电子烟装置

一种电子烟装置，包括：沿纵向方向延伸的外管、位于外管中的内管、包含蒸发前配方的贮存器，与贮存器连通的芯子和与芯子连通的加热器。该电子烟装置还可以包括包含两个出口的嘴端插入件和位于内管中的限流部中的至少一个。每个出口位于从进口延伸至出口的离轴通道的端部处。每个离轴通道与包围电子烟装置的中心纵向延伸轴线的周界相切地延伸。
1. 一种电子烟装置的筒体，筒体包括：
 沿纵向方向延伸的外管；
 位于外管中的内管，内管包括沿着内管长度的一部分的限流部；
 容盛蒸发前配方的贮存器；
 与贮存器连通的芯子；以及
 与芯子连通的加热器，加热器构造成将蒸发前配方加热到足以形成蒸汽的温度，限流
 部构造成降低蒸汽温度，并且限流部定位成距离加热器大约1mm至大约5mm。
2. 如权利要求1所述的筒体，其中，限流部包括在内管中摩擦配合的插件。
3. 如权利要求2所述的筒体，其中，插件由金属、合金、塑料和热塑性塑料中的至少一种
 形成。
4. 如权利要求3所述的筒体，其中，材料是聚丙烯、聚醚醚酮（PEEK）、陶瓷、玻璃纤维和
 聚乙烯中的至少一种。
5. 如权利要求1所述的筒体，还包括：
 包含四个出口的嘴端插入件，四个出口各自位于离轴通道的端部处，而每个离轴通道
 大体上垂直于邻近的离轴通道延伸。
6. 如权利要求1所述的筒体，其中，内管具有范围从约3mm至约4mm的内径。
7. 如权利要求1所述的筒体，其中，限流部具有范围从约1mm至约2.5mm的内径。
8. 如权利要求1所述的筒体，其中，限流部具有范围从约3mm至约8mm的长度。
9. 一种电子烟装置的筒体，筒体包括：
 沿纵向方向延伸的外管；
 位于外管中的内管；
 包含蒸发前配方的贮存器；
 与贮存器连通的芯子；
 与芯子连通的加热器，加热器构造成加热蒸发前配方；以及
 嘴端插入件，其包括：
 位于第一离轴通道的端部处的第一出口，和
 位于第二离轴通道的端部处的第二出口，第一离轴通道和第二离轴通道各自具有从进
 口向出口延伸的中心轴线，并且第一离轴通道和第二离轴通道与包围电子烟装置的中心纵
 向延伸轴线的周界相切地延伸。
10. 如权利要求9所述的电子烟装置，其中，嘴端插入件包括四个出口，四个出口各自位
 于离轴通道的端部处。
11. 一种电子烟装置的筒体，筒体包括：
 沿纵向方向延伸的外管；
 位于外管中的内管，内管包括沿着内管长度的一部分的限流部；
 包含蒸发前配方的贮存器；
 与贮存器连通的芯子；
 与芯子连通的加热器，加热器构造成加热蒸发前配方以形成蒸汽；以及
 嘴端插入件，其包括：
 四个出口，四个出口各自位于四个离轴通道中的一个的端部处，四个离轴通道各自具
权利要求书

有从进口向出口延伸的中心轴线，并且四个离轴通道各自与包围电子烟装置的中心纵向延伸轴线的周界相切地延伸，限流部位于嘴端插入件与加热器之间。

12. 如权利要求11所述的简体，其中，限流部是在内管中摩擦配合的插件。

13. 如权利要求11所述的简体，其中，插件由金属、合金、塑料和热塑性塑料中的至少一种形成。

14. 如权利要求13所述的简体，其中，材料是聚丙烯、聚醚醚酮(PEEK)、陶瓷、玻璃纤维和聚乙烯中的至少一种。

15. 如权利要求11所述的简体，其中，限流部距离加热器大约1mm至大约5mm。

16. 如权利要求11所述的简体，其中，限流部具有范围从约1mm至约2.5mm的内径。

17. 如权利要求11所述的简体，其中，限流部具有范围从约3mm至约8mm的长度。
电子烟装置

【0001】优先权声明
【0002】本申请是非临时申请，其要求于2014年11月5日提交的美国临时申请No.62,075,417的优先权，该临时申请全部内容通过引用全部并入本文。

