
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2005/0102264 A1 

US 2005O102264A1 

Nas0n et al. (43) Pub. Date: May 12, 2005 

(54) METHOD AND SYSTEM FOR MAINTAINING (52) U.S. Cl. .................................................................. 707/1 
SECURE DATA INPUT AND OUTPUT 

(75) Inventors: D. David Nason, Bainbridge Island, (57) ABSTRACT 
WA (US); Carson Kaan, Seattle, WA 
(US); John E. Easton, Vashon, WA 
(US); Jason M. Smith, Seattle, WA Methods and Systems for enhancing the Security of data 
(US); John A. Painter, Everett, WA during input and output on a client computer System are 
(US); William J. Heaton, Everett, WA provided to prevent attempts by unauthorized code to 
(US) access, intercept, and/or modify data. Example embodi 

Correspondence Address: ments provide a plurality of obfuscation techniques and 
DAVIS WRIGHT TREMAINE, LLP Security enhanced drivers that use these obfuscation tech 
2600 CENTURY SQUARE niques to prohibit unauthorized viewing/receiving of valid 
1501 FOURTHAVENUE data. When the drivers are used together with the various 
SEATTLE, WA 98101-1688 (US) obfuscation techniques, the Security enhanced drivers pro 

(73) Assignee: xSides Corporation, Bellevue, WA vide mechanisms for “Scheduling the content of the Storage 
areas used to Store the data So that valid data is not available 

(21) Appl. No.: 10/992,166 to unauthorized recipients. When unauthorized recipients 
attempt to access the “data, they perceive or receive obfus 

(22) Filed: Nov. 18, 2004 cated data. The obfuscation techniques described include 
Related U.S. Application Data “copy-in,”“replace and restore,” and “in-place replacement' 

de-obfuscation/re-obfuscation techniques. In one embodi 
(62) Division of application No. 10/167,053, filed on Jun. ment, a Security enhanced display driver, a Security 

10, 2002. enhanced mouse driver, a Security enhanced keyboard 
driver, and a Security enhanced audio driver are provided. To 

(60) Provisional application No. 60/297.273, filed on Jun. complement the Security enhancements, the methods and 
8, 2001. Systems also provide for a watchdog mechanism to ensure 

Publication Classification that the driver is functioning as it should be and various user 
interface techniques for denoting Security on a display 

(51) Int. Cl. .................................................... G06F 7700 device. 

20f 
Operating 
System & 

Applications Video Display 
Memory 

(e.g., VRAM) 
Operating System 
Display Interface 
& Graphics Library 

(e.g., GDI) Frame Buffer 
Draw to "desktop (Image of 
canvas" desktop 

canvas) 

Display driver sends 
to video card 

Operating System 
Memory 

206 

Frome 
Buffer 
Image: 

Video Display Device 

    

  

  



US 2005/0102264 A1 

2-901 
SuðA?0 04m00S 

(INES003S(sep?SX “fire) 
•~901 

Patent Application Publication May 12, 2005 Sheet 1 of 25 

  

  



US 2005/0102264 A1 

/07 

Patent Application Publication May 12, 2005 Sheet 2 of 25 

  

  

  

    

  



US 2005/0102264 A1 Patent Application Publication May 12, 2005 Sheet 3 of 25 

    

  

  

  

  

  

  



a)S 

(ss00013 

US 2005/0102264 A1 

X-409/10 sue|ndu09 10X100H 0! 

× × × × × 

Patent Application Publication May 12, 2005 Sheet 4 of 25 

  

  

    

    

  

  

  





Patent Application Publication May 12, 2005 Sheet 6 of 25 US 2005/0102264 A1 

Other data 
- - - - - - - -- so 605 

W Secure Portion 
- a- - - -m or r never valid data 

Other doto 

Overlay or 
Wolid Doto Buffer Decrypt/ -603 

602-N Valid Data Raster Op. GE) to Display 
or Key Device 

Case 1: Overwrite invalid data on copy-out 

606 
Secure Portion 
encrypted (valid) data 

Overlay or 
Mask Buffer or... -603 

604 Key or to Display 
ROP Mosk Device 

Case 2: Create valid data on copy-out 

Fig. 6 

  

  

  

  



Patent Application Publication May 12, 2005 Sheet 7 of 25 US 2005/0102264 A1 

1/3 

1/3 

1/3 

-703 
Walid Data 

-701 
Frome in FB 
(ready for 
display) 

7-702 Overlay 
Oreo 

projected valid data 
To Display 

projected data from overla 

combining G) 
operation 

projected valid 
Overlay 
Contents 

doto 

Fig. 7 

  



Patent Application Publication May 12, 2005 Sheet 8 of 25 US 2005/0102264 A1 

Garbage, Black, Image, Ad, ... 
Mask or BOf 
involid Doto 

ROP/Copy-in 

B04 

Mask Other Doto 
Buffer (MB) to Display 

- - - - - - - - - Device 

Other Doto 

803 
Wolid Dato 

Valid Data Buffer (VDB) 

Case 5: Replace and Restore 

to Display 
Device 

Encrypted or 
Masked (Valid) 
Doto 

Secure Data Buffer (SDB) 

805 

Case 4: Replace and Restore-no stored valid data 
outside secure portion in FB 

Fig. 8 

    

  



Patent Application Publication May 12, 2005 Sheet 9 of 25 US 2005/0102264 A1 

FB -901 

to Display 
Device 

Mosk 
Buffer (MB) 

Case 5: In-place Replacement 

Fig. 9 

  



0I ‘ŽIH 

US 2005/0102264 A1 

filOu.au 

Patent Application Publication May 12, 2005 Sheet 10 of 25 

  

  



Patent Application Publication May 12, 2005 Sheet 11 of 25 US 2005/0102264 A1 

Frome Buffer f 100 

Invalid Dato ff Of 

-------------------------- 
Partially -Data being 1 ff02 

Walid Dato deobfuscated 
in 

Processing --- --- a- an a daar m an aa am a m - - - - - -Data being -1 103 

Walid Data displayed 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

-- Data being 1 ff04 
Invalid Data reobfuscated 

--- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Fig. 11 

  



Patent Application Publication May 12, 2005 Sheet 12 of 25 US 2005/0102264 A1 

Create Secure Display Region 
(location desired, pVDB, FBportion ID, 
plocation) 
f2Of 

Authenticate requestor 

Secure region 
available 

p 

"Allocate" Secure Region 

Invoke SEDD 

Return (error) 

f204 

(e.g., ioctl Sedd-Start 
obfuscation (..., pVDB, ...) 

Fig. 12 

  

  

  

    

  

  



Patent Application Publication May 12, 2005 Sheet 13 of 25 US 2005/0102264 A1 

Security Enhanced Display Driver 
(e.g., ioctl) 

(pVDB, ID.) 

ioctl=stort 
obfuscation egion t 

Event Driven 

Register for VB Event(s) 
(VB event start...) 

f303 

ioctl stop Y RT obfuscation 
obfuscation control thread to 

- terminate 

  

  

  

    

    

  

  

  

  



Patent Application Publication May 12, 2005 Sheet 14 of 25 US 2005/0102264 A1 

Security Enhanced Display Driver 
(e.g., ioctl) 

f402 

ioctl=start Allocate SeCUre Polling 
obfuscation region 

1403 

Invoke WB Timing & 
Synchronization Thread 
(plocationFB) 

f405 

a al- Y Signal VB 
ioctl stort Synchronization Thread 
obfuscation 

p - to not "trap" VB-target 

Fig. 14 

  

  

      

  

    

  

  



Patent Application Publication May 12, 2005 Sheet 15 of 25 US 2005/0102264 A1 

VB Timing and Synchronization 
Thread (pFBlocation...) 

Calculate WB levents 

Poll for WBvalue until 
VB=VB event start(s) or 
VB eventend(s) (exits loop when find value) 

1503 

f502 

Invoke RT Obfuscation 
Control Thread (pVDB, 
VBend) 

f504 could occur elsewhere 
y during thread Receive 

signal to 
terminate 
N P 

f505 

Signal RT Obfuscation 
Control Thredd to 
terminate (pVDB) 

Fig. 15 

  

    

  

  

  



Patent Application Publication May 12, 2005 Sheet 16 of 25 

WBlocation=determine 
VB time from (0,0) to 
pFBlocation 

WB event start 
VB location-VB decrypt 
time-latency time 

De-mask or 
decryption needed 

p 

VB event start=VB 
location-latency time 

Colculate WB Event End 

Fig. 16 

US 2005/0102264 A1 

Calculate VB events (pFBlocation, ID) 
- WBevent start, VB event end 

1603 

Return (VB event start, VB event end) 

  

  

  

  

  

  



Patent Application Publication May 12, 2005 Sheet 17 of 25 US 2005/0102264 A1 

RT Obfuscation Control 
Thread (pVDB) 

Wories on obfuscation 
method used (e.g., 
in-place or replace & 
restore) 

De-mask or 
Decrypt needed 

p 

pValidData=Decrypt (pVDB) 
or ROP 

pValidData=pVDB 

1704 

Copy data from 
pValidData to 
pFBlocation 

(De-obfuscate data) 
1705 

(Spin) Wait until VB at 
VB event end 

Obfuscate data in 
secure portion 

Receive terminate 
signal 

f706 

(Relinquish lock) 

Fig. 17 

  

    

  

  

  

  

  

    

  

  

  

  

    

  

  



US 2005/0102264 A1 Patent Application Publication May 12, 2005 Sheet 18 of 25 

  

  

  



US 2005/0102264 A1 

906] 

Z06/ 

Patent Application Publication May 12, 2005 Sheet 19 of 25 

  

  

  



Patent Application Publication May 12, 2005 Sheet 20 of 25 US 2005/0102264 A1 

Security Enhanced Input Driver 
(one for each input device, e.g., mouse, 
keyboard, generic pointing device, etc.) 

(wait for event) 

Input (keyCode or mouse 
event) received 

Obfuscation 
requested 

"Authorized" 
requestor 

Pass to input stack with 
ability to de-obfuscate 

      

  

  

  

  

    

  



US 2005/0102264 A1 

puDO punOS 

Patent Application Publication May 12, 2005 Sheet 21 of 25 

    

  

  



US 2005/0102264 A1 Patent Application Publication May 12, 2005 Sheet 22 of 25 

  

    

  

  

  

  



Patent Application Publication May 12, 2005 Sheet 23 of 25 US 2005/0102264 A1 

Windows 9x Secure Mouse and Keyboard 
Driver Event Processing 

XSides 
XSides Security 
Security Watchdog 

Windows 9x Service 
Operating 
System 

Handler Chain 
Dev Hndr 1 

Dev Hndr 2 

Dev Hndr 3 

Dev Hndr ... 

Dev Hndr ... 

