

US 20160333367A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2016/0333367 A1**
Immanen et al. (43) **Pub. Date:** **Nov. 17, 2016**

(54) **METHOD FOR IMPROVING STEM
VOLUME GROWTH AND BIOMASS
PRODUCTION IN TREES**

(71) Applicant: **STORA ENSO OYJ**, Helsinki (FI)

(72) Inventors: **Juha Immanen**, Helsinki (FI); **Yrjö
Helariutta**, Helsinki (FI); **Kaisa
Nieminens**, Helsinki (FI)

(73) Assignee: **STORA ENSO OYJ**, Helsinki (FI)

(21) Appl. No.: **15/108,992**

(22) PCT Filed: **Dec. 29, 2014**

(86) PCT No.: **PCT/FI2014/051057**

§ 371 (c)(1),

(2) Date: **Jun. 29, 2016**

(30) **Foreign Application Priority Data**

Dec. 30, 2013 (FI) 20136335

Publication Classification

(51) **Int. Cl.**

C12N 15/82 (2006.01)

C12N 9/10 (2006.01)

(52) **U.S. Cl.**

CPC *C12N 15/8261* (2013.01); *C12N 15/8295*
(2013.01); *C12N 9/1085* (2013.01); *C12Y
205/01027* (2013.01)

(57) **ABSTRACT**

The present invention relates to a genetic construct comprising a nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme (IPT) operable linked to a promoter allowing expression of said nucleic acid sequence in cambial cells. The invention relates also a method for producing a transgenic plant capable of increased biomass production and/or increased stem volume growth compared to wild type plant and a method for improving the production of biomass and/or increased stem volume growth in trees, as well as to a tree that over expresses an endogenous or exogenous nucleic acid sequence encoding IPT in cambial cells and a wood product obtainable from the transgenic tree.



Fig. 1

domain A	GxTxxGK[ST] (SEQ ID NO:3)
domain A'	G[ATP]TG[STA]GKS
domain B	[VLI]xxxxxxxx[VLI][VLI]xxDxxQ (SEQ ID NO:4)
domain B'	[LI]Ax[RH](x)[FL]xxEI[IV][NS][SA]D[KAS][IMV]Q
domain C	[VLI][VLI]xGG[ST] (SEQ ID NO:5)
domain C'	[IV][IVL][AVT]GG[ST]

Fig.2

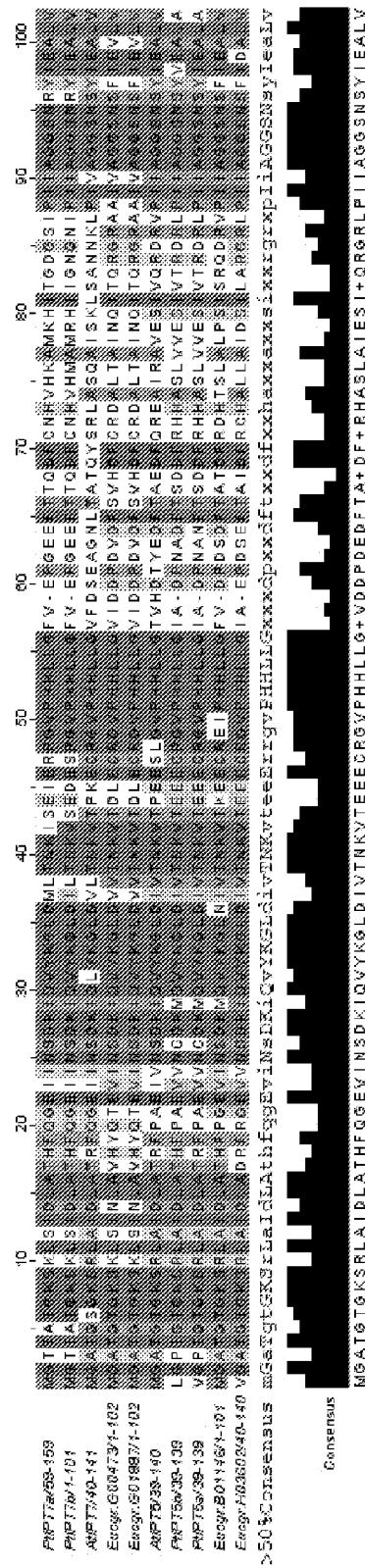


Fig. 3

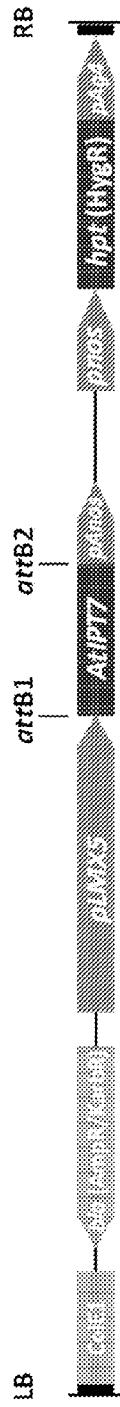
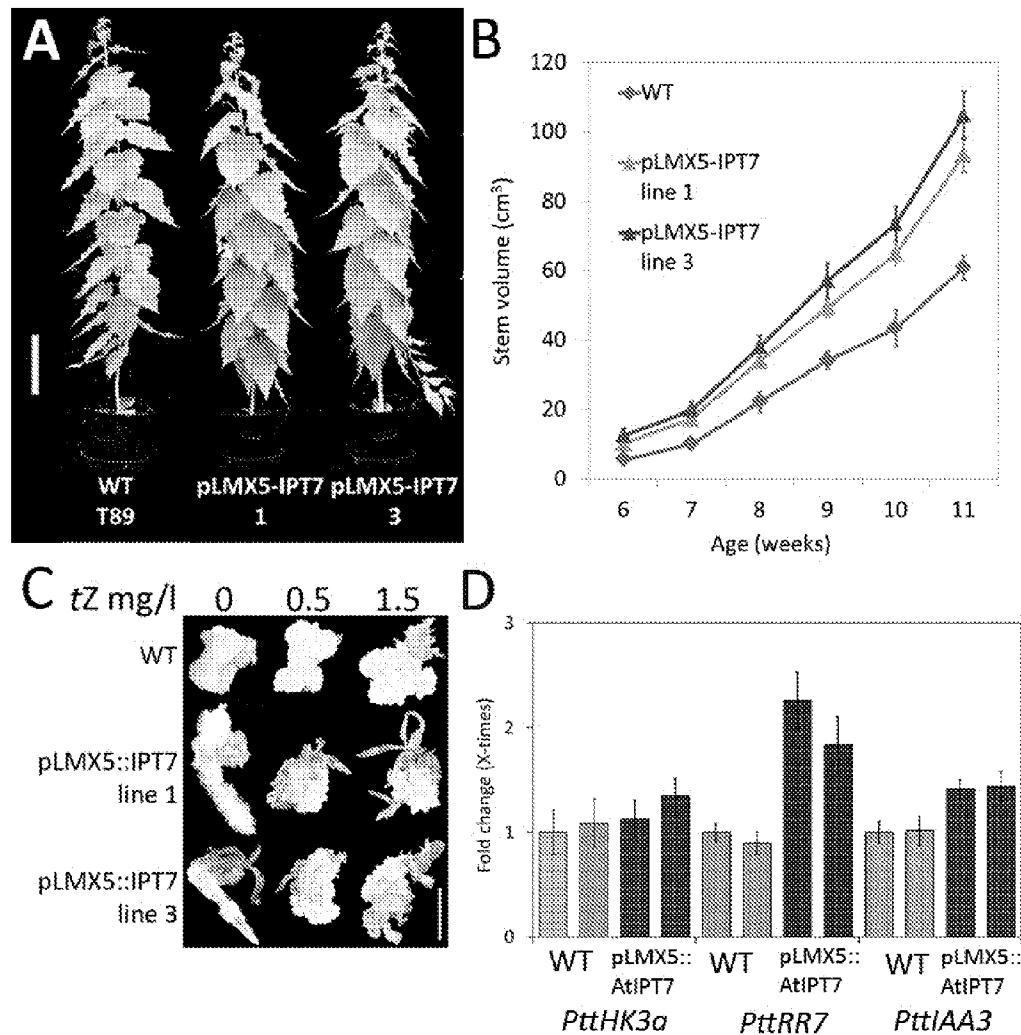