技术领域
【0003】本发明涉及一种电子烟装置（electronic vaping device）和一种形成电子烟装置的方法，该电子烟装置产生出具有两种不同粒度分布的蒸汽。

背景技术
【0004】电子烟装置包括加热器元件，从而使蒸发前配方蒸发以产生蒸汽。加热器元件可以包括电阻加热线圈，带有延伸穿过其中的芯子（wick）。

发明内容
【0005】至少一个示例性实施例涉及电子烟装置的简体。
【0006】在至少一个示例性实施例中，电子烟装置的简体包括：沿纵向方向延伸的外管；位于外管中的内管，内管包含沿着内管长度的一部分的限流部；容纳蒸发前配方的贮存器；与贮存器连通的芯子；以及与芯子连通的加热器。加热器构造成为蒸发前配方加热到足以形成蒸汽的温度。限流部构造形成降低蒸汽温度，并且限流部定位成距离加热器大约1mm至大约5mm。
【0007】在至少一个示例性实施例中，限流部包括在内管中摩擦配合的插件。该插件由金属、合金、塑料和热塑性塑料中的至少一种形成。该材料是聚丙烯、聚醚醚酮（PEEK）、陶瓷、玻璃纤维和聚乙烯中的至少一种。
【0008】在至少一个示例性实施例中，简体还包括包含四个出口的嘴端插入件。这四个出口各自位于离轴通道的端部处，每个离轴通道大体垂直于邻近的离轴通道延伸。内管具有范围从约3mm至约4mm的内径。限流部具有范围从约1mm至约2.5mm的内径。限流部具有范围从约3mm至约8mm的长度。
【0009】在至少一个示例性实施例中，电子烟装置的简体包括：沿纵向方向延伸的外管；位于外管中的内管，包括蒸发前配方的贮存器；与贮存器连通的芯子；与芯子连通的加热器，加热器构造成为蒸发前配方；以及嘴端插入件。嘴端插入件包括：位于第一离轴通道的端部处的第一出口和位于第二离轴通道的端部处的第二出口。第一离轴通道和第二离轴通道各自具有从进口到出口延伸的中心轴线，并且第一离轴通道和第二离轴通道与包围电子烟装置的中心纵向延伸轴线的周界相切地延伸。
【0010】在至少一个示例性实施例中，嘴端插入件包括四个出口，这四个出口各自位于离轴通道的端部处。
【0011】在至少一个示例性实施例中，电子烟装置的简体包括：沿纵向方向延伸的外管；位于外管中的内管，内管包含沿着内管长度的一部分的限流部；包含蒸发前配方的贮存器；与
贮存器连通的芯子；与芯子连通的加热器，该加热器构造为加热蒸发前配方以形成蒸汽；以及嘴端插入件，嘴端插入件包括四个出口。这四个出口各自位于四个离轴通道中的一个的端部处。四个离轴通道各自具有从进口向出口延伸的中心轴线，而四个离轴通道各自与包围电子烟装置的中心纵向延伸轴线的周界相切地延伸。限流部位于嘴端插入件与加热器之间。

[0012] 在至少一个示例性实施例中，限流部是在内管中摩擦配合的插件。该插件由金属、合金、塑料和热塑性塑料中的至少一种形成。该材料是聚丙烯、聚醚醚酮(PEEK)、陶瓷、玻璃纤维和聚乙烯中的至少一种。限流部距离加热器大约1mm至大约5mm。限流部具有范围从约1mm至约2.5mm的内径。限流部具有范围从约3mm至约8mm的长度。

附图说明

[0013] 当结合附图回顾详细描述时，本文非限制性实施例的各个特征和优点将变得更加明显。这些附图仅被用于说明性目的，而不应被理解成限制权利要求的范围。这些附图不应被认为是按比例绘制的，除非明确标明。为了清楚起见，附图的各个尺寸可能已被放大。

[0014] 图1是根据至少一个示例性实施例的电子烟装置的透视平面图。
[0015] 图2是电子烟装置的至少一个示例性实施例的侧视视图。
[0016] 图3是根据至少一个示例性实施例的嘴端插入件的底部视图。
[0017] 图4是根据至少一个示例性实施例的嘴端插入件的顶部视图。
[0018] 图5是本文所述电子烟装置的至少一个示例性实施例的剖视视图。
[0019] 图6是根据至少一个示例性实施例的电子烟装置的第一部分的剖断的剖视视图。
[0020] 图7是根据至少一个示例性实施例的内管(烟道)的透视图。
[0021] 图8是根据至少一个示例性实施例的内管(烟道)的透视图。
[0022] 图9是根据至少一个示例性实施例的嘴端插入件的底部的透视图。

