Abstract: An interference fit fastener (fig.1) and method of fabricating same is described.
Title
An interference fit fastener and method of fabricating same.

Field of the Invention
The present invention relates to interference fit fasteners and in particular to the fabrication of interference fit fasteners or couplings using laser micro-profiling techniques.

Background
An interference fit, also known as a press fit or friction fit, is a fastening or coupling between two parts which is achieved by friction after the parts are pushed together, rather than by any other means of fastening. Typically, for metal parts in particular, the friction that holds the parts together is often greatly increased by compression of one part against the other, which is dependent on the compressive strengths of the materials the parts are made from.

Metal to metal and metal to composite joining technologies currently used include the use of mechanical, fusion, and interference fit processes. Typical known fastening methods include press-fitting (for example, with knurled pins), shrink-fitting, nuts and bolts, screws, and rivets. Fastening of two parts through an interference fit is generally achieved by shaping the two mating parts so that one or the other, or both, slightly deviate in size from a nominal set dimension. The result is that both parts elastically, and in many cases plastically, deform slightly in order to fit together, creating a high compressive force. To break the bond formed by the interference fit there is a requirement for very high loads due to the high frictional forces between the two mating surfaces. In certain circumstances even large amounts of torque cannot turn one of them relative to the other; they are locked together and turn in unison.

Despite potential issues involved in the separation of parts that are mated or coupled to one another using an interference-fit fastening due to relative ease of manufacture, and simplicity in design they are a popular method of fastening. These fasteners are widely used in the aerospace and automotive industries via
interference press fit or interference shrink fitting. Press-fit connections, in particular, are widely used within the transportation manufacturing industry for holding structural sections together through an interference fit. Interference shrink fitting is achieved either by heating of the hole section or cooling of the pin section during bonding and allowing subsequent return to a normal operating environmental temperature range to make the bond. Associated problems with these methods include the requirement of a long time for the bonding operation, the need of additional equipment, the creation of excessive plastic deformation, the initiation of materials defects, and potentially reduced bond life times.

It has been shown that shrink-fit joints can produce uneven contact pressures within regions of poor conformity leading to early joint failure, usually due to fatigue. In comparison, press-fit connections undergo plastic smoothing of long wavelength roughness, which leads to more conforming pin/hole interfacial surfaces. As a result, better mechanical joining strengths and improved joint life times can be achieved.

Press fit fastening is based on a frictional shaft-hub type of connection, produced by forcing at high pressures an oversized pin or dowel into mated drilled holes, commonly referred to as the compliant pin technique. An example of this type of joint is where the connection fit is especially critical is in the case of a shaft-bearing type configuration which is used to transmit torque. Currently these techniques require very high insertion forces, due to the tight tolerances and associated friction. As a result, even without misalignment, the process can result in joined components which suffer excessive plastic deformation. This plastic deformation can lead to two main problems: physical damage leading to premature failure of components; and additional expense for assembly and disassembly.

Current commercial methods for achieving these interference-fit connections are expensive because of the tight tolerances and high insertion forces needed. Known systems do not facilitate assembly, disassembly for maintenance, or de-commissioning. Furthermore, as indicated above, the severe plastic deformation associated with interference-fit connections can lead to premature joint failure.
Typically these interference fit assemblies also require access to both sides of the joint and tend to be multi-component in construction.

While each of these disclosures provide solutions and have application in specific environments there continues to exist needs and desires for alternative methodologies of forming interference fit configurations. For these reasons and others, there are still problems that need to be addressed in the context of interference fit fasteners.

Summary

These and other problems are addressed by the system and method of the present invention which relates to a novel, rapid, laser micro-profiling technique for producing interference fit fasteners and fasteners fabricated using such techniques.

In accordance with the system and method of the present invention, a highly focused laser is used to alter the surface texture of a metal component such as a pin, to produce an interference-fit fastening element that will be highly secure when inserted into a corresponding hole. Only the pin is textured. The hole or socket is drilled to a predetermined diameter to ensure control over the amount of interference engagement, once the pin is located therein. The pin may have a curved or arcuate outer surface which may be textured about the circumference of the pin by a rotation of the pin relative to the laser that is used to fabricate the pattern on the pin. It will be appreciated that surface geometries other than curved could be used.
A method per the present teaching enables control of the laser parameters so as to provide precise control over the features of the surface texturing, thereby giving a high degree of control over the bond strength of the joint provided between the fastening element and the corresponding aperture adapted for receiving the fastening element and for engaging therewith in an highly controlled interference-fit.

