
(19) United States
US 2011 001.0613A1

(12) Patent Application Publication (10) Pub. No.: US 2011/0010613 A1
Shenfield et al. (43) Pub. Date: Jan. 13, 2011

(54) SYSTEMAND METHOD FOR BUILDING
MIXED MODE EXECUTION ENVIRONMENT
FOR COMPONENT APPLICATIONS

Michael Shenfield, Richmond Hill
(CA); Brindusa Fritsch, Los Altos,
CA (US); Kamen Vitanov,
Mississauga (CA)

(75) Inventors:

Correspondence Address:
RM
1000 LOUISIANA STREET, FIFTY-THIRD
FLOOR
HOUSTON, TX 77002 (US)

(73) Assignee: RESEARCH IN MOTION
LIMITED, Waterloo (CA)

(21) Appl. No.: 12/834,575

(22) Filed: Jul. 12, 2010

Related U.S. Application Data

(63) Continuation of application No. 1 1/066.239, filed on
Feb. 25, 2005, now Pat. No. 7,756,905.

UService

Screen Manager

Screen Model

1700

Screen Representation

(60) Provisional application No. 60/548,098, filed on Feb.
27, 2004.

Publication Classification

(51) Int. Cl.
G06F 3/4 (2006.01)

(52) U.S. Cl. .. 71.5/234

(57) ABSTRACT

A device runtime environment is provided for execution on a
computing device. The device runtime environment provides
an intelligent container for an application at runtime and
comprises a plurality of services in communication with each
other. The plurality of services a data manager, a screen
manager, a communication service and a script interpreter.
The data manager manages data components of the applica
tion including manipulation and persistence in a database of
the data components. The screen manager managing screen
components of the application and renders an output for dis
play on a screen of the computing device. The communication
service sends messages to external resources and receives and
manages messages sent from external resources in accor
dance with corresponding message components.

Application
Store

512

Script Interpreter
510

Patent Application Publication Jan. 13, 2011 Sheet 1 of 15 US 2011/0010613 A1

s

Patent Application Publication Jan. 13, 2011 Sheet 2 of 15 US 2011/0010613 A1

To wireless
network

104

Network
Connection
Interface

User
Interface

Figure 2

Patent Application Publication Jan. 13, 2011 Sheet 3 of 15 US 2011/0010613 A1

204 Device Infrastructure

application container framework services

communication
s 306

SCWCC

302
Screen service 308

component
application ist

CSS GCC persistenc 30
SerW1Ce

access service 312

provisioning 34
service

utility service 316

component framework

206 Figure 3

Patent Application Publication Jan. 13, 2011 Sheet 4 of 15 US 2011/0010613 A1

302

Workflow

Message 402 Presentation

Figure 4

Patent Application Publication Jan. 13, 2011 Sheet 5 of 15 US 2011/0010613 A1

506 514

Communication
Service

Communication Model

509

Data Manager

Data Model

External Application

507

503
512

Screen Manager

UService w

508 Screen Model

500 505

504

Application
Store

510

Script Interpreter

Figure 5

Figure 6

Patent Application Publication Jan. 13, 2011 Sheet 6 of 15 US 2011/0010613 A1

...

screenCmp rame="scrogin" title=Logiri" param'Payer" dialog"false's
says: typesvericar stylesian APP-styles

slayout types of : S
' S. slabel name="ebPlayerdare of value="Player Name: "As

setti serie"effieyertiarie" values":Fieryerning reactory "raise" type "crare
siastis

it slayout type=tics'

i.: -laterisei Fayrities. "wit" is:-
sedit rare"eb Player.Code watuetterialericacieg" reactoryseise" typescia's

Kiyot.
tries - - - - - -

site rare relayer later Registeriest Fayer's
:: sationsgressia's registerfielayer accept chargesar's
stern 3:::::::: S.

siterrariigi Fayer sieogiri's
tastian pictka" accept chargeseiue's

- -- scoresticrapbocket results true's

sease ''
riter name="agou" is bei="logou's

. ::... --- :: : - - - satirpalock"3" acceptchargestate" is

scoristick"2P" restate's
...is

siscreenCrip:

Figure 7 700

cyclisgrateristings pilot"raisingee's
infield rearester" mapping Age triaries
sinfield rate prepD"inapping-?tylisting propD's
trafield rare-relate" type="Date

Figure 8 800

schoice name="chciers"value="gclient nameg" type="radio" mapping "Clier's
scorictition pick chAryCieris's

schoices. :

a

\
Figure 9a 900

Patent Application Publication Jan. 13, 2011 Sheet 7 of 15 US 2011/0010613 A1

X. . .

<screenCmp name-scrogn" tile-Login"param'Player"dialog-false">
slayout type="vertical" style=''MANAPPSTYLE's

4ayout type="Flow'
<label name="ebPlayer lamelbi" value"Player Name:".
sedit name="ebPlayernleme" value="GPlayername@' readonly false" type="char's sayos

slayout type="flows
slabel name="ebPlayer.codel.bl"walue-Code: "fe
sedit name="ebPlayerCode values"(Player codeg" readorly-'false" type="char's

; : : sayOL
-Aayott
menus

citem narmer"regPlayer" label="Register New Player"
<action screen'scregisterNewPlayer" accepchargest true's

ster . . . ,
citem armestogiriPlayer" label"Login

saction pblock-'2"acceptchargesa'true's
<condition pblock='1' resulti-true"> .

diter ; , ,
site arrestogold" labels"Logou's

acticipblock"3" accept Changss="trus":
, scondition pblock 27" results true's

.. eter

simeru.
siscrgeClimps R

Figure 9b 930

AL: . .
sichtsgname='nPropertyinfo"mapping=Propertyinfo'''>

Figure 9c 960

Patent Application Publication Jan. 13, 2011 Sheet 8 of 15 US 2011/0010613 A1

XML

<layout>
-glabel) Country.</label)
<choice name=" choiceCountry">"Canada', USA'</choice.>
Klayout condition= 'choiceCountry' values 'Canada)

<label name="provinces">Provinces: KA label)
<choice name='choiceCanada Provinces">BRITISH COLUMBIA', 'YUKON',

NORTHWEST TERRITORIES", ALBERTA", "SASKATCHEWAN', 'NANAVUT', MANITOBA",
wONTARIO", "QUEBEC", "NEWFOUNDLAND" "NEW BRUNSWICH", "NOVA SCOTIA-C/choice.>

</layout)
-Slayout condition= choiceCountry value= USA re

<label name='states">States: K/label)
<choice name="choiceUS States">"ALABAMA", "ALASKA", "ARIZONA", "ARKANSAS",

