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COMMUNICATIONS SYSTEM USING RINGS
ARCHITECTURE

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] Priority is claimed based on U.S. Provisional
Application No. 60/301,843 entitled Communication Sys-
tem Using Rings Architecture, filed Jul. 2, 2001, U.S.
Provisional Application No. 60/333,516 entitled Flexible
Packet Processor For Use in Communications System, filed
Nov. 28,2001, and U.S. Provisional Application No. 60/347,
235 entitled High Performance Communications Processor
Supporting Multiple Communications Applications, filed
Jan. 14, 2002.

BACKGROUND OF THE INVENTION

[0002] The present invention relates generally to data
communication networks and, more particularly, to receiv-
ing and transmitting systems, including ATM and other
types of communications platforms and including such
components as communications processors, packet proces-
sors, network processors, DMAs, FPGAs and other devices
and peripheral devices.

[0003] The number of business and private home users of
computers continues to rapidly grow, with these users typi-
cally being connected to local area networks (LANs), wide
area networks (WANS), intranets, extranets, direct sub-
scriber line (DSL) networks, etc. With growing demand
from such users for increasingly large amounts of data
across such networks, bandwidth and data processing and
handling speed is an ever-present concern facing service and
equipment providers to this vast audience of users. Hubs,
routers, modems and switches have been the predominant
mechanisms for providing the interconnectivity for many
users to access networks. Switches made up of expensive
VLSI (very large scale integration) circuits are often used to
build out networks. In addition to the drawbacks presented
by the expense of implementing such circuits, clock syn-
chronization is of continuing concern in switched networks.

[0004] With the proliferation of the digital age, a signifi-
cant demand has arisen for versatile networking technology
capable of efficiently transmitting multiple types of infor-
mation at high speeds across different network environ-
ments. One increasingly popular platform is Asynchronous
Transfer Mode, commonly referred to as ATM, which was
developed by the International Telegraph and Telephone
Consultative Committee (CCITT), and its successor orga-
nization, the Telecommunications Standardization Sector of
the International Telecommunication Union (ITU-T). ATM
is a technology capable of high speed transfer of voice,
video, and other types of data across public and private
networks. Although widely implemented, ATM is just one
example of many platforms used in handling communica-
tions and data across networks.

[0005] ATM utilizes very large-scale integration (VLSI)
technology to segment data into individual packets (also
referred to as cells). For example, B-ISDN calls for packets
having a fixed size of fifty-three bytes (i.e., octets). Using the
B-ISDN 53-byte packet for purposes of illustration, each
ATM cell includes a header portion comprising the first five
bytes and a payload portion comprising the remaining
forty-eight bytes. ATM cells are routed across the various
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networks by passing though ATM switches, which read
addressing information included in the cell header and
deliver the cell to the destination referenced therein. Unlike
other types of networking protocols, ATM does not rely
upon Time Division Multiplexing (TDM) to establish the
identification of each cell. Rather, ATM cells are identified
solely based upon information contained within the cell
header.

[0006] Further, ATM differs from systems based upon
conventional network architectures such as Ethernet or
Token Ring in that rather than broadcasting data packets on
a shared wire for all network members to receive, ATM cells
dictate the successive recipient of the cell through informa-
tion contained within the cell header. A specific routing path
through the network, called a virtual path (VP) or virtual
circuit (VC), is set up between two end nodes before any
data is transmitted. Cells identified with a particular virtual
circuit are delivered to only those nodes on that virtual
circuit. In this manner, only the destination identified in the
cell header receives the transmitted cell.

[0007] The cell header includes, among other information,
addressing information that essentially describes the source
of the cell or where the cell is coming from and its assigned
destination. Although ATM evolved from TDM concepts,
cells from multiple sources are statistically multiplexed into
a single transmission facility. Cells are identified by the
contents of their headers rather than by their time position in
the multiplexed stream. A single ATM transmission facility
may carry hundreds of thousands of ATM cells per second
originating from a multiplicity of sources and traveling to a
multiplicity of destinations.

[0008] The backbone of an ATM network generally con-
sists of switching devices capable of handling the high-
speed ATM cell streams. The switching components of these
devices, commonly referred to as the switch fabric, perform
the switching function required to implement a virtual
circuit by receiving ATM cells from an input port, analyzing
the information in the header of the incoming cells in
real-time, and routing them to the appropriate destination
port. Millions of cells per second often need to be switched
by a single device.

[0009] This connection-oriented scheme permits an ATM
network to guarantee the minimum amount of bandwidth
required by each connection. Such guarantees are made
when the connection is set-up. When a connection is
requested, an analysis of existing connections is performed
to determine if enough total bandwidth remains within the
network to service the new connection at its requested
capacity. If the necessary bandwidth is not available, the
connection is refused.

[0010] The design of conventional ATM switching sys-
tems involves a compromise between which operations
should be performed in hardware and which in software.
Generally, but not without exception, hardware gives opti-
mal performance but reduces flexibility, while software
allows greater flexibility and control over scheduling and
buffering and makes it practical to have more sophisticated
cell processing (e.g., OAM cell extraction, etc.).

[0011] The various protocols associated with platforms
such as ATM, Ethernet and others are distinct and require
special handling, which is essentially transparent to the user.
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One approach to packaging the hardware and software
necessary to handle the protocol processing and general
communications and data processing is system on a chip
(SOC), which typically is made up of several modules, often
dedicated to specific tasks, working together. A number of
these modules typically are interfaces to the external envi-
ronment, such as Ethernet or Utopia. Others modules can
include processors or memories. To illustrate, FIG. 1 shows
a typical SOC 10, such as a communications processor,
having a variety of modules, such as CPUs 14,22, RAM 16,
Ethernet interface 18, i/o interface 20, and DMA 24, inter-
connected via a switch fabric 12.

[0012] The challenge currently faced by system designers
is integrate the modules into a cohesive system. The usual
approach is to define busses, connect the modules on the
busses, run signals between the modules via the busses, add
bridges to connect busses, and so on. Other challenges to
designing a SOC, among others, include: heterogeneous
peripheral devices; several active modules (CPU, DMA);
performance bottlenecks; performance organization of con-
nectivity and busses; customer reality changes over life of a
project; design verification bottleneck, both intra-module
and inter-module; and application verification. As demon-
strated, these challenges result in a considerable number of
mechanisms needing to be debugged during the design of a
SOC.

[0013] Although the traditional bus oriented approach is
extensively utilized, such an approach typically has the
following problems: a number interfaces to debug for both
timing and logic; architectural decisions typically need to be
done early in design; busses often create unpredictable
timing and loadings; changing anything, like adding periph-
eral or deleting CPU requires considerable revamping of the
system; and so on.

[0014] A communications processor is one example of a
communications system commonly designed using the tra-
ditional buss approach. A robust SOC communications
processor may find a myriad of applications, such as for
modems, bridges, routers, gateways, multi-service gateways
and access equipment, and so forth. Such a communications
processor may be PHY [Physical layer]-independent, in
which case it will be coupled with an appropriate PHY
product, or it may by PHY-integrated, in order to provide the
connectivity to the PHY layer of the ATM (or OSI [Opens
Systems Interconnection]) layered protocol model. It can be
readily appreciated that if such a SOC communications
processor is to be robust in terms of the applications it can
support, it must be able to process a wide variety of different
protocols, such as ATM, FR (Frame Relay), IP (Internet
Protocol), TDM, and so forth. Therefore, in such a SOC
communications processor, a packet processor for process-
ing the packets of information that may be of a variety of
protocols may be implemented.

[0015] The processing of packets or cells performed by the
packet processor may include the following tasks: packet
header analysis (OSI Layer2, Layer3); frame validity—CRC
(Cyclic Redundancy Code) check; forwarding decision—
look up; header modification /conversion; segmentation and
reassembly; data conversion (e.g., encryption);statistics
gathering; and so on. In fact, as bandwidth requirements go
up, and the demand for wire speed packet processing exists,
packet processors have to be optimized to solve packet
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processing specific tasks. Proposed solutions for packet
processing that exist today range from hard wired ASICs
(Application Specific Integrated Circuits) (typically inflex-
ible) to programmable packet processors (more flexible).

[0016] In the last few years, there has been a need for
programmable packet processors for communication sys-
tems. The major advantages to programmable solutions can
include: flexible adjustment for rapidly changing commu-
nication standards;. implementation of increasingly complex
communications difficult to implement in an ASIC; and
consideration to differentiation and Time To Market (TTM)
as a crucial aspect in today competitive environment.

[0017] From the system vendor’s vantage, programmable
packet processors generally have an advantage over ASIC
solutions. A programmable packet processor can be viewed
as a platform to be quickly deployed (in consideration of
TTM) and then later one can add/modify system function-
ality by changing/adding code to the packet processor. The
trade-off system vendors would have at the very high end
solutions (core rate OC [Optical Carrier]-48, OC-192, for
example) would be power and performance in program-
mable packet processors as compared to fixed ASIC solu-
tions. However, several companies have announced pro-
grammable solutions for such core rates, indicating that a
programmable solution is needed by vendors for such core
rate products.

[0018] A programmable packet processor (also referred to
as a network processor) would preferably provide a solution
in the access space where the expected aggregate bandwidth
is in the range of OC-3 to OC-12. Of course, the access
market requirements are different from the network edge,
and the core. At the access points, systems would need to
deal with lots of subscribers (ports), low speed links (T1,
xDSL [x Digital Subscriber Line]) and with different access
methods (ATM, IP, FR, TDM, etc.), whereas at the edge and
the core of the network generally would use one framing
solution (MPLS, IP or ATM). Access systems, in this case,
typically would be characterized by: a large number of
subscribers (ports, flows), high density; requirements for
Inter Working Functions (IWFs), such as voice (TDM) to
packets (ATM or IP) (e.g., Voice gateways), MAN (Metro-
politan Area Network) to WAN (Wide Area Network),
Ethernet to ATM or PoS [Packet Over SONET]; data
grooms—asymmetric behavior large pipe to many small
pipes; and the like. Accordingly, access systems need lots of
packet manipulation, especially on media conversions and
IWF. Therefore, a programmable (and therefore flexible)
packet processor often is a preferred solution.

[0019] Such a programmable packet processor could be
developed using a standard general purpose microprocessor
core. Several processor cores are commercially available,
including those that are licensed by Advanced RISC
Machines, Ltd., ARC International, MIPS Computer Sys-
tems, Inc., and Lexra, Inc. However, the above cores are
general purpose cores that would need to be optimized for
packet processing. Such optimization typically would
include: additional instructions; DMA support; task switch
with low overhead; specific bit manipulation instructions;
etc. The disadvantages of using such general purpose cores
in packet processing applications include: costs incurred
from license fee and royalties; limited customization—a
special license is usually required to modity the core; create
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dependency on the core provider roadmap and technical
support; over featured—FPU (Floating Point Units), MMU
(Memory Management Units]; etc.

[0020] Therefore, there is a need for a highly robust
programmable packet processor that can support a variety of
high end applications, that is capable of handling a variety
of protocols, and that provides desired performance in terms
of speed and power.

[0021] What is also needed is a high performance com-
munications processor implementing such a programmable
packet processor as its core network processor (s), and
implementing other useful modules, such as memories,
DMAs, and interfaces to outside PHY platforms, so that the
high performance communications processor can be benefi-
cially implemented as a SOC solution for a myriad of high
end communication applications.

SUMMARY OF THE INVENTION

[0022] The present invention overcomes the problems
noted above, and realizes additional advantages, by provid-
ing a number of advantages over prior systems.

[0023] The following description is intended to convey a
thorough understanding of the inventive aspects by provid-
ing a number of specific embodiments and details including,
among other things: rings architecture for communications
and data handling systems, Enumeration process for auto-
matically configuring the ring topology, automatic routing of
messages through bridges, automatic routing of exception
messages, extending a ring topology to external devices and
providing a flexible and re-configurable system, read return
address, write-ahead functionality to promote efficiency,
wait-till-reset operation resumption, in-vivo scan through
rings topology, staggered clocking arrangement, and stray
message detection and eradication.

[0024] Other inventive elements conveyed through the
embodiments and details discussed below include, among
other things: an architectural overview of a flexible packet
processor; a programming model for a flexible packet pro-
cessor; an instruction pipeline for a flexible packet proces-
sor; an internal memory to be used with the flexible packet
processor; the use of a flexible packet processor as a module
on a rings-based architecture; the core of the flexible packet
processor and associated compounds (agents and non-
agents) on the packet processor.

[0025] Additional inventive elements conveyed through
the embodiments and details discussed below include,
among other things: an architectural overview of a commu-
nications processor; a programming model for a communi-
cations processor; a data path protocol support model for a
communications processor; an exemplary network processor
employed as the core packet processor for the communica-
tions processor; an exemplary rings-based SOC interconnect
fabric architecture employed in the communications proces-
sor; a variety of quality of support (QoS) features that
implemented in the communications processor; a series of
beneficial applications of the communications processor; the
various approaches for the software that can be implemented
to power the communications processor; specific exemplary
strategies for the software in the high performance commu-
nications processor; and a performance estimate for RFC
1483 bridging.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0026] The present invention can be understood more
completely by reading the following Detailed Description of
the Invention, in conjunction with the accompanying draw-
ings in which:

[0027] FIG. 1 is a block diagram illustrating a typical
system on a chip.

[0028] FIG. 2 is a schematic diagram illustrating a ring
architecture in accordance with at least one embodiment of
the present invention.

[0029] FIG. 3 is a flow diagram illustrating an exemplary
enumeration process in accordance with at least one embodi-
ment of the present invention.

[0030] FIGS. 4-8 are a schematic diagram illustrating
timing issues in a clocked system in accordance with at least
one embodiment of the present invention.

[0031] FIG.9is a schematic diagram illustrating a mecha-
nism for providing a clock signal in an opposing direction to
data flow in a rings network in accordance with at least one
embodiment of the present invention.

[0032] FIG. 10 is a schematic diagram illustrating a
mechanism for providing a clock signal in a same direction
as a data flow in a rings network in accordance with at least
one embodiment of the present invention.

[0033] FIG. 11 is schematic diagram illustrating an exem-
plary implementation of a timing interface of a rings inter-
face in a rings network in accordance with at least one
embodiment of the present invention.

[0034] FIG. 12 is a schematic diagram illustrating latency
issues in a ring network in accordance with at least one
embodiment of the present invention.

[0035] FIGS. 13 and 14 are schematic diagrams illustrat-
ing exemplary implementations of bridges in ring networks
in accordance with at least one embodiment of the present
invention.

[0036] FIG. 15 is a schematic diagram illustrating an
exemplary enumeration process in a ring network having a
bridge in accordance with at least one embodiment of the
present invention.

[0037] FIG. 16 is a schematic diagram illustrating an
exemplary priority scheme for messages received simulta-
neously at a same interface of a bridge in a ring network in
accordance with at least one embodiment of the present
invention.

[0038] FIG. 17 is a schematic diagram illustrating an
exemplary implementation of a bridge in accordance with at
least one embodiment of the present invention.

[0039] FIGS. 18 and 19 are schematic diagrams illustrat-
ing an exemplary process for the elimination of stray mes-
sages in a ring network in accordance with at least one
embodiment of the present invention.

[0040] FIGS. 20-22 are schematic diagrams illustrating
exemplary ring networks multiple bridges in accordance
with at least one embodiment of the present invention.

[0041] FIGS. 23-35 are schematic diagrams illustrating
exemplary implementations of a scan interface in a ring
network in accordance with at least one embodiment of the
present invention.
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[0042] FIG. 26 is a schematic diagram illustrating exem-
plary interface signals between two members of a ring
network in accordance with at least one embodiment of the
present invention.

[0043] FIGS. 27 and 28 are schematic diagrams illustrat-
ing an exemplary implementation of a ring interface in
accordance with at least one embodiment of the present
invention.

[0044] FIG.29is a flow diagram illustrating an exemplary
process for determining an intended recipient of a message
in a ring network in accordance with at least one embodi-
ment of the present invention.

[0045] FIGS. 30-33 are schematic diagrams illustrating
exemplary signaling within a ring interface in a ring network
in accordance with at least one embodiment of the present
invention.

[0046] FIG. 34 is a schematic diagram illustrating an
exemplary use of bridges in a ring network to minimize
latency in accordance with at least one embodiment of the
present invention.

[0047] FIG. 35 is a schematic diagram illustrating an
external ring interface in accordance with at least one
embodiment of the present invention.

[0048] FIG. 36 is a block diagram illustrating an exem-
plary system on a chip utilizing a ring architecture in
accordance with at least one embodiment of the present
invention.

[0049] FIG. 37 is a schematic diagram illustrating the
exemplary network processor of the system on a chip of
FIG. 36 in accordance with at least one embodiment of the
present invention.

[0050] FIG. 38 is a flow diagram illustrating a low over-
head task switch in a network processor in accordance with
at least one embodiment of the present invention.

[0051] FIG. 39 is a flow diagram illustrating exemplary
data paths in a network processor in accordance with at least
one embodiment of the present invention.

[0052] FIG. 40 is a block diagram illustrating exemplary
state resources of a network processor in accordance with at
least one embodiment of the present invention.

[0053] FIG. 41 is a block diagram illustrating an exem-
plary implementation of register rl of a general purpose
register of a network processor in accordance with at least
one embodiment of the present invention.

[0054] FIG. 42 is a block diagram illustrating various
registers of a general purpose register of a network processor
in accordance with at least one embodiment of the present
invention.

[0055] FIG. 43 is a block diagram illustrating an exem-
plary software model for a network processor in accordance
with at least one embodiment of the present invention.

[0056] FIG. 44 is a flow diagram illustrating an exemplary
network processor pipeline in accordance with at least one
embodiment of the present invention.

[0057] FIG. 45 is a flow diagram illustrating an exemplary
network processor pipeline timing in accordance with at
least one embodiment of the present invention.
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[0058] FIG. 46 is a schematic diagram illustrating an
exemplary internal memory for implementation in a network
processor in accordance with at least one embodiment of the
present invention.

[0059] FIG. 47 is a schematic diagram of an exemplary
network processor in accordance with at least one embodi-
ment of the present invention.

[0060] FIG. 48 is a schematic diagram illustrating an
exemplary multireader agent in accordance with at least one
embodiment of the present invention.

[0061] FIG. 49 is a flow diagram illustrating an exemplary
data alignment and packing process in accordance with at
least one embodiment of the present invention.

[0062] FIG. 50 is a flow diagram illustrating a mapping of
data from a multireader agent bus to a multireader operation
in accordance with at least one embodiment of the present
invention.

[0063] FIG. 51 is a schematic diagram illustrating an
exemplary message sender of a network processor in accor-
dance with at least one embodiment of the present invention.

[0064] FIG. 52 is flow diagram illustrating an exemplary
mapping of an agent write command to a message in
accordance with at least one embodiment of the present
invention.

[0065] FIG. 53 is a schematic diagram illustrating an
exemplary direct memory access agent module in accor-
dance with at least one embodiment of the present invention.

[0066] FIG. 54 is flow diagram illustrating an exemplary
mapping of data on an agent bus to a direct memory access
command.

[0067] FIG. 55 is a schematic diagram illustrating an
exemplary cyclical redundancy code agent in accordance
with at least one embodiment of the present invention.

[0068] FIG. 56 is a flow diagram illustrating a mapping of
data on an agent bus to cyclical redundancy code data in
accordance with at least one embodiment of the present
invention.

[0069] FIG. 57 is a schematic diagram illustrating an
exemplary timer agent in accordance with at least one
embodiment of the present invention.

[0070] FIG. 58 is a flow diagram illustrating a mapping of
data on an agent bus to timer data in accordance with at least
one embodiment of the present invention.

[0071] FIG. 59 is a schematic diagram of an exemplary
doorbell agent in accordance with at least one embodiment
of the present invention.

[0072] FIG. 60 is a flow diagram illustrating an exemplary
encoding of task data for use by a doorbell agent in accor-
dance with at least one embodiment of the present invention.

[0073] FIG. 61 is a block diagram illustrating an exem-
plary communications processor implementing a ring archi-
tecture in accordance with at least one embodiment of the
present invention.

[0074] FIG. 62 is a schematic diagram illustrating the
exemplary communications processor of FIG. 61 in accor-
dance with at least one embodiment of the present invention.
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[0075] FIGS. 63-69 are schematic diagrams illustrating
various implementations of an external ring interface in a
communications processor in accordance with at least one
embodiment of the present invention.

[0076] FIG. 70 is a block diagram illustrating an exem-
plary programming module for a communications processor
in accordance with at least one embodiment of the present
invention.

[0077] FIG. 71 is a block diagram illustrating an exem-
plary data path and protocol path of a communications
processor in accordance with at least one embodiment of the
present invention.

[0078] FIG. 72 is a schematic diagram illustrating an
exemplary network processor utilized in a communications
processor in accordance with at least one embodiment of the
present invention.

[0079] FIG. 73 is a flow diagram illustrating an exemplary
processing pipeline of a network processor utilized in a
communications processor in accordance with at least one
embodiment of the present invention.

[0080] FIGS. 74 and 75 are flow diagrams illustrating
exemplary pacing processes utilized in a communications
processor in accordance with at least one embodiment of the
present invention.

[0081] FIGS. 76-80 are schematic diagrams illustrating
various exemplary implementations of a communications
processor in communications systems in accordance with at
least one embodiment of the present invention.

[0082] FIG. 81 is a flow diagram illustrating an exemplary
flow manager functionality of a communications processor
in accordance with at least one embodiment of the present
invention.

[0083] FIG. 82 is a block diagram illustrating an exem-
plary data plane development for use in software develop-
ment for a communications processor in accordance with at
least one embodiment of the present invention.

[0084] FIG. 83 is a block diagram illustrating an exem-
plary software development model in accordance with at
least one embodiment of the present invention.

[0085] FIG. 84 is a block diagram illustrating an exem-
plary software design approach in accordance with at least
one embodiment of the present invention.

[0086] FIG. 85 is a block diagram illustrating an exem-
plary partitioning of software and interfaces in a communi-
cations processor in accordance with at least one embodi-
ment of the present invention.

[0087] FIG. 86 is a block diagram illustrating an exem-
plary partitioning of software in a network processor in
accordance with at least one embodiment of the present
invention.

[0088] FIG. 87 is a flow diagram illustrating a typical
process for executing program instructions using a known
multiple-branch technique.

[0089] FIG. 88 is a schematic diagram illustrating an
exemplary processing environment in accordance with at
least one embodiment of the present invention.
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[0090] FIG. 89 is a schematic diagram illustrating an
exemplary architecture of a processing unit of the processing
environment of FIG. 88 in accordance with at least one
embodiment of the present invention.

[0091] FIG. 90 is a flow diagram illustrating an exemplary
process for executing program instructions based on the
value of an accumulative flag in accordance with at least one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0092] The following description is intended to convey a
thorough understanding of the inventive aspects by provid-
ing a number of specific embodiments and details including,
among other things: rings architecture for communications
and data handling systems, Enumeration process for auto-
matically configuring the ring topology, automatic routing of
messages through bridges, automatic routing of exception
messages, extending a ring topology to external devices and
providing a flexible and re-configurable system, read return
address, write-ahead functionality to promote efficiency,
wait-till-reset operation resumption, in-vivo scan through
rings topology, staggered clocking arrangement, and stray
message detection and eradication.

[0093] Other inventive elements conveyed through the
embodiments and details discussed below include, among
other things: an architectural overview of a flexible packet
processor; a programming model for a flexible packet pro-
cessor; an instruction pipeline for a flexible packet proces-
sor; an internal memory to be used with the flexible packet
processor; the use of a flexible packet processor as a module
on a rings-based architecture; the core of the flexible packet
processor and associated compounds (agents and non-
agents) on the packet processor.

[0094] Additional inventive elements conveyed through
the embodiments and details discussed below include,
among other things: an architectural overview of a commu-
nications processor; a programming model for a communi-
cations processor; a data path protocol support model for a
communications processor; an exemplary network processor
employed as the core packet processor for the communica-
tions processor; an exemplary rings-based SOC interconnect
fabric architecture employed in the communications proces-
sor; a variety of quality of support (QoS) features that
implemented in the communications processor; a series of
beneficial applications of the communications processor; the
various approaches for the software that can be implemented
to power the communications processor; specific exemplary
strategies for the software in the high performance commu-
nications processor; and a performance estimate for RFC
1483 bridging.

[0095] 1t is understood, however, that the invention is not
limited to the specific embodiments and details, which are
exemplary only. It is further understood that one possessing
ordinary skill in the art, in light of known systems and
methods, would appreciate the use of the invention for its
intended purposes and benefits in any number of alternative
embodiments, depending upon specific design and other
needs.

[0096] A number of acronyms are used herein to describe
various embodiments of the invention. A table of acronyms
and definitions therefore is provided as Table 1 below:
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TABLE 1 TABLE 1-continued
Acronym Definition Acronym Definition
AAL ATM Adaptation Layer IWF Inter Working Function
ABI Application Binary Interface LAN Local Area Networks
ABR Available Bit Rate 1D Load
ADPCM Adaptive Differential Pulse Code Modulation LP Low Priority
ADSL Asymmetric Digital Subscriber Line LPM Longest Prefix Match
ALU Arithmetic Logic Unit LSR Label Switched Router
API Application Programming Interface MAC Media Access Control
ARC ARC Cores MAN Metropolitan Area Network
ARM Advanced RISC Machines MDU Multi Dwelling Unit
ARP Address Resolution Protocol MEGACO  H.242 IEEE (voice protocol)
ASIC Application Specific Integrated Circuit MFSU Multi Function Serial Unit
ATIC ATM Interconnect MGCP IETS standard (voice Protocol)
ATM Asynchronous Transfer Mode MIB Management Information Base
ATMOS ATM Operating System MII Media Independent Interface
BGP Border Gateway Protocol (see FIG. 8) MIPS MIPS Computer Systems, Inc.
B-ISDN Broadband Integrated Services Digital Network MMU Memory Management Unit
BLES Broadband Local Exchange Server MPLS Multi Protocol Label Switching
BSC Binary Synchronous Communications protocol (IBM) MSC Mobile Switching Center
BSP Board Support Package MTU Multi Tenant Unit
BTS Base Transceiver Station MVIP Communication backplane interface
CAM Content Addressable Memory NI Network Interface
CBR Constant Bit Rate NP Network Processor
CCITT Consultative Committee on International Telegraph and OAM Operation and Maintenance
Telephone oC Optical Carrier
CES Circuit Emulation Services OEM Original Equipment Manufacturer
CLEC Competitive Local Exchange Carrier [ Operating System
CMTS Cable Modem Transmission System OSE A name of OS company
CPCS Common Part Convergence Sublayer (ATM) OSI Opens Systems Interface
CPE Customer Premises Equipment OSPF Open Shortest Path First
CPP Control Protocol Processor PBGA Plastic Ball Grid Array
CPU Central Processor Unit PBX Private Branch Exchange
CRC Cyclic Redundancy Code PCM Pulse Code Modulation
CR-LDP CR-Label Distribution Protocol PDU Payload Data Unit
CS Convergence Sublayer PHY Physical layer
CTL Control POS Packet Over SONET
DDR Dual Data Rate PP Protocol Processor
DLC Digital Loop Carrier PPD Parallel Presence Detect
DMA Direct Memory Access PPPoA Point to Point Protocol Over ATM
DRR Data Recovery Report PSOS Portable Scalable Operating System
DS Differentiated Services PSTN Public Switched Telephone Network
DSL Digital Subscriber Line QOS Quality of Service
DSLAM Digital Subscriber Line Access Multiplexer RAM Random Access Memory
DSP Digital Signal Processor RED Random Early Delete
EA Effective Address RFC Request for Comment
E-IAD Enterprise Integrated Access Device RIP Routing Information Protocol
ENET Ethernet RISC Reduced Instruction Set Computer
EPB External Peripheral Bus RMIIL Reduced MII .
. RSvVP Resource Reservation Protocol
EPD Early Packet Discard RTOS Real-Time Operating System
EPROM E.rasable I.’rogrammable Read Only Memory RTP Real Time Protocol
FIFO F%rst—In—FHst—Out RX Receive
FPGA Field Programmable Gate Array SAR Segmentation and Reassembly
FPU Floating Point Units SDRAM Synchronous Dynamic RAM
FR Frame Relay SDSL Symmetric DSL
FRF Frame Relay Forum SHDSL Single-Line High-Bit Rate DSL
FWD Forwarding SIP SMDS Interface Protocol
GFR Guaranteed Frame Rate SMII Serial Media Independent Interface
GPIO General Purpose Input Output SMTP Simple Mail Transfer Protocol
HDLC High-level data link control SNMP Simple Network Management Protocol
HDSL High-bit-rate DSL soC System-On-A-Chip
H-MVIP H Multi-Vendor Integration Protocol SP Strict Priority
HPCP High Performance Communications Processor SPI Serial Protocol Interface
aw Hardware SPR Spegal Purpose Register
IAD Integrated Access Device SRAM Static RAM .
D Identification SSI Sync.hronous.Senal Interface
SSSAR Service Specific SAR
vt Interface i i ST-BUS a TDM protocol
IMA Inverse Multiplexing over ATM SW Software
Ip Internet Protocol TCP Transmission Control Protocol
[PoA IP over ATM TDM Time Division Multiplexing
IS Integrated Services ™ Traffic Management
ISOS Integrated Software on Silicon TOS Type of Service
ISP Internet Service Provider TT™M Time-to-Market
ITU-T International Telecommunication Union D¢ Transmit
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TABLE 1-continued

Acronym Definition

UART Universal Asynchronous Receiver-Transmitter
UBR Unspecified Bit Rate

UDP Universal Datagram Protocol
UPnP Universal Plug ‘n Play

USB Universal Serial Bus

VBR Variable Bit Rate

rt-VBR Real Time VBR

vC Virtual Circuit

VCI Virtual Channel Identifier
VCL Virtual Channel Link
VoATM Voice over ATM

VoIP Voice over IP

VP Virtual Path

VPI Virtual Path Identifier

VLSI Very Large Scale Integration
WAN Wide Area Networks

WBS Wireless Base Station

WFQ ‘Waited Fair Queue

[0097] One inventive aspect of the present invention is to
provide a rings architecture to build a system on a chip
(SOC) and allow for ease in configuration, expandability
and external interface. This rings architecture, in one
embodiment, involves: (1) the use of transactions instead of
signals; and (2) the use of a single switch fabric to carry the
transactions instead of many connections as typically imple-
mented in buss-based systems. A transaction, in at least one
embodiment, includes a instruction generated by a certain
module for directing, in a structured way, another module to
perform some operation. Transactions are mapped onto
single physical connection. A transaction may direct a mod-
ule to, for example, set a set mode flipflop to one or clear
register X or add value Y to counter Z. Transactions also can
be used to provide time sequencing. Furthermore, two
transactions may be prevented from occurring at the same
time, limiting the appearance of simultaneous errors (i.c.
bugs). In one embodiment of the present invention, a rings-
based system on a chip (SOC) is provided. The rings-based
SOC comprises a plurality of ring members on a ring that
communicate using point-to-point connectivity, a plurality
of ring interfaces for interfacing the ring members with the
ring, a message traversing the ring, wherein the message
travels one ring member per clock cycle. In this embodi-
ment, the system is adapted so that upon the message
arriving at a given ring member the message is processed by
that ring member if the message is applicable to that ring
member, and if the message is not applicable to that ring
member, the message is passed on to the next ring member.
Furthermore, subsequent ring members can be adapted to
supply backpressure signals to prior ring members.

[0098] In one embodiment, the message is applicable to
the given ring member based on at least one of an identifier
identifying the given ring member and an identifier indicat-
ing that the message applies to multiple ring members. The
identifier identifying the given ring member can comprise an
address for the given ring member. Furthermore, the iden-
tifier indicating that the message applies to multiple ring
members may, in one implementation, comprise message
data designating the message as a supervisory message.

[0099] The message may comprise a type field, an address
field, and a data field. The message may also comprise an
enumberation message, wherein the enumberation message
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is processed by the ring members in order to assign address
space consumed by each ring member. Additionally, a
subsequent supervisory message can cause the results of the
enumeration message to be returned, thereby allowing a
central member comprising a CPU to infer the topology of
the system. Alternatively, the message can comprise a reset
message that is processed by the plurality of ring members
in order to reset the system. Conversely, the message may
comprise an activate message that is processed by the
plurality of ring members in order to activate the system.

[0100] The message also may include a request from a
CPU ring member that causes the other ring members to
report out their address information. The message may also
comprise a write message that is processed by one of the
plurality of ring members to write data thereto, a read
message that is processed by one of the plurality of ring
messages to read data therefrom, and/or a stray message
indicator so that the system can identify stray messages.

[0101] In one embodiment, the ring members of the rings
based SOC comprise a CPU and a plurality of peripherals,
and wherein the peripherals are adapted to write ahead
changes in peripheral status, thereby reducing the quantity
of read messages that are issued by the CPU. The ring of the
SOC also may include an external ring interface allowing
the ring to communicate with modules that are not part of the
ring.

[0102] In one embodiment, the rings based SOC further
comprises a land bridge that allows the message to proceed
from one side of the ring to an other side of the ring without
traversing some of the intermediate ring members. The logic
of the land bridge may be configured based on the results of
an enumeration message.

[0103] Additionally, the plurality of ring members and
plurality of ring interfaces of the rings-based SOC may
comprise a first ring with the SOC further comprising a
plurality of second ring members and a plurality of second
ring interfaces defining a second ring, both the first ring and
the second ring implemented as a system on a chip, and
wherein the first ring and the second ring are coupled using
a sea bridge. In one implementation, the logic of the sea
bridge is configured based on the results of an enumeration
message.

[0104] Referring now to FIG. 2, an exemplary ring net-
work 30 is illustrated in accordance with at least one
embodiment of the present invention. As illustrated, the
exemplary ring network 30 includes two rings 32, 34 con-
nected via a bridge 36, each ring including a plurality of
modules 38-48. The modules can include any of a variety of
modules implemented in SOCs for processing and/or han-
dling data, such as a DMA, an external interface, a timer, a
CPU, an I/O, a peripheral, and the like. In this case, the rings
32, 34 and the bridge 36 represent an implementation of the
switch fabric 12 of FIG. 1 in accordance with at least one
embodiment of the present invention. To summarize the
operation of a ring of the ring network 30, consider the
following exemplary operation of ring 32. In this example,
messages are passed between modules counter-clockwise.
When a module receives a message, the module determines
if the message the intended recipient of the message. If the
module is the recipient, the module removes the message
from the ring and processes it accordingly. Otherwise, the
module passes the message on to the next module (e.g., from
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module 44 to module 46) during the next clock cycle. If a
module has a message to send, the module waits till there is
a free slot and passes the message to the module’s left hand
neighbor. In this case, each message is one clock long and
the messages travel around the ring 32, one hop per clock.

[0105] Members of the Ring

[0106] Anchor—the host interface. Through this interface,
the host resets, configures and controls the setup functions of
the ring. The Anchor also can be adapted to determine if it
is the primary Anchor.

[0107] Bridge (e.g., bridge 36)—a combination of two
devices: an upstream link and a downstream link. During the
setup stage, the bridge flips the network ID and acts as an
Anchor for upstream ring. The host, after the learning stage,
programs the bridge about what switching to perform. The
bridge snoops on the ring and if a hit detected, consumes the
message and carries it on the other side. If the message is not
hit, the it is sent down as usual. The bridge typically has two
address/mask registers per link direction.

[0108] Module—a collective name for components of a
ring, such as a CPU, a bridge, a TDM interface, a Utopia
interface, an xDSL PHY, a timer, a UART, a FCC, a MCC,
a scratch RAM, a CRC calculator, and the like.

[0109] External Ring (ExtRing)—used to connect several
chips to create a larger topology. An external ring is par-
ticularly useful in prototyping future peripherals by FPGA-
extending existing ring-based silicon.

[0110] Packet Processor (also referred to herein as
Vobla)—a network optimized CPU for managing commu-
nication logical links. The packet processor, in at least one
embodiment, is used to control and terminate streams that
are beyond internal functionality of the device. The network
side is done through the rings, the other side includes, for
example, an external RAM interface.

[0111] The rings architecture has many advantages over
traditional bus designs and is an effective way to connect
many different modules, whether on the same chip or on
several chips. Instead of using signals and busses, commu-
nication between modules (data and commands) are mapped
onto transactions, which in turn are transmitted over ring
infrastructure. Ring topology allows predictable delays and
easy scalability. Each ring member adds delay of, for
example, one clock. The ring clock frequency can be made
as fast as needed because of geographical proximity of its
members. Rings can be further connected through bridges,
such as bridge 36. These bridges are similar to network
switching devices in the sense that they are programmed to
direct selected portions of the traffic to the other side (e.g.,
from ring 32 to ring 34). Inside one exemplary embodiment
chip, the members of the ring are connected to one another
using standard [e.g., 8 bits type/20 bits address/32-64 bit
data] connection. When going outside the standard, a
smaller/slower interface may be defined.

[0112] In the broadest sense, the ring carries two kinds of
messages. Setup/Config messages and Work read and write
messages. The Setup messages can be used to learn the
network topology, assign addresses and to program the
members (i.e., the elements of a ring). Setup messages are
initiated by a host through a special anchor member. Regular
members, in one embodiment, reply to setup messages by
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providing the host their functionality ID, ring ID and their
starting address. The host software can infer from that data
the exact topology of the network and the functionality of its
members. Work messages, in one embodiment, are initiated
by members based on their programming and functionality.
On each clock a ring member examines its in-port. If the
in-port has valid message, then the member determines if the
message is addressed to the member. If so, the member
removes the message from the ring and processes the
message accordingly. If not (i.e., the message is intended for
another member), on the next clock the member transmits it
downstream on the out-port when the out-port becomes
available.

[0113] The following are examples of message types that
may be used:

[0114] Idle—the connection is idle, i.e., no message;
Reset—reset and propagate to reset the entire net-
work;

[0115] Enumerate—propagate and obey the Enu-
meration algorithm (described below);

[0116] WhoAml request—started by the anchor
member and flooded unchanged throughout the ring
network;

[0117] WhoAml response—each member responds to a
WhoAml request by sending this message—the data field
contains values of self-address and several other significant
bits that enable the Anchor to learn the topology of the
network;

[0118] Activate—includes the address of a specific ring
member. When this message hits the member, the a subset of
the data bits are written into the RIF (ring interface) unit
control register—the first bit is activate bit (hence the name).
After reset this bit is inactive. This prevents any work
activity of the peripheral to take place. Setting this bit to one,
enables normal work. Other bits include: scan_mode_en-
able, stop_clock, in_vivo_scan_test, ring_loopback_enable,
(soft reset), as well as other user-defined bits (discussed
below). These bits may be reset to zero;

[0119] Work write—sent during normal operation. These
messages activate various peripherals, fifos (first-in-first-
out), write into memory, etc.;

[0120] Work read—work messages are used to read from
fifos, move blocks of SRAM (static RAM) data and com-
municate with DMAs, to name a few examples.

[0121] Exception—started by regular ring members, to
propagate to anchor (the assigned member that initiates the
Enumeration process) and/or a PP (packet processor) to
signify some condition needing attention;

[0122] Freeze—propagate message quickly through the
network and disable all activity the rings. Typically used for
debug purposes where a fast freeze of the current state is
needed.

[0123] Message Type Encoding

[0124] Table 2 sets forth a listing of message types with a
proposed encoding structure and description of the encod-
ing.
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TABLE 2
message type encoding description
idle 00000XXX
SUpervisor 1111nnnn
requests 11111000 0xF8 Enumerate.
11111001 0xF9 WhoAmlI request.
11111010 OxFA Activate
11111011
11111100 fOxFC freeze
11111101
11111110
SUpervisor 11110nnn
responses 11110000 0xF0 WhoAmlI response.
11110001 0xF1 error
work_read 01SWMLFI 0x40

S= enable snoop for the response of this
message.
W=width of the data message 64/32 for
return M = TBD
L =enable address modification to indicate
last data of frame.
F=enable address modification to indicate
first data of frame.
I= increment destination.

work_write 10SMLZZZ 0x80
S=Snoop this message.
M=TBD.
L=Last data transfer in the message.
ZZ77= the number of valid bytes in the
message.
(ZZ7=000 means 8 valid bytes in the
message).

[0125] Ring Member Enumeration

[0126] While it is possible to pre-assign a hard addressing
scheme for the members of a ring network, in at least one
embodiment, the modules assign address space for them-
selves. As the modules are members of at least one ring, each
module can take a block of address space and tell the next
module its starting address (herein referred to as Enumera-
tion). In many systems, this assignment often gives the same
results, so it may not be necessary to actually reprogram the
modules, but it reduces the need to change hardware regis-
ters every time ring configuration is changed. This self-
addressing also serves as a self-test. In rings-based inte-
grated circuit, such as a SOC communications processor,
peripherals appear to a CPU as starting address. Each offset
from this starting address is assigned to a different command
for the peripheral. Note that assigning different peripherals
to different CPUs can simply be a matter of programming a
location in RAM. Accordingly, several CPU’s can be put on
a IC without worrying about arbitration.

[0127] As discussed above, each member of the ring
network has predefined address space. In one embodiment,
this is limited to some power of 2. For example, if a UART
(Universal Asynchronous Receiver/Transmitter—used for
serial communications and having a transmitter and a
receiver) needs 5 registers, it allocates 8 addresses for itself.
It also should first align the address to a border of 8.

[0128] The Enumeration process starts with the Anchor
member, which sends on its outport an Enum message to
begin the enumeration of rings members. As each member
receives the Enum message, the member takes the address
field and increments it to fit its own alignment. This becomes
the zero offset address. Then the address is incremented to
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next available block of the same alignment. This last address
is sent downstream. Referring to FIG. 3, an exemplary
enumeration process is illustrated in accordance with at least
one embodiment of the present invention. In this example,
assume that DMA 52 needs 16 addresses, UART 54 needs 4
addresses, and timer 56 needs 256 addresses. Further assume
that the DMA 32 receives an Enum message having an
address value=8. Accordingly, in this example, the DMA 52
would align itself to some power of two (16, in this example)
and then claim the next 16 addresses (i.c., addresses 16-31).
As a result, the next available address is address 32. There-
fore, the DMA 52 would change the address value of the
Enum message to address=32 and provide this value to the
UART 54. Since address=32 is already aligned with a power
of two, the UART 54, in this example, claims addresses
32-35 and assigns address=36 to the next available address
of the Enum message. This Enum message is then provided
to the timer 56. Since the timer 56 requires 256 addresses,
the timer 56 aligns its starting address with a power of two
greater than the next available address (e.g., 256) and claims
the next 256 addresses. The next available address value of
the Enum message is then changed to address=512 and
provided to the next member of the ring.

[0129] This same enumeration process is repeated for each
member of the ring network, except bridges, which are
discussed in more detail below. In this case, bridges first
allocate their own space and then send the in-port Enum
message to the other side of the bridge. Further more, the
bridge, in one embodiment, is adapted to flip the zero data.
Accordingly, when the Enum message is returned to the
bridge on the other side, the bridge passes it back on this
side. As a first approximation, bridges can program the
routing themselves. If there are no loops, each bridge may
need a maximum of two ranges to look at. It is expected that
no loops exist for Enumeration protocol. So eventually the
Enum message will get back to Anchor. This signifies the
end of Enum process.

[0130] In accordance with one embodiment of the present
invention, a communication system using a ring network
architecture is provided. The system comprises a plurality of
ring members connected in point-to-point fashion along the
ring network, a transaction based connectivity for commu-
nicating a message among the ring members, and wherein
the message is a configuration message that causes ring
members to assign address space in the ring network. In one
embodiment, the configuration message is processed by
each ring member to cause that ring member to assign
address space for that ring member, and wherein the con-
figuration message is then passed to the next ring member.

[0131] In one embodiment, the configuration message
includes an address that defines a starting address. The
configuration message, in one implementation, is originated
by an anchor member, which may include a CPU. In this
case, each member processing the configuration message
can revise the starting address before passing the configu-
ration message to the next ring member. Furthermore, each
member processing the configuration message can assign the
address space of the member using the starting address and
address space sufficient for that member.

[0132] In one embodiment, a CPU on the ring network of
the system recognizes other ring members using starting
addresses assigned to those ring members based on the
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configuration message. In this case, offsets to the starting
addresses of the ring members may be used for different
commands for the ring members.

[0133] Furthermore, in one embodiment, the ring network
includes a bridge. In this case, the configuration message is
processed by the bridge by assigning address space for the
bridge and then passing the configuration message to the
other side of the bridge. The configuration message can be
processed by the bridge so that a subsequent message is
routed according to whether an address associated with the
subsequent message corresponds to one side of the bridge or
the other side of the bridge. The subsequent message is
passed across the bridge when the address is associated with
the one side of the bridge, and wherein the subsequent
message is passed through the bridge when the address is
associated with the other side of the bridge. Additionally, the
bridge, upon receiving a configuration message from one
side of the ring network, responds by recording a first
address included in the configuration message, passing the
configuration message to the ring members on the other side
of the ring network, and recording a second address included
in the configuration message when the configuration mes-
sage arrives from the other side of the ring network. In one
embodiment, the first address corresponds to a near side of
the bridge and the second address corresponds to a far side
of the bridge.

[0134] Inone embodiment, the system further comprises a
second configuration message which causes ring members to
respond with descriptive data, wherein the descriptive data
can includes address space data for the ring members. Using
this descriptive data, a CPU member on the ring network can
be adapted to infer the topology of the ring network.

[0135] In accordance with yet another embodiment of the
present invention, a method of assigning address space in a
ring network architecture system including a plurality of
ring members is provided. The method comprises issuing a
configuration message, processing the configuration mes-
sage at each ring member to assign address space for that
ring member in the ring network, modifying the configura-
tion message based on the assigned address space, and
passing the configuration message to the next ring member.
The configuration message is assigned by an anchor on the
ring network, wherein the anchor can include a CPU mem-
ber.

