International Business Machines Jan. 20, 2014.
Corporation, Armonk, NY (US) Publication Classification

(72) Inventors: Brent R. INCHES, Rochester, MN (51) Int. Cl.
(US); Brian G. HOLTHAUS, Oronoco, G06F 9/52 (2006.01)
MN (US); Jonathan L. KAUS, (52) U.S. C.
Rochester, MN (US); Eric G. CPC G06F 9/524 (2013.01)
THIEMANN, Owatonna, MN (US);
Scott J. TIMMERMAN, Rochester, MN (57) ABSTRACT
(US); Robert W. TODD, Raleigh, NC A management controllerina distributed network Switch may
(US) operate on sets of ports such that sets of ports containing a

same port are processed serially, and sets that do not contain
(73) Assignee: INTERNATIONAL BUSINESS any of the same ports can be processed in parallel. When

MACHINES CORPORATION, receiving a set of ports for processing, the management con
Armonk, NY (US) troller organizes the ports into lanes that each correspond to a

unique port. If any of the lanes overlap, Subsequent port sets
are blocked from proceeding until the lanes of preceding port

(21) Appl. No.: 14/164,751 sets are cleared. If no lanes overlap, the sets may be deemed
disjoint, and Subsequent port sets may be processed in paral

(22) Filed: Jan. 27, 2014 lel.

200 Y
SERVER210

18O

SWITCH
MODULE
202

PCIE EXPANSION UNIT 216

ADAPTER ill,

SERVER212

SWITCH
MODULE

SERVER 214

SWITCH
MODULE

PCIE EXPANSION UNIT 218

ADAPTER

US 2015/0205645 A1 Jul. 23, 2015 Sheet 1 of 7

ŽŽJIHOd

GGT LENHEHLE

Patent Application Publication

US 2015/0205645 A1 Jul. 23, 2015 Sheet 2 of 7 Patent Application Publication

ZWZ HEAHES

| ±lºvov

FERN) |

Patent Application Publication Jul. 23, 2015 Sheet 3 of 7 US 2015/0205645 A1

300 NA

- 302
Receive operation specifying a set of ports of the plurality

of ports

- 304
Insert Operation into a queue having lanes Corresponding
to the ports, where lanes that Correspond to the set of
ports receive an entry associated with the set of ports

306 (1 308

Any lanes of the set Wait
blocked? Yes

- 310
Perform the operation on the received set of ports

- 312
Remove entries associated with the set of ports from the

lanes of the queue

FIG. 3

Patent Application Publication Jul. 23, 2015 Sheet 4 of 7 US 2015/0205645 A1

400 N
1 2 3 4 5 6 7 8 9 10 11 12

402

Waiting
404-1 W W W W

Processing /
Blocking

406-1
FIG. 4A

1 2 3 4 5 6 7 8 9 10 11 12

Waiting

Processing / W W W W
Blocking

FIG. 4B

1 2 3 4 5 6 7 8 9 10 11 12

Waiting

Processing /
Blocking

Patent Application Publication Jul. 23, 2015 Sheet 5 of 7 US 2015/0205645 A1

1 2 3 4 5 6 7 8 9 10 11 12

Waiting

Processingl w w xw W
Blocking

FIG. 4D

1 2 3 4 5 6 7 8 9 10 11 12

Waiting

Processing /
Blocking

FIG. 4E

1 2 3 4 5 6 7 8 9 10 11 12

Waiting Z Z

Processing /
Blocking

Patent Application Publication Jul. 23, 2015 Sheet 6 of 7 US 2015/0205645 A1

1 2 3 4 5 6 7 8 9 10 11 12

Waiting Z Z

Processing /
Blocking

FIG. 4G

1 2 3 4 5 6 7 8 9 10 11 12

Waiting
Z Z

Processing / w w y w Wy Y
Blocking

FIG. 4H

1 2 3 4 5 6 7 8 9 10 11 12

Waiting

Processing /
Blocking

Patent Application Publication Jul. 23, 2015 Sheet 7 of 7 US 2015/0205645 A1

1 2 3 4 5 6 7 8 9 10 11 12

Waiting

Processing /
Blocking

FIG. 4J

US 2015/0205645 A1

SELECTIVE LOCKING OF OPERATIONS ON
JOINT AND DIS.JOINT SETS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of co-pending
U.S. patent application Ser. No. 14/159.242, filed Jan. 20.
2014. The aforementioned related patent application is herein
incorporated by reference in its entirety.