Fig. 4

Figs. 5A - 5D

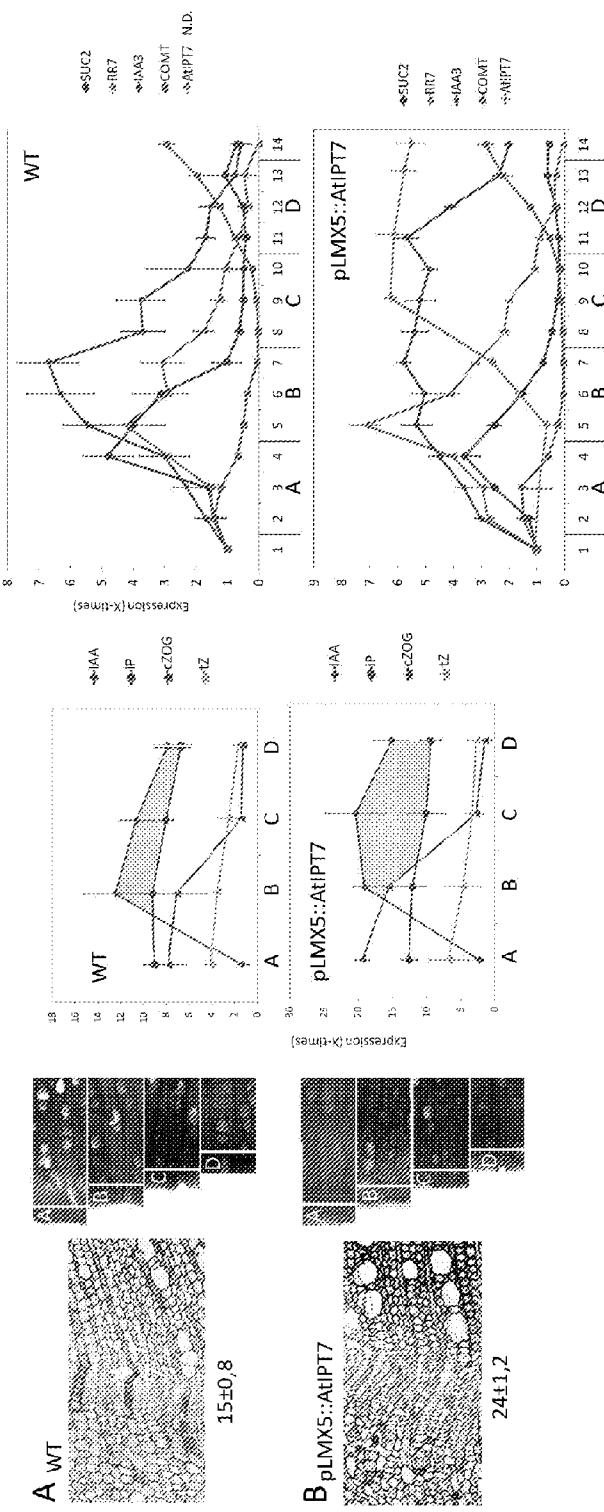


Fig. 6

METHOD FOR IMPROVING STEM VOLUME GROWTH AND BIOMASS PRODUCTION IN TREES

FIELD OF THE INVENTION

[0001] The present invention relates to a method for producing a transgenic plant capable of increased stem volume growth and/or biomass production and also to a method for improving the stem volume growth and/or the production of biomass in trees. The invention relates also to a genetically modified tree, a wood product derived from said tree, genetic constructs and vectors and a tree expressing said genetic constructs and vectors.

BACKGROUND OF THE INVENTION

[0002] Activity of vascular cambium, the lateral meristem of woody plant species, gives rise to the secondary vascular tissues. Cambial meristem forms a thin cylinder along a tree trunk (or a root or branch), and it produces new vascular tissues both inwards and outwards. These tissues, secondary xylem and phloem, form the bulk of lateral growth in plant organs. The conducting vascular cells in both of them acquire their final functional form gradually, through a multi-step differentiation process. The developing xylem cells will undergo expansion, secondary cell wall formation, programmed cell death and final lignification. Similarly, functional phloem cells will be formed through the succession of several developmental steps, including the differentiation of sieve elements and companion cells. These multi-step differentiation programs form two oppositely oriented developmental gradients across the cambial region; the further apart a phloem or xylem cell is from the meristematic middle, the more advanced it is in its differentiation process. Remarkably, the core of cambial meristem; the actively dividing cells, retain their meristematic nature and remain undifferentiated into either form of vascular tissues. Periclinal cell divisions both renew the population of meristematic cells and provide nascent material for vascular tissue differentiation programs, whereas anticlinal divisions enable the creation of novel cell files and expansion of the cambial circle.

[0003] The scale of secondary development is highly different in tree species; they display an extreme and economically highly valuable capacity for wood production during their long lifespan. Potentially as an adaptation for the massive secondary growth, the wood of most trees also contains an extensive lateral transport system, the vascular ray network. Other novel challenges for the cambial function of perennial tree species are presented by the annual activity-dormancy cycle. To ensure their survival, trees must adapt their cambial activity to the yearly cycle of cold and warm (or wet and dry) seasons. They must be able to activate their cambial meristem in the spring and deactivate it into a dormant resting stage during the autumn.

[0004] It would be highly valuable for the economy of wood production, if the growth of trees could be improved and if, in particular, the stem volume could be enhanced.

[0005] Cytokinin signaling has been shown to be required for cambial function. Transgenic *Populus* trees with impaired cytokinin signaling displayed compromised radial growth caused by a decreased number of cell divisions in the vascular cambium (Nieminen et al., 2008). In addition, genes encoding cytokinin receptors and cytokinin primary

response genes were abundant in the cambial region of *Populus* stem (Nieminen et al., 2008).

[0006] Although it is known that cytokinin signaling is connected to tree biomass production, the picture is complicated, since there are at least some 100 cambium enriched and cytokinin regulated genes with several functions. It is not known which of these genes are needed for radial growth of stem cells (Tuskan et al., 2006).

