A fiber optic plug for connecting to a receptacle of a small format optoelectronic package or device. The fiber optic plug includes a body and ferrules attached to the body. Each ferrule has an aperture for receiving and holding an optical fiber and each ferrule has a diameter substantially equal to 1.25 mm. The aperture of each adjacent ferrule is separated by a distance of approximately 3.125 mm. The ferrules exist in a plane.
HIGH DENSITY MULTIPLE FIBER OPTIC CONNECTOR

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention pertains to fiber optic connectors for optoelectronic devices or optical subassemblies. The invention more particularly concerns a fiber optic plug for connecting to a receptacle of a small format optoelectronic package such as a modular high density multiple optical transmitter/receiver array.

[0003] 2. Discussion of the Background

[0004] Optoelectronic devices such as optical transceivers are known in the art and include active optical devices or diode packages. One such optoelectronic device is a removable optoelectronic module as described in U.S. Pat. Nos. 5,546,28, which is hereby incorporated herein by reference. One end of the removable optoelectronic module includes two SC style ports or receptacles forming an SC duplex receptacle for receiving SC style ferrules. Often, the two SC style ferrules are either ganged together or are assembled in a common plug body so as to form an SC duplex plug. The ferrule of an SC plug has a nominal diameter of approximately 2.5 mm. When the ferrules are incorporated into a single body or are ganged together, the center-to-center distance between the two ferrules is approximately 12.5 mm. As compared to conventional copper plugs, such as RJ-45 style plugs, the size or panel profile of the SC duplex plug is large.

[0005] In order to increase the number of ports which can occupy a panel, a reduced size ferrule and plug were developed and is disclosed in U.S. Pat. Nos. 5,481,634 and 6,102,581, both of which are hereby incorporated herein by reference and where such a plug is known as an LC plug connector. The ferrule of the LC plug has a nominal diameter of approximately 1.25 mm. When two LC ferrules are ganged together or are incorporated into a single body the center-to-center distance of the two ferrules is approximately 6.25 mm. Thus, the number of ports located in a given linear dimension using an LC duplex plug is equivalent to the number of copper ports located in the same linear dimension using the RJ-45 plug, since the size of the profiles of the two plugs are similar.

[0006] FIG. 1 shows a plan view of a panel showing the relative size of RJ-45 ports 2, SC ports 4, and LC ports 6. Twenty-four RJ-45 and LC ports 2, 6 are shown and only twelve SC ports 4 are shown occupying similar linear lengths. The increased port density allows more data to be moved through a given port profile of networking equipment. FIG. 1 is found in a document entitled “Evaluating the LC SFF Interface for Single-Mode and Multimode Application” and is available on the internet web page at the home of the LC Alliance (www.lc alliance.com). The above-identified document is hereby incorporated herein by reference.

[0007] Other plug connectors have spacing between optical fibers which are nominally spaced center-to-center at approximately 0.75 mm. One such plug connector is known as the MT-RJ and is described in an article entitled “Performance Comparison of Small Form Factor Fiber Optic Connector” which is available on the internet web page of the LC alliance, and where the document is hereby incorporated herein by reference. The MT-RJ plug connector includes a body or single ferrule, where the body surrounds and holds two optical fibers. However, such plug connectors do not employ multiple ferrules and as a result the coupling of light into and out of a fiber in an MT-RJ or other multi-fiber single ferrule connector cannot be independently optimized for each fiber. Therefore, optical plug connectors which do not incorporate a single ferrule for a single optical fiber introduce new problems, and, as such, optical plug connectors which do not incorporate a single ferrule in conjunction with a single optical fiber are not further considered.

[0008] Therefore, there is a need in the industry for an optical plug having multiple ferrules where a single ferrule is assigned to a single optical fiber and which increases the port density in a panel or device.

SUMMARY OF THE INVENTION

[0009] Therefore, it is an object of the present invention to provide an optical plug connector which increases the port density in a panel or device.

[0010] It is still another object of the invention to provide a plug which mates with a receptacle of a small format optoelectronic device.

