发明名称
氨基脂质，及其合成和用途

摘要
本发明提供了一种新的氨基脂质和用于合成这些化合物的便利方法。所述氨基脂质作为转染剂具有良好的特性，所述方法是经济的通用的两步合成，允许制备各种氨基脂质。通过所述转染剂组合文库的装配，本发明提供了含有所述氨基脂质的脂质颗粒（脂质体）及其用于将生物活性剂传送至细胞中的用途。本发明还包括含有阳离子氨基脂质的脂质颗粒作为药物的用途。
1. 具有以下通式(I)的氨基脂质:

![化学结构式](image)

其中R¹和R²相同或不同，并且独立地是C₆-C₃₃烷基、C₆-C₃₃烯基、C₆-C₃₃炔基或C₆-C₃₃醚基，其可以任选被C₁-C₆烃基基团取代。

X¹和X²相同或不同，是S或S＝O或S(＝O)₂，Y是通式-NH-C(O)-的酰胺，通式-O-C(O)-的酯或通式-\(\text{N} – \text{N} – \text{O} \)的杂环酰胺，其中k和l是0至2的整数。

R³和R⁴相同或不同，并且独立地是C₁-C₁₂烷基、C₁-C₁₂烯基或C₁-C₁₂炔基，其中烷基、烯基或炔基可以任选被C₁-C₆烃基基团取代，或R³和R⁴可以结合形成3至10个原子和0至6个选自氮、硫和氧的杂原子的任选取代的环环。

m是1至2的整数，并且n是2至12的整数。

2. 权利要求1的氨基脂质，其中R¹和R²相同或不同，并且独立地是C₆-C₃₃烷基，其可以任选被C₁-C₆烃基基团取代。

3. 权利要求1或2的氨基脂质，具有通式(II)的结构

![化学结构式](image)

R¹和R²是相同的C₆-C₃₃烷基；

Y是通式-NH-C(O)-的酰胺，通式-O-C(O)-的酯或通式-\(\text{N} – \text{N} – \text{O} \)的杂环酰胺。

R³和R⁴是相同或不同的C₁-C₁₂烷基，其中烷基可以任选被C₁-C₆烃基基团取代，或R³和R⁴可以结合形成3至10个原子和0至6个选自氮、硫和氧的杂原子的任选取代的环环。

m是1至2的整数，并且n是2至12的整数。

4. 根据权利要求1或2的氨基脂质，具有通式(IIla)、(IIlb)或(IIlc)的结构

![化学结构式](image)

其中R¹和R²是相同的C₆-C₃₃烷基。

R³和R⁴是相同的C₁-C₆烷基。
5.一种用于合成如权利要求1至4中任一项限定的氨基脂质的方法，其包括以下步骤：
 a) 在UV-照射下或使用自由基引发剂，将通式(IVa)、(IVb)或(IVc)的炔烃与通式HS-R¹
 和HS-R²的化合物反应

 $\text{HO}\equiv\text{O}$ (IVa)、$\text{H}_2\text{N}\equiv\text{N}$ (IVb) 或 $\text{HO}\equiv\text{O}$ (IVc)，

 其中n是2至12的整数，

 其中R¹和R²相同或不同，并且独立地是C₆-C₂₄烷基、C₅-C₂₄烯基、C₆-C₂₄炔基或C₆-C₂₄酰基，
 其可以任选被C₆-C₈烃基基团取代，以产生通式(Va)、(Vb)或(Vc)的化合物；

 $\text{HO}\equiv\text{S}\equiv\text{S}\equiv\text{S}$ (Va)、$\text{H}_2\text{N}\equiv\text{S}\equiv\text{S}\equiv\text{S}$ (Vb)、
 $\text{HO}\equiv\text{S}\equiv\text{S}\equiv\text{S}$ (Vc)，

 其中n、R¹和R²如上定义。

 b) 通式Va的步骤a)的产物与通式(R³R⁴R⁵N)(CH₆)ₖZ的胺或醇的缩合反应，m为1至12的整数，
 其中Z是Nle、OH或通式NH_2 的仲杂环胺，其中k和l是0至2的整数，

 或通式Vb和Vc的步骤a)的产物与通式(R³R⁴R⁵N)(CH₆)ₖZ的羧酸的缩合反应，m为1至12的整数，
 其中Z是COOH；

 R³和R⁴是相同或不同，并且独立地是C₁-C₁₂烷基、C₁-C₁₂烯基或C₁-C₁₂炔基，其可以任选被
 C₁-C₆烃基基团取代，或R³和R⁴可以结合形成3至10个碳原子和0至6个选自氮、硫和氧的杂原子
 的任选取代的杂环。

 R⁵不存在或是氢或C₁-C₁₂烷基，以提供季胺，

 以产生通式(VI)的化合物

 $\text{R}^\circ\equiv\text{N}\equiv\text{S}\equiv\text{S}\equiv\text{S}$ (VI)，

 其中n、m、Y、R¹、R²、R³和R⁵如上定义。

6. 根据权利要求5的方法，包括使用氧化剂的通式(VI)的硫醚(步骤b的产物)氧化成亚
 硝(S=O)和/或砜(S(=O)₂)的任选步骤c)。

7. 含有权利要求1至4之一的氨基脂质的脂质颗粒。

8. 根据权利要求7的脂质颗粒，其中所述脂质颗粒是脂质体。

9. 根据权利要求7或8之一的脂质颗粒，进一步含有非阳离子脂质。

10. 根据权利要求7至8之一的脂质颗粒，进一步含有胆固醇。

11. 根据权利要求7至8之一的脂质颗粒，进一步含有生物活性剂。

12. 根据权利要求11的脂质颗粒，其中所述生物活性剂是任选选自以下的成员：核酸、
 抗肿瘤剂、抗生素、免疫调节剂、抗炎剂，作用于中枢神经系统的药剂、多肽或多肽类。