BACKGROUND

0002 Embodiments of the present disclosure generally
relate to the field of computer networks.
0003 Computer systems often use multiple computers
that are coupled together in a common chassis. The comput
ers may be separate servers that are coupled by a common
backbone within the chassis. Each server is a pluggable board
that includes at least one processor, an on-board memory, and
an Input/Output (I/O) interface. Further, the servers may be
connected to a switch to expand the capabilities of the servers.
For example, the Switch may permit the servers to access
additional Ethernet networks or Peripheral Component Inter
connect Express (PCIe) slots as well as permit communica
tion between servers in the same or different chassis. In addi
tion, multiple Switches may also be combined to create a
distributed network switch.

BRIEF SUMMARY

0004 Embodiments of the present disclosure provide a
computer-implemented method for managing a shared
resource comprising a plurality of objects. The method
includes receiving a first operation specifying a first set of
objects of the plurality of objects, and inserting the first opera
tion in a queue comprising a plurality of lanes corresponding
to the plurality of objects. The lanes that correspond to the
first set of objects receive a first entry associated with the first
set of objects. The method further includes performing the
first operation on the first set of objects, and receiving a
second operation specifying a second set of objects of the
plurality of objects. The method includes inserting the second
operation in the queue, wherein the lanes that correspond to
the second set of objects receive a second entry associated
with the second set of objects. The method includes deter
mining whether at least one of the lanes that correspond to the
second set of objects contains the first entry associated with
the first set of objects that precedes the second entry. The
method includes, responsive to determining none of the lanes
that correspond to the second set of objects contains the first
entry that precedes the second entry, performing, by opera
tion of one or more processors, the second operation on the
second set of objects in parallel with the first operation.
0005 Embodiments of the present disclosure further pro
vide a computer program product and a system for perform
ing an operation for managing a distributed network Switch
having a plurality of ports. The operation includes receiving a
first operation specifying a first set of ports of the plurality of
ports, and inserting the first operation in a queue comprising
a plurality of lanes corresponding to the plurality of ports. The
lanes that correspond to the first set of ports receive a first
entry associated with the first set of ports. The operation
further includes performing the first operation on the first set
of ports, and receiving a second operation specifying a second
set of ports of the plurality of ports. The operation includes

Jul. 23, 2015

inserting the second operation in the queue, wherein the lanes
that correspond to the second set of ports receive a second
entry associated with the second set of ports. The operation
further includes determining whether at least one of the lanes
that correspond to the second set of ports contains the first
entry associated with the first set of ports that precedes the
second entry. The operation includes, responsive to determin
ing none of the lanes that correspond to the second set of ports
contains the first entry that precedes the second entry, per
forming the second operation on the second set of ports in
parallel with the first operation.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0006 So that the manner in which the above recited
aspects are attained and can be understood in detail, a more
particular description of embodiments of the present disclo
sure, briefly summarized above, may be had by reference to
the appended drawings.
0007. It is to be noted, however, that the appended draw
ings illustrate only typical embodiments of this present dis
closure and are therefore not to be considered limiting of its
Scope, for the present disclosure may admit to other equally
effective embodiments.
0008 FIG. 1 illustrates a system architecture that includes
a distributed network Switch, according to one embodiment
of the present disclosure.
0009 FIG. 2 illustrates a hardware representation of a
system that implements a distributed network switch, accord
ing to one embodiment of the present disclosure.
0010 FIG. 3 is a flow diagram depicting a method for
managing a distributed network Switch having a plurality of
ports, according to one embodiment of the present disclosure.
0011 FIGS. 4A-4J are block diagrams depicting example
operations on a plurality of ports, according to embodiments
of the present disclosure.
0012 To facilitate understanding, identical reference
numerals have been used, where possible, to designate iden
tical elements that are common to the figures. It is contem
plated that elements disclosed in one embodiment may be
beneficially utilized on other embodiments without specific
recitation. The drawings referred to here should not be under
stood as being drawn to scale unless specifically noted. Also,
the drawings are often simplified and details or components
omitted for clarity of presentation and explanation. The draw
ings and discussion serve to explain principles discussed
below, where like designations denote like elements.