[0011] Another object of the invention is to provide a plug which is economical to manufacture.

[0012] Yet another object of the invention is to provide a plug which incorporates standard parts and features.

[0013] In one form of the invention, the plug includes a body and ferrules attached to the body. Each ferrule has an aperture. Additionally, all of the ferrules exist in a plane and each ferrule has a diameter substantially equal to 1.25 mm. The aperture of each of the ferrules is separated from the aperture of an adjacent ferrule by a distance of 3.125 mm.

[0014] In another form of the invention, the plug includes a body and two ferrules attached to the body. Each ferrule has an aperture. The aperture of one ferrule is separated from the aperture of the second ferrule by a distance of 3.125 mm.

[0015] Thus, the device of the invention is superior to existing plugs. The plug of the invention increases port density in a panel or a device. Furthermore, the plug of the invention is easy to manufacture and incorporates features of commercially well received connectors. Thus, the device of the invention is smaller than prior art devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

[0017] FIG. 1 is a plan view of the RJ-45, SC, and LC ports;

[0018] FIG. 2 is a perspective view of a plug of the present invention;

[0019] FIG. 3 is a top view of the plug of FIG. 2;

[0020] FIG. 4 is a side view of the plug of FIG. 2;
FIG. 5 is a bottom view of the plug of FIG. 2; FIG. 6 is a perspective view of a modular high density multiple optical transmitter/receiver array which may receive a plug of the present invention; FIG. 7 is a cross-sectional plan view of the modular high density multiple optical transmitter/receiver array of FIG. 6 attached to a printed circuit board; FIG. 8 is a partial cross-sectional plan view of the modular high density multiple optical transmitter/receiver array of FIG. 6 and the plug of FIG. 2 mated therein; FIG. 9 is a perspective view of another embodiment of the plug; FIG. 10 is a perspective view of the plug of FIG. 9 taken from another angle; FIG. 11 is a top view of the plug of FIG. 9; FIG. 12 is a perspective view of an embodiment of a plug having eight ferrules; FIG. 13 is a perspective view of the plug of FIG. 12 taken from another angle; FIG. 14 is a top view of the plug of FIG. 12; FIG. 15 is a perspective view of an embodiment of a plug having twelve ferrules; FIG. 16 is a perspective view of the plug of FIG. 15; FIG. 17 is a top view of the plug of FIG. 15; FIG. 18 is a top view of another embodiment of the four ferrule plug having an SC style outer sleeve; FIG. 19 is side view of the plug of FIG. 18; FIG. 20 is a top view of another embodiment of the four ferrule connector or plug having flexible latch arms; FIG. 21 is a cross-sectional view of the plug of FIG. 20; FIG. 22 is a perspective view of the plug of FIG. 20 and a transceiver; and FIG. 23 is a cross-sectional view of the plug of FIG. 22 mated with the transceiver of FIG. 22.

Detailed Description of the Presently Preferred Embodiments

Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, and more particularly to FIGS. 2-5 and 8-23 thereon, is an optical plug 10, 30, 60, 80, 100, 120.

FIG. 2 is a perspective view of the plug 10 which shows four ferrules 12 held by a body 8. The body 8 is made of a polymer material and is typically formed by an injection molding process. The ferrules 12 are preferably made of a glass, a ceramic material, or a polymer material. Each ferrule 12 has a portion which conforms to the LC standard and, as such, has a nominal diameter of 1.25 mm and an aperture extending along the length of the ferrule 12 so as to receive an optical fiber. FIG. 3 is a top view of the plug 10. FIG. 4 is a side view of the plug 10 showing the ferrules 12, where the ferrules 12 are positioned substantially in a single plane. FIG. 5 is a bottom view of the plug 10 which shows the center-to-center spacing, W, between ferrule apertures, where the center-to-center spacing, W, is substantially equal to 3.125 mm.