13. 根据权利要求7至12之一的脂质颗粒制备用于将生物活性剂传送至细胞中的药物
的用途。
14. 根据权利要求13的用途，其中所述药物用于病毒感染，肝病或失调，或癌症治疗。
氨基酸类及其合成和用途

技术领域
[0001] 本发明提供了新的氨基酸类及其合成。这些（阳离子）氨基酸类作为转染剂具有良好的特性。它们可以用于生产脂质颗粒，尤其是脂质体，允许生物活性物送至细胞中。合成的简单性允许以试剂盒—方式来研发氨基酸类的组合文库。可以筛选该文库中所含化合物的特定特性，特别是各种细胞系的转染。本发明还包括含有（阳离子）氨基脂肪的脂质双层作为药物的用途。

[0002] 背景
[0003] 在用于与生物活性剂（如，核酸）一起转染细胞的各种试剂中，基于脂质体的那些介导的传送已经公知是最有效的，这大部分是由于它们的效率和易于使用。脂质体是人工制备的由脂质双层制得的球形泡囊，为了将分子传送至作用位点，脂质双层可以与其他双层（如，细胞膜）融合，由此在细胞内部传送脂质内含物。

[0004] 由于其独特的特性，脂质体用于药物传送。脂质体在疏水性膜内包括一些水溶液；溶解的亲水性溶质不能容易地通过脂质。疏水性化合物物质可以溶解至膜中，并且以这样的方式，脂质体可以同时携带疏水性分子和亲水性分子。脂质体可以结合生物活性剂，如药物、核酸、肽等，并且用于传送这些物质，用于调控细胞生化途径。这打开了疾病新治疗的可能。

[0005] Gershon等（Gershon H等，Mode of formation and structural features of DNA-cationic liposome complexes used for transfection（用于转染的DNA—阳离子脂质体复合物的形成模式和结构特征），Biochemistry，1993，32：7143—7151）陈述了在阳离子脂质体和核酸之间形成的纳米颗粒表示了一种用于将DNA和RNA传送至细胞中的有效载体。阳离子脂质体最初结合DNA分子，以形成沿着核酸的聚集泡囊。在临界脂质体密度，发生了两个过程，DNA诱导的膜融合和脂质体诱导的DNA缩合。DNA缩合导致缩合结构的形成，该缩合结构可以在快速、高度协作的的过程中融合的脂质双层完全包裹。

[0006] 对于荷电的核酸的传送，阳离子脂质是最有效的转染剂。阳离子脂质表示一类有前景的用于DNA传送的合成材料。迄今为止，存在几种商业化阳离子脂质，但用于安全且有效传送基因的阳离子脂质的数量仍然是有限的。

[0008] WO01/42200描述了阳离子两性化合物的实例及其在药物组合物中作为转染剂的用途。该文献中公开的化合物是以耗时的多步骤合成来制得的。

[0009] 阳离子脂质需要与天然磷脂（称为辅助脂质）结合来形成可以更有效地结合至细胞膜中的脂质体。通过将脂质体结合DNA或药物（其单独不能通过靶细胞的膜扩散），它们可以（无差别地）通过脂质双层传送。这种使用脂质体将DNA转化或转染至宿主细胞中称为脂转染。
尽管脂质体试剂表示了现有技术关于细胞转染剂的状况，但它们具有以下缺陷：

1. 许多细胞系（如初级细胞）在当时不能有效地转染，即使使用脂质体试剂。
2. 合成相对困难和昂贵，常常导致对最终使用者而言是高价的。

作为第二点的结果，许多实验室使用不太有效的、较廉价的替代品用于转染（如，磷酸钙）。对易于合成并且对于各种细胞类型具有良好转染产量的新转染剂存在具体需求。作为替换方案，将有助于安排容易组合合成的转染剂，使得可以生产各种化合物。

发明目的

为了克服现有技术的缺陷，本发明的目的是提供新的阳离子氨基脂质及其合成方法。该方法应当是普通、经济的并且易于进行。这种普通方法可以产生阳离子氨基脂质文库。这样的脂质文库（含有数百个不同脂质分子）的产生很大程度上增强了具有最佳转染试剂特性的脂质的鉴定。

本发明的另一个目的是提供脂质颗粒，尤其是脂质体，其含有上述阳离子氨基脂质。特别地，这些脂质颗粒或脂质体应当能够通过细胞膜传送生物活性剂。另一个目的是所述脂质颗粒或脂质体用于治疗疾病的用途。

发明描述

本发明提供了具有以下通式（I）的新氨基脂质：

![分子结构图](content)

其中R₁和R₂相同或不同，并且独立地是C₆-C₂₄烷基、C₆-C₂₄烯基、C₆-C₂₄炔基或C₆-C₂₄酰基，其可以任选被C₁-C₅烃基基团取代，X¹和X²相同或不同，是S或S=O或S(=O)₂，Y是酰胺、酯或通式N=N 的杂环酰胺，其中k和l是0至2的整数。

R³和R⁴相同或不同，并且独立地是C₁-C₁₂烷基、C₁-C₁₂烯基或C₁-C₁₂炔基，其中烯烃、烯基或炔基可以任选被C₁-C₅烃基基团取代，或R³和R⁴可以结合形成3至10个原子和0至6个选自氮、硫和氧的杂原子的任选取代的杂环，

R⁵不存在或是氢或C₁-C₅烷基，以提供季胺，m是1至12的整数，并且n是2至12的整数。

在本发明的优选实施方案中，R¹和R²相同或不同，并且独立地是C₆-C₄烷基，更优选，R¹和R²是相同的C₆-C₁₈烷基。

此外，本发明提供了通式（II）的氨基脂质：

![分子结构图](content)