[0136] In one embodiment, the configuration message
includes a starting address and the address space is assigned
based on the starting address and the address needs of that
ring member. In this case, the method step of modifying
comprises modifying the starting address before the step of
passing.

[0137] Furthermore, in one embodiment, the plurality of
ring members includes a bridge, wherein the bridge
responds to the configuration message by configuring logic
that provides for a subsequent message to be passed across
or by the bridge depending on an address associated with the
subsequent message. The ring network can be adapted to
process a first category of message and a second category of
message, and wherein the bridge logic is operative only for
the second category. In one implementation, the first cat-
egory is a supervisory message and the second category is a
work message.
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[0138] Activation Register

[0139] The activation register, in one embodiment, is part
of every ring interface (RIF). It is sent as reply to
Who_Am_I message. It concatenates several key parameters
of each ring member. It can be used by the Anchor to learn
the topology of the network. It can include the following
fields: user_controls; module ID; user_ID; soft_reset;
invivo; scan_mode; stop_clock activated; and the like. Mod-
ule ID is a hardwired unique ID for each kind of member on
the network. Ring ID is, for example, one-bit used to
identify where bridges are inserted. Each time the Enumer-
ate message crosses a bridge, this bit is flipped. Active bit is
set/reset by activate (or activate all) message types to allow
normal operation of the modules. While this bit is reset, the
module should not operate.

[0140] Stages in the Operation of a Rings Network

[0141] Hardware connectivity—This is when the actual
hardware is connected and the topology of the Rings is built.
Several rings-compliant chips can be interconnected through
the external ring interface. The unused interfaces can be
shorted out.

[0142] Reset—the first message the Anchor typically
propagates is a Reset message. It is flooded without clock-
ing. The Host should wait sufficient time for the reset
message to flood the whole network.

[0143] Wake-Up—after power-up all modules sitting on
Rings typically are in reset mode. All modules have all
config bits reset.

[0144] Enumeration—the Host tells the Anchor to spread
the Enumerate message, starting with some address (usually
zero). Each Ring member receives the Enum message,
computes its own address space needs and transmits down-
stream the next available address. The bridges add first their
own space on the first ring, then transmits the message to the
next ring. When other side of the bridge consumes its own
message, the closer side continues with the Enum message
on the first ring.

[0145] Flood the WhoAml request—the Host instructs the
Anchor to flood the rings with WhoAml request message.
All modules simply transmit it downstream, except bridges
that follows the Enumeration algorithm. Each ring member
first sends its response and clock later try to relay the
Request message. This is so the request message will hit the
Anchor only after all responses arrived. Anchor can deter-
mine the end of WhoAml sequence by using this fact.

[0146] WhoAml response—Each module, after getting
WhoAml request, sends the contents of its Activation reg-
ister as part of the WhoAml response message. The Anchor
should present all these messages to the host. It typically is
the host’s responsibility to infer the network topology from
this data.

[0147] ProgramWr—After learning the network topology,
via Who_Am_I response messages, the host can start con-
figuring the members. Since it knows each member starting
address, the host can send requests to write to any register.
The last stage is to activate the network by writing active, for
example, bit 1 in zero offset register. If during later stages
the Host needs to get the value of any register, it can do so
by issuing ProgramRd request and waiting for ProgramRd
response. Bridges are special case for ProgramWr. Bridges
need to be programmed first, before trying to pass data
across them.
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[0148] Activation—After programming stage, the SOC is
ready to perform processing and data handling tasks. To start
all modules and enable them to work, the Activate message
is flooded throughout the ring network.

[0149] Mode to kill stray messages—It is foreseeable that
because of a bug in design or programming, a message could
be sent that is not addressed to any member of the ring.
Either its address is above the highest assigned address or it
is addressed to empty space between consecutive members.
If the address of the stray message is above high limit, it can
be routed to the Anchor and consumed or discarded by the
Anchor. However if the stray address is pointing to empty
space, this message could circle the ring forever. A process
used to prevent this endless loop follows: messages can have
an additional bit running along with them. If a bridge is
passing a message through (not across) it can set this bit on
the message. If message arrives to a bridge with this bit set,
the bride discards it. Care should be taken to ensure that only
one bridge per ring (in case there are several) is operating in
this mode. In rings where no bridge exists, the Anchor can
perform this action. Messages freshly generated will have
this bit zero. Also every time message crosses a bridge (from
one ring to another) this bit is cleared. If a message circles
the ring for a second time, the designated bridge will discard
it.

[0150] For each ring, only one bridge should execute the
above discard process. Otherwise legitimate messages could
be discarded. The solution to this problem is as follows:
during the Enumeration process, the bridge initializes its
sides as a close side and a distant side. The close side is
where the Enum message appears from. The distant size is
the other side. In this case, the distant side can be selected
to perform the monitoring of stray messages. On the primary
ring (where Anchor is located) the job of killing stray
messages is done by Anchor.

[0151] Rings Topology Issues

[0152] Clock alignment across a SOC often is a critical
feature. Failing it will result in races—which are crippling or
at least inefficient. While other undesirable clocking artifacts
sometimes can be eliminated by lowering the frequency,
cooling the chip, exposing it to light, etc., races typically are
much more difficult to resolve. As FIG. 4 illustrates, if the
delay between clkl and clk2 is greater than the delay from
the output of the first flip flop 60 to the input of the second
flip flop 62, a race is likely, meaning that the second flip flop
62 could sample the data output from the first flip flop 61 a
whole clock period early.

[0153] Inrings-based SOC in accordance with at least one
embodiment, there typically is no need to align the clocks
precisely across the whole chip. Clock alignment is needed
only in singular chunks of data, herein referred to as
compounds. Most of the compounds are small, such as
peripherals. Others are of a medium size, such as DMAs.
Some are considerably large, such as a packet processor. For
larger compounds, some kind of clock alignment generally
is mandatory. But the overall clocking problem can be
divided into smaller, easier solved problems. To illustrate, in
at least one embodiment, signals going between any two
modules are tightly controlled, because they are known in
advance and there is only so many of them (for example,
three signal groups: clock, data and backpressure). Further-
more, because of the topology, a solution in one section
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typically implies a solution for the whole system. Of par-
ticular importance is the direction along the ring any of the
three groups takes, how the clock tree runs, and what special
rules/checks/solutions are to be defined and enforced.

[0154] FIG. 5 illustrates a possible solution to the race
problem. In this example, the clock signal path 64, in the
same direction of the data path 66, is separated into a number
of similar compounds (e.g., compounds 70, 72) By control-
ling the logic 74, 76 on each flip flop leaving a compound,
it can be ensured that the delay between flip flops is at least
long enough to prevent a race condition. This also can be
verified after layout.

[0155] Although the solution illustrated in FIG. 5 may be
implemented, in at least one embodiment, the clock signal is
propagated in the opposite direction of the data, as illustrated
with reference to FIG. 6. By providing the clock signal 78
in the opposite direction of the data signal 80, the potential
for race between compounds 70, 72 is significantly reduced
or eliminated.

[0156] In at least one embodiment, there is at least one
signal that goes against the usual flow of data (signal 80),
this signal being the OK signal 82, which is utilized to
enable backpressure, as illustrated with reference to FIG. 7.
The OK signal 82 generally needs special treatment because
it’s sampling clock lags behind sourcing clock (signal 78).
However, this can be solved by ensuring that the return path
is longer then clock delay. Alternatively, as illustrated with
reference to FIG. 8, a latch 86 may be implemented to
ensure that data provided to flipflop 62 changes only after
the rising edge of the clock 78 (clkb).

[0157] FIG. 9 illustrates a complication resulting from the
propagation of the clock 90 in a direction opposing the
propagation of data in a ring network having a bridge 94. As
illustrated, data_a leaving the bridge 94 goes to member 96
and should be sampled by the rising edge of clkb. However,
clkb lags considerably behind clka of the bridge 94. As
demonstrated by the waveforms 98, race is eminent. How-
ever, by adding latches to the data lines, race can be
eliminated or substantially reduced. Likewise, latches
should be used on the OK signal to prevent race. It will be
appreciated that the latches utility may be limited if the delay
between, for example, clka and clkb is greater than about
75% of the cycle time since the substantial timing uncer-
tainty may be introduced. FIG. 10 illustrates a complication
resulting from the propagation of the clock 90 in a same
direction of the propagation of data 102 in a ring network
having a bridge 94. As illustrated, data_b leaves member 96
to be sampled by the bridge 94 using clk_a. As opposed to
the situation referenced in FIG. 9, clkb now lags consider-
ably behind clka. However, this may be advantageous if the
lag is considerably smaller than the clock cycle since the
data can be delayed beyond the danger zone of clock delay.
Likewise, the OK signal is covered and the last leg of data
is covered. In this case, the only signal that typically must be
considered is the OK signal from the bridge 94 to member
96. In this case, a latch can be used at member 96 to prevent
race in the OK signal.

[0158] It is often desirable to minimize lag between mem-
bers of a ring, thereby increasing the number of members
supported by a single ring as well as minimizing the timing
constraints to be considered. However if one or more
members are packet processors or other modules having
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considerable processing tasks, the clock entering such mod-
ules often is delayed considerably when the clock is regen-
erated to drive the big compound. In this case, the same
principles apply and may be solved using latches, as illus-
trated with reference to FIG. 11, which illustrates a data
signal and clock signal propagating in the same direction. In
this case, the local_clock 110 lags behind the ring_interface
clock 112 of the module 114 (e.g., a packet processor). For
outgoing data, this typically is not a problem since it changes
later then the ring interface flip flops clock. However, for
data entering the module 114 from a previous member, race
is a possibility. The same situation may occur in the event
that the clock signal 112 and the data signal 116 propagate
in opposite directions.

[0159] In accordance with one embodiment of the present
invention, a rings-based system is provided. The system
comprises a plurality of ring members on a ring network that
communicate using point-to-point connectivity, a message
traversing the ring from member to member, where the
system is adapted so that upon the message arriving at a
given ring member the message is processed by that ring
member if the message is applicable to that ring member,
and if the message is not applicable to that ring member, the
message is passed on to the next ring member, and where the
system further comprises a system clock signal for control-
ling timing on the ring network wherein the system clock
signal is aligned between groups of ring members instead of
among all of the ring members. In one embodiment, the
system clock signal runs in the same direction as the
message, while in another embodiment, the system clock
signal runs in the opposing direction to the message. The
alignment can be implmented to substantially removes skew
among the clock signals. Furthermore, the alignment can
prevent a flip-flop at a ring member from sampling data a
clock cycle too early.

[0160] The system clock signal alignment preferably is
performed among adjacent ring members, wherein the align-
ment for a ring member can be performed with respect to the
ring member’s upstream and downstream ring member. The
alignment can be performed by inserting logic at the ring
members that ensures that the delay between adjacent clock
signals does not exceed the delay between the adjacent
members. Similarly, the alignment can be performed using
latches that are clocked by clock signals at individual
members.

[0161] Inone embodiment, the rings-based system further
comprises a backpressure signal that runs in the opposing
direction to the message, wherein the alignment is per-
formed by inserting logic at the ring members to ensure that
the return path for the backpressure signal exceeds the clock
delay between adjacent members.

[0162] Bridges

[0163] As discussed previously, the ring topology in
accordance with the present invention arranges module in a
logical ring. All data and control is transmitted over this ring
infrastructure sequentially around the ring. However, as
illustrated by FIG. 12, considerable ring latency may be
introduced. To illustrate, if module 116 sends a message to
module 118, there is little latency. However, if member 120
is to pass data to member 122, the data must pass through
four modules (i.e., four clock cycles), resulting in consid-
erably more latency. Another problem is peak latency. To
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illustrate, suppose that member 116 transmits mainly to
member 122 and member 118 transmits data mainly to
member 120. In this case, the communication between
members 118 and 120 suffers degradation due to the traffic
from member 116 to member 122.

[0164] In at least one embodiment, a bridge may be used
to minimize the latency between members of a ring. As
illustrated in FIG. 13, a bridge 130 may be used to connect
two rings 132, 134. This bridge is analogous to a sea bridge
since it connects two rings together just as a sea bridge
connects two islands. The sea bridge, in one embodiment,
determines what messages to cross over between rings and
what messages to keep on the current ring. So referring to
the above latency problems, the sea bridge may be utilized
to minimize peak latency issues. To illustrate, if member 134
communicates mainly with member 136, communications
between member 138 and member 140 are not affected.

[0165] Intraring latency resulting from a relatively large
number of members of the ring between the transmitting
member and the intended recipient member may be reduced
by a land bridge, as illustrated with reference to FIG. 14.
The land bridge 146 is utilized within a ring 148 to minimize
the number of hops for data/clock signals. To illustrate,
without the land bridge 146, data from member 150 to
member 152 would have to go though § members. However,
the land bridge 146 reduces the number of members in the
data path between member 150 and member 152 to 3
members (with two of the members being the bridges two
interfaces 154, 156).

[0166] The bridge, either a land bridge or a sea bridge, is
adapted to analyze a message received at one of its interfaces
and to pass the message through to its other interface or pass
on to the next member depending on the intended recipient
of the message. For example, when member 150 sends a
message to member 158, the land bridge 146 receives the
message at bridge interface 154 and determines that the
shortest path is to pass the message from the bridge interface
154 directly to the member 158. However, when member
150 sends a message to member 160, the land bridge 146
receives the message at bridge interface 154 and determines
that the shortest path is to pass the message through the
bridge to the bridge interface 156 and then from bridge
interface 156 to the member 160. It is not necessary for a
bridge to be aware of the topology of the ring when deciding
the more optimal path for a message. Using the enumeration
process, the bridge can obtain the information used to make
this decision. Referring now to FIG. 15, an exemplary
routing process by the bridge 146 is illustrated in accordance
with one embodiment of the present invention. For enu-
meration purposes the land bridge 146 appears as two ring
members (interface 154 being one member and interface 156
being the second). The member/interface of the bridge
having the lower address (address=3 in this case) becomes
the near end, the member/interface of the bridge having the
higher address (address=0 in this case) is marked as the far
end. A message arriving at the near end (from direction of
the member 150) is passed on if the destination address of
the message is greater than 3 and less then 6. Otherwise, the
message is passed through the bridge 146 to the far end
(interface 156). On the far end, a message arriving at the
interface 156 from the direction of member 152 will be
passed through to the near end (interface 1154) if its desti-
nation address is less than 6 but greater than 3. Otherwise the
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message is passed on to member 160. In at least one
embodiment, the address values by which a bridge 146
determines the routing of a message are determined during
the enumeration process described herein. FIG. 16 illus-
trates a situation whereby two messages are received at an
interface 154 of a bridge 146 at a same time. As illustrated
msgl and msg 2 are received at the same interface 154 at the
same time. In one embodiment, messages transferred
between interfaces of the bridge 146 are given priority,
whereas in other embodiments, messages received at the
bridge interface from members of the ring are given priority.
Referring to FIG. 17, an exemplary implementation of a
bridge 170 is illustrated. In this example, the bridge 170
includes control logic 172 adapted to control the upstream
and downstream muxes 174-180 to pass either the incoming
messages through either the fifo (fifos 182-188) between the
downstream input and the upstream output, the upstream
input to the upstream output, the downstream input to the
downstream output, and the upstream input to the down-
stream output.

[0167] In accordance with one embodiment of the present
invention, a rings-based system on a chip is provided. This
system comprises a plurality of ring members on a ring that
communicate using point-to-point connectivity, a message
traversing the ring from member to member, the system
being adapted so that upon the message arriving at a given
ring member the message is processed by that ring member
if the message is applicable to that ring member, and if the
message is not applicable to that ring member, the message
is passed on to the next ring member, and wherein at least
one of the ring members comprises a bridge.

[0168] In one embodiment, the bridge of the rings-based
system is adapted to allow messages to travel from one side
to another side of the bridge without passing through inter-
mediate ring members. In this case, the bridge can be
configured so that the message arriving at the bridge is
routed according to whether an address associated with the
message corresponds to one side of the bridge or the other
side of the bridge.

[0169] Likewise, the message, in one embodiment, is
passed across the bridge when the address is associated with
the one side of the bridge, and wherein the message is passed
through the bridge when the address is associated with the
other side of the bridge. Accordingly, the bridge can include
logic with a range of addresses, such that the message is
routed to one side of the bridge or the other side of the bridge
depending on whether the address is within the range. The
logic may be established based on a configuration message
that causes the ring members to assign their address spaces,
and the configuration message may include an enumeration
message.

[0170] In one embodiment, the plurality of ring members
of the rings-based system are a first plurality of ring mem-
bers comprising a first ring network and the system further
comprises a second plurality of ring members comprising a
second ring network, wherein the bridge comprises a bridge
between the two ring networks. The bridge can be adapted
to determine which messages to pass to the second ring
network and which messages to keep on the first ring
network. In this case, the bridge may be configured so that
the message arriving at the bridge is routed according to
whether an address associated with the message corresponds
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to one side of the bridge or the other side of the bridge. The
bridge can include logic with a range of addresses, such that
the message is routed to the first ring network or the second
ring network depending on whether the address is within the
range. This logic can be established based on a configuration
message that causes the ring members to assign their address
spaces. The configuration message, in this instance, may
include an enumeration message. Furthermore, the message
can be passed across the bridge when the address is asso-
ciated with the first ring network, and wherein the message
is passed through the bridge when the address is associated
with the second ring network.

[0171] In another embodiment, the bridge is adapted to
process a first category of message and a second category of
message. The first category of message can include a super-
visory message and the second category of message can
include a work message. The bridge then can be adapted to
make a routing determination based on the second category
of message. In this case, the bridge can be adapted to
identifies the category of message by examining a message
type included in the message.

[0172] Stray Messages

[0173] A stray message is a message addressed to an
unused address of a ring network. The enumeration process
typically leaves gaps of unused address space between
active modules when the modules align themselves to start-
ing addresses being, for example, a power of two. A stray
message usually is a result of a software bug. Unchecked,
stray messages may slowly choke the ring network, while
such messages are difficult to detect and/or debug. However,
not every member of the ring is required to know about
much less have the capability to detect or remove stray
messages. In one embodiment, this responsibility falls to the
Anchor and/or bridges.

[0174] Referring now to FIGS. 18 and 19, a process for
removing stray messages is illustrated in accordance with at
least one embodiment of the present invention. In the
illustrated embodiment, one bit of a message is used as a
marker to determine if a message is a stray. The bit normally
is set to zero, but when a message passes through an Anchor
192 or bridge 194, the bit is set to one. If the message arrives
at the Anchor 192 or bridge 194 again, the Anchor/bridge
notes the set bit and discards the stray message, thereby
removing the stray from the ring.

[0175] However, it will be appreciated that since a bridge
has two ring interfaces, one of the interfaces must be
selected to filter stray messages, particularly in land bridges.
To illustrate, if member 196 sends a message to address=5
(an unassigned address), the land bridge 198 will receive the
message at the far end 200 (address=11) and forward the
message back to the near end 202 of the bridge 198
(address=3), where the process will be repeated unless the
stray message is removed. Accordingly, in one embodiment,
the far end 200 of the bridge 198 (i.e., the interface of the
bridge furthest away from the anchor) is selected to filter for
stray messages. The stray message marker bit of messages
received at the near end 202 remain unchanged while the
stray message marker bit is set at the far end 200 of the
bridge.

[0176] FIGS. 20, 21, and 22 illustrate exemplary ring
networks having more than one bridge per ring. To illustrate
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FIG. 20 includes a ring having two parallel bridges 208,
210, FIG. 21 has a ring 212 with bridges 214, 216 that cross,
and FIG. 22 includes a ring network having both a land
bridge 222 and a sea bridge 224. Other bridge combinations
may be utilized in accordance with the present invention.

[0177] Debugging and Testing on the Rings

[0178] Due to the topology of the ring network, there is an
opportunity to use the infrastructure of rings to assist scan
and debug. The rings can be used as a scan chain access to
individual ring members and also a special in-vivo scan
mode (discussed below) may be employed. Referring to
FIGS. 23 and 24, the insertion of a scan capability is
illustrated. A scan may be enabled by introducing new
scan_insert member 230, which is not a regular member. The
scan_insert member 230 can be adapted such that it does not
introduce one clock delay. For ring signals it is a mux 232
between regular ring data and scan input signals. During test
modes this mux 232 inserts scan input signals instead of
regular ring data. During normal operation, this mux 232
connects ring infrastructure as usual. In scan mode, the ring
is effectively cut off. Insert-scan signals come directly from
input pads 234, 236 on the chip. The tap the results pins
drive the output pads. The insert scan signals form three
major groups: Message type, Message address and Message
data.

[0179] Before the actual scan can commence the ring
should be programmed to scan mode. This can done by
forcing a sequence of supervisor messages onto the ring.
This sequence first resets the ring, then Enumerates it. The
last stage is activating for scan of one specific member. After
the scan mode is programmed to the member, the actual scan
can be done. Scan mux signal is part of the ring. It is
programmed via, for example, the external pad to create the
shift in sequence. Then for one clock it is negated. During
this cycle the scan capture occurs. Then scan mux is asserted
again and clocking advances the scan out data. The scan out
data is tapped off the wires entering the scan_insert module.
Referring to FIG. 25, exemplary signals 240-250 used as
scan chains are illustrated. During scan, several message
data signals are used as scan chains. The number of data
lines depends on how many parallel scan chains are neces-
sary.

[0180]

[0181] A typical silicon debug scenario is as follows: a
chip is run for one billion clocks and a bug is discovered.
The test is rerun for half the clocks and then stopped. all
flip-flops values at the stopped state the source of the
problem or error is hopefully determined. In such a scenario,
in-vivo scan may be utilized. For an in-vivo scan, the chip
is started as usual. The software is run for the specified
number of clocks (note: optionally, a special counter may be
used to freeze the rings.) The ring modules are deactivated
then deactivated by, for example, a message from a certain
module. One specified ring module is re-activated in in-vivo
scan mode. This mode causes the module to run shift-out of
all its flip-flops. The module’s ring interface is responsible
for managing the scan-out. It counts bocks of, for example,
32 scan-out bits, packages them in one message and ships
the message to the Anchor. The Anchor or other module
needs to retrieve these messages out of the Anchor and pass
them to debug software. The message type typically is the
Program Read Response message, which is designed to get
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to Anchor. The address is the modules self-address. The data
of this message is, for example, 32 bits of scan-out data.
Each activation of this mode causes a certain number such
messages to be generated. If the modules have more flip-
flops then the total bit count of the messages, the designated
module can do this activation again and again. To facilitate
fast freeze of members state, a special supervisor message
(Freeze message) is defined to run quickly around the rings
and freeze the state of each module.

[0182] In accordance with one embodiment of the present
invention, a rings-based system on a chip is provided. The
rings-based system comprises a plurality of ring members on
a ring network that communicate using point-to-point con-
nectivity, a message traversing the ring from member to
member, where the system is adapted so that, during normal
operation, upon the message arriving at a given ring member
the message is processed by that ring member if the message
is applicable to that ring member, and if the message is not
applicable to that ring member, the message is passed on to
the next ring member, and wherein the system is further
adapted for a scan testing mode in which one of the ring
members is enabled for a scan output and the other ring
members deactivated. The deactivated members can be
adapted to pass messages without consuming the messages.

[0183] The scan output can be packaged into one or more
messages that are transmitted by the one ring member. The
one or more messages may be transmitted to a processor,
wherein the processor can include a ring member operating
as a supervisor that consumes supervisory response mes-
sages. In this case, the processor can be adapted to make the
data from the one or more messages available to debugging
software. Additionally, in one embodiment, a second of the
ring members of the rings-based system comprises a pro-
cessor that issues at least one message that operates to
deactivate the other ring members and to enable the one ring
member for the scan output.

[0184] In one embodiment, the operation of the system in
the scan testing mode causes the one ring member to shift
out flip-flops associated with the one ring member into one
or more messages sent on the ring. The scan testing mode
can be initiated by resetting the ring network and enabling
the one member for the scan mode, where initiation of the
scan testing mode may include enumerating the ring net-
work. In one embodiment, the scan testing mode allows a
user of the system to debug the system without adding
additional hardware.

[0185] Furthermore, in one embodiment, the plurality of
ring members are coupled to the ring network using a
plurality of ring interfaces having registers, wherein the
registers preferably include bits that can be set to deactivate
the ring member associated with that ring interface. The
registers also may include bits that can be set to enable the
ring member associated with that ring interface for the scan
output.

[0186] In accordance with another embodiment of the
present invention, a method of scanning in a ring network
having a plurality of ring members is provided. The method
comprises observing a defect or anomaly during normal
operation of the ring network, issuing at least one message
that causes one ring member to enter a scan output mode and
other ring members to be deactivated, resuming operation of
the ring network, and outputting scan data from the one ring
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member onto the ring network as messages. The method, in
one embodiment, further comprises causing a different ring
member to enter the scan output mode in order to isolate the
defect or anomaly. The at least one message can comprise at
least one supervisory message that configures bits in ring
interfaces associated with the ring members. Additionally, in
one embodiment, the step of observing takes place at a point
in time during the normal operation, and wherein the step of
resuming is carried out just prior to the point in time.

[0187] During the scan output mode, in one embodiment,
the one ring member packages its scan output as messages
to be transmitted to a processor ring member. In this case,
the processor ring member can be adapted to make the scan
output available to debugging software.

[0188] Basic Ring Interface (RIF) Overview

[0189] This section covers three issues. The basic ring
timing and backpressure protocol. It also presents the ring
interface unit block diagram, which in turn is used to
describe the interface to the user module connected to the
ring. Regular ring members need not be aware of the ring
intricacies. The basic ring interface is intended to hide most
of the timings and protocols. FIGS. 26, 27 and 28 illustrate
an exemplary implementation of ring signaling between
modules of a ring network. As discussed previously, in one
embodiment, the OK signal 266 (back pressure) flows in a
reverse direction to inform member 268 that on the next
rising clock 272 it may force new message on type/addr/data
lines 274-278. The OK signal 266 is generated by the
receiving member 270. By default, in one embodiment, the
OK signal 266 is active and the only time it goes down is
when the message type is non-idle and there is no room in
the correct fifo of member 270. The correct fifo is either fifo
280 for through traffic in member 270 or the messages
addressed for member 270 fifo. Thus the OK signal 266 is
generated by signals coming from member 268 to member
270 and is sent roundtrip back during the same clock.

[0190] The generation of OK signal 266 can be done from
flip-flops resident in member 270 and the type lines of
message coming from member 268. For example, if the fifo
280 is full, the OK signal 266 is negated, even though the
next OK down the ring is active and is freeing an entry in the
fifo 280. The same basic OK protocol is used four times in
each RIF (ring interface) unit (FIG. 27). The same OK
protocol is valid for the four exemplary RIF interfaces.

[0191] In accordance with one embodiment of the present
invention, a rings-based system on a chip is provided. The
rings-based system comprises a plurality of ring members on
a ring network that communicate using point-to-point con-
nectivity, a message traversing the ring from member to
member, where the system is adapted so that upon the
message arriving at a given ring member the message is
processed by that ring member if the message is applicable
to that ring member, and if the message is not applicable to
that ring member, the message is passed on to the next ring
member, and the system is further adapted so that down-
stream adjacent ring members provide a signal to their
upstream adjacent ring members that indicates whether a
slot is available for the upstream ring member to pass the
message to the downstream ring member on a given clock
cycle. The receipt of the signal indicating that a slot is not
available, in one embodiment, causes the upstream ring
member not to pass the message on that clock cycle. In one
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embodiment, each ring member provides the signal to the
immediately prior ring member each clock cycle.

[0192] In one embodiment, each ring member couples to
the ring network by a ring interface, where the signals
regarding slot availability are passed between adjacent ring
interfaces. In this case, the ring interface can include an
input FIFO and a through FIFO. The signal can be generated
by the downstream ring member and passed to an immedi-
ately upstream ring member holding the message, where the
signal is generated according to the FIFO for the down-
stream ring member that pertains to the message. In this
case, the downstream ring member can be adapted to deter-
mine that the input FIFO pertains to the message if the
message is to be consumed by the downstream ring member
and that the through FIFO pertains to the message if the
message is not to be consumed by the downstream ring
member. The determination can be made by the downstream
ring member examining information descriptive of the mes-
sage before the message in its entirety is sent from the
upstream ring member to the downstream ring member,
where the information preferably comprises data from a type
field and an address field for the message. The signal can
indicate that a slot is available when the input FIFO pertains
to the message and the input FIFO can accept a message
and/or when the through FIFO pertains to the message and
the through FIFO can accept a message.

[0193] In one embodiment, the signal generated by the
downstream adjacent ring members is a backpressure signal
that is generated based on data sent from the upstream ring
member to the downstream ring member and then back to
the upstream ring member in a round trip fashion during a
single clock cycle. Furthermore, in one embodiment, each
ring member has a ring interface, wherein each ring interface
has four interfaces using or providing the signal which
comprises a backpressure signal.

[0194] In accordance with another embodiment of the
present invention, a method of controlling the transmission
of messages on a ring network comprising a plurality of ring
members is provided. The method comprises providing a
message at a first upstream ring member that is available for
output to a second adjacent downstream ring member,
receiving a signal at the upstream ring member from the
downstream ring member that indicates whether a slot is
available for outputting the message on a clock cycle, and
outputting the message from the upstream ring member to
the downstream ring member if a slot is available and
holding the message if a slot is not available.

[0195] In one embodiment, the signal is generated based
on the content of the message. In this case, the signal can be
generated based on whether the message will be consumed
by the downstream ring member or pass through to a further
downstream ring member. The content of the message
preferably includes at least a portion of the message type
and/or at least a portion of the message address.

[0196] Furthermore, in one embodiment, the downstream
ring member is coupled to an input FIFO and a through
FIFO, wherein the downstream ring member determines
which FIFO pertains to the message. The downstream ring
member also can determine whether the pertinent FIFO is
capable of accepting the message.

[0197] The Imessage path is the messages intended for this
member. Each message bus on the diagram above is actually
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collection of three fields: type/8, addr/20, data/64. It is true
for 3 out of 4 interfaces. For Imessage path, the type can be
in most cases reduced to work/program and read/write. Also,
several other bits of type might be needed, like last and size.
For the address field only low order bits are needed. The
address bits needed are the bits that cover the internal
module address space. The data field might be reduced in
some cases to 32 bits or even less, for example 8 bit UART.
The Imessage fifo may be a very reduced version of other
fifos.

[0198] The Omessage fifo 282 transmits messages origi-
nating locally to the outside ring. It has to support full fields,
because many kinds of messages can be produced. As can be
seen from FIG. 28, the OK signal logic 284 originates in the
sending member 268. It starts with creating message type
and address. Type and address fields travel to member 270,
whereas, using these two fields, a decision is made as to
whether the message is a through message or it ends at and
is consumed by member 270. In each case, the status of the
corresponding fifo is transmitted back as the OK signal. The
next rising clock samples this OK to mux either previous
message or new one or idle. As presented, all four interfaces
of RIF have similar turnarounds with their OK signals.

[0199] Routing of Incoming Messages

[0200] Referring now to FIG. 29, an exemplary process
for routing of incoming messages is illustrated in accordance
with at least one embodiment of the present invention. As
illustrated, incoming messages to a module are examined
first to determine if the message is a supervisor or work/
program message. Using the address field 290, the intended
address of the message can be determined. Since, in one
embodiment, the address of the module is aligned to a power
of two, an address mask 292 (referred to as split mask) may
be used to compare only a subset of the bits of the address.
The lower part 294 of the address is passed into the module
as an internal address. The subset of bits are compared
against a self-address register 296 containing the addresses
associated with the module (obtained during the enumera-
tion process). If the subset 294 matches the self-address
register 296, the module can consider the message to be
addressed to the module. Using the ours/through indication
to create the correct DOK (down ok) signal, the above
discussion ignores the supervisor messages. Some of super-
visors make different use of the address field, when they
apply to all members (Enumerate). Some of the supervisor
messages are responses from members. These messages
carry address of the sender.

[0201] Referring now to FIGS. 30-33, exemplary imple-
mentations of the RIF 300 are illustrated in greater detail.

[0202] The main RIF registers include:

[0203] self_address_valid bit flipflop: indication that
Enumeration was run and address assigned;

[0204] self_address: value of self address. This reg-
ister typically is 20 bits although fewer bits may be
used, as the lower part of this register typically is
Zero,

[0205] idnumber: a constant parameter used to iden-
tify the associated member;

[0206] ADDRESS_PACE: this is the number of bits
used by internal address space. It is used to calculate
the address space claimed by the ring member.
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[0207] activated bit: This bit is reset at hardware reset
and modified further by activate messages. If this bit
is active, the ring interface is in work mode. It will
process work messages. If this bit is inactive, the ring
member should wait for programming or activation;
scan_enabled bit in activation register : turns the
module into scan mode. Reset by hardware reset,
further modifiable by activation messages.

[0208] in_vivo scan and related: scan out of all
registers during interruption of normal work. This is
done on per module basis.

[0209] RIF Signal Descriptions

[0210] By convention, the term input refers to a signal
entering a ring interface and output refers to a signal driven
by the ring interface.

[0211] The pins to a subsequent ring member/from a
previous ring member include:

[0212] rif_d_type[7.0]: input, message type

[0213] rif d_addi[19.0]: input, message address
[0214] rif _d_data[63:0]: input, message data

[0215] rif _d_ok: output, backpressure, goes back to

previous member
[0216]

[0217] rif d_scan: scan mode enable (the actual
muxing signal, not test mode)

[0218]

[0219] rif d_passed_me: input, indicates that mes-
sage passed through bridge or Anchor already

rif_d_clock: input, clock in signal

rif_d_reset: input, h/w reset

[0220] Pins for messages entering the ring member
include:

[0221] rif i write: output, this message is valid write
and can come from a program or work write. The
RIF module modifies the options bits (see below) in
case of program write.

[0222]

[0223] rif i options[5:0]: output, rest of the bits of
type in the message. These bits are relevant to more
sophisticated members, snooping on last and such.
For simple members they do not have to be used.
Option bits have one out of two possible interpreta-
tions. One for read and one for write. For write:
snoop, last and size. For read: enable snoop, width of
the response (64 bit or 32 bit, for example), enable
last address modification (end of frame indication),
enable first address modification (start of frame) and
increment destination. Discussed above with refer-
ence to message type encoding.

rif_i_read: output, this message is valid read.

[0224] rif i_addr[15.0]: output, relevant part of
address

[0225] rif i datal[31.0]: output, relevant part of data
low

[0226] rif i_datah[31.0]: output, relevant part of data
high
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[0227] rif i_ok: input, tells the RIF that message is
accepted by member. On the next clock, a new
message may be sent.

[0228] Control pins entering the RIF include:

[0229] rif activated: output, reflects activated bit in
activation register, if not enabled this bit prevents
work messages entering/exiting the member. Also,
peripherals should not start transmit/receive opera-
tions with this bit disabled.

[0230]

[0231] rif scan_mode: output, reflects scan bit in
activation register if enabled, this member is under
scan test;

[0232] rif scan: output, scan muxing signal if
enabled, in shift of scan operation, if disabled with
mode, means capture;

[0233]
[0234]

[0235] rif user_id[1:0]: user defined modifier of
module ID input;

[0236] rif user-control[3:0] bits from activation reg-
ister for user definition and use;

rif_reset: output, either hard reset or soft reset;

rif_self address[19:0]: output, self address;
rif_clock: clock for local flipflops;

[0237] Pins for messages going to the next member of the
ring include:

[0238] rif u_type[7.0]: output;

[0239] rif u_addr[19:0]: output;

[0240] rif u_datal[31:0]: output, data low;

[0241] rif u_datah[31:0]: output, data high;

[0242] rif u_ok: input, back pressure from next
member;

[0243]

[0244] rif u_scan: output, scan mode enable (the
actual muxing signal, not test mode); rif_t_reset:
output, hardware reset;

rif_u_clock: output, clock out signal;

[0245] rif u_passed_me: output, indicates that message
passed through bridge or

[0246] Anchor already; Pins for messages exiting the
member include:

[0247] rif_o_type[7:0] input, message type bits (type
[7:3]1=0) act as valid indication,

[0248]

[0249]
half;

[0250]
half;

[0251] rif o_replace: input, request to replace the
relevant part of datal with self address bits;

[0252] rif o_ok: output, tells the member that mes-
sage is accepted by RIF;

rif_o_addi[19:0]: input, message address;

rif_o_datal[31:0]: input, message data low

rif_o_datah[31.0]: input, message data high
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[0253] Anchor RIF Interface

[0254] The Anchor RIF interface, in one embodiment, is a
variation on the RIF interface used by regular ring members.
It has one more state variable—active/passive Anchor. If the
Enumerate message comes through dmessage inputs, then
an Anchor declares itself passive. If Enumeration message
comes from omessage input, then the Anchor declares itself
an active Anchor. An active Anchor consumes all supervisor
messages, whereas in regular RIFs, supervisor messages are
ignored by passing them all to imessage output. For work
messages there is another difference. Anchors have self-
address space like any other ring member. Work messages
addressed to Anchor address space are consumed. Anchors
also participate in stray message kills (as discussed above).
If message addressed above (or below) Enumerated address
space, it will be caught and discarded by the Anchor.

[0255] Bridge RIF

[0256] A primary function of the Bridge to direct traffic
between rings. During Enumeration, the Bridge learns all it
has to know about the topology. Signal interfaces of a bridge
are identical to two sets of regular RIF. The only exception
is clock, which has a tree-topology. Other tug-along signals,
like scan, take the longest (crossover) route. From a hard-
ware point of view bridge can be viewed as two RIFs
connected back to back. However, the bridge provides
additional functionality. For one, the bridge records the first
input to receive the Enumeration message. The end lucky to
get hit first by Enumeration is labeled near, because it is
closer to the Anchor. The other end is labeled far. Also the
incoming Enumeration address is recorded as low range.
The Enumeration message is sent to the other far side. When
it returns on the far side dmessage input, The address is
recorded again as high address. At this point bridge is ready
to work.

[0257] During normal operation, Supervisor request mes-
sages, in one embodiment, are crossed to the other side.
Supervisor response messages are moved to near umessage
output. Program write messages and Program read requests
are treated as work messages. Program read responses are
moved to the near umessage output. Work messages are
routed based on low/high bounds. If message address is
between low/high bounds it is moved to the far umessage
output. Otherwise the near side gets it. The far side also
participates in detecting and removing stray messages.

[0258] In one embodiment, messages appear to member
module through rif_i_signals.

[0259] These signals include:

[0260] rif i write: changes just after rising edge of
the clock. if active means valid write message
arrived. Valid means correct type and context, The
user does not have to worry about decoding message
types and such;

[0261] rif i read: changes same, means valid read
message arrived;

[0262] rif i options[5:0]: bits extracted from type
part of the message. For read they mean snoop,
width, last, first and increment and for write they
mean last, snoop and size bits;

[0263] rif i_ok: member generates positive acknowl-
edge to ring interface. This signal should be valid (or
negated) shortly after rif i read or rif i write
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become valid. If OK is negated during this cycle, on
the next cycle same message data will be driven.
Members should make every effort to keep this
signal very active;

[0264] rif i_addr[19:0], rif i_data[37:0]and rif i-
_datah[31.0]

[0265] General controls entering a RIF include:
[0266]
[0267]

[0268] rif activated: member received ok to operate.
This signal is useful for Rx peripherals, not to start
bothering anyone without activation;

[0269] rif self address[19:0]: self address on the
ring;

rif_clock: clock;

rif_reset: reset;

[0270] Constant controls exiting a member and entering
ring_control include:

[0271] module_id[7:0] these two bits can be used by
members to tell the system something specific about
themselves. For example Ethernet MACs can use
one of these signals to tell the world if they are 10 or
100 mbit connected;

[0272] rif o_type[7.0] is the type of outgoing mes-
sage;
[0273] rif o_addr and rif_o_datal/datah are rest of

the message bits;

[0274] rif o_ok: if in current cycle this signal is
inactive (low), don’t change the message on the next
positive edge.

[0275] Ring_control parameters include:

[0276] ring_interface_unit (also called ring_control)
has 2 parameters, which should be set at verilog
instance time. ADDRESS_SPACE: this number sig-
nifies the number of internal address lines that should
enter the member. for example, member has internal
memory map of 256 bytes it needs 8 address lines to
address this space. Its ADDRESS_SPACE should be
set to 8. It also means that to recognize a message to
this member the 12 most significant bits of the
message address are used. MODULE_ID: each hard-
ware ring member gets, for example, 8 bits for a
unique ID. This ID is unique to all instances of the
same hardware, for example, all Ethernet MACs
have the same ID. To distinguish between different
MAGCs, self_address and user_id bits can be used.
Module ID can be examined by Anchor using
Who_Am_I messages. Module ID typically is part of
the response by any module.

[0277] Reset on the Ring

[0278] Each ring-based SOC typically has only one
Anchor. The hardware reset starts at this Anchor. The
Anchor has a hw_reset input pin. From this pin, reset is sent
in two directions. One direction is down the ring. The other
direction is to the module that hosts the Anchor, for example,
a packet processor. The reset propagates through the ring in
the logical ring order. It is the same path all supervisor
messages take, although the reset is a signal rather than a
message. However it is unconditionally flip-floped at each
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ring member. It is also possible to force soft reset on ring
members using Activate messages.

[0279] In accordance with one embodiment of the present
invention, a rings-based system is provided. The rings-based
system comprises a plurality of ring members on a ring
network that communicate using point-to-point connectiv-
ity, a message traversing the ring from member to member,
wherein the system is adapted so that upon the message
arriving at a given ring member the message is processed by
that ring member if the message is applicable to that ring
member, and if the message is not applicable to that ring
member, the message is passed on to the next ring member,
and where the message causes a reset, such as a soft reset,
of the given ring member if the message is applicable to that
ring member. The message preferably includes address
information corresponding to the given ring member. The
message can include an activate message that includes at
least one bit for causing a reset.

[0280] The message, in one embodiment, causes a reset by
writing at least one bit from the message into a ring interface
for the given member. In this case, the ring interface can
includes a bit that is reset by the message, where the bit
preferably includes an activated bit or a reset bit. The ring
interface can be adapted to provide an output to the given
ring member for causing the reset, wherein the output
preferably includes a control pin coupled to the given ring
member.

[0281] In accordance with another embodiment of the
present invention, a rings-based system is provided. The
rings-based system comprises a plurality of ring members on
a ring network that communicate using point-to-point con-
nectivity, a message traversing the ring from member to
member, wherein the system is adapted so that upon the
message arriving at a given ring member the message is
processed by that ring member if the message is applicable
to that ring member, and if the message is not applicable to
that ring member, the message is passed on to the next ring
member; and wherein the system further comprises a reset
control signal that causes multiple members of the ring
network to be reset (such as a hard reset).

[0282] The reset control signal can include a hardware
signal that is sent independent of the message. Furthermore,
the reset control signal can be sent on a different line from
the message. The reset control signal can be adapted to cause
all ring members except for the member from which the
reset signal originates to be reset. The reset control signal, in
one embodiment, causes a reset by causing the reset of bits
in ring interfaces corresponding to the multiple members. In
this case, the ring interfaces can provide an output to their
corresponding ring members to cause the resets, where the
outputs can include control pins coupled to the correspond-
ing ring members.

[0283] In accordance with an additional embodiment of
the present invention, a rings-based system is provided. The
rings-based system comprises a plurality of ring members on
a ring network that communicate using point-to-point con-
nectivity, a message traversing the ring from member to
member, the system being adapted so that upon the message
arriving at a given ring member the message is processed by
that ring member if the message is applicable to that ring
member, and if the message is not applicable to that ring
member, the message is passed on to the next ring member,
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wherein the system includes a message that can cause a reset
of the given ring member if the message is applicable to that
ring member, and wherein the system further includes a reset
control signal that causes multiple members of the ring
network to be reset. The message that can cause a reset can
cause a soft reset of the given ring member, wherein the reset
control signal causes hard resets of the multiple members.

[0284] Message Types and Formats
[0285] Messages come in roughly four categories:

[0286] Supervisor requests—include reset, Enumerate,
Who_Am_I requests, activate, freeze. These messages are
generated by Anchor and are flooded through the network.

[0287] Supervisor response—include Exception,
WhoAml_response. These supervisor messages are gener-
ated by regular members and float to the Anchor for its
attention.

[0288] Programming—include regular work write and
read messages.

[0289] Work—includes work_read and work_write.

[0290] The Enumerate message: The Enumerate (or
Enum) message is initiated by the active Anchor. In each
ring system there is only one active Anchor. Anchor decides
it active, if it is told to start the Enumeration through
omessage inputs. The message can include a header field, a
data field, a next available address field, a ring ID, and the
like. The ring ID is bit flipped every time the message
crosses a bridge. It is recorded in activate register in every
ring interface. This bit can later be used by software to
determine the exact ring topology.

[0291] Who_am_I message: To learn the topology, Anchor
starts WhoAml_request message. Each member that
receives this message, firstly responds to it, then relays the
request message. This order assures that Anchor will see the
request message only after all responses. Thus it can deter-
mine that the WhoAml process ended. In request message
the field typically used is the type field. The address part of
the message is the module’s Self _Address. The data field
holds info about the module.

[0292] Activate message: The Activate message is issued
through the Anchor. It carries the address of a specific
member and a few bits in the data field used to write the
activation register. The bits in the activation register control
the state and behavior of the members.

[0293] Freeze message: The freeze message unclogs rings
and deactivates all members.

[0294] Tools for Module and Ring Network Builder

[0295] Write Ahead Mode—Read operations in a rings-
based architecture typically is much more time consuming
than write operations. Accordingly, in another inventive
aspect of at least one embodiment of the present invention,
status registers are usually inspected by CPUs before send-
ing or receiving data. It generally is desirable to get status
fast. The delay of two-way trip from CPU to peripheral and
back often is unacceptable. The present invention provides
that the peripheral, every time its status changes, sends it
ahead to one or more pre-arranged locations in a CPU’s
RAM or other device. The extension of this idea is to change
every critical read to send-ahead write. In essence, every
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time important parameter changes in some perihperal, its
value is written to an agreed memory in the asker space. For
example, the CPU needs to know how many free entries are
there in a Utopia fifo. Instead of doing read operation
initiated by CPU, the fifo, each time this number signifi-
cantly changes, will write it in some agreed location of
CPU’s RAM. The CPU now only needs to read its local
memory.