[0007] To add further complexity the hormonal regulation of cambium, studies in other tissues have revealed a highly interconnected network between cytokinin and auxin signaling (El-Shourbagy et al., 2013). Cytokinin can affect both auxin biosynthesis and transport. Interestingly, this regulation appears to be highly complex, as there have been several reports about both positive and negative effects of cytokinin on auxin biosynthesis. Similar results have been obtained about the effect of cytokinin on auxin transport, where this hormone has been reported to both up- and downregulate auxin transporter levels. Most probably these diverse results reflect fine-tuned regulation patterns; cytokinin may have different effect on different auxin biosynthetic enzymes and transporters, most probably on a tissue-specific manner. On top of that, also auxin is known to have a similarly complex role in the regulation of cytokinin biosynthesis and signaling.

[0008] International patent publication WO 2006/034286 describes compositions and methods which employ isopentenyl transferase (IPT) polypeptides and polymolecules that are involved in modulating plant development. In the methods described expression of the IPT maintains or improves for example the stress tolerance of the plant, maintains or increases the size of the plant, maintains seed set, or increases shoot growth.

[0009] Although some attempts have been made in the prior art to improve plant growth, there is still a need for methods and constructs which could be used to improve tree growth, in particular to improve stem volume growth and biomass production.

SUMMARY OF THE INVENTION

[0010] One object of the present invention is to provide a solution to the problems encountered in the prior art. Specifically, the present invention aims to provide a solution how to improve the growth of trees. Furthermore, the present invention aims to increase the stem volume growth and production of biomass in trees.

[0011] In particular, it is one object of the present invention to provide a solution, which improves radial growth in trees.

[0012] To achieve these objects the invention is characterized by the features that are enlisted in the independent claims. Other claims represent the preferred embodiments of the invention.

[0013] The invention is based on the finding that it is possible to enhance the cell division in the cambial cells by enhancing the cytokine signaling in cambial cells. More specifically, it is possible to enhance the cell division in cambial cells by allowing expression of specific genes encoding cytokinin biosynthetic isopentenyl-transferase enzyme in cambial cells.

[0014] It has now been surprisingly found that by enhanced expression of cytokinin biosynthetic isopentenyl-transferase enzyme in cambial cells results in enhanced stem volume growth and/or increased biomass production.

[0015] Hence, in one aspect, the present invention provides a genetic construct comprising a first nucleic acid sequence (effector) encoding cytokinin biosynthetic isopentenyl-transferase enzyme operable linked to a second nucleic acid sequence (promoter) allowing expression of said first nucleic acid sequence in cambial cells as defined in claim 1.

[0016] The present invention provides in another aspect a vector comprising the genetic construct as defined in claim 7.

[0017] Hence, in a third aspect, the present invention provides a tree which overexpresses an endogenous nucleic acid sequence, or expresses an exogenous nucleic acid sequence, encoding cytokinin biosynthetic isopentenyl-transferase enzyme in cambial cells as defined in claim 8.

[0018] In a fourth aspect, the present invention provides a wood product obtainable from the tree as defined in claim 16.

[0019] In a fifth aspect, the present invention provides a method for producing a transgenic plant capable of increased biomass production and/or increased stem volume growth compared to wild type plant as defined in claim 17.

[0020] In a sixth aspect, the present invention provides a method for improving the production of biomass and/or increased stem volume growth in trees as defined in claim 18.

BRIEF DESCRIPTION OF THE FIGURES

[0021] FIG. 1. Phylogenetic tree indicating the average distance of various IPTs, AtIPT5 being the closest *Arabidopsis* ortholog for the AtIPT7.

[0022] FIG. 2. Conserved domains within IPTs: domains A, B and C from different origin and the corresponding domains A', B' and C' in *Arabidopsis thaliana*. x means any amino acid, x in parentheses (x) means an amino acid not required. Brackets denote any one of the amino acid residues in brackets [].

[0023] FIG. 3. Comparison of the amino acid sequences of AtIPT7 and AtIPT5 orthologs and the consensus sequence with over 50% similar identity (capital letters indicate amino acids with 100% identical amino acids, whereas lowercase letters indicate identical amino acids in 50-90% of the compared sequences).

[0024] FIG. 4. Part of the transformation vector inserted into the plant genome (ca. 8200 bp). The construct map shows the different sites, together with their origin, estimated size and function.

[0025] FIG. 5A. Phenotypes of WT and pLMX5-IPT7 line 1 and 3 *Populus* trees in the age of three months.

[0026] FIG. 5B. The trunk volume of the transgenic pLMX5-IPT7 *Populus* lines 1 and 3 as compared to the WT.

[0027] FIG. 5C. Cytokinin responsiveness assay of the WT and pLMX5-IPT7 lines.

[0028] FIG. 5D. Expression of a cytokinin receptor (PttHK3a), a cytokinin signaling primary response gene (type-A RR PttRR7) and an auxin signaling marker gene (PttIAA3) in the WT and pLMX5-IPT7 line 1 stem.

[0029] FIG. 6. Cambial anatomy, hormonal content and hormonal signaling profiles of WT (A) and transgenic *Populus* line pLMXS::IPT7 line 1 stem (B). Four fractions (A-D) were collected for the hormonal analysis (A, B).

DETAILED DESCRIPTION OF THE INVENTION

[0030] The present invention provides transgenic trees having increased stem volume growth and/or biomass production. Genetic constructs and vectors are described useful in producing said transgenic trees as well as methods used in producing these trees.

[0031] The present invention provides a genetic construct comprising a first nucleic acid sequence (effector) encoding cytokinin biosynthetic isopentenyl-transferase enzyme operable linked to a second nucleic acid sequence (promoter) allowing expression of said first nucleic acid sequence in cambial cells.

[0032] By "a first nucleic acid sequence" is meant here an effector gene, which encodes cytokinin biosynthetic isopentenyl-transferase enzyme. The first nucleic acid sequence is selected from the group of

[0033] (a) a nucleic acid sequence comprising SEQ ID NO:1;

[0034] (b) a nucleic acid sequence encoding SEQ ID NO:2;

[0035] (c) a nucleic acid sequence encoding an amino acid sequence comprising a conserved domain area A, B and/or C having an amino acid sequence selected from the group of SEQ ID NO:3, 4 and 5;

[0036] (d) a nucleic acid sequence encoding an amino acid sequence comprising an area D having at least 80% identity, preferably at least 85% identity, more preferably at least 90% identity, still more preferably at least 95% identity to amino acid sequence SEQ ID NO:6 (i.e. amino acids 40-141 of SEQ ID NO:2; see third line in FIG. 3);

[0037] (e) a nucleic acid sequence encoding an amino acid sequence showing at least 80% identity, preferably at least 85% identity, more preferably at least 90% identity, still more preferably at least 95% identity to SEQ ID NO: 2; and

[0038] (f) a nucleic acid sequence encoding an enzyme belonging to enzyme class EC 2.5.1.27.

[0039] The invention encompasses also embodiments where the first nucleic acid sequence encodes an amino acid sequence comprising a conserved domain area A', B' and/or C' having an amino acid sequence of domain A', B' and/or C' of *Arabidopsis thaliana* as shown in FIG. 2.

[0040] Genes encoding cytokinin biosynthetic isopentenyl-transferase enzyme (IPTs) are found in several plant genera and species both in angiosperms and in gymnosperms. When the amino acid sequences of the IPTs have been compared, close homologies have been found in specific domains in different plant genera, see WO 2006/034286. It is therefore possible to find IPTs from different plant genera and species which function in a similar manner as the genes herein described.