R¹和R²是相同的C₆-C₁₈烷基。
[0029] Y是酰胺、酯或通式

\[
\begin{align*}
\text{N} & \quad \text{O} \\
\text{O} & \quad \text{N}
\end{align*}
\]

的杂环酰胺，其中k和l是0至2的整数，

[0030] R^3和R^4是相同或不同的C_1–C_2烷基，其中烷基任选被C_1–C_8烃基基团取代，或R^3和R^4

可以结合形成3至10个原子和0至6个选自氢、硫和氧的杂原子的任选取代的杂环，

[0031] m是1至12的整数，并且n是2至12的整数。

[0032] 在本发明另一个优选实施方案中，Y是酰胺。

[0033] 在根据通式(1)或(II)的化合物的优选实施方案中，

[0034] n和m独立地是整数2或3。

[0035] 最优选的实施方案对应于通式(IIIa)、(IIIb)或(IIIc)的结构

[0036] ！

或

[0037] 其中R^1和R^2是相同的C_1–C_2烷基，

[0038] R^3和R^4是相同的C_1–C_8烷基，

[0039] m是1至2的整数，并且n是2至3的整数。

[0040] 本发明提供了一种合成如权利要求1至4中所述的氨基脂质的方法。该方法表示没有使用色谱纯化的基于液相组合合成中的硫醇–炔化学的可离子化阳离子氨基脂质的大文献的第一个平行合成，该方法包括以下步骤：

[0041] 第一个步骤是在UV–照射下或使用自由基引发剂，通式(IVa)、(IVb)或(IVc)的炔烃与通式HS–R^2和HS–R^3的化合物的反应

[0042] ！

[0043] 其中n是2至12的整数，

[0044] 其中R^1和R^2相同或不同，并且独立地是C_6–C_24烷基、C_6–C_24烯基、C_6–C_24炔基或C_6–C_24

酰基，其可以任选被C_1–C_8烃基基团取代，以产生通式(Va)、(Vb)或(Vc)的化合物。

[0045] ！

[0046] 其中n、R^1和R^2如上定义。

[0047] 该反应通过自由基机理来进行。可以加入化学自由基，来启动反应或可以简单地
在阳光下进行。在优选的实施方案中，通过UV照射来启动反应。

第二个步骤是第一个步骤的产物（通式Va）与通式（R₁R₂R₃N）(CH₂)ₙZ的胺或醇的缩合反应，m为1至12的整数，其中Z是NH₂、OH或通式

其中k和l是0至2的整数。

或第一个步骤的产物（通式Vb或Vc）与通式（R₁R₂R₃N）(CH₂)ₙZ的羧酸的缩合反应，m为1至12的整数，其中Z是COOH。

R³和R⁴是相同或不同，并且独立地是C₁-C₁₂烷基、C₆-C₁₂烯基或C₆-C₁₂炔基，其可以任选被C₁-C₆羧基基团取代，或R³和R⁴可以结合形成3至10个碳原子和0至6个选自氢、硫和氧的杂原子的任选取代的杂环。

R⁵不存在或是氢或C₁-C₁₂烷基，以提供季铵。

以产生通式(VI)的化合物

\[
\text{R}^5 \quad \text{R}^1
\]

其中n，m，y，x₁，x₂，R₁，R₂，R₃，R⁴和R⁵如上定义。

第二个步骤优选在溶剂中（如，二甲基甲酰胺（DMF）），在室温下进行。在优选的实施方案中，将N，N′-二异丙基碳二亚胺（DIC）加入反应混合物中。

任选的第三步骤是第二个步骤的产物的硫-醚基团与氧化剂的氧化反应，以产生通式(I)的化合物，其中n，m，y，x₁，x₂，R₁，R₂，R₃，R⁴和R⁵如上定义。第三个步骤优选用溶剂（如甲醇）中的含水过氧化氢在室温下进行。第三个步骤可以通过催化剂（如含钛沸石）来进一步催化。Hulea等之前已经提出过这种反应（Hulea V, Moreau P, Renzo FD. Thioether oxidation by hydrogen peroxide using titanium-containing zeolites as catalysts (使用含钛沸石作为催化剂通过过氧化氢的硫醚氧化)，Journal of Molecular Catalysis A: Chemical. 1996, 111:325-332）。令人惊讶地，这种反应没有影响步骤b的氨基脂质的其他官能团。

这种反应方案是非常通用的；可以用于合成大分子的阳离子氨基脂质文库，以非常廉价的方式用于快速的基于细胞的筛选实验。由于其长的非极性基团，所得到的化合物全部具有疏水性特征，并且由于氨基，同时又具有亲水性特征。这种两性特征可以用于合成脂质颗粒，例如，脂质双层、胶束、脂质体等。此外，这些化合物的氨基基团提供了一个阳离子电荷，这对于染色剂是有效的。可以容易地测试这种具有新特征的不同化合物的文库对各种细胞类型的染色能力。

本发明的另一个实施方案涉及含有权利要求1至4之一的氨基脂质的脂质颗粒。在本发明的范围内，术语“脂质颗粒”意思是将氨基脂质放入水溶液中制得的纳米大小的物质，这些颗粒特别是脂质双层包囊（脂质体）、多层泡囊或胶束。

在本发明的优选实施方案中，所述纳米颗粒是含有权利要求1至4之一的氨基脂质的脂质体。在本发明的范围内，脂质体是由包裹含水隔室的脂质两性（两亲（amphiphilic）分子的双层组成的微泡囊。
脂质体形成不是一个自发的过程。当脂质（如，磷脂）放入水中时首先形成脂质泡囊，因此形成一个双层或一系列双层，每个通过水分子分开。可以通过在水中超声波处里脂质泡囊来形成脂质体。