DETAILED DESCRIPTION

0013 As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0014) Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium

US 2015/0205645 A1

may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

0015. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0016 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0017 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0018 Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro

Jul. 23, 2015

cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0019. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0020. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0021. In the following, reference is made to embodiments
of the present disclosure. However, it should be understood
that the disclosure is not limited to specific described embodi
ments. Instead, any combination of the following features and
elements, whether related to different embodiments or not, is
contemplated to implement and practice aspects of the
present disclosure. Furthermore, although embodiments of
the present disclosure may achieve advantages over other
possible solutions and/or over the prior art, whether or not a
particular advantage is achieved by a given embodiment is not
limiting of the present disclosure. Thus, the following
aspects, features, embodiments and advantages are merely
illustrative and are not considered elements or limitations of
the appended claims except where explicitly recited in a
claim(s). Likewise, reference to “the invention' shall not be
construed as a generalization of any inventive Subject matter
disclosed herein and shall not be considered to be an element
or limitation of the appended claims except where explicitly
recited in a claim(s).
0022 Referring now to FIG. 1, FIG. 1 illustrates a system
architecture 100 that includes a distributed network switch
180, according to one embodiment of the present disclosure.
The computer system 100 includes first and second servers
105,106 connected to the distributed network switch 180. In
one embodiment, the first server 105 may include at least one
processor 109 coupled to a memory 110. The processor 109
may represent one or more processors (e.g., microprocessors)
or multi-core processors. The memory 110 may represent
random access memory (RAM) devices comprising the main
storage of the server 105, as well as supplemental levels of
memory, e.g., cache memories, non-volatile or backup
memories (e.g., programmable or flash memories), read-only
memories, and the like. In addition, the memory 110 may
include memory storage physically located in the server 105
or on another computing device coupled to the server 105.
The server 105 may operate under the control of an operating
system (not shown) and execute various computer Software
applications, components, programs, objects, modules, and
data structures, such as virtual machines 111.
(0023 The server 105 may include network adapters 115,
Sometimes referred to as converged network adapters
(CNAS). A converged network adapter may include single
root I/O virtualization (SR-IOV) adapters such as a Peripheral
Component Interconnect Express (PCIe) adapter that Sup

US 2015/0205645 A1

ports Converged Enhanced Ethernet (CEE). Another embodi
ment of the system 100 may include a multi-root I/O virtual
ization (MR-IOV) adapter. The network adapters 115 may
further be used to implement a Fibre Channel over Ethernet
(FCoE) protocol, RDMA over Ethernet, Internet small com
puter system interface (iSCSI), and the like. In general, a
network adapter 115 transfers data using both an Ethernet and
PCI based communication method and may be coupled to one
or more of the virtual machines 111. In particular, Ethernet
may be used as the protocol to the distributed network switch,
while PCI may be used as the protocol to transfer data to/from
main memory to the network adapter 115. Additionally, the
adapters may facilitate shared access between the virtual
machines 111. While the adapters 115 are shown as being
included within the server 105, in other embodiments, the
adapters may be physically distinct devices that are separate
from the server 105.

0024. As shown in FIG. 1, the second server 106 may
include a processor 109 coupled to a memory 110 which
includes one or more virtual machines 111 similar to those
found in the first server 105. The memory 110 of server 106
may include a hypervisor 113 configured to manage data
shared between different virtual machines 111. The hypervi
sor 113 may include a virtual bridge 114 that allows direct
communication between connected virtual machines 111
rather than requiring the virtual machines 111 to use the
bridge elements 120 or switching layer 130 to transmit data to
other virtual machines 111 communicatively coupled to the
hypervisor 113.
0025. In one embodiment, each network adapter 115 may
include a converged adapter virtual bridge (not shown) that
facilitates data transfer between the adapters 115 by coordi
nating access to the virtual machines 111. Each converged
adapter virtual bridge may recognize data flowing within its
domain (i.e., addressable space). A recognized domain
address may be routed directly without transmitting the data
outside of the domain of the particular converged adapter
virtual bridge.
0026. Each network adapter 115 may include one or more
Ethernet ports that are coupled to one of the bridge elements
120, also referred to herein as bridging elements. Addition
ally, to facilitate PCIe communication, the server may have a
PCI Host Bridge 117. The PCI Host Bridge 117 may connect
to an upstream PCI port 122 on a switch element in the
distributed network switch 180. The data is then routed via the
switching layer 130 to the correct downstream PCI port 123
which may be located on the same or different switch module
as the upstream PCI port 122. The data may then beforwarded
to the PCIe device 152.