[0296] To implement the above write ahead modality, a
rings-based system on a chip is provided in accordance with
one embodiment of the present invention. The rings-based
system comprises a plurality of ring members on a ring that
communicate using point-to-point connectivity, a message
traversing the ring from member to member, where the
system is adapted so that upon the message arriving at a
given ring member the message is processed by that member
if the message is applicable to that ring member, and if the
message is not applicable to that ring member, the message
is passed on to the next ring member. The system also is
adapted to process both read messages and write messages.
The plurality of ring members includes a CPU and at least
one peripheral that exchanges date with the CPU, wherein
the peripheral includes at least one status memory that stores
data describing the status of the peripheral, and where the
system is configured to write ahead status changes that are
accessible by the CPU.

[0297] The system also can be adapted to perform write
ahead status changes that would otherwise be initiated by the
CPU as read operations. Likewise, the write ahead opera-
tions can be programmed to occur based on read operations
that would otherwise be initiated by the CPU on a regular
basis. The system can be adapted to write ahead status
changes to a RAM on the CPU or a RAM that is accessible
by the CPU. The CPU can comprise a control protocol
processor in a communications chip or network processor in
a communications chip. The status memory may comprise at
least one status register.

[0298] 1In at least one embodiment, the write ahead opera-
tions are performed for some peripheral status changes but
not other peripheral status changes. Additionally, the write
ahead operation is performed or not performed depending on
the nature of the status change. Alternatively, the write ahead
operation is performed or not performed based on the
magnitude or the quantity of the status change.

[0299] In accordance with another embodiment of the
present invention, a write-ahead method in a rings based
communication system, such as a communications processor
or a network processor, is provided. The method comprises
identifying at least one module in a ring network that
includes status registers that store status information of
regular interest to a processor in the ring network, identify-
ing which status information can be transmitted to the
processor as a write ahead operation initiated by the at least
one module instead of a read operation initiated by the
processing, and programming the at least one module to
transmit the identified status information as a write ahead
operation. In one embodiment, the step of programming
causes the average number of read operations initiated by
the processor to decrease.

[0300] In one embodiment, the identification comprises
identifying which status changes are of critical importance
or of regular interest to the processor. Alternatively, the
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identification can include identifying what magnitude or
level of status change will cause the write ahead operation.

[0301] Land Bridges—Most members on a ring typically
communicate in an asymmetric way. For example, EnetRx
(Ethernet receiving) traffic is mostly from a peripheral to a
packet processor. For EnetTx (Ethernet transmitting) it is the
other way around. Pair of members is asymmetric if one is
mainly the sender and the other is mainly the receiver in
their relationship. In this case it makes sense to put the
sender upstream from the receiver. But some pairs are
almost symmetric. A packet processor paired with a DMA is
such an example. As such, no matter how they are placed on
a ring, one direction is bound to suffer. In this case, one or
more land bridges generally will provide the solution.

[0302] As discussed previously with reference to FIG. 14,
a single land bridge can be added to minimize latency
between two members of a ring. As illustrated in FIG. 34,
two or more bridges 332, 334 may be added to a ring 336 to
further minimize the number of modules between any two
ring members. Although each bridge 332, 334 adds two
interfaces (members) to the ring network, this generally will
not affect the latency significantly since a message is
unlikely to travel the entire perimeter of the ring network
due to the bridges.

[0303] Implementation of an External Ring Interface

[0304] Referring now to FIG. 35, an exemplary external
ring interface 340 is illustrated in accordance with one
embodiment of the present invention. Ring connections
between two members can include more than 100 signals.
Each message can include, for example, at least 104 signals.
Therefore, it may be unreasonable to add this amount of pins
(twice) to implement the external ring interface. As such, it
may be preferably to implement a dual purpose peripheral
interface 340, such as Utopia. Normal mode of operation for
an Utopia interface is sending/receiving ATM cells. In a
similar manner, two rings networks, such as two network
processors, can be connected with Utopia interfaces back to
back. In this mode, instead of cells, Utopia pins will convey
messages. This will slow the specific ring speed, but not the
chip speed since if the Utopia interface is behind a bridge,
only messages to the other side are slowed down, not the
internal messages. Using Utopia infrastructure for this, also
enables us to connect an external FPGA 344 (Field-Pro-
grammable Gate Array) as a new peripheral.

[0305] The following is non-inclusive list of some of the
identified advantages associated with the rings topology of
the present invention: high speed circuit design—all con-
nections are point to point unidirectional connections; scal-
ability—once the address routing is resolved the actual
topology can be changed relatively easily; the switch fabric
is transparent to software, only delays are affected by the
topology; typically easier to implement than crossbar or
switch design; debug and test visibility—each member can
be examined and operated alone; possibility of late process-
ing load balancing—different peripherals can be assigned to
different CPUs; and the possibility of no need for precise
across-the-chip clock alignment—clock can be adapted to
run along messages.

[0306] Although any of a variety of CPUs may be imple-
mented as a module of the ring network topology described
herein, ring networks are particularly well-suited for packet
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processors, various emobiments of which are described in
detail below. The packet processor of the present invention
may on occasion be referred to herein as the Vobla, the
network processor, and similar variations. According to one
embodiment, the network processor of the present invention
may be implemented as part of a communications processor
having multiple modules that are interconnected using the
rings architecture described above. The modules in such an
arrangement for a communications processor may include
the network processor of the present invention (for data
plane processing of packets), a control packet processor (for
control plane processing as a flow manager), various periph-
eral modules, and so forth.

[0307] In accordance with one embodiment of the present
invention, a rings-based system is provided. The rings-based
system comprises a plurality of ring members on a ring
network that communicate using point-to-point connectiv-
ity, a message traversing the ring from member to member,
where the system is adapted so that upon the message
arriving at a given ring member the message is processed by
that ring member if the message is applicable to that ring
member, and if the message is not applicable to that ring
member, the message is passed on to the next ring member;
and the system further comprising means for providing an
external ring interface that enables communication with at
least one external peripheral device. The means can com-
prise a field programmable gate array and/or a memory port
ring member on the ring network. The at least one external
peripheral device can include one or more of a DSP, encryp-
tion engine, external bus, external memory, a second ring
network, and the like.

[0308] In one embodiment, the means is adapted to per-
form handshaking between the protocols of the ring network
and the at least one external peripheral device, wherein the
handshaking preferably includes converting message data
from the ring network into transaction data. The means also
can be adapted to allow the ring network to write out
messages to the at least one external peripheral and the at
least one external peripheral to generate transactions con-
verted into messages for the ring network.

[0309] The means, in one embodiment, operates as a
shared memory between the ring network and the at least
one external peripheral. In this case, the means may include
a memory that operates as a RAM for messages received
from the ring network and as a FIFO for transactions
received from the at least one external peripheral device.
The means also may include a memory, wherein the ring
network can write data to an address in the memory to cause
an interrupt in the at least one external peripheral device.

[0310] Inone embodiment, the ring network is a first ring
network on a first chip, where the rings-based system further
comprises a second ring network on a second chip, and
wherein the first ring network and the second ring network
interface through the means to the at least one external
peripheral device.

[0311] Alternatively, the ring network can include a first
communications processor including a first protocol proces-
sor and a second network processor, and the system can
further comprise a second communication processor includ-
ing a second protocol processor and a second network
processor, wherein the first communications processor and
the second communications processor interface through the
means to the at least one external peripheral device.
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[0312] In accordance with yet another embodiment of the
present invention, a network processor implemented on a
chip is provided. The network processor comprises means
for processing a plurality of protocols including ATM, frame
relay, Ethernet, and IP, said means being programmable
using a set of library commands to process additional
protocols, and wherein said means comprises an arithmetic
logic unit (ALU), a load/store unit (LSU), a preload/bump
unit (PBU), a register file unit (RFU), an agent interface, and
an internal memory. The network processor, in one embodi-
ment, further comprises a fetch unit and a program
sequencer.

[0313] The ALU can be adapted to perform arithmetic and
logic operations on data operands. The LSU can be adapted
to perform address calculations in order to address data
operands in the internal memory. The LSU calculates an
effective address according to one of five available options,
including: (1) effective address is the content of a register
from the RFU; (2) effective address is the sum of content of
a first register from the RFU and content of a second register
from the RFU; (3) effective address is the sum of content a
first register from the RFU and content of a second register
from the RFU after the second register is shifted by a
specified number of bits; (4) effective address is the sum of
the content of a register from the RFU and a displacement
that occupies a specified number of bits in an instruction
word; and (5) effective address is an absolute address
included in the instruction word. The PSU, in one embodi-
ment, performs decoding of instructions received from the
internal memory. The fetch unit can be adapted to control
what instructions are fetched from memory for decoding by
the PSU. The internal memory can be adapted for storing
program information and data.

[0314] The RFU, in one embodiment, comprises a first
register file for a current task and a second register file for
preloading register values for a next task. In this case, data
may be read to or written from the first register file based on
a comparison between a current task ID and a task ID
associated with the first register file. The RFU also can
comprise a third register file for storing register values for
the current task that are not stored in the first register file. In
this case, data may be read to or written to the third register
file when the current task ID and the task ID associated with
the first register file are not the same. In one embodiment, a
task switch is performed by the network processor by
making the next task the current task and preloading a
further next task. The performance of a task switch can
include treating the second register file as the third register
file after the task switch.

[0315] The agent interface, in one embodiment, allows the
network processor to interface to external modules for
executing instructions, where the external modules can
include one or more of a CRC module, encryption module,
hashing module, and table lookup module.

[0316] In yet another embodiment of the present inven-
tion, a communications processor implemented on a chip is
provided. The communications processor comprising a net-
work processor including means for processing a plurality of
protocols including ATM, frame relay, Ethernet, and IP, said
means being programmable using a set of library commands
to process additional protocols, wherein said means com-
prises an arithmetic logic unit (ALU), a load/store unit
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(LSU), a preload/bump unit (PBU), a register file unit
(RFU), an agent interface, and an internal memory. The
communications processor further comprises a protocol pro-
cessor for controlling the network processor, wherein the
protocol processor performs control plane processing and
the network processor performs data plane processing. The
network processor can be adapted to process instructions by
performing a fetch, decode, address, execute, and a write.

[0317] Inone embodiment, the network processor and the
protocol processor are ring members on a ring network, and
further comprising a plurality of other ring members on the
ring network. In this case, the network processor includes a
plurality of compounds that share a single ring interface to
the ring network, wherein the compounds can include, for
example, a doorbell agent for controlling the execution
sequence of tasks for the network processor. The compounds
also may include a multireader agent for servicing requests
to read data from the internal memory, a message sender
agent for sending messages onto the ring network, a DMA
agent for sending messages to initiate a DMA controller on
the ring network, a CRC agent for performing CRC calcu-
lations, and/or a debug module. Generally, a packet proces-
sor includes the following capabilities that are typically not
found in general purpose microprocessors:

[0318] Zero overhead task switching—Usually, each inter-
face (I/f) port would require at least 2 tasks (RX [receive],
TX [transmit] to handle the datapath processing. A system
that includes several ports would require about two or more
active tasks for each port. As such, the packet processor
should be able to switch tasks with minimum overhead. The
packet processor may allocate shadow memory (4-8 tasks)
to store registers and task status. The priority scheme to
choose the next_task_to_run is hardware (HW) based and is
not performed by software (SW) as in a RISC (Reduced
Instruction Set Computer) model.

[0319] Parallel engines—Processing of packets can use
parallel machines to accelerate performance. Examples for
this capability include DMA, CRC, Lookup engine, and
Peripheral Transfer Machine. A well-built packet processor
would have the mechanism in place to issue and receive
synchronically transactions to parallel machines without
stalling the packet processor.

[0320] Data movements—Packet processing require data
movements from First-In-First-Out (FIFO) memory to inter-
nal memory, and from internal memory to external memory
and vice versa. This is performed using parallel Direct
Memory Access (DMA) machines. Data transfers should be
optimized and deterministic within boundaries. Hence the
right mechanisms have to be in place between the DMAs
and the packet processor to allow the transactions between
the engines and to ensure deterministic behavior.

[0321] Scalability—One way to scale the throughput of a
packet processor is by instantiating several engines. Hence,
it is desirable that the programming model and the system
architecture be flexible enough to accommodate scalability.

[0322] Special instructions—Packet processing uses spe-
cial operations that are not common for a general purpose
processor. Instructions like Compare immediate under mask
(to match specific bits), activation of parallel engines using
instructions like CRC, DMA, HASH, LIST SEARCH, and
mechanisms such as Sticky bits for compare and jump, are
derived from the needs of packet processing.
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[0323] Inter-task communication—Inter-task communica-
tion is supported by the architecture. Traditional RISC
machines generally use SW for this communication.

[0324] Efficient link list operation—Data structures like
link lists, queues and buffers are common in communication
systems. A flexible packet processor should be able to
manage a large number of different queue types in an
efficient and quick way.

[0325] Exemplary Processing Requirements

[0326] According to one aspect of the invention, the
flexible packet processor should support processing of the
following: ATM, Frame Relay (FR), IP/Ethernet, IWF
(TDM to Packets), AAL2 for wireless base stations, IP, and
MPLS.

[0327] ATM is by far the largest access method in the
access space. A packet processor in the space should to be
able to terminate ATM virtual circuits (VCs) Customer
Premises Equipment (CPE) and should be able to switch
ATM. ATM is of particular interest because a vast majority
of the DSL approaches use ATM as the carrier technology.
Frame Relay is of interest because it is commonly used in
corporate access (e.g., using T1s or NxT1).

[0328] After dominating the LAN space, Ethernet is
becoming a cost effective technology for the Metropolitan
Area Network (MAN). This simplifies the need for a costly
router (no ATM) at the corporate edge. This is a new
approach that ISPs (CLECs [Competitive Local Exchange
Carrier]) use as a way to replace the old Telco access (leased
lines). However, Ethernet access does not solve the issue of
how to deal with corporate voice. Typical requirements for
IP/Ethernet would be IP routing and Ethernet bridging at 100
Mbps and approaching IG-Enet.

[0329] Packet processing for inter-working functions
(IWF) (e.g., TDM to packets) is typically found in Voice
Gateways (VG) and in Wireless Base Stations (WBS). The
VG interface the POTS (plain old telephone system) net-
work on one side and the packet network on the other side.
Voice calls are modified (compressed and packetized, or
uncompressed and circuitized) between the networks. Hence
typical processing requirements at the VG include: termi-
nation of AAL?2 streams; support for CES (Circuit Emula-
tion Services) (AAL1) to emulate T1 services; termination
of RTP (Real Time Protocol) (VoIP) packets; and the like
AAL2 processing may find useful application for Wireless
Base Stations. New generation WBSs use ATM as their
backbone network. To optimize bandwidth, AAL2 may be
chosen to carry both voice and data. In that case, the
following processing requirements result: AAL2 Termina-
tion at the BTS (Base Transceiver Station); AAL2 Switching
the BTS and at the MSC (Mobile Switching Center)/BSC
(Base Station Controller); AAL2 Termination is done at the
MSC/BSC (OC-3 and IP is routed to ISP); and IMA (Inverse
Multiplexing over ATM) is being used as the connection
between BTSs and the MSC both for redundancy and for
cost.

[0330] The flexible packet processor should handle IP
because IP processing can be found in various applications
in the access space, such as the following: ISP aggregation
router; DSLAM for handling frames; Cable modem head
end; Wireless base station; MPLS (Multiprotocol Label
Switching) is a newcomer to the access space. It is being
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used for traffic management and for Quality of Service
(QoS) control. It is desirable that access equipment support
LSR (edge device) (Label Switched Router) for MPLS.

[0331] As demonstrated above, the access market requires
different access methods. The access market has a need for
IWF between these different methods, which, in turn, drives
the requirement for unique processing capabilities. Also, the
different market segments have many similarities regarding
their processing requirements. Thus, a flexible packet pro-
cessor according to the invention can form the basis of an
access platform that is capable of addressing multiple appli-
cations in this space.

[0332] Architectural Overview of a Flexible Packet Pro-
cessor

[0333] The flexible packet processor in accordance with
various embodiments of the present invention is a general-
purpose network processor core, allowing it to support many
system-on-chip (SOC) configurations. A library of modules
containing memories, peripherals, accelerators, and other
processor cores makes it possible for a variety of highly
integrated and cost-effective SOC communication devices to
be built around the packe processor. Figure shows a block
diagram of an exemplary SOC chip 350 made up of the
network processor core 354 and associated SOC compo-
nents (described below) according to an embodiment of the
invention. Although not indicated in this configuration, a
typical SOC can contain more than one network processor
core 354.

[0334] Internal Memory Expansion Area (Internal
Memory 352)—On-chip memories operating at full core
frequency are connected to the network processor core 354
through this component. The internal memory is unified and
can be used for both program and data storage. Different
technologies such as SRAM or ROM can be used to imple-
ment the internal memory.

[0335] Network Processor Core 354—The network pro-
cessor core is the processor in which the network data path
application code is executed, and which may include: a
program sequencer unit (PSU); a load store unit (LSU); a
fetch unit (FTU); a data arithmetic logic unit (DALU); a
register file (RFU) including support of fast task switching;
a preload and bump unit (PBU) for efficient task switching
and context save and restore; and the like. These compo-
nents are discussed below in greater detail.

[0336] A companion (sometimes called a compound) that
is tightly coupled to the network processor core is the
doorbell scoreboard module (doorbell) shown in FIG. 36.
The doorbell receives requests for service from peripherals,
accelerators and DMAs, and then determines a next task ID
once a task switch occurs in the network processor.

[0337] Peripheral Expansion Area 356, Accelerators 358
and System Expansion Area 360—These components
shown in FIG. 36 include the functional units that interface
between the network processor core and the application,
including the functions that send and receive data from
external input/output sources. In addition, these components
include accelerators 358 that execute portions of the appli-
cation in order to boost performance and decrease power
consumption. These components are application-specific
and may or may not include various functional units such as:
a host interface; an external memory interface (e.g.,
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SDRAM controller); a serial interface (USB, UART, SSI
([Synchronous Serial Interface], Timers); a communications
interface (Utopia, MII); a CRC accelerator; a able look up
coprocessor; Smart FIFO; a data pump; a direct memory
access (DMA) controller; as well as other CPU cores, such
as packet processors (PPs).

[0338] To provide the data exchange between the core and
the other on-chip blocks or modules, the following ports
may be implemented: data memory ports (address, data read
and data write) used for data transfers between the core and
memory; program memory port (address and data read) for
fetching code from the memory to the core; agent port to
support tightly-coupled external user-definable functional
units such as peripherals, accelerators, DMA’s, smart
FIFOs, and so forth; and a context memory port (address,
data read and data write) used for the preload and bump of
registers for fast task switching.

[0339] Referring now to FIG. 37, the network processor
core 354 is illustrated in greater detail in accordance with at
least one embodiment of the present invention. As discussed
above, the network processor core, in one embodiment,
includes the following:

[0340] Data Arithmetic Logic Unit(DALU or ALU) 370
The DALU 370 (also referred to as the ALU below) per-
forms the arithmetic and logical operations on data operands
in the network processor core. The data registers can be read
from or written to memory over, for example, a 32-bit wide
data bus as 8-bit, 16-bit, or 32-bit operands. The source
operands for the ALU 370 are 32 bits wide and originate
either from data registers or from immediate data (1 mm).
The results of ALU operations are stored in the data regis-
ters.

[0341] According to one aspect of the invention, ALU
operations are performed in one clock cycle. The destination
of each arithmetic operation can be used as a source operand
for the operation immediately following the arithmetic
operation without any time penalty. In one embodiment, the
components of the ALU 370 are as follows: an integer
arithmetic unit for 32-bit non-saturated three-operand arith-
metic operations; a logic unit for 32-bit logic operations; a
bit field unit (BFU) for multi-bit shift, rotate, swap and
bit-field insert and extract operations; and a condition code
generation unit.

[0342] The ALU 370 may read two operands from the
register file via the dual source bus (srcl and src2 in FIG.
37), or one operand from a register via the source bus and
a second immediate operand via the immediate bus (1 mm
input to DALU on FIG. 37). The ALU 370 generates a result
into a destination register via the destination bus (dest on
FIG. 37).

[0343] The condition codes are optionally generated in the
condition code register (part of the R1 register, discussed
further below) depending on the instruction type.

[0344] The ALU 370 may support both signed and
unsigned arithmetic. Most of the unsigned arithmetic
instructions are performed the same as the signed instruc-
tions. However, some operations may require special hard-
ware and may be implemented as separate instructions.
When performing an unsigned comparison, for example, the
condition code computation is different from signed com-
parisons. The most significant bit of the unsigned operand
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has a positive weight, while in signed representation it has
a negative weight. Special condition codes and instructions
may be implemented to support both signed and unsigned
comparisons.

[0345] The Load Store Unit (LSU) 372

[0346] The LSU 372 performs address calculations using
integer arithmetic needed to address data operands in
memory. In addition, the LSU 372 generates change-of-flow
program addresses. The LSU 372 operates in parallel with
other network processor core resources to minimize address
generation overhead.

[0347] The effective address (EA) used to point to a
memory location for a load or a store is calculated according
to one of the following options. According to one embodi-
ment, only the 16 least significant bits (LSBs) of the
calculation result are considered. The options for calculating
the EA include:

[0348] Register indirect, No update (Rn). The EA is
the content of a register Rn from the register file.

[0349] Indexed by register Ri (Rn+Ri): The EAis the
sum of the contents of the register Rn and the
contents of the register Ri.

[0350] Indexed by a shifted register Ri (Rn+
(Ri<<m)). The EA is the sum of the contents of the
register Rn and the contents of the register Ri after Ri
is pre-shifted to the left by m bits.

[0351] Indexed by displacement (Rn+xx). The EA is
the sum of the contents of the register Rn and a
displacement xx that occupies m bits in the instruc-
tion word. The displacement is sign-extended and
added to Rn to obtain the operand address.

[0352] Absolute address: The EA is the absolute
address expressed in the instruction.

[0353] The Network Processor Registers

[0354] The network processor registers are classified into
three types: General Purpose Registers (GPR); Special Pur-
pose Registers (SPR); and Hidden registers (HR). The
general purpose registers may be used by the programmer to
load data from memory, execute arithmetic or logic opera-
tions, and store the data back into memory. The special
purpose registers are registers that have an associated func-
tionality, such as a task SPR, and so forth. Generally, SPRs
may not be loaded or stored directly from/to memory.
According to one approach, a dedicated move instruction
can move data between general purpose registers and special
purpose registers. Hidden registers are registers which are
not exposed to the programmer, but reside in the hardware
as part of the machine control (e.g., a current PC [Program
Counter] register).

[0355] The General Purpose Register File 374

[0356] The network processor of the present invention
includes a special register file architecture and a memory
block that are capable of managing a large number of tasks
(threads) with substantially no cycle penalty. The memory
block has the capacity to store the register context of the
tasks. The register file architecture performs a reduced
number of context save and restore operations and enables
each active task with its own context registers.
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[0357] The benefits of this approach, discussed in detail
below, include at least some of the following: support of
nearly unlimited tasks; no cycle overhead for context save
and restore operations upon task switches; transparency to
the programmer; and cost-effectiveness and low circuit
overhead.

[0358] One conventional approach to the multi-task
switching issue provides that every task switch is accom-
panied by a context save and restore cycle, usually per-
formed by software. This approach takes extra cycles.
Another conventional approach uses special circuitry that
allows access to the memory using wide busses, thus
enabling multiple registers to be saved or restored at a time.
This approach reduces the number of cycles, but compli-
cates the interface to the memory (the Tricore CPU from
Siemens uses this approach). Another approach uses mul-
tiple register files, one for each task. This approach has the
disadvantage of limiting the number of tasks to the number
of register files, and this is also a costly and limiting
solution. The large number of register files can also impact
the frequency of operation due to fan-out limitations. (Prod-
ucts using this approach include, for example, the Intel
IXP12000 and Lexra NetVortex LX8000 Network Proces-
sor.)According to one approach taken by the instant inven-
tion, the programming model of the network processor core
has 32 general purpose registers. These registers can be read
from or written to over the memory data buses (e.g.,
referring to FIG. 37, the srcl, src2, and dest buses). Source
operands for ALU instructions originate from these regis-
ters. According to one beneficial aspect of the invention, the
destination of an ALU instruction is a register and such a
destination can be also be used as a source operand for a
subsequent ALU instruction in the operation immediately
following, without any time penalty.

[0359] At the heart of the network processor core 354 is a
set of three register files and dedicated hardware that imple-
ments a mechanism for automatically saving and restoring
the registers such that a task switch is accomplished with
minimal overhead on the main flow. Upon entering a task,
both the current and next task identification (task ID) are
sampled. These three register files are as follows: the active
register file—used to run the current task; the Shadowl
register file—contains the valid register values of the current
task that do not exist in the active register file; and the
Shadow?2 register file—used to preload register values of the
next task concurrent with the current task run. The active
register file has 32 general purpose registers. These registers
are part of the programming model and are exposed to the
programmer. According to one approach, each register of the
active register file has a 32-bit data field and a 6-bit tag field.
The tag field holds the task ID, which identifies the task for
which the data register value is valid.

[0360] The network processor core 354 includes a bound-
ary register which specifies for each of the registers whether
it is considered a global register or a general register. The
global registers may store global values that can be shared
among multiple tasks, or they may store temporal values that
are not preserved when the task yields and resumes process-
ing.

[0361] The Shadow register files (Shadow1 and Shadow?2)
are not part of the programming model, i.e., they are not
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exposed to the programmer. Each of the Shadowl and
Shadow?2 register files includes, for example, 32 registers of
32 bits.

[0362] According to one approach, task switches do not
require an explicit save/restore of the general registers.
Saves and restores of the general registers are done implic-
itly by hardware according to the following mechanisms. In
case of a write to a general register, the task ID associated
with the register of the active register file is first compared
to the current task ID. If the result is equality, this means that
the register is maintained by the current task, and, therefore,
the register is overwritten with the new value and the current
task ID is marked in its tag field. A non-equal result means
that the register contains valid data for a different task. In
this case, the old register content is first sent to a write queue
buffer to be saved in memory in a task ID context table, and
then the new value is overwritten to the register and the
current task ID is marked in its tag field.

[0363] Incase of aread from a general register, the task ID
associated with the register is first compared to the current
task ID. An equal result means that the register contains
valid data for the current running task, and thus the data is
read directly from the register. A non-equal result means that
the register contains valid data for a different task. However,
the valid data for the current task for that register resides in
the Shadow1 register file, as it was preloaded to Shadow?2
concurrent with the execution of the previous task. As a
result, the register value is read from the Shadow1 register
file, and the register of the active register file remains
unchanged.

[0364] A read or write access to a global register accesses
the active register file directly without changing the regis-
ter’s tag. Concurrent with the execution flow of the current
task, a special machine (the PBU 376 of FIG. 37) preloads
the register values of the next task ID into the Shadow?2
register file.

[0365] Upon a task switch request, the following actions
should take place: the preload of the register values of the
next task should be completed; the Bump buffer is emp-
tied—all data which was sent to the bump unit is saved in the
context table; the next task becomes the current active task;
the Shadow?2 register file becomes the shadow for the
current task (Shadow1); and a new next task is sampled and
a new preload procedure is initiated onto Shadow2. Special
care should be taken (and special logic may be imple-
mented) to prevent hazard cases. For example, a mismatch
in the register value occurs if a register in the active register
file is tagged for a task ID which is identical to the next task
ID, and that register is accessed as a destination in the
current task. In this case the register value should be first
saved in memory in its context location and then overwritten
with the new value of the current task. However, since the
previous task is identical to the next task, it could be that the
register value is already preloaded into the next task shadow
register file (Shadow?2). In this case, the preloaded value into
Shadow?2 is no longer valid.

[0366] FIG. 38 illustrates the register files structure and a
mechanism for low overhead task switch according to an
embodiment of the invention in accordance with the discus-
sion above. In the top half 390 of FIG. 38, the current task
ID is Task_X, the next task ID is Task_Y. In the bottom half
392 of FIG. 38, after a task switch the current task ID
becomes Task_Y and the next task ID becomes Task_Z.
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[0367] In accordance with one embodiment of the present
invention, a method for efficient processing of tasks in a
communications system is provided. The method comprises
sampling a current task identifier and a next task identifier,
providing a first register file for storing values for a current
task, and providing a second register file for storing values
for the current task that are not in the first register file. The
method further comprises providing a third register file for
preloading values for the next task, and performing a task
switch by making the next task identifier the current task
identifier and sampling a further next task identifier. The
method can further comprise the step of completing the
preload of the register values for the next task identifier
which after the task switch is the current task identifier. In
this case, the method may also comprise using the third
register file as the second register file after the task switch.

[0368] The first register file, in one embodiment, com-
prises registers with a data field and a task identifier field. In
this case, the first register file has 32 registers, each register
having a 32 bit data field and a 6 bit task identifier field. The
first register file may be exposed to a programmer of the
communications processor and the second register file and
the third register file are hidden from the programmer. In one
embodiment, task switches are performed without an
explicit save/restore of the register files.

[0369] The method can further comprise performing a
write during execution of the current task by: comparing the
current task identifier to a task identifier in the first register
file; writing a value to the first register file when the current
task identifier is the same as the task identifier in the first
register file; and writing a value to the first register file when
the current task identifier is not the same as the task identifier
in the first register file after the content in the first register
file is saved to a memory. The content in the first register file
can be saved to a task identifier context table.

[0370] The method may also comprise performing a read
during execution of the current task by: comparing the
current task identifier to a task identifier in the first register
file; reading a value from the first register file when the
current task identifier is the same as the task identifier in the
first register file; and reading a value from the second
register file when the current task identifier is not the same
as the task identifier in the first register file. In this case, the
content of the first register file may not be changed as a result
of the read.

[0371] In an additional embodiment of the present inven-
tion, a system for efficient processing of tasks in a commu-
nications system is provided. The system comprises means
for sampling a current task identifier and a next task iden-
tifier, a first register file for storing values for a current task,
a second register file for storing values for the current task
that are not in the first register file, a third register file for
preloading values for the next task, and means for perform-
ing a task switch by making the next task identifier the
current task identifier and sampling a further next task
identifier.

[0372] In one embodiment, the means for performing a
task switch completes the preload of the register values for
the next task identifier which after the task switch is the
current task identifier. Similarly, the means for performing a
task switch uses the third register file as the second register
file after the task switch.
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[0373] The first register file comprises registers with a data
field and a task identifier field, wherein the first register file
can have 32 registers, each register having a 32 bit data field
and a 6 bit task identifier field, and further wherein the
second register file and the third register file each have 32
registers.

[0374] The system may further comprise a processor
which performs a write during execution of the current task
by: comparing the current task identifier to a task identifier
in the first register file; writing a value to the first register file
when the current task identifier is the same as the task
identifier in the first register file; and writing a value to the
first register file when the current task identifier is not the
same as the task identifier in the first register file after the
content in the first register file is saved to a memory. The
content in the first register file can be saved to a task
identifier context table. The processor may comprise an
ALU.

[0375] The system may also comprise a processor which
performs a read during execution of the current task by:
comparing the current task identifier to a task identifier in the
first register file; reading a value from the first register file
when the current task identifier is the same as the task
identifier in the first register file; and reading a value from
the second register file when the current task identifier is not
the same as the task identifier in the first register file. In this
case, the content of the first register file is not changed as a
result of the read. In one embodiment, the means for
performing a task switch comprises a preload and bump unit.
The processor may comprise an ALU.

[0376] The Preload and Bump Unit (PBU) 376

[0377] Referring back to FIG. 37, The PBU 376 controls
the access of data memory for the automatic save and restore
of registers in their context table in memory. A save of a
register content in its location in the table context is per-
formed whenever the register in the active register file is
addressed as a destination and the register contains valid
data for a task different from the current running task.
Generally, only one request for a save can be captured in the
PBU 376 for a single instruction because only one destina-
tion can appear in an instruction.

[0378] The PBU 376 includes a write queue with a number
of entries in order to minimize the interference with the main
program flow, thus optimizing the total execution time.
Whenever a register addressed as a source does not contain
valid data for the current running task, the data is read from
the Shadow1 register file where it was previously preloaded.

[0379] The PBU 376 is also responsible for controlling the
preload of the next task registers into the Shadow?2 register
file. The PBU 376 generates the data memory accesses for
save (write) and preload (read) using the context address and
data busses. According to one embodiment of the invention,
the load store cycles of the active flow have highest priority,
followed by the preload cycles, and, at the lowest priority,
are the save cycles from the write buffer.

[0380] The Program Sequencer Unit (PSU) 378

[0381] The PSU 378 performs the instruction decoding
and generate the controls for the other core units. The PSU
378 controls the program flow including all scenarios
involving the change of flow.
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[0382] Fetch Unit (FTU) 380

[0383] The FTU 380 is responsible for controlling the
program counter (PC) for instruction fetch operations.
According to one embodiment of the invention, the PC may
be derived from one of the following sources: sequential
increment; jump to an absolute address; jump to an address
specified by a register; task switch to a next task entry point;
relative change of flow; exception control (e.g., reset, break-
point, patch, etc.); and return from trap.

[0384] Messaging Interface (Agent Interface) 382

[0385] A few instructions are executed in an external
module (e.g., DMA, accelerators, etc.) connected to the
network processor core. A messaging bus (Agent Interface
or AGI) from the core to the external module enables the
definition and support of such an extension of the instruction
set.

[0386] Memory Interface 384

[0387] According to one aspect of the invention, the
network processor core uses a unified memory space
wherein each address can contain either program informa-
tion or data. This memory space is typically based on
on-chip RAM and ROM. The memory module should have
separate ports for program, data and context accesses. Also,
this memory module may have additional ports for accesses
from the external world, such as the ring interface.

[0388] A Programming Model for a Flexible Packet Pro-
cessor

[0389] The programming model describes the rules for
writing network processor programs. After a brief introduc-
tion that explains in general terms the organization of the
network processor code and the flow of data through the
system, the programming model (e.g., state resources, inter-
faces and instruction groups) is outlined in high level terms.
Then, the execution flow and performance issues are dis-
cussed. And last, the programming model is detailed.

[0390] Organization of the Network Processor Code

[0391] According to one embodiment of the invention, the
network processor comprises a 32-bit single issue RISC
processor tailored for real-time communication processing
goals. According to an embodiment, the network processor
has 32 general purpose registers, built-in support for multi-
tasking, communication peripherals, on-chip SRAM, a
DMA interface to external SDRAM, a built-in interface to an
on-chip control processor (referred to as the host processor
or the Packet processor [ PP] or the Control Packet processor
[CPP)).

[0392] 1t is desirable that the network processor have
hardware support for up to 62 tasks. The hardware support
includes generation of task activation triggers, automatic
task scheduling, save and restore of registers to and from the
shadow register area in internal SRAM, special instructions
for yielding the CPU, and support for passing messages
between tasks.

[0393] Each network processor task has a dedicated reg-
ister set. The task registers are preserved across the periods
in which the task is not running. A network processor task
can access internal memory with load and store instructions,
and can copy data from internal to external memory and
vice-versa using special DMA instructions.
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[0394] The data which a task operates upon can be clas-
sified into the following categories (with reference to FIG.
39):

[0395] Data from the communication peripherals (arrow
402):

[0396] This data is copied, using a special instruction from
the peripheral’s FIFO, into internal memory (arrow 406). On
the transmit side, this data is copied, using a special instruc-
tion, from internal memory into the peripheral FIFO. This
type of data, which is in transit through the device, can be
referred to as stream data. Stream data exchanged with the
host processor (arrow 408): This data is passed by a network
processor task, usually in external memory, for further
processing to the host processor. On the transmit side, the
host processor passes this data to a network processor task
for transmit-related tasks (such as encapsulation, shaping,
scheduling, and so forth) and for transmission through a
peripheral. Stream data is also handed over between network
processor tasks. There are cases when the stream data is not
touched by the host processor.

[0397] Configuration data: This data resides in internal
memory and is set at initialization time by the host processor
or by initialization procedures on the network processor
(e.g., buffer size). Configuration data is consumed, but not
produced, by the task.

[0398] Flow state data: This data is kept in internal or
external memory, and describes, for example, the state of
each ATM connection or the state of the current Ethernet
frame. Part of this data is used and updated by the task (e.g.,
the cell count for a connection).

[0399] Task state data: This data is kept in internal
memory (or registers), and is used by the task to keep
information in case the task does not complete the work
intended to be accomplished during a single period of
possession of the CPU.

[0400] A High Level View of the Programming Model

[0401] According to an embodiment of the invention, the
programming model for the flexible packet processor
includes the following elements. state resources—the hard-
ware memory entities which hold the state of the program;
interfaces—of the ways in which the program should behave
to interact with hardware resources which are external to the
processor; and instruction set—the description of the basic
tools with which the program performs its operations.

[0402] State Resources

[0403] FIG. 40 provides an overview 420 of the state
resources for the network processor according to an embodi-
ment of the invention.

[0404]

[0405] DMA interface. The DMA interface controls the
DMA machines, which copy data from the NP SRAM to
external DRAM and vice versa. The DMA interface is set up
by the PP at initialization time, and accepts action com-
mands from the NP via special instructions. The DMA
interface connects to the doorbells and the task scheduling
mechanism.

[0406] Peripheral FIFO interface. The peripheral FIFOs
are set up by the PP at initialization time, and are instructed

Interfaces
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by special NP instructions to copy a data unit to internal
memory (from internal memory in the case of a TX). The
peripheral FIFOs are connected to the doorbells and the task
scheduling mechanism.

[0407] Accelerators/Coprocessors interface. In general,
there may be two kinds of accelerators/coprocessors: (1)
accelerators/coprocessors that are tightly connected to the
network processor core and that are accessed via a special
agent instruction (e.g. CRC, multireader, message sender,
etc.). These reside within network processor Compound
entity; and (2) accelerators/coprocessors that are ring mem-
bers and can be accessed by any other ring member inter-
posed on the ring (via messages over the ring).

[0408] Host (PP) processor interface. In general, the PP
will be able to initialize NP configuration registers, to share
data with the NP in internal and external memories, to
request services from an NP task, and to receive interrupts
and messages from the NP.

[0409] TInstruction set. Instructions perform the various
types of actions, such as the following: arithmetic, logic,
register manipulation—modify data in registers; load/
store—move data between SRAM and registers; flow con-
trol—changes in the program counter; task management—
control of inter-task changes in the program counter; agent
interface instructions—DMA (move data between the
SRAM and the SDRAM), access to serial ports (move data
between the SRAM and communication peripherals), and
accelerators (specialized communication processing func-
tions such as a CRC calculation on a block of data); special
purpose register moves (and activation of coprocessors)—
move data between GPRs and SPRs.

[0410] Execution Flow and Performance Considerations

[0411] Generally, the CPU executes instructions sequen-
tially until it encounters an instruction which changes the
program flow. For example, this instruction can be a con-
ditional or unconditional branch or jump within the task,
which checks a condition bit in one of the general purpose
condition registers, or an instruction which terminates the
current task and starts execution of another task. Instructions
which cause a non-incremental change to the program
counter take more then one cycle and are optionally fol-
lowed by a one instruction delay slot. Other instructions
which influence the program flow are: arithmetic and com-
pare instructions which modify the condition code bits, and
instructions which modify the task entry point (the address
from which the task will resume execution in its next
execution round).

[0412] Types and states of tasks. Tasks can be in one of
three states: running, pending and dormant. At any given
time there is one running task executing on the CPU. When
something requests the service of a task, the task becomes
pending. Each time the running task voluntarily yields the
CPU, the highest priority task is selected from the pending
tasks. Tasks for which nothing has requested their service
are dormant, and they will not be enabled for execution and
will not run. According to one embodiment of the invention,
the number of tasks is determined at initialization time and
there is no dynamic creation/elimination of tasks.

[0413] Tasks can be classified by the reason (trigger) that
causes a task to become enabled for execution. In other
words, tasks can be classified by the entity which they serve:
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[0414] Peripheral. a task which serves a communication
peripheral. Each time the RX peripheral receives a unit of
data (e.g., 64 bytes of an Ethernet frame) in its FIFO or when
a TX peripheral has space for a unit of data available in its
FIFO, that peripheral sends a service request to their servant
task.

[0415] Timer. A timer can be preprogrammed with a
period cycle count. Each time it periodically expires, the
timer sends a service request to its servant task.

[0416] Inter-task messages. Data (usually stream data )
can be exchanged or handed over between tasks. One
approach for this is to send a message (e.g., containing the
data pointer) to the other task, accompanied by a service
request. Usually, a task serves only one master (the master
being the source of service requests). This means that
peripherals, timers and inter-task messages can all request
service in the same manner.

[0417] There are two more sources which can cause a task
to become pending:

[0418] DMA. A task is permitted to yield the CPU during
a DMA request (in this way the DMA will work in parallel
with the CPU, and the CPU will not be stalled). The task
usually wants to resume execution when the DMA action is
completed. Upon completion, the DMA will send a service
request to the originating task.

[0419] Self-request There is a limit to an execution period
(the time between two sequential task switch events) of
tasks. The execution of the current task usually may not be
preempted by an external event, so it is the programmer’s
responsibility to provide for yielding the CPU before reach-
ing the time limit per task. When a task yields the CPU (e.g.,
to allow another task to execute) before it has completed the
intended work, the task can issue the self-request service
request before yielding in order to schedule itself for future
execution.

[0420] Task Triggers and Task Doorbell Bits

[0421] Task doorbell bits are the place where the service
requests are registered. A network processor task can be
enabled for execution by several request sources:Ordinary
priority request from a serial module (e.g., a data fragment
is ready in the receive FIFO and was copied to a predefined
SRAM location or the transmit FIFO finished the transmis-
sion of the previous data fragment.).

[0422] High priority request from a serial module. (e.g.,
the RX FIFO over a threshold or the TX FIFO under a
threshold).

[0423] Completion of DMA requests.
[0424] Self-request (produced by the software).

[0425] Message from another task (produced by the soft-
ware and using the same doorbell bit as an ordinary priority
request from a serial module).

[0426] Message queue above threshold (produced by the
software and using the same doorbell bit as the high priority
request from a serial module).

[0427] Timer (uses the same doorbell bit as the ordinary
priority request from a serial module).
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[0428] According to one aspect, for each doorbell bit there
is a mask bit. The exceptions are the first two doorbell bits,
which have a common mask bit, and the self request bit,
which can not be masked. If the mask bit is set, the task will
be enabled for execution by the matching request; otherwise,
the request is blocked.

[0429] According to one approach, about twelve tasks are
expected to serve serial channels (e.g., 6 for receive and 6 for
transmit). These tasks will usually be activated by requests
from serial channels. The rest of the tasks are expected to be
activated by timers, messages from other tasks, or the host
(e.g., doorbell bits 1 and 2).

[0430] A task which has more work to do then the maxi-
mum allowable latency should yield and use the self-request
(doorbell bit 5) to be scheduled again (e.g., a timer handler
task). Any task can be activated by a completion of a DMA
request that the task originated.

[0431] When a task is scheduled for execution, the request
and mask bits of the service request that activated the task
are cleared. In the case where there are regular and urgent
bits, both are cleared.

[0432] Mask Bits and DMA

[0433] Mask bits can be set by software, and, in some
cases, they are set automatically by hardware. A mask bit,
together with the associated request bit, is cleared by hard-
ware when the request is served by the task (the task
becomes running). Mask bits can be set with a special
instructions and can optionally be specified in DMA and
YIELD instructions. When a task issues a DMA request and
this DMA is not the last action in the task, the programmer
should set a DMA doorbell mask bit and clear all other mask
bits (this task should not return to execution because of any
other request, for example the serial.). When the task returns
to execution after completion of the DMA, all mask bits will
be clear.

[0434] According to one approach, there is a default state
of the mask bits for all tasks, with the first bit set and all the
others cleared. Another option, the auto set in DMA and
YIELD instructions, instructs the hardware upon DMA
completion to set the mask bits to the default state. When a
task issues its last DMA request, it sets the auto set indica-
tion. The last YIELD instruction of a task should also set the
mask bits to the default state.

[0435] According to one approach, the network processor
DMA is able to serve two external busses (it can be a single
DMA machine in some implementations.) An immediate
DMA ID field is specified in DMA instructions. Its value is
an index into a translation table (the table may be pro-
grammed by the CPU or by writing to special purpose
registers on the network processor). The translation result
contains information like: big/little endian, and so forth.
When all the DMAs initiated by a task (DMAs for which
acknowledgement was requested) are complete, the DMA
doorbell request bit is set.

[0436] Using a count field in one of the special purpose
registers, it is possible to yield if all DMAs of the task have
not been completed. Also, when a DMA instruction is
executed, and there is no place in the pending DMA trans-
actions queue, it is possible that the network processor may
be stalled.
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[0437] Task Priority and Scheduling

[0438] Each time the current task suspends its execution,
the hardware scheduler selects from the pending tasks the
one with the highest priority, and starts execution of that
task. Various approaches could be taken to task scheduling.
According to one approach, the algorithm for selecting the
next task for execution is as follows. The tasks which
participate in the selection of the next task for execution are
the tasks for which their corresponding mask bit in the Task
Global Mask Register (TGMR) is cleared. Tasks which
participate in the selection of the next task and have
unmasked requests are divided in to four groups and served
in the following order:

[0439] 1. Highest priority group: includes urgent
requests of task numbers 0-31.

[0440] 2. Second priority group: includes regular
requests of task numbers 0-31.

[0441] 3. Third priority group: includes urgent
requests of task numbers 32-63.

[0442] 4. Lowest priority group: includes regular
requests of task numbers 32-63.