FIG. 6 is a perspective view of a modular high density multiple optical transmitter/receiver array 20. The plug 10 is adapted to engage ports 22 of the modular high density multiple optical transmitter/receiver array 20. FIG. 7 is a cross-sectional view of the modular high density multiple optical transmitter/receiver array 20 of FIG. 6 showing ferrule receiving bores 24 of the ports 22. The modular high density multiple optical transmitter/receiver array 20 is shown connected to a printed circuit board 28 and to a panel 26. FIG. 7 further shows that, nominally, the centers of adjacent ferrule receiving bores 24 are separated by a distance, A, which is substantially equal to 3.125 mm. Each port 22 is a modular unit which is individually assembled into the array and can be either a transmitter or a receiver.

FIG. 8 is a partial cross-sectional view of the plug 10 engaged with the modular high density multiple optical transmitter/receiver array 20. Ferrules 12 of the plug 10 are also displayed. However, for reasons of clarity, the ports 22 are not shown and the internal components of the plug 10 are not shown. Furthermore, the array 20 is shown in relation to the panel 26.

FIG. 9 is another plug 30 embodiment of plug 10. Plug 30 has four ferrules 12 similarly spaced apart as in the embodiment of plug 10. The plug 30 includes a sleeve 32 which slides or translates relative to the body 34. A cover or shroud 38 covers a cavity formed within the body 34. When translating the sleeve 32, the sleeve 32 either engages or disengages the plug 30 from the array 20. The sleeve 32 operates in a manner consistent with known MP style optical connectors manufactured by Stratos Lightwave, Inc., and is disclosed in U.S. Pat. Nos. 6,045,270, 5,896,479, 5,748,818; and 5,737,463, all of which are hereby incorporated herein by reference.

FIG. 10 is another perspective view of the plug 30. FIG. 10 further shows that the body 34 includes optical fiber receiving apertures 36 for receiving and guiding optical fibers (not shown). FIG. 11 is a top view of the plug 30.

In practice, an operator pushes on the body 34 to engage the plug 30 with an optoelectronic device 20. To disengage the plug 30 from the optoelectronic device 20, the operator pushes the sleeve 32 toward the optoelectronic device 20 until the plug 30 is unlocked or released. At that time, the plug 30 can be withdrawn from the optoelectronic device 20.

Other sleeve arrangements can be employed other than the MP style sleeve 32, such an example includes a LIGHTRAY MPX style sleeve (not shown), where LIGHTRAY MPX is a trademark of the Whitaker Corporation. The LIGHTRAY MPX style sleeve allows the operator to push on the sleeve to engage the plug with the optoelectronic device and to pull on the sleeve to disengage the plug from the optoelectronic device.

FIGS. 12-14 disclose another embodiment of the invention which is a plug 60 having eight ferrules 12. The plug 60 includes a sleeve 62 around a body 64 and a cover...
or shroud 68. The body 64 includes a base 70. Assembly and function of the plug 60 is similar to the plug 30.

[0049] FIGS. 15-17 disclose another embodiment of the invention which is a plug 80 having twelve ferrules 12. The plug 80 includes a sleeve 82 around a body 84 and a cover or shroud 88. The body 84 includes a base 90. Assembly and function of the plug 80 is similar to the plug 30.

[0050] FIGS. 18 and 19 disclose another embodiment of the invention which is a plug 100 having four ferrules 12 where the plug 100 includes a sleeve 110. Sleeve 110 is similar to a sleeve which is found on standard SC connectors which includes key 112. The plug 100 includes a body 104 and a cover 106. The plug 100 is assembled and is operated in a manner similar to the plugs previously discussed.

[0051] FIGS. 20-23 disclose yet another embodiment of the invention which is a connector or plug 120 having four ferrules 12 and two flexible latch arms 122, 126. The first flexible latch arm 122 includes a locking projection 124 and the second flexible latch arm 126 includes a locking projection 128.