Accordingly there is provided a method and element as defined in the independent claims. Advantageous features are in the dependent claims.

These and other features of the present invention will be better understood with reference to the following drawings in which are shown, by way of example only, aspects of the present invention:

Brief Description Of The Drawings

The present invention will now be described with reference to the accompanying drawings in which:

- Figure 1 is a perspective view of a 10mm diameter stainless steel (SS) pin with a plurality of differently textured surfaces prepared on portions along the length of the pin to demonstrate a number of examples of the various textures that can be produced;
- Figure 2 is an SEM image of a portion of a pin textured in accordance with the present teaching;
- Figure 3 is a graph indicating how laser power and % overlap can be varied to achieve different pin diameters in accordance with the teaching of the present invention;
- Figure 4 is a graph indicating how laser parameters can be used to give different pull out forces (resulting from the induced roughness and pattern texture direction) provided in accordance with the teaching of the present invention;
- Figures 5 (a) and (b) are SEM images of 316 L stainless steel substrates showing two different patterns produced in accordance with the present teaching;
- Figure 6a and Figure 6b show examples of different pins fabricated in accordance with the present teaching;
Figure 7 is a graph showing the relationship control between average surface roughness and laser irradiation energy density;

Figure 8 is a schematic showing components that may be used in fabricating of a surface textured pin per the present teaching;

Figures 9 (a), (b) and (c) show a sample as processed by a 200 W CO2 laser operating at 100 Hz and -50% overlap;

Figure 10A and 10B show in schematic form a pin fabricated through the use of laser surface texturing in accordance with the present teaching, with the sample surface modified to a bigger diameter due to the laser beam melting and ablation of material and the subsequent solidification of melted material- Figure 10A; and Figure 10B showing cross section view of pin, showing peak to peak width and peak to valley height;

Figure 11 (a) shows the results of a pattern fabricated with zero % overlap and Figure 11 (b) shows the results of a pattern with 20% overlap laser scanning;

Figure 12 is a schematic diagram showing the three possible degrees of overlap, including zero overlap, positive overlap and negative overlap;

Figure 13 is a diagram showing the resultant laser beam linear scanning speed from the combined effect of the translational and tangential scanning speeds on a cylindrical surface;

Figure 14 shows SEM and microscope pictures of an example of a SST 304 pin surface as processed with a laser operating at 700 W, 1500 Hz and with -10% overlap between the laser spots; and

Figure 15 shows examples of samples produced in a defined environment of 4 bar of Argon gas and various processing conditions with Figure 15(a) showing the pattern resultant from use of a 500 W laser operating at 500 Hz and with +20% overlap between the laser spots, Figure 15(b) showing the pattern resulting from the use of a 500 W laser operating at 1500 Hz and -20% overlap and Figure 15(c) shows a pattern resultant from use of a laser operating at 300W, 100 Hz and with 0% overlap;

Figure 16 is a schematic showing fabrication of a laser pattern at the surface, with the distance between successive shots (S), the offset (R), the laser spot diameter (d), spot overlap (O), and the pattern angle (θp);

Figure 17 shows examples of different textures and Moire patterns that can be established by the combination of the two motions- the rotational motion of the pin
and the longitudinal motion of the laser with the effect of energy density on the surface treatment of a pin exposed to (a) 5.24 J/mm², (b) 10.48 J/mm² and (c) 20.96 J/mm².

Figure 18 is an example of a surface treated by a laser of (157 kW/mm²) irradiance and (67 µs) residence time.

Detailed Description Of The Drawings

Exemplary arrangements of the system and method provided in accordance with the teaching of the present invention will be described hereinafter to assist with an understanding of the benefits of the present invention. It will be appreciated and understood that the following is exemplary of the type of surface fixation that could be provided and is not intended to limit the present invention to any one specific arrangement as modifications could be made to that described herein without departing from the scope of the invention.