[0443] Within each group, the requests are serviced
according to the task number. Lower task number requests
are served before higher task number requests. The task
resides in the higher priority class, starting from the time the
urgent doorbell bit was set, until the time its doorbell mask
is set to default by an option of the yield instruction, or until
its doorbell mask is explicitly cleared by an instruction.
According to one approach, the tasks are in an urgent state
as long as the handling of all pending urgent events is not
completed (including when the task yields while doing a
DMA during such a period).

[0444] When a task starts execution, the doorbell request
bit which caused it to run and the matching mask bit are
cleared. The other request bits are not modified. The regular
and the urgent request bits are considered to be two levels of
the same request and have a common mask bit. They are
both cleared when the request is serviced. A task can
explicitly raise its priority to urgent, and return its priority to
natural (normal priority, unless there is an urgent request
pending) by using an agent instruction that writes to the
doorbell register. This can be used to increase task priority
for the period spent in a critical section or in an urgent code
fragment.

[0445] Task Switching Performance

[0446] According to one aspect, instructions that yield the
CPU take 2 cycles (they have a delay slot). The other
performance issue is the time it takes to restore the registers
of the new task. Usually the registers of the next task are
pre-loaded during the execution of the current task.

[0447] Inter-task Communication

[0448] Global registers. A global register is a general
purpose register that is shared between all network processor
tasks, and which can be safely used and modified by each
task. (A task has to make sure that it completes the whole
sequence, which includes the shared register use/update,
needed for the action performed, before yielding the CPU.)
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[0449] Inter-task messages. Sending messages between
tasks is done using queues. Additional information is pro-
vided in the discussion regarding data structures.

[0450] Common program. More then one task can execute
the same object code, for example, such as two tasks that
service the reception of two identical serial channels. Also,
all tasks can share code in functions.

[0451] Internal and external memory. Sharing information
in memory is a matter of convention between the tasks. For
complex atomic modifications, it is possible to either have a
server task with an exclusive right to access the structure or
to use semaphores as described further below. (Complex
atomic means that the modification requires a series of
external memory accesses, between which the data structure
is in an inconsistent, i.e., erroneous, state.) An example of a
need for such a modification would be the update of a linked
list queue whose descriptor is in external memory. Gener-
ally, it is recommended to avoid using such structures when
possible.

[0452] Host-Network Processor Communication

[0453] Network Processor task to host messages and inter-
rupts. Described in connection with the discussion on data
structures.

[0454] Host to Network Processor task messages. The host
is able to post a message to the input message queue of any
task. The host also sets the doorbell bit of the target task. The
host should not post messages to an input message queue to
which a network processor task posts messages.

[0455] According to one approach the network processor,
either with a hardware mechanism or a software task, should
notify the host when the host message queue changes its
position relative to a close to full threshold. Using such a
threshold will permit a less time-constrained handling of
messages on the network processor side and eliminates the
need for a check if not full inquiry on the host side.

[0456] Host to Network Processor commands. There is a
command register that is written to so that the host can
control network processor execution. For example, such
commands may include a reset, an activate task N, a
deactivate task N (without aborting its current execution),
and a start execution of task N (i.e., give task N a request
without aborting the currently executing task).

[0457] Host-network processor parameters. According to
one approach, for each task an area is allocated at compi-
lation time to hold the parameters that are initialized by the
host and used by the task. The addresses of these areas are
maintained together with the frame pointers and the entry
points, and are loaded by the boot initialization routine (into
R6, discussed further below) of each task. These parameters
are also read by the host, and are used in the initialization
drivers.

[0458] State Resources
[0459] General Purpose Registers

[0460] According to one approach, there are 32 general
purpose 32-bit registers to be used by the tasks. Some of the
registers, rO-rN, do not preserve their values across task
switching; they are common to all tasks. These are referred
to as common registers. The other registers, IN+1-r31, are
preserved across task switching. These registers are referred
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to as private registers. According to one embodiment of the
invention, these private registers are saved and restored from
their shadow location by the hardware, transparently to the
programmer. N is a global value, preferably programmed at
initialization time. According to one approach, N (which
should be odd) is 15, although other values of N may be used
depending on design considerations. The programmer
should allocate the correct shadow area for the registers,
which should be the number of tasks multiplied by the
number of private registers. The programmer should use
registers contiguously, starting from r31 downwards.

[0461] According to one aspect of the invention, some of
the registers have special hardware support, as follows:

[0462] 1O is interpreted as constant O; writes are
ignored.

[0463] FIG. 41 illustrates register r1 (430) in greater detail
in accordance with at least one embodiment of the present
invention.

[0464] rl condition codes: sticky condition (I bit),
arithmetic conditions (equal/zero [I bit], less than/
negative [I bit], greater than/positive [1 bit], carry [I
bit], overflow [I bit], doorbell bits [6 bits], and user
defined condition bits [16 bits]).

[0465] r31: user defined condition codes (32 bits).
[0466] r30: entry point address of the task.

[0467] 128: link address 1 (function return address).
[0468] 129: link address 2.

[0469] According to one approach, the convention for
register allocation is similar to the approach taken for
application binary interfaces, or ABI. ABI is a standard that
allows object code interoperability of functions compiled by
different compilers or written in different languages. Reg-
ister allocation according to this approach is as follows:

[0470] 127 and other r2x registers (26>2x>20) are
allocated to a fixed meaning. Registers which are
allocated to some meaning by convention are
expected to maintain the meaning over function
calls. They can be modified within functions, but
only according to their meaning. Each task might
have different registers allocated to fixed meanings.

[0471] r27: parameter area pointer and stack pointer
of the task. The compiler or the programmer stati-
cally allocates up to three stack frames per each task.
The compiler computes the area used by levelO code
(first frame), and the maximum area needed for
automatic variables of levell functions of the task
(second frame) and of level2 functions of the task
(third frame). There is a global limit of memory size
of local function variables (enforced by the com-
piler). Whenever there is an indirect function call,
the maximal stack frame will be allocated. All
accesses to local variables will be translated by the
compiler to offsets on r27, and there is no need for
a stack pointer register for dynamically allocating
frames on the stack and for modifying the stack
pointer during function calls and returns.

[0472] According to one approach, the compiler limits the
function call depth to two. The compiler may also identify
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those functions which do not yield and do not call other
functions, allocate their frame in an area common to all
tasks, and use absolute addresses to access local variables
(this may save memory per task in this case). Other registers
can also be allocated by convention to: data unit address in
internal memory, data unit pointer in external memory,
connection table base address, and so forth. Registers which
are allocated to some meaning by convention are expected
to maintain the meaning over function calls. Such registers
can be modified within functions, but only according to their
meaning.

[0473] r16, r17: These registers do not preserve their
value over any function call. They can be used
without saving in level2 functions and in levell,
which do not expect the value to be preserved over
a level2 function call. The r16 and r17 registers are
used to pass parameters and get results to/from levels
and level2 functions. Even in the case when there are
no parameters passed, these registers do not preserve
their value over any function call. Preferably, the
compiler forbids functions of more than two param-
eters.

[0474] The compiler and the assembly programmer may
use the r16, r17 order for levell functions and the r17, r16
order for level2 functions. This may eliminate saving and
restoring of r16 when both levell and level2 functions have
a single parameter. Also, r16 and r17 are the only private
registers which can be modified in level2 functions.

[0475] r18-r19: These registers should not be modi-
fied within level2 functions. They can be used with-
out saving in levell functions, and they do not
preserve their value over levell function calls.

[0476] r20-r26: These registers should not be modi-
fied within levell and level2 functions. These reg-
isters can be used without saving in levelO code.
Some of these registers can be assigned to a fixed
meaning, in which case they can be modified within
functions according to their fixed meaning.

[0477] r0-r15 are scratch or global registers that are
common to all the tasks, and which are not changed
by the hardware task switching.

[0478] r2-r5 hold information that is frequently used
and shared between tasks, such as the buffer array
base address (r2) and the free buffer pool address
(current) (r3). These registers can hold popular
(often used) constants, such as a table base address
or an arithmetic constant.

[0479] 18-r15 are used to hold information which
does not need to be preserved across yields, such as
intermediate results of an arithmetic computation.

[0480] r6-r11 do not preserve their value over func-
tion calls.

[0481] r12,r13: These registers preserve their values
over calls to level2 functions which do not yield.

[0482] r14,r15: These registers preserve their values
across calls to levell and level2 function which do
not yield.

Oct. 16, 2003

[0483] Table 3 summarizes the register conventions dis-
cussed above.

TABLE 3
private or special HW  fixed modified by used as
common  handling meaning  functions parameter
10 Common  constant 0 NA Yes No
rl Common  conditions No Yes No
12-15 Common No Part within fixed No
meaning
r6-111  Common No No level No
1&2&
yield
112, 113 Common No No level 1 & No
yield
114, 115 Common No No No No
116, 117 Private No No level 1 & 2 Yes
118, 119 Private No No level 1 No
r20-127 Private No Part No No
28 Private level 1 No No No
return
address
129 Private level 2 No level 2 No
return
address
30 Private entry point  NA Yes (TBD) No

r31 Private conditions ~ No Yes (TBD) No

[0484] By way of summary, registers can be safely used in
the following cases:

[0485] 18-19: level2 function code which does not
contain a yield; levell function code which does not
contain a yield or a call to a level2 function; and
level0 code which does not contain a yield or a
function call.

[0486] r10-r11: levell function code which does not
contain a yield or a call to a level2 function which
yields.

[0487] r12-r15: levelO code which does not contain a
yield or a call to a function which yields.

[0488] r16, r17: any level2 function code; level0/1
function code which does not contain a function call.

[0489] r18,r19: any levell function code; levelO code
which does not contain a function call.

[0490] r20-r2X: any levelO code.
[0491] Indication Registers

[0492] According to one approach, registers rl and r31
contain indications which can be used in branch conditional
instructions. They can be explicitly updated by any instruc-
tion, but some of the bits in rl are implicitly updated by
compare instructions and by arithmetic/load instructions.
The carry bit is also implicitly updated by some arithmetic
instructions.

[0493] RI is a global register; its value is not preserved
after task switching. R31 has a copy per task.

[0494] The doorbell and mask fields in rl1. The doorbell
sub-field contains a copy of the doorbell bits of the current
task. The mask bits are a copy of the task’s mask bits. Writes
to these fields are ignored.

[0495] Compare instructions, the sticky bit options. Com-
pare instructions modify the three condition code bits, LT,
EQ, and GT. Optionally, the compare instructions can also
update the sticky bit. These instructions specify a condition,
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such as one of NONE, LT (less than), LE (less than or equal
to), EQ (equal to), NE (not equal), GT (greater than), or GE
(greater than or equal to). If the condition is satisfied by the
compare, the sticky bit is set; otherwise, the sticky bit is not
altered. This feature is useful to efficiently implement sev-
eral tests of error cases as well as other AND/OR conditions.
Compare instructions also have an option to overwrite the
sticky bit. FIGS. 87-90 (discussed below) illustrate various
mechanisms for using the accumulative condition flag, i.c.,
the sticky bit, to execute branch instructions in processing
systems, such as a network processor or communications
Processor.

[0496] Serial status. The serial status indications (e.g.,
error, over-run/under-run, and last), optionally together with
the data fragment size, should be loaded by the programmer
from a fixed memory location into rl or r31.

[0497] User defined indications. The user can keep state
information in the user-defined part of r1 or r31. It may be
desirable for an indication to be created once and used
several times. The user can also load to r1 or 31 a part of
an array of indications.

[0498] Arithmetic instructions modify the condition
codes. Arithmetic instructions can modify the zero, negative,
and positive condition code bits. The following arithmetic
instructions modify the carry condition code bit: ADD, SUB,
ADDI, SUBI, SRR, SLR, SLI, SRI, and CLB

[0499] Branch, jump and yield conditional Conditional
branch/jump and yield instructions test a single condition
bit, which can be any bit in rl or r31, and compare that bit
to either 0 or 1. Conditional branch/jump instructions take
three cycles when taken and 1-2 cycles when not taken,
while unconditional branch/jump instructions take two
cycles; in both cases they have an optional delay slot.
Conditional instructions. In most of the instructions the 3-bit
conditional execution field is used to specify whether the
instruction is unconditional or it is conditional upon the
sticky condition bit being true or false. One of the three bits
is reserved for future use.

[0500] Link Registers

[0501] Branch/jump instructions can be used to call sub-
routines. They have an opcode bit which specifies whether
the return address is to be saved, and another opcode bit
which specifies whether the return address should be saved
in 28 or r29. The return address is either PC+1 or PC+2,
depending if the delayed branch option is used. The function
call depth is limited to two, and the depth of each call/return
is specified in the instruction. Functions which do not call
other functions should be defined and called as depth 2.

[0502] The Task’s Entry Point Register

[0503] R30 contains the address at which the task will
resume execution after a yield. It is modified by any instruc-
tion which modifies r30 and is optionally modified by the
YIELD instruction. It can optionally be modified by DMA
instructions which yield.

[0504] Hidden Registers

[0505] Program counter—according to one approach,
there is a single program counter in the system (not per-task)
and it is not directly accessible by the software in any
manner.

Oct. 16, 2003

[0506] Special Purpose Registers

[0507] Special Purpose Registers (SPRs) are network pro-
cessor core registers that are not defined as one of the
General Purpose Registers (GPRs). Special instructions
(SPRL and SPRS) are defined to enable the movement of
data between SPRs and GPRs. Special Purpose Registers in
the network processor include the Refetch SPR 440, the
Task SPR 442, the Trap SPR 444, and the Mindex SPR 446,
as shown in FIG. 42.

[0508] Refetch SPR 440. The refetch SPR is a 32-bit
register that holds the first and second program memory
addresses of the instructions to be refetched when getting
out of a trap. Bits 15:0 hold the first instruction address
(called refetch) and bits 31:16 hold the second instruction
address (called next_refetch). When the network processor
receives a break request and is not already in the trap mode,
it continues instruction execution from the program location
pointed out by the break vector and the trap mode bit is set
(in the task SPR). The address of the instruction that would
have been executed but for the occurrence of the breakpoint
is saved in bits 15:0 of the refetch SPR. The following
instruction that was supposed to be executed but for the
occurrence of breakpoint is saved in bits 31:16 of the refetch
SPR.

[0509] Leaving the trap mode is performed by executing
the RFT instruction. This instruction causes a program jump
to the program location specified by the refetch SPR bits
15:0, followed by the program location specified by the
refetch SPR bits 31:16. This also clears the trap mode bit.

[0510] The refetch SPR is a read/write register that can be
accessed through the SPRL and SPRS instructions.

[0511] Task SPR 442. The task SPR is a 32-bit read only
register. The task SPR contains information on the current
executing task and on the next task to be executed:

[0512] DOORBELL REQ reflects the doorbell
request bits of the current task.

[0513] CTID reflects the Current Task ID.
[0514] NTID reflects the Next Task ID.
[0515] NTV reflects Next Task Valid bit.

[0516] MASK reflects the doorbell mask bits of the
current task.

[0517] UR reflects the urgency level of the task
(1=urgent).

[0518] COUNT reflects the doorbell counter value of
the current task.

[0519] When there is a yield and both the bump buffer is
empty and the context of the next task is already pre-loaded,
the network processor switches to the next task. At this point
the NTID is loaded into the CTID and the next task ID
together with the next task valid bit from the doorbell are
sampled into the NTID and into the NTV, respectively.

[0520] If the NTV bit is set, then the NTID is locked and
there will not be further sampling. If the NTV bit is cleared,
then the doorbell next task ID will continue to be sampled
on each cycle until the valid bit is set.

[0521] The new valid next task ID is used by the pre-load
logic to pre-load the next task’s context. The task SPR can
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be read by using the SPRL instruction. All other bits of the
task SPR are reserved and will be read as zero. The CTID,
NTID and NTV bits are cleared by reset. The default state
(and the reset state) of the mask of each task is 0b100.

[0522] Trap SPR 444 The trap SPR is a 32-bit register. The
trap SPR include the trap mode bit, the illegal instruction
status bit, and the breakpoint status bits:

[0523] Bit 0—Illegal Instruction (IL): When there is
an illegal instruction, the IL bit is set. The IL bit can
be cleared only by reset.

[0524] Bit 1—Trap Mode (TRAP). When TRAP bit
is set, the network processor is in the trap mode. A
breakpoint event causes the program flow to jump to
a program location (pointed to by a given vector) and
to enter the trap mode of execution by setting the trap
mode bit. When in trap mode, no breakpoint and/or
patch events will be accepted. The trap mode bit will
be cleared by a RFT (Return From Trap) instruction
or by writing zero to the trap mode bit. When the trap
bit is cleared, further breakpoints and/or patches will
be accepted.

[0525] Bit 2—Program Address Break (PAB). This is a
breakpoint status bit, which when set, indicates that a
program address breakpoint occurred. This bit is cleared by
an RFT instruction or by writing zero to it.

[0526] Bit3—Data Address Break (DAB): This is a break-
point status bit, which when set, indicates that a data address
breakpoint occurred. This bit is cleared by an RFT instruc-
tion or by writing zero to it.

[0527] Bit4—Task Break (TB): This is a breakpoint status
bit, which when set, indicates that a task ID breakpoint
occurred. This bit is cleared by an RFT instruction or by
writing zero to it.

[0528] Bit 5—Yield Break (YB). This is a breakpoint
status bit, which when set, indicates that a yield breakpoint
occurred. This bit is cleared by an RFT instruction or by
writing zero to it.

[0529] Semaphores

[0530] Semaphores are commonly used when a section of
code that contains yields should not be executed by more
then one task at a time. This happens when the code is
handling some data structure resource that is shared between
tasks. Current examples which might entail the use of
semaphores are: adding and removing from a linked list
queue whose descriptor is in external memory; releasing a
multicast buffer (update of the reference count); emulation
of a task’s message queue in external memory; and a task
that tries to put an inter-task message into a full message
queue can use the hardware mechanism to wait until the
queue is not full.
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[0531] The alternative solution of not yielding while in the
critical section is not efficient. The alternative solution of
having a dedicated task responsible for the resource, and
thus serializing the actions performed on the resource, is in
some cases complicated to implement and is in some cases
inefficient.

[0532] Network processor software semaphores in accor-
dance with the present invention are implemented over a
hardware mechanism which makes it possible to prevent the
scheduling of tasks specified in a bitmap (the TGMR reg-
ister).

[0533] The number of semaphores is limited only by size
of the memory space allocated for semaphore support. Every
semaphore requires a one byte indication of free/busy state
plus a 64-bit mask of tasks registered for the particular
semaphore. While performing the critical section protected
by a semaphore, the task’s priority should be raised and also
all issued DMAs should be treated as urgent in order to
minimize semaphore holding time.

[0534] There could not be too many semaphores in the
system (e.g., in order to comply with the goal of keeping the
internal memory requirement reasonable), yet there are
many shared external memory resources (data queues, con-
texts, lookup tables, etc.) that may require semaphore pro-
tection. According to one approach, the semaphore ID
(number) is chosen based on a simple arithmetic operation
(e.g., a MOD of significant bits) on the resource address.

[0535] The network processor scheduler hardware
includes a bitmap in an SPR register (SPR bitmap). Each bit
in the bitmap, when set, prevents the scheduling of the task
whose ID corresponds to the bit index. The network pro-
cessor software can add or remove a list of tasks specified in
the specified in a software bitmap to the above list. The
software registers in the SPR bitmap those tasks which are
prevented from execution because they are waiting for one
of the currently occupied semaphores (see bad_list below).

[0536] The software holds an indication in internal
memory for each semaphore that indicates whether that
semaphore is currently in use/occupied (see semX_indic
below.) The software also holds for each semaphore a 64 bit
bitmap corresponding to the tasks that are currently awaiting
access to the semaphore (see semX_mask below). For each
task awaiting the semaphore, this bit, which corresponds to
that task’s ID, is set.

[0537] According to one embodiment (not reflected in the
table below), the software also holds the task ID of each task
in the form of a 64 bit mask (where only the bit correspond-
ing to the task ID is set in this mask).

[0538] The following pseudocode in Table 4 illustrates the
use of a semaphore:

TABLE 4

Pseudocode Illustrating the Use of a Semaphore

bad__list - hardware 64-bit mask indicating which tasks can not be run.
semX__indic - software indication per each semaphore (X) that indicates whether it is

occupied.

semX__mask - software 64-bit mask per each semaphore (X) comprises registration of the

waiting tasks.
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TABLE 4-continued
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Pseudocode Illustrating the Use of a Semaphore

produce X(semld) from the resource address

checkX: ; This is the frequently used code fragment - efficiency
is vital.
1db r2,semX indic ; load the “semaphore is busy” indication - a byte or
a bit.
bc.neq sem__occupied ; and test it.

; Do the critical section code and release the

semaphore.

sti  OxffsemX indic ; If it was not occupied, grab it and do the critical
section.

seturg on

CRITICAL

SECTION X

seturg off

sti 0, semX__indic
clear semX__mask bits in bad_ list ;

Release the semaphore

selected.
L ; Rest of the task code and yield.
sem__occupied:

from running.
1d.d  r2,13,semXmask ;
semaphore.

set bit of current task in 12,r3

agentw. Let all in, highest priority task will be

Register myself on the semaphore, and prevent myself

Get the 64-bit mask of tasks waiting for this

; “Optimization”: the current task_id is prepared in a
doubleword mask in the init routine.

st.d ;2,r3,semX__mask ; Save the mask for common use.

set semX_mask bits-in bad_ list

agentw. Prevent everyone (and myself) who is

waiting to semX from being scheduled in.

set my task’s doorbell bit ;
yield.epsem__released ;
sem_ released:

Re-activate my request

might be free.
1d.d r2,13,semX_mask ;
clear bit of current task in 12,r3 ;
st.d 12,r3,semXmask ;
set semX__mask bits in bad_ list ;
semX from being scheduled in.

b checkX ;

Go to sleep until it is my turn to use the semaphore.
; The semaphore was held by someone, but now it

agentw. Prevent everyone else who is waiting to

Re-check the lock - avoids nasty bugs.

Notes:

Using r30 bits as semaphore indications and adding a test-set-branch-conditional instruction can

improve the cycle count of the frequent case.
Using a byte as the semaphore indication, the overhead is 5 cycles.

Using an r30 bit as the semaphore indication, the overhead is 4 cycles.
Adding a branch-conditional-and-set instruction, the overhead is 3 cycles.

[0539] The general operation of the use of semaphores is
as follows. Whenever a task seeks to enter critical section
number X, the task checks the internal memory indication of
semaphore X to determine if there is currently any other task
in the critical section.

[0540] If the semaphore indication is clear, the task sets
the indication and enters the critical section. After comple-
tion of the critical section (e.g., which contains external
memory accesses and task switches), the task clears the
semaphore indication. It is possible that while the task was
in the critical section other tasks may have registered
themselves as awaiting access to the semaphore and pre-
vented themselves from being scheduled in by the hardware
scheduler. So the current task will enable these other tasks,
which are registered as awaiting scheduling for the sema-
phore, by removing their list from the hardware bitmap.

[0541] If the semaphore is set, the task branches to
semX_occupied, registers itself in the list of tasks awaiting
the semaphore, and disables those tasks by adding the list to
the hardware bitmap. Task switching is then initiated after

setting the resumed execution in the semX_released label.
When the task resumes execution, the task deregisters itself
from the list of tasks that are awaiting the semaphore, and
prevents other tasks on the list from being scheduled by
adding them to the hardware bitmap. The task then executes
the code, which checks the semaphore indication.

[0542] In accordance with one embodiment of the present
invention, a method of employing semaphores to limit
access to a shared resource used by a multi-tasking proces-
sor is provided. The method comprises the steps of provid-
ing a first bitmap in a register that prevents specified tasks
from running because the specified tasks are awaiting access
to an occupied semaphore, storing an indication in memory
that indicates whether the semaphore is occupied, storing a
second bitmap in memory that identifies tasks that are
awaiting access to the semaphore, and attempting to access
the semaphore based on checking the indication in memory.
Wherein a task checking the indication in memory deter-
mines that the semaphore is available, the method can
further comprise the steps of setting the indication to indi-
cate that the semaphore is occupied and performing the
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processing for the task, wherein performing the processing
for the task includes critical section execution. The critical
section can include at least one of external memory accesses
and task switches.

[0543] The method can further comprise the step of reset-
ting the indication to indicate that the semaphore is available
after the step of performing the processing for the task.
Furthermore, the method additionally can comprise the step
of removing from the first bitmap those tasks now included
in the second bitmap in memory that identifies tasks that are
awaiting access to the semaphore, thereby allowing those
tasks to be scheduled for access to the semaphore.

[0544] In one embodiment, when a task checking the
indication in memory determines that the semaphore is
occupied, the method can further comprise the steps of
including the task in the second bitmap and revising the first
bitmap to reflect the tasks from the list in the second bitmap.
The method further can include the steps of removing the
task from the second bitmap when the indication reflects that
the semaphore is available and revising the first bitmap to
reflect the tasks from the list in the second bitmap, thereby
allowing the task to access the semaphore and perform the
task processing.

[0545] In accordance with another embodiment of the
present invention, a system employing semaphores to limit
access to a shared resource used by a multi-tasking proces-
sor is provided. The system comprises a first bitmap in a
register that prevents specified tasks from running because
the specified tasks are awaiting access to an occupied
semaphore, an indication in memory that indicates whether
the semaphore is occupied, a second bitmap in memory that
identifies tasks that are awaiting access to the semaphore,
and means for attempting to access the semaphore based on
checking the indication in memory, The means for attempt-
ing can be a processor executing a task, wherein the task can
be enabled to access the semaphore when the indication
reflects that the semaphore is available. Also, the task can be
enabled to register itself with the second bitmap and updates
the first bitmap when the reflects that the semaphore is
occupied. The task execution can include processing a
critical section including at least one of external memory
accesses and task switching, wherein the indication in
memory is reset to indicate that the semaphore is available
after processing the critical section.

[0546] The Software Data Model

[0547] Referring now to FIG. 43, an exemplary software
data model 450 is illustrated in accordance with at least one
embodiment of the present invention. There are two major
types of data allocated in internal memory: global data and
task/function data.

[0548] Global Data:
[0549]
[0550] global data definitions, examples:

[0551]
[0552]
[0553]

[0554] Global data has a global name scope and can be
symbolically referenced from anywhere in the code. Refer-
ences are translated to absolute addressing.

.adata start

long generic_taskmessage_q[8]
struct_structure_name instance_name;

.adata end
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[0555] Task/Function Data.

[0556] .task [common] task_type_name

[0557] task data definitions and task code.

[0558] .task end [task_type_name]

[0559] .func levell/2 function_name

[0560] function data definitions and function code.
[0561] .func end [function_name]

[0562] Tocal data definitions have a local name scope
(detailed below) and references are translated by the assem-
bler to r27+immediate offset. Functions can be defined either
within a task definition or outside of any task definition.
Function names, which are defined outside of any task
definition, have global name scope and can be called from
any place in the code. They can access their local data and
the global data. Function names which are defined within a
task definition have a scope of the task definition. They can
be called only by levelO code of that task type. They can
access the common data of the task (detailed below).

[0563] There is hardware support for keeping return
addresses for two levels of nesting of function calls. A static
stack frame will be maintained, made of three parts, for each
task instance. This should solve the problem of allocation of
the correct size of dynamic stacks. It will also make function
calls more efficient by eliminating handling of the stack
pointer and of the return address. This means that at defi-
nition time the level (1 or 2) of each function is specified.
Functions which do not call other functions will be defined
as level2 functions.

[0564] For each task type, the assembler creates two data
sections, levelO data and levels data. Their sizes will be used
by the PP software to allocate memory for the static frame
of each task instance of this task type, and to initialize r27
of the task instance. A task definition can appear several
times for the same task type. Such a definition shall be
referred to as a task fragment. The data definitions in each
of the fragments are in union with the data definitions in
each of the other fragments (overlap, occupy the same
memory location).

[0565] During a task fragment definition, an optional
common keyword can be used, in which case the data
definitions will overlap with any other data definitions, and
the scope of the data names will be all the fragments of the
same task type.

[0566] The non-common fragments of a task can be used
to implement the different functions (referred to as han-
dlers), which the generic task does. The pointer to the
handler is passed in the inter-task message. All the handlers
will return to a label in the common part of the task. The
common part of the task will only handle the input message
queue and dispatch to the handlers.

[0567] The size of the levelO frame for a task type is the
size of the data definitions in the common part plus the
maximum of the sizes of the data definitions in non-common
fragments of the task type.

[0568] Levell functions can be called only explicitly (i.e.,
they can not be called using a pointer.) The assembler will
find all the calls to levell functions and will compute the
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levell frame size for this task type as the maximum of the
sizes of the data definitions of levell functions called by this
task type.

[0569] Level2 functions can be called via a pointer. The
assembler will check that the data allocated in each level2
function is not more then a system level constant (80 bytes)
and will add this constant to the offsets of data definitions of
levell functions.

[0570] Scope of labels: local in functions and task frag-
ments. Global to all fragments of that task type when in the
common task fragment. Labels in task fragments and level2
function names can be passed to the PP software (flow
manager) in the object file using the directive: .export
label_name.

[0571] According to one approach, the assembler will
produce a single code section, which will contain the code
of all the tasks and functions. Other function types might be
considered, such as ones which do not have local data in
memory or which receive as a parameter a pointer to a
scratchpad area for their use. Also to be considered is code
which is not associated with tasks and functions. (All the
labels in this code will have global scope. It might be used
for additional types of functions.) In cases when the caller’s
frame is no longer needed (an error condition, for example),
it might call a function of the same level, which will use the
caller’s frame.

[0572] The Instruction Set
[0573] Addressing modes:

[0574] Instruction addressing. All instruction addresses
are word addresses, they are shifted left 2 bits to generate the
memory address.

[0575] Absolute: Jump to the absolute address specified in
the 16-bit immediate instruction field.

[0576] PC relative: Branch to an offset from the current
program counter specified in the 12-bit immediate signed
instruction field.

[0577] Register: Jump to the address, which is contained
in the register specified in the instruction.

[0578] Implicit task entry point: During task switch, jump
to the entry point of the next enabled task (in r30 of that
task).

[0579] Data addressing: Data addresses are byte addresses
that are taken as is, regardless of the access size.

[0580] Register with offset The address is the sum of the
value contained in the register, with the sign extended 8-bit
immediate instruction field.

[0581] Register with index register: The address is the sum
of the value contained in the register, with the value con-
tained in the index register.

[0582] Instruction Groups

[0583] According to one embodiment of the packet pro-
cessor of the present invention, the following instruction
groups are supported: arithmetic and logic operations; reg-
ister data manipulation; load/store (to internal memory);
program flow; task yielding; and agent instructions (DMA,
communication peripherals, CRC, CAM, etc.).
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[0584]
Sor

Instruct/On Pipeline for a Flexible Packet Proces-

[0585] Referring now to FIG. 44, an exemplary network
processor pipeline 460 is illustrated. According to one
embodiment of the invention, the network processor pipe-
line 460 consists of five stages: fetch, decode, address,
execute and write. The network processor pipeline 460
enables a standard design flow and standard memories. The
network processor can perform an instruction together with
a data load or store from/to a unified internal memory in
each cycle. The network processor pipeline 460 enables an
arithmetic instruction to use as its source operands data that
was loaded by the previous instruction without any bubble.
Conditional jump and branch instructions have no penalty
when the condition is not taken while a penalty of 2 cycles
occurs if the condition is taken and there is a change of flow.
To reduce this penalty, delayed jump and branch instructions
are provided. In addition to the data ALU there is an address
ALU to enable efficient pointer calculation on data access.
The network processor general purpose registers (r0-r31) are
updated during the write stage without distinction as to
whether they are updated from a load operation or from a
data ALU operation.

[0586] Pipeline Stages

[0587] There are five pipeline stages: Fetch; Decode;
Address; Execute; and Write.

[0588] The Fetch Stage

[0589] During the fetch stage, the network processor core
places the next instruction fetch address. This next fetch
address can originate from the Program Counter (PC) in the
normal sequential flow or can come from the address ALU
when there is a jump or branch instruction. A 32-bit new
fetched instruction is assumed to be ready during the next
clock cycle after a specific access time from the specific
internal memory. Since the network processor internal
SRAM is unified for both data and programs, and since it
should support 64-bit access for data, the network processor
initiates a fetch of 2 instructions (64 bits). The Fetch Unit
(FTU) contains a fetch buffer to hold fetched instructions
that were still not processed.

[0590] The Decode Stage

[0591] At the decode stage, the new instruction fetch is
complete and the decoding of the new instruction is per-
formed. The decode logic determine the type of the incom-
ing instruction and the operations that should be performed
at each pipeline stage for the execution of the instruction.

[0592] The Address Stage

[0593] During the address stage the data address for a load
from memory or for a store to memory is calculated by the
address ALU. The address ALU get its source operands,
which can originate from one or two of the GPR registers,
an immediate address offset or an absolute address. In jump
or branch instructions, the destination address is also calcu-
lated by the address ALU. One of the address ALU inputs is
the PC itself for branch address calculation. After address
calculation is performed, the core places the new data
address on the Data Address Bus (DAB) or the new program
address (for change of flow) on the Fetch Address Bus
(FAB). If the instruction is a store, data to be stored into
memory is placed on the Store Data Bus (SDB) during this
stage.
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[0594] The Execute Stage

[0595] The data ALU execution is done at the execute
stage. Source operands are read from the register file to the
Data ALU, and data arithmetic is performed. For example,
if the instruction is an ADD of r1 with r2, then rl and r2 are
mux-ed into the data ALU and arithmetic addition is per-
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faces. It is a five stage pipeline which is optimized for
sequences that are frequently used and sequences that have
a large effect on performance. By optimizing some of the
sequences, there may be other sequences that might be
problematic. These may be solved by inserting software
restrictions. Table 5 below lists some of the sequence
restrictions according to one embodiment of the invention.

TABLE 5

Sequence Restriction

Description

1 Register update followed by

a store

2 Register update followed by

a use of this register as a
memory pointer

3 Register update followed by

a use of this register by
AGENT WRITE
instructions or by DMA
instructions

4 Instructions inside a delay
slot

5 Instruction inside the delay

slot of a “yield”

6 Change of True sticky bit

before a conditional store or

conditional agent write or
agent read instruction

7  SPRS to nrefetch SPR
followed by an RFT
instruction

131 register update followed

by a conditional change of

flow with one of 131 bits as

a condition

Any instruction which updates an r register (for example: move
instructions, ALU instructions, load instructions, etc.) may not be followed
immediately by a store instruction of that same r register. This includes
instructions that update CC flags in r1 following by a store of rl.

Any instruction which updates an r register (for example. move
instructions, ALU instructions, load instructions, etc.) may not be followed
immediately by an instruction which uses that same r register as a memory
pointer or as a source for a memory pointer calculation. Instructions that
might use an r register as a pointer include: load, store, jump, branch,
yield, and case. This includes instructions that update CC flags in rl
followed by an instruction that use r1 as a memory pointer.

Any instruction which updates an r register (for example: move
instructions, ALU instructions, load instructions, etc) may not be followed
immediately by AGENT WRITE instructions or DMA instructions which
use that same r register.

Change of flow instructions are not allowed in any kind of a delay slot.
Change of flow instructions include:

Jump or Branch instructions

Yield instructions

Case instruction

RFT instruction

DMA instructions with the yield option set
The only instructions that are allowed in a delay slot of a yield instruction
are:

Store instructions

Agent Write instructions

DMA instructions (only when the yield option is not set)
Any instruction which updates the conditional sticky bit may not be
followed immediately by a:

conditional store instruction.

conditional agent write instruction.

conditional agent read instruction
SPRS instruction with nrefetch SPR as its destination may not be followed
immediately by an RFT instruction

Any instruction which updates the 131 register may not be followed
immediately by a conditional change of flow instruction which uses one of
131 bits as a condition

formed during the execute stage. Condition Codes (CC) are
also calculated at this stage. By the end of the execute stage,
the data arithmetic execution result together with the CC are
ready.

[0596] The Write Stage

[0597] At the write cycle, the register file is updated. The
update can come from various sources: a destination of an
arithmetic result, loaded data from memory, a move from a
Special Purpose Register (SPR), or a move of an immediate
value into the register file. In case of a jump or branch to a
subroutine, the PC is also latched into one of the two LINK
registers inside of the register file. The CC register is also
updated at this stage.

[0598] Restricted Sequences

[0599] The network processor pipeline is designed to
enable a standard design flow with standard memory inter-

[0600] Pipeline Timing Diagram

[0601] The pipeline timing and stages 480 are illustrated
with reference to FIG. 45. This diagram 480 together with
the pipeline block diagram 460 from FIG. 44 illustrates the
basic flow through the pipeline stages inside the network
processor core. FIG. 45 starts with the update of the
Program Counter (PC) with the address of the next instruc-
tion. The Fetch Address Bus (FAB) gets its content from the
PC and starts a memory fetch access. A new instruction is
available on the Fetch Data Bus (FDB) during the decode
cycle and passed directly to the decode logic. The address
ALU operates during the address stage and sends a new data
address to the data memory. If the operation is a load then
the loaded data is available on the Load Data Bus (LDB)
during the execute stage. If the operation is a store then the
stored data is placed on the Store Data Bus (SDB) during the
address stage. The Data ALU gets its source operands and
executes the data arithmetic at the execute stage. By the end
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of the execute stage, data arithmetic result and the Condition
Codes (CC) are ready to be latched into the destination
register on the next clock edge of the write cycle. If it is a
load instruction then the loaded data is also latched into the
destination register on the positive clock edge of the write
cycle. All register update operations are going through the
rf_in_mux and the actual update is on the write cycle. An
update to any one of the Special Purpose Registers (SPRs)
is also done at the write stage.

[0602] An Internal Memory to be Used with the Flexible
Packet Processor

[0603] Referring now to FIG. 46, an exemplary internal
memory 500 for implementation in the network processor
(NP) is illustrated. According to one aspect of the invention,
the Vobla (network processor [NP]) Memory (VMEM) 500
is a small and fast memory located near the network pro-
cessor NP core. The VMEM 500 serves the NP with three
separate ports and the rest of the system with two ports. The
main features of the VMEM according to one embodiment
of the invention include: operates with the NP clock; sup-
ports multiple ports (e.g., five ports); maximum bandwidth
of, for example, about 8 Gbytes/second (5 accessesx200
MHzx8 bytes); 64 Kbytes of SRAM—first area between 0
to 48 KB and second area between 64 to 80 KB.

[0604] SPAM Mapping and Priority

[0605] The SRAM, in one embodiment, is divided into
three sub areas: 0 to 8 K—data and tasks context; 8 to 48
K—data and program; and 64 to 80K—program. The above
64 KB memory space can be accessed by the ring for writes
and by the multireader for reads. According to one embodi-
ment, the priority in each one of the memory areas is
according to the following rule: (1) ring interface—highest
priority; (2) program; (3) data (load/store); (4) context; and
(5) multi reader—lowest priority.

[0606] Interfaces of the VMEM

[0607] The VMEM supports the NP by three ports: data
(load/store), program, and context. The VMEM supports the
ring interface and the NP compound by two ports: multi-
reader and ring writer.

[0608] Network Processor Program Bus (v_program)

[0609] This is a read port from the NP. Each access of this
bus is for aligned double words (64 bits): 15 bits for Address
bus, A(17:3). This allows access to 32K double words or 256
Kbytes. A(2:0) are don’t care bits in this case and 64 bits
data out bus.

[0610] Network Processor Data Port (v_data)

[0611] This is a read and write port from the NP. The data
size can be a byte (8 bits), half-word (16 bits), word (32
bits), or double word (64 bits). The access has to be aligned
to the data size (half word on the boundary of half word,
etc.). All the accesses are right aligned: byte in bits 0 to 7,
half-word in bits 0 to 15, and word in bits 0 to 31. A special
data aligner for this port will arrange the incoming and
outcoming data according to the address and size transac-
tion. The interface will generate the byte enable signals to
the VMEM according to address bits A(2:0) and the size of
the transaction, where: 16 bits Address bus—A(15:0)—
Allows access to the first 64 Kbytes of the VMEM address
space; A(2:0) and data size control enable signal; 48 Kbytes
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of SRAM in current implementation; 64 bits data out bus for
read access; and 64 bits data in bus for write access.

[0612] Network Processor Context Port (v_context)

[0613] This is a read and write port from the NP. The data
size is a word (32 bits) for write access and a double word
(64 bits) for read access. The interface will generate the byte
enable signals to the VMEM according to address bit A(2).
No data aligner is needed for this interface, where: 11 bits
Address bus—A(12:2)—allows access to the first 2K words
(8 Kbytes) of the memory space—A(1:0) and A(15:3) are
don’t care bits in this case; 64 bits data out bus for read
access; and 32 bits data in bus for write access.

[0614] Multireader Port (v_mrd)

[0615] This is a read port from the multireader. The data
size is a double word (64 bits).

[0616] 13 bits Address bus—A(17:3). Allows access
to all the VMEM address space.

[0617] A(2:0)—don’t care.
[0618] 64 bits data out bus for read access.

[0619] Ring Interface Write Port (rif_i)

[0620] This is a write port from the ring interface. The data
size can be from 1 to 8 bytes and the data should be in a one
aligned double word so only one access to the memory is
needed. The data is left aligned (big endian) and a special
data aligner for this port will arrange the incoming data
according to the VMEM address. The interface will generate
the byte enable signals to the VMEM according to address
bits A(2:0) and the size of the transaction, where 18 bits
Address bus—A(17:0)—allows access to all the VMEM
address space; and 64 bits data in bus for write access.

[0621] VMEM Micro Architecture
[0622] Basic SRAM Module

[0623] According to one approach, the VMEM uses two
kinds of SRAM modules: a single port SRAM organized as
512 words of 64 bits (4 KB) and a single port SRAM
organized as 2048 words of 64 bits (16 KB). Each SRAM
gets 8 Byte Enable (BEs) control signals.

[0624] SRAM Memory Array

[0625] The SRAM array is divided into 13 SRAM mod-
ules and the overall size is 64 Kbytes. The first group is
between 0 to 48K bytes. In term of address space, each pair
of SRAMs occupies 8 Kbytes. The odd SRAM contains the
first, third 8 bytes, etc. (0-7, 16-23, etc.), while the even
SRAM will contains the second, fourth 8 bytes, etc. (8-15,
24-31, etc.). The second group is between 64 to 80K bytes.
This group include a single 16K byte SRAM.

[0626] VMEM Control

[0627] The control is responsible for supporting the
SRAM macros with addresses and data, and for routing the
data from the SRAMs to the right bus. A contention occurs
when there are two or more accesses to the same SRAM
macro. In that case, a priority mechanism is needed for
avoiding starvation. The VMEM sends a stall signal and the
delayed transaction is kept by the VMEM until receiving
service. The write access from the ring Interface port has the
highest priority.
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[0628] Restrictions. Any access to an unimplemented
memory will respond with garbage information without a
special notification to the system. Any access that crosses the
eight byte boundary of the SRAM macro (i.e., a transaction
to address 12 and size of 8) is invalid and the result is
unpredictable and without an error notification.

[0629] Data In Path

[0630] Data In aligners. There are two data aligners in the
Data In Path:Data aligner for the NP Data bus. The input to
the data aligner is aligned to the right with a size of 1, 2, 4
and 8 bytes.

[0631] Data aligner for the Ring write bus. The input to the
data aligner is aligned to the left (big endian) with a length
of 1 to 8 bytes which is part of a one double word (64 bits)
entry in the SRAM.

[0632] Data In buffers. There are two 64-bits data buffers
for storing the incoming data from the NP data bus and NP
context bus in case of a contention in the VMEM. Since the

ring write bus has the highest priority it does not need a
buffer.

[0633] Address in Path

[0634] Address In buffers. There are four 16-bit address
buffers for storing the incoming address from the NP data
address bus, NP context address bus, NP program address
bus, and the multireader address bus in case of contention in
the VMEM. Since the ring interface has the highest priority
it does not need a buffer.

[0635] Address In Muxes. There is a 4 to 1 mux (multi-
plexer) for each of the SRAM macros. The first two ports of
all muxes are connected to the ports: ring write address and
multireader address.

[0636] There are a two options for the third port: NP
Context address port—connects to the two muxes that
support the two SRAM macros occupying address 0 to 8K
bytes; and NP Program address bus—connects to the ten
muxes that support the ten SRAM macros in address 8K to
48K bytes. The NP data address bus is connected to the 12
address in muxes (the last SRAM is not connected to the
data bus).

[0637] Data Out Path

[0638] Data Out Muxes. There are four data out muxes of
64 bits. A 13 to 1 mux for the multireader data out bus. This
mux is connected to the 13 SRAM macros that reside in
address 0 to 48K bytes and 64 to 80K bytes. A 12 to 1 mux
for the NP data out bus. This mux is connected to the 12
SRAM macros that reside in address O to 48K bytes. A 11 to
1 mux for the NP program data out bus. This mux is
connected to 10 SRAM macros that reside in address 8K to
48K bytes and to the one SRAM macro that resides in
address 64K to 80K bytes. A 2 to 1 mux for the NP context
data out bus. This mux is connected to 2 SRAM macros that
reside in address O to 8K bytes.

[0639] Data Out aligner. There is a data aligner for the NP
data out bus. The output of this aligner is right aligned
according to the access size (1, 2, 4 and 8 bytes) and the
access address.
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[0640] The Core of the Flexible Packet Processor and
Associated Compounds (Acents AND Non-Agents)

[0641] A block diagram of the network processor core
according to one embodiment of the invention was provided
in FIG. 37. The network processor compounds are those
modules of the ring network implemented by the network
processor that are tightly connected to the network processor
core. Network processor compounds share a single ring
interface and address space with the network processor core.
In other words, according to one embodiment of the inven-
tion incorporating the network processor into a SOC using
rings-type architecture, the network processor core and the
network processor compounds are all elements of a single
ring member.

[0642] Network processor compounds include agents and
non-agents. Agents are programmed by network processor
commands through the network processor agent interface,
discussed below. Non-agents are programmed by internal
agents or through the ring interface by external members.