Dev Hindir in 

s 
he 

cd 
ce e 
is SS 
a S C 

VxD Style 
Device Driver 

Fig. 23 

  



Patent Application Publication May 12, 2005 Sheet 24 of 25 US 2005/0102264 A1 

  



Patent Application Publication May 12, 2005 Sheet 25 of 25 US 2005/0102264 A1 

Secure Cons secure She 
  



US 2005/0102264 A1 

METHOD AND SYSTEM FOR MANTAINING 
SECURE DATA INPUT AND OUTPUT 

BACKGROUND OF THE INVENTION 

0001) 1. Field of the Invention 
0002 The present invention relates to methods and sys 
tems for maintaining the Security of data in a computer 
based environment and in particular, to methods and Systems 
for maintaining the Security of data as it is input from an 
input device Such as a mouse or keyboard and as it is output 
through, for example, audio or Video means. 
0003 2. Background Information 
0004. The concept of security continues to become 
increasingly more important in a world where personal 
computer Systems are generally connected via wireleSS or 
wired networks and/or internetworks, Such as the Internet, to 
other computing Systems. Many companies and institutions 
have addressed Security issueS as they relate to, for example, 
the transfer of data from a personal (client) computer System 
to Server computer Systems over network communications. 
For example, firewalls are typically present on local area 
networks (LANs) to form boundaries between the rest of the 
internetworking World and the computer Systems on the 
LAN. In addition, widely used cryptography techniques are 
often applied to Such data transferS to ensure the Security of 
the data communication paths. 
0005. However, there still remains a problem on the 
client computer Systems themselves regarding valuable data 
that is often stored in valid form on the client computer 
System even though it may be transmitted in encrypted form 
over a communications channel to a Server machine. For 
example, a user desiring to buy an object over the Internet, 
may connect and log into a website and provide his/her 
credit card information in order to purchase the object. 
Although the website (and client browser on the client 
machine) may Support the transfer of the credit card infor 
mation using a Secure communications layer (Such as SSL 
Secure Socket layer protocol), the credit card information, in 
order to be displayed on the display device of the client 
computer System actually resides in Storage as valid data for 
Some period of time. Unauthorized “hackers' can then 
access Such stored data (providing they are not kept out by 
a firewall or have been installed as rogue applications on the 
client computer System) using Sophisticated mechanisms, 
even if the data is stored briefly. Thus, there is an ever 
increasing need for providing techniques for Securing data 
on a client machine. 

BRIEF SUMMARY OF THE INVENTION 

0006 Embodiments of the present invention provide 
computer-based methods and Systems for enhancing the 
Security of data during input and output on a client computer 
System in order to prohibit and/or frustrate attempts by 
illegitimate processes, applications, or machines to obtain 
data in an unauthorized fashion. For the purposes of this 
description, “data' includes digital bits or analog signals in 
a computer System transferred or Stored for any purpose, 
including graphics, text, audio, Video, input signals, Output 
Signals, etc. Example embodiments provide a plurality of 
obfuscation techniques and Security enhanced, System level 
drivers that use these obfuscation techniques to prohibit 

May 12, 2005 

unauthorized receiverS/viewers of the data from receiving/ 
Viewing valid data. When these obfuscation techniques are 
used with the Security enhanced drivers, the drivers can 
ensure that invalid data is always received/viewed by unau 
thorized recipients/viewers, thus preventing unauthorized 
hackers with access to valid data. Several obfuscation tech 
niques by themselves offer varying levels of Security. 
0007 For the purposes of this description, the term 
“obfuscation” refers to any mechanism or technique for 
transforming or hiding valid data So that the valid data 
becomes difficult to view, intercept, process, or modify 
without proper authorization and thus, appears as invalid 
data when accessed in an unauthorized manner. Obfuscation 
techniques may be implemented as Software, hardware, or 
firmware, depending upon the execution environment of 
interest. 

0008. In some embodiments, the obfuscated data com 
prises, for example, an opaque color Such as all black or all 
white, a pattern, a random bitmap, noise, masked data, an 
image, a company logo, or an advertisement. Other types of 
obfuscation, depending upon the type of data, are also 
possible. 

0009 For secure display of data on a display device and 
other types of display Storage, the obfuscation techniques 
include “copy-out”, “replace and restore, and “in-place 
replacement.” These techniques specify where (and how) 
obfuscated data is de-obfuscated to generate valid data for 
display and where (and how) data is re-obfuscated. Some 
techniques utilize an overlay buffer or a mask buffer in 
conjunction with a frame buffer to accomplish the obfusca 
tion process. Others take advantage of any Standard raster 
operation or overlay operation logic already present on a 
video card. In other embodiments, the obfuscation tech 
niques are applied to the Scheduling of content in other types 
of Storage. 

0010. In some embodiments, the security enhanced driv 
ers (SEDS) implement varying degrees and levels of Secu 
rity, from making the data present with garbled information 
or noise, to encrypted data. The SEDs can be used with the 
different obfuscation techniques to determine what is used to 
obfuscate data, how, and where the data comes from. The 
SEDs are responsible for scheduling the obfuscation and 
de-obfuscation (and re-obfuscation) of the data. 
0011. In one embodiment, a security enhanced display 
driver (SEDD) is provided to schedule content of portions of 
a frame buffer Stored in a Video display memory. In one Such 
embodiment, a request to display data to a Secure region on 
a video display made to the SEDD. In response, the SEDD 
allocates a corresponding Secure portion of the frame buffer 
and Schedules the data content of this Secure portion Such 
that valid data is only present in the Secure portion at the 
time it is needed for projection to the display device and 
when other tasks are locked out of accessing (reading or 
writing) to the secure portion. The SEDD determines, 
depending upon, the obfuscation techniques used, when data 
Stored in the Secure portion needs to be de-obfuscated and 
when it needs to be re-obfuscated. 

0012. In other embodiments, security enhanced drivers 
are provided for input devices, Such as a mouse, keyboard, 
or other pointing device. These SEDS operate by intercept 
ing the input data as it comes directly from the input device, 



US 2005/0102264 A1 

transforming the data to an obfuscated form when Secure 
input data has been requested, and forwarding the trans 
formed data to the requesting code. When input data is 
received for a task that has not been authorized to receive 
Secure data, then the input data is forwarded to Standard 
operating System input drivers through a standard input 
Stack. 

0013 In some of these embodiments, the SEDs are 
installed first-in-line in the driver processing Sequence to 
ensure that the SED will intercept the data prior to any other 
code. In Some embodiments, monitoring and/or watchdog 
Services are spawned to ensure the Security of these first 
in-line hookS. 

0.014. In yet other embodiments, different techniques are 
provided to denote various levels of security offered in the 
System. Some of these techniques present information 
regarding the Source of the Security as well. Techniques are 
present for manipulating Standard user interface elements 
like Scroll bars, titles, etc. as well as techniques that modify 
a cursor representation automatically as input focus travels 
from one area into a different Security area. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0.015 FIG. 1 is an example block diagram of the abstrac 
tion layers of a Standard computing architecture that 
includes the Security enhanced drivers as provided by 
embodiments of the present invention. 
0016 FIG. 2 is an example block diagram of how data is 
transferred to a display device in a typical computer System. 
0017 FIG. 3 is an example block diagram that shows 
how display hacking occurs. 
0.018 FIG. 4 is an example block diagram of the general 
techniques used by an example Security Enhanced Display 
Driver to prevent unauthorized access to data Stored in a 
frame buffer. 

0.019 FIG. 5 is an example block diagram of a desig 
nated secure portion of the video display memory (VRAM) 
as provided by an example Security Enhanced Display 
Driver. 

0020 FIG. 6 is an example block diagram of obfuscation 
techniques used in conjunction with “copy out' de-obfus 
cation techniques. 
0021 FIG. 7 is an example block diagram of variations 
on copy out de-obfuscation techniques. 
0022 FIG. 8 is an example block diagram of obfuscation 
techniques used in conjunction with "replace and restore’ 
de-obfuscation techniques. 
0023 FIG. 9 is an example block diagram of obfuscation 
techniques used in conjunction with "in-place replacement' 
de-obfuscation techniques. 
0024 FIG. 10 is an example illustration of the schedul 
ing of obfuscation and de-obfuscation of the contents of the 
frame buffer by an example Security Enhanced Display 
Driver. 

0.025 FIG. 11 is an example block diagram of an alter 
nate obfuscation/de-obfuscation approach that can be used 
to Schedule the timing of obfuscation and de-obfuscation of 
the entire frame buffer. 

May 12, 2005 

0026 FIG. 12 is an example flow diagram of an example 
application level routine for requesting rendering in a Secure 
display region. 
0027 FIG. 13 is an example flow diagram of interfaces 
in an example Security Enhanced Display Driver to control 
obfuscation of a Secure display region in a true multi 
tasking, hardware event-driven System. 
0028 FIG. 14 is an example flow diagram of interfaces 
in an example Security Enhanced Display Driver to control 
obfuscation of a Secure display region in a non-event driven 
manner in an alternate operating System environment. 
0029 FIG. 15 is an example flow diagram of a vertical 
blank timing and Synchronization thread used to control the 
frame buffer content Scheduling in the alternate operating 
system environment of FIG. 14. 
0030 FIG. 16 is an example flow diagram of code for 
determining correlations between vertical blank and VRAM 
address as used to control frame buffer content Scheduling. 
0031 FIG. 17 is an example flow diagram of a real-time 
obfuscation control thread used by the Security Enhanced 
Display Driver to deliver valid and invalid data to the frame 
buffer. 

0032 FIG. 18 is an example block diagram that illus 
trates how input data hacking occurs. 
0033 FIG. 19 is an example block diagram of the general 
techniques used by a security enhanced input driver, Such as 
a Security Enhanced Mouse Driver to prevent unauthorized 
access to input data. 
0034 FIG. 20 is an example flow diagram of the obfus 
cation techniques used by an example Security Enhanced 
Keyboard Driver to prevent unauthorized access to input 
data. 

0035 FIG. 21 is an example block diagram that illus 
trates how audio data hacking occurs. 
0036 FIG. 22 is an example flow diagram of the obfus 
cation techniques used by an example Security Enhanced 
Audio Driver to prevent unauthorized access to audio data. 
0037 FIG. 23 is an example block diagram of installing 
a security enhanced driver as a first-in-line driver in Win 
dows 9x operating System environments and associated 
monitoring processes. 

0038 FIG. 24 is an example screen display that illus 
trates a padlock to denote Security as used in an existing 
Software application. 
0039 FIG. 25 is an example screen display that illus 
trates use of the cursor to determine a Security level and 
other representations on windows used to denote Security. 

DETAILED DESCRIPTION OF THE 
INVENTION 

0040 Embodiments of the present invention provide 
computer-based methods and Systems for enhancing the 
Security of data during input and output on a client computer 
System in order to prohibit and/or frustrate attempts by 
illegitimate processes, applications, or machines to obtain 
data in an unauthorized fashion. For the purposes of this 
description, “data' includes digital bits or analog signals in 



US 2005/0102264 A1 

a computer System transferred or Stored for any purpose, 
including graphics, text, audio, Video, input signals, Output 
Signals, etc. Example embodiments provide a plurality of 
obfuscation techniques and Security enhanced (typically, 
System level) drivers that use these obfuscation techniques 
to prohibit unauthorized receivers/viewers of the data from 
receiving/viewing valid data. When these obfuscation tech 
niques are used with the Security enhanced drivers, the 
drivers can ensure that invalid data is always received/ 
Viewed by unauthorized recipientS/viewers, thus preventing 
unauthorized hackers with access to valid data. Several 
obfuscation techniques by themselves offer varying levels of 
Security. 
0041. For the purposes of this description, the term 
“obfuscation” refers to any mechanism or technique for 
transforming or hiding valid data, So that the valid data 
becomes difficult to view, intercept, proceSS, or modify 
without proper authorization, and thus appears as invalid 
data when accessed in an unauthorized manner. (The word 
“obfuscate” means to render obscure.) Obfuscation tech 
niques may be implemented as Software, hardware, or 
firmware, depending upon the execution environment of 
interest. Although Standard encryption techniques are one 
type of obfuscation, a variety of others can be employed 
including transformations of data between valid forms and 
invalid forms, temporary and dynamic movement of noise 
data throughout otherwise valid data, etc. The methods and 
Systems of the present invention describe many techniques 
for thus preventing unauthorized hacking and retrieval of 
data. Hacking, for the purposes used herein, describes any 
type of illegal and/or unauthorized use or view of data, using 
any technique for intercepting data or for monitoring data or 
acceSS patterns. 