具体实施方式

[0023] 本文公开了一些详细的示例性实施例。但是，本文所公开的具体结构和功能性的细节仅仅是为了说明示例性实施例的目的。然而，示例性实施例可以多种替代方式实施，而不应被理解成仅局限于本文所列举的示例性实施例。

[0024] 因此，尽管示例性实施例可以具有多种修改和替代形式，但是本发明示例性实施例在附图中通过示例方式被示出并且将在本文中被详细描述。然而，应理解的是，不应将示例性实施例局限于所公开的特定形式。相反，示例性实施例应涵盖落在示例性实施例范围内的全部修改方案、等同方案和替代方案。在对附图的整个描述中，相似的附图标记表示相似的元件。

[0025] 应理解的是，当提及一元件或层位于另一元件或层“上”、“连接至”、“耦联至”或“覆盖”另一元件或层时，该元件可以直接位于另一元件或层上，直接连接至、耦联至或覆盖另一元件或层，或者可以存在中间元件或层。相反，当提及一元件“直接位于”另一元件或层上、“直接连接至”或“直接耦联至”另一元件或层时，则不存在中间元件或层。在整个说明书和/或包括一个或多个
所列相关条目中的一个及其全部组合。 [0026] 应理解的是，尽管术语第一、第二、第三等在本文中可以用来描述多个元件、部件、区域、层和/或部分，但这些元件、部件、区域、层和/或部分不应受到这些术语的限制。这些术语仅用来将一个元件、部件、区域、层或部分与另一区域、层或部分区分开。因此，下文所述的第一元件、部件、区域、层或部分可以被称作第二元件、部件、区域、层或部分，而不偏离示例性实施例的教导。 [0027] 有关空间的术语（例如“下方”、“以下”、“下”、“上方”、“上”等）在本文中为了便于描述起见可用来描述图中所示的一个元件或特征与另一元件或特征之间的关系。应理解的是，除了附图中所示的取向外，有关空间的术语意在涵盖装置在使用或操作中的不同的取向。例如，如果附图中所示的装置被倒置，则被描述为在其它元件或特征“下方”或“以下”的元件随后将被取向成在其它元件或特征“上方”。因此，术语“下方”可以涵盖上方及下方的取向。装置可以具有其它取向（旋转90度或者以其其它取向），而本文使用的有关空间的术语应作相应的解释。 [0028] 本文所用的术语也用于描述各示例性实施例的目的，并不意在限制示例性实施例。本文所用的单数形式“一”和“该”意在也包括复数形式，除非上下文中明确表示其它情况。还应理解的是，术语“包括”、“包含”和/或“包含有”在本说明书中使用时，表示存在所述特征、步骤、操作、元件和/或部件，但不排除存在或附加有一个或多个其它特征、步骤、操作、元件和/或部件。 [0029] 本文参照剖视图示描述了示例性实施例，这些剖视图是示例性实施例的理想化实施例（和中间结构）的示意图。因此可以预期到例如由于制造技术和/或公差所导致的图示形状的变化。因此，示例性实施例不应被理解成局限于本文示所示区域的形状，而是应包含例如由于制造导致的形状偏差。 [0030] 除非另有限定，本文使用的所有术语（包括技术和科学术语）具有与示例性实施例所述领域的普通技术人员通常所理解的相同的含义。还应理解的是，术语（包括在通常使用的词典中所定义的术语）应被解释成具有与其在相关领域背景下的含义一致的含义，而不应作理想化或过于形式意义上的解释，除非本文中明确地如此定义。 [0031] 至少一个示例性实施例涉及电子烟装置，其可以包括嘴端插入件和限流部中的至少一个。限流部可以位于加热器和嘴端插入件之间。嘴端插入件可以包括两个或多个孔，这些孔旋转和或径向地成角度，以便当蒸汽离开电子烟装置时使蒸汽以发散和涡流的型式进行分布。另外，蒸发和涡流型式在蒸汽离开电子烟装置之前降低了它的温度。位于加热器下游的限流部可以在蒸汽离开电子烟装置之前降低它的温度。 [0032] 在至少一个示例性实施例中，电子烟装置在加热蒸发器前配方便产生蒸汽。 [0033] 在至少一个示例性实施例中，蒸发前配方便可以是可变容量蒸汽的一种物质或物质的组合。例如，蒸发前配方便可以是液体、固体和/或凝胶制剂，包括但不限于水、珠状体、溶剂、活性成分、乙醇、植物提取物、自然或人工香料和/或蒸汽形成物，例如甘油和丙二醇。 [0034] 图1是根据至少一个示例性实施例的电子烟装置的平面示意图。图2是根据至少一个示例性实施例的电子烟装置的剖面示意图。 [0035] 如图1和2所示，电子烟装置60包括筒体（或第一部分）70和固定装置（或第二部分）72，它们在螺纹接头74处或者通过诸如卡合式、扣合式、凹口式、夹紧式、扣紧式的其它连接
件或机构耦联在一起。第一部分70可以容纳端插入件20、加热器319、柔性线状芯子328和贮存器314。第二部分72可以容纳电源12、控制电路11和可选的喷雾传感器16。第一部分70和第二部分72包括沿电子烟装置60的长度在纵向方向上延伸的外壳22。在至少一个示例性实施例中，电子烟装置60可以是一次性的，并且可以仅包括一个部件（未示出）。在至少一个示例性实施例中，第一部分70可以包括可再填充的贮存器314，或者第一部分70可以是一次性的而第二部分72可以包括充电电池。