[0643] FIG. 47 is a schematic diagram of the network
processor 500 according to an embodiment of the invention.
FIG. 47 illustrates the ring interface 512 (dotted box at the
bottom) and the network processor, which includes the
network processor core 514 and the various compounds. The
compounds include agents such as the doorbell agent 516,
CRC/snoop agent 520, multireader agent 524, timer agent
526, message_sender agent 528, and DMA agent 530.

[0644] Multireader Agent 524

[0645] The multireader module is an engine that serves
requests to read portions of data from the network processor
memory and sends the received data back to the destination.
In one embodiment of the network processor, the destination
is most likely to be located external to the network processor
compound (the only internal modules that might use this
data are the CRC snooper or the memory in a mode when
portions of the memory are copied from one location to
another location). The multireader is connected to the ring
write interface, and to the agent interface, from which it
could get requests to read data from the memory.

[0646] Operation

[0647] The multireader agent and the network processor
memory share the same address space. Hence the multi-
reader responds only to messages of work read type. The
memory will respond only to messages of work write type.

[0648] According to one aspect of the invention, the
multireader can get requests for data from the following
modules: 1) local network processor (via the agent inter-
face); 2) the three DMA controllers; 3) remote (external to
the compound) network processor; and 4) the host (PP).

[0649] All the external requests for memory reads are
stored in request FIFO. The local network processor requests
are stored in a special request entry. There are two reasons
why two different queues are used for the requests. The first
reason is to have the ability to stall the local network
processor if it asks for a new multiread request before the
previous one was served. The second reason is to have the
ability to know when the local network processor multiread
was finished. These features can not be implemented by
hardware for the other request sources, since the other
requests sources are generated by members connected to the
ring.
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[0650] The network processor request entry is written
from the agent interface and the request FIFO is written from
the ring. All the requests are stored in the request entry or
FIFO until they are serviced.

[0651] The order of serving the multiread requests is as
follows: If the network processor entry has a valid multiread
request, it will served before any other request in the request
FIFO. If the network processor request entry is empty other
requests will be served on first-in-first-out basis.

[0652] The multireader, in one embodiment, has the abil-
ity to stall data sent to the ring. A stall of data delivery could
occur if the output FIFO of the ring is full, or there is a
higher priority message that should be sent to the ring (for
example DMA, message sender messages).

[0653] The multireader request FIFO preferably is 8
entries deep (which should be sufficient to avoid the overrun
case). FIG. 48 is a schematic diagram of the multireader
agent 524 according to an embodiment of the invention.

[0654] Data Packing and Alignment

[0655] The network processor memory, in one embodi-
ment, uses a 64-bit data port. The multireader wants to take
advantage of this fact so every memory read will be of eight
bytes. In this system there is a need to allow byte size data
transfers over the ring from any memory location to any
destination address.

[0656] The data that is read from the memory and sent on
the ring in a ring is aligned to the left (MSB [most significant
bit] of the message) because big endian byte orientation is
used. Because of those requirements there is a need to add
an aligner in the multireader.

[0657] Another goal is to minimize data transfers over the
ring and enable straight forward writing to FIFOs. This goal
is satisfied using data packing logic which means that all the
transferred messages except the last one will contain 8 valid
bytes. The last message might contain less than 8 bytes, in
which case the message type will indicate how many valid
bytes there are.

[0658] The alignment and packing is done in the following
manner. FIG. 49 describes the data alignment 550 in case
the last message contains 8, 7 . . . , 1 valid bytes, when
reading from an aligned address. It should be noted that
when data is written to memory, the opposite alignment
should be performed. For example, consider the following
scenario: reading 10 bytes starting at address=5. The mul-
tireader will send the following data in the messages (X in
the data part of the message means that this byte is don’t
care).

[0659] Multireader—Memory Interface

[0660] The multireader starts to issue memory read cycles
if there is at least one multiread request pending in the
multireader request FIFO or request entry. Every read cycle
that the multireader issues to the memory is a 8 byte request
(in order to reduce the number of requests). The memory
read cycle starts when the multireader generates the address
and read strobe for the memory. The memory detects this
request and, if not busy with other requests, it drives the data
to the multireader on the following cycle. If the memory is
busy and can not drive the data to the multireader, it stalls

Oct. 16, 2003

the multireader. The multireader waits for the data from the
memory as long as the stall signal is asserted.

[0661] 1t is desirable that the originator of the multiread
request will have the ability to know that the multiread
operation is complete. If the originator of the multireader
request is the local network processor, it will have the ability
to know if the multiread operation had finished. The mul-
tireader will send the network processor a signal indicating
that the multireader did not finish the multireader transfer of
the local network processor. The multireader busy indication
will be asserted when the multiread request is registered in
the network processor entry and negated after the last
message containing data of this request is sent to the ring.

[0662] For other originators of multiread requests (like the
remote network processor or PP), the indication of multiread
transfer end is controlled by software. The software control
is achieved by preparing a special data word at the end of the
transferred block. The destination of the multiread operation
snoops this data. When this data is detected the multiread
operation is finished. Note that only one transfer can be
active during the time of the snoop (otherwise it will not be
possible to detect which operation is finished).

[0663] Sending a message with first/last data in frame
indication.

[0664] The multireader looks in the type field of the
incoming message (multiread request) or in the options bits
of the network processor multiread request, and, if the bit F
is set, the first message in the multiread process will be sent
with a destination address which indicates the first byte in
the frame.

[0665] The multireader also looks in the type field of the
incoming message or in the options bits of the network
processor multiread request, and, if the bit L is set, the last
message in the multiread process will be sent with a desti-
nation address which indicates the last byte in the frame.
(Every FIFO in the system should have three addresses
which when writing to it indicates first, last data in the
frame). The Multireader will modify bits 2,3 of the desti-
nation address according to the E,S bits.

[0666] Calculating CRC of Message Data In case there is
a need to calculate the CRC of the message data, the
multiread request must set the S option bit. This bit will
cause the multireader to send all the messages with the type
in which the S (snoop) bit set. The CRC machine will snoop
those messages and calculate the data CRC. Since the CRC
machine is a 32-bit machine and the message data is 64 bits
wide, the CRC machine should have ability to stall the
multireader from sending data to the ring when the CRC
calculation on the data has been completed.

[0667] Multireader Input and Output Message Formats

[0668] A general multireader message will have the fol-
lowing format, as set forth in Table 6, for multireader input
and output message format.

TABLE 6

Field Description

type[7:0]

The type field describes the incoming message type. The
following types are valid:

type[7:0] = 00000XXX: idle

type[7:0] = 010XXLFI: work read.
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TABLE 6-continued

Field Description

address[23:0]  The field describes the starting address for reading data
from Vobla memory.
This field contains information required for generating
the output message and the operation of the multireader.
data[23:0] = Destination address of the data.
data[31:24] = The number of bytes to read
from the Vobla memory. (if
data[31.0] is zero the multireader
reads 256 bytes.)

data[31:0]

[0669] Table 7 illustrates the multireader output message
format for the multireader sending data to the rings. It should
be noted that the multireader input message type is always
a read type, and the output message is always a work_write

type.

TABLE 7
Field Description
type[7:0] The type field describes the outgoing message

type. The following types are valid:

type[ 7:0] = 00000XXX: idle

type[ 7:0] = 100FLZZZ: work write.

The address of the destination. This information
is based on what was extracted from the input
message data field, and the option bits of the
message type (L/F/I).

data[63:0] - This field contains the data that was
read by the multireader.

address[23:0]

data[63:0]

[0670] Network Processor Multiread Request Format

[0671] When the network processor initiates a multiread
request, it has to write to the network processor entry in the
multireader. FIG. 50 describes how the multireader maps
the data on the agent bus 556 to the multireader operation
558. The options are:

[0672] IL—indication of last multircader request in
frame (L=I last).

[0673] F—indication of first multireader request in
frame (F=I first).

[0674] S—snoop indication for the CRC snooper
(S=I snoop this message).

[0675] I—increment destination address, after every
multiread transfer.

[0676] If the network processor sends new multiread
requests while the multireader is busy serving previous
requests those requests will stall network processor. (Note:
If count value is zero the multireader reads 256 bytes from
the memory.)

[0677] Requests Serving Priority

[0678] According to one approach, if there are more than
one multiread request pending, the priority of serving them
will be: (1) serving local network processor requests if there
are pending requests; and (2) serving all other requests on a
FIFO basis.
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[0679] Multireader Operation Scenarios—Examples.

[0680] Example A—Sending data to serial transmit FIFO:
(1) The serial sends a request to fill its transmit FIFO.

[0681] (2) The request is registered in the doorbell logic.
When this request is serviced, the network processor sends
an agent write command to the multireader asking for data
transfer.

[0682] (3) The multireader decodes the message (or the
agent command) and initializes its operation.

[0683] (4) The multireader initiates memory read cycles
and data from the memory is sent to the multireader.

[0684] (5) The multireader packs the data, generates the
output message, and sends it to the ring if the ring is vacant.
The destination is the transmit FIFO in the peripheral.

[0685] (6) The process of reading data and sending it to the
destination repeats itself until all the data transfer is com-
plete.

[0686] Example B—Sending data to DMA write (trans-
mit) buffer: (1) The DMA controller issues a multireader
message. This message asks for data transfer from the
memory to the DMA controller write buffer (The message
will contain the destination address and the number of bytes
that are required and the starting location in the network
Processor memory).

[0687] (2) The multireader decodes the message and ini-
tialize its operation.

[0688] (3) The multireader initiates memory read cycles
and data from the memory is sent to the multireader.

[0689] (4) The multireader packs the data, generates the
output message, and sends it to the ring if the ring is vacant.
The destination is the write buffer in the DMA controller.

[0690] (S) The process repeats it self until all the data
transfer is completed.

[0691] Software/Hardware Restrictions

[0692] According to one embodiment of the invention, the
following restrictions may apply: do not activate more than
one multircader at a time from each source (except the
DMA, which can send two) in order not to cause overflow
in the FIFO; and if the destination of the multiread request
is one of the NP memories, only aligned transactions are
supported because the memory does not support overflow of
memory entry during a write (split one write command to
two).

[0693] Message Sender Agent 528

[0694] The message sender agent 528 is a module which
translates a network processor AGENT command to a mes-
sage to be sent to a destination on the ring. The message
sender is connected to the network processor agent interface.
The message sender is a powerful module since it can
generate messages in all the different messages types that are
available in the system. This means that the network pro-
cessor can send messages to all the modules that are con-
nected to the ring, and even replace the host in sending
supervisor messages. This feature can be very beneficial
while debugging the system. The block diagram of the
message sender 528 is shown as FIG. 51.
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[0695] There are three instructions dedicated for agent
commands: AGENTW, AGENTWI, and AGENTR. The
message sender ignores the AGENTR command. The
AGENTW/I commands drive the value of three registers, or
two registers and an immediate value, on the agent bus.
Those registers are marked RA, RAP, and RB (or imm8).
The message sender will interpret the content of those
registers in the following way (shown in FIG. 52):

[0696] Mapping for the AGENTW command is as fol-
lows:

[0697] RAP[23:0]—The destination address or the 32 LS
(least significant) bits of the data. This is a 24-bit address of
a module (destination) that is connected to the ring or the 4
LS bytes of the data that is sent to the ring when using the
64-bit data mode.

[0698] RA[31:0]—The data that will be sent to the
destination (typically in work read messages it will
include the return address for the data that was read
from the module and the number of bytes to read).

[0699] RB[7:0]—The message type that will be sent
to the destination (only the LSB of RB will be used).
In a 64-bit data message RB is the address of the
message destination.

[0700] The AGENTWI command drives the value of two
registers, eight bit immediate value (imm8) on the agent bus.
The registers are marked RA and RAP. The message sender
will use the content of those register in the following way:

[0701] RAP[23:0], RA[31:0]—same as AGENTW
command.

[0702] imm8—the message type that will be sent to
the destination.

[0703] Note: If the AGENTWI command is used there is
no possibility to send a 64-bit data message. Both commands
also drive option bits, which are part of the AGENT opcode.
Each module uses those bits in a different way. The message
sender will use 7 option bits. FIG. 52 illustrates a mapping
an agent write command 560 to a message 562.

[0704] If the network processor sends new requests for
message sending while the message sender is busy serving
previous requests, those requests will stall network proces-
sor. The message sender will have an internal queue of 2
entries so it can store 2 requests for sending messages before
stalling the network processor.

[0705] Message Sender Output Message Types
[0706] Table 8 illustrates the message sender output mes-
sage format according to an embodiment of the invention.

TABLE 8

Field Description

type[7:0] The type field describes the outgoing message
type. The following types are valid. (see message
type table for more details).

type[ 7:0] = 00000XXX: idle

type[ 7:0] = 11111NNN: supervisor.

type[ 7:0] = 010XXLFI: work read.

type[ 7:0] = 100FLZZZ: work write.

The address of the destination. This is the content
of RAP or RB according to the mode used (option
bit 6). If option[6] is one the address is taken from
RB

address[23:0]
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TABLE 8-continued

Field Description

data[63:0]/31:0] The message data. The content of RA or RA and
RAP according to the mode used (option bit 6). If

option[6] is one RA, RAP are used.

[0707] Data alignment. The alignment of the message data
is determined according to the message size and type. The
following Table 9 describes message data alignment.

TABLE 9
output Operation mode  data size
message type (64/32) (in bytes) output message format
work write 64 8 {RA[31:0], RAP[31:0]}
work write 32 1,2,34 {RA[31:0],32’b0}
{RA[31:0],32°b0}
{RA[31:0],32°b0}
{RA[31:0],32°b0}
work write 32 8 {32°b0,RA[31:0]}
work read  don’t care don’t care  {32°b0,RA[31:0]}
supervisor  don’t care don’t care  {32°b0,RA[31:0]}

[0708] Sending a 64-bit Data Message

[0709] The message sender can send a 64-bit data mes-
sage. Sending a 64 bit message is done by setting option
bit[6] of the AGENTW command to one (this option is not
available for the AGENTWI command). If this option is
used the message sender uses the content of RA,RAP as the
source for the raw data, and RB as the source for the raw
address. In this mode the message type is always work write,
with 8 valid data bytes. There is no provision for sending
less than 8 bytes.

[0710] Handling Data and Address Options

[0711] The message sender uses six option bits that are
driven by network processor in order to modify the value of
the raw_data and raw_address. This feature is useful when
the value in the registers are used as constants and are
modified as required. For example, when writing to a FIFO
the content of RAP will be the FIFO address, and when the
system seeks to write the first in frame or last in frame
locations the address will be modified using the option bits.
Data modification is useful when sending a doorbell request.
The data for the doorbell request is only 3 bits. Hence the
raw data can be modified to generate data for the doorbell
request. The address and data modification may be per-
formed as follows: (1) the content of RAP[4:2] or RB (in 64
bit data mode) is OR’d with the option[2:0] bits to generate
the message destination address; and (2) if the value of
options bits[5:3] is not zero, the content of RA[2:0] or RAP
(in 64 bit data mode) is replaced with options[5:3] bits to
generate the message data. Address and data modification
are active regardless of the message sender operation mode.

[0712] Software/Hardware Restrictions

[0713] Software/hardware restrictions include the follow-
ing in one embodiment of the invention: (1) the 64-bit data
mode is available only when using AGENTW command;
and (2) in 64 bit mode the message type is always work
write.

[0714] DMA Agent

[0715] Inasystem with multiple processors (e.g., a system
on a chip with multiple network processors) that can send
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DMA transfer requests to one of multiple DMA controllers
in the system, one challenge is knowing whether the DMA
request can be serviced prior to issuing the request to a
particular DM A controller. Otherwise, a DMA controller can
be overloaded with DMA requests that it can not service.

[0716] According to one beneficial aspect of the present
invention, this challenge is met by providing a DMA agent
module as a peripheral to each processor in the system. For
the network processor (Vobla) described herein, for
example, such a DMA agent may be implemented as one of
the tightly linked compounds on the overall network pro-
cessor. In other words, the DMA agent is a compound that
shares the same ring interface as the overall network pro-
cessor existing as a ring member.

[0717] According to this approach, the DMA agent oper-
ates to control the DMA transfer requests that are sent by the
processor as follows:

[0718] (1) Each DMA controller has a dynamic pool of
tokens that the DMA controllers allocate for use by the DMA
agents linked to the various processors. In other words, each
DMA controller has a pool of tokens that the DMA control-
ler can distribute among the various DMA agents.

[0719] (2) Each valid token allows a DMA agent to send
one DMA request to the DMA controller that owns the
token. If there are no valid tokens, no DMA requests can be
issued by the DMA agent and the processor will stall,.

[0720] (3) The DMA agent periodically queries the DMA
controllers for tokens whenever the number of valid tokens
in the DMA agent’s pool is less than a number prespecified
by software. The maximum number set by software can
change.

[0721] In sum, this approach avoids the scenario of the
DMA agent issuing requests that can not be serviced because
the maximum number of requests that can be sent does not
exceed the number of tokens held by the DMA agent.

[0722] The DMA agent module 530 (illustrated in FIG.
53) translates network processor DMA commands to ring
messages used to initialize the DMA controller.

[0723] According to one embodiment of the invention,
each network processor has one DMA agent. Each DMA
agent has the ability to control each and every one of the
DMA controllers that are available in the system, using the
context table (e.g., in the implementation there are 3 DMA
controllers, and each DMA agent can control up to 4 DMA
controllers). According to one approach, the fourth DMA
controller is provided for future system expansion.

[0724] The DMA agent is connected to the network pro-
cessor agent interface and to the ring write interface. The
DMA agent registers can be written by the host only via the
write bus using ring messages. The context table is initial-
ized by the PP once, and it is not changed during regular
work. The token registers should be written only by the
DMA controllers.

[0725] The Sources for Requests

[0726] The DMA agent can receive requests to initialize a
DMA channel only via the agent interface using special
network processor DMA commands. The DMA agent has a
small request queue of two entries in order to minimize the
need to stall the network processor if the DMA request could
not be serviced (e.g., this could happen if for example there
are no available tokens, or if the DMA is unable to send the
messages to the DMA controller because the ring is busy).
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[0727] Requests Priority. There are two priority levels for
DMA requests in the DMA controller. The lower priority
level is regular and the higher priority level is urgent. By
default all DMA requests are regular. A DMA request can
become urgent if the processor defines it as urgent. Requests
that have urgent priority have the urg bit in the message set,
and will get a higher priority in the DMA controller queue.
The DMA agent ignores the urg bit (it sends it on to the
DMA controller), and serves the requests in the order they
arrive.

[0728] DMA Agent Context Table

[0729] The DMA agent context table maps a network
processor DMA command to the actual request that will be
sent to the DMA controller that was selected. The actual
request defines the parameters for the current DMA transfer.
The context table has four entries. The table entry to be used
is determined by a two bit pointer encoded out of the 4 MSB
(most significant bits) of the DRAM address in the DMA
command. (The reason that 4 bits are used is because the
DRAM address space is divided into 16 parts and only 4
could be accessed by the DMA). The entry allocation, which
is hard coded. The context table could be written using write
messages. The table should be initialized before starting any
DMA access. The context table could be read using read
messages.

[0730] ADDR=DMA-AGENT-BASE to
DMA_AGENT_BASE+$F. Note: The maximum number of
tokens which could be allocated for one channel is 15. Table
10 provides a description of the DMA context table.

TABLE 10

field description

address[13:0] The physical base address of the DMA controller
to be used.

The number of the request and mask bits to set for
the current DMA transfer. This field is common

to all the contexts.

This field describes the maximum number of

tokens that could be used by this DMA channel.

visitor[ 2:0]

max__tokens|[3:0]

[0731] DMA agent token control. In order to manage
DMA transfers from different sources with different con-
texts, a free token transfer based approach is used. Accord-
ing to this approach, the DMA agent has a pool of tokens.
The service of a DMA request can start only if there are
available valid tokens allocated for this DMA channel in the
DMA agent. If there are valid tokens, the processing of the
DMA request can start as previously described. If there are
no available tokens to execute the DMA request, it will be
registered in the DMA agent queue, and will wait for
execution until the DMA agent gets a token from the DMA
controller (note that of the DMA agent queue is full the
request will stall the network processor).

[0732] Token distribution is performed using messages.
The DMA agent issues a request for a token to the DMA
controller each time the number of valid tokens is less than
the maximum allowed tokens (which is specified in the
context table). The DMA controller sends the token back to
the agent and marks this token as used in its token list. The
DMA controller will free the token again when the DMA
transfer is finished (i.e., before sending the message to the
doorbell). If the DMA controller has no free tokens then it
sends the DMA agent an invalid token (i.e., all the bits in the
token response are zero).



US 2003/0195990 A1l

[0733] The DMA controller sends the DMA agent a valid
token to the address of the token that was used (the DMA
agent sends this address in the token request message).
According to one embodiment of the invention, each DMA
controller has a pool of a maximum of 16 tokens for each
DMA channel. Of course, the number of tokens that is
available for each DMA controller is flexible and could
change according to system needs. The DMA agent token
registers contains the token numbers that the DMA control-
lers allocated for use (the valid tokens are marked by setting
the appropriate bit to one). The token registers can be written
only by the DMA controllers. There are four token registers
in the DMA agent. Table 11 illustrates the DMA agent
channel[i] token register.
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[0738] Address error calculation is performed on the
SDRAM address written by the network processor using the
DMA command. The SDRAM address is split into two parts.
The first part is bits [31:28] of the address and the second
part is bits [27:20] of the address. The address error logic
compares the first part of the SDRAM address to each one
of the values (0, 0x2, 0x4, 0xf), which correspond to the 4
MS bits of the SDRAM areas. If a match is not found, an
address error occurs and a special error message is generated
by the DMA agent. If there is a match, the bits of the second
part are compared according to a programmed mask to zero.
If the result is not equal to zero an address error is generated,
and an error message is sent.

TABLE 11
20]19]18]17] 1615|143 ] 12110 o s [ 76543 ]2]1]0
novt req token[15:0]
0 0 0

ADDR = DMA__AGENT-BASE + $10—DMA__ AGENT__BASE + $1F

[0734] Table 12 provides a description of the DMA agent
channel[i] token register.

TABLE 12

field description

token[15:0] This field describes which tokens are valid and
can be used for DMA transfers:

token[i] = 0 token not valid.

token[i] = 1 token is valid.

req This field indicates that the DMA agent had
issued a token replacement request but did not get
a response:

req = 0 no token request is pending.

req = 1 token request is pending.

This field describes the number of valid tokens
that used by the DMA agent for this DMA
channel.

novt[3:0]

[0735] When a DMA request is registered with the DMA
agent, the DMA agent searches the appropriate token reg-
ister to see if there are valid tokens. If there are valid tokens,
the DMA agent uses one of them (e.g., the first one it finds)
and marks that token as invalid. Then, the DMA agent starts
the data transfer for channel initialization. The DMA agent
also sends the DMA controller a message to replace the used
token with a new one (this will be work read type message).
The indication that the DMA agent issued a token replace-
ment request is made by setting the req bit of the relevant
token register. If the DMA controller has a free token
available it will send it to the DMA agent, and the agent will
replace the used token with the new one (i.e., the request bit
is cleared). If the DMA controller does not have a free token
available, it will send the DMA agent an invalid token (i.e.,
all the token bits are cleared and the req bit is cleared). The
DMA agent issues a new token replacement request after a
maximum of 4 cycles.

[0736] Address Error Control

[0737] The DMA agent has the ability to recognize if the
DMA transfer is made to an illegal external address for each
of the external DMA channels. When the DMA agent
identifies such an access, it sends a special error message to
the PP, informing the PP of the illegal access parameters.

[0739] Address error mask register. Four (one for each
external channel) 8-bit registers are used to store the mask
values for address error computation. The mask value will
be used to mask the comparison of some of the bits in the
second part of the SDRAM address (bits 27-20). If a bit in
the mask register is set, the corresponding SDRAM address
bit will not be compared in the address error calculation. The
reset value of the register is zero so as to enable the
comparison of all 8 bits. Table 13 illustrates the DMA
address error mask register[i].

TABLE 13

mask|[7:0] |

ADDR = DMA__AGENT_BASE + $30—DMA_ AGENT__BASE + $3F

[0740] Table 14 provides a description of DMA address
error mask register.

TABLE 14

field description

mask[7:0] This field describes which bits of the SDRAM
address are masked during the process of address
error calculation.

mask[i] = 0 the corresponding SDRAM address
is not masked.

mask[i] = 1 the corresponding SDRAM address

is masked.

(Note:

There could be cases in which the DMA controller accesses an invalid
external address that the address error logic does not detect. For example,
this could happen if the base address of the transfer is in the real or nor-
mal range, but the address generated by the DMA during the transfer over-

flows this range.)
Note:

If the network processor issues a DMA request to a channel that was not
initialized [i.e., the corresponding context table entry was not initialized]
and address error will occur.)
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[0741] DMA Agent Input and Output Message Formats

[0742] The DMA agent input and output message format
is now described. A general DMA agent message will have
the format as shown in Table 15.
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[0744] DMA Controller Message Data According to one
approach, the DMA agent will send the DMA controller two
messages for each DMA transfer that was initiated by the
network processor. The following tables describes the data
part of each message. Table 17 illustrates the DMA control-
ler message number 1.

TABLE 17

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0

address[23:0] = destination_addrl |

type = 10000000

rsrvd doorbell_address[23:0]
rsrvd sram_address[23:0]
[0745] The first message that will be sent from the DMA
TABLE 15 agent to the DMA controller contains the return address for
the DMA request doorbell and the internal SRAM address.
field description The doorbell and the SRAM address are 24 bits wide:
] . [0746] doorbell address[23:0]—the 24 bits of the
type[7:0] The type field describes the incoming message

type. The following types are valid. If the last bits
are X they are ignored:

type[ 7:0] = 00000XXX: idle

type[ 7:0] = 010WXLFI: work read.

type[ 7:0] = 100FLZZZ: work write.

The field describes the starting address space of
the DMA agent. The DMA agent register address

address[23:0]

doorbell register to which the DMA controller should
send the acknowledgement at the end of the transfer.
The 6 LSB bits of this address are the task ID number
at the time the DMA command was initiated.

[0747] SRAM address[23:0]—24 bit address inside
the internal SRAM (this is a full ring address).

[0748] Table 18 illustrates the DMA controller message
number 2.

TABLE 18

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

address[23:0] = destination_addr2 |

type = 11111101

dram_address[31:0]

rsrvd |

count[7:0]

| rsrvd |end | vst[2:0] | ackl dir | urg

TABLE 15-continued

field description
is from DMA__AGENT_BASE__ADD to
DMA_AGENT_BASE__ADD+$1F.
data[31:0] The data to be written to the registers.

[0743] The DMA agent output message format encoding is
shown in Table 16 below.

TABLE 16
field description
type[7:0] The type field describes the outgoing message

types. If the last bits are X they are ignored.
type[ 7:0] = 00000XXX: idle

type[7:0] = 11111101: error

type[ 7:0] = 010WXLFI: work read.

type[ 7:0] = 100FLZZZ: work write.

The address of the destination. This address is a
function of the base address written in the context
table and the token number (see FIG. 33 for
more details).

data[63:0] - This file contains the data for the
DMA controller.

address[23:0]

data[63:0]

[0749] The second message contains the external DRAM
address and control information for the DMA transfer. The
control information includes:

[0750] wurg—1 bit of urgent DMA request.

[0751] dir—1 bit of the transfer direction (SRAM to
DRAM or DRAM to EXAM). This information is found in
the DMA command.(dir=0 SRAM to DRAM; dir=1 DRAM
to SRAM).

[0752] ack 1—the bit of doorbell acknowledgement
enable. This bit will tell the DMA whether it should send a
doorbell at the end of the transfer. This information is found
in the DMA command.

[0753] count[7:0]—S8 bits of the transfer size. This infor-
mation comes from the DMA command.

[0754] wst[2:0]—3 bits of visitor code. These bits indicate
which request bit the DMA controller should set in the
doorbell request register.

[0755] end—endian mode bit. The endian bit is the LSB
bit of the DMA agent ID. (end=0 big endian mode).

[0756] Token request and token reply messages. Tables 19
and 20 illustrate a token request and token reply message,
respectively. The data part of the token request contains the
address in the token register that should be written with a
new token.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

type = 11111101

sdram_address[31:0]

rsrvd

doorbell_address[23:0]

[0757]

TABLE 20

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

address[23:0] = destination_addr3

| type = 01000000

rsrvd |

token_register_address[23:0]

rsrvd

[0758] DMA agent calculating the message destination
address. According to one approach, the messages that the
DMA agent sends to the DMA controller are sent to three
different destinations. The first two of these message desti-
nations are:

[0759] DESTINATION_ADDRESSI={DMA-
_BASE_ADDRESS[13:0],0,1, token_number[3:0], 0,0,0,0}

[0760] DESTINATION ADDRESS2={DMA-
_BASE_ADDRESS[13:0],0,1, token_number [3:0],
1,0,0,01

[0761] The destination address of the token request is:

[0762] DESTINATION ADDRESS3={DMA-
_BASE_ADDRESS[13:0,]10'b0}.

[0763] Error Message Format
[0764] Table 21 illustrates the error message format.

TABLE 21

acknowledgement). Setting this bit will also cause NOT to
set the DMA mask bit in the doorbell agent when the DMA
agents sends the messages to the DMA controller.

[0771] A—set auto set bit in the doorbell mask register.
[0772] U—urgent DMA request.

[0773] M—Modify address. Setting this bit enables the
modification of the SRAM address and the DRAM address.

[0774] 1L—Ilong address mode. Use 24 bits of RA as the
SRAM internal address (in the regular mode [L=0] only 16
bits are used and the 8 MSB of the ring base address are
appended to the 16 bits of RA to form the internal SRAM
address).

[0775] The DMA agent will have two request entries for
storing network processor DMA requests. If both entries are
full and the network processor issues a new request, the
network processor will be stalled until one of the requests is
served.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

token_register_address[23:0]

| type=10000000

rsrvd |

token[15:0]

rsrvd

[0765] (Note: The doorbell address is the address to which
a doorbell should have been sent at the end of the DMA
transfer if an address error has not occurred. This address
contains the task ID information in the six LSB bits and the
base address of the network processor from which the
message error was sent in bits 23-6.)

[0766] Network Processor DMA Request Format

[0767] When the network processor initiates a DMA
request, FIG. 54 describes how the DMA agent maps the
data on the agent bus 576 to the DMA request 578.
[0768] The options as shown in FIG. 54 are as follows:
[0769] D—direction of data transfer (D=0 SRAM to
DRAM; D=1 DRAM to SRAM).

[0770] NA—no acknowledgement at the end of DMA
transfer (NA=0O send acknowledgement; NA=I do not send

[0776] Address Modification

[0777] One common operation in control code writing
(such as for controlling the operation of the network pro-
cessor of the instant invention) is the calculation of the
destination address for read/write operations (such as read/
write commands for the Vobla network processor). Desti-
nation addresses can be calculated, for example, according
to several modes:

[0778] (1) Immediate addressing—the destination
address is included in the command and no calcula-
tions are required.

[0779] (2) Register A+Register B—the destination
address is the sum of the values of Register A and
Register B.



US 2003/0195990 A1l

[0780] (3) Register+Offset—the destination address
is the sum of the value of Register A and an imme-
diate offset value.

[0781] Often one of the arguments of an address calcula-
tion is used to point to the base address of a data structure
and the other argument is used to point to an offset within the
data structure. One difficulty is that if the same data structure
is to be accessed multiple times with different offsets, or if
different data structures are to be accessed using the same
offset, the address calculation must be performed repeatedly
(in the first case, computing a new offset each time; in the
second case, computing a new base address each time).
These redundant address calculations impose cycle costs and
decrease overall efficiency.

[0782] Accordingly, one beneficial aspect of the present
invention provides for adding a special address computation
mode to the network processor data structure access com-
mands. When activated, this special mode causes the desti-
nation address to be automatically computed using a base
address, offset, and an address modifier.

[0783] According to one implementation, the destination
address in this special mode is computed as:

[0784] DEST_ADDRESS=BASE_ADDRESS+
OFFSET+MODIFIER

[0785] Accordingly, according to one embodiment of this
approach, if agent option bit 9 (in one of the DMA com-
mands) is set the DMA agent will modify the value of the
SRAM address and the DRAM address (that were written by
the network processor) before sending the control message
to the DMA controller. Address modification is accom-
plished in the following fashion. DRAM address bits 1,2,3
are OR’d with count bits 2,3,4 (respectively), and SRAM
address bits 1,2,3 are OR’d with count bits 5,6,7 (respec-
tively). When address modification is used, the DMA trans-
fer size is limited to one of the four options listed in Table
22 below.

TABLE 22
count[1:0] transfer size
00 2 bytes
01 4 bytes
10 8 bytes
11 16 bytes

[0786] An example of the special mode of addressing is
instructive. Assume that a data structure located inside
internal memory for a communication processor including
the Vobla starts at address X. The size of the structure is
SIZE bytes. Further assume that we want to copy a part of
this structure starting at offset address X+OFFSET1 from X
to an external data structure which starts at address Y
starting at address Y+OFFSET2. Thus, the X and Y based
addresses are stored in a register. According to the conven-
tional approach, address computation is as follows:

[0787] ADD1=X+OFFSET1
[0788] ADD2=Y+OFFSET2
[0789] DMA ADD1, ADD2, SIZE

[0790] This conventional approach takes at least 3 cycles
to execute and consumes 3 program memory locations.

Oct. 16, 2003

Using the special mode according to the invention, the code
using address modification will be only this line:

[0791] DMA ADD[1], ADD[2], SIZE, OFFSETI,
OFFSET[2]

[0792] This code takes 1 cycle to execute and consumes 1
program memory location, which, therefore, saves program
space and increase performance.

[0793] In accordance with one embodiment of the present
invention, a method for performing address computation for
a data structure address command in a communications
processor is provided. The method comprises providing a
library of read commands and write commands for a net-
work processor in a rings based architecture, including an
option bit in the read commands and write commands for an
address calculation modification mode, providing an agent
module for forwarding read requests and write requests to a
DMA controller in response to requests including an address
issued by the network processor, and modifying the value of
the address when the option bit is set before forwarding the
read requests and write requests to the DMA controller. The
method, in one embodiment, permits repeated accesses to an
external data structure without recomputing the destination
address in its entirety each time.

[0794] Modifying the value of an address, in one embodi-
ment, comprises automatically computing a destination
address using a base address, an offset, and an address
modifier.

[0795] Further, modifying the value of an address, in one
embodiment, allows computation of the destination address
using a single read command or write command.

[0796] Doorbell Set Mask

[0797] The DMA agent is responsible for setting the DMA
mask bit in the doorbell agent each time a DMA command
is issued. The DMA mask bit will be set only if the NA bit
is cleared (if acknowledgement is not needed for the DMA
transfer there is no need to set the mask). If the auto set
option bit is set and the NAbit is cleared, then two mask bits
will be set at the same time in the doorbell. The index of the
bit that should be set is determined according to the visitor
bits in the context table (the auto set code is fixed) DMA
Agent Operation Scenario Examples

[0798] Example A—The network processor asks for write
DMA access:

[0799] (1) The Host has to initialize the DMA context
table with all of the channel configurations. This should be
done once for all possible configurations.

[0800] (2) The network processor issues a DMA command
on the agent bus.

[0801] (3) The DMA agent registers the request in the
request queue and extracts parameters.

[0802] (4) The DMA agent checks whether there is an
available token from the DMA controller to start processing
the request. If there is no token available the request waits
in the queue for execution until there is an available token.
If the request queue is also full, the network processor will
be stalled.

[0803] (5) Assuming there is an available token, the pro-
cessing of the request begins. The DMA agent sends the
DMA controller two messages containing all the parameters
of the transfer.
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[0804] (6) Since this is a write request, the DMA controller
issues a multireader message. The multireader message
requests a data transfer from the network processor memory
to the DMA write buffer.

[0805] (7) When the DMA transfer is finished, the DMA
controller sends a message to the doorbell.

[0806] Example B—The network processor asks for read
DMA access:

[0807] (1) The host has to initialize the DMA context table
with all the channel configurations. This should be done at
one time for all the possible configurations.

[0808] (2) The network processor issues a DMA command
on the agent bus.

[0809] (3) The DMA agent registers the request in the
request entries and extracts parameters.

[0810] (4) The DMA agent checks whether there is an
available token from the DMA controller to start processing
the request. If there is no token available, the processing is
stalled until there will be an available token.

[0811] (5) Assuming there is an available token, the pro-
cessing of the request begins. The DMA agent sends the
DMA controller two messages which contain all the param-
eters of the transfer.

[0812] (6) When the transfer is finished, the DMA con-
troller sends a message to the doorbell. The DMA controller
can now send a new token to the DMA agent.

[0813] Software/Hardware restrictions. According to one
embodiment of the invention, only the DMA controller can
write to the token register.

[0814] In accordance with one embodiment of the present
invention, a communications processor implemented as on
at least one ring network is provided. The communications
processor comprises a plurality of processors comprising
ring members on the at least one ring network and a plurality
of DMA controllers on the at least one ring network, the
DMA controllers controlling servicing of DMA requests by
the plurality of processors. The communications processor
further comprises a plurality of DMA agents coupled to the
plurality of processors, each DMA agent being part of a ring
member including a processor, wherein each DMA agent is
adapted to service processor DMA requests by determining
whether a valid token exists from a pool of tokens reflecting
available DMA controllers.

[0815] The tokens may be DMA controller specific tokens
issued by the DMA controllers to the DMA agents to
indicate when specific DMA controller access is available.
Each time a processor issues a DMA request, in one embodi-
ment, the associated DMA agent determines whether a valid
token exists and, if a valid token exists, services that DMA
request using the DMA controller associated with that token.
The token can be marked as used or invalid when the token
is used to service a DMA request. If no valid token exists the
DMA agent queues the DMA request until a valid token
exists. The associated DMA agent can be adapted to auto-
matically request a new valid token after an existing valid
token is used to service the DMA request. Each DMA agent,
in one embodiment, is adapted to request additional valid
tokens when the number of valid tokens in the pool falls
below a maximum number. The processors comprise, in one
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embodiment, a plurality of network processors and the at
least one ring network comprises a plurality of ring net-
works.

[0816] In one embodiment, the pool of tokens is stored in
a register written to by the DMA controllers.

[0817] The DMA agents can be adapted to service pro-
cessor DMA requests by converting them to messages
transmitted onto the at least one ring network. Likewise, the
DMA controllers can distribute valid tokens by transmitting
messages on the ring network that are received by specific
DMA agents. Each DMA controller further may be adapted
to maintain a list of tokens including those tokens that have
been distributed as valid tokens.

[0818] The DMA controllers can be adapted to respond to
requests from the DMA agents for additional tokens with an
invalid token when no valid tokens are available. Each DMA
controller can have a pool of up to, for example, 16 tokens
for each DMA channel. The DMA controllers, in one
embodiment, are capable of reading registers having the
pools of tokens for the DMA agents by issuing read mes-
sages traveling on the at least one ring network.

[0819] CRC Agent (Snoop) 520

[0820] FIG. 55 is a schematic diagram of the CRC agent
520 according to one embodiment of the present invention.
The Cyclic Redundancy Check (CRC) agent is a network
processor compound module which implements logic to
perform CRC calculations. The CRC agent supports differ-
ent types of CRC calculations like CRC32, CRC16, CRC10,
and so forth, for different data sizes (1 to 8 bytes). According
to one approach, the CRC agents works in two major
operational modes. The first mode is a snoop mode and the
second mode is on-demand mode. In the snoop mode the
CRC agent snoops for messages in which the S bit is set. The
CRC will detect those messages and will calculate the
selected CRC on the message data. The second mode of
operation is the on-demand mode. In on-demand mode the
network processor writes data to the CRC, and the CRC uses
this data for its calculations.

[0821] The network processor can write the CRC registers
via the agent bus using AGENTW/I commands. The net-
work processor can read the CRC residue via the agent bus
using an AGENTR command. The CRC agent can stall the
network processor if the network processor reads the CRC
results and the results are not yet ready. The CRC module
may also be able to generate a 32 bit random number.

[0822] Features of the CRC Agent

[0823] Performs CRC calculations of: CRC32 for ATM
cell processing AALS; and CRC10 for OAM ATM cells.
This requires the support of: calculating the CRC10 on
22-bit data of the last transmit word; merging the 10-bit
CRC into the 22-bit data to generate the last 32-bit word to
be transmitted by the multireader; BIP 16 for ATM perfor-
mance monitoring—this process is done in parallel with the
CRC calculation; CRC5 for ATM cell processing AAL2
(on-demand mode only); calculating CRCS for 19-bit data
for CRC generation (transmit)—(unless CRC5 is init by 0);
calculating CRCS for 24-bit data for the CRC check
(receive); checksum for IP streams. This will be done on
32-bit (or 64-bit) data. The convergence to 16-bit data will
be performed by software.
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[0824] The CRC Agent has two modes of operation:

[0825] On-demand mode, performed for any data trans-
ferred (e.g., CRC5, hashing function); and snoop mode,
performed for a continuous data sequence transferred from/
to the serial interfaces.

[0826] The CRC agent can be adapted to calculates CRC
for 8, 16, 24 or 32 bits of data in a single cycle. If CRC is
enabled for snooping, a network processor agent read
instruction from a CRC residue register stalls until the last
indication arrives with the last data word. Special control
enables the CRC residue to be calculated on partial data (e.g.
22-bits in CRC10, or 0 bits in CRC32); then the CRC residue
is combined with the partial data to form the 32-bit last word
of the frame, and this is exposed to the multireader block for
transmission. In CRC5, the CRC module is capable of
calculating the 5-bit CRC out of 19-bit data for transmit, or
out of 24-bit data for the CRC check in receive (on-demand
mode).

[0827] CRC Agent in one embodiment is adapted to
interface to: transmit bus—for snooping TX data and cal-
culating CRC; and agent bus—for configuration, on-demand
activation and read/write residue.

[0828] Network Processor Writing to the CRC.

[0829] The network processor 514 can write to the CRC
agent 520 using AGENTW commands. The mapping of the
AGENT command 590 to CRC data 592 is described in
FIG. 56.

[0830] The options include:

[0831] TYPE[2:0]—3 bit CRC. The types are: 000—CRC
32; 001—CRC 10; 010—CRC 5; 011—<checksum; 100—
CRC16; 111—BIP16 (only for writing BIP16 reside regis-
ter).

[0832] The BIP 16 machine works in parallel to all of
those machines.

[0833] SIZE[2:0]—The number of valid bytes in the data
(1 to 8) starting at the LSB of RA (size=0 means 8 valid
bytes in the message).

[0834] G—This bit indicates if the CRC agent works in
the generate CRC or the check CRC mode.

[0835] S—The operation mode of CRC module. If S=1 the
CRC works in the snoop mode. If S=0 the CRC works in the
on-demand mode. When working in on-demand mode, the
data for the CRC calculation and the residue are written by
the network processor. Since the data in the memory is
stored in big endian format, and the data in the network
processor register file is stored in little endian format, the
CRC module may perform some manipulation of the mes-
sage data before the CRC calculation (especially if the data
size is not 32 or 64 bit).

[0836] O—overwrite residue. If O=I the new residue from
RB/immS8 is used for the CRC calculation. If O=0 then the
current value of the residue register is used.

[0837] CRC Residue Registers.

[0838] The CRC module contains two residue registers.
The first residue register is a 64 bit register containing the
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residue for the CRC and checksum calculations. The second
residue register is 32 bit register containing the residue for
the BIP 16 calculation.

[0839] Reading CRC Registers by the Network Processor

[0840] The network processor can read the results of the
CRC calculations using the AGENTR command. The result
of the CRC machine that will be read is determined accord-
ing to the operational mode that was selected.

[0841] The BIP16 machine calculation result will have a
different register that could be read by the network processor
(i.e., the two residue registers have two different addresses).
If the network processor reads one of the CRC registers and
the result is not ready, the network processor will be stalled.

[0842] The CRC calculation is considered to be complete
after all the data had arrived (last indication in the message)
in snoop mode. In on-demand mode the result of the CRC
calculation will be available for reading one cycle after it
was written if the data size is smaller than four bytes, and
two cycles after it was written for larger data sizes.

[0843] CRC Agent Operation Scenarios, Examples

[0844] Example A—calculating CRC in on-demand
mode:

[0845] (1) The network processor writes the CRC agent
using AGENTW command. The data that is written to the
CRC agent contains: CRC type; the data on which the CRC
is to be calculated, the size of the data (number of valid
bytes), and a new residue if the current residue is to be
overwritten; the operational mode is set to work in the
on-demand mode; and in the CRC 5 mode the G should also
be written.

[0846] (2) One or two cycles after the data was written to
the CRC (depending on the number of valid bytes in the
data, the CRC machine can calculate CRC on 32 bits in one
cycle), the network processor can read the CRC result.

[0847] Example B—calculating CRC on transmit data
(multireader data out):

[0848] The CRC machine can calculate the CRC of the
transmit data by snooping the S and L bits of the multireader
output messages. The network processor initializes the CRC
agent in the following manner:

[0849] (1) CRC type.

[0850] (2) A new residue if the current residue is to be
overwritten. The data and the data size of the residue will be
taken from the message data and type parts, respectively (the
data part of the agent bus is ignored in the snoop mode).

[0851] (3) The operational mode must be set to work in the
snoop mode, selecting the transmit data bus as a source for
the data.

[0852] (4) One or two cycles after the last data has arrived
at the CRC (depending on the number of valid bytes in the
data, the CRC machine can calculate the CRC on 32 bits in
one cycle) the network processor can read the CRC result.

[0853] Example C—calculating CRC of receive data: The
CRC machine can calculate the CRC of the receive data by
snooping the S and L bits of the agent write bus messages.
The network processor initializes the CRC agent as follows:
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[0854] (1) CRC type.

[0855] (2) A new residue if the current residue is to be
overwritten. The data and the data size will be taken from the
message data and type parts, respectively (the data of the
agent bus is ignored in the snoop mode).

[0856] (3) The operational mode must be set to work in the
snoop mode.