[0041] Sequence analysis by Kakimoto (2001) of *Arabidopsis* IPTs AtIPT1-9, in comparison with IPTs from *Agrobacterium tumefaciens*, *Pseudomonas syringae* and *Pantoea agglomerans*, revealed three consensus patterns: domain A (SEQ ID NO:3), domain B (SEQ ID NO:4) and domain C (SEQ ID NO:5). The consensus patterns are shown in FIG. 2, where x denotes any amino acid residue, (x) means an amino acid residue not required, brackets denote any one of the amino acid residues in brackets []. The corresponding domain areas A', B' and C' of 9 different IPTs of *Arabidopsis thaliana* are also shown in FIG. 2.

[0042] Similar conserved domains (shadowed) are present also in the closest AtIPT7 orthologs identified from *Populus trichocarpa* (PtIPT7a eugene3.00041149; PtIPT7b eugene3.00080280; PtIPT5a fgenesh4_pg.C_LG_X000229; PtIPT5b_fgenesh4_pg.C_LG_VI11001825) and *Eucalyptus grandis* (Eucgr.B01146; Eucgr.G00473; Eucgr.G01887; Eucgr.H03602) genomes as shown in FIG. 3.

[0043] In the phylogenetic average distance tree AtIPT7 and AtIPT5 have been shown to form a clade together. AtIPT5 appears to be closest *Arabidopsis* ortholog for the AtIPT7. Between the AtIPT7 orthologs, the consensus sequence, called here consensus area D, with over 50% similar identity is shown in FIG. 3 (capital letters indicate amino acids with 100% identical amino acids, whereas lowercase letters indicate identical amino acids in 50-90% of the compared sequences). In *A. thaliana* IPT7 amino acids 40-141 correspond the conserved sequence, third line in FIG. 3 (in Sequence listing SEQ ID NO: 6).

[0044] Methods of alignment of nucleic amino acid sequences are well known for a person skilled in the art, for example Smith-Waterman algorithm (modified for speed enhancements) to calculate the local alignment of two sequences. Blast is the most useful tool for identity determination: Basic Local Alignment Search Tool, or BLAST, is an algorithm for comparing primary biological sequence information, such as the amino acid sequences of different proteins or the nucleotides of DNA sequences. A BLAST search enables a researcher to compare a query sequence with a library or database of sequences, and identify library sequences that resemble the query sequence above a certain threshold. Different types of BLASTs are available according to the query sequences. The BLAST program was designed by Stephen Altschul (Altschul, 1990).

[0045] The gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme can be selected among genes encoding different IPTs, preferably from the group of genes encoding IPTs, which belong to enzyme class EC 2.5.1.27.

[0046] More preferably the gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme comprise a conserved domain area or areas A, B and/or C having an amino acid sequence or sequences selected from the group of SEQ ID NO: 3, 4 and 5.

[0047] Still more preferably the gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme comprise a conserved domain area or areas A', B' and/or C' having an amino acid sequence or sequences of the corresponding domain areas A', B' and/or C' shown in FIG. 2 of 9 IPTs of *Arabidopsis thaliana*.

[0048] Still and still more preferably the gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme comprise an area D having at least 80% identity, preferably at least 85% identity, more preferably at least 90% identity, still more preferably at least 95% identity, more and more preferably at least 98% identity, still more preferably at least 99% identity, most preferably 100% identity to amino acid sequence SEQ ID NO:6, (i.e. with the corresponding area in SEQ ID NO:2).

[0049] The other areas of the gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme can vary in broader range than the area encoding conserved domain A, B and/or C or A', B' and/or C' and/or area D. The identity % in these areas can be less than 80%, less than 75%, less than 70%, less than 60%, or even less than 50%.

[0050] In preferred embodiments of the invention a gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme encodes an amino acid sequence showing at least 80% identity, preferably at least 85% identity, more preferably at least 90% identity, still more preferably at least 95%, more and more preferably at least 98%, still more preferably at least 99%, most preferably at least 100% identity to SEQ ID NO: 2.

[0051] A gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme can be selected among genes encoding different IPTs, preferably the gene encodes IPT 7 or IPT 5, more preferably IPT7.

[0052] A gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme may be derived from any plant genera or species expressing a functional cytokinin biosynthetic isopentenyl-transferase enzyme. Typically the plant is an angiosperm, preferably an *Arabidopsis*, a *Betula*, a *Populus* or a *Eucalyptus* plant.

[0053] The effector gene AT3G23630, *Arabidopsis thaliana* isopentenyltransferase 7 (AtIPT7) is from *Arabidopsis*, the gene sequence, and functional analysis of a highly orthologous *Arabidopsis* IPT, AtIPT4, protein has been published by Kakimoto 2001.

[0054] The present invention has been exemplified by using *Arabidopsis* cytokinin biosynthetic isopentenyl-transferase enzyme IPT7 encoding gene (gene AT3G23630) SEQ ID NO: 1. Said gene encodes amino acid sequence SEQ ID NO: 2. When the amino acid sequence SEQ ID NO: 2 has been compared with IPTs from other sources, it has been found that close homologies can be found in domain area A, domain area B, and/or in domain area C or between different IPTs in *Arabidopsis thaliana*, it has been found that close homologies can be found in domain area A', domain area B', and/or in domain area C' (see FIGS. 2 and 3). The identity % of these areas between amino acid sequences from different origin is at least 80%, preferably at least 85%, more preferably at least 90%, still more preferably at least 95% even more preferably at least 97%, more and more preferably at least 98%, more and more preferably at least 99%, most preferably 100% identity.

[0055] In the present invention it is therefore possible to use genes functioning in similar manner as IPT7 gene from *Arabidopsis*, from several other plant genera and species and/or from different IPTs. It is also possible to use nucleic acid sequences comprising substitutions, insertions, deletions or other modifications compared to SEQ ID NO:1, provided that the nucleic acid sequence encodes cytokinin biosynthetic isopentenyl-transferase enzyme, preferably belonging to enzyme class EC 2.5.1.27. More preferably the enzyme belongs to IPT7.

[0056] Nucleic acid sequences encoding cytokinin biosynthetic isopentenyl-transferase enzymes and which are used in the genetic constructs as described herein are typically sequences isolated from their origin, for example *A. thaliana* IPT7 is used in a genetic construct introduced to *Populus* cells to grow a transgenic *Populus* tree. However, it is also possible to enhance the expression of endogenous nucleic acid sequences encoding IPTs.

[0057] The genetic construct according to this disclosure comprises a second nucleic acid sequence, which is a promoter allowing expression of cytokinin biosynthetic isopentenyl-transferase enzyme in meristematic cells of a plant.

Preferably the promoter allows expression in cambial cells and apical cells, more preferably specifically in cambial cells.

[0058] By "a promoter" is meant a DNA region binding RNA polymerase and directing the enzyme to the appropriate transcription initiation site for a particular polynucleotide sequence. A promoter may additionally comprise other recognition sequences referred to as upstream promoter elements, which influence the transcription initiation rate.

[0059] An example of a promoter allowing expression in meristematic cells in cambium and in apical cells is birch meristem promoter pBpCRE1. The promoter is preferably defined by SEQ ID NO: 7 (GenBank EU583454, Nieminen et al. 2008).

[0060] Another example of a promoter allowing expression in meristematic cells is a promoter allowing expression specifically in cambial cells. Such specifically in cambial cells expressing promoter is *Populus* cambial specific promoter pLM5, preferably defined by SEQ ID NO: 8 (pLM5 promoter is described also in WO2004097024A1 as SEQ-IDNO4 LMX5 A055P19U).