0042. The security enhanced drivers (SEDs) implement 
varying degrees and levels of Security, from Simply Storing 
or presenting the data with garbled information or noise, 
encrypted data, to data that is perceived or received as 
invalid by unauthorized code. In each case, a central focus 
of each Security enhanced driver is to Store and present valid 
data as obfuscated (and thus invalid) data to unauthorized 
“clients' (code, users, hardware, etc.). In one embodiment of 
the present invention, the Security enhanced drivers include 
a security enhanced (video) display driver (SEDD); a secu 
rity enhanced mouse driver (SEMD), which techniques are 
useful generally to any pointing type input device (or any x,y 
coordinate input device); a Security enhanced keyboard 
driver (SEKD); and a security enhanced audio driver 
(SEAD). Each of these drivers and the concomitant obfus 
cation techniques that can be applied are discussed in the 
Subsections that follow. One skilled in the art will recognize 
that other drivers for other types of input and output devices 
may be similarly designed and/or implemented using the 
techniques, methods, and Systems described herein. 
0.043 FIG. 1 is an example block diagram of the abstrac 
tion layers of a Standard computing architecture that 
includes the Security enhanced drivers as provided by 
embodiments of the present invention. In FIG. 1, as is 
typical in many computer Systems, the operating System 
layer 101, including the kernel and operating System device 
drivers (such as the mouse, keyboard, display, audio, and 
network drivers) resides at the bottom of the software 
execution architecture. The operating System layer 101 
communicates directly with the hardware and/or hardware 

May 12, 2005 

interface cards, such as mouse 110, keyboard 120, display 
130, and network interface card 140. One skilled in the art 
will recognize that other hardware and other drivers even 
though not shown (including audio players and associated 
operating System audio drivers) also may reside in Such a 
System. Above the operating System device drivers, other 
(typically, higher level) driver software 102 executes and 
provides more complex abstractions of the hardware to the 
applications layer 104 and application Software libraries 
203. Driver Software 102 includes interfaces and libraries of 
functions that help applications receive and process input 
and output Such as a mouse and keyboard interface provid 
ing by a windowing interface, or a display interface Such as 
Windows operating system GDI. Applications APIs 103, 
often provide even higher level abstractions to applications 
104, such as reusable objects that can be subclassed in 
object-oriented application code. At the top level, the (desk 
top) applications 104 typical execute on top of all of the 
other layers and communicate progressively through each 
layer to proceSS input and output from and to the hardware. 
In Some embodiments of the present invention, the Security 
enhanced drivers (SEDs) 406 preferably reside between the 
operating system device drivers 405 and the hardware so as 
to better control Secure processing of input and output in the 
lowest layers of a computing System. 
0044) In order to implement data obfuscation in a manner 
that ensures valid data only to authorized clients, each SED 
typically needs to have Some type of mechanism for locking 
out a part of the system (a resource Such as a portion of a 
frame buffer on a Video card). Because varying operating 
Systems (kernels, or other process Schedulers) provide dif 
ferent mechanisms for ensuring that a driver will have 
“priority” in the Scheduling of operating System tasks (pro 
cesses, threads, code of any type, etc.), it is often necessary 
to implement a mechanism for ensuring that a SED is a “first 
level driver” in the system. That is, a mechanism needs to be 
present to ensure that the driver that is "hooking the input 
or output can obtain the data first, before other drivers or 
code, Such as operating System drivers (OS device drivers 
105 in FIG. 1). One technique is to implement the SED as 
a System level driver, initialize the System to include this 
driver as the first driver “in line” (of its type, or in the overall 
event processing driver chain, where applicable), and to 
provide a “watchdog” process for monitoring the position 
and Security of the SED. Different operating Systems require 
different techniques for installing a driver as first-in-line, and 
what first-in-line means. Techniques for installing a driver as 
first-in-line will be apparent to those skilled in the art, 
depending upon the operating System. A description of 
example implementations using Windows 9X and Windows 
NT derivatives is described in the section entitled “First-in 
line SED Installation and Watchdog Monitoring.” 
004.5 To complement the obfuscation techniques and 
Security enhanced drivers, the methods and Systems of the 
present invention also provide different techniques for 
denoting various levels of Security in the System. Example 
Screen displays of these techniques are provided and 
described relative to FIGS. 24-25. One skilled in the art will 
recognize that other techniques for denoting Security are 
possible and equivalent in function. 
0046) Secure Storage and Display of Video Content 
0047 Video content is generally vulnerable to hacking on 
a variety of levels and in different scenarios. FIG. 2 is an 



US 2005/0102264 A1 

example block diagram of how data is transferred to a 
display device in a typical computer System. In FIG. 2, the 
operating System and applications 201 communicate with an 
operating System display interface 202 (typically, a graphics 
library such as GDI in the Window operating system envi 
ronment) to draw to a “desktop canvas”—a bitmap repre 
sentation of the area of the display device 220 that the 
operating System controls for its user interface. (This bitmap 
is typically stored in random access System memory (RAM) 
and may be hidden to applications through mechanisms of 
the OS.) The display driver of the operating system (OS) 
than Sends this bitmap to the Video card for Storage in the 
video display memory 203 (e.g., VRAM) residing on the 
card. The bitmap to be drawn is typically Stored in a 
designated portion of the VRAM, called the frame buffer 
204, as a static bitmap. The area of the frame buffer 204 that 
corresponds to the portion of the display device 220 (screen) 
used by the OS user interface (typically referred to as the 
“Desktop") may be a portion of the entire frame buffer 204. 
That is, the operating System 204 (and applications) may not 
use the entire displayable area of the display 220. The 
portion of the display 220 used by the operating system 204 
is typically described and Set by well-known video modes, 
represented in resolution coordinates, Such as a 1024x768 
(pixel) area. (Applications and techniques for extending the 
use of a display device (through what is Sometimes referred 
to as “physical overScan”), or for sharing the display device 
between the OS user interface and an area of the display not 
accessible to the OS, are described in detail in co-owned 
U.S. patent application Ser. No. 09/726,202, entitled 
“Method and System for Controlling a Complementary User 
Interface on a Display Surface,” filed Nov. 28, 2000, U.S. 
Pat. No. 6,018,332, entitled “Overscan User Interface,” 
issued on Jan. 25, 2000, and U.S. Pat. No. 6,330,010, 
entitled “Secondary User Interface”, issued on Dec. 11, 
2001, and other related patents.) The VRAM 203 is also 
used by the video card (and video drivers) to store other 
types of information. In a typical PC environment, now with 
advanced video cards, one or more “overlay' buffers 205 
may reside also in the VRAM 203. In these cards, advanced 
logic is provided to enable a graphics processing unit (GPU) 
(or other element responsible for transferring data from 
VRAM 203 to the display screen 220) to “overlay” bits from 
the overlay buffer 205 as the GPU is copying out bits from 
the frame buffer 204 to the display 220. In some cards, the 
overlay bits are combined with corresponding bits from the 
frame buffer 204 using complex logic, ranging from “AND” 
and "XOR operations to other types of percentage opera 
tions. (For example, the GPU may combine 70% of bit x,y 
from the frame buffer 204“OR'ed with 30% of bit w.Z from 
the overlay buffer 205, sometimes referred to as alpha 
blending.) Such cards often provide these bitmap operators 
to combine an area of VRAM 203 with another area of 
VRAM 203 (or designated memory elsewhere) to code other 
than the GPU, and will be referred to as Raster Operations. 
0048 While the data is stored in an area of the VRAM 
203 that is accessible to system level code (such as software 
and hardware video drivers, and other code that known how 
to communicate directly with the Video card, e.g., Direct-X 
and DirectIDraw), which is typically when the data is appear 
ing on the display device 220, the data is vulnerable to 
hacking by malicious programs. FIG. 3 is an example block 
diagram that shows how display hacking occurs. In FIG. 3, 
the operating system memory (RAM)301, as was described 

May 12, 2005 

in FIG. 2, holds the bitmap that represents the desktop 
canvas. At this point, Trojan Horse application 320 can 
access a copy of the desktop canvas (if it knows how to 
locate the desktop canvas in RAM) and can transfer that 
copy, acroSS a network or by any other data communication 
path to other computers, Such as hacker computerS321. (The 
application 320 is referred to as a “Trojan horse” because it 
has been injected, typically, in an unauthorized and unde 
tected fashion onto the client computer System.) One tech 
nique for avoiding Such unauthorized acceSS is for the 
operating System to Store the bitmap in an obfuscated form 
and de-obfuscate (or un-obfuscate) the bitmap when it is 
sent to the video card to be stored in VRAM. 302. The term 
de-obfuscate (or un-obfuscate) is used to refer to the reverse 
process used to obfuscate data. Thus, for example, decryp 
tion of encrypted data is a de-obfuscation process, as is 
applying an XOR operation with a mask to data that has 
been obfuscated by applying an XOR operation to that same 
mask. 

0049. Once the data is stored in VRAM. 302, the data is 
Still Vulnerable to illicit copying or viewing by an unautho 
rized client, for example, a rogue application 322 that uses 
a library, Such as Direct-X, to communicate directly with the 
Video card. The data is ripe for hacking as long as the Video 
card needs to store the valid data in VRAM to allow the GPU 
to project the data onto display device 303. A Security 
Enhanced Display Driver is provided by the methods and 
Systems of the present invention to prevent this type of 
hacking at lower levels in the system; that is, the enhanced 
driver Supports techniques that Secure designated data that is 
temporarily Stored in conjunction with the Video card and 
display mechanisms. 
0050 FIG. 4 is an example block diagram of the general 
techniques used by an example Security Enhanced Display 
Driver to prevent unauthorized access to data Stored in a 
frame buffer. The diagram shows the same components as 
shown in FIG.3, and the attempted hacking mechanism, but 
adds an additional component, the Security Enhanced Dis 
play Driver (the SEDD). The SEDD operates by applying 
obfuscation techniques to data Stored in designated areas 
(and potentially the whole) of the frame buffer in VRAM 
402 So that, even if an unauthorized application, Such as 
rogue application 422 attempts to copy-out data from the 
frame buffer 402, the data is invalid data because it has been 
obfuscated by the SEDD. Since the SEDD obfuscates (one 
or more) portions of the frame buffer 402, in order to 
effectively display the valid (un-obfuscated) data, the SEDD 
404 needs to temporarily de-obfuscate the data, so that the 
GPU copies out valid data at the time the GPU requires the 
data to be valid for correct display on display device 403. 
Thus, in general, the SEDD 404 acts as a “scheduler” 
process for the content of the frame buffer, in that it controls 
when the frame buffer holds valid data and invalid data, 
where the valid/invalid data is located in the frame buffer, 
and where the valid/invalid data is stored to be used to 
populate areas in the frame buffer. The SEDD may incor 
porate a variety of mechanisms to obfuscate and de-obfus 
cate data, including those described below with reference to 
FIGS. 6-9. 