0027. The distributed network switch 180 includes a plu
rality of bridge elements 120 that may be located on a plural
ity of a separate, though interconnected, hardware compo
nents. In one embodiment, the bridge elements 120 may be
configured to forward data frames throughout the distributed
network switch 180. The bridge elements 120 forward the
data frames transmitted by the network adapter 115 to the
switching layer 130. The bridge elements 120 may include a
lookup table that stores address data used to forward the
received data frames. For example, the bridge elements 120
may compare address data associated with a received data
frame to the address data stored within the lookup table. Thus,
the network adapters 115 do not need to know the network
topology of the distributed network switch 180. From the
perspective of the network adapters 115, the distributed net

Jul. 23, 2015

work switch 180 acts like one single switch even though the
distributed network switch 180 may be composed of multiple
Switches that are physically located on different components,
Such as on different chassis or racks. Distributing the opera
tions of the network switch 180 into multiple bridge elements
120 provides redundancy in case of failure.
0028. Each of the bridge elements 120 may be connected
to one or more transport layer modules 125 that translate
received data frames to the protocol used by the switching
layer 130. For example, the transport layer modules 125 may
translate data received using either an Ethernet or PCI com
munication method to a generic data type (i.e., a cell) that is
transmitted via the switching layer 130 (i.e., a cell fabric).
Thus, the switch modules comprising the distributed network
switch 180 are compatible with at least two different commu
nication protocols—e.g., the Ethernet and PCIe communica
tion standards. That is, at least one Switch module has the
necessary logic to transfer different types of data on the same
switching layer 130.
0029. In one embodiment, the switching layer 130 may
comprise a local rack interconnect (LRI) which connects
bridge elements 120 located within the same chassis and rack,
as well as links that connect to bridge elements 120 in other
chassis and racks. After routing the cells, the Switching layer
130 may communicate with transport layer modules 126 that
translate the cells back to data frames that correspond to their
respective communication protocols. A portion of the bridge
elements 120 may facilitate communication with an Ethernet
network 155 which provides access to a LAN or WAN (e.g.,
the Internet). Moreover, PCI data may be routed to a down
stream PCI port 123 that connects to a PCIe device 152. The
PCIe device 152 may be a passive backplane interconnect, as
an expansion card interface for add-in boards, or common
storage that can be accessed by any of the servers connected
to the distributed network switch 180.
0030. An Input/Output Management Controller (IOMC)
140 (i.e., a special purpose processor) is coupled to at least
one bridge element 120 which provides the IOMC 140 with
access to the switching layer 130. One function of the IOMC
140 may be to receive commands from an administrator to
configure the different hardware elements of the distributed
network switch 180. In one embodiment, these commands
may be received from a separate Switching network from the
switching layer 130. Although one IOMC 140 is shown, the
system 100 may include a plurality of IOMCs 140. In one
embodiment, IOMCs 140 may be arranged in a hierarchy
such that one IOMC140 is chosen as a master while the others
are delegated as members. In another embodiment, the
IOMCs 140 may be arranged in a peer-to-peer layout where
the IOMCs 140 collaborate to administer and manage the
elements of the distributed network switch 180.