在本发明的范围内，术语“脂质体双层”意思是是由两层脂质分子形成的薄膜。术语“胶束”意思是分散在液态胶体中的表面活性剂分子的聚集体。水溶液中的氧化胶束接触水时与亲水性头部区域形成聚集体，整合胶束中心的疏水性单尾区。

在本发明的范围内，术语“细胞”意思是一般术语，其中包括单个细胞、组织、器官、昆虫细胞、禽类细胞、鱼细胞、两栖类细胞、哺乳动物细胞、初级细胞、连续细胞系、干细胞和/或遗传工程化细胞（如，表达异源多肽或蛋白的重组细胞）的培养。重组细胞包括，例如，表达异源多肽或蛋白（如，生长因子或血液因子）的细胞。

在优选的实施方案中，所述脂质颗粒或脂质体进一步含有辅助脂质。在优选的实施方案中，所述辅助脂质是非阳离子脂质。在优选的实施方案中，所述辅助脂质是非阳离子磷脂。在本发明的范围内，非阳离子脂质可以含有阳离子官能团（例如，氨基官能团），但应当含有阴离子官能团，以至少中和分子。脂质分子中的所有官能团的总体应当是非阳离子的。

由阳离子氨基脂质和非阳离子（中性）磷脂的混合物组成的脂质体对于将核酸传送至细胞中是最有效的。在甚至更优选的实施方案中，所述非阳离子脂质是DOPE。

在进一步优选的实施方案中，脂质颗粒或脂质体进一步包含胆固醇、胆固醇，是细胞膜的天然成分，可以用于稳定颗粒，并且帮助与细胞膜的整合。

在本发明的另一个实施方案中，脂质颗粒或脂质体进一步含有生物活性剂。在本发明的范围内，生物活性剂是引入细胞或宿主中时具有生物作用的物质，例如，通过刺激免疫应答或炎性应答、通过发挥酶活性或通过补充突变等来起作用，生物活性剂特别包括核酸、肽、蛋白、抗体和小分子。将脂质体用于将药物包裹在脂质双层内或脂质体的内部含水空间中时，都可以使用术语“脂质体药物”。

在最优选的实施方案中，生物活性剂是核酸。在另一个优选的实施方案中，所述生物活性剂是任选自抗肿瘤剂、抗生素、免疫调节剂、抗炎剂、作用于中枢神经系统的药物、多肽或多肽类（polypeptoid）的成员。

在另一个实施方案中，脂质颗粒或脂质体进一步含有至少一种聚乙二醇（PEG）－脂质。PEG脂质有助于保护颗粒及其内含物免受体外或体内降解。此外，PEG在脂质体表面上形成保护层，并且提高了体内循环时间。其可以用于脂质体药物传送中（PEG－脂质体）。

含有生物活性剂的脂质颗粒或脂质体可以用于将多种治疗剂中的任何一种传送到细胞中。本发明包括如上所述的脂质颗粒（尤其是脂质体）用于将生物活性剂传送至细胞中的用途。

优选，所述生物活性剂是核酸，包括但不限于：RNA、反义寡核苷酸、DNA、质粒、核酸RNA(rRNA)、微RNA(miRNA)、转移RNA(tRNA)、小的抑制RNA(siRNA)和小的核RNA(snRNA)。生物活性剂还可以是抗肿瘤剂、抗生素、免疫调节剂、抗炎剂、作用于中枢神经系统的药物、抗原或其片段、蛋白、肽、多肽类、疫苗和小分子，或其混合物。

如上所示，含有本发明中限定的氨基酸的脂质颗粒或脂质体适用于将生物活性剂传送至细胞中。可以对通过所述通用合成方法合成的多种不同氨基酸给予脂质体的特
定特征进行筛选。重要的特征例如是染色效率、细胞毒性、待传送至细胞中的药剂的粘附、脂质体的稳定性、脂质体的大小等。本发明的方法可以形成特定适应的脂质体，以用于特定的应用。

【0073】例如，脂质颗粒（脂质体）可以用于转染多细胞组织或器官。这给病人提供了新的治疗处理的可能性。

【0074】根据本发明，病人可以是任何哺乳动物，优选选自人、小鼠、大鼠、猪、猫、狗、马、山羊、牛和猴子和/或其他。优选，病人是人。

【0075】本发明的重要实施方案是所述含有根据通式（I-III）之一的氨基脂质的脂质颗粒或脂质体用作药物的用途。

【0076】特别地，所述脂质颗粒或脂质体可以给予病人，用于基因治疗、基因疫苗接种、反义治疗或通过干扰RNA的治疗中。本发明的脂质颗粒还可以用于制造用于核酸转移的药物中，例如，用于通过疗法的人或动物体的治疗中，尤其是在遗传缺陷或药物引起的病症或遗传缺陷或药物相关的病症的治疗中。

【0077】用于基因治疗的目标是公知的，并且包括单基因失调，例如，囊性纤维化、各种癌症和感染，例如，病毒感染，例如，HIV感染。例如，用p53基因转染提供了很大的用于癌症治疗的潜能。用于基因疫苗接种的目标也是公知的，并且包括对抗如下病原体的疫苗接种，针对所述病原体的源自天然来源的疫苗对人使用太危险和重组疫苗不太有效，例如，B型肝病毒，人免疫缺陷病毒（HIV），丙肝病毒（HCV）和单纯疱疹病毒。