0051). In one embodiment, the SEDD supports the ability 
for an application (or other code) to define a region on the 
display device as a “secure region.” Depending upon the 
level of Security implemented in the particular System, the 



US 2005/0102264 A1 

SEDD is able to guarantee that level of security for the 
Secure region. For example, if the highest level of Security 
is offered, the SEDD ensures that no unauthorized process 
can view or intercept the valid data, from the frame buffer, 
while it is being displayed in the Secure area. In that 
Scenario, a user can See the data on the display Screen, but 
the Secure region appears obfuscated to all code (other than 
the Scheduler and driver processes). 
0.052 FIG. 5 is an example block diagram of a desig 
nated secure portion of the video display memory (VRAM) 
as provided by an example Security Enhanced Display 
Driver. The VRAM 506 is shown in correspondence to the 
portion of the frame buffer (in this case the whole frame 
buffer) displayed on display device 501. The frame buffer 
507 in this example is shown as a 1024x768 pixel area on 
display device 501. On display device 501, the native 
desktop display area 502 (operating System controlled user 
interface) is shown in conjunction with two designated 
secure regions 503 and 504. In the corresponding positions 
in the frame buffer 507 of the VRAM, the native desktop 
portion 510 is shown in conjunction with secure portions of 
the frame buffer 511 and 512. To other code, secure portions 
511 and 512 appear as obfuscated (as noted there by cross 
hatching). Other Storage locations are also resident in 
VRAM 506, such as secure driver areas 508 and an overlay 
buffer 509. Secure driver areas 508 Store different buffers 
used by the SEDD and are not allocated by standard OS and 
programming means (i.e., a “malloc' function), but rather 
are explicitly requested from the video card and thus access 
can be better controlled by the SEDD. In particular, buffers 
for holding valid data (a Valid Data Buffer, or VDB), 
encrypted or masked valid data (a Secure Data Buffer, or 
SDB) and a mask buffer (Mask Buffer, or MB) are shown 
residing in Other VRAM 508. 
0053) Once one or more secure regions are defined, the 
content of the frame buffer (FB) is appropriately scheduled 
by the SEDD. In essence, the SEDD ensures that the 
contents of the secure portion of the FB that corresponds to 
the Secure region on the display contains valid data when the 
GPU needs to read it (or the GPU obtains the valid data 
through other means), and at (effectively and practically 
Speaking) all other times, the contents of the Secure portion 
contains obfuscated data. The various obfuscation and de 
obfuscation approaches used in conjunction with the SEDD 
are described with reference to FIGS. 6-9. One skilled in the 
art will recognize that other variations and nuances of these 
approaches and new approaches yet to be developed are 
operable with the SEDD and contemplated as part of the 
invention and that those discussed below are provided as 
examples. Also, one skilled in the art will recognize that the 
Separate “cases' shown are organized as Such for ease of 
description and may or may not resemble any actual imple 
mentation or division of functionality. 
0.054 The first obfuscation/de-obfuscation approach is 
termed "copy out,” because, in Summary, valid data is 
provided by the SEDD to be projected on the display device 
at “copy out” time-when the GPU copies the secure 
portion of the frame buffer to the corresponding Secure 
region on the display. FIG. 6 is an example block diagram 
of obfuscation techniques used in conjunction with “copy 
out' de-obfuscation techniques. According to the "copy out” 
approach, the data in the Secure portion is invalid, thus the 
complex Scheduling techniques that insert Valid data in the 

May 12, 2005 

frame buffer at critical times and restore invalid data at other 
times are not necessarily used. (These complex Scheduling 
techniques are discussed below with reference to FIGS. 
10-17.) In particular, valid data is passed to the display 
device; however, it may not be directly copied out from the 
frame buffer (FB). Preferably, the resident technique used by 
the video card (the GPU) to combine the overlay buffer with 
the frame buffer prior to projection is instead used to 
combine the obfuscated data in the frame buffer with the 
data in the overlay buffer. 
0055. There are two cases to consider. In the first case, 
Case 1, the frame buffer 601 contains invalid data in the 
secure portion 605 and valid data is stored in another buffer 
602. Other data (shown as valid data) is stored in the areas 
of the frame buffer that are not designated as Secure portions. 
The SEDD uses the valid data in buffer 602 to overwrite the 
contents of secure portion 605 when the FB data is copied 
out to the display device 603. The buffer 602 could be the 
overlay buffer, in Systems that Support direct raster operation 
combinations of the contents of the overlay buffer and the 
frame buffer. Further, the overlay buffer may contain an 
encrypted version of the valid data (with noise, for example, 
stored in the secure portion 605). In the latter case, a 
decryption key is Stored in Some auxiliary location. One 
skilled in the art will recognize that, although referred to as 
the overlay buffer (for video card and system supported 
mechanisms), other buffers such as a valid data buffer 
(VDB) or a secured data buffer (SDB), stored elsewhere in 
VRAM may be used in combination with raster operations. 
In the Second case, Case 2, the invalid data Stored in the 
secure portion 606 is an encrypted or masked version of the 
valid data and an encryption key or a mask used to unmask 
the masked version of the valid data is Stored in another 
buffer 604. The key or mask stored in the buffer 604 is used 
to create valid data on copy out by either decrypting the data 
stored in the secure portion 606, or by combining the data 
stored in the secure portion 606 using a Raster Operation 
(ROP) and the mask stored in the buffer 604. The primary 
distinction between the first and Second cases is whether the 
data stored in the other buffer (602 or 604) is valid data or 
other (key or mask) data. One skilled in the art will recog 
nize that Some use the work "mask' interchangeably with 
the term “key,” and for the purposes described herein, the 
terms are interchangeable. 
0056 FIG. 7 is an example block diagram of variations 
on copy out de-obfuscation techniques. This technique is 
useful in combination with the “copy-out” techniques of 
FIG. 6 to partially obfuscate a secure portion of the frame 
buffer. In particular, in FIG. 7, VRAM 700 is shown with a 
Secure portion (herein termed a "frame' ready to be dis 
played. Instead of, as in FIG. 6, obfuscating the entire Secure 
portion, a technique is used to Subdivide the Secure portion 
into, for example, three Sub-portions, and to treat one of the 
Sub-portions as the obfuscated area that is overwritten by 
valid data or is used to create valid data (cases 1 and 2 in 
FIG. 6). In the example shown, valid data (the frame to be 
displayed) from the operating System being sent to the video 
card (through the SEDD) is subdivided in three subparts 
before it is stored in the VRAM. The first subpart 704 of 
valid data is loaded into the first sub-portion 707 of the 
frame buffer; the middle Subpart 705 of valid data is stored 
in the overlay buffer 702; and the last subpart 706 is stored 
as valid data in the third sub-portion 709 of the frame buffer. 
Obfuscated data (of any desired content or format and from 



US 2005/0102264 A1 

any source) is stored in the middle subpart 708 of the frame 
buffer. The bottom portion of FIG. 7 shows how a GPU 
would use a combination of the overlay buffer and the 
portions of the frame buffer to generate valid data for 
projection on the display device. 
0057 The second obfuscation/de-obfuscation approach 
is termed “replace and restore, because, in Summary, the 
SEDD provides valid data by replacing the invalid data 
stored in the secure portion of the frame buffer with valid 
data just prior to being projected (or during projection) on 
the display device-when the GPU copies the secure portion 
of the FB to the corresponding Secure region on the dis 
play-and provides obfuscated data by restoring the invalid 
data after (or during the time) the secure portion of the FB 
is projected by the GPU. (The exact timing of the de 
obfuscation and re-obfuscation is dependent upon whether 
data is being handled pixel-by-pixel, Scan-line at a time, or 
in block operations.) FIG. 8 is an example block diagram of 
obfuscation techniques used in conjunction with “replace 
and restore' de-obfuscation techniques. In FIG. 8, the frame 
buffer 801 (initially) contains obfuscated data in the secure 
portion 802 of the FB. Other data (shown as valid data) is 
Stored in the areas of the frame buffer that are not designated 
as Secure portions. Again, there are two cases to consider, 
which differ as to whether valid data destined for the Secure 
portion of the frame buffer is stored as valid data (e.g., in a 
valid data buffer, VDB) or is stored as encrypted or masked 
data (e.g., in a Secure data buffer, SDB) which is decrypted 
or de-masked prior to copying in the “valid’ data into the 
frame buffer. 

0.058. In particular, in Case 3, valid data is stored in valid 
data buffer (VDB) 803 and obfuscated data (or data, for 
example, a mask, used to obfuscate the contents of the 
secure portion of the FB) is stored in a mask buffer (MB) 
804. Recall that these buffers may be stored wherever it is 
convenient in the System and meets the Security needs 
intended. The SEDD, at an appropriate time prior to the time 
when the contents of the secure portion needs to be valid for 
projection, copies in valid data from VDB 803. After the 
valid data has been Scanned and copied out for projection to 
the display (or sometime in the interim), the SEDD copies-in 
the invalid data from the mask buffer 804 in order to 
re-obfuscate the secure portion of the FB 802. Note that, 
although shown as coming from the mask buffer 804, one 
skilled in the art will recognize that the invalid data may be 
created any number of ways, including System operations, 
machine instructions, or other means that turn a set of bits 
on (all black) or clear the bits (all white). As shown in the 
figure, when the obfuscated data is to be formed by masking 
versions of the valid data, then a mask can be stored in MB 
804 and applied to the already copied-in valid data stored in 
the secure portion 802 using ROPs to recreate the newly 
obfuscated data. Alternatively, when the obfuscated data is 
invalid data Such as a logo, advertisement, or random bit 
patterns, then invalid data from the mask buffer 802 can be 
copied in to the frame buffer as is. 
0059. In Case 4, valid data is only stored in a more secure 
form (such as stored as encrypted or masked data) in Secure 
data buffer (SDB) 805. This same encrypted or masked data 
(since it is “obfuscated” data) is used as the invalid data to 
be copied in to the secure portion of the FB when obfuscated 
data is to replace the valid data in the frame buffer. A mask 
or key is stored in mask buffer (MB) 804 to be used by the 

May 12, 2005 

SEDD to decrypt or de-mask the secure data stored in SDB 
805. Thus, the SEDD, at an appropriate time prior to the time 
when the contents of the secure portion 802 needs to be valid 
for projection, creates valid data to copy in from the SDB 
805 by applying (decrypting or de-masking) a key or mask 
from the MB804 to the secure data stored in the SDB 805, 
and copies out the result (valid data) to the Secure portion of 
the FB 802. Similarly, after the valid data stored in the 
secure portion 802 has been scanned and copied out for 
projection (or thereabouts), the SEDD copies-in the invalid 
data (the encrypted or masked form of the valid data) from 
SDB 805 in order to re-obfuscate the secure portion of the 
FB 802. 