"CALIFORNIA", "COLORADo" "CONNECTICUT", "DELAWARE", "D. C. " f
"FLORIDA", "GEORGIA", "HAWAII'', 'IDAHOt , "ILLINOIs", "INDIANA", "IOWA',
"KANSAS", "KENTUCKY', 'LOUISIANA", "MAINE", "MARYLAND", "MASSACHUSETTS",
"MICHIGAN", "MINNESOTA", "MISSISSIPPI", "MISSOURI", "MONTANA'', 'NEBRASKA
"NEWADA'? "NEW HAMPSHIRE", "NEW JERSEY "NEW MEXICO", "NEW YORK"
"NORTH CAROLINA", "NORTH DAKOTA", "OHIO", "OKLAHOMA" "OREGON",
"PENNSYLVANIA'? "RHODE ISLAND" "SOUTH CAROLINA", "souTH DAKOTA"
"TENNESSEE", "TEXAS", "UTAH "vERMONT", "VIRGINIA", "WASHINGTON',
"WEST VIRGINIA", WISCONSIN' WYOMING -C/choice.>

</layout
K/layout) A

Figure 10 1000

stayout typerNettice"placemento"
: Isbutton name=tncPre?s"val

-button name=tncik"values"Client Workh
. . .<condition pblock"chArycteris's ; ::::::::::. . . .

savant typg="onClick"screens"scrolientVrbk"param="Client's

Figure 11 A
1100

Patent Application Publication Jan. 13, 2011 Sheet 9 of 15 US 2011/0010613 A1

XML:
schisgname="intlyListing" mapping
<!-- Lisling of interest for registered client pushe
out PropertyStatusChange from "pending to "ries
swcMsg name="inlistingForClert" mapping "Propertyinfo"pblock"mhList

smfield name="forcieri" mapping-Clieriname's

1200 Figure 12a

XML:

-msginProperlyinfo-msg.
-msg-inPropertyStatusChanges/msg.

Figure 12b 1250

spblock name="ahStatuscharge"param"prop
ouiPropertyStatuschange prople properlyinfoproplp;
out PropertyStatusChangestatus propertyinfo.status
outPropertyStatusChange price property rifop
guiFropertyStatusChange sendo; 3
scrPropDetails display(propertyinfo)

sipblocks,

1300
Figure 13

Patent Application Publication Jan. 13, 2011 Sheet 10 of 15 US 2011/0010613 A1

X: -

spblock name "hiri PiaceBelparam race, horse, bet".
scrPlaceBettbtracks racetracklocation:
if bet is null}
scrPlaceBetibiBetida belid;
scrPlaceBetibRace betracecode,
striceSeteorse ethorse;
scrPlaceBet.ebBetwatue betwalue;
elset
scrPlaceBettbRace = race code,
scrPlaceBet.ethorses horse name:

-

siblock:

Figure 14 1400

spblock raine"rntviewingre" param="agend, myListing's
Rearviewingdale inveningreq date;
If mylisting proprifo is nulf

propinfo = my listing proprifo,
scrievingrequested display proprifo, agent);
else
displaylisgs inviewingReq requestor+" has requested viewing"+

"of a property which is not in your current listings: "+
irviewingreqpropD: ::::::::..........::::::::::::::::::::::::

Dialog display displayivsg);

1600
Figure 16

Patent Application Publication Jan. 13, 2011 Sheet 11 of 15 US 2011/0010613 A1

1500

Figure 15

Patent Application Publication Jan. 13, 2011 Sheet 12 of 15 US 2011/0010613 A1

UService

Screen Manager

Screen Representation

Screen Model

Application
Store

512

Script Interpreter
510

1700

Figure 17

Data Manager

UI Service Data Model

Screen Manager

1802 Application
Store

Screen Model 512

Script Interpreter
1800 510

Figure 18

Patent Application Publication Jan. 13, 2011 Sheet 13 of 15 US 2011/0010613 A1

1910

Communication
Service

Communication Model

Data Manager

DataModel

External Application

1916

Screen Manager

UService

Application
Store

512
1902

Script Interpreter
1912 510

Figure 19

2006

Screen Manager

Screen Representation UService

2002

Screen Model
2000

Figure 20

Patent Application Publication Jan. 13, 2011 Sheet 14 of 15 US 2011/0010613 A1

2110

Screen Manager

Screen Representation

Screen Model 2104

2100 2106

UService

Script Interpreter
510

Figure 21

Communication
Service

Communication Model

2204 Data Manager

Data Model

External Application

2210

Screen Manager

Screen Representation

Screen Model

UService

Application
Store

512

2200 Script Interpreter
510

Figure 22

Patent Application Publication Jan. 13, 2011 Sheet 15 of 15 US 2011/0010613 A1

Communication
External Application Service Data Manager

Communication Model Data Model

2306

2312

Screen Manager 2304

U Service s
Screen Representation

Application
Store

512
Screen Model

2 3 O O 2308 Script Interpreter
510

Figure 23

US 2011/0010613 A1

SYSTEMAND METHOD FOR BUILDING
MIXED MODE EXECUTION ENVIRONMENT

FOR COMPONENT APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of application Ser.
No. 1 1/066,239 filed on Feb. 25, 2005, the entire disclosure of
which is hereby incorporated by reference for all purposes
and claims priority from U.S. Provisional Application No.
60/548,098 filed Feb. 27, 2004.

TECHNICAL FIELD

0002 The present disclosure relates generally to runtime
environments and specifically to runtime environments
capable of operating in both executable mode and interpreted
mode.

BACKGROUND

0003. Due to the proliferation of wireless networks, there
area continually increasing number of wireless devices in use
today. These devices include mobile telephones, personal
digital assistance (PDAs) with wireless communication capa
bilities, two-way pagers and the like. Concurrently with the
increased availability of wireless devices, software applica
tions running on Such devices have increased their utility. For
example, the wireless device may include an application that
retrieves a weather report for a list of desired cities or allows
a user to shop for groceries. These software applications take
advantage of the ability to transmit data to a wireless network
in order to provide timely and useful services to users, often
in addition to Voice communication. However, due to the
number of different types of devices, the limited available
resources of Some devices, and the complexity of delivering
large amounts of data to the devices, developing Software
applications remains a difficult and time-consuming task.
0004 Currently, devices are configured to communicate
with Web Services through Internet based browsers and/or
native applications. Browsers have the advantage of being
adaptable to operate on a cross-platform basis for a variety of
different devices, but have a disadvantage ofrequesting pages
(screen definitions in HTML) from the Web Service, which
hinders the persistence of data contained in the screens. A
further disadvantage of browsers is the fact that the screens
are rendered at runtime, which can be resource intensive.
However, applications for browsers are efficient tools for
designing platform independent applications. Accordingly,
different runtime environments, regardless of the platform,
execute the same application. Unfortunately, since different
wireless devices have different capabilities and form factors,
the application may not be executed or displayed as desired.
Further, browser based application often require significant
transfer bandwidth to operate efficiently, which may be costly
or even unavailable for some wireless devices.
0005. On the other hand, native applications are developed
for a specific wireless device platform, thereby providing a
relatively optimized application program for a runtime envi
ronment running on that platform. However, a platform
dependent application introduces several drawbacks, includ
ing having to develop multiple versions of the same applica
tion and being relatively large in size, thereby taxing memory
resources of the wireless device. Further, application devel

Jan. 13, 2011

opers need experience with programming languages such as
JAVA (JavaTM) and C++ to construct such native applications.
0006 Thus it can be seen that there is a need for applica
tion programs that can be run on client devices having a wide
variety of operating systems, as well as having a reduced
consumption of device resources. Furthermore, it is desirable
to achieve the aforementioned result while limiting the com
plexity for application program developers as much as pos
sible.
0007 Accordingly, it is an object of the present disclosure
to obviate or mitigate at least Some of the above-mentioned
disadvantages.