【0078】用于反义治疗的目标也是已知的。随着遗传遗传学知识的提高，提出了更多的用于基因治疗和反义治疗的目标，同样提出了更多的用于基因疫苗接种的目标。

【0080】本发明的脂质颗粒可以用于引发对抗各种抗原的免疫应答，所述抗原用于治疗和/或预防多种病症，包括但不限于，癌症、过敏、毒性和病原体（如，病毒、细菌、真菌和其他致病生物）感染。

【0081】在本发明的优选实施方案中，所述脂质颗粒或脂质体可以用作药物，用于治疗病毒感染、肝病或失调，或癌症。在肝病中，脂质体可以被网状-内皮系统的细胞捕获，网状-内皮系统主要位于肝中。脂质体将在那聚集。

【0082】呈现以下的附图和实施例来提供本发明的程序和概念方面的描述的更好的理解。

【0083】图1:比较显微镜照片，显示出通过使用氨基脂质体试剂和两种可购得的转染剂的脂转染结果。

【0084】图2:120种转染试剂的文库与可购得的试剂相比的转染效率的图解。

【0085】图3:HEK293和MEF细胞中的siRNA基因沉默。
合成

实施例1: N-((二甲基氨基)乙基)-4,5-双(十二烷基硫)戊酰胺(DEDPA)的合成和表征

通过两个步骤来合成氨基脂质。第一个步骤是合成4,5-双(十二烷基硫)戊酸。将0.5mmol戊-4-羧酸，1mmol十二烷-1-硫醇和5mg2,2-二甲氧基-2-苯基苯雌酚(DMFA)溶解于1.5ml THF中,并且加入20ml玻璃小瓶中,用铝箔覆盖。将小瓶置气5min，并装满氩(Ar)3min,然后盖上盖子。将混合物在UV365nm下照射1h,然后将THF转移至50ml烧瓶中,并蒸发。

第二个步骤是4,5-双(十二烷基硫)戊酸与N1,N1-二甲基乙烷-1,2-二胺的结合,以产生N-((二甲基氨基)乙基)-4,5-双(十二烷基硫)戊酰胺。将来自第一个步骤的4,5-双(十二烷基硫)戊酸溶解于8ml二氯甲烷(DCM)中。用4ml DCM稀释1ml这种溶液,并且加入11.61μl N,N'-二异丙基碳二亚胺(DIC)(0.075mmol,1.2当量)。将0.063mmol N1,N1-二甲基乙烷-1,2-二胺加入混合物中,并涡旋。将羟基苯并三唑(HOBt)溶解于二甲基甲酰胺(DMF)中(608μl DMF中304mg),并且加入19.45μl HOBt溶液。然后将小瓶盖上铝箔,并充满Ar。16h搅拌后,将二氯甲烷(DCM)蒸发,将残余物溶解于2ml已烷中,并且转移至新的小瓶中,通过离心分离产物,并且收集上清液,在干燥器中蒸发己烷。用Paraflm密封产物,并且存储在Ar下。

为了证实分子的身份,通过质谱分析粗产物。分子离子清楚地鉴定为574.0MW/z。

与实施例1相似地进行实施例2-7的化合物的合成。步骤1以相同的方式进行。步骤2的分离物不同,而保持化学计算比例。所得到的化合物和相应的MW/z值概括于表1中:

表1:合成的化合物2-7的实例和相应的MW/z值
<table>
<thead>
<tr>
<th>实施例</th>
<th>化合物</th>
<th>MW/μz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4,5-双(十二烷基硫)-N-(2-吗啉代乙基)戊酰胺</td>
<td>614.8</td>
</tr>
<tr>
<td>3</td>
<td>N-(2-(二乙基氨基)乙基)-4,5-双(十二烷基硫)戊酰胺</td>
<td>600.0</td>
</tr>
<tr>
<td>4</td>
<td>N-(3-(二乙基氨基)丙基)-4,5-双(十二烷基硫)戊酰胺</td>
<td>616.0</td>
</tr>
<tr>
<td>5</td>
<td>4,5-双(十二烷基硫)-N-(2-(哌嗪-1-基)乙基)戊酰胺</td>
<td>601.9</td>
</tr>
<tr>
<td>6</td>
<td>N-(3-(二甲基氨基)丙基)-4,5-双(十二烷基硫)戊酰胺</td>
<td>587.9</td>
</tr>
<tr>
<td>7</td>
<td>1-(4-(2-(二甲基氨基)乙基)哌嗪-1-基)-4,5-双(十二烷基硫)戊酰胺-1-酮</td>
<td>642.9</td>
</tr>
</tbody>
</table>

[0095] 实施例8：N-(2-二甲基氨基)乙基)-5,6-双(十二烷基硫)己酰胺的合成和表征

[0097] N-(2-二甲基氨基)乙基)-5,6-双(十二烷基硫)己酰胺的合成程序与之前的实施例相似。第一个步骤是合成5,6-双(十二烷基硫)己酸，将0.5mol己-5-炔酸、1mmol十二烷-1-硫醇和5mg DMPA溶于1.5ml THF中，并且加入20ml玻璃小瓶中，将小瓶覆盖铝箔，充满Ar，并且在UV365nm下照射1h。然后将THF转移至50ml烧瓶中，并蒸发。第二个步骤是将5,6-双(十二烷基硫)己酸与N1,N1-二甲基乙烷-1,2-二胺结合，以产生N-(2-二甲基氨基)乙基)-5,6-双(十二烷基硫)己酰胺。该步骤与之前的实施例相似进行。维持化学计算比例。[0098] 为了证实分子的身份，通过质谱测试了粗产物(m/z 587.9)。
与实施例8相似地进行根据实施例9-14的合成。步骤1以相同的方式进行。步骤2的
离析物不同，而保持化学计算比例。所得到的化合物和相应的分子离子概括于表2中：
表2:合成的化合物9-14的实例和相应的MW/z值。