[0857] (4) One or two cycles after the last data has arrived
at the CRC (depending on the number of valid bytes in the
data, the CRC machine can calculate CRC on 32 bits in one
cycle) the network processor can read the CRC result.

[0858] Timer Agent 526

[0859] Referring now to FIG. 57, an exemplary embodi-
ment of the timer agent 526 is illustrated in accordance with
one embodiment of the present invention. The timer module
is designed to allow the assignment of time stamps to
various events within network processor tasks. According to
one approach, the timer contains a 32 bit count-up free
running counter. The counter counts at a frequency which
could be calculated using the following formula.
F(counter)=[F(clock)[2*(prescale value+1)]

[0860] Usually the counter frequency will be set to 1 MHz
(which corresponds to a 1 microsecond period). The prescale
counter is a 10 bit down-counter, which divides its input
clock frequency by the prescale value. If the prescale value
is equal to zero the prescaler will be bypassed.

[0861] The time stamp value could be read by the network

processor from the time stamp register using the agent
interface.
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TABLE 23

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ten RSRVD | tps[9:0]
reset =0
[0866]
field description
ten Timer enable bit. This bit enables the timer
operation.
tps[9:0] This field describes the division factor of the

clock after it was divided by 2.

[0867] Time Stamp Register

[0868] The timestamp register contains the value of the
timer counter at the time of an agent read operation. The
register is read by the network processor using the AGENTR
command. Table 25 illustrates the time stamp register, and
Table 26 provides the time stamp register description.

TABLE 25

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0862] Network Processor Writes to the Timer

[0863] The network processor can write to the timer using
the AGENTW/AGENTWI commands. In order to enable
timer operation only two values are required. The first value
is the control information which resides in register RB or the
imm8 value (according to one approach, only one bit is
used). The second value is the prescale value which deter-
mines the counting frequency of the timer. The prescale
value is taken from the 10 LSB of RA. The value of RAP is
ignored. FIG. 58 illustrates the mapping of the AGENTW
command 602 to the timer data 604.

[0864] Timer Control Register

[0865] The timer control register is used to store the
prescale value and to enable/disable the timer count opera-
tion. The timer control register is written using AGENTW/I
commands and read using the AGENTR command. Tables
23 and 24 show the timer control register and a description
of the timer control register, respectively.

tsv[31:0]
reset =0
[0869]
TABLE 26
field description
tsv[31:0] Timer stamp value. This value of the timer

counter at the time of the read operation.

[0870] Doorbell Agent 516

[0871] FIG. 59 is a schematic diagram of the doorbell
agent 516 according to one embodiment of the invention.
The doorbell agent is the scheduler module which handles
the execution sequence of the tasks. The doorbell is con-
nected to the network processor agent interface and to the
ring write interface. The doorbell registers can be accessed
by the network processor using the one of the special
AGENT commands, or via the write bus using ring mes-
sages (e.g., by the serials and the host). All the possible
service requests from the different sources go into the
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doorbell agent via the write bus. When the doorbell detects
a request message it registers the request in the doorbell
logic.

[0872] According to one embodiment of the invention, the
doorbell agent can handle requests of up to 64 different
tasks. The doorbell chooses the highest priority pending
request (out of all the un-masked tasks), and sends its task
ID to the network processor as the next task ID. The network
processor sends back to the doorbell the current task ID that
it is executing. The network processor uses the task ID
information to perform the prefetch, bump and task switch-
ing, as previously described.

[0873] The Sources for Requests

[0874] The sources for doorbell requests include: Regular
serial, timer, or software request: (e.g., a message from
another task) This request indicates that a data fragment had
been received in the RX FIFO or there is a place to write
more data into the TX FIFO for transmission, or that a timer
finished its count.

[0875] DMA request: The DMA had finished its data
transfer.

[0876] Self-request: When a task yields itself (i.e., when
the task execution time exceed the maximum allowed execu-
tion time), the software can resume its execution by setting
the self-request bit. The starting point of the task will depend
on what is written in the EP (entry point) register. The EP
register can be updated by hardware or by software.

[0877] According to one approach, every request bit has
its own mask bit (except the self-request). When the mask bit
is cleared the request is ignored and the task can not trigger
task switching. The self-request constitutes the only request
bits that can not be masked. When a task enters execution,
its corresponding request bit and all the mask bits are
automatically cleared. (except the auto set [aset] and the
urgent status bits [urg]). This is done to avoid serving the
same request more than once.

[0878] Selecting Next Task for Execution

[0879] According to one approach, the algorithm for
selecting the next task for execution is as follows. The tasks
which participate in the selection of the next task for
execution are the tasks for which their corresponding mask
bit in the Task Global Mask Register (TGMR) is cleared.
Tasks which participate in the selection of the next task and
have unmasked requests are divided into four groups and
served in the following order:
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[0880] (1) Highest priority group include urgent requests
of task numbers 0-31.

[0881] (2) Second priority group include regular requests
of task numbers 0-31.

[0882] (3) Third priority group include urgent requests of
task numbers 32-63.

[0883] (4) Lowest priority group include regular requests
of task numbers 32-63.

[0884] Within each group the requests are served accord-
ing to the task number. Lower task number requests are
served before higher task number requests.

[0885] Accessing the Doorbell Registers from the Net-
work Processor

[0886] The network processor can access the doorbell
registers via the agent interface using one of special AGENT
commands.

[0887] The network processor can directly modify only
the register bits of the current task (the request, mask,
counter bits value), or the global mask register (TGMR).
Modifying other task register bits can be done via the ring
write bus by sending a message from the message sender
agent to the doorbell.

[0888] The data 612 for modifying the mask, request and
the counter bits 614 of the current task is encoded in the
RB/immS8 part of the agent command as illustrated in FIG.
60. The doorbell logic decodes the 8 LSB of RB/imm8 and
sets the appropriate bits in the current task register, counter,
urgent or TGMR.

[0889] Setting a request or mask bit is performed by
writing 5 bits of the command index in the RB/imm8 part of
the AGENT command and then 3 bits of the index or the
request bit that is to be set, and then 3 bits of the mask bit
that is to be set. Note: Only one mask bit at a time can be
set by the network processor using a single agent command
(if other mask bits were set they will be cleared by the agent
write command, except for the autoset bit. Writing the auto
set bit will not clear other mask bits). Writing to the request
bits will not clear other requests bits if they were already set.
If the index value is zero the write to that part of the register
is ignored.

[0890] Table 27 describes the decoding of the RB/imm8
part of the message and the operations that take place.

TABLE 27

operation RB/Imm8

index

value mask request

Write task  (0,0,0,0,0,mask_bit index[2:0]) 000
(0,0,0,0,1,request_ bit_index[2:0]) bits

register
mask and
request
bits

don’t change mask don’t change request bits
001  set the aset bit
don’t change other
mask bits
011  set the mdma
bit clear all other
mask bits
100 set the mpreq
bit.clear all other
mask bits

set the preq bit (self
request) Other request
bits are not changed.
decrement the DMA
request counter by 1

set the preq bit. Other
request bits are not
changed.
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TABLE 27-continued
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51

index

operation RB/Imm8 value mask

request

write (1,0,0,0,0,counter value)

request

counter

write (0,1,0,0,0,0,0,0)

TGMR

write (1,1,0,0,0,0,0,urgent value)
urgent

[0891] The options in the agent command that are used by
the doorbell are:

[0892] CM—Clear mask. Setting this bit will clear all the
bits of the current task mask bits (including the auto set bit).

[0893] CR—Clear request. Setting this bit will clear all the
bits of the current task request bits.

[0894] SG—Set global. This bit determines whether the
task global mask register (TGMR) bits will be set or cleared
according to the data in the RA/RAP part of the agent
command. If the SG bit is set then the TGMR bits will be set
at the locations corresponding to the set bits in RA,RA+I
data.

[0895] Clearing the mask registers bits is accomplished by
writing 1 to the clear mask (CM) bit in the command. If the
CM option is used at the same time another mask bit is
written, the set operation overwrites the CM operation.

[0896] Clearing the requests bits is done by writing 1 to
the clear requests (CR) bit in the command. If clearing the
requests happens at the same time the request is set from the
ring then the request will be set (set will overwrite the reset).

[0897] The peripheral request mask bit (mpreq) could also
be set by the network processor when there is a YIELD
command and the set default mask option is used. Other
request bits will be cleared.

[0898] The network processor can initialize the DMA
requests counter of the current task by setting the RB/imm8
part of the agent bus to {1,0,0,0,0,count_value[2:0]}.

[0899] Writing the TGMR is done by setting the RB/imm8
part of the agent bus to {0,1,0,0,0,0,0,0} (see also the
discussion on the Task Global Mask Register (TGMR)
below.

[0900] Writing the current task priority bit is done by
setting the RB/imm8 part of the agent bus to {1,1,0,0,0,0,
O,urgent_value} (see also the discussion on Task Priority
Control below).

[0901] Reading Doorbell Registers from the Network Pro-
CESSOr.

[0902] The doorbell bits of the current task (i.e., the
request bits, mask bits and the counter value) are reflected in
the task SPR register of the network processor. The TGMR
could be read using the agent read command (AGENTR).

[0903] Setting the Doorbell Mask Bits from the DMA
Agent

[0904] Another option for setting the DMA mask (mdma)
bit and the auto set (aset) bit is by using the network

processor DMA commands. The DMA commands have an
option to set the DMA mask bit and the auto set bit.

[0905] When the DMA agent detects a DMA command, it
can set the appropriate mask bit in the doorbell using the
DMA context table (the context table stores the information
as to which bit to set). The mask setting will be done if the
NADbit in the DMA command is cleared. The auto set bit will
be set if the A option bit in the DMA command is set.

[0906] Setting the Doorbell Requests Bits from the Ring

[0907] The doorbell registers could be accessed by the
peripherals, the network processor and the host using ring
messages. Every time a peripheral wants to set a request bit,
the peripheral sends a write message with a destination
address of the doorbell entry it wants to set. The doorbell
will set the appropriate request bit in the doorbell registers
according to the content in the data field of the message.

[0908] 1If a request bit and the corresponding mask bit are
set, a valid request is sent to the doorbell priority logic. The
mask and auto set bits can not be modified from the ring
write bus. Table 28 shows the encoding for the input
message format. The doorbell responds to messages from
types mentioned in Table 28.

TABLE 28
field description
type[7:0] The type field describes the outgoing message

types. (If the last bits are X they are ignored).
type[ 7:0] = 00000XXX: idle
type[ 7:0] = 100FLZZZ: work write
The address of the doorbell register. The doorbell
register space ranges from
DOORBELL__BASE__ADD to
DOORBELL__BASE_ADD + $3F.
The value of the doorbell bit that should be set
data[2:0] = 000 do not change any request bit.
data[2:0] = 001 set self request (sreq) bit.
data[2:0] = 011 decrement request counter by 1.
data[2:0] = 100 set peripheral request (preq) bit.
P Doorbell request priority status. This bit reflects
the current status of the doorbell request.
P = 0 Current request status is normal.
P =1 Current request status is urgent.
(0] Overwrite task current priority status with
doorbell request status.
O =0 current priority status is not overwritten.
O =1 current priority status is overwritten.

address[23:0]

data[2:0]

[0909] Doorbell Register File Format

[0910] According to one embodiment, the doorbell regis-
ter file contains 64 registers. Thus, each possible task has its
own doorbell register. The doorbell registers have the format
set forth in Table 29.
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TABLE 29
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31-21 20 19 18 17 16 15-12 11 10 8 3-7 1 0
rsrvd urg rsrvd  count[2:0] rsrvd preq dma sreq rsrvd mpreq mdma  aset
reset-0 0 O 0 0 0 0 0 0 0 0 0
[0911] ADDR=DOORBELL_BASE to DOORBELL-
_BASE+$3F (Note: Current task register bits are reflected in TABLE 30-continued
the network processor status register.) (Note: All of the .
field description

request and mask bits [not including the auto set bit] are
automatically cleared when the task enters execution.) Table
30 provides a description of the doorbell register according
to an embodiment of the invention.

TABLE 30
field description
urg The urg (urgent) bit is used to allow the software

to control the priority level of a task (as opposed
to the urgent request status which is being
generated automatically and could not be
controlled by software). If the bit is set the task
has high priority. This bit is written only by the
Vobla
These bits represent the number of DMA requests
that should be acknowledged. Every DMA
activation that requires acknowledgement at the
end of the DMA transfer will cause the DMA
agent to increment the counter value by 1. Every
acknowledgement that is written to the dma bit in
the doorbell register decrements the counter value
by 1. If the counter value is equal to zero and the
current task was yielded, the dma bit will be set
(only if the counter was incremented at least once
during the current task). If the dma mask (mdma)
bit is set then a task switch will be triggered.
Those bits can be written by the Vobla using the
AGENT command.
preq Regular peripheral request.
preq=0 no regular peripheral request is pending.
preq=1 regular peripheral request is pending.
This bit can be set from the write bus or by the
Vobla, and can be cleared by Vobla. In case the
bit is set and cleared at the same time, the set will
overwrite the reset.
dma This bit indicates that the request counter had
decremented to zero after a valid Vobla yield.
dma=0 the request counter did not decrement to
zero.
dma=1 the request counter had decremented to
zero.
This bit can be set by the doorbell logic. Writing
to this bit from the write bus will decrement the
request counter value by 1. This bit can be cleared
by the Vobla. In case the bit is set and cleared at
the same time, the set will overwrite the reset.
sreq Self-request bit. This request is non-maskable.
sreq=0 self-request is not pending.
sreq=1 self-request is pending.
This bit can be set from the write bus or the
Vobla, and can be cleared by the Vobla. In case
the bit is set and cleared at the same time, the set
will overwrite the reset.
mpreq Peripheral request mask bit.
mpreq=0 peripheral request is masked and can
not trigger task switch.
mpreq=1 peripheral request is not masked, and
will trigger task switch when it is the highest
priority pending request.
This bit can be set by the Vobla and the DMA
agent and can be cleared by the Vobla. In case

count[2:0]

the bit is set and cleared at the same time, the set
will overwrite the reset.

mdma DMA request mask bit.
mdma=0 DMA request bit is masked and can not
trigger task switch.
mdma=1 DMA request bit is not masked and will
trigger task switch when it is the highest priority
pending request.
This bit can be set by the Vobla and DMA agent,
and can be cleared by the Vobla. In case the bit is
set and cleared at the same time, the set will
overwrite the reset.

aset Automatically sets the mask bits to their default
value after serving the current request.
aset=0 do not set the mask bits to their default
after serving the current request.
aset=1 set the mask bits to their default after
serving the current request
This bit can be set by the Vobla and DMA agent
and can be cleared by the Vobla. In case the bit is
set and cleared at the same time, the set will
overwrite the reset.

rsrvd Reserved bits are read as zero and can not be
written.

[0912] Task Global Mask Register (TGMR). The task
global mask register (TGMR) is a 64 bit register (one bit per
each task), which could be accessed by the network proces-
sor using the AGENT commands. The TGMR is used to
determine which tasks are taken into consideration when
calculating the next task for execution. Every set bit will
prevent the corresponding task from being selected as the
next task for execution, even if that task has valid requests
to serve (at least one corresponding mask and request bits
are set).

[0913] Writing the TGMR is done in the following way
according to one embodiment. The AGENT write command
must contain the value 01000000 in the L.SB of RB or the
imm§ field. Based on the value of the SG option bit and the
value of RA,RAP, the TGMR bits are set or cleared. Only
bits which have the corresponding RA,RAP bits set are
affected.

[0914] The TGMR could be read using AGENTR com-
mands. The 32 LSB of TGMR are located at address O of the
doorbell, and the 32 MSB are located at address 1. The user
can read all 64 bits using the read double option of the
AGENTR command. If only 32 bits are read, the other part
of the data will be zeroed.

[0915] Handling DMA Requests

[0916] In a system with multiple processors capable of
running multiple tasks that can issue DMA requests to the
multiple DMA controllers, one challenge is knowing at
certain points in time whether all of the DMA requests
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issued by a specific task running on a processor are finished.
The challenge can be significant because DM A requests may
be issued by different tasks running on a processor to
different DMA controllers. Also, the DMA requests may
finish out of the order in which they were issued.

[0917] According to one approach, the invention provides
that a DMA agent (previously discussed) be associated with
each of the processors in the system. The role, in this
instance, of the DMA agent is to control the DMA transfer
requests made by the associated processor. For each DMA
request issued by the DMA agent the DMA agent sends an
indication to a book-keeping unit. In one embodiment, the
book-keeping unit is a request counter in the doorbell task
register for each processor. The book-keeping unit receives
this indication and increments the request counter. Because
the preferred system performs multi-tasking, the request
counter may include a separate entry (or separate request
counter) for each task performed by the processor.

[0918] When the target DMA controller completes the
DMA transfer, the DMA controller issues a decrement
counter message to the book-keeping unit. The relevant
entry (or relevant request counter) is then decremented by
one. When the relevant entry (ore relevant request counter)
reaches zero, the system knows that all DMA transfers for
that task have been completed.

[0919] Therefore, according to one embodiment of the
invention, during normal task execution, there is a possibil-
ity that more than one DMA transfer is initiated. Each one
of them could finish its data transfer at any given time,
perhaps not in the order in which they were initiated.
Typically it is preferable to trigger a valid request only after
all DMA transfers from all the different DMA channels
within a task have finished. In order to implement this
requirement each doorbell task register has its own request
counter.

[0920] The request counter is incremented every time it
gets an increment counter indication. The increment counter
indication is an option in the network processor DMA
commands (this is the NAbit). Every time a DMA command
is issued and NA bit is cleared, the counter is incremented
by 1.

[0921] When the DMA controller or peripheral sends its
acknowledgement back to the doorbell by writing to the
DMA bit in the request register, the counter is decremented
by 1. When the counter reaches zero and a valid YIELD was
executed by the network processor, the DMA bit in the
doorbell register will be set. If the mdma bit is also set, a task
switch request will be issued.

[0922] In accordance with one embodiment of the present
invention, a communications processor implemented as on
at least one ring network is provided. The communications
processor comprises a plurality of processors comprising
ring members on the at least one ring network, a plurality of
DMA controllers on the at least one ring network, the DMA
controllers controlling servicing of DMA requests by the
plurality of processors, and a plurality of DMA agents
coupled to the plurality of processors. Furthermore, each
DMA agent being part of a ring member including a pro-
cessor, wherein each DMA agent is adapted to issue an
indicator to a request counter coupled to the DMA agent for
each DMA request issued by the DMA agent to a DMA
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controller, thereby allowing each DMA agent to maintain a
count of the outstanding DMA requests that have been
issued on behalf of the processor associated with the DMA
agent. In one embodiment, the request counter maintains a
separate count for each task being executed by the processor,
wherein the request counter is contained in a doorbell
register supporting up to 64 tasks.

[0923] Upon satisfaction of the DMA request by a target
DMA controller, the target DMA controller can be adapted
to issue a response that causes the request counter to
decrement the count by one. In this case, the DMA requests
issued by the DMA agent to the DMA controller and the
response issued by the target DMA controller can be trans-
mitted as messages on the at least one ring network. Also,
upon the counter returning to zero the processor can be
enabled to switch to other tasks because all DMA requests
for a given task have been satisfied. In this case a new DMA
request for a different task can be deferred until the counter
has returned to zero for the given task.

[0924] In accordance with another embodiment of the
present invention, a method of controlling access to DMA
controllers in a multi-tasking communications processor
implemented as on at least one ring network is provided. The
method comprises issuing DMA requests to a target DMA
controller, maintaining a count of DMA requests on a
per-task basis, and issuing an acknowledgement that a DMA
request has been satisfied by the target DMA controller. The
method further comprises reducing the count based on the
acknowledgement and enabling a processor responsible for
issuing the DMA requests to perform new activity when the
count has returned to zero. In one embodiment, the DMA
requests are issued as messages on the at least one ring
network. Similarly, the acknowledgement can be issued as a
message on the at least one ring network.

[0925] Auto Set

[0926] In order to increase performance (e.g., to eliminate
the need to set the default mask at the end of every task), the
auto set functionality is defined. When the aset (auto set) bit
is set, the mask bits will be set to their default value after the
desired request has occurred without triggering a request to
the network processor and a task switch. The auto set bit can
be written by the network processor using the agent inter-
face, or by using the DMA command (this is one of the
options of the DMA command).

[0927] The default mask is: the peripheral request mask bit
(mpreq) is set and all the other mask bits are cleared (see
Table 28).

[0928] Task Priority Control

[0929] 1t is desirable to have the ability to control task
priority level in order to influence task scheduling. The
doorbell module supports this requirement in two ways. The
first way is software control using the urg bit in the doorbell
task register (not the task SPR). Each doorbell task has an
urgent priority bit in its task register (urg). When this bit is
set the task becomes urgent and all of its requests are
considered as urgent requests. The urgent bit remains set as
long as it is not cleared by the network processor.

[0930] A second way to control the request priority level
is by sending messages to the doorbell with the urgent status
indicating the request priority level. If the overwrite current
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status is also set then the request priority status bit in the
doorbell is also updated. If the task urgent status bit is set the
task requests are also considered urgent. This bit is mainly
controlled by hardware.

[0931] It should also be noted that the task priority is
reflected in the network processor status register.

[0932] Doorbell Operational Scenarios
[0933] Example A—Regular Serial Request:

[0934] (1) A serial sends a message with the destination
address of its task requests register in the doorbell register
file. The data part of the message specifies which bit to set.

[0935] (2) If the corresponding mask bit for this task is set
(this is the default mask), then a valid request is sent to the
doorbell priority logic.

[0936] (3) When this request becomes the highest priority
pending request, it can trigger the network processor task
switch.

[0937] (4) The doorbell samples the task number of high-
est priority pending request every time a yield is executed.
If there are no pending tasks the doorbell waits until the first
time there is a pending task (except if the next task is the
current task, in which case the network processor waits until
the yield indication, because there will be no task switch),
and then samples the next task ID.

[0938] (5) After the next task ID is sampled by the network
processor, the network processor performs the prefetch of
the next task registers.

[0939] (6) The next task ID becomes current task ID.

[0940] (7) The doorbell logic clears the request bit and the
mask register of the task which caused the task switch.

[0941] (8) The doorbell calculates a new next task ID.
[0942] Example B—DMA Request:

[0943] The handling of a DMA request is very similar to
the handling of a serial request. The only difference is the
process of setting the DMA request and the mask bits. At the
time DMA command is issued there is no information as to
which request mask bit should be set. The doorbell logic will
get this information from the DMA agent. This will be done
using the DMA context table and a special option in the
Network processor DMA command (the NA bit in the DMA
command). When the DMA request is registered with the
DMA agent, the DMA agent will set the DMA mask bit in
the doorbell register. The DMA agent will also tell the DMA
controller which request bit it should send the acknowledge-
ment when the DMA transfer is finished, in order to decre-
ment the request counter. When the counter reaches zero and
if the appropriate mask bit is set, a valid task switch request
will be issued to the doorbell logic.

[0944] Example C—DMA Request with Auto Set:

[0945] When the auto set bit is set, the doorbell logic will
set the mask to the default mask value after the current task
is finished without asserting a request for task switching.
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[0946] Software/Hardware Restrictions

[0947] According to one embodiment of the invention, the
following restriction is imposed: Only eight pending DMA
requests (DMA requests that were issued by the DMA agent
for which acknowledgement has not reached the doorbell)
per task are handled by the doorbell.

[0948] Network Processor Debug Module

[0949] According to one embodiment of the invention, the
network processor compound includes a debug module. The
debug module supports various breakpoints and enables
program code patching. The debug module can be pro-
grammed through the ring interface. The debug module
contains two breakpoint channels and eight patch channels.
Each one of the patch channels can be configured to be used
as a patch channel or as an additional program address
breakpoint channel. A single step program trace is sup-
ported.

[0950] A Breakpoint Event and a Patch Event

[0951] The network processor core supports two kinds of
program breaks: a breakpoint and a patch. A breakpoint
event causes the program flow to jump to a program location
pointed by a given vector and to enter the trap mode of
execution by setting the trap mode bit located in the network
processor task SPR. When in trap mode, no further break-
point will be accepted. The trap mode bit will be cleared by
executing an RFT (Return From Trap) instruction or by
writing a zero to the trap mode bit. When the trap bit is
cleared, the network processor returns to the normal execu-
tion mode where further breakpoints are accepted. A patch
event causes the program flow to jump to a program location
pointed by a given vector. In a patch event the trap mode bit
will not be set, thus remaining in the normal execution
mode. A patch event is useful for program patching of code
written in ROM.

[0952] Patch Channels

[0953] According to one embodiment, there are eight
patch channels. Each of the patch channels can be config-
ured to operate as a patch channel or as an additional
program address breakpoint channel. If a patch channel is
enabled and is configured as a patch, a patch event will occur
whenever there is a fetch from a program location equal to
the catch address (discussed below). If a patch channel is
enabled and is configured as a break, a breakpoint event will
occur whenever there is a fetch from a program location
equal to the catch address. Each one of the patch channels
will cause the network processor program to jump to a
different vector location according to a vector table (sce the
discussion on the vector table and Table 37 below).

[0954] Each of the patch channels includes a patch register
as shown in Table 31.
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TABLE 31
111111
1654321098765 43210

patch 0 [ b/p catch address
patch 1 b/p catch address
patch 2 b/p catch address
patch 3 b/p catch address
patch 4 b/p catch address
patch 5 b/p catch address
patch 6 b/p catch address
patch 7 b/p catch address

[0955] Patch Register. This is a 32 bit read/write register
(through the ring). This register is cleared by a hardware
reset:

[0956] Bits 15:0—Catch Address: This is the 16 bit pro-
gram address which causes a patch event or a breakpoint
event.

[0957] Bit 16—Break or Patch (B/P): When the B/P bit is
cleared, the patch channel operates as a patch channel. When
the B/P is set, the patch channel operates as an additional
program address breakpoint channel.

[0958] Bit 17—EN: This is the channel enable bit. When
EN is set, the channel is enabled. When EN is cleared, the
channel is disabled.

[0959] Bits 31-18—reserved. These bits are reserved.
Reserved bits are read as zero.

[0960] Address Breakpoint Channels

[0961] According to one approach, the debug unit includes
two address breakpoint channels. Address breakpoint chan-
nels can be configured to cause a breakpoint when there is
a program or data memory access to specific locations. Each
of the address breakpoint channels is configured by its
address register and by the address breakpoint control reg-
ister.

[0962] Address Registers. Each of the two address break-
point channels include an Address Register. See Table 32
and Table 33, which show the channel 0 address register and
the channel 1 address register, respectively. These are 32 bit
read/write registers which are cleared by a hardware reset.
Bits 15:0 hold the break address and bits 31:16 hold the
break mask. The break address is the program location at
which cause a breakpoint event. A breakpoint event occurs
only if the address breakpoint is enabled and there is a match
between the memory address accessed and the break
address. The break mask is used to specify what address bits
to compare. For example, if all the mask bits are set then the
address comparison will be done on all address bits. If, for
example, mask bit 0 is cleared and all the rest are set then
the comparison will riot include bit O of the address. This
way, an address breakpoint can be generated not only on a
specific address but also on a window range of addresses.
Table 34 shows the address breakpoint control register.

TABLE 32

33222222222211111111119876543210
1098765432109876543210
[ break mask[15:0] | break address[15:0] |

[0963]

TABLE 33
33222222222211111111119876543210
1098765432109876543210
| break mask[15:0] | break address[15:0] |

[0964]

TABLE 34

3322222222221111111111987654 32 1 0
1098765432109876543210

[0965] Address Breakpoint Control Register. The address
breakpoint control register is a 32 bit read/write register.
This register is used to configure the operation of each one
of the address breakpoint channels.

[0966] Bits 1.0—MODEO. These two bits specify for
channel 0 on which event to cause an address breakpoint as
specified in Table 35. Table 35 illustrates the Address Mode
(AMODE) corresponding to bits 1:0.

mode]]" Imode!

=]

TABLE 35
Mode Breakpoint On
00 Program Fetch
01 Data Read
10 Data Write
11 Data Read or Write

[0967] Bit 2—Enable 0 (ENO): When ENO is set, address
breakpoint channel O is enabled and can cause a breakpoint
event. When this bit is cleared, address breakpoint channel
0 is disabled.

[0968] Bits 4:3—MODEI1: These two bits specify for
channel 1 on which event to cause an address breakpoint as
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specified in Table 35. Bit 5—FEnable 1 (EN1): When EN1 is
set, address breakpoint channel 1 is enabled and can cause
a breakpoint event. When this bit is cleared, address break-
point channel 1 is disabled.

[0969] Debug Control Register

[0970] The Debug Control Register is a 32 bit read/write
register. This register is cleared by a hardware reset. Table 36
illustrates the debug control register according to one
embodiment of the invention.

TABLE 36

33222222222211111111119876543210
1098765432109876543210

t EEEEEE ele|t [t kF TID vba
r 13

[0971] Bits 10:0—Vector Base Address (VBA): The is the
Vector Base Address. The VBA points to the starting loca-
tion in memory of the vector table. The vector table is a 32
word table explained further below.

=)
- o B

[0972] Bits 16:11—Task ID (TID): The TID is the task ID
on which to cause or not to cause a breakpoint. It is used by
the task breakpoint and can be used by the address break-
points as explained by the following control bits.

[0973] Bit 19—TAND: When TAND is set, then an
address breakpoint will occur only if there is both an address
match and the current task ID is equal to the TID. Note:
When a patch channel is configured to operate as a program
address breakpoint channel, it has the same rules as the
dedicated address channels and the TAND is treated the
same.

[0974] Bit 20—TNOT: When TNOT is set, then an
address breakpoint will occur only if there is an address
match and the current task ID is different from the TID.
Note: When a patch channel is configured to operate as a
program address breakpoint channel, it has the same rules as
the dedicated address channels and the TNOT is treated the
same.

[0975] Bit 21—Enable Task Breakpoint (ENTB): This bit
enables the task ID breakpoint. When ENTB is set, a task
switch to a task ID which is equal to TID will cause a
breakpoint event. When this bit is cleared, the task ID
breakpoint is disabled. When setting the ENTB bit, the
current task ID is compared to the TID and. if equal, there
will be a breakpoint. Further task ID breakpoints will occur
only upon switching to a new task which is equal to the TID.
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[0976] Bit 22—Enable Yield Breakpoint (ENYB): This bit
enables the yield breakpoint. When ENYB is set, any yield
(task switch) will cause a breakpoint event. When this bit is
cleared, the yield breakpoint is disabled.

[0977] Bit 37—TRACE: When the TRACE bit is set, a
breakpoint will occur on every new instruction execution,
thus allowing a single step instruction trace. When the
TRACE bit is cleared, trace is disabled.

[0978] The Vector Table

[0979] In case of a breakpoint event or a patch event, the
debug module supplies the network processor core with a
vector for where to jump. The vector table is illustrated in
Table 37. Each event has a different vector that is calculated
by taking the 11 bit VBA and concatenating to it a 5 bit
offset. For example, assume that the 11 bit VBA is all zeros.
In this case, the breakpoint vector will point to program
address $2, patch 0 will point to $4, and so on. The
increments are of 2 instruction spaces for each of the events.

TABLE 37
Address For
VBA + $0 Reserved for reset
VBA + $2 Breakpoint
VBA + $4 Patch 0
VBA + $6 Patch 1
VBA + $8 Patch 2
VBA + $A Patch 3
VBA + $C Patch 4
VBA + $E Patch 5
VBA + $10 Patch 6
VBA + $12 Patch 7
VBA + $14 - VBA + $1F Reserved

[0980] Breakpoint Status Bits

[0981] According to one aspect of the invention, special
status bits located in the processor Task SPR for reflecting
the cause of the breakpoint event. These bits are the PAB,
DAB, TB and YB bits. The PAB bit is for a program address
breakpoint. The DAB bit is for a data address breakpoint.
The TB bit is for a task breakpoint. The YB bit is for a yield
breakpoint. These bits are set whenever the relevant break-
point occurs. These bits are cleared by the RFT instruction.

[0982] Agent Interface

[0983] According to one aspect of the invention, the agent
interface connects the processor to all of the agents in the
compound. This interface is used by the network processor
to read and write data.

[0984] Signal Description

[0985] Table 38 provides the agent interface signal list.

TABLE 38
direction (relative
signal name description to Vobla) remarks
V_AGENT_RA[31:0] The content of Output

register RA from
the AGENT opcode.
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TABLE 38-continued

direction (relative

signal name description to Vobla) remarks
V_AGENT_RAP[31:0] The content of Output
register RAP. RAP
is the RA+1
register.
V_AGENT_RB[31:0] The content of Output May be
register RB from the reduced to 16
AGENT opcode, or bits.

V_AGENT_ID[4:0]
V_AGENT__OPTIONS[9:0]
[module__prefix]_read_ DATA[63:0]
V_AGENT_WR

V_AGENT_RD

V_AGENT_DOUBLE

a 8 bit immediate

value.

Agent ID. The ID of Output
the selected agent.

Various options Output
used by the agents.

Data from the Input
agents.

Write to agent Output
indication.

Read from agent Output
indication.

Load double from  Output
agent.

[0986] Agent ID Allocation

[0987] Table 39 below provides the agent ID allocation.
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[0988] Agent Register Mapping

[0989] Table 40 illustrates agent register mapping.

TABLE 39 TABLE 40
Agent Name Register Name Register Address
Agent Name ID Number CRC cre residue 0
bip16__residue 1
DMA agent 00000-0011 Doorbell ¥gﬁ§:%1 2
CRC 00100 Timer timer__control 0
Multireader 01000 time_stamp 1
Doorbell 01001
Timer 01010 [0990] Network Processor Compound Memory Map
message sender 01011

[0991] Table 41 illustrates the network processor com-

pound memory map according to an embodiment of the
invention.

TABLE 41

Name

Address

dma__agent__context__tableO
dma__agent__context__tablel
dma__agent__context__table2

dma_ agent_ context_ table3
dma__token__registerO
dma__token__registerl
dma__token__register2

dma_ token_ register3
dma__address__error__mask__registerQ
dma__address__error__mask_registerl
dma__address__error__mask__register2
dma_ address_ error__mask_ register3
channel0__address__register
channell_address__register

address_ breakpoint_ control_register
debug__control_register
debug_petch__register0

debug petch_ registerl
debug_petch__register2
debug_petch__register3

Vobla__compound__register_base + $0
Vobla__compound__register_base + $2
Vobla__compound__register_base + $4
Vobla__compound_ register base + $F
Vobla__compound__register_base + $10
Vobla__compound__register_base + $12
Vobla__compound__register _base + $14
Vobla__compound_ register base + $1F
Vobla__compound__register_base + $20
Vobla__compound__register_base + $22
Vobla__compound__register_base + $24
Vobla__compound_ register base + $2F
Vobla__compound__register_base+$30
Vobla__compound__register _base+$31
Vobla__compound_ register base+$38
Vobla__compound__register_base+$39
Vobla__compound__register_base+$40
Vobla__compound_ register base+$41
Vobla__compound__register _base+$42
Vobla__compound__register _base+$43
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TABLE 41-continued
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Name Address

debug_petch__register4
debug petch_ registerS
debug_petch__register6
debug_petch__register7
doorbell__request__register[63:0]

Vobla__compound__register_base+$44
Vobla__compound_ registerbase+$45
Vobla__compound__register_base+$46
Vobla__compound__register_base+$47
Vobla__compound__register_base +$80-

Vobla__compound__registerbase +$BF

[0992] Communications Processor Implementing a Ring
Network

[0993] The inventive aspects of the ring network and/or
the network processor, as described above, find particular
benefit when implemented in combination in a high-perfor-
mance communications processor in accordance with the
present invention. The high performance communications
processor (HPCP) of the invention may on occasion be
referred to as the Trajan. As will be evident from the
following written description, the HPCP may be imple-
mented in various fashions without departing from the true
spirit and scope of the invention. Just by way of example, the
number of DMA modules, the characteristics of the control
processor, the number of interfaces supported to ATM, the

[0995] In sum, the goal of the HPCP is to provide a
PHY-neutral communications processor that can be readily
integrated with appropriate PHY functionality (e.g., ADSL
PHY, SHDSL PHY, xDL PHY, etc.) to support a myriad of
applications on a variety of network platforms based on a
single system on a chip (SOC) building block.

[0996] According to just one embodiment, the HPCP (e.g.,
the so-called Trajan I) would have the baseline specifications
set forth in Table 42 below. Table 42 is offered solely for
purposes of example and the invention is in no way limited
to this embodiment. In fact, it is anticipated that continuing
advances in the processor art will result in continually
changing parameters.

TABLE 42
Router/Bridge
Clock Throughput
Speed Network Expansion Hardware ATM-Eth  Shaped/Unshaped
Processors  (MHz) Interfaces Interfaces  Accelerators (kpps) ATM throughput
2 x NP, 200 2 x Utopia External Cell/Packet 400 2 x OC-3
1 x MIPS 266 (8/16 bit); Peripheral lookup;
MMU 4 x Ethernet  Bus (EPB) 3 x DMA IO
MII/RMIT
(10/100)
256 time slots
TDM I/f

number of flexible packet processors, may vary. Generally,
the flexible packet processor of the present invention may on
occasion be referred to herein as the Vobla.

[0994] Generally, the HPCP should be capable of support-
ing a variety of applications in a range of markets. For
example, the HPCP may be used for Customer Premises
Equipment (CPE) applications, such as for Digital Sub-
scriber Line (DSL) services. DSL, sometimes generically
referred to as XDSL, refers to the family of digital lines that
carriers may provide, such as ADSL, HDSL, SDSL, and so
forth. These technologies are all well understood in the art.
DSL CPE applications for the HPCP may include bridges for
Ethernet and USB; DSL-Ethernet routers; DSL-home wire-
less routers; Voice Integrated Access Devices (IADs); and
service gateways. The HPCP may also be used for consumer
networking equipment, such as home routers (Ethernet
and/or wireless) and networked appliances (e.g., Universal
Plug *n Play [UPnP] devices). The HPCP may also be used
for access network equipment applications, line card appli-
cations, and voice processing applications (e.g., voice gate-
ways). Generally, the HPCP will find beneficial application
in any voice or communication processing application.

[0997] The communications architecture employed by the
HPCP could be a conventional bus-based architecture, a
switch fabric type architecture, star-based architecture, or
other architecture known in the art. Preferably, the HPCP
employs the rings architecture and message based protocol
of the present invention, discussed above, whereby each
module of the HPCP occupies a position on a ring, as
discussed below.

[0998] In accordance with one embodiment of the present
invention, a communications processing system utilizing a
ring network architecture is provided. The communications
processing system comprises a plurality of ring members
connected in point-in-point fashion along the ring network,
a transaction based connectivity for communicating at least
one message among at least a portion of the ring members,
wherein the message includes information indicative of a
destination ring member for which the message is intended
and the message is passed around the ring network until
reaching the destination ring member, and wherein the
destination ring member is adapted to receive the message
and remove it from the ring network. The communication
processing system, in one embodiment, is implemented on a
single chip, while in other embodiments the system is
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implemented on more than one chip. The information
indicative of a destination ring member can comprises a ring
member identifier and/or an address corresponding to the
destination ring member. In one embodiment, the ring
network includes a bridge across the ring network that
allows messages to travel from one side to another side
without passing through intermediate ring members.

[0999] The transaction based connectivity of the system
may provide for messages to be passed around the ring
network according to a clocking scheme. In one implemen-
tation, the clocking scheme provides for the messages to
travel one ring member per clock cycle. Similarly, the
transaction based connectivity can provide for a plurality of
messages to travel the ring network, each message traveling
one ring member per clock cycle unless a message is
consumed at a given ring member. Likewise, the connec-
tivity may provide for messages comprising transactions to
travel the ring network, and wherein the messages comprise
one or more of a command, an instruction, a type, an
address, and data.

[1000] In one embodiment, the message arriving at a
non-destination ring member will be passed to the next ring
member on the ring network. Alternatively, the message
arriving at a destination ring member will be consumed by
the destination ring member. In this case, the message can be
removed from the ring network while being consumed so
that a slot on the ring network is made available. The
available slot may enable a downstream ring member to
insert a message in the slot.

[1001] Furthermore, in one embodiment, each ring mem-
ber receiving a message is adapted to check a destination
address portion of the message to determine if the message
is intended for that ring member, and if the destination
address portion corresponds to that ring member, the ring
member takes the message off of the ring network and
consumes the message.

[1002] In one embodiment, the at least one message com-
prises a message that causes ring members to assign address
space during configuration of the ring network. This mes-
sage may comprise an enumeration message. The assign-
ment of address space during configuration allows a pro-
cessing ring member to subsequently infer the configuration
of the ring network.

[1003] In accordance with another embodiment of the
present invention, a communications processing system
utilizing a ring network architecture is provided. The com-
munications processing system comprises a plurality of ring
members having unique addresses and connected in a point-
in-point fashion along the ring network, a transaction based
connectivity for communicating at least one message among
at least a portion of the ring members, wherein the message
includes a destination ring member address for which the
message is intended and the message is passed around the
ring network until reaching the destination ring member, and
where the destination ring member being adapted to receive
the message and remove it from the ring network. The
communication processing system, in one embodiment, is
implemented on a single chip, while in other embodiments
the system is implemented on more than one chip. In one
embodiment, the ring network includes a bridge across the
ring network that allows messages to travel from one side to
another side without passing through intermediate ring
members.
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[1004] The transaction based connectivity of the system
may provide for messages to be passed around the ring
network according to a clocking scheme. In one implemen-
tation, the clocking scheme provides for the messages to
travel one ring member per clock cycle. Similarly, the
transaction based connectivity can provide for a plurality of
messages to travel the ring network, each message traveling
one ring member per clock cycle unless a message is
consumed at a given ring member. Likewise, the connec-
tivity may provide for messages comprising transactions to
travel the ring network, and wherein the messages comprise
one or more of a command, an instruction, a type, an
address, and data. The connective also may provide for
messages comprising transactions to travel the ring network,
and wherein the messages comprise one or more of a
command, an instruction, a type, an address, and data. The
destination ring member address can comprise a starting
address for the destination ring member and/or an address
within the address space assigned for the destination ring
member.

[1005] In one embodiment, the message arriving at a
non-destination ring member will be passed to the next ring
member on the ring network or consumed by the destination
ring member. In one embodiment, each ring member receiv-
ing a message checks the destination ring member address of
the message to determine if the message is intended for that
ring member, and if the destination ring member address
corresponds to that ring member, the ring member takes the
message off of the ring network and consumes the message.
If consumed, the message can be removed from the ring
network while being consumed so that a slot on the ring
network is made available. The available slot may enable a
downstream ring member to insert a message in the slot.

[1006] In one embodiment, the at least one message com-
prises a message that causes ring members to assign address
space during configuration of the ring network. This mes-
sage may comprise an enumeration message. The assign-
ment of address space during configuration allows a pro-
cessing ring member to subsequently infer the configuration
of the ring network.

[1007] In accordance with yet another embodiment of the
present invention, a communications processing system
utilizing a ring network is provided. The system comprises
a plurality of ring members having unique addresses and
communicatively connected in a point-in-point fashion
along the ring network and a transaction based connectivity
for communicating at least one message among at least a
portion of the ring members, wherein the message is travels
from a first ring member to a second ring member based at
least in part on an address assigned to the second ring
member, the second ring member being the destination ring
member for which the message is intended. The message is
passed along the ring network from the first ring member to
the second ring member by one or more other ring members
each having an address intermediate the addresses of the first
and second ring members, wherein the message is received
and removed from the ring network upon receipt by the
second ring member. The message can include information
indicative of the address of second ring member. The
communication processing system, in one embodiment, is
implemented on a single chip, while in other embodiments
the system is implemented on more than one chip. In one
embodiment, the ring network includes a bridge across the
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ring network that allows messages to travel from one side to
another side without passing through intermediate ring
members.

[1008] In one embodiment, the transaction based connec-
tivity provides for messages to be passed around the ring
network according to a clocking scheme. The clocking
scheme, in one implementation, provides for the messages to
travel one ring member per clock cycle. Similarly, the
transaction based connectivity can provide for a plurality of
messages to travel the ring network, each message traveling
one ring member per clock cycle unless a message is
consumed at a given ring member. The message arriving at
a non-destination ring member can be passed to the next ring
member on the ring network or consumed by the destination
ring member. In one embodiment, each ring member receiv-
ing a message checks a destination address portion of the
message to determine if the message is intended for that ring
member, and if the destination address portion corresponds
to that ring member, the ring member takes the message off
of the ring network and consumes the message. If consumed,
the message can be removed from the ring network while
being consumed so that a slot on the ring network is made
available, where the available slot enables a downstream
ring member to insert a message in the slot. The connectivity
also may provide for messages comprising transactions to
travel the ring network, and wherein the messages comprise
one or more of a command, an instruction, a type, an
address, and data.

[1009] Inone embodiment, the at least one message com-
prises a message that causes ring members to assign address
space during configuration of the ring network. This mes-
sage may comprise an enumeration message. The assign-
ment of address space during configuration allows a pro-
cessing ring member to subsequently infer the configuration
of the ring network.

[1010] In accordance with an additional embodiment of
the present invention a communications processor imple-
mented on a chip. The communications processor comprises
a network processor including means for processing a plu-
rality of protocols including ATM, frame relay, Ethernet, and
IP, said means being programmable using a set of library
commands to process additional protocols, and a protocol
processor for controlling the network processor, wherein the
protocol processor performs control plane processing and
the network processor performs data plane processing. Fur-
ther, the network processor and the protocol processor are
ring members on at least one ring network, and wherein the
communications processor further comprises a plurality of
other ring members on the at least one ring network. The
network processor, in one embodiment, includes a plurality
of compounds that share a single ring interface to the ring
network. The communications processor can be PHY neu-
tral.

[1011] The at least one ring network, in one embodiment,
comprises multiple ring networks including a protocol pro-
cessor ring network and a network processor ring network,
where the network processor ring network can include a first
network processor for transmitting packets and a second
network processor for receiving packets.