BRIEF DESCRIPTION OF THE DRAWINGS

0008. An embodiment of the disclosure will now be
described by way of example only with reference to the
following drawings in which:
0009 FIG. 1 is a block diagram of a communication infra
Structure:
0010 FIG. 2 is a block diagram of a wireless device:
0011 FIG. 3 is a block diagram illustrating a component
framework;
0012 FIG. 4 is a block diagram illustrating a component
application;
0013 FIG. 5 is a block diagram of a sample runtime envi
ronment;
(0014 FIGS. 6 to 16 are sample XML definition of various
components of an application; and
0015 FIGS. 17 to 23 are block diagrams illustrating runt
ime flow for several application scenarios.

DETAILED DESCRIPTION

0016. In accordance with an aspect of the present disclo
Sure there is provided a wireless communication device com
prising: a memory for storing instructions; and a processor for
executing the instructions stored in memory, when executed
by the processor the instructions configuring the wireless
device to provide: a runtime environment for executing an
application definition defined declaratively in a plurality of
component definitions, the runtime environment coordinat
ing communication between a plurality of runtime environ
ment components comprising: an application container for
hosting an internal model of the application defined declara
tively, the internal model comprising: a data model of one or
more data types defined in the application defined declara
tively; a screen model of one or more screen definitions
defined in the application defined declaratively; and a mes
sage model of one or more messages defined in the applica
tion defined declaratively; a screen manager to render an
application screen based on the screen model; a communica
tion service to transmit and receive messages to and from an
external computer based on the communication model; and a
data manager for manipulating the data model to store appli
cation data.

0017. In accordance with another aspect of the disclosure
there is provided a method of executing an application on a
wireless communication device, the wireless communication
device comprising a memory for storing instructions and a
processor for executing the instructions stored in memory, the
instructions implementing the method comprising: receiving
at a runtime environment an application definition defined
declaratively in a plurality of component definitions; creating
an internal model of the application hosted in an application

US 2011/0010613 A1

container including: creating a data model of one or more data
types defined in the application defined declaratively; creat
ing a screen model of one or more screen definitions defined
in the application defined declaratively; and creating a mes
sage model of one or more messages defined in the applica
tion defined declaratively; manipulating the data model using
a data manager of the runtime environment to store applica
tion data; transmitting and receiving messages using a com
munication service to and from an external computer based
on the communication model; and rendering an application
screen using a screen manager based on the screen model.
0018 For convenience, like numerals in the description
refer to like structures in the drawings. Referring to FIG. 1, a
communication infrastructure is illustrated generally by
numeral 100. The communication infrastructure 100 com
prises a plurality of communication devices 102, a commu
nication network 104, a gateway 106, and a plurality of back
end services 108.
0019. The communication devices 102 include any wired
or wireless device Such as a desktop computer, a laptop or
mobile computer, a Smartphone, a personal digital assistant,
such as a BLACKBERRY (BlackberryTM) by Research in
Motion for example, and the like. The communication
devices 102 are in communication with the gateway 106 via
the communication network 104. Accordingly, the commu
nication network 104 may include several components such
as a wireless network 110, a relay 112, a corporate server 114
and/or a mobile data server (MDS) 116 for relaying messages
between the devices 102 and the gateway 106. The gateway
106 is further in communication with a plurality of the back
end servers 108. The types of backend servers 108 and their
corresponding links will be apparent to a person of ordinary
skill in the art.
0020 Wireless application technologies need to provide
means for user interaction, communication with other wired
or wireless applications and data storage in the context of
usually limited computing resources such as speed, power,
memory, storage as well as intermittent connectivity. These
limitations provide great challenges for the development of
real-world, useful applications.
0021. A desirable approach for reducing application
development complexity is to define those components that
individualize an applicationina declarative way. Examples of
Such components include user interface, data and communi
cation models. The components are presented to an intelligent
container, such as the device runtime environment, as con
tracts and the complex but otherwise common tasks are del
egated to the intelligent container to solve.
0022. The following describes a system by which the intel
ligent container offers a native execution environment for
applications defined by means of metadata and scripting lan
guages. Accordingly, the burden that constitutes the wireless
environment complexity is shifted from the application to the
intelligent container. Thus, the only complexity that the appli
cation writer is left to solve is to clearly define a contract
between the application and the intelligent container in order
to ensure the desired functionality.
0023 Referring to FIG. 2, the communication devices 102
(also referred to simply as devices 102) are illustrated in
greater detail. The devices 102 include a network interface
200, a user interface 202, a core infrastructure 204, and a
component framework 206. The network interface 200 com
prises a wireless transceiver or a wired network interface card
or modem, for coupling the device 102 to the network 104.

Jan. 13, 2011

For example, the network interface 200 communicates with
the wireless network 104 using either known or proprietary
protocols. This feature enables the devices 102 to communi
cate wirelessly with each other as well as external systems,
such as the network server 106. The network 104 supports the
transmission of data in the form request and response mes
sages between devices and the backend servers 108. Further,
the network 104 may support voice communication for tele
phone calls between the devices 102 as well as devices exter
nal to the network 104.

0024. The user interface 202 comprises one or more
means for communicating with the user (not shown). For
example, the user interface 202 includes one or more input
devices Such as a keypad, trackwheel, stylus, mouse, and
microphone for receiving input from the user and one or more
output devices such as a display and speaker for presenting
output to the user. If the display is touch sensitive, then the
display can also be used as an input device. The user interface
202 is employed by the user of the device 102 to coordinate
request and response messages of client application programs
201.