A method per the present invention is performed by laser micro-profiling of a substrate surface to form the fastening member such as a pin which has application in the formation of an interference fit fastener. A pin per the present teaching may be used in combination with a corresponding receiver to provide an interference fit coupling or fastener. A process per the present teaching is effective for a wide range of pin diameters (e.g. from 0.1 mm to tens of meters in diameter), however most applications are expected to fall within the typical pin diameter ranges of 3 mm to 100 mm in diameter.

The method of the present invention, which is also referred to by the inventor as "Laser Surface micro-Profiling" (LSmP), is achieved by scanning a substrate beneath a pulsating laser beam or by scanning the pulsating laser beam over the surface (e.g. via galvanometer) to achieve localised melting and or ablation directly on the pin material surface. The method of the present invention provides surface micro-profiles based around patterns which can be well-defined Moire patterns and pre-determined in form. The combination of this novel method of producing a pre-determined pattern on a substrate by micro-profiling finds application across a
number of industries including in the defined interference fit joints that are used within the transportation industry.

In accordance with the teaching of the present invention and as shown in Figure 8, a high powered laser 800, such as a CO2 laser, is focused on the surface of a metal pin 810, which is mounted for rotation while simultaneously, being moveable linearly so as to expose full coverage of the external surface of the pin, to the laser beam. Controlled laser pulses cause localised melting and re-solidification of the surface of the pin, thereby altering its surface texture. Each laser pulse results in formation of a defined local micro-pattern on the surface of the substrate with the overall patterned surface texture being the result of the interaction between the plurality of individual local micro-patterns formed by the individual pulses. In accordance with the teaching of the present invention, the following key parameters determine the surface profile created on the metal pin: laser power, pulse repetition frequency (PRF), percentage overlap of pulses, residence time, spot size, duration of the laser pulse, and laser wavelength. Using laser texturing the amount of material in contact within the interference region can be controlled by varying the laser process parameters in order to create different surface profile textured patterns. Thus the strength of the fit can be well-defined, and varied by varying the process parameters. For examples as shown in Figure 18 it is possible to provide different textures and Moire patterns that can be established by the combination of the two motions: the rotational motion and the longitudinal motion of the pin with the effect of energy density exposures of (a) 5.24 J/[mm]^2, (b) 10.48 J/[mm]^2 and (c) 20.96 J/[mm]^2.

As will be discussed in more detail below, the present inventor has ascertained that particularly process parameters may provide advantageous results. Whilst not intending to limit the present teaching to any one particular set of process parameters, preferred overlap ranges from -50% to +50%, preferred power ranges from 0.01 W to 15 kW, pulse repetition frequency (PRF) from 50 Hz to 20 kHz, and linear translation speeds from 1.0 x 10^-7 mm/s to 10 m/s have been identified as operational ranges for this process. Higher gas pressure levels of protective gas produced better control of surface profile on metal surfaces due to reduced oxidation and controlled cooling rate. Gas pressures within the range of 0 bar to 10 bar are
effective. The process laser spot size could be varied according to the present teaching over a wide range (e.g. from 0.001 to 10 mm in diameter), however most applications are expected to fall within the typical spot size range of 0.01 to 1 mm in diameter.

In particular, control of these parameters, provides repeating patterns both circumferentially and longitudinally with a definable overlap along the pin. This results in the production of specific Moire patterns on the surface of the pin which are extremely uniform in dimension, reproducible and can be pre-defined. The pin can then be inserted into a corresponding hole as an interference-fit fastener. The strength of the interference-fit fastening joint, measured by the force required to remove the pin from the hole, depends on the generated surface profile. By controlling the above indicated key laser parameters, the strength of the fit is controllable, reliable, and reproducible.

Thus, the present teaching advantageously provides a fast and low-cost alternative method to any of the known methods for producing interference-fit joints. The process allows careful control of the surface texturing which provides for more user-friendly assembly of the fastening element with the corresponding hole, due to the well-defined insertion forces, and increased reliability in the joint bond strengths.