0060. The third obfuscation/de-obfuscation approach is 
termed “in-place replacement,” because, in Summary the 
SEDD provides valid data in the secure portion of the frame 
buffer by manipulating the invalid data in-place just prior to 
being projected on the display device-when the GPU 
copies the Secure portion of the FB to the corresponding 
Secure region on the display-and then provides invalid data 
by manipulating (toggling) the valid data in-place to once 
again generate invalid data. FIG. 9 is an example block 
diagram of obfuscation techniques used in conjunction with 
“in-place replacement” de-obfuscation techniques. In FIG. 
9, the frame buffer 901 (initially) contains obfuscated data in 
the secure portion 902 of the FB. The obfuscated data is a 
Secure version of the valid data, Such as an encrypted or 
masked form of the valid data. Hence, to create valid data 
from the obfuscated data (to de-obfuscate the data) stored in 
the secure portion of the FB 902, the SEDD applies an 
appropriate key or mask, stored in mask buffer (MB) 904, to 
decrypt or to de-mask the data as appropriate. Like the 
approaches “replace and restore' approach described with 
reference to FIG. 8, the SEDD performs the de-obfuscation 
and re-obfuscation at the appropriate times to ensure that 
projection of valid data is possible and that no other code has 
access to the valid data that corresponds to the Secure portion 
802. 

0061. As described relative to FIGS. 8 and 9, the SEDD 
needs to Schedule the de-obfuscation and re-obfuscation of 
data Stored in a Secure portion of the frame buffer in order 
to coordinate valid data for projection use and obfuscated 
data for security. FIG. 10 is an example illustration of the 
Scheduling of obfuscation and de-obfuscation of the contents 
of the frame buffer by an example Security Enhanced 
Display Driver. The graph shown in FIG. 10 relates the time 
taken for a display gun to Scan data (typically Scan line at a 
time) from the frame buffer for projection on the display 
device to the address locations in the frame buffer memory. 
A vertical blank Signal is given by the gun when it reaches 
the end of Scanning the display, just prior to its return to 
Scanning the first line on the display Screen. The time the gun 
takes to travel from the lower rightmost corner to beginning 
Scanning again in the upper leftmost corner is referred to as 
a vertical blank interval (this when the screen used to “blink” 
prior to advanced technical which makes this time Virtually 
undetectable). This time is calculable for a particular System 
whose gun paints at a particular rate (typically in hertz). 
0062) Note that the (0,0) point is simply an origin relative 
to the Screen (the upper leftmost corner). The actual portion 
of the display Screen being used by the operating System and 
other code, may in fact be less than the total amount on the 
Screen. The relative origin point in the frame buffer used as 



US 2005/0102264 A1 

a data Source for what is Scanned to the display is also 
described as (0,0), however, it will be understood that this 
point is not necessarily the first address location available in 
the frame buffer.) 
0063 The gun projects scan lines (travels) at a particular 
rate. The SEDD needs to determine when the gun will reach 
point A. Point A represents the time (relative to the VB 
Signal end at origin 0.0) the gun will reach the beginning of 
a designated Secure region on the display, which corresponds 
to a designated Secure portion of the frame buffer (memory). 
At point A, the data in the secure portion of the FB needs to 
be valid data. Point B represents the relative time when the 
gun will reach the end of Scanning the designated Secure 
region on the display, which corresponds to the end of the 
secure portion of the frame buffer. By point B, the data in the 
secure portion of the FB needs to be obfuscated data, so that 
other code (code other than any SEDD code used in the 
Scheduling of frame buffer content) cannot view or intercept 
valid data. In reality, due to System latencies, including the 
VB interval to Start Scanning from the display origin, the 
time to load code and invoke processes, threads etc., and due 
to any time needed for the de-obfuscation (including in Some 
cases decryption) to occur, the SEDD needs to start the 
process of de-obfuscated the data Stored in the designated 
Secure portion of the frame buffer at Some time prior to when 
it is needed at point A. Point C represents this time delta. 
One skilled in the art will recognize that the values of points 
A, B, and C are highly System dependent. Points A and B can 
be determined by polling for the VB signal or, in an 
event-driven System that Supports VB events, by receiving a 
VB event and calculating (knowing the travel rate of the 
gun) the time it will take to reach point A and point B. Point 
C, however, the time delta, is typically determined empiri 
cally, based upon System latencies and the particular obfus 
cation and de-obfuscation techniques being used. In general, 
point C is: 

point A (in time)-system latency time-de-obfuscation 
process time (1) 

0.064 One skilled in the art will recognize that many 
different techniques can be used from a Scheduling perspec 
tive for re-obfuscating the data by point B. For example, the 
re-obfuscation proceSS make take place a Scan line at a time, 
pixel by pixel, or as a block of memory. Thus, the proceSS 
may trail the gun by Some interval. AS described below 
relative to FIG. 17, in one embodiment, re-obfuscation is 
performed right after the Secure region is Scanned for 
projection onto the display. 

0065. Also, in order to prevent other code from accessing 
the valid data while it is present in the Secure portion of the 
frame buffer, Some process/thread locking mechanism needs 
to be employed to lock out other code during critical 
intervals. In the embodiment described below relative to 
FIGS. 12-17, a real time, highest priority thread is used to 
copy-in the valid data and to re-obfuscate the data prior to 
relinquishing control. One skilled in the art will recognize 
that other mechanisms can be used, and the level of Security 
provided by the System is commensurate with how lock 
proof the locking mechanism is. 

0.066 FIG. 11 is an example block diagram of an alter 
nate obfuscation/de-obfuscation approach that can be used 
to Schedule the timing of obfuscation and de-obfuscation of 
the entire frame buffer or some portion thereof. Frame buffer 

May 12, 2005 

1100 can be thought of as a Sequence of areas, for example 
1101-1104, that are in some state of containing obfuscated 
data and valid data. As the SEDD moves through the frame 
buffer 1100, it progresses through the areas in groups of 
three, So that, at any one point in time there is an area 1103 
that contains valid data being copied-out for display, an area 
1102 Oust prior to 1103) that contains data in the process of 
being de-obfuscated, and an area 1104 Oust after 1103) that 
contains data that is in the process of being re-obfuscated. 
One skilled in the art will recognize that proceSS/thread 
Scheduling lockS Still should be asserted and relinquished as 
appropriate for the area in which valid data is present, for 
example 1103, in order to achieve greater Security. Alterna 
tively, Since variation of parameterS Such as the location and 
the size of the areas may be changed, the State of the frame 
buffer may be sufficiently unpredictable to outside code. 
0067 FIGS. 12-17 describe an example embodiment of 
how portions of a SEDD accomplish the scheduling of 
content in the frame buffer to implement Secure regions on 
a display device. For the purposes of example, the Sched 
uling scenario as described with reference to FIG. 10 is 
used. Also, in the following description, numerous specific 
details are set forth, Such as data formats and code 
Sequences, etc., in order to provide a thorough understand 
ing of the techniques. One skilled in the art will recognize, 
however, that embodiments of the present invention also can 
be practiced without Some of the Specific details described 
herein, or with other specific details, Such as changes with 
respect to the ordering of the code flow, how the code flow 
is organized by function, etc. In addition, although certain 
parameters may be described as input and output parameters, 
fewer or greater or different parameters may be incorpo 
rated, depending upon the Specific implementation. 
0068. In Summary, at typically an application or operat 
ing System level, a request will be made to create a Secure 
region on the display device and to render data into that 
region in a Secure fashion. This request will be processed by 
the SEDD, which schedules the content of the frame buffer 
according to the scheduling plan (e.g., FIGS. 10 and 11) in 
effect and the obfuscation and de-obfuscation techniques 
being used. 
0069 FIG. 12 is an example flow diagram of an example 
application level routine for requesting rendering in a Secure 
display region. The API (referred to as “CreateSecureDis 
play Region') takes as input a desired location and returns an 
indication of a Secure area on the video card (e.g., a valid 
data buffer) for storing the valid data, an indicator of the 
Secure FB location allocated, and an identifier to be used to 
identify this instance of a Secure region. In Step 1201, the 
API authenticates the requestor using, typically, Standard 
techniques well known in the art, Such as digital Signatures, 
etc. In step 1202, the API determines whether the secure 
region being request is available, and, if So, continues in Step 
1204, else returns an error. In one embodiment, Secure 
regions cannot overlap (interfere) with FB locations in 
another Secure region, in order to guarantee the integrity and 
correctness of the data being displayed. One skilled in the art 
will recognize, however, that other implementation are pos 
sible. In step 1203, the API allocates the secure region (by 
Setting up the various return values for the requester. The 
allocation step could also be done at the driver (SEDD) level 
instead. In step 1204, the API invokes the SEDD to start the 
obfuscation process on the allocated region and returns. In 



US 2005/0102264 A1 

one embodiment, the driver is invoked through a Standard 
device driver “ioctl mechanism, which allows drivers to 
Setup Standard and Special entry points. 

0070. Once the driver is invoked, a number of steps 
happen, which are dependent upon the operating System 
being used, especially what events (signals) can be received 
and what task (proceSS/thread, or . . . ) locking mechanisms 
are available. FIGS. 13 and 14 are example embodiments of 
the ioctl entry point to Start obfuscation based upon whether 
the system supports vertical blank (VB) event registration of 
whether a polling (spin-lock) technique needs to be used, 
respectively. 

0071 FIG. 13 is an example flow diagram of interfaces 
in an example Security Enhanced Display Driver to control 
obfuscation of a Secure display region in a true multi 
tasking, hardware event-driven System. In Summary, the 
driver code determines where the projection gun needs to be 
in order to start obfuscation, registers for a VB event at that 
location in the frame buffer, and Spawns a real time thread 
to de-obfuscate and re-obfuscate the Secure portion when the 
VB event is received. Specifically, in step 1301, the code 
determines whether the driver has been invoked at the entry 
point corresponding to the “start obfuscation' process and, 
if so, continues in step 1302, else continues in step 1307. In 
step 1302, the driver code allocates a secure portion of the 
frame buffer to correspond to the Secure region on the 
display, if this is not already done by the corresponding API. 
In step 1303, the code determines a VB event start loca 
tion(time) in the frame buffer for starting the de-obfuscation 
process and a VB event end location(time) in the frame 
buffer for starting the re-obfuscation process13 that is, a VB 
event specification that corresponds to the beginning loca 
tion of the secure portion in the frame buffer adjusted for 
latencies, de-obfuscation, etc. (see Equation 1 above) and 
determines a VB event Specification that corresponds to the 
end. A process for determining the VB event start and 
VB event end is described below with reference to FIG. 
16. In step 1304, the driver code registers for a VB event at 
time VB event start and then waits to be signaled of this 
event. In steps 1305 and 1306, when the VB event is 
Signaled, the driver code invokes a real time obfuscation 
control thread. After the thread returns, thereby relinquish 
ing control to other tasks So that they too can paint the 
display, (or until the VB event occurs) the driver just waits 
until the next signal or ioctl. The real time obfuscation 
control thread is described in reference to FIG. 17. 

0.072 Depending upon the particular implementation, an 
application (or the operating System) may explicitly stop the 
obfuscation process (thereby destroying the Secure region) 
or may simply change the data being presented in the already 
allocated Secure region, or Some combination of both. The 
“Stop obfuscation' ioctl entry point is an interface for 
Stopping the obfuscation process of a particular Secure 
region. In step 1307, if the ioctl received indicates a desire 
to “stop obfuscation” then in step 1308, the driver code 
Signals the real time thread (if one is currently running) to 
terminate (and obfuscate the Secure portion). If a separate 
“Destroy SecureDisplayRegion API (not shown) is used to 
invoke the “stop obfuscation” ioctl, cleanup of the VDB and 
other related data should be performed by that API. 
0.073 Although the examples are described primarily 
with respect to implementing driver code for one designated 

May 12, 2005 

Secure region, one skilled in the art will recognize that these 
techniques are extendible to multiple requesters and multiple 
Secure regions using Standard programming techniques Such 
as look up tables or by invoking one real time obfuscation 
control thread (RTOC thread) per requester, or using similar 
mechanisms. If multiple Secure regions are being Supported, 
then the driver code may register for a separate VB event for 
each Secure region and Spawn a RTOC thread for each, 
otherwise it may send a list of relevant VB events to the 
RTOC. 