0025. The core infrastructure 204 includes a computer
processor 208 and an associated memory module 210. The
computer processor 208 manipulates the operation of the
network interface 200, the user interface 202 and the compo
nent framework 206 of the communication device 116 by
executing related instructions, which are provided by an oper
ating system and client application programs (not shown)
stored in the memory module 210. Further, it is recognized
that the device infrastructure 204 may further include a com
puter readable storage medium 212 for providing instructions
to the processor or loading or updating client application
programs to the memory module 210. The computer readable
medium 212 may include floppy disks, magnetic tape, opti
cally readable media Such as compact discs and digital video
discs, memory cards and the like.
0026. The component framework 206 comprises a runt
ime environment 216 that is capable of generating, hosting
and executing client application programs from metadata
definitions. Therefore, the component framework 206 pro
vides the native client runtime environment 216 for the client
application programs and acts as an interface to the processor
208 and associated operating system of the core infrastructure
204. The component framework 206 provides the runtime
environment 216 by Supplying at least the minimum require
ments for a controlled, secure and stable environment on the
device 100, in which the component application programs
can be executed. The requirements for the runtime environ
ment will be described throughout the description.
0027. The runtime environment 216 can be configured so
that the devices 102 operate as web clients of the web services
provided by the network server 106. It is recognized that the
runtime environment 216 can also make the devices 102
clients of any other generic Schema-defined services Supplied
by the server 108. The runtime environment 216 is capable of
generating, hosting and executing the application programs.
Further, specific functions of the client runtime environment
include Support for different languages, coordination of
memory allocation, networking, management of data during
input/output (I/O) operations, coordination of graphics to an
output device, and providing access to core object oriented
classes and Supporting files/libraries. Examples of environ
ments on which the runtime environments 216 can be based

US 2011/0010613 A1

include Common Language Runtime (CLR) by Microsoft
and Java Runtime Environment (JRE) by Sun Microsystems.
0028. The runtime environment 216 preferably supports
the following functions for executable versions of the client
application programs: provide communications capability
for sending messages to the web services of the network
server 106 or to any other generic schema defined services via
the network 104; allow data input from the user via the input
device; provide data presentation or output capabilities for
displaying data to the user via the output device; provide data
storage services to maintain and manipulate data in the
memory module 210; and provide a script interpreter for
executing Scripts when required.
0029 Referring to FIG. 3 the component framework 206

is illustrated in greater detail. The component application
program 302 comprises components that are executed by the
runtime environment 216. The runtime environment 216 cre
ates an application container 300 for each component of the
component application program 302. The application con
tainer 300 loads the components of the application program
302 and creates executable metadata, which is executed by
the processor 208. The component framework 206 therefore
provides the host application containers 300 for provisioning
the definitions of the components to create the actual web
client specific for each respective device infrastructure 204 of
the communication devices 102. The application container
can provision the component application 302 as per the tem
plate-based native execution and metadata-based execution
models as described above.
0030. Further, the component framework 206 can also
provide framework services 304 to the runtime environment
216 for facilitating implementation of the components of the
component application program 302. The component appli
cation program 302 is in communications with the applica
tion container 300, which coordinates communications 216
with the framework services 304, as needed. The framework
services 304 of the component framework 206 coordinate
communications via the connection 220 with the device infra
structure 204. Accordingly, access to the device infrastructure
204, user interface 202 and network interface 200 is provided
to the component application programs 302 by the compo
nent framework 206. In addition, the component application
programs 302 can be Suitably virus-resistant, since the appli
cation containers 300 can control and validate all access of the
communications of the component framework 206 to and
from the client application programs 302. It is recognized that
a portion of the operating system of the device infrastructure
204 can represent the application container 300.
0031 Referring to FIG. 4, a block diagram of the compo
nent application program 302 comprises data components
400, presentation components 402 and message components
404, which are coordinated by workflow components 406
through communications with the application container 300.
The structured definition language can be used to construct
the components 400, 402,404 as a series of metadata records,
which consist of a number of pre-defined elements represent
ing specific attributes of a resource Such that each element can
have one or more values. Each metadata schema typically has
defined characteristics such as but not limited to; a limited
number of elements, a name of each element, and a meaning
for each element. Example metadata schemas include Such as
but not limited to Dublin Core (DC), Anglo-American Cata
loging Rules (AACR2), Government Information Locator
Service (GILS), Encoded Archives Description (EAD), IMS

Jan. 13, 2011

Global Learning Consortium (IMS), and Australian Govern
ment Locator Service (AGLS). Encoding syntax allows the
metadata of the components 400, 402,404 to be processed by
the device infrastructure 204 (see FIG. 2), and encoding
schemes include such as but not limited to XML, HTML,
XHTML, XSML, RDF, Machine Readable Cataloging
(MARC), and Multipurpose Internet Mail Extensions
(MIME).
0032. The data components 400 define data entities which
are used by the component application program 302.
Examples of data entities include are orders, users, and finan
cial transactions. Data components 400 define what informa
tion is required to describe the data entities, and in what
format the information is expressed. For example, the data
component 400 may define an order comprising a unique
identifier for the order which is formatted as a number, a list
of items which are formatted as strings, the time the order was
created which has a date-time format, the status of the order
which is formatted as a string, and a user who placed the order
which is formatted according to the definition of another one
of the data components 400. Since data elements are usually
transferred by message, there is often persistence of data
components 400 in a database. Data components 400 may be
dynamically generated or defined by the application designer.
0033. The message components 404 define the format of
messages used by the component application program 302 to
communicate with external systems such as the web service.
For example, one of the message components 404 may
describe such as but not limited to a message for placing an
order which includes the unique identifier for the order, the
status of the order, and notes associated with the order. Mes
sage component 404 definitions written in the structured defi
nition language can uniquely represent and map to WSDL
messages, and can be generated dynamically at runtime.
Accordingly, the dynamic generation can be done for the
component definitions for client application messages, and
associated data content, from standard Web Service metadata
in the definition language used to express the web service
interface, such as for example WSDL and BPEL. Web Ser
vices messages are defined within the context of operation
and there is defined correlations between the message com
ponents 404 in the component application program 302 defi
nition. This correlation could be done using predefined mes
sage parameters and/or through separate workflow
components 406, as further defined below.
0034. The presentation components 402 define the appear
ance and behaviour of the component application program
302 as it displayed by the user interface 202. The presentation
components 402 can specify GUI screens and controls, and
actions to be executed when the user interacts with the com
ponent application 302 using the user interface 202. For
example, the presentation components 402 may define
screens, labels, edit boxes, buttons and menus, and actions to
be taken when the user types in an edit box or pushes abutton.
The majority of Web Service consumers use a visual presen
tation of Web Service operation results, and therefore provide
the runtime environment on their devices 100 capable of
displaying user interface Screens.
0035. It is recognized that in the above described client
component application program 302 definitions hosting
model, the presentation components 402 may vary depending
on the client platform and environment of the device 100. For
example, in Some cases Web Service consumers do not
require a visual presentation. The application definition of the