A method of producing these Moire texture patterns for control of interface bonding force using the laser per the present teaching may include the following steps which are presented in the context of the surface texturing of a longitudinal surface of a pin having a cylindrical pin geometry. It will be appreciated and understood that numerous alternative pin shapes could equally be subjected to the processing herein described but the specifics of the following steps may vary dependent on the underlying geometries. Accordingly, the process of the present invention comprises the following steps for producing a desired pre-determined pattern on a cylindrical pin shape where the longitudinal surface is to be textured:

1. The pin part to be laser textured is mounted normal to the laser beam propagation direction in a rotational chuck.
2. The pin part is located such that the required laser spot size is achieved on the top surface of the pin.
3. The sample is rotated at a predetermined speed.
4. The laser is set to start pulsing at a specific pulse repetition frequency, PRF, and power and concurrently an inert gas may be passed along the surface during processing to prevent any oxides from forming; this inert and other gas may be used to control the cooling rate.
5. The pin is passed under the pulsing laser been while it is rotating at a set speed. Alternatively, the laser beam path is altered (rather than moving the sample) in order for it to be passed along the length of the part, by a galvanometer for example.
6. Once the pre-determined required length of the pin surface is textured, the laser and part movement is stopped and the sample is released.

The method of the present invention advantageously provides pre-defined Moire pattern designs using carefully controlled parameters associated with the laser beam control and operation. Specific Moire pattern designs provide benefits due to at least the following:

- Achieving a definable level of bonding force by controlling volume of interfering profile and shape/direction of micro-texture;
- Improvement in repeatability of bonding force achieved;
- More defined fatigue life times of produced joints;
- Highly repeatable control over pin micro-texture, direction of texture, and the amount of interaction between the mating surfaces;
- Higher control than previously available over interference fit assembly force and pull out force (i.e. bond strength);
- Definable levels of elastic and plastic strain for control of material deformation and joint life times;
- The ability to make the connection in a simple, user-friendly manner due to the one component design and the ability to make the connection using
access at either side of the joint, as access is sufficient from only one side;
and
• Low cost of producing the interference fit connecting member.

Significantly, a process per the present teaching provides higher control, precision, and regularity of the surface pattern can be defined to cause less severe plastic deformation which consequently results in longer joint life times. The method of the present invention requires access only from one side for insertion or removal, providing an easier and more user friendly joint implementation technique. The lack of requirement for heating/cooling, welding, adhesives, and other additional equipment or processes can make this method relatively fast and low-cost.

Examples of products that can be produced using the system and method of the present invention include, for instance, laser-processed interference-fit pins and component sections in order to join two structural sections with defined insertion forces and bonding strengths. It will be appreciated that end use applications will be those that require or benefit from the use of an interference fit fastener. These fasteners are widely used in automotive and aerospace industries. The amount of material in contact between the two surfaces will be a key factor in determining the strength of the joint and as a result the actual specifics of the patterns that are provided on the pin surface are dependent on the specifics of the required strength of the joint.

Referring now to Figure 1, an example of six different Moire patterned micro-profiles are provided at separate locations longitudinally spaced along a 100 mm long stainless steel pin. As is evident from an inspection of this part, a method per the present teaching provides very highly defined micro-profiling which is not heretofore known and certainly not heretofore known in interference fit, e.g. press-fit, connections.
The method of the present invention produces surface profiles not only with defined repeating profiles and root mean square roughness in any one direction but can also produce a pre-definable directionality within these profiles. The method of the present invention is a fast micro-profiling process which provides greater control over the texture depth, regularity, and directionality compared to alternate mechanical texturing techniques. The six examples of differing surface textures shown along the length of the pin in Figure 1 clearly establishes that the patterning can be perpendicular, parallel and at varying angles to the main pin axis. This ability of the method of the present invention to control the precision and repeatability of the surface profile allows in a much more exact manner control of the subsequent joint assembly and disassembly load levels.

Thus the present invention overcomes the shortcomings of the known press-fit fastening connections. In comparison with conventional technologies, the present invention provides higher control, precision and repeatability over the surface profile and profile pattern. By controlling the percentage overlap of laser spot in the longitudinal and circumferential directions, pre-determined defined Moire patterns are generated on the pin surface, as shown in Figure 1. Figure 2 gives an example from SEM analysis of one such surface pattern from which it can be seen that the results of the laser patterning are well defined structures formed on the outer surface of the pin.