0074 FIG. 14 is an example flow diagram of interfaces 
in an example Security Enhanced Display Driver to control 
obfuscation of a Secure display region in a non-event driven 
manner in an alternate operating System environment. In 
Summary, the driver code determines where the projection 
gun needs to be in order to Start obfuscation, Spin-locks on 
the VB signal+the calculated VB event start time to deter 
mine when to Start de-obfuscation of the Secure portion of 
the frame buffer, and spawns the real time thread (same 
thread as for the approach used in FIG. 13) to de-obfuscate 
and re-obfuscate the Secure portion. One skilled in the art 
will recognize that a locking approach with finer granularity 
may be used. In particular, a non-real time thread may be 
Spawned first to perform any processing of the data required 
for de-obfuscating prior to copying the valid data into the 
FB. Thereafter, a real-time thread is spawned only to per 
form the copy-in of the valid data during the re-obfuscation 
process. (In other words, the real-time thread is used only for 
processing from approximately point A to point B in FIG. 
10.) 
0075 Specifically, in step 1401, the driver code deter 
mines whether the driver has been invoked at the entry point 
corresponding to the “start obfuscation' proceSS and, if So, 
continues in step 1403, else continues in step 1404. In step 
1402, the driver code allocates a secure portion of the frame 
buffer to correspond to the Secure region on the display, if 
this is not already done by the corresponding API. In Step 
1403, the driver code invokes a (non real-time) timing and 
Synchronization thread to emulate the event handling to 
determine when the VB signal corresponds to the VB ev 
ent start. Then, either the timing and Synchronization thread 
invokes the real time obfuscation control thread directly, or 
it is done following step 1401 (approach not shown). The 
driver code then waits for the next signal or ioctl event. In 
step 1404, if the ioctl received indicates a desire to “stop 
obfuscation” then in step 1405, the driver code signals the 
real time thread (if one is currently running) to terminate 
(and obfuscate the Secure portion). (Again, if a separate 
“API (not shown) is used to invoke the “stop obfuscation” 
ioctl, cleanup of the VDB and other related data should be 
performed by that API.) 
0.076 FIG. 15 is an example flow diagram of a vertical 
blank timing and Synchronization thread used to control the 
frame buffer content Scheduling in the alternate operating 
system environment of FIG. 14. This thread is called from 
step 1403 of FIG. 14. As stated, the primary purpose of this 
thread is to simulate what would otherwise be available from 
an operating System capable of Signaling hardware events 
Such as a specific timing/location for the VB Signal plus 
Some delta of time (or corresponding frame buffer location). 
In step 1501, the timing and synchronization thread (TS 
thread) determines a VB event start location(time) in the 
frame buffer for Starting the de-obfuscation process and a 



US 2005/0102264 A1 

VB event end location(time) in the frame buffer for starting 
the re-obfuscation process-that is, a VB (here simulated) 
“event specification that corresponds to the beginning 
location of the secure portion in the frame buffer adjusted for 
latencies, de-obfuscation, etc. (see Equation 1 above) and 
determines a VB “event” specification that corresponds to 
the end. A process for determining the VB event start and 
VB event end is described below with reference to FIG. 
16. In step 1502, the TS thread spin-locks (polls and waits) 
on the determined VB event start, and when it hits it, then 
in step 1503 invokes the real time obfuscation control thread 
(RTOC thread). A spin-lock can be achieved by polling for 
the VB Signal and Setting a timer to go off at time 
VB+VB event start (or other equivalent mechanism). The 
real time obfuscation control thread is described in reference 
to FIG. 17. After the RTOC thread returns, thereby relin 
quishing control to other tasks So that they too can paint the 
display, the TS thread begins another Spin-lock process in 
step 1502 to poll and wait for the timing of the next 
VB event start. If multiple Secure regions are being Sup 
ported, then the TS thread may be simulating a separate VB 
event for each Secure region. At Some point, the TS thread 
may receive a signal to "terminate' (see representative Step 
1504) and when it does, then in step 1505, the TS thread 
signals the RTOC thread to terminate (and re-obfuscate any 
secure portions of the frame buffer). 
0077 FIG. 16 is an example flow diagram of code for 
determining correlations between vertical blank and VRAM 
address as used to control frame buffer content Scheduling. 
AS mentioned, the technique used is System dependent, but 
the general idea is to determine at what point in time the VB 
Signal is occurring (at the rightmost bottom corner of the 
display, how long it then takes to get to VB event start, the 
point at which de-obfuscation should start (see point A in 
FIG. 10), and how long it the takes to get to VB event end, 
the point at which re-obfuscation should start. (The re 
obfuscation point may begin Sooner depending upon the 
technique used as described earlier-pixel, Scan line, or 
block at a time.) In step 1601, the code determines the time 
by which de-obfuscation needs to have finished for a par 
ticular secure region (point Ain FIG. 10). For example, this 
time can be computed knowing the Scan rate (e.g., 80 mhz) 
and the number of Scan lines to figure out the rate per Scan 
line and then figuring out the Scan line position that corre 
sponds to the start of the secure portion of the frame buffer. 
In Step 1602, if decryption (or de-masking) is used in the 
de-obfuscation technique in used, then the code continues in 
step 1603 to compute the VB event start taking into 
account extra time necessary for decryption (or de-mask 
ing). Otherwise, then in step 1604, VB event start is com 
puted with System latencies, etc. AS noted, these values need 
to be determined empirically, preferably during a System 
initialization process. In step 1605, the code determines 
VB event end by calculating the length of time needed to 
Scan to the end of the Secure portion and adding it to 
VB event start, or simple tracking it as a time difference. 
0078 FIG. 17 is an example flow diagram of a real-time 
obfuscation control thread used by the Security Enhanced 
Display Driver to deliver valid and invalid data to the frame 
buffer. The real-time obfuscation control thread (RTOC 
thread) used by the display driver to lock out other pro 
cesses/tasks while the SEDD needs to display valid data. As 
noted, other equivalent process locking or resource (the 
frame buffer is a resource) locking mechanisms may be 

May 12, 2005 

used, depending upon the operating System and hardware 
environment. It is intended in this embodiment that the 
RTOC thread be the highest priority task in the system at that 
point, So that all other processes/tasks are effectively locked 
out. Thus, the RTOC thread preferably acts very quickly and 
relinquishes control just as Soon as the valid data is Scanned 
and the Secure portion re-obfuscated. 
0079. In step 1701, the RTOC thread determines whether 
decryption/de-masking is needed, and, if So, continues in 
step 1702, else continues in step 1703. In step 1702, depend 
ing of course on the obfuscation technique being used by the 
SEDD, the RTOC thread creates valid data by decryption or 
de-masking and sets an indicator to this value (pValidData). 
In step 1703, since valid data is already available, the RTOC 
thread just uses the valid data Stored, for example, in the 
VDB. In step 1704, the RTOC thread copies in the indicated 
valid data to the secure portion of the frame buffer. In step 
1705, the RTOC thread waits (if time not already passed) 
until VB event end and then in step 1706 re-obfuscates the 
secure portion of the frame buffer by whatever obfuscation 
technique is being used. (See, for example, FIGS. 8-9.) At 
Some point (indeterminate) within the processing of the 
RTOC thread, the thread may receive a signal to terminate 
obfuscation. When it does, the RTOC preferably executes 
step 1706 to make sure that the secure portion of the frame 
buffer contains obfuscated data. 

0080 Secure Storage and Display of Keyboard, Mouse 
and Other Pointing Device Input 
0081 FIG. 18 is an example block diagram that illus 
trates how input data hacking occurs. The diagram is meant 
to address all types of input, for example, keyboard, mouse, 
and other pointing device input. In FIG. 18, as input is sent 
from the input device 1801 to an appropriate operating 
system device driver 1802 it is processed by an appropriate 
input "stack' (code designed to handle and pass the input). 
AS part of being processed by the input Stack, the input is 
forwarded to input routines provided, typically, by an appli 
cation input library 1803, in order to send the input to a 
requesting application. The input data, while transient, is 
vulnerable to Sniffer applications 1804, which watch the data 
to capture data and/or look for patterns in the input. 
0082 FIG. 19 is an example block diagram of the general 
techniques used by a Security enhanced input driver, Such as 
a Security Enhanced Mouse Driver to prevent unauthorized 
access to input data. The diagram shows the same compo 
nents as shown in FIG. 18, but with an additional compo 
nent, the Security Enhanced Mouse Driver (the SEMD) 
1905. The SEMD is a secure driver, which is invoked by 
applications or other code 1906 desiring to provide secure 
input. The SEMD is preferably installed first-in-line so that 
it hooks the input first from the hardware, before other 
components, including the operating System drivers have a 
chance to intercept the input. A detailed description of how 
a driver is installed as a first-in-line driver and monitoring 
mechanisms for ensuring that the driver remains Secure in its 
position are described below with reference to FIG. 23 and 
related text. In summary, the SEMD (or other secure input 
driver) intercepts the data from the input device, determines 
whether it has been requested by an authorized application 
that requested Secure input (Such as application 1906), and 
if So, Sends the input in a Secure fashion to the authorized 
application, otherwise forwards the input on to the Standard 
operating System drivers. 



US 2005/0102264 A1 

0083 FIG. 20 is an example flow diagram of the obfus 
cation techniques used by an example Security enhanced 
input driver to prevent unauthorized access to input data. In 
FIG. 20, the input driver, for example, a mouse or keyboard 
drvier, waits (typically at the request of an application or the 
operating System as a result of a “read” request) until the 
next input event. In step 2001, when such an event is 
received, the driver continues in step 2002 to determine 
whether an “security authorized’ requestor has issued the 
read request, and, if So, continues in Step 2004, else contin 
ues in step 2003. For the purposes described herein, a 
Security authorize requestor is preferably an application or 
other code that has specifically notified the Secure input 
driver that Secure input is desired. Standard authentication 
mechanisms can be used to authenticate the requestor after 
the requestor has initially registered with the Secure input 
driver. In step 2003, the driver code determines whether the 
authorized requestor has also specified that it desires obfus 
cated input (to generate an added measure of Security), and, 
if so, continues in step 2006, else continues in step 2005. In 
step 2005, the input is then passed to the input “translation” 
stack offered by the secure driver or libraries that handle the 
Secure input in order to forward the input to the Security 
authorized requestor. The input translation Stack typically 
determines, for example for keyboard input, a character, 
from a key code. In step 2006, when obfuscation has been 
requested, the input driver obfuscates the input code, using 
whatever obfuscation technique is implemented or specified. 
For example, the input code can be encrypted, combined by 
Boolean operations with a mask, Such as noise, a pattern, 
etc., much the same way display output can be obfuscated. 
In step 2007, the secure input driver code passes the obfus 
cated input code to an input translation Stack that is coded to 
de-obfuscate the input code using the reverse technique to 
that which was used to obfuscate the input code. 
0084. Secure Storage and Display of Audio Content 
0085 FIG. 21 is an example block diagram that illus 
trates how audio data hacking occurs. AS audio is Sent from 
the operating System memory 2101 or to memory on a Sound 
card 2103 for playback on a speaker 2104, the audio data is 
Vulnerable while it is being Stored on the Sound card memory 
2103 to malicious code, such as Sniffer application 2106. In 
addition, for applications that handle Streaming audio, the 
operating System (or other application libraries) buffers 
audio temporarily in audio buffers 2102. The buffered audio 
data 202 is also Vulnerable to hacking Such as by unautho 
rized sniffer applications 2205. 