[1012] In another embodiment, the network processor
includes ultrafast task switching using active registers for
current tasks and shadow registers for preloading next tasks.
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The communications processor may further comprise mul-
tiple DMA controllers for access to external memories.

[1013] The protocol processor, in one embodiment, is
adapted to perform the following: signaling protocols; pro-
tocol management; exception handling; and system configu-
ration and control. Similarly, the network processor can be
adapted to perform the following: per-packet processing;
packet forwarding; packet classification; quality-of-service
handling; and packet reformatting.

[1014] The control path protocol support can be provided
by the protocol processor and the data path protocol support
can be provided by the network processor. Furthermore, the
network processor can be adapted to perform zero overhead
task switching.

[1015] In one embodiment, the network processor
includes compound modules operating as parallel engines.
The communications processor can be implemented to pro-
vide an enterprise integrated access device (EIAD), a multi-
tenant unit (MTU) or remote terminal unit (RTU), a media
gateway, and/or a voice gateway.

[1016] Exemplary Architectures of the HPCP

[1017] According to one embodiment, the HPCP is imple-
mented using the rings architecture as illustrated in FIG. 61.
This rings-type architecture is implemented on a semicon-
ductor (e.g., on a chip) and is unlike token-ring arrange-
ments in networks. According to FIG. 61, the HPCP SOC
620 employs four rings 622-628 that are connected by three
inter-ring bridges 630-634. These bridges, also called sea
bridges because they interconnect two disparate rings, have
logic such that messages will traverse from the near side ring
across the bridge if addressed to the far side ring. If
messages are addressed to an address contained within the
near side ring, the message is forwarded along the ring as in
the usual case.

[1018] As illustrated, the HPCP 620 generally divides the
modules along the rings according to functionality. There is
a receiver (Rx) ring 628 for receiving data transmitted from
outside the HPCP chip. There is a transmitter (Tx) ring 626
for transmitting data to go outside the HPCP chip. There is
a main ring or control ring (PP Ring) 622 which includes the
PP (packet processor) 636, which can be considered the host
or CPU (anchor) of the HPCP. There is a packet processor
ring 624 which includes several packet processors (i.e., the
VCO 638 and VC1 640 network processors) and DMAs 642,
644 for packet processing of the various protocols that are
handled by the HPCP 620. In order to reduce latency in
messaging, the packet processor ring 624 includes several
intra-ring bridges 646, 648, also called land bridges because
they provide a bridge-type connection within a single ring.

[1019] In certain of the figures that follow, the illustration
of the HPCP is not graphically depicted as a rings-type
arrangement. However, unless stated otherwise, the arrange-
ments correspond to a rings-type arrangement and logical
path.

[1020] Generally, the improvement in the HPCP over
other communications processors can be tied to, individually
and in combination, the use of (1) a flexible packet processor
with ultrafast task-switching, and (2) the any-to-any mesh
internal rings-type communications architecture. This
ensures architecture scalability for higher speed ports or
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higher port density. Additionally, the HPCP provides (3) a
design for low system cost. The usage of low cost memories
(DDR-SDRAM) and the unique streamline memory archi-
tecture eliminates the need for high speed SRAM or external
lookup engines (CAM). The primary beneficiaries of the
HPCP are relatively high-end applications for the CPE and
access markets.

[1021] Preferably, the HPCP supports an about 1.2 Gbps
(simplex serial rate) rate for L2/L.3 wire speed IP/ATM/
TDM protocol processing. As indicated above, the HPCP
platform includes a core flexible packet processor (RISC
[Reduced Instruction Set Computer] network processor
technology) and an SOC rings-type interconnect technology.
This approach provides a high performance programmable
networking platform that permits rapid introduction of new
features, new standards, and other enhancements. The
robustness of the HPCP allows it to be shared among
multiple product lines. According to one embodiment, the
HPCP is designed as a 0.18 micron, 520 HS-PBGA (Heat
Spread Plastic Ball Grid Array) chip.

[1022] FIG. 62 is a schematic diagram of an embodiment
of the HPCP 620, sometimes referred to herein as the Trajan.
According to this embodiment, the HPCP 620 employs a
rings-type communication architecture, which is indicated
on FIG. 62 as the Fabric on a Chip 670. The packet
processor 672 (also referred to as control packet processor,
MIPS, CPU, or simply, the host) functions as the control
processor for the HPCP 620. The packet processor 672 can
be implemented using any suitable processor. Preferably, the
packet processor 672 has the following characteristics: 266
MHz (preferably, MIPS) processor; MIPS-I Instruction Set;
16K 1, 16K D cache; supports Write back and Write forward
or through; has cache coherency; supports Direct Map; and
has a MMU 64 TLBs (Translation Look-aside Buffers).
Other suitable alternatives to a MIPS processor could be
employed. The HPCP embodiment of FIG. 62 employs two
network processors 674, 676 (Voblas) for packet processing.
Preferably, the network processors 674, 676 are designed in
accordance with the flexible packet processor discussed
elsewhere herein. Each of the network processors 674, 676
preferably communicates with an operatively connected
multi-access SRAM, which preferably has 72 Kbytes of
memory.

[1023] The HPCP embodiment of FIG. 62 employs three
DMA modules, DMA 678, DMA 680, and DMA 682. There
also are two DDR-SDRAM controllers 684, 686, cach of
which is capable of interfacing to a DDR-SDRAM 688, 690
running at 133/166/200 MHz. Each controller supports a 32
bit data bus. The controller 684, 686 supports two masters
(DMA and PP) and arbiters between them. An efficient
packing algorithm is used to optimize memory transactions.
Coherency is reserved between the two masters and READ
and WRITE operations. DMA 678 and DMA 680 can master
the two memory controllers accordingly. Each can arbitrate
for the memory bus and is capable of bursts up to 64 bytes
on a transaction.

[1024] The EPB (External Peripheral Bus) interface (I/f)
692 is used to interface to a boot EPROM, Security Accel-
erators and a DSP (collectively figure element 694). The
EPB bus runs at 80 MHz with asynchronous address/data
protocol. The EPB 692 also has five (5) dedicated Chip
Selects (CS) and a special 32 bit CS bus transaction.
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[1025] The HPCP of FIG. 62 includes a number of periph-
eral modules, including TDM 696, 4xEthernet (MII and
RMII) 698, a first ATM Utopia Level 2 700, a second ATM
Utopia Level 2 702, a 3x MFSU 704, and an 12C/SPI SW
base 706.

[1026] The TDM module 696 may be used to support time
division multiplexing connectivity, such as for T1/E1. Pref-
erably, the TDM module 696 supports the following: up to
256 time slots; HDLC (high-level data link control) and a
transparent mode. The TDM module can also interface
high-speed TDM busses (backplane) such as H-MVIP,
SCSA, H110, and ST-BUS. The 4x Ethernet MII/RMII
module 698 preferably supports 10/100 Ethernet connectiv-
ity. The 3x MFSU module 704 preferably supports high
speed (up to 52 Mbps) HDLC or high-speed UART (Uni-
versal Asynchronous Receiver-Transmitter).

[1027] The HPCP has two ATM interfaces 700, 702 using
Utopia Level 2. Each port can be configured for an 8 bit or
16 bit data path. The ATM port can be configured as master
or as a slave. In a master configuration, one port (subscriber
port) can master up to 124 PHY's and the second port (uplink
or network port) can master up to 15 PHYs. Both ports can
support an Extended Utopia Mode where the ATM cell
length can be extended from 53 bytes up to 64 bytes
programmable.

[1028] Ring Interface on an EPB

[1029] As discussed previously, in at least one embodi-
ment, the HPCP is implemented using a ring architecture and
message protocol as disclosed herein. As illustrated with
reference to FIGS. 63-67 an external interface 720 may be
implemented along with the EBP 692. An external FPGA
722 that sits on EPB busses may play the roll of external ring
keeper, the Anchor can be external the network processor
and on the FPGA. Of course, instead of FPGA it could be
another HPCP. The input’s job is to disable EPB operation
for current transaction, and enable movement of ring data.
This input is driven by either by the FPGA or by second
HPCP. The output’s job is to tell the second HPCP or the
external FPGA who is the ring keeper, that the output data
is for him. Regular EPB customers (like Flash) will look at
the output as additional enable. One advantage of this
arrangement is that a number of pre-existing pins are used
for part-time ring transactions. The speed of ring messaging-
is reasonably high(same speed as of original EPB). The
changes to existing EPB are minimal. The ring side imple-
mentation is exact copy of a bridge plus state machine.

[1030] In the implementation illustrated in FIG. 63, 32
bits of data in/out is used to carry messages. There also is the
potential to use also the address bits, thus increasing the
throughput, but complicating the design. Message_sync 724
is a relatively simple block that takes care of turning 60 (or
92) bits of outgoing message into several (2 . . . 3) trans-
actions on EPB like interface. It also turns incoming data
(from 2 . .. 3 transactions) to messages. On the inside part
message_sync interfaces wit a regular bridge 726. Since
EPB DMA 728 can potentially sit on a busy ring, messag-
e_sync 724 and its bridge 726 can be placed on the less busy
ring.

[1031] The mux 730 takes data either from EPB 692 or
from message_sync 724 depending on the transaction.
Handshake signals basically ask the EPB 692 to give up a
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cycle. And in the other direction EPB 692 acknowledges the
tristate or mux surrender. Using this fact, the chip selects can
be disabled in ring-oriented transactions.

[1032] In order to program the message_sync 724 and
EPB 692 to enable/disable external ring operation, the
hardware can sample a pin during power up reset. First,
hardware reset puts message_sync in disabled mode such
that during Enumeration, it passes on the Enumeration
without attempting to talk to the other chip. The messag-
e_sync 724 assigns to itself space of one address. After
initial Enumeration, PP enables (or not) the message_sync to
work. If message_sync 724 is enabled., second Enumeration
is done. This time message_sync transmits Enumeration
message to the other chip. Then it waits for the message to
circle back to it.

[1033] The HPCP chip requires interfaces to various
devices, which can serve as both slaves and masters (or
both). Some of these devices are: DSPs 732; encryption
engines 734; external buses such as PCI; external memories;
and other HPCP chips. Some of these devices may directly
connect to the EPB port, on the chip. However, in order to
use these devices, a complex handshake is often required
which would force the PP to assist in each transfer. In the
case where these devices should initiate a data transfer into
the HPCP, a special mechanism is required, in order to avoid
polling on the EPB port. The interface described is designed
to allow a more robust and efficient connection of such
devices to the chip, and is consistent with the HPCP hard-
ware and software architecture. FIGS. 64-67 describe the
interface, starting from a system view and ending with
detailed block diagrams of the components.

[1034] Operation

[1035] The interface described above implements a ring
interface to external logic, allowing the HPCP 740 to write
out messages, and external devices to generate arbitrary ring
messages in the HPCP 740. The FPGA 742, making the
interface between the HPCP and the external devices 744,
746, serves as shared memory. This memory can be inde-
pendently accessed from both sides. In addition, accesses
from the HPCP 740 can send messages to the external
devices, and accesses from the external devices can generate
messages on the HPCP ring. The DPR (dual port RAM) 780
is seen as both random access memory (RAM) or as a FIFO,
depending on the access address. Two FIFOs 748, 750 are
implemented. One for receiving ring messages from the
HPCP and one for sending messages to the HPCP.

[1036] Message Generation by the HPCP

[1037] When the ring interface recognizes a message to
the external interface, a write burst is issued to the memory
controller 760. This write has a fixed length of 128 bits. The
write is always targeted to the same address, being the write
FIFO address in the external device. The external device
indicates to the HPCP 740 when data is being read from the
FIFO. The HPCP 740 knows in advance the size of the write
FIFO, and therefore knows when it is possible to issue more
write commands to the memory controller. When it is no
longer possible to issue writes, and all write buffers on the
way are full, the OK signal to the ring interface is de-
asserted.
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[1038] Message Generation by the External Device

[1039] The FIFO mapping is used to queue messages to be
read by the HPCP. The FIFO memory is 128 bits wide (not
all bits have to be implemented in hardware). Each ring
message occupies four 32-bit data entries, to be read be the
HPCP. When the message is complete (all 128 bits written)
the SYNC output to the HPCP is activated, indicating that a
message has been written to the message queue. This allows
the HPCP to keep track of the number of messages written,
and to read the appropriate number of messages.

[1040] The HPCP counts the number of messages entered
into the queue in a request counter, and the number of read
messages in a service counter. When there are pending
messages (the request counter is greater than the service
counter) and the appropriate read port is free, the HPCP
issues a 128-bit read. The implementation of this read
request depends on the port type. Ports that support burst
transfers are issued one 128-bit burst read. Ports that support
only 32-bit data transfers are issued 4 reads. When the read
request is complete, the service counter is incremented,
indicating that an external message is served.

[1041] The data read from the port is used to generate a
message. When all 128 data bits are received in the message
sender, a message is sent to the ring interface.

[1042]

[1043] The HPCP 740 can write data to special addresses
that cause an interrupt to the external device. These
addresses can either be mapped for interrupts only or
interrupts and data (in the DPR 780).

[1044] General-Purpose Data Transfer

[1045] Besides sending messages from the external device
to the HPCP, this interface serves as a buffered link for
general-purpose data transfer. The DPR can be read and
written by both the HPCP and the external device. When the
HPCP moves data for processing in the external device, it
writes the data to the DPR, and then causes an interrupt in
the external device by writing to an interrupt address.

Interrupts from HPCP to the External Device

[1046] The external device processes the data and returns
it to the DPR. It then generates a message to the HPCP,
indicates it to read back the data from the DPR. Since the
entire DPR can be mapped as a FIFO, the external device
can also write the entire data directly to the NP memory in
the HPCP, and then notify the NP that the data is complete.

[1047] Supporting Multiple External Devices

[1048] One interface can support several external devices.
Many DPR blocks can be implemented in a single FPGA,
letting each of the external devices function independently.
The message queue can either be unified into a single FIFO
with write arbitration, or can be made of several FIFOs
arbitrated during the message reads. Anyway, read or write
arbitration is performed in the FPGA and is transparent to
the HPCP chip.

[1049] Traffic Management

[1050] In one embodiment, traffic that is already on the
ring gets priority. Also, modules may be designed to con-
sume incoming messages without delay—or with well
bounded delay. Futher, a virtual watch dog timer can be
implemented in the PP or one of the network processors. In
this case, the watch dog timer periodically sends a message
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to itself via the ring. If this message is not there by the time
the task is reawakened, indicating that the ring is locked and
in need of a reset.

[1051] Memory Considerations

[1052] Network processor RAM can grow up to, for
example 64 KB. The problem is, however, that this RAM
uses 16 bits of ring addressing space. So with 20 bits of
address there can be approximately 8 network processors in
a reasonable system. Maximum theoretical number of net-
work processors is 16. But space may be needed for other
modules as well. There is no great penalty to extend ring
address space to more than 20 bits and this can be done to
accommodate design necessities, for this example just 20
bits.

[1053] TInside network processor compound there is more
than RAM. There are doorbells, debug, timer and some
more. They all need address space, but much more smaller.
If they are assigned their own address space, the resulting
address space used by network processor compound will be
128k bytes. This is because 65 KB is actually used, but
because the address space is rounded to next power of 2, 65
k become 128 k.

[1054] Another aspect of the present invention is to steal
a little bit of space from RAM on the rings and assign the
low 1 k of bytes of ring address space to all the little
modules. For example, doorbells take 64 entries of address
space (32 bit entries). When work write message arrives for
(vobla_base_address+32) it is routed to doorbells and not to
RAM.

[1055] This effectively protects the lower portion of the
RAM from the ring network. network processor can still
load/store and even fetch from there, because load/store does
not access the Rings.

[1056] FIGS. 68 and 69 illustrate two typical scenarios
for Tx and Rx Ethernet as may be implemented in accor-
dance with the present invention. To summarize the Ethernet
compounds:

[1057] The Rx manager 802 mis adapted to: send regular
request, doorbell, taskid and viscode; header send Ahead—
knows how many bytes, status and where; Multi read request
service, for moving data to network processor RAM; and
know when to switch to urgent request.

[1058] The Tx manager 812 is adapted to: know when to
start transmitting, when to retransmit; when and how to issue
a regular request—doorbell, taskid, viscode; perform free
buffer count send ahead; perform urgent request—Iast buffer
and not last in it; resend doorbell on request, if there are free
entries in fifo—this is used by task that adds frames to
transmit queue; keep RAM status fifo of finished frames—it
sends tx complition status word and place to put it.

[1059] Rx Operation:
[1060] (1) Rx Frame starts incoming.
[1061] (2) It fills one entry (64 bytes) in fifo.

[1062] (3) Header+Status is pushed ahead to network
processor RAM.

[1063] (4) Ring doorbell.
[1064] (5) Network processor switches to service the task.

Oct. 16, 2003

[1065] (6) Network processor examines the header.

[1066] (7) Network processor sets up CRC snooper, espe-
cially the count.

[1067] (8) Network processor sends multi read request
from the rx fifo.it takes 12+4 clocks, so network processor
doesn’t switch out, just polls the crc snooper at the end if
after rewarding whole fifo entry, there are still valid entries,
new doorbell is ringed and new header is sent ahead.

[1068] (9) Network processor issues DMA write request
and yields out.

[1069] (10) DMA agent in network processor builds the
messages to DMA based on the DMA opcode, src registers
data and DMA context registers. This context has the
knowledge of DMA address, token availability, little/big
endian, etc. Part of communication with DMA is also a new
token request.

[1070] (11) when the DMA is done, it sends doorbell to
re-awake the task, to continue the work.

[1071] Tx Operation:

[1072] (1) ask that adds frames to transmit queue, adds a
frame and also sends a message to transmitter fifo if trans-
mitter is not doing anything, ring doorbell of transmit task.

[1073] (2) transmit task is waken up by doorbell

[1074] (3) DMA read issued and network processor
switches out

[1075] (4) when DMA is finished, multi read is issued
from network processor RAM to enet tx

[1076] (5) when fifo entry is full, tx starts transmitting

[1077] (6) tx fifo updates the number of empty fifo entries
in network processor RAM.

[1078] (7) if task detects empty buffers it can fill, it fills
them and retires(8) when fifo entry is empty, the free count
is sent ahead and doorbell is rung.

[1079] (9) if last buffer is half full and it is not last, Enet
fifo requests urgent (10) each time the frame is finished by
Tx, the manager sends status word to circular fifo in RAM.
the manager uses single address plus 2-3 bits counter to
create the address, it also writes the counter value in fixed
location.

[1080] Programming Model for the HPCP

[1081] FIG. 70 illustrates the programming model 830
that may be employed for the HPCP. According to FIG. 70,
the packet processor 832 (PP or control packet processor
[CPP]) operates as the controller for the HPCP, performing
such control plane functions as signaling protocols, protocol
management, handling exceptions (faults), and system con-
trol and configuration. The network processors 834, 836
perform data plane functions such as per-packet handling,
forwarding decisions, packet classification, quality-of-ser-
vice (QoS) handling, queuing, scheduling and packet re-
formatting.

[1082] Data Path Protocol Support for the HPCP

[1083] FIG. 71 illustrates the data path and control path
protocol support 840 provided according to a preferred
embodiment of the HPCP. This data path protocol support is
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provided by the network processor (e.g., flexible packet
processor) engine of the HPCP. Each protocol capability
shown in FIG. 71 is labeled according to its position in the
Open Systems Interface (OSI) layered protocol model. The
legend for FIG. 71 is as follows: (1)=Layer 1; (2)=Layer 2;
(2*)=Layer 2 inter-working; (2.5*)=Layer 2.5 inter-work-
ing; and (3*)=Layer 3 inter-working.

[1084] The boxes in FIG. 71 labeled as (SM) illustrate the
signaling and management provided in order to manage the
data path protocol support according to a preferred embodi-
ment of the HPCP. Preferably, the signaling and manage-
ment operations shown in FIG. 71 correspond to the control
plane operations performed by a CPP such as that shown in
FIG. 63.

[1085] A Packet Processor for the HPCP

[1086] A flexible packet processor that could be employed
in the HPCP typically includes capabilities, such as zero-
overhead switching, not normally present in general purpose
processors. Accordingly, the preferred packet processor pro-
vides the following characteristics:

[1087] nearly zero overhead task switch;

[1088] a Hardware scheduler (next_task_id)—strict
priority scheme;

[1089] support for unlimited number of threads/tasks
(e.g., 32 simultaneous tasks);

[1090] allows connection to multiple external memo-
ries in parallel;

[1091] modular interface to accelerators;
[1092]

[1093] tailored instruction set, with about 60 instruc-
tions for: ALU (Arithmetic Logic Unit), data
manipulation, flow control, load/store, task manage-
ment (yield), agent (Accelerators), SPR (Special
Purpose Register) move, and the like.

compiler friendly;

[1094] FIG. 72 is a block diagram of the packet processor
636 employed in the HPCP 620 (FIG. 61) according to one
embodiment of the invention. The packet processor 636 of
FIG. 72 includes a packet processor core 850 (Vobla core),
an internal memory 852 for programming and data; and a
series of support submodules (compounds) for the packet
processor, such as a core debug 854, a doorbell 856, a CRC
858, timers 860, DMA agent 862, and other agents 864.
There is also an external interface 866 for interfacing to the
fabric. The packet processor core 850 includes a program
sequencer 870 that further includes a sequencer 872, a
decoder 874 and a task switch block 876. There is also a
load/store unit 880, a preload/bump unit 882, a register file
unit 884, an arithmetic logic unit 886, and an agent interface
module 888. A multiplexer 890 is disposed between the
internal memory 852 and the load/store unit 880 and pre-
load/bump unit 882. The packet processor 636 of FIG. 72
includes two source buses and a destination bus in the core,
and an agent bus for interfacing with the agents.

[1095] FIG. 73 illustrates an exemplary processing pipe-
line 900 for a packet processor used in the HPCP according
to an embodiment of the invention. The pipeline 900 of FIG.
73 shows the steps carried out for the execution of each
packet processor. According to FIG. 73, first an instruction
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is fetched. Then the instruction is decoded. The address for
data to be accessed is then calculated. The source registers
are read and the instruction is executed. The result is then
written into the destination register.

[1096] Quality of Support Features for the HPCP

[1097] The HPCP may incorporate a number of quality of
support (QoS) features according to one embodiment of the
invention. For example, the HPCP may incorporate one or
more of the following QOS operations: output queuing and
scheduling; cell/frame pacing; IP classification (behavior
aggregator); lookup engines; and congestion management.
Preferably, these QOS operations are carried out by the
packet processor implemented in the HPCP. The HPCP may
provide frame-based output scheduling using an output
scheduler. The output scheduler may provide a frame-based
service to include: up to 8 configurable queues 910-924 per
virtual/physical transmit queue; up to M ports Strict Priority
(SP) 930, up to N ports of WFQ (Weighted Fair Queue) 932;
and up to L ports Low Priority (LP) 934.

[1098] FIG. 74 illustrates the output scheduling for the
HPCP according to an embodiment of the invention.

[1099] Work conserving schedulers: Scheduling order
empty 1-M, empty M N according to scheduler, and then
empty N-L. The HPCP may provide cell/frame pacing
according to an embodiment of the invention. For example,
an ATM pacer could employ a calendar wheel algorithm and
provide a cell-based service with traffic management for
UBR, UBR+, CBR, VBR, and VBRrt.

[1100] A frame-based pacer (bandwidth limiter) may pro-
vide pacing per port in order to limit the port overall output
to a predefined rate (e.g., allow a 100 Mbps uplink to be
limited to a 12 Mbps service if required).

[1101] Combining QOS for scheduling and pacing may be
implemented in the HPCP as shown in FIG. 75. According
to FIG. 75, the ports are fed to the configurable queues,
which are then output as a UBR (unspecified bit rate) 940,
VBR (variable bit rate) 942 or CBR (constant bit rate) data
stream 946 to the calendar wheel algorithm 948. The output
of the calendar wheel algorithm 948 is fed to the Utopia
interface 950.

[1102] The HPCP may provide IP packet classification
according to an embodiment of the invention. Preferably, the
HPCP provides IPv4 packet classification.

[1103] The HPCP may provide this feature based on up to
512 classification rules that are prioritized by order. The
packet classification is based on 5 or as many as 7 (see
italicized fields) matching fields: IP Source Address; IP
Destination Address; Protocol ID; TCP/UDP Source Port
Number; TCP/UDP Destination Port Number; Type Of
Service (TOS) bits; and Physical/Logical I/f Port Number.
The matching criteria may be based on an exact match, a
prefix match, and/or a range match on each field. Classifi-
cation rules can be set dynamically by protocols such as
MPLS or RSVP, or manually.

[1104] The HPCP may also provide address lookup
engines according to an embodiment of the invention. At
Layer 2, the following address lookup capability is pro-
vided:
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[1105] Ethernet MAC (Media Access Control) Address
Uni-Cast/Multicast.

[1106] ATM VPI (Virtual Path ID)/VCI (Virtual Connec-
tion ID). Algorithmic approach supports single PHY and
multi PHY.

[1107] MPLS Label Lookup.

[1108] At Layer 3, the following address lookup capability
is provided:

[1109] IPv4 LPM (Longest Prefix Match) lookup.

[1110] The HPCP may also provide congestion manage-
ment QOS according to an embodiment of the invention.
The congestion management QOS includes random early
detection (RED) per queue for frame based transmit queues
and ATM congestion recovery EPD and PPD (Early Packet
Discard and Partial Packet Discard, respectively).

[1111] Exemplary Embodiments
Applications for the HPCP

[1112] The HPCP (Trajan) is a versatile communications
processor that can be used in many application scenarios.
The HPCP’s frame, cell and circuit processing capabilities
makes it well-suited for access applications. Set forth below
are some exemplary application scenarios where HPCP can
be used as a SBC (Single Board Computer) or on a line card
application in a chassis configuration.

[1113] FIG. 76 illustrates a exemplary application of the
HPCP in order to provide an Enterprise Integrated Access
Device (E-IAD) 960.

Showing Beneficial

[1114] Enterprise IADs are used at the edge of a corporate
network. This class of box or device is usually used at the
edge of a corporate remote office. The enterprise IAD
manages the traffic from the internal LAN (Local Area
Network) to the external WAN (Wide Area Network). The
WAN connectivity can be a dedicated leased line (Intranet)
and/or connectivity to an ISP (Internet Service Provider), or
both. An IAD will typically also handle voice traffic, which
may be from a direct connection to a PBX, or derived voice
(over either ATM or IP networks).

[1115] The major tasks that an IAD needs to perform
include routing, bridging, QoS prioritization (for voice pack-
ets), and inter-working functionality (RFC 1483, T1 emu-
lation using CES or FRF). The various uplinks (WAN access
methods) may be ATM, Frame Relay, and Ethernet. The
media used by the uplink is typically either nxT1 for both
ATM and Frame Relay and fiber for Ethernet and ATM.

[1116] FIG. 77 illustrates an exemplary application of the
HPCP in order to provide _Toc530832294a Multi Tenant
Unit (MTU)/Remote Terminal Unit (RTU_Toc530832294)
970. An MTU is very similar to the IAD in design. Both
applications reside in the customer premises.

[1117] The MTU device is physically located in a base-
ment of a building, providing distribution of high speed
Internet access to a building. Typical applications will
distribute xDSL connections to the offices/flats of a building
using the existing copper infrastructure. The networking
architecture will be stackable boxes using Ethernet or ATM
as the backbone network. The MTU will be connected to an
external edge router or the router functionality can be
integrated into the system.
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[1118] RTU’s have similar functionality to an MTU (e.g.,
distribution of xDSL connectivity to a remote neighbor-
hood). Unlike an MTU, however, an RTU is physically
located outside a premise: it is managed and maintained by
the ILEC or CLEC (Competitive Local Exchange Carrier).
RTU functionality may be considered as a DSLLAM, mean-
ing the aggregation of subscriber’s traffic into high-speed
uplink. In terms of functionality, the RTU may be considered
as an ATM switch.

[1119] The exemplary embodiment of FIG. 77 shows the
MTU configuration where the HPCP can provide up to 62x
DSL subscribers ports and 10/100 Ethernet to the backbone
network. In this scenario, the HPCP will perform the IP
routing functionality or Ethernet bridging via RFC 1483.

[1120] In the RTU case, HPCP will perform ATM switch-
ing functionality, whereby user traffic will be policed
according to the subscriber’s contracts on the subscriber
side, and shaped towards the network side on the aggregate
(VP shaping). In this case, there is a support for total of 61
subscribers. In the RTU case, the POTS (Plain Old Tele-
phone System) lines that are terminated at the RTU can be
either backhauled on a separate TDM link, in which case
there is no processing involving the HPCP, or can be
packetized over ATM (CES or AAL?2 trunking) using one
pipe to backhaul both data and voice services.

[1121] Other exemplary uses of the HPCP include its
application for a_Toc530832295 media gateway (MG) and
voice gateway_Toc530832295 (VG). Many Telecom opera-
tors are updating their networks to support packetized voice
services. One of the main driving forces is the savings in
infrastructure support that result from an operator being able
to maintain one network supporting both voice and data
services.

[1122] A media gateway is a network element that links
dissimilar networks, such as TDM to ATM or TDM to IP
networks. Conceptually, the media gateway consists of four
elements: a TDM I/f, a transcoding engine, a gateway
controller, and a packet network interface. On the circuit-
switched network side, a line card is used to connect the time
TDM channels from the PSTN to the gateway. A transcoding
engine performs processing to convert between standards. A
gateway controller manages the gateway and call routing.
Finally, a packet network interface routes calls between the
gateway and the packet infrastructure.

[1123] FIG. 78 illustrates one exemplary application of
the HPCP (Trajan) in a media gateway application 980. In
the proposed scheme, the HPCP will perform the networking
protocols—both data path (termination and packetization of
AAL?2 or RTP) and control using the PP (signaling protocols
such as MGCP, V5.2, GR-303). External DSPs will perform
the transcoding functions.

[1124] As shown in FIG. 78, an array of DSPs can be
connected to the HPCP EPB (External Peripheral Bus).
According to a proposed approach, FPGA mediator logic is
used in order to boost the total system performance and to
offload the PP processing bottleneck. Since many DSP
vendors have a HOST PORT I/f as the mechanism to transfer
data into/out of DSP memory, each transfer requires some
control transactions (write to host port control register). This
operation is costly and requires the involvement of the PP in
each transfer. When the number of transactions is high, the
PP will become a bottleneck. The solution is to create a
protocol between the FPGA and the HPCP that can run in a
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burst mode and have the FPGA handle and manage the
control side. The HPCP provides packet network interfaces
both for ATM (Utopia) and for IP (Ethernet or POS).
Signaling information for the TDM network can be trans-
ferred to the TDM cross connect using the HPCP’s TDM
ports.

[1125] In a trunking gateway application, the HPCP can be
connected both to the TDM network and to the packet
network and can perform the entire application.

[1126] FIG. 79 illustrates another exemplary application
of the HPCP for a wireless access network (AN) 990.
Wireless access networks (AN) consist of Base Transceiver
Stations (BTS in 2G and NODE-B in 3G) and Base Station
Controllers (BSC in 2G and RNC in 3G) that aggregates
BTSs. The BTS interfaces between the radio network (RN)
and the wireline access network. The BSCs manage radio
resources and network functions between multiple BTSs and
exchange traffic with the media gateway and the packet
switching node in the wireline core transport network.

[1127] Generally, a BTS is connected to the WAN using
T1/E1 lines. The transport layer on the WAN is either ATM
or IP. For utilization and QoS reasons in an ATM transport
choice, AAL2 is chosen as the transport layer. In this case,
the BTS needs the following functionalities: ATM UNI
functionality; wire-speed support for AAL2-Mux (1.366.1,
1.366.2); and Inverse Multiplexer for ATM (IMA).

[1128] When the transport layer is IP-based, the BTS
architecture will require the following functionalities: IP
termination point; IP QoS support IP classification, Diffserv
and enhanced queuing/scheduling algorithms; RTP/UDP/IP
header compression; and wire-speed support for PPP-Mux
and/or ML-PPP.

[1129] In both architectures, the HPCP can be used as the
central system processor based on its ability to process wire
speed ATM and IP with 8 T1/E1 Interfaces to the WAN and
Utopia or 10/100 interface to the backplane. The HPCP can
also be used in the BSC as the aggregation processor. In this
case, the processor needs to perform IP routing and ATM
switching (AAL2 switching) at OC-3 rates (wire-speed).

[1130] FIG. 80 illustrates an exemplary application of the
HPCP for a multi-service access platform 1000. A multi-
service access platform combines numerous functions, ser-
vices, access technologies and protocols in one network
element. This flexibly configurable network element simpli-
fies network design, planning, roll-out, and network man-
agement. Typical functions include the following:

[1131] Optical carrier (0OC)-3¢/12¢/48¢ optical mul-

tiplexer
[1132] T3/0OC3c aggregator
[1133] GR303 gateway
[1134] ATM switch
[1135] IP router
[1136] Access technologies include the following:
[1137] T1
[1138] Tl-inverse multiplexing over ATM (IMA)
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[1139] T3

[1140] XDSL ADSL, VDSL

[1141] Single-line highbit rate DSL (SHDSL)
[1142] Ethernet

[1143] Time division multiplexing (TDM), frame relay,
ATM, and IP are supported as protocols. The multi-service
access platform provides optimized network architecture
and transport efficiency from the customer premises into the
metropolitan area network (MAN).

[1144] The architecture of a multi-service access platform
is shelf based with an ATM and TDM backplane. Numerous
subscriber (downlink) line cards connect customer premise
equipment such as IADs, routers, and PABX and network
elements as DSLAMS to the platform. The uplink connec-
tivity is usually to an SDH/SONET network via an optical
link. A special voice gateway subsystem can be added for
termination of VoPacket .

[1145] The HPCP is positioned to fit in or be compatible
with many line cards and trunk cards in a multi-service
access platform application. For example, the HPCP can
handle up to 8 T1/E1 Frame-Relay to ATM interworking
functions (FRF.5, FRFE.8) on a line card; it can perform ATM
switching both on a LC or at the trunk card at 2x OC-3 rate.
It can also be used to terminate 4 10/100 Ethernet links and
perform 1483 Ethernet bridging, IP routing or SAR frames.
Additionally, the HPCP can be used to terminate PPP,
PPPoE or PPPoATM traffic on an xDSL line card.

[1146] Interms of voice support, the HPCP can be used in
the voice gateway subsystem to terminate VoATM or VoIP;
it can also be used for trunking application on the trunk card
to take the narrowband traffic off the TDM backplane and
trunk it (AAL2 trunking or/and CES) towards the ATM
network.

[1147] A major advantage for using the HPCP in a multi-
service access platform application is its versatility in terms
of 10 interfaces and protocol support. A system designer can
re-use board design, system knowledge and expertise to
leverage the HPCP as a networking platform in the access
space.

[1148] Exemplary Approaches to the Software in the
HPCP

[1149] The software provided for the HPCP (HPCP soft-
ware) is preferably fully integrated with the HPCP hardware
and architecture, highly optimized, and includes complete
applications to support the myriad of uses for the HPCP.
According to one embodiment, the software developed and
sold by, for example, Globespan Virata, Inc. known as Inte-
grated Software on Silicon (ISOS) (e.g., ISOS version R8.0,
etc.) can be run on the HPCP. The IS05 software includes
tools and a developmental environment and is well-suited to
the HPCP. The HPCP software includes a complete port to
various operating systems, such as VxWorks, Linux, OSE (a
real-time kernel from Enea Systems), and ATMOS-2 (ATM-
Operating System [Virata’s proprietary operating system]).
The HPCP software may be integrated with other software
products, such as for Web management (e.g., the emWeb™
[embedded Web server] management product sold by
GlobespanVirata, Inc.), UPnP, security and firewall func-
tions. The HPCP software may be integrated with voice
processing software (e.g., the vCore™ voice DSP software
sold by GlobespanVirata, Inc.) for voice processing solu-
tions.
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[1150] Preferably, the HPCP software combines the soft-
ware solutions for both the CPP (MIPS) for the control plane
and the packet processor for the data plane. The HPCP
software may include basic drivers for ATM AALO, AALL,
AAL2, AALS5, Ethernet, HDLC, UART, Transparent (PCM),
SPI and 12C.

[1151] The data applications include support for bridging,
such as for spanning tree (802.1d), prioritized bridge
(802.1p), Ethernet to Ethernet, and Ethernet to AALS (via
RFC 1483). The data applications may also include support
for routing and IP forwarding (such as RIP [Routing Infor-
mation Protocol], OSPF [Open Shortest Path First] and
MPLS), and for frame relay.

[1152] The HPCP software may include voice applica-
tions, such as for VOATM (AAL2 [SS-SAR]). According to
one embodiment, the HPCP software is fully integrated with
the vCore™ voice DSP software sold by GlobespanVirata,
Inc. of Red Bank, N.J. The HPCP voice applications include
support for circuit emulation (e.g., CES [Circuit Emulation
Services]) and VoIP (e.g., RTP/RTPC in the packet processor
and MEGACO, MGCP and SIP [Session Initiation Protocol ]
in the CPP).

[1153] According to one embodiment, the CPP software
package includes a flow manager element. The flow man-
ager element creates applications by linking micro-coded
building blocks, is OS (operating system) independent, and
provides a convenient API (Application Program Interface)
for customers not wishing to use all other CPP software.

[1154] FIG. 81 illustrates of the flow manager function-
ality 1020 according to an embodiment of the invention. As
stated above, the HPCP software may be integrated with
voice processing software such as, for example, the vCore
voice DSP software sold by GlobespanVirata, Inc. for voice
processing.

[1155] Development of software for the HPCP may be
facilitated through the use of certain data plane development
tools. For example, a functional network processor (packet
processor) simulator may be employed. GlobespanVirata,
Inc. markets a packet processor simulator called Vsim™
which may be employed for this purpose. Vsim™ is a high
speed system simulator which simulation includes the fol-
lowing: packet processor core Instruction Set (IS); func-
tional behavior for DMAs; internal and external memories;
and functional level peripherals. Vsim™ provides perfor-
mance analysis and includes traffic generators. Another data
plane development tool that may be employed is Vas™,
which is a stand-alone packet processor assembler. Another
data plane development tool that may be employed is V-bug
T™ which is an assembler level debugger. Another data
plane development tool that could be employed would be
VCC™, a packet processor C compiler. Another data plane
development tool is V-GDB™, which is a packet processor
C source level debugger (like V-bug™). Each of these tools
can be hosted on a Windows NT™ or Sun™ platform. Each
of the aforementioned exemplary development tools is mar-
keted by GlobespanVirata, Inc. FIG. 82 illustrates an exem-
plary data plane development 1030 that could be employed
for software development for the HPCP. The Vobla IS
simulator 1032 refers to the packet processor simulator.
According to another approach, software development could
be undertaken using reference platform hardware instead of
the simulated modules.
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[1156] Specific Strategies for the Software in the HPCP

[1157] Development of software to power the HPCP pro-
cessor as described herein is well within the skill of the
ordinary artisan. Some of the considerations in designing the
HPCP software are now discussed. In developing the HPCP
software, there are various tradeoffs to consider in providing
a software end-product that provides an acceptable balance
between performance, robustness, portability, and other fac-
tors. For the balance of the discussion in this section, the
HPCP includes the packet processor (PP) (or control packet
processor [CPP]) and the flexible packet processor referred
to as the Vobla or NP (network processor).

[1158] Operating System and Portability

[1159] The main goal of HPCP software is to perform
functions in cooperation with the HPCP hardware to enable
HPCP/Vobla chips to perform as desired in communication
systems. Taking into account the vast diversity of different
software embedded platforms currently used in the market
of communications processors (VxWorks, Linux, Nucleus,
OSE, etc.), it seems reasonable to try to offer sufficient
flexibility in HPCP software package to address different
embedded environments and different customer expecta-
tions for value-added software components.

[1160] In one manner, the HPCP could be an OEM (Origi-
nal Equipment Manufacturer) product with a very limited
software support package, such as drivers and initialization
sequence applications. On the other hand, main embedded
software platform providers offer solutions allowing poten-
tial customers to choose any preferable platform based on
different considerations (e.g., existing code base and expe-
rience, performance, value-added components, reference
platforms and applications, etc.).

[1161] Balancing these considerations, the goal should be
should try to find those points where HPCP could be more
attractive not only as a more powerful communications
processor but also as a more flexible and convenient solution
in different environments with more value-added compo-
nents. One more consideration relates to system perfor-
mance, which may depend on the particular embedded
environment. For many popular embedded platforms
(VxWorks, OSE, Linux, etc.), the introduced system over-
head (which is usually measured in average system call
processing time and interrupt latency) is unacceptable for
many applications. This triggers suggestions to use other
light dedicated environments (e.g., ATMOS, many home-
grown simple monitors). Although the main network pro-
cessor driving force is moving most or all of the critical data
path code to the NP microcode area (including most popular
switching, interworking, bridging, routing and forwarding
scenarios), the CPP-termination data path still needs to be
efficient. Therefore, OS-dependent overheads must be kept
to a minimum.

[1162] From the above considerations it is reasonable to
formulate the following HPCP SW-to-RTOS (Real-Time
Operating System) integration strategy principles:

[1163] (1) HPCP software is to be provided in such
portable form which enables its easy integration with dif-
ferent existing (and future) embedded platforms.

[1164] (2) HPCP software should meet different customer
expectations for value-added components. In other words,
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there should be the possibility to offer different levels of
support starting from simple object libraries providing low-
level network processor drivers, through source-level pack-
ages allowing the generation of different libraries for dif-
ferent customer applications, including glue interfaces for
different third-party components and deliveries with more
value-added components with different implementations.
Exemplary embedded platforms that may be the target for
HPCP software integration include: VxWorks, Linux, OSE,
CHAOS (a next generation ATMOS), Nucleus, PSOS, and
others.

[1165] Configuring microcode applications. One of the
innovations of the HPCP software is the placing of the
critical data path functions to the NP microcode area. In this
case the CPP serves mostly as a control/management plane
for those data paths (data flows) created in the NP and acts
as the NP flow manager which represents the look and feel
model of the HPCP software. This approach assumes that
other software requirements and/or software design deci-
sions should strive meet the following main goal: NP
processing should be as simple and effective as possible,
meaning that:

[1166] All data structures (tables, flow contexts, etc.) used
by the NP (and possibly shared with CPP) should be
designed to be the most effective from the NP code perspec-
tive.

[1167] NP should blindly perform flow-specific process-
ing by calling different functional blocks—the work for
linking (stacking) of these NP functional blocks should be
done in run-time by the CPP flow manager code when a
request for new flow creation comes from the user applica-
tion and/or control/management plane in the CPP. Such
functional stacking is done by proper linkage of flow con-
texts in the shared RAM. To implement these points, NP data
structures are known to the CPP.

[1168] FIG. 83 illustrates a HPCP look and feel model
1040 as described above.

[1169] NP load configuration. Considering the vast diver-
sity of network applications for the targeted market and also
the intention to provide an open communications processor
architecture (i.e., the ability to program and add custom
implementations to the NP microcode area), it is desirable
that the NP software load be configurable at compile-time.
Configuration files (for setting compile-time parameters)
may be set either manually or, alternatively, via, for
example, the System-Builder™ tool available from Globe-
span Virata, Inc. Each one of the several NPs within a HPCP
device may be loaded with a different microcode image.

[1170] Loading microcode. Dynamic NP code reload (i.e.,
changing the NP code contents during run-time) is not be
supported. The NP microcode image will be loaded only
once at NP reset time and will contain all functionality
needed by a particular network device. Note that the NP may
be reset by the CPP without a complete system reset
occurring. This allows the user to change an NP load, after
which the NP is soft-reset.

[1171] Control versus data plane processing. Much of the
design of the HPCP software is aimed at extracting critical-
path processing from the CPP and executing it in the NP.
Critical path processing, in this context, means processing
that is performed on virtually all data packets (or cells) on
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an interface. It varies from one application to another and
covers all layers of processing performed on the packet by
the HPCP. Therefore, there is a divergence from a strictly
layered architecture where the NP performs (for example)
layer 2 and 3 and the CPP performs all higher layer pro-
cessing in favor of a model in which the NP will preferably
perform all critical path processing, irrespective of the layers
involved (layers 2, 3 and, at times, layers 4 and higher). The
CPP, then, will perform all non-critical (or control plane)
processing—from layers 2 and up.

[1172] For example, in an OSPF router, the critical path
may consist of IP forwarding table lookups, ARP (Address
Resolution Protocol) cache table lookups (where successful)
and forwarding. Non-critical path functions will include all
of the OSPF control plane (learning next-hops, etc.), gen-
erating the ARP requests, and handling the ARP responses.

[1173] Network Processor software design approach. Net-
work Processor microcode covering most of the data path
processing is a component implemented from scratch in the
HPCP SW project which makes its performance efficiency
an important design goal. Other design goals are flexibility,
expandability and architectural openness.

[1174] From the HPCP software look and feel model
defined above, the ATIC-like approach could be pretty
useful for network processor microcode design, which
involves the following concepts.

[1175] Network Processor objects and contexts . The net-
work processor microcode may be divided into functional
blocks, which may be operationally joined (e.g., chained) in
various combinations by the application builder in order to
create different execution paths.

[1176] The concept of an object is introduced to describe
a section of code that has a particular state. The object is an
instantiation of any entity that executes this code and has its
own state information (referred to as its context). The
context contains protocol state information, necessary data
structures and resources that have been dynamically allo-
cated to the object. For example, an object’s context may
include a protocol state value, transmit queue of frames,
timer information and links to subsequent objects in the
execution path.

[1177] The context (i.e., associated data structures)
belonging to an object is object-dependent and the known
only to the object itself. Objects have “next object” pointers
and “next function” pointers. The “next object” indicates the
object that will be activated after the current object has
completely handled its current event (similar to the “this”
pointer for the next object in C++ terminology). The “next
function” pointer is the address of the routine that the next
object will execute.