Figure 3 shows how variations in laser power and pulse overlap can be used to define the micro-profile pattern height and hence diameter of the pin. In these tests carried out, the starting 10 mm stainless steel pin diameter was textured to give final pin diameters between 10.1 and 11 mm. Variation in insertion and pull out forces between 1 and 10 kN were recorded for insertion of these pins into a hole diameter of 10.1 (+/-0.02 mm), as shown in Figure 4. Five repetitions of samples (with pin and mating hole diameter) were tested in order to produce the 95% confidence level bars shown in Figures 3 and 4.
The results have shown that the process is very repeatable and that the bond strength can be set simply by setting the laser processing parameters. The process of the present invention is highly repeatable and provides high levels of control over pin diameter, direction of texture, the amount of interaction between the mating surfaces, and ultimately higher control than previously available. From the testing done so far the bond strengths are very variable from approximately 0.001 N to 30 kN, depending on the texture imparted from the laser processing. The 30 kN load level is high load value. It will be appreciated, that the area over which this load is placed would often not be given in specifications for joint connections. However for the sake of reliable comparisons between joint systems, for a 10 mm diameter pin inserted into a mating hole along a 10 mm length of contact in the mating hole, a load area is defined as the interface area between the laser textured pin and the hole. For these exemplary values these dimensions correspond to a cylindrical interface area between the pin and the hole of 0.0031 m² which when tested with various patterned surfaces could provide the above mentioned bond strength. It will be appreciated that it is not intended to limit the present teaching to any one set of load levels as these will depend on the specifics employed.

The effects of laser surface remelting processing conditions on meltpool profile, microstructure, roughness, hardness, and chemical composition were analysed. By regulation of the laser processing parameters it is possible to controllably melt and re-solidify the surface (see the exemplary fabricated parts of figures 5 & 6). Surface profile can be finely controlled with profile height and roughness increasing for increased residence time and energy density. An example of precision and control achievable is shown in Figure 7 where the results of analysis of varying the energy applied by the laser on the resultant surface roughness is illustrated. The control afforded over surface topology is the main benefit of this process in terms of providing a new fastening method. An increase in hardness was achieved for the laser processing conditions relative to the untreated surface. As opposed to a coating process, a benefit of the process of the present invention is that the textured surface is of the same material type to the substrate and thus remain perfectly bonded. Other metals, including titanium and cobalt chrome have also been similarly successfully textured using the process of the present invention.
Many insertion and extraction experiments tests have been conducted using these pins to examine the bounds within which this process will work for slight variations in mating hole size and pin diameter. Power, pulse repetition frequency, percentage overlap of laser spots, and sample translation speeds were varied to allow for precise fine control of the energy density per unit time and per unit area. In testing carried out, 316L stainless steel pins were manufactured with the dimensions of 50mm in length and 10mm in diameter. 316L stainless steel cylindrical plates were manufactured with varying inner-hole diameters from 10.0 mm to 10.3 mm (+/-0.02 mm) in steps of 0.1 mm to investigate the levels of force control (insertion, extraction) achievable. The surface of these pins was laser treated and the resultant pins were inserted into the 316L stainless steel cylindrical plates. The insertion and extraction forces were recorded via conventional compression and tensile testing methods according to recognised fastening test standards. In these tests, repeatable control of laser micro-profiled height from 0.1 mm to 1.5 mm as well as the corresponding insertion and pull out forces were tested and the test results show that the process is very repeatable and robust.