US 2011/0010613 A1

components 400, 402,404, 406 of the component application
program 302 can be hosted in a Web Service registry in a
metadata repository 700 as a bundle of platform-neutral data
400, message 404, workflow 406 component descriptors with
a set of platform-specific presentation component 402
descriptors for various predefined client runtimes (i.e. spe
cific component frameworks 206—see FIG. 2). When the
discovery or installation request message is issued the client
type should be specified as a part of this request message. In
order not to duplicate data, message, and workflow metadata
while packaging component application programs 302 for
different client platforms of the devices 102, application defi
nitions can be hosted on the application server 108, for
example, as a bundle of platform-neutral component defini
tions linked with different sets of presentation components
403a, 403b, 403c, representing the different supported user
interfaces 202 of the devices 102. It is also recognized that a
standard presentation component 402 can be used in the event
the specific device 102 is not explicitly supported, thereby
providing at least a reduced set of presentation features. When
a user makes a discovery or download request message, the
client runtime type of the devices 102 is validated and the
proper bundle is constructed for delivery by the web server
106 to the device 102 over the network 104. For those Web
Service consumers, the client application programs 302 could
contain selected presentation components 403a,b,c linked
with the data 400 and message 404 components through the
workflow components 406, thereby providing a customized
component application 302.
0036. The workflow components 406 of the component
application program 302 define processing that occurs when
an action is to be performed, such as an action specified by a
presentation component 402 as described above, or an action
to be performed when messages arrive. Presentation work
flow and message processing are defined by the workflow
components 406. The workflow components 406 are written
as a series of instructions in either metadata or a programming
language or a scripting language. Such as European Computer
Manufacturers Association (ECMA) Script, and can be com
piled into native code and executed by the application con
tainer 300, as described above. An example of the workflow
components 406 may be to assign values to data, manipulate
screens, or send the message. The workflow component 406
Supports a correlation between the messages and defines
application flow as a set of rules for operations on the other
components 400, 402,404.
0037. Some other examples of script languages include
Perl, Rexx, VBScript, JavaScript, and Tcl/Tk. The scripting
languages, in general, are instructional languages that are
used to manipulate, customize, and automate the facilities of
an existing system, such as the devices 102. In Such systems,
useful functionality is already available through the user
interface 202 (see FIG. 2), and the Scripting language is a
mechanism for exposing that functionality to program con
trol. In this way, the device 102 is said to provide the host
runtime environment of objects and facilities which com
pletes the capabilities of the scripting language.
0038 Referring again to FIG.3, the components 400, 402,
404, 406 of the application program 302, once provisioned on
the communication device 102, are given access to the pre
defined set of framework services 304 by the application
containers 300 of the component framework 206. The frame
work services 304 include a communication service 306, a
presentation service 308, a persistence service 310, an access

Jan. 13, 2011

service 312, a provisioning service 314 and a utility service
316. The communication service 306 manages communica
tion between the component application programs 302 and
external resources. The presentation service 308 manages the
representation of the component application programs 302 as
they are output on the output device of the user interface 202
(see FIG. 2). The persistence service 310 allows the compo
nent application programs 302 to store data in the memory
module 210 (see FIG. 2) of the device infrastructure 204. The
access service 312 provides the component application pro
grams 302 access to other software applications which are
present on the communication device 102. The provisioning
service 314 manages the provisioning of software applica
tions on the communication device 102. Application provi
Sioning can include requesting and receiving new and
updated component application programs 302, configuring
component application programs 302 for access to services
which are accessible via the network 104, modifying the
configuration of component application programs 302 and
services, and removing component application programs 302
and services. The utility service 316 is used to accomplish a
variety of common tasks. Such as performing data manipula
tion in the conversion of strings to different formats.
0039. It is recognized that the framework services 304 of
the communication device 102 can provide functionality to
the component application programs 302, which can include
the services described above. As a result, the component
application programs 302 can have access to the functionality
of the communication device 102 without having to imple
ment it. Unlike ordinary applications where all service
requests or service API calls are programmed by developers
in the native code, the component definitions 400, 402, 404
and workflow 406 describe service requests using the struc
tured definition language such as XML and the set of instruc
tions such as ECMAScript. The XML provides a non-proce
dural definition of the application's user interface 202,
persistent storage and communications with the Web Service,
while the ECMAScript provides the procedural component
linkage. The Client runtime environment interprets these
definitions 400, 402, 404 into the native calls to supported
services.
0040. The application container 300 can be referred to as a
Smart host container for the client application program 302,
and can be responsible for analyzing message metadata and
for updating the representation of the meta-data in the
memory module 210.
0041. In the present embodiment, the device runtime pro
vides an intelligent software framework, or container, for
providing a set of basic services to manage and execute typi
cal application behaviour, including data storage, messaging,
screen navigation and display, as described above.
0042. By introducing the concept of intelligent container
with applications defined by metadata, the burden that con
stitutes the wireless environment complexity is shifted from
the application to the intelligent container. Accordingly, the
primary complexity left to an application developerto Solve is
to clearly define a contract between the application and the
container in order to insure the desired functionality.
0043. The intelligent container runs metadata-defined
applications and maintains its own internal representation of
these applications. As such, from the intelligent container's
perspective the application is perceived in two formats:
Application Definition and Application Internal Representa
tion. These two formats are described below, including details

US 2011/0010613 A1

of the device runtime responsibilities for providing efficient
metadatabased execution models.
0044) The Application Definition is the format used to
publish applications externally using a well-defined, standard
format that is highly structured and provides clear instruc
tions to the intelligent container as to how the application
needs to be executed: The Application Definition includes a
set of definitions of the components that collectively com
prise an application. These definitions are declarative and are
expressed in a well-defined, structured language Such as
XML, for example. Moreover, in order to define custom,
complex application logic it is sometimes required to use
Scripting language (or code) sequences either embedded in
the metadata definition or separately attached thereto.
0045. As previously described, the Application Definition
comprises a data definition, a screen definition, a message
definition and workflow definition. Examples of these defi
nitions are provided further in the description with reference
to FIGS. 6-16, for illustrative purposes only.
0046. The Application Internal Representation is the for
mat of the application inside the intelligent container at runt
ime. It comprises executable metadata that is built ad-hoc
using the Application Definition. Executable metadata com
prises the internal representation of all the application com
ponents, including their inter-relationships, running inside
the intelligent container. Executable metadata is dependent
on the intelligent container implementation.
0047. As part of the contract between the application and

its intelligent container, the device runtime is responsible for
building efficient models from the application component's
metadata that comprise the Application Internal Representa
tion. Accordingly, the device runtime constructs a data model,
a screen model, and a communication model for each appli
cation from the application's metadata.
0048 Referring to FIG. 5, a sample device runtime envi
ronment for an application is illustrated by numeral 500. The
device runtime environment 500 includes a data manager
502, a screen manager 504, a communication service 506, a
user interface (UI) service 508, and a script interpreter 510.
The device runtime environment 500 is also in communica
tion with an application store 512 and an external application
514. The application store 512 is a device repository for
storing application definitions and application data. The
external application 514 is an application operating external
to the device via a wired or wireless connection.
0049. The data manager 502 manages a data model 503 of
the application as well as application data on behalf of the
application.
0050. The data model 503 includes in-memory templates
for each data component definition, intelligence about data
component relationships and hierarchy as well as persistence,
and references to external APIs that need to be notified of data
changes. For example, data may be related Such that when one
variable changes, others need to be updated automatically.
Further, different data may require different levels of persis
tence.