0.086 FIG. 22 is an example flow diagram of the obfus 
cation techniques used by an example Security Enhanced 
Audio Driver to prevent unauthorized access to audio data. 
The diagram shows the same components as shown in FIG. 
21, but with an additional component, the Security 
Enhanced Audio Driver (the SEAD) 2207. The SEAD is a 
Secure driver, which is invoked by authorized applications or 
other code 2208 desiring to provide secure audio output. 

0087. In one embodiment, the SEAD obfuscates the 
content of the pool of audio buffers 2202 by selecting in a 
SEAD Specific manner, which buffers to use for Sequencing 
the audio. For example, a random or pseudo-random 
Sequence of numbers can be used to Select which buffers to 
use to accumulate the digital form of the audio Signal. To 
confound attempts to track utilization of the buffers, dis 

May 12, 2005 

tracter information is placed into the buffers that are not 
being used. AS the audio is passed in digital form to the next 
Software component, if the component is authorized to use 
the SEAD for obscuring audio, then the audio is extracted 
from the audio buffers 2202 using the same random or 
pseudo-random Sequence of numbers to determine the 
appropriate Source buffers. When the audio is no longer 
required, the buffer is returned to the pool of available 
buffers or optionally, has distracter information placed in it. 
0088. The SEAD also can be implemented to obfuscate 
the audio data Sent to the card by, for example, performing 
Some operation “F” on the audio to encrypt or Somehow 
encode or mask the data. (Operation “F” is soundcard 
dependent, and like other forms of encryption, has a coun 
terpart reverse operation for decryption purposes.) When the 
audio is presented by the SEAD to the soundcard for 
conversion to the analog audio signal, SEAD instructs 
additional Software on the soundcard, for example a DSP 
present on certain Soundcards, to perform the de-obfusca 
tion. This may be achieved on certain Soundcards by creat 
ing an equalizer and Sound processor code and treating the 
de-obfuscator codes in a manner Similar to reverb, Sym 
phony hall, or other Special effects. 
0089. In addition, when the SEAD is receiving a stream 
of audio information or the receiving Security authorized 
Software is forwarding a stream of audio information to the 
SEAD, the digital representation of the digital audio infor 
mation may be pre-obfuscated or encrypted, in a Secure 
driver Specific manner, Such that the SEAD can decrypt the 
audio in a Safe manner. For example, the format of the may 
be encoded, or transcoded into the form acceptable for use 
by that System. The origins of the audio stream are derived 
from a conventional Source, Such as MP3 files or streams, 
Streaming Servers, or other encoded digital audio Sources. 
The receiving Secure Software, that knows how to decrypt 
these encoded audio Sources then renders the audio Stream 
into the SEAD's internal obfuscation format such that plain 
"text of the audio is never present in the System in digital 
form. 

0090 First-in-Line SED Installation and Watchdog 
Monitoring 

0091. The ability to control when a driver has access to 
input and/or output is especially important to Security 
enhanced drivers. Each operating System provides mecha 
nisms for ensuring that a particular driver has acceSS before 
all other drivers, or before all of the drivers of its type (for 
example, hard disk drivers), depending upon the operating 
System. In operating Systems similar to Windows 9x oper 
ating Systems, event processing is performed in a “chain,” 
and drivers can be installed in various parts of the chain 
depending upon when they are loaded into the System. 
0092 For example, input event processing for Windows 
9X operating Systems proceeds typically as follows: 

0093. A hardware event occurs: mouse or keyboard 
activity (mouse movement or key presses). 

0094) AVxD style (virtual) device driver (or system 
level driver) detects and reads input from hardware 
and Sends event to hardware virtualization layer. 

0095 The virtualization layer successively sends the 
driver event input to the list of device handlers 



US 2005/0102264 A1 

registered for those events, allowing each device 
handler function to process the data or return without 
processing, allowing the next device handler in the 
chain to process the data. 

0096 Driver events may be processed by the han 
dler or Sent on to the application which registered for 
them. 

0097 Techniques of the present invention, when used in 
conjunction with Windows 9x operating Systems, ensure that 
(especially) input SEDS are optimally Secure by installing 
the relevant drivers as the top (first) event handler in the 
handler chain for each input device. In addition, a watchdog 
proceSS is invoked, as described further below to periodi 
cally validate the handler position. FIG. 23 is an example 
block diagram of installing a SED as a first-in-line driver in 
Windows 9x operating System environments and associated 
monitoring processes. 

0098. In Windows NT and derivative operating systems, 
input event processing follows a different model. For 
example, input event processing in these Systems proceeds 
typically as follows: 

0099. A Hardware Interrupt Service Routine (ISR) 
works fast to collect data, building IRP I/O Request 
Packet 

0100. The ISR feeds into a Mini Port, which con 
tains the hardware interface and knowledge of the 
device. 

0101 Data is abstracted and passed up further to the 
Port Driver. The port driver (usually 1 per I/O 
device). The port driver abstracts the process further 
and does more processing on the IRP 

0102 Data is then passed up to the Class Driver. 
Examples of this can be mouse class and kbdclass. 
These are the Standard mouse and keyboard classes 
for the Windows Operating System. 

0103. Above the class drivers are the filter drivers, 
the filter drivers can become the first to receive input 
and then determine to pass it onto the existing System 
Or not. 

0104 For example in Microsoft Windows OS a 
kernel driver can add itself into the upper filter key 
of the registry to note that it wants to receive key 
eVentS. 

0105. Using the sequence as outlined above for NT OS 
I/O loading and processing, in one embodiment, a SED can 
be created as a class driver. The SED would then place a 
value in the upper filter of the registry to denote itself having 
input focus within the OS system. In this embodiment, the 
SED needs to ensure that it is the first filter in the registry 
along with ensuring that is the first of the filter drivers to 
receive the I/O Request Packet directly from the class driver. 
0106 The concepts for implementing a watchdog service 
to monitor security in both the Windows 9x and NT are 
Similar, however the implementation varies to adhere to the 
driver model of each operating System. By inserting a SEDS 
filtering (and potentially obfuscating) function as the first 
function to examine and/or process the driver's event data, 
SEDs ensure the validity and security of the mouse, key 
board, and other input devices, either processing the data for 

11 
May 12, 2005 

the Secure environment or allowing the data to be returned 
to the operating System via the normal mechanism. One 
skilled in the art will recognize that Similar techniques can 
be developed in other operating System environments, as 
long as the driver model is known and an SED filtering 
function can be appropriately inserted. 

0107 One skilled in the art will also recognize that no 
distinction is made between the mouse and keyboard devices 
for the purposes of using these techniques. The device 
drivers both operate in a similar manner for the purposes of 
this description. In addition, these techniques may be imple 
mented with a trackball, a digitized tablet, a cordless key 
board, a cordless mouse, a numeric keypad, a touchpad, or 
any other pointer or key-based input device. 

0108. In an example Windows 9x implementation, a SED 
Security Service is installed which acts as a timer. Upon 
Startup, the SED Security Service establishes a communica 
tions path to the SED driver using a Standard mechanism, 
IOCTLO. Via the IOCTL path, the SED security service 
signals the SED to verify that the SED is in the first (top) 
device handler position in the event processing handler 
chain of the mouse and keyboard. If this is not the case, the 
SED attempts to re-register the SED handler into the first 
position. If this attempt fails an error message is registered 
and the System is now considered to be unsecure for obfus 
cation purposes. 

0109 Upon detection of an unsecure environment, an 
event, for example, a application-specific event, is propa 
gated through the environment, to inform all relevant appli 
cations. For example, in the XSides environment, described 
in detail in U.S. patent application Ser. No. 09/726,202, 
entitiled “Method and System for Controlling a Comple 
mentary User Interface on a Display Surface,” filed on Nov. 
28, 2000, an XSides event is prograted throughout, inform 
ing all XSides applications that rely on Secure input func 
tionality that those devices (e.g., mouse and keyboard 
devices) are no longer considered Secure. This change of 
Security is communicated preferably to the user as well via 
an icon which is displayed in a Secure region (as described 
above in the section entitled “Secure Storage and Display of 
Video Content.” Common bimaps used for this purpose are 
a locked or unlocked padlock. 

0110. To ensure that continuous security validation 
checks occur by the Security Service, a Second Service is 
Started up to act as a watchdog to the SED Security Service 
called the SED Security watchdog. The purpose of the 
Security watchdog is to establish a bi-directional communi 
cations path to the Security Service on which messages are 
Sent to and from the two Services. These messages act as an 
“I’m alive' or ping mechanism, which informs each Service 
that the other is functioning normally. If one Service fails to 
receive a message from the other in Some arbitrary time 
period, an attempt by the receiving Service will be made to 
restart the other Service. 

0111. If the receiving service is unable to restart the other 
Service, then the System, for obfuscation purposes, is con 
sidered unsecure and the same notification to the user is 
performed as described above for the Security Service. 

0112 The security service for Windows NT derivative 
operating Systems is essentially the same as for the Windows 
9x version. One difference is that the value being verified is 



US 2005/0102264 A1 

not a handler chain, but instead the value of the callback 
function pointer in the I/O completion structures for the 
input devices (e.g., mouse and keyboard). This is done by a 
comparison of the function pointers. If the SED callback 
function is not the callback function pointed to in the I/O 
completion Structure, an attempt to replace it will be made. 
The failure modes described for Windows 9x for failing to 
change the function pointer for the callback function to the 
SED version are also preferably available for the Windows 
NT technique; i.e., Secure/un-Secure notification. 
0113. The basic SED Security watchdog service operates 
similarly in the Windows NT environment as in the Window 
9x environment. 

0114. An additional watchdog service (or an extension of 
the existing Service) may be made available to verify the 
status of hooks, and verify that the SEDs have not been 
tampered with. An NT implementation includes two Sepa 
rate processes that registers an interest in two different 
System registry entries. If they are not in Sync, the watchdog 
Service notifies or automatically repairs registry entries that 
are not correct. The two registry entries have Sufficient State 
to allow the watchdog executable to Verify that the registry 
entries have not been tampered with. This may be, for 
example, the Storing of the checksum, certificates, or the 
Signature of the application in the registry entries of the 
watchdog itself, along with an XOR of the Signature and 
another known value, or alternatively a signature derived by 
a different mechanism than the first. The watchdog is 
invoked if the registry entries are modified and Verifies that 
the entries are correct at that time, and, if they are not 
correct, determines the correct values and replaces them. 
Since it is unlikely that (1) the signatures stored in the 
registry, (2) the watchdog itself, (3) the Software the signa 
tures were derived from, and (4) the software that verifies 
the watchdog itself can all be changed in a manner as to 
appear valid, this mechanism alone or in combination with 
other measures may be used to determine the State of 
intrusion or modification of the Software codes. 