An investigation for the threshold of the minimum power needed to melt the surface was performed. Figure 9 shows the effect of a sample processed by 200 W, 100 Hz and -50% overlap. Figure 9 (a) shows the actual image of the processed surface, Figure 9 (b) shows a magnified view of the resulting tracks of individual pulses of the laser beam and Figure 9 (c) shows the a magnified view of an individual pulse and resulting dimensions of the melt pool. It is demonstrated that manipulating laser parameters to higher values in terms of power, frequency and overlap would result in increasing of the melt pool size and the build-up of material on the surface resultant from each laser pulse. From Figure 10 (c), it is clear that in this case the width of the melt pool is equal to the set laser beam focused spot diameter (0.2 mm) indicating that the surface was just melted and that the resulting melt would have cooled very quickly. The length of the melt pool is 300 µm, which is bigger than the spot diameter due to this being the rotational direction where the beam would have resided on the surface for a slightly longer period. While discussed in the context of focused, the patterning process may also work with the laser beam focused on, below and above
the surface. In certain aspects the having the laser beam focused below the surface provides advantageous results but other configurations are also possible within the context of the present teaching.

5 Effect of Percentage Overlap

Overlap percentage is defined as the percentage of overlap between one laser spot diameter and the next laser spot diameter that lands on the surface next to it. Hence, the zero overlap indicates that the laser spots in both circumferential and axial directions are arranged in a tangential manner as shown in the Figure 11a. An example of a positive percentage overlap is indicated in Figure 11b. A negative overlap indicates unprocessed sections on the surface between successive laser spots.

Referring to Figure 11 (a) and (b), the level of overlap can be predetermined by defining the level of PRF, longitudinal and rotational speed as is demonstrated with reference to Figure 17. The PRF value used may be calculated as follows:

1. For the zero overlap scenario:

By dividing the pin's circumference by the spot diameter to find the number of spots per one revolution of the pin we find:

\[n = \frac{\text{number of pulses/rev}}{D/d} \]

where \(D \) is the pin's diameter and \(d \) is the spot diameter. Multiplying by the number of revolutions per second, \(\omega \) (rpm)/60, we get: Pulse Repetition Frequency (PRF) = \(\pi D \omega /60d \).

2. For any overlap percentage scenario:

The value of the overlap must be added to the latter equation to produce:

\[\text{PRF} = \pi D \omega (1+OV\%) / 60d. \]

Hence, the tangential (circumferential) overlap percentage \(OV\% = [(\text{PRF} \times 60 \times d) / (\pi D \omega) - 1] \times 100 \)

where, PRF is the pulse repetition frequency, \(d \) is the spot diameter, \(D \) is the pin sample diameter and \(\omega \) is the rotational speed. The linear translation speed of the stage, \(U \) (mm/s) for the same value of overlap in the axial direction is: \(U = d \omega (1-\)
OV%)/ 60. For further clarification, Figure 12 shows a schematic for the three possible types of overlap on one sample pin surface.

Referring to Figure 12, the speed employed in the calculations of the heat, specific energy and residence time is the total resultant speed of two components. These are, the linear translation speed (mm/sec) and the tangential speed created by the rotation of the pin sample (mm/sec), refer to Figure 13. The latter component can be found as:

Tangential speed = \pi \times \text{pin diameter (mm)} \times \text{rotational speed (rev/sec)}.

Figure 14 shows an example of a stainless steel 304 pin surface as processed with 700 W, 1500 Hz and \(-10\%\) OV. Figure 15 shows samples produced under 4 bar of argon gas and various processing conditions; Figure 15 (a) shows the pattern resulting from the following conditions: 500 W, 500 Hz and 20\% overlap; Figure 15 (b) shows the pattern resulting from the following conditions: 500 W, 1500 Hz and -20\% overlap; Figure 15 (c) shows the pattern resulting from the following conditions: 300 W, 100 Hz and 0\% overlap. Figure 16 shows schematic form a corresponding fabrication of a laser pattern at the surface, with the distance between successive shots (S), the offset \(R\), the laser spot diameter \(d\), spot overlap \(O\), and the pattern angle \(\Theta_p\) being parameters that are usefully used to understand the relationship between individual spot arrangements. Figure 17 shows examples of different textures and Moire patterns that can be established by the combination of the two motions- the rotational motion of the pin and the longitudinal motion of the laser with the effect of energy density on the surface treatment of a pin exposed to (a) 5.24 J/[mm \(^2\)], (b) 10.48 J/[mm \(^2\)] and (c) 20.96 J/[mm2]. Figure 18 is an example of a surface treated by a laser of (157 kW/mm2) irradiance and (67 \(\mu\)s) residence time.