[0052] FIG. 21 is a cross-sectional view of the plug 120. FIG. 21 shows the ferrules 12 mounted within the plug 120. Each ferrule 12 is attached to a backbone 150 and each ferrule 12 has a collar 140. Each ferrule 12 is associated with a compression spring 142 where the backbone 150 is positioned within the compression spring 142. For reasons of clarity, the backbone 150 is not sectioned, however, the backbone 150 is a hollow cylindrical member. In an unengaged position, the collar 140 contacts a stop surface 144 of the plug 120 due to the force of the compressed compression spring 142 contacting and reacting force through the collar 140 and a projection 146 formed in the plug 120. The fiber optic plug 120 includes a body which is comprised of a cap 152 which snaps onto a bored-out member 153.

[0053] The assembly of the plug 120 is similar to the description of the assembly of the device disclosed in U.S. Pat. No. 5,481,634. The spring 142 is placed around the backbone 150 of the ferrule 12. The optical fiber (not shown) is, then, threaded through the aperture 121 of the bored-out member 153 of the plug 120. Next, the optical fiber is inserted into and bonded to the aperture of the ferrule 12. The end of the ferrule 12 is polished. The ferrule 12 is placed in the cap 152 of the plug 120 so as to compress the compression spring 142 between the collar 140 and the projection 146. The compression continues until the cap 152 is snapped onto the bored-out member 153. In this position, the collar 140 abuts the stop surface 144 due to the force applied by the compressed compression spring 142. As compared to the LC ferrules disclosed in U.S. Pat. No. 5,481,634, the collar 140 of the ferrule 12 is smaller in its outer dimensions so as to enable the small separation distance between ferrule apertures of 3.125 mm.

[0054] FIG. 22 is a perspective view of the plug 120 and a transceiver 130. The plug 120 mates with the transceiver 130. The transceiver 130 includes a first locking feature 132 which is formed as an aperture, and a second locking feature 134 which is formed as an aperture. The locking projection 124 of the first flexible latch arm 122 of the plug 120 is engageable with the first locking feature 132 of the transceiver 130. The locking projection 126 of the first flexible latch arm 126 of the plug 120 is engageable with the second locking feature 134 of the transceiver 130. Further shown in FIG. 22 is a polarizing member 154 formed on the fiber optic plug 120. The polarizing member 154 of the plug 120 mates with a complimentary feature (not shown) formed in the transceiver 130.

[0055] FIG. 23 is a top view of the plug 120 and a partial cross-sectional view of the transceiver 130. Plug 120 is mated with the transceiver 130. As the plug 120 is inserted into the transceiver 130, the flexible latch arms 122, 126 deflect inwards towards the body of the plug 120. Once the locking projections 124, 126 of the flexible latch arms 122, 126 pass by respective edges of the first and second locking features 132, 134 of the transceiver, the locking projections 124, 126 enter the respective locking features 132, 134. In such a state, the plug 120 is locked to or fully engaged with the transceiver 130. To release the plug 120 from the transceiver 130, the operator can push with his fingers on the terminal ends of the flexible latch arms 122, 126 so as to bring the flexible latch arms 122, 126 closer to each other. Once the locking projections 124, 128 have been removed from the locking features 132, 134, the operator can pull the plug 120 away from the transceiver.