[0061] In the genetic construct the first nucleic acid sequence (effector) is operable linked to the second nucleic acid sequence (promoter). By "operable linked" is meant that two genetic elements are linked by a functional linkage, for example an effector gene is operable linked to a promoter allowing expression of the effector gene.

[0062] A genetic construct can contain also a selectable marker for the selection of cells comprising the introduced genetic construct. Selectable markers are for example antibiotic resistances ampicilline, carbenicilline and hygromycin B resistance.

[0063] In the present disclosure the linking of promoter and effector has been exemplified by promoter pLMX5, which has been operably linked to the effector gene by inserting it into the close proximity of the effector gene in the Gateway 2nd box cloning site (FIG. 4)

[0064] The following Gateway cloning primers have been used:

IFT7_Fwd GW primer:
(SEQ ID NO: 9)
ACAAAAAAAGCAGGCTTAATGAAGTTCTCAATCTCA

IFT7_REV GW primer:
(SEQ ID NO: 10)
TACAAGAAAGCTGGGTATCATATCATATTGTGGG

[0065] When the LMX5::AtIPT7 construct (SEQ ID NO:11) has been introduced into trees, transgenic trees with the LMX5::AtIPT7 construct display ectopic overexpression of *Arabidopsis thaliana* adenosine phosphate-isopentenyl-transferase 7 (IPT; EC 2.5.1.27), expressed in the cambial zone through the LMX5 promoter (described in Love et al. 2009). In the transgenic trees, cytokinin signaling has been stimulated by increasing the amount of cytokinin plant hormone in the cambial zone. Adenosine phosphate-isopentenyltransferase 7 (AtIPT7) enzyme from *Arabidopsis thaliana* catalyzes the first (rate-limiting) reaction in the biosynthesis pathway of isoprene cytokinins. AtIPT7 is expressed at the vascular tissue in *Arabidopsis* (Sakakibara, 2006).

[0066] In FIG. 4 are presented the following regions:

[0067] LB Left Border: *Agrobacterium tumefaciens*; 25 bp; recognition site for the virulence genes in the Ti-plasmid; start of the insert (part of the plasmid

transferred into the plant genome). Start position the 1stbp.Cole1 (replicon): part of *Escherichia coli* pBR322 plasmid; 615 bp; amplification of the bacterial cultures (not expressed in the transgenic plants);

[0068] β-lactamase(bla)-gene: part of *E. coli* pBR322 plasmid; 861 bp; gene gives an ampicilline/carbenicilline-resistance in bacterial cultures (not expressed in the transgenic plants);

[0069] pLMX5: hybrid aspen (*Populus tremula*×*P. tremuloides*); 1807 bp; promotor used for the overexpression of the adenosine phosphate-isopentenyl-transferase 7 (AtIPT7) enzyme gene. Start position the 3000th bp.

[0070] attB1: synthetic (Invitrogen-company); 19 bp; recombination site in the Gateway-technique;

[0071] Gene coding for Adenosine phosphate-isopentenyltransferase 7 (AtIPT7)enzyme: *A. thaliana*; 990 bp. Start position 4858th bp.

[0072] attB1: synthetic (Invitrogen-company); 17 bp; recombination site in the Gateway-technique;

[0073] pAnos(non-coding 3' region of the nopaline synthase-gene): *A. tumefaciens*; ca. 200 bp⁽¹⁾; polyadenylation signal (signal for the end of the transcription) for the ERF-genes;

[0074] pnos, *A. tumefaciens*; ca. 200 bp⁽¹⁾; promotor for hygromycinphospho-transferase (hpt)-gene expression;

[0075] hpt; *E. coli*; 1000 bp⁽¹⁾; gene gives a resistance for the hygromycin B used for the selection;

[0076] pAg4 (T_L-DNA:n gene 4): *A. tumefaciens*; about 200 bp⁽¹⁾; polyadenylation signal for the hpt-gene

[0077] RB (Right border): *Agrobacterium tumefaciens*; 25 bp; recognition region of the virulence genes in the Ti-plasmid; end of the plant genome insert.⁽¹⁾ In the original reference articles (Walden et al., 1990; Koncz et al., 1994) the size of the site is not defined, and it cannot be deduced from other sources.

[0078] Backbone vector similar to *Agrobacterium* binary gap repair vector pGAP-Hyg, (complete sequence: Sequence ID: gb|EU933993.1, length: 7942) and to pBR322.

[0079] To introduce the genetic construct into a plant a vector is usually needed. Suitable vector is for example bacterium *Agrobacterium tumefaciens*.

[0080] There are also other systems available for introducing genetic material to plants. Such systems do not necessarily need vector. It is possible for example to introduce genetic material to angiosperm and gymnosperm species through sexual reproduction between trees and by particle bombardment (DNA covered gold particles are shot into cells).

[0081] The present invention provides a tree, which over-expresses an endogenous nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme, or expresses an exogenous nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme.

[0082] As described herein the effector gene needs to be expressed in cambial cells. This is possible by using a promoter allowing expression in meristematic cells generally. However, it is of disadvantage, if the cell division is enhanced in any meristematic cells. If for example the leaves of a tree are grown very large or tight that may of disadvantage, although the stem volume is increased at the same time. According to the present disclosure a promoter allowing expression in cambial cells and apical cells is preferably

used, since the overall growth of the tree is not huge, only the stem volume growth and growth of the height. Most preferably a promoter is used, allowing expression specifically in cambial cells. In this case the stem volume growth is increased, but not the overall growth of the tree and not either the height of the tree is increased. All the comparisons are meant to be made to a wild type tree of the same species, age and growth conditions.

[0083] The effector gene can be introduced to a tree by using the genetic construct as described herein. Alternatively, the expression of an effector gene being endogenous to a tree can be improved. For example in *Populus* the expression of *Populus* IPT 7 can be improved.

[0084] Expression of the gene can be enhanced through ectopic overexpression, by driving the endogenous gene as through an alternative promoter, driving a higher expression level than the endogenous promoter. This can be done by introducing a novel copy of the endogenous gene, under the chosen promoter, into the genome. Alternatively, expression of the endogenous gene can be enhanced through activation tagging, where enhancer elements are introduced into plant genome, where they are able to enhance transcription of genes in their proximity. In the future, enhanced expression of the endogenous gene may also be attained through genome editing, e.g. with engineered nucleases, which can be used to delete silencer elements repressing expression of the desired genes.

[0085] A transgenic tree produced as described herein expresses at least 40%, preferably at least 44%, more preferably at least 46%, still more preferably at least 50%, more and more preferably at least 60% higher levels of cytokinin signalling in cambial cells during cambial development compared to a WT tree.

[0086] Furthermore, in a transgenic tree produced as described herein the stem volume growth in said tree is at least 35% higher, preferably at least 38%, more preferably at least 40%, still more preferably at least 45%, more and more preferably at least 50% higher compared to wild type (WT) tree.