As indicated above, the system and method of the present invention finds application in the transportation industries, including manufacturers of aerospace transportation, automobiles, buses, and trains. Interference-fit pins are used extensively in the transportation industry. Their uses range from small pins for locking aluminium to composite components, to much larger pins for holding wings and tail fins of aeroplanes to the main spaceframe. While the technology works very well once in place, in many instances shrink fits are used either by heating the outer region or by
cooling the pin section via liquid nitrogen. As mentioned above, this shrink fit methodology has known associated problems resulting in joints of lower life times and higher related costs (time and resources). Transportation industries are continuously investigating new methods to reduce these extensive costs.

Technology development is required which will provide known insertion and removal forces for these press interference fits whilst assuring operational reliability.

The present invention provides a method and a system for the surface micro-profiling of interference pins used for connectors within and across a number of industries including the transportation industry in order to replace known fastening devices and methods. Thus the present invention provides a new joining system that is user-friendly which requires known force levels for assembly and disassembly. The method of the present invention provides a laser micro-profiling method of pins for press-fit joints and has the advantage of resulting in a relatively fast, low-cost and highly reliable solution for the fixation and disassembly to a wide range of range of connection requirements across industries such as the transportation industry including aeronautical and automotive.

Laser surface Treatment and Laser Parameters:

Lasers have several advantages over the conventional techniques that are normally used in material processing. These include:

- The ease with which the beam power can be controlled by regulating the current through the electrical discharge.
- Minimal contamination of the process.
- Ability to manipulate the beam into ordinarily inaccessible areas using mirrors and fiber optic cables.
- Minimal heat-affected zone and distortion.
- Non-contact nature of the process.

The words comprises/comprising when used in this specification are to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
Claims

1. A method of fabricating an interference fit fastening element by forming a pattern within the surface of the element, the method comprising:
 mounting the element for rotational and longitudinal movement relative to a laser; and
 moving the element in both a longitudinal and rotational direction relative to the laser while concurrently irradiating a surface of the element with a plurality of laser pulses, each pulse effecting a localised melting and re-solidification of the surface of the element, the resultant pattern from the plurality of pulses extending about the circumference of the element in both a longitudinal and transverse direction.

2. The method of claim 1 wherein each laser pulse effects formation of a micro-profiled grooved surface.

3. The method of claim 1 or 2 wherein the plurality of laser pulses effect formation of a Moire pattern on the surface of the element.

4. The method of any preceding claim wherein each pulse forms a defined pattern on the surface, the method further comprising controlling overlap between the defined pattern provided by neighbouring pulses.

5. The method of claim 4 wherein the overlap is within the range of -50% to +50%.

6. The method of any preceding claim wherein the laser is operated in power ranges from 0.01 W to 15kW.

7. The method of any preceding claim wherein the laser has a pulse repetition frequency from 50Hz to 20 kHz.

8. The method of any preceding claim wherein the element and the laser are operably moved relative to one another at linear translation speeds in the range 1.0 x 10^-7 mm/s to 10m/s.

9. The method of any preceding claim comprising providing the element within a controlled environment during the irradiation of the element.

10. The method of claim 9 wherein the controlled environment is within a pressure range of 0 bar to 10 bar.
11. The method of claim 9 or 10 wherein the controlled environment includes noble and other gas environments.
12. The method of any preceding claim wherein each laser pulse effects formation of a laser spot on the surface of the element.
13. The method of claim 12 wherein each laser spot has a diameter ranging from 0.001 mm to 10 mm.
14. The method of any preceding claim wherein the element comprises a curved surface.
15. The method of any preceding claim wherein the element is mounted normal to the laser beam.
16. The method of any preceding claim wherein the laser spot is focussed or defocussed on the surface of the element.
17. The method of any preceding claim comprising rotating the element at one or more predetermined speeds.
18. The method of any preceding claim comprising pulsing the laser at a specific pulse repetition frequency, PRF, and power and concurrently exposing the surface of the element to an inert gas.
19. The method of claim 18 wherein the PRF is in the range from 50 Hz to 20 kHz.
20. The method of claim 2 wherein the micro-profiled grooved surface has features having heights in the range from 0.1 mm to 1.5 mm.
21. An interference fit fastening element configured to be operably form a male component of a male-female fastener, the element comprising a body having a surface, the surface comprising at least one patterned region, the patterned region comprising a plurality of individually distinguishable micro-profiled regions formed within the surface, the plurality of individually distinguishable micro-profiled regions extending circumferentially about the body of the element and along a length of the body.
22. The element of claim 21 wherein each of the individually distinguishable micro-profiled regions have a geometric form corresponding to a laser pulse.
23. The element of claim 21 or 22 wherein the individually distinguishable micro-profiled regions have features resultant from localised melting and re-solidification of the surface of the element.
24. The element of any one of claims 21 to 23 wherein the plurality of individually distinguishable micro-profiled regions cooperate to define a Moire pattern on the surface of the element.