[0056] Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

1. A fiber optic plug comprising:
a body; and
ferules attached to the body, and wherein each ferrule of the ferrules has a respective aperture, and wherein the ferrules exist substantially in a plane, and wherein each ferrule of the ferrules has a diameter substantially equal to 1.25 mm, and wherein
the apertures of the ferrules of the ferrules is separated from the aperture of an adjacent ferrule of the ferrules by a distance, and wherein the distance is substantially equal to 3.125 mm.
2. The fiber optic plug according to claim 1 wherein the ferrules includes four ferrules.
3. The fiber optic plug according to claim 1 wherein the ferrules includes eight ferrules.
4. The fiber optic plug according to claim 1 wherein the ferrules includes twelve ferrules.
5. A fiber optic plug comprising:
a body;
a first ferrule attached to the body, the first ferrule having a first aperture; and
a second ferrule attached to the body, the second ferrule having a second aperture, and wherein
the aperture of the first ferrule is separated from the second aperture of the second ferrule by a first distance, and wherein the first distance is substantially equal to 3.125 mm.
6. The fiber optic plug according to claim 5 wherein the first ferrule is substantially parallel to the second ferrule.
7. The fiber optic plug according to claim 6, further comprising a first optical fiber mounted in the first aperture of the first ferrule.
8. The fiber optic plug according to claim 7, further comprising a second optical fiber mounted in the second aperture of the second ferrule.
9. The fiber optic plug according to claim 5, further comprising a shroud attached to the body.
10. The fiber optic plug according to claim 9 wherein the body includes a cavity, and wherein the shroud substantially encloses the cavity.
11. The fiber optic plug according to claim 10 wherein the first ferrule includes a first collar, and wherein the first collar of the first ferrule is mounted within the cavity.
12. The fiber optic plug according to claim 11 wherein the second ferrule includes a second collar, and wherein the second collar of the second ferrule is mounted within the cavity.
13. The fiber optic plug according to claim 12, further comprising a first spring interposed between the first ferrule and the body, and wherein the first spring contacts the first collar, and wherein the first spring urges the first ferrule away from the body.
14. The fiber optic plug according to claim 13, further comprising a second spring interposed between the second ferrule and the body, and wherein the second spring contacts the second collar, and wherein the second spring urges the second ferrule away from the body.
15. The fiber optic plug according to claim 14 wherein, in a disengaged position, the first collar of the first ferrule contacts the body and the second collar of the second ferrule contacts the body, and wherein, in an inserted position, the first collar of the first ferrule does not contact the body and the second collar of the second ferrule does not contact the body.
16. The fiber optic plug according to claim 15, further comprising a third ferrule attached to the body.
17. The fiber optic plug according to claim 16, further comprising a fourth ferrule attached to the body.
18. The fiber optic plug according to claim 17 wherein the body is made of a polymer material.
19. The fiber optic plug according to claim 18 wherein the cover is made of a polymer material.
20. The fiber optic plug according to claim 19 wherein the first ferrule, the second ferrule, the third ferrule, and the fourth ferrule are made of a glass material.
21. The fiber optic plug according to claim 20 wherein the first spring and the second spring are compression springs.
22. The fiber optic plug according to claim 21 wherein the first spring and the second spring are made of a metallic material.
23. The fiber optic plug according to claim 22 wherein the first ferrule, the second ferrule, the third ferrule, and the fourth ferrule exist substantially in a plane.
24. The fiber optic plug according to claim 23 wherein the third ferrule has a third aperture, and wherein the fourth ferrule has a fourth aperture.
25. The fiber optic plug according to claim 24 wherein the third aperture of the third ferrule is separated from the second aperture of the second ferrule by a second distance, and wherein the third aperture is separated from the fourth aperture of the fourth ferrule by a third distance, and wherein the second distance is substantially equal to 3.125 mm, and wherein the third distance is substantially equal to 3.125 mm.
26. The fiber optic plug according to claim 25, further comprising a sleeve mounted to the body, and wherein the sleeve translates relative to the body so as to disengage the plug from an optoelectronic device.
27. The fiber optic plug according to claim 26, further comprising a sleeve mounted to the body, and wherein the sleeve translates, in a first direction, relative to the body so as to engage the plug with an optoelectronic device.
28. The fiber optic plug according to claim 27 wherein the sleeve translates, in a second direction, relative to the body so as to disengage the plug from the optoelectronic device, and wherein the second direction is opposite the first direction.
29. The fiber optic plug according to claim 28 wherein the optoelectronic device is a modular high density multiple optical transmitter/receiver array.
30. The fiber optic plug according to claim 29 wherein the first ferrule has a diameter substantially equal to 1.25 mm, and wherein the second ferrule has a diameter substantially equal to 1.25 mm, and wherein the third ferrule has a diameter substantially equal to 1.25 mm, and wherein the fourth ferrule has a diameter substantially equal to 1.25 mm.
31. The fiber optic plug according to claim 5 wherein the first ferrule has a diameter substantially equal to 1.25 mm, and wherein the second ferrule has a diameter substantially equal to 1.25 mm.