0031 FIG. 2 illustrates a hardware representation of a
system 200 that implements the distributed network switch
180, according to one embodiment of the present disclosure.
As shown, the system 200 includes a distributed network
switch 180 having a plurality of switch modules 202,204,206
and one or more IOMCs 140. The switch modules may
include a logical or physical grouping of the bridge elements
120 shown in FIG.1. The Switch modules 202,204, 206, also
referred to as a chassis interconnect elements (CIE), are hard
ware components (e.g., PCB boards, FPGA boards, system
on a chip, etc.) that provide physical Support and connectivity
between the network adapters of the servers 210, 212,214 and
the bridge elements 120 contained within the switch modules

US 2015/0205645 A1

202, 204, 26. The switch modules 202, 204, 206 may be
interconnected by a switching layer 130, described above. In
Some embodiments, a Switch module may route data sent
using either Ethernet or PCI communication protocols to
other switch modules within the distributed network switch
180.

0032. In one or more embodiments, the switch modules
202, 204, 206 include one or more ports 208 (e.g., 208-1,
208-2, 208-3, 208-11, 208-12) that are used to route
traffic between devices connected to the Switch modules. In
Some embodiments, each of the ports 208 may be assigned a
unique identifier, e.g., port “1”, port “2, etc. that identifies
the port within the distributed network switch 180. The ports
208 may be configured similarly to the ports 122, 123 of FIG.
1, and may be characterized as "upstream” ports (i.e., host
side) that connect to one of servers 210, 212, 214 or as
"downstream” ports (i.e., adapter-side) that connect to one or
more devices (e.g., PCIe devices 152) that expands the con
nectivity or capabilities of the system 200. In some embodi
ments, the distributed network switch 180 may act as a PCIe
switch fabric that enables servers 210, 212, 214 connected at
upstream ports 208 of the distributed network switch to
access PCIe devices connected at the downstream ports. In
the embodiment shown, one or more PCIe expansion units
216, 218 are connected to the downstream ports and may
provide, for example, additional storage or memory which
each server 210, 212, 214 may access via the switch modules.
0033. In some embodiments, the ports 208 may be con
nected to each other in various different configurations, as
well as different settings (e.g., speed, bandwidth, direction,
etc.) for routing PCIe traffic between servers 210, 212, 214
and PCIe expansion units 216, 218. For example, an upstream
port of a Switch module may be connected to a downstream
port of the Switch module, as shown by the data path connect
ing the port 208-4 to the port 208-5 of the switch module 204.
In another example, multiple upstream ports of a Switch mod
ule may be connected to a single downstream port of the same
Switch module, as depicted by the data path connecting ports
208-1, 208-2 of the Switch module 202 to the downstream
port 208-3. In yet another example, an upstream port of a
Switch module may be connected to a downstream port of a
different switch module within the distributed network
switch, as shown by the data path connecting the port 208-11
of the switch module 206 and the port 208-5 of the switch
module 204. In some cases, a port of a Switch module may
even be in-active or disconnected from any device at a given
point in time, as depicted by the port 208-12.
0034. In one embodiment, the distributed network switch
includes a management controller, referred to herein as an
IOMC 140, for managing and configuring the different hard
ware resources in the system 200. While FIG. 2 depicts a
single IOMC 140 within the distributed network switch 180,
it should be recognized that each Switch module may include
a respective IOMC responsible for managing one or more
corresponding switch modules. The IOMC 140 may be con
figured to perform one or more connection, configuration,
and other management-related operations on a set of ports
208.

0035. For example, the IOMC may perform a connection
operation on a set of ports 208 that connects upstream and
downstream ports in the same Switch module (e.g., 202) or in
different switch modules (e.g., 202 and 204) with various
different configurations, described above. In another
example, the IOMC may perform a configuration operation