<table>
<thead>
<tr>
<th>实施例</th>
<th>化合物</th>
<th>MW/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5, 6-双-(十二烷基硫)-N-(2-吗啉代乙基)乙酰胺</td>
<td>629.9</td>
</tr>
<tr>
<td>10</td>
<td>N-(2-(二乙基氨基)乙基)-5, 6-双-(十二烷基硫)乙酰胺</td>
<td>614.0</td>
</tr>
<tr>
<td>11</td>
<td>N-(3-(二乙基氨基)丙基)-5, 6-双-(十二烷基硫)乙酰胺</td>
<td>630.0</td>
</tr>
<tr>
<td>12</td>
<td>5, 6-双-(十二烷基硫)-N-(2-(吡咯烷-1-基)乙基)乙酰胺</td>
<td>615.8</td>
</tr>
<tr>
<td>13</td>
<td>N-(3-(二甲基氨基)丙基)-5, 6-双-(十二烷基硫)乙酰胺</td>
<td>601.9</td>
</tr>
<tr>
<td>14</td>
<td>1-(4-(2-(二甲基氨基)乙基)哌嗪-1-基)-5, 6-双-(十二烷基硫)乙酰胺</td>
<td>657.1</td>
</tr>
</tbody>
</table>

实施例15:N-(2-二甲基氨基)乙基)-4-(十二烷基磺酰)-5-(十二烷基硫)戊酰胺
的合成和表征
一步合成该氨基脂质。将1mmol N-(2-二甲基氨基)乙基)-4,5-双(十二烷基硫)戊酰胺(DEDPA,实施例1的产物)与10ml甲醇中的10mmol含水过氧化氢(30%)混合,并且在室温下搅伴1h。然后将混合物转移至50ml烧瓶中并蒸发。

一步合成该氨基脂质。将1mmol N-(2-二甲基氨基)乙基)-4,5-双(十二烷基硫)戊酰胺(DEDPA,实施例1的产物)与10ml甲醇中的10mmol含水过氧化氢(30%)混合,并且在室温下搅伴2天。然后将混合物转移至50ml烧瓶中并蒸发。

为了证实分子的身份,通过质谱分析粗产物。分子离子清楚地鉴定为589.7MW/μz。

为了证实分子的身份,通过质谱分析粗产物。分子离子清楚地鉴定为637.5MW/μz。

用于细胞转染的阳离子脂质的筛选

实施例17:用于细胞转染的最佳脂质比例的初始测定

将充分证明的HEK293T细胞系用于实施例17和18。

选择天然磷脂二油酰基磷脂酰乙醇胺(DOPE-以下显示的结构)作为所需的共同脂质(也称为辅助脂质)。对于脂质体本身的稳定性是不需要的,而是细胞的胞吞室(内颗粒)中脂质膜破坏所需的,使得生物活性剂释放至胞液和/或核中。基本上,对于结合我们的阳离子氨基脂质(DEDPA)形成稳定脂质体的所需作用是需要的。将DOPE与代表性的阳离子氨基脂质(以下所示的结构)以不同的比例混合。将两种脂质都以50mg/ml溶解于乙醇中,并合并至最终30μl的体积。

DOPE(天然辅助脂质):

作为代表性的新阳离子氨基脂质的N-(2-二甲基氨基)乙基)-4,5-双(十二烷基硫)戊酰胺(DEDPA):

表3:测试的DEDPA:DOPE比例

<table>
<thead>
<tr>
<th>DEDPA</th>
<th>DOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
[0121] 然后将这些30μl乙醇混合物加入70μl的0.2M醋酸钠缓冲剂(pH5.0)中，使用恒定的涡旋30s，接着超声波处理5min，以形成脂质体。最终的脂质体含量为2mg/ml。将上述最终的2mg/ml脂质体样品称为“脂质试剂”。

[0122] 将0.1μl、0.2μl、0.3μl、0.4μl和0.5μl的以上脂质试剂与50ng或100ng脂粒DNA(各自包含9:1比例的pCS-LacZ和pEGFP-C1质粒)混合，并且如下所述与细胞混合：

[0123] （所示的含量是用于96-孔培养板的一个孔的）

[0124] 1.取0.1μl-0.5μl脂质试剂稀释于10μl150mM醋酸钠缓冲液中，pH5.0

[0125] 2.2-5min孵育后，将来自(1)的稀释脂质试剂加入50ng或100ng质粒DNA(DNA溶解于10μl150mM醋酸钠缓冲液中，pH5.0)中。

[0126] 3.将样品在RT下放置30min，以形成脂质/DNA转染复合物。因为DNA是荷负电的，其非特异性地结合脂质体中的阳离子脂质的正电荷头部基团。

[0127] 4.30min后，将50μl新鲜悬浮的HEK293细胞（大约50,000细胞，在补充了10%胎牛血清的DMEM培养基中）加入脂质/DNA复合物中，用移液管作用混合，并且将65μl细胞+脂质/DNA复合物加入单个96-孔中。

[0128] 为了测定脂质混合物将质粒DNA传送至细胞中的能力，初始转染20-24小时后，使用显微镜来观察绿色荧光蛋白(GFP)发射的荧光。GFP蛋白通过pEGFP-C1质粒编码，并且有效地合成，位于成功转染的细胞的细胞质内。

[0129] 结果：

[0130] 氨基脂质：DOPE的最佳比例鉴定为1:1，并且最佳的脂质试剂：DNA比例为0.4μl脂质试剂/50ng DNA。因此将这些条件用于初步筛选，以鉴定具有最高细胞转染效率和最低细胞毒性的脂质试剂，如以下实施例18中所述的。