0051. The data manager 502 uses the data model 503 for
application data manipulation, including creation, updates,
deletion, as well as data persistence and external data access.
0052. The screen manager 504 is a service for managing a
screen model 505. The screen model 505 includes in-memory
templates for each screen component definition and an intel
ligence model for handling UI events as well as navigating
and rendering screens built exclusively from declarative

Jan. 13, 2011

actions defined in the screen component. The screen model
505 further includes references to incoming messages that
trigger an automatic screen refresh and references to Script
sequences used in UI Event handling and conditional con
trols. The screen model 505 manages a screen representation
509, which is displayed to the user.
0053. The screen manager 504 handles modeling of con
ditional controls and layouts, and continuously updates the
screen model 505 based on events received from the UI ser
vice 508. The screen manager 504 uses the screen model 505
to render the appearance of the application screen, establish
screen navigation paths and process UI events.
0054) The UI service 508 provides the visualization of the
screen representation in the native UI framework of the
device. The UI service 508 also communicates user events to
the screen manager 504.
0055. The communication service 506 manages a commu
nication model 507 of the application and handles all appli
cation communication and message processing. Due to the
nature of wireless applications, the communication model
507 used in present embodiment is asynchronous. The com
munication model 507 includes in-memory templates for
each message definition including message hierarchy. The
communication model 507 further includes intelligence
regarding message mapping to data components or data
fields, message security and reliability, and references to
Script sequences that handle incoming messages. Accord
ingly, the communication model 507 describes a set of mes
sages that the application initiates or is capable of receiving
and processing.
0056. The communication service 506 uses the communi
cation model 507 to enable an application's communication
needs with other wireless or wired applications, whether they
are located on the device or externally.
0057 The script interpreter 510 executes script portions of
the application, for example ECMAScript and the like. The
script interpreter 510 and has the ability to manipulate the
screen model 505 through interaction with the screen man
ager 504, the data model 503 through interaction with the data
manager 502, and the communication model 507 through
interaction with the communication manager 506.
0058. The operation of the device runtime is described
generally as follows. The device runtime is presented with the
Application Definition when the application is uploaded onto
the device. The device runtime could either construct the
Application Internal Representation at that time or delay this
operation until receiving a request to execute the application.
Accordingly, the device runtime can host an application in
“raw” format, that is Application Definition, or in “execut
able' format, that is Application Internal Representation.
0059. Accordingly, it can be seen that the device runtime
executes template based generic code built from the metadata
definition of the components rather than executable code of a
pre-compiled wireless application.
0060. Further, the device runtime can execute in a mixed
execution mode. In the mixed execution mode, the device
runtime provides the ability to switch between an execution
mode and an interpreted mode.
0061. In the execution mode the device runtime provides
an execution environment to run both the Application Internal
Representation and specific script instructions in the native
code. As described above, the Application Internal Represen
tation, in the form of executable metadata, is built ad-hoc
from the Application Definition. Further, associated script

US 2011/0010613 A1

instructions are redirected from the Script interpreter using
global symbols libraries. That is, proxy execution is per
formed of predefined global symbols in the script to the native
environment.
0062. Further, the device runtime can switch to the inter
preted mode in order to execute more complex functionality.
That is, the runtime switches to interpreted mode to run
Scripts when executing application metadata is not enough to
achieve desired complexity. FIGS. 6-23, described below,
provide several examples of component definitions and logic
flow described either exclusively though metadata or by
Script.
0063 Referring to FIG. 6, a sample XML portion of a data
definition of the Application Definition is illustrated gener
ally by numeral 600. The data definition describes the data
components that the application uses, including their persis
tence mechanism. Data components may contain primitive
fields or may refer to other data components, which are also
defined therein. In the example illustrated in FIG. 6, the data
component shown is named "Race' and requires persistence.
The data component includes several fields of varying types
and complexity. For example, the field name "description' is
a string, whereas the field name "horses’ acts as a reference to
another component named “Horse'.
0064 Referring to FIG. 7, a sample XML portion of a
screen definition of the Application Definition is illustrated
generally by numeral 700. The screen definitions describe all
application screens, their associated layouts, menu items,
controls and screen rendering metadata. In this particular
example, the name of the screen component is "scrogin' and
the title is “Login. The screen component has a data com
ponent “Player as a parameter and does not represent a
dialog box. The screen component includes two labels and
two edit boxes.
0065. The first label is named “ebPlayerNamelbland has
a text value “Player Name:”. The first label is associated with
the first edit box, which is named “ebPlayerName” and has a
value associated with the “name' attribute of the parameter
“Player. This edit box allows the user to input a player name.
0066 Similarly, the second label is named “ebPlayer
CodeNamelbl” and has a text value “Player Code:” The sec
ond label is associated with the second edit box, which is
named “ebPlayerCode' and has a value associated with the
“code' attribute of the parameter “Player”. This edit box
allows the user to input a code, or password, associated with
the player name. Both of the edit boxes have a readOnly value
set to false, which allows the user to input data.
0067. The screen component further includes three menu
items. The first menu item is named “regPlayer and has a
corresponding label “Register New Player. This menu item
allows the user to navigate to a screen component named
“scrRegisterNewPlayer for registering a new player.
0068. The second menu item is named “loginPlayer and
has a corresponding label “Login'. This menu item allows the
user to login to the application by accessing a pblock "2. In
the present embodiments, a pblock is a reusable piece of
“workflow code that is described either declaratively by
metadata, or by script. Pblock '2' describes the workflow
associated with a user login.
0069. The second menu item is named “logout' and has a
corresponding label “Logout. This menu item allows the
user to logout of the application by accessing apblock '3'. In
the present example, pblock'3” describes the workflow asso
ciated with a user logout.

Jan. 13, 2011

0070. As can be seen, terms such as layout, menu, label,
edit, name, value, readOnly, action and condition are under
stood by the runtime environment and detailed programming
need not be provided by the programmer in order to achieve
the desired functionality.
(0071 Referring to FIG. 8, a sample XML portion of a
message definition of the Application Definition is illustrated
generally by numeral 800. Messages are either inbound or
outbound and comprise a list of primitive or complex fields.
The present example illustrates the definition of an incoming
message named “in ViewingReq. Each message field
describes the type of data expected as part of the message and
maps the data to local application components, where appli
cable. For example, the message will have a field name
“requestor'. The data associated with that field name is
mapped to the field “name' in the component Agent'.
0072 Further, the application logic of the Application
Definition may be expressed declaratively through metadata
exclusively. Application Logic includes data manipulation,
screen rendering for dynamic screens, UI event processing
and declarative message processing.
(0073 FIGS. 9a-c illustrate some examples of declarative
data manipulation, including mapping data to intelligent UI
controls, passing data as parameters to screens or script
sequences and mapping messages to data.
0074 Referring to FIG.9a, an example of mapping data to
intelligent UI controls is shown generally by numeral 900. UI
controls are bound through declarative statements to the data
components that they are displaying or are associated with.
When a UI control's value changes the underlying data may
change or vice versa. In this example, the user is presented
with radio button that is named “chClients'. This particular
radio button is mapped to a component named Client. There
fore, when the user changes the input, the data mapped to the
input changes.
0075 Referring to FIG.9b, an example of passing data as
parameters to screens or script sequences is shown generally
by numeral 930. As previous described with reference to FIG.
7, the data component “Player is passed to the screen as a
parameter. Generally, passing data as parameters to Screens,
to Script sequences or to data components that are automati
cally mapped to messages are all contenders for declarative
action.