[1178] Different contexts for the Rx and the Tx parts of a
flow (as is done in the Helium TM communications proces-
sor sold by GlobespanVirata, Inc.) may be employed
because in most cases Rx and Tx processing are indepen-
dent. This helps minimize the amount of control data needed
to be transferred within the system.

[1179] Flexible mapping of Network Processor execution
threads. In one manner, mapping of functional processing
blocks to the network processor’s threads (tasks) is per-
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formed not based on functional breakdown (i.e., task=
protocol entity), but rather based on operational effective-
ness.

[1180] With this approach, the network processor task is
considered as an abstract operational vehicle capable of
performing different functional blocks and/or protocol stack
layers depending on the type of message in its input queue.

[1181] In order to optimize incoming message decoding,
every message will contain at a pre-defined place (e.g., the
first word) the pointer to the routine that will be called to
handle the incoming message. This concept, of course, could
be used only for network processor tasks having input
queues. So-called HW network processor tasks (i.e., related
to physical port specific processing) should be hard-coded to
some port specific function.

[1182] Task boundaries will break the continuous execu-
tion of a flow, but these do not necessarily need to coincide
with protocol (or layer) boundaries. In general, these breaks
in a flow should be avoided unless functionally required
since they add overhead. For example, in configurations
involving a few different physical ports and/or networking
applications, dedicated tasks empty/fill the serial port’s
FIFOs in order to guarantee low latency, while other tasks
run application code which does not have such hard real-
time requirements.

[1183] Memory allocation/handling approach. It appears
that all port level contexts would be better allocated in
internal network processor SRAM (for the sake of effec-
tiveness and also because their number is limited by physical
chip configuration and allows static preallocation), while all
other data structures (connection level contexts and lookup
tables) are stored in external SDRAM and allocated dynami-
cally.

[1184] Certain structures (e.g., lookup tables) may be
partially located in internal and external memory spaces or
configured to reside in either one or the other.

[1185] Memory allocations in both of the network proces-
sor’s SRAM and the external SDRAM are performed by the
CPP. The network processor recognizes SRAM partitioning
either via compile-time definitions (initialization is done by
CPP, which initializes the memory data structures for the
NP’s tasks and for the different protocols ) or via pointers in
a well-known area filled in by the CPP in run-time by its
SRAM manager.

[1186] Context and lookup data allocated dynamically in
external SDRAM are processed by the network processor
code after DMA’ing this data (only the needed part of it) to
special areas in the network processor’s internal SRAM.
Buffer area for this data in SRAM is to be reserved in a
per-task scratchpad area, which means that for abstract tasks
(ie., tasks that are not oriented to some particular process-
ing), the scratchpad area should be allocated to be big
enough to fit the maximum size of the context data being
processed.

[1187] In one manner, only one copy of any context data
should exist in SRAM at any given time. It is assumed that
all context data is always copied to a fixed offset in the task’s
scratchpad and that there is a one-to-one correspondence
between any context data field and the network processor
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task dealing with it (i.e., any data field is to be processed by
only one network processor task).

[1188] At the same time, there could be considerable
flexibility in context data processing with the goal of gaining
processing effectiveness. For example, context data may be
subdivided into sub-blocks where data in a sub-block is
grouped based on a common processing principle: few fields
on context are grouped together to be DMA’d at one time (in
one shot) when all/most of these fields are to be in use by a
specific functional block. On the other hand, for example,
specific statistics counters in context could be read-modify-
written only when the need arises (at end of a PDU [Packet
Data Unit] or upon an error). This allows processing of
different context sub-blocks by different network processor
tasks. Of course, this approach makes context data design
more tricky and difficult. FIG. 84 illustrates the network
processor software design approach 1050 for an AALS
receiver flow example.

[1189] Timers in Network Processor. A CPP-based timer
service may be employed via the network processor-to-CPP
command interface (especially when needed timers are big
and are started/used rarely). Whenever possible, the internal
free running timer for time-stamping of different events
(e.g., to recognize reassembly timeouts) may be used. In this
case, instead of getting a timer expiration event, a delta
between the current free-running timer and the previous
timestamp is calculated every time (each timer event) and a
timer expiration event is generated where needed locally,
without any message passing.

[1190] CPP software design approach. The CPP software
design goals may include the following:

[1191] (1) A simple and convenient API should be
designed allowing easy integration of CPP software with
both different RTOS platforms and third party products
while using thin SW shims.

[1192] (2) Maximum possible reuse of existing control/
management plane code base should be sought. This may
entail the introduction of a new simple SW shim and/or
some restructuring of existing SW (i.e., the existing Globe-
spanVirata ISOS code).

[1193] (3) The ISOS-ATIC convergence program and
principles are to be considered when decisions about code
base choice are made.

[1194] The aforedescribed look and feel model of HPCP
software having the CPP SW function as the NP flow
manager has the following consequences.

[1195] CPP control and data API considerations. A control
API may be provided for NP flows creation/deletion and
their attributes change/query. This API is to be used mostly
by user applications, but also (e.g., through a shim) by
control/management plane SW (e.g., by signaling protocol
and/or an SNMP [Simple Network Management Protocol]
agent).

[1196] It may be desirable to provide a generic control API
with a minimal and fixed set of control primitives (e.g.,
similar to the so-called ISOS White interface). According to
this approach, flow of any (including any future) type may
be created/deleted using the same control primitive (e.g.,
FLOW_CREATE) while flow type and other attributes are
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provided as primitive parameters. Flow attribute change/
query may be handled via generic primitives (e.g.,
FLOW_GET_/FLOW_SET).

[1197] The text string used to pass flow type and attributes
as a FLOW_CREATE primitive parameter seems to meet
the requirement of API generality, flexibility and expand-
ability.

[1198] The FLOW_CREATE primitive can both create the
data path protocol layer components and also link them
together in different ways. Also, it is desirable to have
primitive syntax traceable to protocol specifications which
makes its usage easier. It is feasible to start the needed
control plane component implicitly while processing
FLOW_CREATE primitives when proper parameters are
supplied in the parameter string. Another requirement con-
cerns the possibility of access to various layers/components
created/linked by the FLOW_CREATE primitive, because
the same protocol components could be involved in different
flows.

[1199] For linkage of previously created termination flows
in interworking/bridging/routing applications, a special
primitive (FLOW_LINK, FLOW_UNLINK) may be
employed.

[1200] Implementation of the FLOW_CREATE primitive
for a specific data path protocol component (e.g., the CPP
driver activated for particular flow type) can also be pro-
vided in the CPP data path processing transparently for
upper application if the proper network processor microcode
block is not yet available.

[1201] There may be a data API provided as well for
termination data passing to/from the NP. This API may be
used both by user applications and the control/management
plane SW. Receive termination and transmit confirmation
are bound via a standard call-back technique.

[1202] The goal that the NP code be simple, small and
effective means that the CPP driver software activated via
the control API for NP flow creation/deletion/alteration/
query must recognize the flow context internal structure
(even though this contradicts a strict object-oriented
approach). However, this is useful because it allows both
effective flow building/removing without NP interaction and
also permits easy integration with MIBs (Management
Information Bases). One consequence is that versions of the
CPP and NP code should match exactly and should be tightly
linked to each other.

[1203] Linking of NP flows by the CPP assumes that CPP
knows the addresses of NP functional blocks which are
inserted as next function pointer in contexts. This could be
achieved when the CPP load is built while using symbol
information of the previously built NP load. However, a
difficulty arises when multiple NPs (e.g., with different
functionalities) are served by the same CPP. Thus, some
mapping (flow type to function block address) is needed that
is specific for each NP. This could be implemented using a
mapping array created in the NP internal SRAM during NP
initialization, which is then read by the CPP for flow linking
information retrieving.

[1204] The knowledge about internal flow context struc-
ture should still be localized in the particular CPP driver
responsible for specific flow manipulation. Additionally,
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care should be taken while updating context data shared by
the CPP and the NP. The object is simple: For every field it
is desirable to have only one write owner operating without
memory locking. If this is not possible, the CPP-to-NP
command interface is to be used to pass a write request to the
write access owner of the data. Also, additional means may
exist to ensure that both the CPP and the NP code view or
recognize a context structure in the same way. This may
involve various checks of the compatible software loads
used in the CPP and the NP.

[1205] The same approach as outlined above is to be
adopted for the various look-up tables used/updated by both
the CPP and the NP. These tables seem may be handled by
the control/management plane software in the CPP. There
may be no need to introduce a special API for the table
update in the CPP. Alternatively, there may be some table-
specific driver code which knows the particular table struc-
ture (chosen to be more effective from the NP perspective)
and which is activated (via a SW shim) from the control/
plane software. Again, care should be taken in implementing
table update operations if a table could be changed from both
cores, as well as in the case when the table update is a
complicated operation requiring a set of changes in different
places/entries.

[1206] Control and data API proposal. The following
exemplary API meets the above design functionality and
could be used as a basis for further design decisions:

[1207] NewFlowHandle=FLOW_CREATE

[1208] (ExistingFlowHandle,
param=PARAM);

/type=FLOW_TYPE/

[1209] status=FLOW_DELETE(Existing-
FlowHandle);
[1210] status=FLOW_TRANSMIT(Existing-

FlowHandle, Frame);

[1211] status=FLOW_SET(ExistingFlowHandle,
attribute_name, attribute_value),

[1212] status=FLOW_GET(ExistingFlowHandle,
attribute_name, &attribute_value),

[1213] status=FLOW_LINK(ExistingUpperFlow,
ExistingTerminationFlow);

[1214] status=FLOW_UNLINK(ExistingUpper-
Flow, ExistingTerminationFlow);

[1215] Enabling and disabling of flows in the Tx and/or
the Rx directions could be implemented through a
FLOW_SET primitive with proper attributes (e.g., TxEn,
TRUE) which also could be provided in the FLOW_CRE-
ATE parameter string.

[1216] Starting of the control plane component may be
initiated via the same FLOW_CREATE (or FLOW_SET)
primitive. For example, creation of an AALS termination
connection while starting corresponding OAM F5 process
could be as follows:

[1217] AtmPortHandle1=FLOW_CREATE(Voblald+
PhysycalPortNumber, “e=UTOPIA/Phy=0/Name=A1)
AalSHandle FLOW_CREATE (AtmPortHandlel,/Type=
AALS5/TxVci=5/TxVpi=0/Pcr=100/0amF5=Yes)
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FLOW_SET (Aal5Handle, RxHandler,ODxADDRESSO0)
FLOW_SET(Aal5Handle, TxConfirmationHandler,0xAD-
DRESS1)=/Type

[1218] The following example demonstrates the creation
of a bridge application over one Ethernet port and two RFC
1483 encapsulated AALS connections created on different
network processors. The IP termination flow is multiplexed
on one of the AALS VCI, starting spanning tree process as
a control plane of bridge application, OAM F5 flow started
for the other AALS VCI and ILMI initiated for one of ATM
ports.

[1219] EthernetPortHandle=FLOW_CREATE(Voblal+
PhysicalPort2,  /Type=Ethernet/Promisc=Yes)  Bridge-
Handle=FLOW_CREATE (EthernetPortHandle, /Type=
Bridge/Spanning=Yes)AtmPortHandle1=FLOW_CREATE
(Voblal+PhysicalPort1, /Type=UTOPIA/Phy=1)
Aal5Handle1=FLOW_CREATE (AtmPortHandlel, /Type=
AAL5/TxVci=5/TxVpi=0/Pcr=10000) Rfc 1483Handlel=
FLOW_CREATE(Aal5Hanldle1,/Type=Rfc1483) IpH-
andle1=FLOW_CREATE (Rfc1483Handlel, /Type=Ip/
IpAddr=10.0.0.1/Mask=2 55.0.0.0)
FLOW_SET(IpHandlel1, IpRxHandler,0xADDRESSO0)
LanHandle1=FLOW_CREATE (Rfc1483Handlel, /Type=
Ethernet) ATM PortHandle2=FLOW_CREATE(Vobla2+
PhysicalPort3, /Type=UTOPIA/Phy=5/Ilmi=Yes)
Aal5Hanidle2=FLOW_CREATE (AtmPortHandle2, /Type=
AALS5/TxVci=20/TxVpi=1/Pcr=10000) FLOW_SET
(Aal5Hanldle2, OamF5,Yes); Rfc1483Handle2=
FLOW_CREATE (Aal5Hanldle2,/Type=Rfc1483) Lan-
Handle2=FLOW_CREATE (Rfc1483Handle2, /Type=Eth-
ernet) FLOW_LINK(BridgeHandle,LanHandle1)
FLOW_LINK (BridgeHandle,LanHandle2)

[1220] CPP API thread safety. Both control and data
termination APIs in the CPP may be represented as a passive
library (possibly provided in binary form as a part of the
platform specific BSP) handling primitives from the user/
control/management SW. These APIs should be thread safe
and also should provide effective separation of control and
data primitive flows. This avoids the scenario where pro-
cessing of a termination data primitive is delayed because of
control primitive handling. An ATIC-like vertical thread
optimization model can help to solve such problems, and, in
this case, API functions could be implemented as wrappers
that cause message sending where needed.

[1221] CPP system software base. The goal of supporting
a vast diversity of different RTOS platforms suggests the use
of ATIC system services and the ATTC RTOS porting tech-
nique as a system base for CPP software development.

[1222] This approach is further desirable because ATIC
system services have been chosen as well as a preferable
base for the ATIC-to-ISOS convergence strategy.

[1223] Due to the high degree of similarity, the ISOS BUN
framework could be reused as the CPP API implementing
framework, perhaps with few changes. This conceivably
may allow the reuse of existing BUN drivers and the same
legacy peripheral ports for re-implementation on the net-
work processor.

[1224] HPCP Software Partitioning

[1225] The goal of this section is to characterize the HPCP
software partitioning as more or less independent blocks
while trying to roughly define:
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[1226] Functional specification of every block.

[1227] Interfaces between blocks and interfaces to outer
world (external) software.

[1228] Strategy and estimation of possible software reuse
and the definition of any needed shims.

[1229] The guiding principles used for software partition-
ing are the design approach defined in the previous discus-
sion and the traditional information hiding approach.

[1230] CPP software partitioning. FIG. 85 illustrates sug-
gested partitioning and interfaces. According to an embodi-
ment, the functional blocks and interfaces of 85 are provided
as follows. A first set may correspond to user or third party
components. This first set may include the following blocks
in FIG. 85: user application 1070, socket interface 1072,
control plane software 1074, management plane software
1076, file system 1078, and console 1080. A second set may
correspond to new components created for the HPCP. This
second set may include the following blocks in FIG. 85:
BSP 1082, Flow manager framework 1084, Functional
driver 1086, Lookup table manager 088, Vobla RAM loader
and initializer 1090, Vobla SRAM manager 1098, Vobla
queue interface 1092, Shims 1-5, Tracers and diags exten-
sion 1094, and Vobla frames/cells 1096. A third set may
correspond to existing (e.g., ATIC/ISOS) components. This
third set may include the following blocks in FIG. 85:
Network interface 1100 (between the Socket interface and
Flow manager framework) and System services and OS
porting 1102 (above Tracers, diags extension).

[1231] Software Block Functional Specification.
[1232] Flow Manager Framework

[1233] This Flow Manager Framework block 1084 imple-
ments the network processor Flow Manager API and pro-
vides the framework and services (attribute parsing and
registration, data path stacking, etc.) for functional drivers.
This component should also deal with API thread safety
mechanisms, control and data thread separation, and mes-
sage sending, wrapping, and queuing, as needed.

[1234] Shim 1—Flow Manager-to-Control Plane and
Flow Manager-to-Management Plane.

[1235] The control plane software to be supported may
entail the use of a set of shim layers for different control
plane implementations. The purpose of Shim 1 is to provide
for translation of connection creation/deletion primitives
from the control plane to the network processor flow cre-
ation/deletion primitives, and also to connect the control
plane to the flow termination data path. The same may be
done for different management plane implementations as
well. For management plane integration this shim also
provides mapping of MIB GET/SET methods to proper
FLOW_SET/FLOW_GET calls.

[1236] Functional Driver Blocks

[1237] The number of different supported functional driv-
ers may depend on the number of supported network pro-
tocols/applications. A particular driver is responsible for
implementation of flow create/delete primitives for flow of
a particular type and also for linkage of flows. Termination
data path functionality should be provided for all drivers
primarily as a general service of the Flow Manager Frame-
work.
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[1238] The functions of the driver include:

[1239] Low level serial port initialization/deinitialization
while processing port level flow creation/deletion primi-
tives.

[1240] Allocation and initialization/deallocation and
deinitialization of port level static contexts in internal
SRAM (via services of the network processor SRAM man-
ager) and lookup tables in external SDRAM (or internal
SRAM when so requested) while processing of port level
flow creation/deletion primitives.

[1241] Allocation/deallocation in external SDRAM con-
nection level contexts and its initialization/deinitialization as
result of connection level flow creation/deletion primitive
processing.

[1242] Linkage/delinkage of flows by setting next and
next_function pointers in proper contexts and lookup tables
as result of flow create/delete/link/unlink primitive process-
ing via using flow_type-to-function mapping provided via
services of the network processor SRAM manager.

[1243] Implementation of driver specific FLOW_SET/
GET primitives, particularly, create/start control plane pro-
tocols when possible and so requested through attributes of
FLOW_CREATE and FLOW_SET primitives.

[1244] Implementation of not ready yet data flow frag-
ments, for example, for the AAL2 termination path. The
SSSAR (Service Specific Segmentation and Reassembly)
sublayer may be implemented by a functional driver in the
CPP if a microcode solution does not exist.

[1245] Lookup Table Manager 1088 and Shim 2

[1246] The Lookup Table Manager 1088 manages the
modification of lookup tables of particular types and,
accordingly, it recognizes or knows the internal table struc-
ture (optimized for network processor microcode usage).
For various control/management plane components, Shim 2
glue layers (which may be specific for each particular
implementation) are provided to implement access to the
tables. Instead of providing a generic API, every particular
control/management plane component may be restructured
to be operable with the network processor’s lookup tables
using a specific Shim 2 layer. When the lookup table is
allocated in SRAM, the network processor SRAM Manager
1098 services are used for accessing the lookup table. When
the network processor is a table write owner, modification of
the table is done by sending command messages through the
network processor Queue Interface 1092 (discussed below).

[1247] Network Processor Queue Interface 1092

[1248] The network processor Queue Interface 1092 is
responsible for the CPP-to-network processor interface. This
component performs interface polling and/or interrupt pro-
cessing, as well as the handling of messages going to/from
the queues on the interface and routing them to proper
recipients. Network Processor SRAM Manager 1098. The
network processor SRAM Manager 1098 coordinates all
SRAM allocations and per-network processor task SRAM
partitioning and initialization. This component provides
flow_type-to-microcode_function mapping functionality. It
also may initialize all needed mapping information for
access to different agents on the network processor rings via
learning the results of ring enumeration process (discussed
previously).
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[1249] Network Processor RAM Loader and Initializer
1090 and Shim 3

[1250] The network processor RAM Loader and Initializer
1090 is responsible for the process of network processor
image loading and handshaking with the network processor
starting code. Through different Shim 3 implementations,
the network processor RAM Loader and Initializer 1090
interfaces with different file system components to get the
network processor image for loading into the proper network
Processor.

[1251] System Services and OS Porting 1102

[1252] According to one approach, ATIC system services
and the OS porting technique are to be used. Additionally,
network processor-specific frame/cell re-implementation is
to be undertaken. It is desirable to extend existing ATIC
tracing/diags support to produce a more generic and conve-
nient framework. Such a framework will allow activation
both in compile- and run-time for tracing of events regis-
tered by different components both in the network processor
and the CPP. For example, based on the suggested design
approach for the network processor and the CPP Flow
Manager Framework, various tracers/injectors may be
dynamically linked inside the data path between any of its
flow fragments (e.g., similar to trace/debug BUN drivers).

[1253] Network Interface 1100 and Shim 4

[1254] The Network Interface (NI) 1100 connects the
termination data path to/from the Flow Manager with the
native IP stack. Shim 4 is used for existing NI implemen-
tations for primitive translation.

[1255] Shim 5

[1256] Shim 5 is defined to connect the existing console
implementations with the Flow Manager FLOW_GET/SET
interface.

[1257] BSP 1082

[1258] According to one approach, it is desirable to reuse
an existing BSP 1082 for a similar chip (i.e., a chip with a
MIPS core). This may impose additional requirements for
reference board design. In that case, it might be feasible to
reuse some of the BSP components (e.g., flash drivers,
memory initialization, etc.). At the same time, the main BSP
function (i.e., to provide basic connectivity, typically for
UART and Ethernet/IP connections) is to be reimplemented
in the network processor. This might entail delivery as part
of a BSP a simple network processor image containing
UART and Ethernet/IP support and needed CPP drivers. In
this case, the network processor image is a part of the CPP
load on flash that is loaded to network processor via the
network processor RAM Loader and Initializer during sys-
tem initialization. In this case, if a particular end-user gets
the appropriate tools for customized network processor load
building, this task should be a part of the BSP building
process (UART+Ethernet/IP support should be selected).
According to another approach, a BSP with JTAG (a serial
debug port)-based connectivity with the target could be
employed. In this case, the combined CPP plus network
processor(s) image can be viewed as the usual application
load build.

[1259] CPP drivers should be integrated (through Flow
Manager Framework and the proper shim) with the particu-
lar BSP driver framework.
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[1260] Network Processor software partitioning . The goal
of the network processor software partitioning approach
may be to have a maximum reuse of common code/algo-
rithms while preserving processing efficiency by using inlin-
ing and/or macros in the coding practice. FIG. 86 provides
one possible partitioning approach 1200 for the network
processor. Performance estimates for REC 1483 bridging By
way of example, a performance estimate for RFC 1483
bridging can be computed as follows in Table 43.

TABLE 43

RFC 1483 Bridging Performance Estimate

Receive 128 byte Ethernet back to back frames
Receive frame - 120 cycles
802.1d - Ethernet bridging
Bridge learning process - 50 cycles
Enet address lookup - 50 cycles
Optional QoS support
QoS decision via IP classification - 500 cycles
Per IP src/dst, src/dst port numbers and protocol id
Forward to transmit object - 10 cycles
Transmit side operations
Append 1483 encapsulation header - 10 cycles
Optional QoS support
AALS queue scheduling - 35 cycles
RED - 15 cycles
AALS segmentation and transmit - 320 cycles (100+100+120)
General overhead (inter-task msgs, etc.) - 50 cycles
Total processing = 619 cycles (@ 200MHz = 323K pps)
With QoS support = 1169 cycles (@ 200MHz = 171 K pps)
Wire speed (full duplex) = 2*100M/(8*128) = 200K pps

[1261] Executing Branch Instructions Based on an Accu-
mulative Condition Flag

[1262] As discussed previously, in at least one embodi-
ment, an accumulative condition flag, i.e., sticky bit, is used
by the HPCP and/or network processor to execute branch
instructions. A conventional processing device commonly
performs a branching operation by pairing a compare
instruction with a branch instruction. More specifically, such
a processing device commonly performs the compare opera-
tion by subtracting a first specified operand from a second
specified operand. As a result of this operation, the process-
ing device sets various conditions flags. Such flags provide
information regarding the magnitude of the first operand
relative to the second operand, and well as other information
regarding the operation. The subsequent branch instruction
provides a branch in program execution on the basis of the
values of the condition flags. The condition flags are typi-
cally overwritten based on the next instruction executed by
the processing device. Hence, the programmer will typically
include the branch instruction directly subsequent to a
relevant compare instruction.

[1263] A typical program may contain a complex series of
such pairings of compare and branch instructions. FIG. 87
illustrates the execution of such a program 1400. In step
1402, the processing device executes a first compare instruc-
tion (i.e., the comparel instruction). As mentioned above, in
this step, a first operand is subtracted from a second operand.
The processing device also sets condition flags on the basis
of the outcome of the comparing operation. Subsequently, in
step 1404, the processing device executes a branch instruc-
tion on the basis of the values of the condition flags. That is,
if the condition flags contain prescribed values, the process-
ing device advances to a specified branch address. In the
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illustrated case of FIG. 87, the processing device branches
to address A if the comparel instruction satisfies prescribed
conditions, as reflected by the values of the condition flags.

[1264] As shown, the program 1400 contains multiple
additional pairings of compare and branch instructions. For
instance, in step 1406, the processing device performs a
second comparison operation (i.e., the compare2 instruc-
tion). The processing device also resets the condition flags
on the basis of the outcome of the second comparing
operation. In step 1408, the processing device executes a
branch instruction of the basis of the new values of the
condition flags. Namely, the processing device branches to
address B if the compare2 instruction satisfies prescribed
conditions, as reflected by the value of the condition flags.

[1265] In step 1410, the processing device performs a
third comparison operation (i.e., the compare3 instruction).
Again, the processing device also resets the condition flags
on the basis of the outcome of the comparing operation. In
step 1412, the processing device executes a branch instruc-
tion on the basis of the new values of the condition flags.
Namely, the processing device branches to address C if the
compare3 instruction satisfies prescribed conditions, as
reflected by the value of the condition flags.

[1266] Yet additional pairings of compare and branch
instructions may be included (although not illustrated).
Following the series of compare and branch instructions, the
program may include additional processing 1414.

[1267] The known technique shown in FIG. 87 may be
applied in numerous applications, such as in performing
error check operations. For example, a network processor
often performs a series of error checks prior to performing
a prescribed main processing task. In the IPv4 packet
network protocol, for instance, the network processor checks
to determine whether the protocol version of information
being processed is equal to 4. The processing device may
also determine whether the header of the information being
processed is at least five words. The processing device may
also determine whether the total length of the packet of
information is not grater than the length specified by the
MAC layer.

[1268] The processing device may assign a different pair
of compare and branch instructions to each of the above
requirements, as indicated in Table 44.

TABLE 44

Instruction
Index Action

comparel

branch if “not equal” to errorl
compare2

branch if “less equal” to error2
compare3

branch if “greater than” to error3
T-n additional processing

[ S A I S

[1269] The first and second instructions identified corre-
spond to steps 1402 and 1404 of FIG. 87. The third and
fourth instructions correspond to steps 1406 and 1408 of
FIG. 87. The fifth and sixth instructions correspond to steps
1410 and 1412 of FIG. 87. The indicated additional pro-
cessing in steps 7 et seq. corresponds to step 1412 of FIG.
87.
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[1270] The technique described above has shortcomings.
Namely, the proliferation of branch instructions in a program
reduces the efficiency of the processing device. For instance,
each of the branch instructions takes a prescribed amount of
time to perform. Thus, a program that includes a multitude
of such instructions may suffer from processing delays.
Further, a lengthy program comprising several compare and
branch instructions also requires sufficient memory capacity
to store the program, and therefore detracts from efforts to
deploy the processing device in computationally sparse
technical environments.

[1271] Further, in the above-noted IPv4 application, the
processing device may encounter the above-described error
conditions relatively infrequently. In this sense, these con-
ditions are considered rare. Nevertheless, the processing
device must sequence through the above-described six error
checking instructions before advancing to the main process-
ing routine (e.g., in step 1414 of FIG. 87). In view of these
factors, the use of multiple branching instructions appears to
impose an unwarranted bottleneck in the course of normal
processing of IPv4 data. For all of the above reasons, the use
of branch instructions is considered expensive to a design
implementation.

[1272] The apparatus and method described herein is
applicable to any type of processing environment. For
example, FIG. 88 provides one such general processing
environment 1500 for the purposes of illustration. The
environment 1500 includes a processing device 1502,
including a central processing unit (CPU) 1504. The pro-
cessing device 1502 may also include other conventional
processing units coupled to the processing unit 1504, such as
memory 508, cache 1506, and communication interface
1510. The CPU 1504 serves as a central engine for executing
machine instructions. The memory 1508 (such as a Random
Access Memory, or RAM) and cache 1506 serve the con-
ventional role of storing program code and other information
for use by the processor 1504 in performing its ascribed
functions. The communication interface 1510 serves the
conventional role of interacting with external equipment,
such as the network 1402, or some other peripheral device.

[1273] The processing device 1502 also includes program
functionality 1512 for executing various processing func-
tions. This program functionality 1512 may be implemented
as software stored in memory (e.g., memory 1508, or some
other memory). As indicated in FIG. 88, the program
functionality 1512 may include one or more programs 1514
that are specifically designed to make use of the unique
branching technique of the present invention, to be
described in greater detail below.

[1274] The processing device 1502 may include additional
hardware and/or software to serve specific computational
roles. For instance, the processing device 1502 may com-
prise an apparatus having hardware and/or software func-
tionality specifically adapted for communication with a
packet network, such as network 1516. For instance, the
packet network 1516 may comprise any type of local-area or
wide-area network for transmitting data in packet format.
More specifically, the packet network 1516 preferably com-
prises some type of network governed by the IP/TCP pro-
tocol, such as the Internet, or an intranet. The network may
include any types of physical links, such as fiber-based links,
wireless links, copper-based links, etc.
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[1275] FIG. 89 provides additional details regarding an
exemplary architecture of the processing unit 1504. The
processing unit 1504 may include an arithmetic logic mod-
ule (ALU) 1602, a control logic module 1604, input/output
(I/0) logic module 1606, and various working registers
1608.

[1276] The control logic module 1604 includes logic for
decoding and executing machine instructions. To this end,
this module 1604 may include conventional features, such as
an instruction register for holding an instruction while it is
being processed by the processing device 1502, a program
counter, etc. The control logic module 1604 may further
include one or more storage locations 1630 for storing
condition flags. As described above in the Background
section, the processing device 1502 modifies the contents of
the condition flags when an instruction is performed by the
processing device 1502, so as to indicate the outcome of the
instruction. Different processing devices designed by differ-
ent manufacturers employ different sets of processing flags.
Known flags include an SF flag which is equal of the MSB
(most significant bit) of the result of an operation, indicating
whether the result was negative or non-negative. A ZF flat is
set to 1 if the result of an operation is 0. A CF is set 1 if the
result of an operation produces a carry. Still other types of
flags are known to those skilled in the art.

[1277] In addition, the solution described herein provides
at least one additional condition flag referred to as an
accumulative flag 1632. Unlike the other flags, the accumu-
lative flag 1632 may provide a value that reflects the
outcome of more than one instruction. For instance, after a
sequence of three compare instructions, the condition flag
may be set to indicate whether any of these three instructions
satisty pre-established conditions. In other words, the accu-
mulative flag 1632 in this case represents the logical OR of
the separate compare instructions. The flag is referred to
accumulative in the sense that its final status reflects the
accumulation of separate determinations made in separate
compare instructions (or other instructions). It is also appro-
priate to refer to this flag as a sticky flag. The flag is sticky
in the sense that it can remain set for multiple computer
instructions (such as multiple compare instructions). That is,
unlike the known art, the accumulative (or sticky) flag 1632
not change after every computer instruction (such as after
every compare instruction). Additional details regarding the
use of the accumulative flag are presented below.

[1278] The flags stored in storage 1630 may comprise
binary information expressed in one or more bits. The
storage 1630 may contain a single accumulative flag, or
multiple accumulative flags.

[1279] The ALU 1602 performs various logical and arith-
metic operations in a conventional manner. The I/O logic
1606 coordinates transfer of information between the pro-
cessing unit 1504 and other modules in the environment
1500 in a conventional manner. The working registers 1608
retain information for use in the execution of program
instructions, and may include various conventional address
registers and arithmetic registers.

[1280] FIG. 90 describes an exemplary method for
executing program instructions based on the value of the
accumulative flag. It begins in step 1402, where the pro-
cessing device executes a first compare instruction (i.e., the
comparel instruction). As mentioned above, in this step, a
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first operand is subtracted from a second operand. The
processing device also sets the value of the accumulative
flag to reflect whether the comparel instruction satisfies a
first prescribed condition. In step 1404, the processing
device executes a second compare instruction (i.e., the
compare? instruction). The processing device also updates
the value of the accumulative flag to reflect whether either
the comparel instruction satisfies the first prescribed con-
dition, or whether the compare2 instruction satisfies a sec-
ond prescribed condition. In step 1404, the processing
device executes a third compare instruction (i.e., the com-
pare3 instruction). The processing device also updates the
value of the accumulative flag to reflect whether any of the
comparel, compare2, or compare3 instructions satisfy their
respective prescribed conditions. Yet additional compare
instructions may be included (although not illustrated).

[1281] After the series of compare instructions, in step
1708, the processing device executes a branch instruction
based on the value of the accumulative flag. At this stage, the
accumulative flag reflects whether any one of the first
through third compare instructions produced an outcome
which satisfies its respective prescribed condition. In this
sense, the accumulative flag reflects the logical OR of
individual condition flag values produced in preceding com-
parison steps. This is in marked contrast with the known
prior art, where the condition bits strictly reflected the
outcome of the single instruction that was last performed.

[1282] If the accumulative flag is set, then the processing
device branches to an indicated address (in this case, address
D). If the accumulative flag is not set, then the processing
device advances to the remainder of the program, generi-
cally represented as instructions 1710 in FIG. 90.

[1283] Two examples serve to further clarify the exem-
plary use of the above-described technique.

[1284] 1) Example A: Error Checking

[1285] The technique shown in FIG. 90 may be applied in
numerous applications, such as in performing error checks.
As mentioned above, a network processor often performs a
series of error checks prior to performing a prescribed main
processing task. In the IPv4 packet network protocol, for
instance, the network processor checks to determine whether
the protocol version of information being processed is equal
to 4. The processing device may also determine whether the
header of the information being process is at least five
words. The processing device may also determine whether
the total length of the packet of information is not greater
than the length specified by the MAC layer.

[1286] In contrast to the approach described in FIG. 87,
the technique shown in FIG. 90 performs the above-de-
scribed three comparison operations, followed by a single
branch instruction based on the accumulative flag that
reflects the accumulative outcome of the three comparison
operations. Table 45 illustrates the series of instructions used
to perform the error check using the technique of FIG. 90.

TABLE 45
Instruction
Index  Action

1 comparel, overwrite accumulative flag with “not equal”
condition

2 compare2, set accumulative flag if “less equal,” and otherwise
maintain accumulative flag if set in prior
operation
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TABLE 45-continued

Instruction
Index  Action

3 compare3, set accumulative flag if “greater than,” and
otherwise maintain accumulative flag if set in prior
operations

4 branch if accumulative flag is true to errorl_or2_or3

5 additional processing

[1287] The first through third instructions correspond to
steps 1402 to 1706, respectively, of FIG. 90. The accumu-
lative outcome of these three compare operations sets the
value of the accumulative flag if any of the error conditions
reflected in the three comparison operations hold true. The
fourth instruction corresponds to step 1708 in FIG. 90. The
indicated additional processing in steps 7 et seq. corresponds
to step 1710 of FIG. 88.

[1288] A comparison of the technique shown in FIG. 90
with the technique shown in FIG. 87 illustrates the merits of
the present invention with respect to the known art. For
instance, the technique shown in FIG. 87 uses six instruc-
tions to accomplish the error checking operation. In contrast,
the technique shown in FIG. 90 uses only four instructions
to accomplish the error checking.

[1289] It will be noted that the technique shown in FIG.
90 provides a single branch instruction when any of the
extreme error conditions are present, and hence does not
provide branching that is specific to individual error condi-
tions. Nevertheless, these extreme error conditions are rela-
tively rare. Thus, it is preferred to streamline the process
which checks for these errors by reducing the number of
required branching operations. In the relatively rare event
that an error condition is encountered, then the processing
device can then discriminate the exact cause of the failure in
a separate routine without presenting a bottleneck situation
to normal error-free processing.

[1290] 2) Example 2: Logical Operations (e.g., AND and
OR operations)

[1291] The technique shown in FIG. 90 also may stream-
line the execution of various logical operations, such as
various operations that involve AND and OR logical opera-
tions. Consider, for example, the case where a program
requires branching in the event that the following condition
(1) is true:

[1292] if (a>=7 AND b<8) then goto label D (1).

[1293] In the known technique, testing this condition
would require the execution of multiple pairs of compare
and branch instructions. In the present technique, the opera-
tion may be performed using a series of compare operations
following by a single branch instruction.

[1294] More specifically, it should first be noted that
condition (1) may be rephrased in the negative using OR
logic (e.g., the expression ¢ AND d can be expressed as NOT
(NOT ¢ OR NOT d)). With this in mind, the condition (1)
can be executed by performing the following series of
instructions using the accumulative flag:

[1295]

[1296] cmp.ge b, 8

[1297] be.accumulativeo label D.

cmp.o.lt a, 7
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[1298] The first instruction commands the processing
device to compare operand “a” with the value 7, and then set
the accumulative flag if operand “a” is equal to or less than
7 (and clear it otherwise). The second instruction commands
the processing device to compare operand “b” with the value
8, and then to set the accumulative flag if the operand “b” is
greater than or equal to 8. It will be noted that these
operations are the opposite of the condition (1) because the
instructions are executing using the negative counterpart of
this equation. The third instruction commands the process-
ing device to branch to label D if the final value of the
accumulative flag is 0.

[1299] The following Truth Table 46 illustrates different
scenarios depending on the input values of operands “a” and
“b!’.

TABLE 46
accumulative

accumulative flag after

flag after second

a>=7 b<8 result first compare compare
0 0 0 1 1
0 1 0 1 1
1 0 0 0 1
1 1 1 0 0

[1300] A similar, but complementary, series of instructions
may be used to implement the condition:

[1301] if (a>=7 OR b<8) then goto label D (2).

[1302] Namely, the instructions for implementing this
condition are as follows.

[1303] cmp.o.ge a, 7
[1304] cmp.ltb, 8
[1305] be.accumulativel label D.

[1306] The first instruction commands the processing
device to compare operand “a” with the value 7, and then set
the accumulative flag if operand “a” is equal to or greater
than 7 (and clear it otherwise). The second instruction
commands the processing device to compare operand “b”
with the value 8, and then to set the accumulative flag if the
operand “b” is less than 8. The third instruction commands
the processing device to branch to label D if the final value
of the accumulative flag is 1. It will be noted that there is no
need to negate the operations described in the above con-
dition, as a logical OR is being performed in this case (rather
than an AND operation).

[1307] Finally, the following Truth Table 47 illustrates
different scenarios depending on the input values of oper-
ands “a” and “b”.

TABLE 47
Accumulative Accumulative

flag after flag after

first second

a>=7 b<8 result compare compare
0 0 0 0 0
0 1 1 0 1
1 0 1 1 1
1 1 1 1 1
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[1308] In typical processors, many instructions can be
predicated (conditional) on any condition code. In the ARM
processor, for example, 4 opcode bits are required. However,
in one implementation of the present invention, instructions
can be predicated using only the sticky bit, requiring only
two opcode bits (one bit for conditional/unconditional and
one bit for bit 0/bit 1).

[1309] Although the above-described invention was
described in the context of multiple compare instructions
following by a single branch instruction, it has general
applicability to other types of processing instructions. Like-
wise, the present invention can be implemented for any
number of compares in combination with any number of
AND/OR operations (e.g., (a>7 AND b==8) OR c !=9)).
Generally, the invention may be applied to the generic case
where an accumulative flag is set based on whether either a
first or second instruction satisfy their respective prescribed
conditions. Then, a third instruction performs some other
operation that is conditional on the value of the accumula-
tive flag.

[1310] In accordance with one embodiment of the present
invention, a method for executing machine instructions in a
processing device is provided. The method comprises the
steps of executing a first instruction, identifying whether an
outcome of the execution of the first instruction satisfies a
first specified condition, and setting an accumulative flag
result which reflects whether the first instruction satisfies the
first specified condition. The method further comprises the
steps of executing at least a second additional instruction,
identifying whether an outcome of the execution of the
second instruction satisfies a second specified condition, and
updating the accumulative flag depending on whether either
the first instruction or the second instruction satisfy their
respective first and second specified conditions, and a third
instruction based on the value of the accumulative flag
subsequent to the execution of the first and second instruc-
tions. The first and second instructions, in one embodiment,
are compare instructions that each compare a first operand
with a second operand. The third instruction, in one embodi-
ment, is a branch instruction which bases its branching
determination on the value of the accumulative flag. In
another embodiment, the first and second instructions are
compare instructions that each compare a first operand with
a second operand, and wherein the third is a branch instruc-
tion which bases its branching determination on the value of
the accumulative flag.

[1311] Inone embodiment, the compare instructions of the
above method determine whether two respective error con-
ditions are present, and the branch instruction bases it
branching determination on whether either of the two
respective error conditions are present, as reflected by the
value of the accumulative flag after the second compare
instruction is performed.

[1312] In accordance with another embodiment of the
present invention, a computer readable medium containing
program code for execution by a processing device is
provided. The medium includes a first instruction for per-
forming a first operation, which, when executed by the
processing device, generates a first outcome result, at least
a second additional instruction for performing a second
operation, which, when executed by the processing device,
generates a second outcome result, and at least an additional



US 2003/0195990 A1l

third instruction for performing a third operation based on an
accumulative flag, wherein the accumulative flab represents
the logical OR of the first and second outcomes. In one
embodiment, the first and second instructions are compare
instructions that each compare a first operand with a second
operand. In another embodiment, the third instruction is a
branch instruction which bases its branching determination
on the value of the accumulative flag. In yet another embodi-
ment, the first and second instructions are compare instruc-
tions that each compare a first operand with a second
operand, and wherein the third instruction is a branch
instruction which bases its branching determination on the
value of the accumulative flag.

[1313] In one embodiment, the compare instructions
determine whether two respective error conditions are
present, and the branch instruction bases it branching deter-
mination on whether either of the two respective error
conditions are present, as reflected by the value of the
accumulative flag after the second compare instruction is
performed.

[1314] In accordance with another embodiment of the
present invention, an apparatus for executing machine
instructions is provided. The apparatus comprises a storage
for storing an accumulative flag, logic for executing instruc-
tions and for determining whether the outcomes of the
instructions satisfy respective prescribed conditions, logic
for setting the accumulative flag to reflect the outcomes of
the instructions, wherein the logic for setting the accumu-
lative flag includes logic for determining the value of the
accumulative flag based on the logical OR of at least first
and second instructions, and wherein the logic for executing
instructions also includes logic for executing at least an
additional third instruction based on the value of the accu-
mulative flag stored in the storage. In one embodiment, the
first and second instructions are compare instructions that
each compare a first operand with a second operand. The
third instruction can include a branch instruction which
bases its branching determination on the value of the accu-
mulative flag. Furthermore, the first and second instructions
can include compare instructions that each compare a first
operand with a second operand, and wherein the third
instruction is a branch instruction which bases its branching
determination on the value of the accumulative flag. The
compare instructions, in one embodiment, determine
whether two respective error conditions are present, and the
branch instruction bases it branching determination on
whether either of the two respective error conditions are
present, as reflected by the value of the accumulative flag
after the second compare instruction is performed.

[1315] In accordance with an additional embodiment of
the present invention, an apparatus for executing machine
instructions is provided. The apparatus comprises a storage
for storing an accumulative flag, logic for executing instruc-
tions and for determining whether the outcomes of the
instructions satisfy respective prescribed conditions, logic
for setting the accumulative flag depending on the outcomes
of the executed instructions, wherein the logic for setting the
accumulative flag includes logic for determining the value of
the accumulative flag based on whether at least one instruc-
tion within a group of at least two instructions had an
outcome which satisfied its respective prescribed condition,
and another storage for storing a program that comprises
plural instructions, including: a first instruction for perform-
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ing a first operation, which, when executed by the process-
ing device, generates a first outcome result; at least a second
additional instruction for performing a second operation,
which, when executed by the logic for executing, generates
a second outcome result; and at least an additional third
instruction for performing a third operation based on an
accumulative flag.

[1316] The first and second instructions, in one embodi-
ment, are compare instructions that each compare a first
operand with a second operand. The third instruction can
include a branch instruction which bases its branching
determination on the value of the accumulative flag. Fur-
thermore the first and second instructions can include com-
pare instructions that each compare a first operand with a
second operand while the third instruction includes a branch
instruction which bases its branching determination on the
value of the accumulative flag.

[1317] In one embodiment, the compare instructions
determine whether two respective error conditions are
present, and the branch instruction bases it branching deter-
mination on whether either of the two respective error
conditions are present, as reflected by the value of the
accumulative flag after the second compare instruction is
performed.

[1318] While the foregoing description includes many
details and specificities, it is to be understood that these
have-been included for purposes of explanation only, and are
not to be interpreted as limitations of the present invention.
Many modifications to the embodiments described above
can be made without departing from the spirit and scope of
the invention.

What is claimed is:
1. A rings-based system, comprising:

a plurality of ring members on a ring network that
communicate using point- to-point connectivity;

a message traversing the ring from member to member;

the system being adapted so that upon the message
arriving at a given ring member the message is pro-
cessed by that ring member if the message is applicable
to that ring member, and if the message is not appli-
cable to that ring member, the message is passed on to
the next ring member; and

a system clock signal for controlling timing on the ring
network wherein the system clock signal is aligned
between groups of ring members instead of among all
of the ring members.

2. The system of claim 1, wherein the system clock signal

alignment is performed among adjacent ring members.

3. The system of claim 2, wherein the alignment for a ring
member is performed with respect to the ring member’s
upstream and downstream ring member.

4. The system of claim 1, wherein the system clock signal
runs in the same direction as the message.

5. The system of claim 1, wherein the system clock signal
runs in the opposing direction to the message.

6. The system of claim 1, wherein the alignment is
performed by inserting logic at the ring members that
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ensures that the delay between adjacent clock signals does
not exceed the delay between the adjacent members.

7. The system of claim 1, wherein the alignment is
performed using latches that are clocked by clock signals at
individual members.

8. The system of claim 1, further comprising a backpres-
sure signal that runs in the opposing direction to the mes-
sage, and wherein the alignment is performed by inserting
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logic at the ring members to ensure that the return path for
the backpressure signal exceeds the clock delay between
adjacent members.

9. The system of claim 1, wherein the alignment substan-
tially removes skew among the clock signals.

10. The system of claim 1, wherein the alignment prevents
a flip-flop at a ring member from sampling data a clock cycle
too early.