[0036] 在至少一个示例性实施例中，如图2所示，电子烟装置60包括加热器319和丝状芯子328。第一部分70包括沿纵向方向延伸的外壳22和同轴地定位在外壳22中的内管（或烟道）362。上述衬垫（或密封件）320的鼻部361装配在内管362的第一端部365中，从而使衬垫320的外周边367提供了与外壳22的内表面397的液密密封。衬垫320还包括中心纵向空气通道315，其通向限定了中央通道321的内管362的内部。位于衬垫320的一部分处的横向通道333与衬垫320的中心纵向空气通道315相互连接和连通。该通道333确保了中心纵向空气通道315与空间335之间的连通，该空间335限定在衬垫320与螺纹连接板74之间。

[0037] 第二衬垫310的鼻部393装配在内管362的第二端部381中。第二衬垫310的外周边382提供了与外壳22的内表面397的密封。第二衬垫310包括布置在内管362的中心通道321与端插入件20之间的中心通道384。

[0038] 在至少一个示例性实施例中，贮存器314被容纳在内管362与外壳22之间以及第一衬垫320与第二衬垫310之间的环形区域中。因此，贮存器314至少部分地环绕中心空气通道321。贮存器314包含蒸发前配方，并且可选地包含构成存储蒸发前配方的贮存介质（未示出）。

[0039] 在至少一个示例性实施例中，加热器319延伸通过内管362的中心空气通道321。加热器319与丝状芯子328接触，使丝状芯子328在贮存器314的相对部分之间延伸，从而使蒸发前配方从贮存器314输送至加热器319。电子烟装置60可以包括布置在螺纹接头74处和/或在螺纹接头74与加热器319之间的至少一个空气进口440。

[0040] 在至少一个示例性实施例中，电源12可以包括布置在电子烟装置60中的电池，电源12构造成将电压施加到与丝状芯子328相关的加热器319的两端。因此，加热器319根据希望（或可选地，预定）时间长度（例如2至10秒的时间段）的供电周期使蒸发前配方蒸发。电池可以是一次性的或可再充电的。

[0041] 在至少一个示例性实施例中，电子烟装置60可以包括控制电路11，控制电路11可以在印刷电路板上。控制电路11还可以包括加热器启动灯27，启动灯27构造成当启动加热器319时被点亮。在电子烟装置60的壳体22的端部或者沿着该壳体22可以定位有端盖45。

[0042] 在至少一个示例性实施例中，电子烟装置60的外壳22可以由任何适当材料或材料组合形成。外壳22可以总上是圆筒形的，并且可以至少部分地由金属形成。尽管壳体22在此处被描述成圆筒形的，但是可以设想其它形状和形状。