0076 Referring to FIG. 9c, an example of mapping mes
sages to data is shown generally by numeral 960. In the
present example, when an incoming message has the name
“in Property Info'', it is mapped to a data component named
“Property Info''. When a message definition maps directly to
data, the device runtime has a predefined instruction that upon
receipt of such a message it updates or creates data automati
cally, without requiring additional processing.
(0077 Referring to FIG. 10 an example of declarative
screen rendering for a dynamic screen is shown generally by
numeral 1000. Conditional controls, those are controls whose
value and appearance can change dynamically, are specified
declaratively. In the present example, “Canada' and “USA
are possible choices for a user. Depending on the user's selec
tion, the screen is dynamically rendered to display either
Canada's provinces or the United States of America's states as
a Subsequent choice for the user. Using conditional controls
defined by metadata, the appearance and behavior of the
screen is deferred to runtime criteria managed by the device
runtime.

US 2011/0010613 A1

0078 Referring to FIG. 11 an example of declarative UI
event processing is shown generally by numeral 1100. In the
present example screen navigation as a result of a user event
is specified declaratively. As a result of menu item “Client
Details' being selected, the screen manager of the device
runtime is instructed to render the next screen, 'scrCli
entInfo'. Similarly, if menu item “Client Workbook” is
selected, the screen manager of the device runtime is
instructed to render the next screen, “scrClientWrbk' and if
menu item “New Client is selected, the screen manager of
the device runtime is instructed to render the next screen,
“scrNew Client.
0079 FIGS. 12a and 12b illustrate examples of declara
tive message processing. In these examples, inbound message
processing that results in data updating and screen refreshing
are shown.
0080 Referring to FIG. 12a, an example of a declarative
data update is illustrated generally by numeral 1200. Fields in
an incoming message are mapped directly to corresponding
data. When the device receives such a message, the device
runtime automatically updates the data without requiring
additional instruction. In the present example, if a message
titled “in MyListing is received, a message field titled
“forClient' is automatically mapped to attribute “name' of
data component “Client'.
0081 Referring to FIG.12b, a declarative screen refresh is
illustrated generally by numeral 1250. In the present
example, the screen is refreshed upon receipt of a message.
Therefore, data changes affected by the messages can be
indicated to the user. In the present embodiment, the screenis
refreshed upon receipt of messages in Property Info' and “in
PropertyStatusChange'.
0082. The declarative sample screens described above are
a few examples where metadata can play an important role in
describing application logic. Other examples will be apparent
to a person of ordinary skill in the art. Accordingly, the device
runtime may be able to transform an entire application to
executable metadata for execution.
0083. When application logic is more complex than the
metadata can handle, the application definition uses script
sequences either embedded in the component metadata or
defined separately from the component metadata for reuse.
The following are several examples of implementing appli
cation logic by Script.
0084. Referring to FIG. 13, an example of script for data
manipulation is illustrated generally by numeral 1300. The
Script in the present example amends data in accordance with
passed parameter “propertyinfo''. The attributes “propID',
“status”, and “price' of component “outPropertyStatus
Change' are updated with the corresponding attributes of the
passed parameter “propertyinfo''.
0085. Referring to FIG. 14, an example of script for screen
rendering is illustrated generally by numeral 1400. The script
in the present example renders different elements on the
screen in accordance with passed parameters “race', 'horse'.
and “bet'. If the “bet' parameter is not null then appropriate
properties on the screen are rendered using the corresponding
properties of the “bet' parameter. If the “bet' parameter is
null, then appropriate properties on the screen are rendered
using corresponding attributes of the “race' and “horse'
parameters.
I0086 Referring to FIG. 15, an example of screen naviga
tion effected by script is illustrated generally by numeral
1500. In the present example, the screen rendering includes a

Jan. 13, 2011

button named “btnDone'. If the user clicks on this button the
script named “ahStatusChange' illustrated in FIG. 13 is
implemented. In addition to data rendering, as previously
described, the script in FIG. 13 renders screen component
“scrPropDetails” using the data of parameter “property Info''.
I0087 Additionally, FIGS. 15 and 13 illustrate an example
of message sending effected by Script. Prior to rendering the
screen component “scrPropDetails' as described above, a
message related to component "outPropertyStatusChange' is
Sent.

I0088 Referring to FIG. 16, an example of message pro
cessing by script is illustrated generally by numeral 1600. In
the present example, data in an incoming message is manipu
lated by the script and stored in an associated data component.
If no data is present in the received message, the script causes
a message box to be displayed to the user.
I0089. The script sample screens described above are a few
examples where script can play an important role in describ
ing application logic. Other examples will be apparent to a
person of ordinary skill in the art.
0090 The following describes several device runtime
flows illustrating mixed mode operation in accordance with
the present embodiment. Referring to FIG. 17 a method for
performing an initial screen loading is shown generally by
numeral 1700. In step 1702 application screens are extracted
from the application store 512 as either pre-digested applica
tion metadata or XML. In step 1704 a screen internal repre
sentation, or screen model 505, is produced. In step 1706 the
screen model 505 produces a current screen representation
509, including all field values and settings that reflect the
current state of Screen conditions and passes it to the UI
service 508 for visualization.
(0091 Referring to FIG. 18 a method for performing a UI
initiated data change that is declaratively defined is illustrated
generally by numeral 1800. In step 1802, a UI change, trig
gered by a user changing an edit control, is communicated to
the screen model 505. In step 1804, an underlying data com
ponent mapped to the edit control has its value changed in the
data model 503. Concurrently, in step 1805, the data change is
updated in the screen representation 509. In step 1806, the
data change is persisted in the application store 512.
0092 Referring to FIG. 19 a method for performing a UI
initiated data change that is defined by script is illustrated
generally by numeral 1900. In the present example, in addi
tion to modifying the data, the UI initiated change generates
an outgoing message.
0093. In step 1902 a UI change triggered by a user chang
ing an edit control is communicated to the screen model 505.
The screen model 505 validates the nature of the event over
the internal screen metadata representation and detects any
driving or dependent controls affected as a result of the UI
event by virtue of any conditional control relationships speci
fied entirely through application XML. In step 1904, the
screen model detects that the UI change requires Script pro
cessing and invokes the script interpreter 510. In step 1906,
the script interpreter 510 modifies the data model 503 in
accordance with the interpreted script. In step 1908, the data
change is persisted the application store 512.
0094 Since the script executed as a result of the UI change
generates an outgoing message, in step 1910, the Script inter
preter 510 generates an outbound message and communicates
that message to the communication model 507. The commu
nication model 509 transmits the message to an external
application 514 as required.