Jul. 23, 2015

on a set of ports 208 that configures settings such as connec
tion speed, bandwidth, port orientation (e.g., upstream/down
stream), and activated/inactivated Status. In many cases, each
port 208 may be operated on by a single process at a given
time. Conventional locking mechanisms lock every port set
and process the port sets serially, which can be inefficient and
costly in time and computing resources.
0036. Accordingly, embodiments described herein pro
vide a technique for performing operations on a target set of
ports, where multiple sets of ports are queued while waiting
for processing. In one or more embodiments, when a set of
ports is passed into the IOMC code to be processed, the set of
ports will be organized into “lanes, with each lane corre
sponding to a unique port. If any of the lanes overlap, Subse
quent port sets may be blocked from proceeding until the
preceding lanes are cleared. If no lanes overlap, Subsequent
port sets may be allowed to be processed in parallel.
0037. Some sets to be processed may contain one or more
of the same port (i.e., there exists a particular port in common
between the sets), and are referred to herein as joint sets.
Some sets to be processed may contain none of the same ports
(i.e., there exists no particular port in common between the
sets), and are referred to herein as "disjoint sets. According
to embodiments described herein, joint sets are processed
serially with Subsequent sets waiting for a prior set to com
plete, and disjoint sets are processed in parallel, thereby
greatly increasing throughput of processing. While tech
niques of the present disclosure are described in relation to
performing operations on sets of operations, it should be
recognized that aspects of the present disclosure may be
extended to operations on any set of objects or shared
resources, particularly operations that require a set of shared
resources to be operated on at once.
0038 FIG.3 is a flow diagram depicting a method 300 for
managing Switch modules of a distributed network Switch,
according to one embodiment of the present disclosure. As
shown, the method 300 begins at block 302, the IOMC 140
receives an operation specifying a set of ports of the plurality
of ports. In some embodiments, the operation may specify the
set of ports using the unique port identifiers (e.g., port '0'.
port “11”) assigned to each port within the distributed net
work switch.

0039. At block 304, the IOMC inserts the received opera
tion into a queue having a plurality of lanes, where each lane
corresponds to a unique port. The lanes that correspond to the
set of ports specified for the operation receive an entry asso
ciated with the set of ports. In some embodiments, the entries
in the lanes associated with the set of ports may be linked by
a common identifier, Such as a set identifier. In one imple
mentation, each lane of the queue may be represented by a
data structure stored in a memory of the IOMC and managed
by the IOMC.
0040. At block 306, the IOMC determines whether any
lanes corresponding to the set of ports are blocked. A lane is
blocked for a given set if the lane contains an entry from a
preceding set of ports, for example, from another operation
received prior to block 302. The preceding set of ports may
either be also waiting in the queue, or are being currently
processed (and therefore locked). In one embodiment, the
IOMC determines whether any of the lanes that correspond to
the set of ports for the received operation contains a preceding
entry, i.e., an entry that is “ahead of the entry associated with
the received operation. If so, the set of ports is deemed a joint
set in relation to other sets of ports (associated with other

US 2015/0205645 A1

operations). Conversely, responsive to determining none of
the lanes that correspond to the set of ports associated with the
received operation contain a preceding entry, the set of ports
is deemed a disjoint set in relation to other sets of ports.
0041 Responsive to determining any of the lanes that
correspond to the set of ports associated with the received
operation contains a preceding entry, at block 308, the IOMC
waits until the lane queues associated with the set of ports are
no longer blocked. In some embodiments, the IOMC may
perform busy-waiting and loop back to block 306 to check if
the state of the blocked lane queues has changed. Otherwise,
at block 310, responsive to determining none of the lane
queues of the set of ports is blocked (i.e., the set of ports is
deemed a disjoint set), the IOMC performs the requested
operation on the specified set of ports, which may include
processing the specified set of ports in parallel to processing
the other sets.