[0087] In one aspect of the invention, the tree expressing an effector gene in cambial cells belongs preferably to angiosperms. The tree is an annual tree or a perennial tree, preferably a perennial tree. The tree belongs to genera *Betula*, *Populus* or *Eucalyptus*. Preferably the tree belongs to genus *Populus*. The *Populus* is selected from the group of *Populus* species *P. tremula*, *P. alba*, *P. tremuloides*, *P. canescens*, *P. deltoids*, *P. fremontii*, *P. nigra*, *P. Canadensis*, *P. inopina* and *Populus tremulaxtremuloides*. The function of the construct has been tested and confirmed in the hybrid aspen, *Populus tremulaxtremuloides*.

[0088] In second aspect of the invention the tree expressing an effector gene in cambial cells belongs to gymnosperms. The tree is preferably spruce or pine.

[0089] The present invention encompasses also various wood products obtainable from the transgenic trees of the invention. Such wood products are for example trunks, branches, roots and seeds.

[0090] The present invention provides also a method for producing a transgenic plant capable of increased biomass production and/or increased stem volume growth compared to wild type plant. The method comprises the steps of

[0091] introducing a nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme

operationally linked to a promoter allowing expression in cambial cells, to a tree cell,

[0092] cultivating said cell to form a cell culture,

[0093] regenerating the cell culture to a plant, in which the nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme is expressed in cambial cells during cambial development.

[0094] *Agrobacterium* based transformation methods for angiosperm trees have been published by e.g. Haggman et al. 2003, Seppanen et al. 2004 and Nilsson et al. 1992. In general the method comprises that plants explants (leaf discs, stem segments, etc.) are incubated in an *Agrobacterium* culture, after which they are co-cultured with *Agrobacterium* bacteria on a solid culture medium. To end the co-culture, *Agrobacterium* bacteria are removed by washing. Plants explants are grown on a callus production medium supplemented by an antibiotic to limit the callus production to transgenic cells harbouring the antibiotic resistance gene. The forming callus tissues are transferred onto a regeneration medium for shoot production. The regenerated shoots are transferred onto a root induction medium. After the roots are formed, the plantlets can be grown in soil.

[0095] The present invention provides also a method for improving the production of biomass and/or increased stem volume growth in trees. The method comprises the steps of

[0096] introducing a nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme operationally linked to promoter allowing expression in cambial cells, to a tree cell,

[0097] cultivating said cell to form a cell culture,

[0098] regenerating the cell culture to a plant, in which the gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme is expressed in cambial cells during cambial development,

[0099] allowing said plant to grow to an adult tree having enhanced radial growth compared to wild type tree.

[0100] In *Agrobacterium* mediated transformation plant explants are co-cultured with *Agrobacterium* bacteria containing the desired transgene. *Agrobacterium* bacteria will transform plant cells in the explants through the integration of transgenic DNA into the plant genome. Placed on selectable rooting and shooting media, transgenic plants will be regenerated from the transformed cells.

[0101] In particle (microprojectile) bombardment method particles of gold or tungsten are coated with DNA and shot into plant cells. Inserted DNA will integrate into the plant genome.

[0102] In electroporation method transient holes are formed in plant protoplast membranes using electric shock; this allows transgene DNA to enter plant protoplasts.

[0103] In viral transformation (transduction) method the desired transgene is packaged into a suitable plant virus, and the plant is infected by this virus. The transgenic material will integrate into the plant genome.

[0104] By "increased biomass production" is meant here the additional amount of biomass (stem dry weight mass) of transgenic trees compared to wild type trees at the same age.

[0105] In this description stem dry mass of WT trees was measured at the age of 16 weeks (average of 3 trees) and was 35 ± 2 (STDEV) g, whereas the stem of pLMX5-IPT7 trees (3 trees) was 51 ± 8 g.

[0106] By "increased stem volume growth" is meant here the additional amount of stem volume in transgenic trees compared to wild type trees at the same age.

[0107] In this description stem volume was measured once per week, 3 measurements points (10 cm above soil level, middle tree, 2 cm below apex), volume was calculated by formula of frusta (sum of basal to middle and middle to apex).

$$V = \frac{\pi h}{3} (r^2 + rR + R^2)$$

[0108] wherein V=volume

[0109] h=height

[0110] r=radius of upper part

[0111] R=radius of lower part

[0112] <http://www.mathwords.com/fifrustum.htm>.

[0113] Transgenic IPT7 overexpressing trees had more stem volume compared to WT trees (FIG. 5). The stem volume growth in transgenic trees was in average 53% higher, and at least 38% higher, if standard errors were taken into account.

[0114] Transgenic trees expressed in average 83% and at least 44%, if standard errors were taken into account, higher levels of cytokinin signaling in cambial cells during cambial development compared to WT trees.

[0115] The present invention encompasses also applications where the transgenic tree is sterile tree not capable of flower, pollen or seed development. Methods used to produce sterile trees are known for a person skilled in the art.

[0116] Sterile clones of hybrids between two related species with different chromosome numbers (tetraploid crossed with diploid to make a sterile triploid for example) can be selected for transformation. Transgenic trees can be clonally propagated and tested for their sterility (for abolished, aborted or sterile flower, pollen or seed development).

[0117] To exemplify the present invention the engineering of transgenic trees displaying an elevated cytokinin signaling level is described herein. Of these trees the status and pattern of auxin and cytokinin distribution and signaling were analyzed.

[0118] The concentration of auxin and cytokinin profiles across the cambial meristem in *Populus* stem was characterized. Furthermore, to correlate the cytokinin hormonal profiling with cytokinin signaling, an extensive analysis of the expression profiles of cytokinin biosynthetic and signaling genes across the *Populus* cambial zone was made.

[0119] To better understand the interaction between two major hormonal pathways, cytokinin and auxin, in the regulation of cambial cell divisions, their concentration levels across the cambial zone of *Populus trichocarpa* stem were analyzed. Stem cryosections representing phloem, conducting phloem, developing phloem, cambium, developing xylem and xylem tissues (FIG. 6) were analyzed.

[0120] To verify the tissue identity of analyzed cryosections, marker genes for various tissue types were included in the analysis. PtSUC2 was used as a phloem cell marker, PtANT, as a marker for dividing cambial cells, and PtCOMT2 for phloem fibers and xylem cells. The markers correlated well with the identity of the tissues determined through microscopy during the cryo-sectioning.

[0121] The present invention is based on a detailed analysis of cytokinin function in the regulation of cambial devel-

opment in a tree stem. In a manner similar to auxin, also cytokinin hormone has a concentration gradient across the cambial zone. The cytokinin concentration peak coincides with the high expression domain of biosynthetic and signaling genes of this hormone.

[0122] With the exception of PtCKI1 genes, expression of all components of the cytokinin biosynthesis and signal transduction pathway in the *Populus* cambium was detected. Either the effective expression level of the CKI1 genes is very low, below the detection limit of the expression analysis, or they are not required for cambial development during the active growth of *Populus* trees.

[0123] The expression of all components of cytokinin signaling confirms the importance of this hormonal signaling pathway for the activity of vascular cambium.

[0124] Interestingly, the cambial distribution profile of cytokinin is distinct, but partially overlapping with, the concentration profiles of auxin. The high auxin concentration is restricted at the domain of actively dividing, undifferentiated cambial cells; whereas the high cytokinin concentration has a larger domain extending from the undifferentiated cambium to the developing phloem.