[0043] 在至少一个示例性实施例中，如图2所示，端插入件20包括两个或多个（例如四个）出口（孔）21，它们关于端插入件20的下游面的周界转动地和径向地成角度。当蒸汽通过端插入件20离开电子烟装置60时，蒸汽穿过四个出口21，从而使蒸汽在使用时向外扩散。每个出口可以位于相应的离轴通道23的端部处，离轴通道23相对于电子烟装置60的轴线成角度。另外，每个离轴通道23大致垂直于每个相邻的离轴通道23延伸。
在至少一个示例性实施例中，出口21关于嘴端插入件20的周界大致均匀地分布，从而在抽电子烟期间大致均匀地分配蒸汽并在口中形成更强烈的满足感。因此，蒸汽进入口中并沿不同的方向运动，从而提供充满口中的感觉。

相比之下，具有单个沿轴线孔口的电子烟装置倾向于在蒸汽离开电子烟装置时将蒸汽作为具有更快速度的单个射流朝向更集中的位置引导。

在至少一个示例性实施例中，离轴通道23相对于外壳22的中心纵轴线线成大约5°至大约60°的角度，从而在抽电子烟期间更彻底地分配蒸汽和去除液滴。在至少一个示例性实施例中，存在四个离轴通道23，每个相对于外壳22的中心纵轴线线成的角度：大约40°至大约50°、大约40°至大约45°、或者大约42°。

在至少一个示例性实施例中，每个离轴通道23、每个进口3和每个出口21具有范围为大约0.015英寸至大约0.090英寸（例如，大约0.020英寸至大约0.040英寸或者大约0.028英寸至大约0.038英寸）的直径。如果希望的话，可以选择离轴通道23和出口21的尺寸以及离轴通道23和入口21的数量，以调整电子烟装置60的吸阻（RTD）。

在至少一个示例性实施例中，嘴端插入件20可以整体附在第一部分70的外壳22中。另外，嘴端插入件20可以由诸如低密度聚乙烯、高密度聚乙烯、聚丙烯、聚氯乙烯、聚醚醚酮（PEEK）的聚合物和/或聚合物的组合形成。如果希望，嘴端插入件20还可以是彩色的。

在至少一个示例性实施例中，在电子烟装置60吸入蒸汽时，嘴端插入件20将蒸汽分散并改变其方向，从而提供更丰满的口感。蒸汽形成时，其穿过内管362中的中心通道321并穿过第二衬垫310中的中心通道342。在至少一个示例性实施例中，内管362具有范围为大约3mm至大约4mm或者大约3.5mm的内径。

图3是根据至少一个示例性实施例的嘴端插入件的底部视图。图4是根据至少一个示例性实施例的嘴端插入件的顶部视图。

在至少一个示例性实施例中，如图3和图4所示，每个离轴通道23具有从出口21延伸的中心轴线。每个离轴通道相对于围绕嘴端插入件的纵向延伸中心轴线的同心弧或周界“C”沿切向延伸。嘴端插入件的纵向延伸中心轴线可以与电子烟装置60的中心纵向轴线重合。因此，离轴通道23关于图示的嘴端插入件20既转动地又径向地定位，并且通道23不与纵向延伸中心轴线相交。蒸汽在离开电子烟装置60时以涡流型式离开。

在至少一个示例性实施例中，如图2所示，电子烟装置60还可以包括在内管362中的定位在加热器319与第二衬垫310之间的限流部445。如图所示，限流部445可以是在内管362中为摩擦配合的单独的插件。在限流部445插入的内管362的部分处，内径可以减小。

在至少一个示例性实施例中，限流部445和/或内管362可以由任何适当材料或材料组合形成。适当材料的示例包括：金属、合金、塑料或包括这些材料中的一种或多种的复合材料，或者适于食品或药品应用的热塑性塑料，例如聚丙烯、聚醚醚酮（PEEK）、陶瓷、玻璃纤维和聚乙烯。该材料轻且不易碎。

在至少一个示例性实施例中，当包含限流部时，限流部445长约3mm至约8mm或约3mm至约7mm（例如约4mm至约6mm）。限流部445可以定位成距离加热器1mm至约5mm（例如约1mm至约3mm或约2mm至约4mm）。