0042. At block 312, upon completion of the operation on
the specified set of ports, the IOMC removes the set of ports
from the corresponding lane queues, thereby allowing any
Subsequent port sets that overlap to proceed. In some embodi
ments, the IOMC may remove entries associated with the
processed set of ports from lanes corresponding to the pro
cessed set of ports. It should be recognized that the removal of
entries from lanes of the queue may result in other sets of
ports, which may have been previously blocked by the now
processed set of ports, to proceed with processing, examples
of which are depicted in FIG. 4A-4J below.
0043 FIGS. 4A-4J are block diagrams depicting example
operations on a plurality of ports, according to embodiments
of the present disclosure. FIG. 4A (as well as FIGS. 4B to 4I)
illustrates a queue 400 having a plurality of lanes 402 (iden
tified as lanes “1” to “12) that each correspond to a unique
port. For example, the lane “1” may correspond to a first port
208-1 of the plurality of ports 208, the lane'2' corresponds to
a second port 208-2 of the plurality of ports, and so forth.
FIGS. 4A to 4J depict a “Waiting region 404 of the lane
queues that represents a state in which a set of ports is waiting
to be processed (i.e., due to at least one overlapping set of
ports that precedes the waiting set). FIGS. 4A to 4J further
depict a “Processing/Blocking region 406 that represents a
state in which a set of ports is currently being processed (e.g.,
by IOMC 140), and in which the set of ports may be blocking
other sets of ports from being processed.
0044 As shown in FIG. 4A, the IOMC 140 receives a first
operation to be performed on a specified set W of ports {1, 3,
5, 7} of the plurality of ports {1-12}. For example, the IOMC
140 may receive instructions to perform a connection opera
tion that establishes connections between ports 1,3 and ports
5, 7 for routing PCIe traffic within the distributed network
switch. The IOMC 140 inserts the operation into the queue
400 by inserting an entry (“W) associated with the set W of
ports into the lanes 1, 3, 5, and 7 corresponding to ports 1, 3,
5, 7.
0045. As shown in FIG. 4B, the IOMC140 determines that
none of the lanes {1,3,5,7 corresponding to the specified set
W of ports are blocked. As such, the IOMC 140 performs the
first operation on the specified set W of ports {1, 3, 5, 7, as
represented by moving the entries W from the waiting region
404 of the lanes 1, 3, 5, and 7 to the processing/blocking
region 406 of the lanes 1, 3, 5, and 7. In some embodiments,
the IOMC 140 places a lock on each of the specified set of
ports during performance of the operation.

Jul. 23, 2015

0046. As shown in FIG. 4C, the IOMC 140 receives a
second operation to be performed on a specified set X of ports
{2, 4} of plurality of ports {1-12. By way of example, the
IOMC may receive instructions to perform an operation that
modifies one or more configuration settings of the ports 2 and
4. Such as setting a port speed of 2.5-Gbps on ports 2 and 4.
The IOMC 140 inserts the second operation into the queue by
inserting an entry (“X”) associated with the port set X into the
lanes 2 and 4 corresponding to ports 2 and 4.
0047. As shown in FIG. 4D, the IOMC 140 determines
that none of the lanes {2,4} having the entry X are blocked,
i.e., are preceded by another entry associated with other sets
of ports. Specifically, none of the lanes {2, 4} contains a
preceding entry associated with the set W of ports from the
earlier-received first operation. As such, the IOMC 140 may
perform the second operation on the specified set X of ports
{2,4} in parallel with the first operation on the set W of ports.
Performance of the second operation is represented in FIG.
4D by moving the entries X from the waiting region 404 of the
lanes 2 and 4 to the processing/blocking region 406 of the
lanes 2 and 4, which still contains the entries W. representing
processing the port set W while processing the port set X.
0048. As shown in FIG.4E, the IOMC 140 receives a third
operation to be performed on a specified set Y of ports {4, 8,
12 of the plurality of ports. The IOMC 140 inserts the third
operation into the queue by adding an entry (“Y”) associated
with the port set Y into lanes 4, 8, and 12 corresponding to the
ports 4, 8, and 12. The IOMC 140 determines that at least one
of the lanes associated with the port set Y contains a preceding
entry associated with another port set, and therefore waits to
execute the third operation. In the example shown, the port set
Y is blocked because lane 4 contains a preceding entry asso
ciated with the port set X and currently being processed.
0049. As shown in FIG. 4F, the IOMC 140 receives a
fourth operation to be performed on a specified set Z of ports
{8, 10} and inserts the fourth operation into the queue, as
depicted by the lanes 8 and 10 (corresponding to ports 8 and
10) receiving an entry (“Z”) associated with the port set Z.
The IOMC determines that at least one lane among the lanes
8 and 10 associated with the port set Z contains an entry
preceding the entry Z, and waits to execute the fourth opera
tion. Specifically, the lane 8 contains an entry associated with
port set Y that precedes the entry associated with the port set
Z. It should be recognized that, even though none of the lanes
associated with port sets W and X (i.e., lanes 1, 2, 3, 4, 5, 7)
overlap with the lanes {8, 10} associated with the port set Z.
the fourth operation Zawaits processing because the fourth
operation is blocked by the port set Y.
0050. As shown in FIG. 4G, the IOMC 140 completes the
second operation specifying the set X of ports and removes
entries associated with the set X of ports from the lanes of the
queue. FIG. 4G illustrates the entries X removed from the
processing/blocking region 406 of the lanes 2 and 4, repre
senting the processing of port set X has been completed. It
should be recognized the first set W of ports may still be
processing during this time, and lanes containing the port set
W remain blocked.
0051. As shown in FIG. 4H, responsive to determining
that the lanes that correspond to the set Y of ports are no
longer have preceding entries, i.e., are no longer blocked, the
IOMC 140 proceeds to perform the third operation and pro
cesses the set Y of ports. The entries Y contained in lanes 4, 8,
and 12 are moved from the waiting region 404 to the process
ing/blocking region 406. The entries Z contained in lanes 8