US 2011/0010613 A1

0095. In step 1912, the script interpreter 510 modifies the
screen model 505 as specified in the script. In turn, at step
1914, the screen model produces an updated screen represen
tation 509, which is passed to the UI Service 508 in step 1916
for visualization.
0096. Referring to FIG. 20, a method for performing
screen navigation that is declaratively defined is illustrated
generally by numeral 2000. In step 2002, user interaction
results in a change in the UI. Accordingly, a UI event is
communicated to the screen model 505. In step 2004, the
screen model 505 detects by means of executable metadata
that this is a screen navigation event and generates the Screen
representation of the new screen to be displayed. In step 2006,
the screen representation is passed to the UI service 508 for
visualization.
0097. Referring to FIG. 21, a method for performing
screen navigation that is defined by Script is illustrated gen
erally by numeral 2100. In step 2102, user interaction results
in a change in the UI. Accordingly, a UI event is communi
cated to the screen model 505. In step 2104, the screen model
determines that UI event relates to a script call and passes
control to the script interpreter 510. In step 2106, the script
interpreter 510 executes the script, which instructs the screen
model 505 to produce a new screen representation. In step
2108, the screen model 505 produces the new screen repre
sentation 509 as required by script interpreter 510. In step
2110, the screen representation 509 is passed to the UI Ser
vice 510 for visualization.
0098 Referring to FIG. 22, a method for modifying data
and updating the UI in accordance with a received message
that is declaratively defined is illustrated generally by
numeral 2200. In step 2202, the communication service 506
receives an inbound message from an external application
514. In step 2204, the communication service 506 determines
that the message is mapped to data so it passes control to the
data manager 502. The data manager 502 updates the data
model 503 and persists the new data in the application store
S12.

0099. In step 2206, the communication service 506 trig
gers an update, or screen refresh, for the screen model 505. In
step 2208, the screen model 505 produces a new screen rep
resentation 509. In step 2210, the screen representation 509 is
passed to the UI service 508 for visualization.
0100 Referring to FIG. 23, a method for modifying data
and updating the UI in accordance with a received message
that is defined by script is illustrated generally by numeral
2300. In step 2302, the communication service 506 receives
an inbound message from an external application 514. In step
2304, the communication service 506 determines that the
message is to be handled by Script So it passes control to the
script interpreter 510, which executes the script to process
message.
0101. In step 2306, the script interpreter updates the data
model 503 as required by the interpreted script and persists
the new data in the application store 512. In step 2308, the
script interpreter modifies the screen model 505 as specified
by the script. In step 2310, the screen model 505 produces a
new screen representation 509. In step 2312, the screen rep
resentation 509 is passed to the UI service 508 for visualiza
tion.
0102) Accordingly, it can be seen that providing the device
runtime with a larger responsibility for executing the appli
cation not only permits applications to be written in compo
nent format, as described herein, but also facilitates mixed

Jan. 13, 2011

mode execution. Therefore, when an application requires
complex functionality that cannot be achieved solely by run
ning executable metadata, the application can use Script com
ponents, thus Switching to interpreted mode. The script inter
preter then communicates the resulting executable metadata
to the corresponding component model for execution.
0103 Although preferred embodiments of the disclosure
have been described herein, it will be understood by those
skilled in the art that variations may be made thereto without
departing from the spirit of the disclosure or the scope of the
appended claims.
What is claimed is:
1. A wireless communication device comprising:
a memory for storing instructions; and
a processor for executing the instructions stored in

memory, when executed by the processor the instruc
tions configuring the wireless device to provide:
a runtime environment for executing an application defi

nition defined declaratively in a plurality of compo
nent definitions, the runtime environment coordinat
ing communication between a plurality of runtime
environment components comprising:
an application container for hosting an internal model

of the application defined declaratively, the internal
model comprising:
a data model of one or more data types defined in

the application defined declaratively;
a screen model of one or more screen definitions

defined in the application defined declaratively;
and

a message model of one or more messages defined
in the application defined declaratively;

a screen manager to render an application screen
based on the screen model;

a communication service to transmit and receive mes
Sages to and from an external computer based on
the communication model; and

a data manager for manipulating the data model to
store application data.

2. The wireless communication device as claimed in claim
1, wherein the internal model of the application is created
when the application definition is loaded onto the wireless
communication device.

3. The wireless communication device as claimed in claim
1, wherein creation of the internal model of the application is
delayed until a request to execute the application is received.

4. The wireless communication device as claimed in claim
1, wherein the application further comprises one or more
portions expressed in a script language and wherein the runt
ime environment further comprises a script interpreter for
interpreting the script portions of the application.

5. The wireless communication device as claimed in claim
1, wherein the data manager further manipulates the data
model to create, update and delete data.

6. The wireless communication device as claimed in claim
1, wherein the runtime environment further comprises a user
interface (UI) service for providing visualization of the screen
representation in a native UI framework of the portable com
munication device and wherein the screen manager further
handles modeling of conditional controls and layouts
expressed in the application definition, and continuously
updates the screen model based on events received from the
UI service.

US 2011/0010613 A1

7. The wireless communication device as claimed in claim
1, wherein the application definition is expressed in exten
sible mark-up language (XML).

8. A method of executing an application on a wireless
communication device, the wireless communication device
comprising a memory for storing instructions and a processor
for executing the instructions stored in memory, the instruc
tions implementing the method comprising:

receiving at a runtime environment an application defini
tion defined declaratively in a plurality of component
definitions;

creating an internal model of the application hosted in an
application container including:
creating a data model of one or more data types defined

in the application defined declaratively;
creating a screen model of one or more screen defini

tions defined in the application defined declaratively;
and

creating a message model of one or more messages
defined in the application defined declaratively;

manipulating the data model using a data manager of the
runtime environment to store application data;

transmitting and receiving messages using a communica
tion service to and from an external computer based on
the communication model; and
rendering an application screen using a screen manager

based on the screen model.

Jan. 13, 2011

9. The method as claimed in claim 8, wherein the internal
model of the application is created when the application defi
nition is loaded onto the wireless communication device.

10. The method as claimed in claim 8, wherein creating the
internal model of the application is delayed until a request to
execute the application is received.

11. The method as claimed in claim 8, further comprising
interpreting using a script interpreter of the runtime environ
ment one or more portions of the application expressed in a
Script language.

12. The method as claimed in claim 8, further comprising
creating, updating and deleting data using the data managerto
manipulate the data model.

13. The method as claimed in claim 8, further comprising:
providing visualization of the screen representation in a

native user interface (UI) framework of the portable
communication device using a UI service;

modeling conditional controls and layouts expressed in the
application definition using the screen manager, and

updating the screen model based on events received from
the UI service using the screen manager.

14. The method as claimed in claim 8, wherein the appli
cation definition is expressed in extensible mark-up language
(XML).