[0125] In this disclosure has been shown that biomass accumulation in tree stem can be enhanced by stimulating cytokinin signaling in the transgenic *Populus* trees. These trees displayed enhanced cytokinin responsiveness together with an elevated level of cytokinin signaling. The cambial cell division activity of the transgenic trees was increased as compared to the WT trees, and respectively the radial growth of the stem was accelerated. As these trees were of WT height, the stimulatory effect of cytokinin on the radial growth was independent of the apical growth rate. Furthermore, this stimulative action of cytokinin appeared to take place through crosstalk between CK and auxin: an elevated CK concentration and signaling increased the level and widened the domain of auxin concentration and signaling in the cambial region. Potentially the partially overlapping domains of auxin and cytokinin action have specific functions in the regulation of different developmental processes taking place across the cambial zone. Cross-talk between auxin and cytokinin at the middle of the cambium may define the stem cell niche for the maintenance of an actively dividing cell pool. Respectively, possibly the high cytokinin to auxin ratio at the phloem side of the cambial zone contributes to the determination of the phloem identity of the developing vascular cells.

[0126] The invention is illustrated by the following non-limiting examples. The invention is applicable to other genes, genetic constructs and plants than those illustrated in examples. It should be understood, however, that the embodiments given in the description above and in the examples are for illustrative purposes only, and that various changes and modifications are possible within the scope of invention.

EXAMPLES

Example 1

Engineering of Transgenic *Populus* Trees with Stimulated Cambial Cytokinin Signaling

[0127] To study the effect of cytokinin signaling on stem growth, transgenic *Populus* (*P. tremula*×*tremuloides*) trees were engineered to display elevated cytokinin signaling

during cambial development. To stimulate biosynthesis, AtIPT7 gene from *Arabidopsis* encoding a cytokinin biosynthetic isopentenyltransferase was used. The AtIPT7 was expressed under the cambial specific PttLMX5 promoter (Love et al. 2009), which shows a high expression in the cambial and developing xylem cells.

[0128] Several separate transgenic lines with the LMX5::IPT7 construct were obtained showing a detectable AtIPT7 expression. No AtIPT7 expression was detected in the untransformed lines. Two lines (AtIPT7 1 and 3) with a high transgene expression level were selected for further analysis.

Example 2

Accelerated Radial Growth of the Tree Trunk in the Transgenic Lines

[0129] To evaluate the effect of AtIPT7 activity on tree development, growth dynamics of the transgenic trees was studied under greenhouse conditions (FIG. 5A). The apical growth rate of the pLMX5::AtIPT7 lines was similar to wild-type plants; the transgenic plants had the same height as the controls at the same age (FIG. 5A). In contrast, the diameter of the stem was increased in the transgenic trees as compared to the WT trees. Respectively the stem volume, which was counted as the additive volume of internodes without the leaves, was larger than that of the WT trees (FIG. 5B).

[0130] FIG. 5A shows the phenotypes of WT and pLMX5-IPT7 line 1 and 3 *Populus* trees in the age of three months. All trees had similar height.

[0131] FIG. 5B shows the trunk volume of the transgenic pLMX5-IPT7 *Populus* lines 1 and 3 as compared to the WT. The total stem volume of the transgenic lines was increased as compared to the WT. Values are averages (\pm SD) from five individual trees per each line.

Example 3

Enhanced Cytokinin Responsiveness of the Transgenic Lines

[0132] To evaluate the effect of cambial AtIPT7 expression on cytokinin signaling, cytokinin responsiveness of the transgenic trees was tested. In the classic cytokinin responsiveness assay (Skoog & Miller 1957), a low cytokinin-to-auxin ratio induces root regeneration from plant segments and a high cytokinin-to-auxin ratio promotes instead shoot regeneration. In this assay, shoot segments were cut from greenhouse grown transgenic and WT lines, and then grown in *in vitro* conditions on a medium with a varying concentration of trans-Zeatin (tZ).

[0133] In the assay, a majority of the stem segments from the IPT7 lines produced shoots even in the 0.5 mg/l tZ concentration, whereas only a few WT samples were able to do so (FIG. 5C). This result indicates that the transgenic lines display an elevated basal level of cytokinin signaling, as even a moderate concentration of applied cytokinin can induce shoot production; a typical cytokinin response phenotype. Additionally, the transgenic lines produced roots on the medium with 0 mg/l tZ. As auxin, together with cytokinin, promotes root formation, the result indicates that these lines may have had both more cytokinin and auxin than the control trees.

[0134] FIG. 5C depicts cytokinin responsiveness assay of the WT and pLMX5-IPT7 lines. Stem segments were grown on a medium with 0.5 mg/L auxin (IAA) and 0, 0.5 or 1.5 mg/L cytokinin t-zeatin. Transgenic lines regenerated shoots already in low cytokinin concentrations (0.5 mg/L), whereas WT required a higher (1.5 mg/L) concentration of this hormone.

Example 4

Elevated Cambial Cytokinin Signaling Levels in the Transgenic Trees

[0135] The status of cambial cytokinin signaling in the transgenic trees was studied. The expression levels of two cytokinin marker genes were analyzed. Two marker genes were used to evaluate the cytokinin signaling level: a cytokinin receptor PttHK3a and a type-A response regulator PttRR7. The level of auxin signaling was studied through an auxin signaling marker gene (PttIAA3). The PttRR7 represents a primary response gene of cytokinin phosphorelay: expression of A-type response regulator genes is upregulated by cytokinin signaling: the expression level of this gene reflects the level of cytokinin response taking place in the analyzed trees. In the IPT7-lines the expression of cytokinin receptor PttHK3a was essentially the same as in the WT trees whereas the expression levels of PttRR7 and PttIAA3 were elevated (FIG. 5D).

[0136] FIG. 5D depicts the expression of a cytokinin receptor (PttHK3a), a cytokinin signaling primary response gene (type-A RR PttRR7) and an auxin signaling marker gene (PttIAA3) in the WT and pLMX5-IPT7 line 1 stem. The expression levels of PttRR7 and PttIAA3 were elevated in the pLMX5-IPT7 line as compared to WT, whereas the expression of PttHK3a was not affected. Two individual trees per line were analyzed by qRT-PCR (error bars=SD).

[0137] This result shows that the level of cytokinin and auxin signaling was successfully elevated through an elevated CK concentration, whereas the capacity for cytokinin perception had not been modified.

Example 5

Increased Number of Cambial Cell Divisions in the Transgenic Trees

[0138] To study the effect of elevated cytokinin signaling on the vascular architecture, the cambial anatomy of transgenic trees was analyzed. Meristematic undifferentiated cambial cells were defined in the cross-sections as the small and flat, thin-walled cells localized in the cambial cell files between the differentiating xylem and phloem cells. The first differentiating xylem and phloem cells were defined as having a larger and more round size. In the IPT7-trees, the vascular cambium contained more meristematic cells in the cambial cell files than the WT trees (24 vs 15) (FIG. 6A-B). Based on the increased cell number, it can be concluded that the cambial cell files were undergoing additional cell divisions, as compared to the WT.

[0139] Furthermore, it was studied if, in addition of stimulating the cell division rate, the elevated cytokinin signaling level also affected the morphology of the produced xylem cells. To find this out, the dimensions of the xylem cells, vessels and fibers was analyzed, in macerated stem samples. As compared to the WT trees, the length and width of the xylem cells in the IPT7-trees was not significantly different.