US 2015/0205645 A1

and 10 move to the head of the queue and continue to wait to
be processed because lane 8 is occupied by the port set Y
being processed.
0052. As shown in FIG. 4I, the IOMC 140 completes the
third operation specifying the set Y of ports and removes the
entries associated with the port set Y from the lanes of the
queue, specifically, lanes 4, 8, and 12. After the port set Y has
completed processing, the IOMC 140 may proceed to process
the port set Zas the next entry within the queue 400 not having
any blocked lanes, as shown in FIG. 4.J. While the queue 400
is described herein applying a first-in-first-out (FIFO) order
for selecting a next set of ports to process, it should be rec
ognized that other scheduling policies may be used, such as a
priority queue having dynamically determined priorities
associated with one or more lanes.
0053. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0054 While the foregoing is directed to embodiments of
the present disclosure, other and further embodiments of the
present disclosure may be devised without departing from the
basic scope thereof, and the scope thereof is determined by
the claims that follow.
What is claimed is:
1. A computer-implemented method for managing a shared

resource comprising a plurality of objects, the method com
prising:

receiving a first operation specifying a first set of objects of
the plurality of objects:

inserting the first operation in a queue comprising a plural
ity of lanes corresponding to the plurality of objects,
wherein the lanes that correspond to the first set of
objects receive a first entry associated with the first set of
objects;

performing the first operation on the first set of objects;

Jul. 23, 2015

receiving a second operation specifying a second set of
objects of the plurality of objects;

inserting the second operation in the queue, wherein the
lanes that correspond to the second set of objects receive
a second entry associated with the second set of objects;

determining whether at least one of the lanes that corre
spond to the second set of objects contains the first entry
associated with the first set of objects that precedes the
second entry; and

responsive to determining none of the lanes that corre
spond to the second set of objects contains the first entry
that precedes the second entry, performing, by operation
of one or more processors, the second operation on the
second set of objects in parallel with the first operation.

2. The method of claim 1, further comprising
responsive to determining at least one of the lanes that

correspond to the second set of objects contains the first
entry that precedes the second entry, waiting until
completion of the first operation to perform the second
operation.

3. The method of claim 1, further comprising:
responsive to completion of the first operation, removing

the first entry associated with the first set of objects from
the lanes of the queue; and

performing the second operation serially with the first
operation.

4. The method of claim 3, further comprising:
receiving a third operation specifying a third set of objects,

wherein the third set of objects is disjoint from the first
set of objects;

inserting the third operation in the queue, wherein the lanes
that correspond to the third set of objects receive a third
entry associated with the third set of objects; and

responsive to determining at least one of the lanes that
correspond to the third set of objects contains a preced
ing entry, waiting until the preceding entry is removed
from the lane to perform the third operation.

5. The method of claim 1, wherein the plurality of objects
comprises a plurality of ports of a distributed network switch,
each port configured for establishing connections according
to a predefined interface.

6. The method of claim 5, wherein the first operation com
prises an operation to establish a connection between an
upstream port of the plurality of ports and a downstream port
of the plurality of ports.

7. The method of claim 5, wherein the first operation com
prises an operation to modify a configuration setting of the
first set of ports.