[0131] 实施例18：使用新脂质试剂的初步筛选

[0132] 细胞系：HEK293细胞

[0133] 筛选形式：96-孔

[0134] 检测（读出）：相对于总细胞数（使用核染料Hoechst测定总细胞数）-参见图1的GFP荧光

[0135] 根据制造商的说明，将可购得的脂质体转染试剂用作参照（参照试剂），参见图1。

[0136] 方法：

[0137] 所有步骤在96孔/平板形式中进行，使用8-或12-通道多移液管，所示的含量为96-孔平板的两(2×)孔。

[0138] 1.将0.8μl脂质试剂稀释于20μl150mM NaOAc缓冲剂(pH5.0)中。

[0139] 2.将来自(1)的稀释脂质试剂加入20μl NaOAc缓冲剂(pH5.0)中的100ng DNA(10ng pEGFP-C1+90ng pCS-LacZ质粒)中，并且用移液管作用混合。
3. 在RT下孵育30min后，加入100μl新鲜重悬浮的细胞(3-5×10⁶细胞/50μl补充了10%胎牛血清的DMEM培养基)，并用移液管混合。

4. 将双份的65μl等份细胞+脂质/DNA复合物立即转移至96孔培养平板的分开孔中，并且置于37°C的含有5%CO₂的培养箱中。

5. 5.5小时后，加入50μl新鲜细胞培养基(补充了10%FCS的DMEM)。

6. 细胞初始转染后20至24小时，将Hoechst33258以0.2μg/ml的终浓度加入细胞中，并且将细胞在37°C下再培养30min。然后将细胞置于倒置显微镜上，并且从每个孔捕获的细胞的2个独立组图象如图1中所示。

7. 对于每个样品，捕获3个图象：细胞的亮视野图象(图1上图)，总细胞核的Hoechst染料染色图象(图1中图)和显示用质粒DNA成功转染的细胞和表达GFP蛋白的GFP图象(图1下图)。

染色的HEK293细胞的显微镜图象，同时显示出与常用的商业转染剂(参照转染剂)相比，我们的脂质分子之一(#29)之一的转染效率和毒性水平，脂质试剂#29具有大约95%的转染效率，并且具有低的细胞毒性(非常少的明亮染色的凋亡核)。通常，脂质体试剂的转染效率越高，细胞毒性越高。对参照试剂观察到了这种情况，其中转染了高百分比的细胞，但作为结果，存在许多不健康的和凋亡的细胞。

8. 注意到增加细胞中显示出GFP信号以及降低的毒性。通过总细胞数的降低以及凋亡细胞的增加来观察毒性，凋亡细胞通过Hoechst染色后的明亮染色细胞来检测。

9. 根据实施例18中给出的实验方案，已经通过了根据权利要求1的120种新合成化合物的文库染色HEK293细胞的能力。图2中的图显示与可购得的转染试剂参照相比，这些脂质化合物的转染效率。与广泛使用的商业转染剂相比，脂质分子中的15种在将质粒DNA(GFP基因)传送至HEK293细胞中明显更有效，通过实线来表示。这15种高效的新转染剂中，有一种特别鉴定为具有非常低的毒性，并且具有非常有效地将siRNA传送至细胞中的能力(#29;参见图1和图3)。

10. 实施例19: 对于转染siRNA的转染图象“命中目标(hit)”的筛选。

11. 用于在细胞和全生物体中操纵基因功能的关键技术之一是通过RNA干扰(RNAi)的基因沉默。对于这种技术，将小干扰RNA(siRNA)分子传递至哺乳动物细胞中是关键，并且具有显著的临床/治疗意义。

12. 因此，除了筛选我们的脂质用于传送质粒DNA(基因)以外，我们还筛选了根据本发明的氨基脂质有效传送siRNA(分子)(基因沉默子)的能力。

13. 为了筛选，将这两种不同类型的细胞用于测试我们的脂质试剂传送siRNA靶向低密度脂蛋白受体相关蛋白6(LRP6)的能力。这是用于Wnt配体的200kd单程跨膜受体，并且激活Wnt/b-连环蛋白信号途径。在HEK293细胞中，以相对低的水平表达，而在MEF细胞中，以相对高的水平表达。

14. 试验1:HEK293细胞中siRNA的转染

15. 方法:

16. 所有步骤在1.5ml Eppendorf试管和24孔平板形式中进行。所示的含量是用于24孔平板的一个孔。

17. 1. 将2μl脂质试剂在50μl150mM NaOAc缓冲剂(pH5.0)中稀释。
2. 将来自(1)的稀释脂质试剂加入20μL NaOAc缓冲剂(pH 5.0)中的20pmol(1μl的20μM siRNA分子)中，并用移液管作用混合。所用的siRNA分子具有对任何已知基因不是特异性的混杂序列(Con siRNA)或特异性靶向来自LRP6基因的内源性mRNA的序列(LRP6 siRNA)。

3. 在RT下孵育30min后，加入400μl新鲜重悬浮的细胞(3-5×10^5细胞/50μl)补充了10%胎牛血清的DMEM培养基，并且用移液管混合。

4. 将脂质/siRNA复合物立即转移至24-孔培养平板的分开孔中，并且放入37℃的含有5%CO_2的培养箱中。

5. 初始转染后48小时，将细胞在50μl去污剂缓冲剂(50mM Tris, 1% Triton X-100, 0.15M NaCl, pH 7.0, 含有蛋白酶和磷酸酶抑制剂)中溶解，离心除去不溶的细胞碎片，并且将30μl澄清的溶解产物加入10μl 1%SDS加样缓冲剂(250mM Tris HCl, 40%甘油, 8%SDS, 0.01%溴酚蓝, 5%2-巯基乙醇, pH 6.8)中。