在至少一个示例性实施例中，限流部445可以具有以下内径：约1mm至约2.5mm，或者约2mm。内管362的邻近限流部445并沿着内管362的不包含限流部445的剩余长度的内径
可以在约3mm至约4mm范围内或者为约3.5mm。

[0006] 在至少一个示例性实施例中，限流部445距离加热器319约1mm至约5mm（例如约1.5mm至约4.5mm、约2mm至约4mm或者约2.5mm至约3.5mm）。

[0007] 图7是用于根据至少一个示例性实施例的图2的电子烟装置60的内管的透视图。

[0008] 在至少一个示例性实施例中，如图7所示，内管362可以沿着外表面具有相同的直径。

[0009] 图3是根据至少一个示例性实施例的嘴端插入件的底部视图。图4是根据至少一个示例性实施例的嘴端插入件的顶部视图。

[0010] 在至少一个示例性实施例中，如图3和4所示，存在四个离轴通道23，它们相互正交地取向，从而实现蒸汽的基本均匀的分布。对于每个通道23，其进口3和其出口21沿着同心弧“C”内侧隔开，并且通道23的间隔地关于弧“C”正交，或者相互成90°。

[0011] 在至少一个示例性实施例中，嘴端插入件可以包括三个孔而不是四个，并且其适用同样的关系：对于每个通道23，进口3和出口21将沿着沿同心弧“C”内侧隔开，并且通道23将关于弧“C”内侧隔开，例如相互成约120°。

[0012] 在至少一个示例性实施例中，如图10所示，嘴端插入件20的内表面2大体上是呈圆弧形的。

[0013] 在至少一个示例性实施例中，离轴通道23布置在和包括内表面2，从而使可能在蒸汽中携带的未被蒸发的蒸汽前配方的液滴（如果存在）撞击嘴端插入件20的内表面2。结果，这种液滴基本上被去除或被裂开，从而改善蒸汽。

[0014] 图5是本文所述电子烟装置的至少一个示例性实施例的侧面视图。

[0015] 在至少一个示例性实施例中，如图5所示，电子烟装置60与图2的电子烟装置大致相同，除了限流部445与内管362一体形成之外，从而使内管362具有波状外形的壁，这导致中心空气通道321在加热器319下游具有减小的直径。

[0016] 图6是根据至少一个示例性实施例的电子烟装置的第一部分的截断的侧视图。

[0017] 在至少一个示例性实施例中，如图6所示，由于内管362沿着限流部445的变窄的直径，贮存器314具有增大的直径，从而允许更大体积的蒸发前配方被容纳在电子烟装置60中。

[0018] 图8是根据至少一个示例性实施例的内管（烟道）的透视图。如图所示，内管362可以包括用作限流部445的变窄部分。

[0019] 在至少一个示例性实施例中，电子烟装置60可以仅包括嘴端插入件20（如这里描述的），或者仅包括限流部445。

[0020] 在至少一个示例性实施例中，如在这里所述的嘴端插入件20和限流部445在分别包含在电子烟装置60中时都有助于在蒸汽离开电子烟装置60之前使蒸汽温度降低。另外，与电子烟装置60中仅包含嘴端插入件20或仅包含限流部445时相比，嘴端插入件20和限流部445在组合使用时将使蒸汽温度降低得更多。

[0021] 本说明书中结合数值使用词语“约”表示相关数值在所述数值附近包含±10%的公差。另外，当本说明书中提及百分数时，其表示这些百分数是基于重量的，即，重量百分数。表述“大于”包括0至所述上限及其之间的全部值。当规定范围时，范围包括其之间的全部值，例如增量为0.1%。
另外，当结合几何形状使用词语“大体上”和“基本上”时，表示不要求准确的几何形状，但形状自由度在本申请范围内。当与几何术语一起使用时，词语“大体上”和“基本上”表示不仅涵盖满足严格定义的特征，而且涵盖相当接近严格定义的特征。

显然，本说明书中已经描述了一种新的、改进的和非显而易见的电子烟装置，其具有本领域普通技术人员所能理解的足够的独特性。另外，对于本领域技术人员将会显见的是，对于电子烟装置的特征，存在多种修改、变型、替代和等同方案，其本质上不偏离本发明的精神和范围。因此，意图明显在于，随附权利要求应当涵盖落在由随附权利要求所限定的本发明的精神和范围内的所有这些修改、变型、替代和等同方案。
图1
图9