25. The element of any one of claims 21 to 24 wherein the plurality of individually distinguishable micro-profiled regions are arranged such that a first one of the plurality of individually distinguishable micro-profiled regions overlaps with a second neighbouring one of the plurality of individually distinguishable micro-profiled regions.

26. The element of claim 25 wherein the overlap is within the range of -50% to +50%.

27. The element of any one of claims 21 to 25 wherein at least one of the individually distinguishable micro-profiled regions have features having heights in the range from 0.1 mm to 1.5 mm.

28. The element of any one of claims 21 to 26 wherein individually distinguishable micro-profiled regions have a diameter in the range 0.001 mm to 10 mm.

29. The element of any one of claims 21 to 28 wherein each of the plurality of individually distinguishable micro-profiled regions have substantially an identical geometric form.

30. The element of any one of claims 21 to 29 wherein the plurality of individually distinguishable micro-profiled regions have a predefined repeating profile and root mean square roughness in any one direction along the length of the element.

31. The element of any one of claims 21 to 30 wherein the element comprises a curved surface.

32. An interference fit element substantially as hereinbefore described with reference to the accompanying drawings.

33. A method substantially as herein described with reference to the accompanying drawings.
Figure 3
Figure 4
Figure 7
Figure 11.
Figure 12
Figure 13.
Figure 15
Figure 16

Figure 17
A. CLASSIFICATION OF SUBJECT MATTER

INV. F16B4/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F16B B23K B23P F16C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

21 December 2016

Date of mailing of the international search report

09/01/2017

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Schandel, Yannick
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>figures 1-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0005] - [0009], [0013], [0018] - [0019], [0065] - [0066], [0068], [0072] - [0073]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0001], [0006], [0023] - [0024], [0031]</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DE 10 2009 060352 A1 (VOLKSWAGEN AG [DE]) 30 June 2011 (2011-06-30)</td>
<td>1, 2, 6, 12-17, 21-23, 28, 29, 31-33</td>
</tr>
<tr>
<td></td>
<td>figures 2-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0005] - [0006], [0008], [0018] - [0020]</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>DE 10 2009 050626 A1 (DAIMLER AG [DE]) 28 April 2011 (2011-04-28)</td>
<td>1, 2, 12, 14-17, 21-23, 31-33</td>
</tr>
<tr>
<td></td>
<td>figures 1-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0002], [0006] - [0007], [0011] - [0013], [0015] - [0025] - [0028], [0035] - [0036]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 1, lines 12-15, 38-47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 2, lines 49-54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, lines 14-43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 63 - column 4, line 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, lines 33-49</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2014238321 AI</td>
<td>28-08-2014</td>
<td>CN 103635662 A</td>
<td>12-03-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2734712 A</td>
<td>28-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5966004 B2</td>
<td>10-08-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014529029 A</td>
<td>30-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014238321 A</td>
<td>28-08-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013011064 A</td>
<td>24-01-2013</td>
</tr>
<tr>
<td>DE 102011005408 AI</td>
<td>13-09-2012</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 102014019321 AI</td>
<td>18-06-2015</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 102009060352 AI</td>
<td>30-06-2011</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 102009050626 AI</td>
<td>28-04-2011</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S62151628 A</td>
<td>06-07-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 450151 B</td>
<td>09-06-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4728216 A</td>
<td>01-03-1988</td>
</tr>
</tbody>
</table>