6. 通过在96℃加热2min，将样品变性，并将10μl样在9%SDS-PAGE凝胶上，用于根据分子量分离蛋白。将分离的蛋白从SDS-PAGE凝胶转移至硝基纤维素膜上，用于Western印迹(WB)分析。

7. 使用自动化BioLane HTI仪器，使用对抗LRP6的抗体，进行了WB。将HRP连接的二抗和化学发光用于检测膜上的蛋白。

试验2. 小鼠胚胎成纤维细胞(MEF)中的siRNA的转染

方法：

所有步骤在1.5ml eppendorf试管和24孔平板形式中进行。所示的含量用于24-孔平板的一个孔。

1. 将2μl脂质试剂在50μl 150mM NaOAc缓冲剂(pH 5.0)中稀释。

2. 将来自(1)的稀释脂质试剂加入20μl NaOAc缓冲剂(pH 5.0)中的20pmol(1μl 120μM siRNA分子)中，并用移液管作用混合。所用的siRNA分子具有对任何已知基因不是特异性的混杂序列(Con siRNA)或特异性靶向来自LRP6基因的内源性mRNA的序列(LRP6 siRNA)。

3. 在RT下孵育30min后，加入400μl补充了10%胎牛血清的新鲜DMEM培养基，用移液管混合，并且加入24-孔平板的一个孔中的粘附MEF细胞中(50-70%汇合)，并且放入37℃的含有5%CO_2的培养箱中。

4. 初始转染后48小时，将细胞在100μl去污剂缓冲剂(50mM Tris, 1% Triton X-100, 0.15M NaCl, pH 7.0, 含有蛋白酶和磷酸酶抑制剂)中溶解，离心除去不溶的细胞碎片，并且将30μl澄清的溶解产物加入10μl 1%SDS加样缓冲剂(250mM Tris HCl, 40%甘油, 8%SDS, 0.01%溴酚蓝, 5%2-巯基乙醇, pH 6.8)中。

5. 通过在96℃加热2min，将样品变性，并将5μl样在9%SDS-PAGE凝胶上，用于根据分子量分离蛋白。将分离的蛋白从SDS-PAGE凝胶转移至硝基纤维素膜上，用于Western印迹(WB)分析。

6. 使用自动化BioLane HTI仪器，使用对抗LRP6和β-肌动蛋白的抗体，进行了WB。将HRP连接的二抗和化学发光用于检测膜上的蛋白。

结果

图3A显示了用所示的siRNA分子转染并且孵育48小时的293细胞的总溶解产物的
内源性LRP6蛋白的Western印迹（WB）分析。使用试剂A传送LRP6 siRNA后，LRP6的内源性水平强烈下调，然而，使用根据本发明#29的脂质试剂，这种作用更强烈。Con指的是非靶向的、没
杂的siRNA对照，再加样指的是用作参照的非特异性蛋白条带，以显示对于每种样品，加载了相似的蛋白含量（因此证明siRNA目标的特异性沉默）。

[0173] 图3B显示了用所示的siRNA分子转染并且培养48小时的MEF（小鼠胚胎成纤维细
胞）细胞的总溶解产物的LRP6蛋白的Western印迹（WB）分析。再一次，在siRNA介导的基因沉
默中，脂质试剂#29比商业试剂A更有效。第二种脂质试剂（#35）也显示出少许作用，尽管事
实是其可以有效地用质粒DNA转染细胞。这证明了相关转染试剂特性中的显著差异，并且强
调了使用我们新方法来容易地合成数个相关脂质的重要性，可以筛选这数百个相关脂
质，以鉴定出具有最佳特性的脂质（如，高度有效的DNA和siRNA传送，以及低细胞毒性）。

[0174] 缩写列表

[0175] Ar 氩
[0176] DCM 二氯甲烷
[0177] DEDPA N-(2-(二甲基氨基)乙基)-4,5-双(十二烷基硫)戊
[0178] 醋胺
[0179] DIC N,N’-二异丙基硫化二亚胺
[0180] DMEM 培养基
[0181] DMF 二甲基甲酰胺
[0182] DMPA 2,2-二甲氧基-2-苯基丙酮苯基酮
[0183] DNA 脱氧核糖核酸
[0184] DOPE 二油酰基磷脂酰乙醇胺
[0185] EGFP 增强的GFP
[0186] GFP 绿色荧光蛋白
[0187] HOBt 羟基苯并三唑
[0188] HRP 辣根过氧化物酶
[0189] kD 千道尔顿
[0190] LRP6 低密度脂蛋白受体相关蛋白6
[0191] MEF 小鼠胚胎成纤维细胞
[0192] PEG 聚乙二醇
[0193] RNA 核糖核酸
[0194] RNAi RNA干拢
[0195] siRNA 小干拢RNA
[0196] SDS 十二烷基硫酸钠
[0197] THF 四氢呋喃
[0198] WB Western印迹
[0199] Wnt 细胞分化中的信号蛋白
亮视野
显示细胞形态

Hoechst核染料
显示总细胞核
和毒性（凋亡）

GFP
显示成功转染
细胞的数目

图1
图2

参照的商购转染剂

合成的120转染剂

相对转染效力
图3

A

<table>
<thead>
<tr>
<th>转染试剂</th>
<th>试剂A</th>
<th>羟基质 #29</th>
<th>羟基质 #39</th>
</tr>
</thead>
<tbody>
<tr>
<td>siRNA</td>
<td>Con</td>
<td>Lrp6</td>
<td>Lrp6</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>转染试剂</th>
<th>试剂A</th>
<th>#29</th>
<th>#35</th>
</tr>
</thead>
<tbody>
<tr>
<td>con siRNA</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>lrp6 siRNA</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

LRP6

β-肌动蛋白