0115 Denoting Security in User Interfaces 
0116. As mentioned, to complement the obfuscation tech 
niques and Security enhanced drivers, the methods and 
Systems of the present invention also provide different 
techniques for denoting various levels of Security in the 
System. Some existing Systems, Such as applications like a 
web browser, provide a basic graphical representation of 
security or security-level. Microsoft's Internet Explorer for 
example, uses a representation of a "padlock' located in the 
bottom Status bar region of the browser to represent to the 
user that a web site location is currently using Secure or 
non-Secure communication protocols, usually in the form of 
technologies such as SSL or HTTPS. FIG. 24 is an example 
Screen display that illustrates a padlock to denote Security as 
used in an existing Software application. 
0117 The security enhanced drivers of the present inven 
tion provide a mechanism by which a Secure region on the 
display device, Such as a displayed desktop, window, or an 
alternative display area may use the display cursor to 
intuitively identify to the user the security level of the 
region. Specifically, each Secure region is associated with an 
attribute value that causes the display cursor to inherit a 
color value for the level of security associated with the 
Specific region. AS the cursor is moved, whether automati 

May 12, 2005 

cally or by the user, from one display area into another 
display area with a higher or lower Security level, the cursor 
color and/or representation can change to an appropriate 
value. For example, as a user moves the cursor from within 
a non-Secure Windows desktop display area into the alter 
native display area created by a alternative-display technol 
ogy Such as that developed by XSides Corporation, the 
cursor color may change from white to red or it may change 
from the standard Windows arrow cursor into a gold-key 
representation. 

0118 Similarly, this denotation mechanism can be used 
in an environment where multiple Secure (or unsecure) 
regions are displayed on a display device, each with different 
inherent capabilities or Security values. The Security values 
asSociated with each region are queried using a mechanism 
Such as the standard Microsoft Windows API routine, Set 
Cursor( ). The return value of the SetCursor() routine 
contains the information necessary for application to iden 
tify the Security level associated with the Specific region. 
0119) This denotation mechanism is not limited to using 
a cursor as a means of Security representation. One skilled 
in the art will recognize that other components of the 
desktop display or regions within or outside the desktop 
display can reflect the Security level and capabilities to the 
user. If a Secure desktop is loaded it can contain attributes 
that allow the end-user to distinguish its Security level 
through a visible or auditory alteration to the windows of the 
Secure desktop. For example, a Secure desktop may have a 
lock or key associated with it and blended into a corner of 
the desktop display. The desktop might also take a different 
gradient of color when associated with a different Security 
level. A window, an alternative display, or an arbitrary 
Secure region may contain a colored border, which is asso 
ciated with the Security level. Or, for example, the Surround 
ing border may change width, pattern, or even look like a 
chain, depending the Security level of the window, alterna 
tive display, or Secure region. Other implementations regard 
ing the alteration or additions to the window, display, or 
region may optionally be used, Such as placing additional 
decoration above the area, a diagonal Striped black and 
yellow bar for example, or other placement in immediate 
proximity to the area, or within the area itself. Another 
alternative is to change the appearance of a Standard user 
interface element decoration, Such as a Scroll bar, to an 
alternative form, pattern, color, or any combination of these. 
In addition, or in combination with the above variations, 
changes to the Title Bar, caption, or navigation icon may 
also be used to denote the level of security provided by the 
asSociated Software of a particular window or region. These 
changes may be as Simple as rendering the title bar caption 
in a different color Set, or denoting a number or other Symbol 
over the navigation icon of the window. FIG. 25 is an 
example Screen display that illustrates use of the cursor to 
determine a Security level and other representations on 
windows used to denote security. One skilled in the art will 
recognize that other Similar techniques may be incorporated. 
0120 In the event that security can be provided or 
assured through multiple "agencies' or instances of Soft 
ware, it may benefit the user to know the origin of the 
Security assurance. The System preferably indicates the 
Security level through any of the mechanisms described 
above, while providing either persistent text denoting the 
security provider in the title bar, above the title bar, in a 



US 2005/0102264 A1 

Status bar, or other relatively fixed location, or in a non 
persistent manner, Such as a pop-up display, “tool tip’ 
display, or transient text display in Some other portion of the 
window or Secure region of the display device. This transient 
text display may be triggered periodically, or by Some 
outside event Such as entry into the Security State or move 
ment of the text or mouse cursor over the Security icon. 
0121 All of the above U.S. patents, U.S. patent applica 
tion publications, U.S. patent applications, foreign patents, 
foreign patent applications and non-patent publications 
referred to in this specification and/or listed in the Applica 
tion Data Sheet, including but not limited to, U.S. Provi 
sional Patent Application No. 60/297.273 entitled “Method 
and System for Maintaining Secure Data Input and Output,” 
filed Jun. 8, 2001, U.S. patent application Ser. No. 09/726, 
202 entitled “Method and System for Controlling a Comple 
mentary User Interface on a Display Surface,” filed Nov. 28, 
2000, and U.S. Pat. No. 6,018,332, entitled “Overscan User 
Interface,” issued on Jan. 25, 2000, and U.S. Pat. No. 
6,330,010, entitled “Secondary User Interface,” issued on 
Dec. 11, 2001, are incorporated herein by reference, in their 
entirety. 
0122). From the foregoing it will be appreciated that, 
although Specific embodiments of the invention have been 
described herein for purposes of illustration, various modi 
fications may be made without deviating from the Spirit and 
Scope of the invention. For example, one skilled in the art 
will recognize that the methods and Systems for Secure data 
input and output are applicable to other types of Storage and 
input devices and to other types of data, Streamed or 
otherwise, other than those explicitly described herein. For 
example, the obfuscation techniques used to obfuscate data 
within the frame buffer may be extended to obfuscate other 
types of Storage. In addition Such embodiments may be 
extended to provide a content Scheduler for Such Storage 
using techniques similar to those described with respect to 
the Security enhanced drivers described herein. 

1. A method in a computer System for providing a Secure 
display area on a Video display device of a Video display 
System, the Video display System having Video display 
memory for Storing data to be displayed on the Video display 
device, comprising: 

reserving a portion of the Video display memory for 
Secure data Storage that corresponds to the Secure 
display area; 

receiving a request to display valid data in the Secure 
display area, the request including an indication of the 
valid data; 

Storing the indicated valid data in a Secure data buffer; and 
Storing invalid data in the reserved portion of the Video 

display memory until a determined period of time 
before the data Stored in the reserved portion is trans 
ferred to the video display device for display. 

2. The method of claim 1, further comprising: 
at the beginning of the determined period of time, replac 

ing the invalid data Stored in the reserved portion of the 
Video display memory with valid data from the Secure 
data buffer. 

May 12, 2005 

3. The method of claim 2, further comprising: 

after the data Stored in the reserved portion is transferred 
to the Video display, re-storing the invalid data in the 
reserved portion of the Video display memory. 

4. The method of claim 1 wherein the Secure data buffer 
is implemented by Storing the valid data in the reserved 
portion of the Video display memory as encrypted data. 

5. The method of claim 1, the video display memory 
having a frame buffer that Stores data that is to be displayed 
on the Video display device, wherein the Secure data buffer 
is a portion of the frame buffer. 

6. The method of claim 5 wherein the valid data is 
obfuscated prior to Storing in the Secure data buffer. 

7. The method of claim 1 wherein the valid data is 
obfuscated prior to Storing in the Secure data buffer. 

8. The method of claim 7 wherein obfuscation is per 
formed by at least one of encryption of the valid data and a 
raster operation applied to the valid data and a mask. 

9. The method of claim 8 wherein the mask is a bitmap 
comprising at least one of an encryption key, a company 
logo, a pattern, an advertisement, and a black region. 

10. The method of claim 1 wherein the Secure data buffer 
is one of an area in the Video display memory, a portion of 
random access memory in the computer System, a Secondary 
memory that resides on a Video card that controls the Video 
display device and Storage accessible by other means. 

11. The method of claim 10 wherein the Secure data buffer 
is located in the reserved portion of video memory while the 
valid data is being displayed. 

12. The method of claim 10 wherein the location of the 
Secure data buffer is one of a user designated, application 
designated, and System designated location. 

13. A Secure Video display driver for providing a Secure 
display area on a video display device of a Video display 
System, the Video display System having Video display 
memory for Storing data to be displayed on the Video display 
device, comprising: 

a data receiver that is structured to receive a request to 
display valid data in the Secure display area, the request 
including an indication of the valid data; and 

a Video display memory Scheduler that is Structured to: 
reserve a portion of the Video display memory for 

Secure data Storage that corresponds to the Secure 
display area; 

Store the indicated valid data in a Secure data buffer; 
and 

store invalid data in the reserved portion of the video 
display memory until a determined period of time 
before the data stored in the reserved portion is 
transferred to the Video display device for display. 

14. The display driver of claim 13 wherein the video 
display memory Scheduler is further structured to: 

at the beginning of the determined period of time, replace 
the invalid data stored in the reserved portion of the 
Video display memory with valid data from the Secure 
data buffer. 

15. The display driver of claim 14, wherein the video 
display memory Scheduler is further structured to: 



US 2005/0102264 A1 

after the data Stored in the reserved portion is transferred 
to the Video display, Store invalid data in the reserved 
portion of the Video display memory. 

16. The display driver of claim 13 wherein the secure data 
buffer is implemented by storing the valid data in the 
reserved portion of the video display memory as encrypted 
data. 

17. The display driver of claim 13 wherein the secure data 
buffer is one of an area in the Video display memory, a 
portion of random acceSS memory in the computer System, 
a Secondary memory that resides on a Video card that 
controls the Video display device and Storage accessible by 
other means. 

18. The display driver of claim 13 wherein the secure data 
buffer location is one of a user designated, application 
designated, and System designated location. 

19. The display driver of claim 13, the video display 
memory having a frame buffer that Stores data that is to be 
displayed on the Video display device, wherein the Secure 
data buffer is a portion of the frame buffer. 

20. The display driver of claim 13 wherein the valid data 
is obfuscated prior to Storing in the Secure data buffer. 

21. A computer-readable memory medium containing 
instructions for controlling a computer processor to provide 
a Secure display area on a Video display device of a Video 
display System, the Video display System having video 
display memory for Storing data to be displayed on the Video 
display device, by: 

reserving a portion of the video display memory for 
Secure data Storage that corresponds to the Secure 
display area; 

receiving a request to display valid data in the Secure 
display area, the request including an indication of the 
valid data; 

Storing the indicated valid data in a Secure data buffer; and 

May 12, 2005 

Storing invalid data in the reserved portion of the Video 
display memory until a determined period of time 
before the data Stored in the reserved portion is trans 
ferred to the video display device for display. 

22. A method in a computer System for ensuring the 
Secure receipt of input from an input data device, the 
computer System having a System input device driver code 
and an ordering of device driver codes Such that a first 
device driver code gains control before other device driver 
codes, comprising: 

installing a modified input driver code as the first device 
driver code, thereby insuring that the System input 
device driver code does not process an input event first, 
and 

under control of the modified input driver code, 
receiving an input event; 
determining whether the input event is designated as a 

Secure input event; and 
when it is determined that the input event is a Secure 

input event, processing the input event. 
23. The method of claim 22, further comprising: 
forwarding the input event to the System input event 

device driver code when it is determined that the input 
event is not a Secure input event. 

24. The method of claim 22 wherein the input device 
driver code controls a pointing device. 

25. The method of claim 22 wherein the input device 
driver code controls a keyboard device. 

26. The method of claim 22 wherein the input device 
driver code is responsive to an audio device. 

27. The method of claim 22 wherein processing the input 
event comprises passing the input event to a recipient 
authorized to receive the Secure input event. 

k k k k k 