Example 6

Elevated Cytokinin Signaling Affects Cambial Auxin Signaling Domain

[0140] Next it was studied how the hormonal regulation of cambial meristem reacts to an elevated cytokinin concentration. To study this, the cambial hormone signaling dynamics was profiled through a hormone concentration and marker gene expression studies. The concentrations of bioactive iP and tZ were almost 30% higher in the transgenic trees, whereas the IAA and cZOG concentrations were doubled. Notably, the cytokinin distribution profiles were generally similar between the WT and transgenic line, whereas the shape of auxin distribution was different. Transgenic tree had a wider domain of high auxin concentration; the IAA level was higher in developing xylem and xylem cells than in the WT.

[0141] To connect the hormonal profiles with signaling pattern, the expression pattern for auxin and cytokinin signaling marker genes was characterized across the cambial zone. PttRR7 was used as a marker for cytokinin and PttIAA3 for auxin signaling. Similar to the hormone concentration study, cryosections representing phloem, developing phloem, cambium, developing xylem and xylem, were analyzed. The PttSUC2 and PttCOMT were used as marker genes for phloem and phloem fibers and xylem cells, respectively, to confirm the identity of the sections. Two wild-type trees and two IPT7 trees were analyzed. In both transgenic and WT trees, the RR7 expression peaks in the developing phloem tissue, where also the phloem marker PtSUC2 has high expression (FIG. 6). Cambium, where the phloem and xylem markers have low expression levels, displays high IAA3 and rising RR7 expression levels. Developing xylem tissue has high IAA3 and a rising COMT expression, whereas in maturing xylem only the xylem marker expression is high.

[0142] When the WT and transgenic trees were compared, it can be seen that the IPT7-trees have a wider domain of high auxin signaling. The cambium, which is a domain of high RR7 and IAA3 expression, and developing xylem, a domain of high IAA3 and moderate RR7 expression, tissues are larger in the transgenic lines as compared to the WT tree (FIG. 6). This widened domain of auxin signaling corresponds with the increase in the number of meristematic cells.

[0143] Cambial anatomy, hormonal content and hormonal signaling profiles of WT (A) and transgenic *Populus* line pLMX5::IPT7 line 1 stem (B) are shown in FIG. 6. In the IPT7-trees, the vascular cambium contained more meristematic cells in the cambial cell files than in the WT trees (24 vs 15). Four fractions (A-D) were collected for the hormonal analysis. In WT, the 4th fraction represents fully developed xylem cells, whereas in pLMX5::IPT7 it still contains developing xylem cells, indicating that the meristematic cambial zone is wider in the pLMX5::IPT7 stem than in WT.

[0144] The hormonal profiles of auxin (IAA) and bioactive cytokinins (iP and tZ) together with a cytokinin storage form (cZOG) were analyzed in four cambial fractions (A-D). The concentrations of bioactive cytokinins iP and tZ were almost 30% higher in the transgenic trees, whereas the IAA and cZOG concentrations were doubled. Notably, cytokinin distribution profiles were generally similar between the WT and transgenic line, whereas the shape of auxin distribution

was different. Transgenic tree had a wider domain of high auxin concentration (highlighted by grey shading).

[0145] To correlate the hormonal profiles with signaling domains, expression patterns of marker genes were analyzed by qRT-PCR in fourteen cryosections from phloem (1) into the xylem (14) tissues. The letters under the graph indicate the position of the four hormone analysis fractions (A-D). PttSUC2 was used as a phloem marker, a cytokinin primary response gene PttRR7 as a CK signaling marker, PttIAA3 as an auxin signaling marker, and PttCOMT2 as a phloem fiber and xylem identity marker. Based on the PttRR7 expression, the cytokinin signaling level was elevated in the pLMX5::IPT7 tree. The width of high cytokinin concentration domain (fractions 3-7 in both WT and pLMX5::IPT7) was instead not affected. In contrast, the cambial domain with high auxin marker gene expression and decreasing cytokinin marker gene expression (WT fractions 5-7 vs pLMX5::IPT7 fractions 5-11) was wider in the transgenic line than in the WT tree (3 vs 7 fractions). The level of transgene AtIPT7 expression was below detection limit in WT, whereas had a high expression at the cambial zone of the pLMX5::IPT7 tree.

REFERENCES

[0146] Altschul S F; Gish W; Miller W; Myers E W; Lipman D J. 1990. Basic local alignment search tool. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Md. 20894. *J Mol Biol* 215: 403-10 (1990)

[0147] El-Showk S, Ruonala R, Helariutta Y. 2013. Crossing paths: cytokinin signalling and crosstalk. Development. April; 140(7): 1373-83. doi: 10.1242/dev.086371.

[0148] Häggman H, Frey A D, Aronen T, Ryynänen L, Julkunen-Tiitto R, Tiimonen H, Pihakaski-Maunsbach K, Jokipii S, Chen X, Kallio P T. 2003. Expression of Vitreoscilla hemoglobin in hybrid aspen (*Populus tremula**x**tremuloides*). Plant Biotechnology Journal 1: 287-300.

[0149] Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 2001 July; 42(7):677-85.

[0150] Koncz C, Martini N, Szabadossz L, Hrouda M, Bachmair A, Schell J (1994) in *Plant Molecular Biology Manual*, eds Gelvin S B, Schilperoort R A, Verma D P S (Kluwer, Dordrecht, The Netherlands), Vol B2, pp 1-22.

[0151] Love J, Björklund S, Vahala J, Hertzberg M, Kangasjärvi J, Sundberg B. 2009. Ethylene is an endogenous stimulator of cell division in the cambial meristem of *Populus*. Proceedings of the National Academy of Sciences, USA 106: 5984-5989.

[0152] Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, et al. Cytokinin signalling regulates cambial development in poplar. Proc Natl Acad Sci USA 2008; 105:20032-7.

[0153] Nilsson et al. 1992. Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Research 1: 209-220.

[0154] Sakakibara (2006). Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology 57:431-449.

[0155] Seppänen S K, Syrjälä L, von Weissenberg K, Teeri T H, Paajanen L, Pappinen A. 2004. Antifungal activity of stilbenes in in vitro bioassays and in transgenic *Populus* expressing a gene encoding pinosylvin synthase. Plant Cell Reporter 22: 584-93.

[0156] Skoog F., Miller C. O. (1957). Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp. Soc. Exp. Biol. 11: 118-131.

[0157] Tuskan et al. (2006). Science. 313(5793):1596-604.

[0158] Walden R, Koncz C, Schell J (1990) The use of gene vectors in plant molecular biology. Methods in Molecular and Cellular Biology 4: 175-194.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 11

<210> SEQ ID NO 1

<211> LENGTH: 990

<212> TYPE: DNA

<213> ORGANISM: *Arabidopsis thaliana*

<400> SEQUENCE: 1

atgaaggttc	caatctcatc	actgaagcag	gtacaaccaa	tcttgctt	caagaacaag	60
ctatctaagg	tcaacgtcaa	ctctttctc	catccaaag	aaaaagtcat	ctttgtatg	120
ggagctaccg	gatcggttaa	gtctcgctc	gccatcgacc	tagcaactcg	tttcaagga	180
gagatcataa	actccgacaa	gattcaactt	tacaagggcc	tagacgtct	aacaacaaa	240
gtcaccctca	aagaatgcgg	aggcggtctt	caccacttgc	ttggagtatt	cgactccgaa	300
gccggaaacc	taacggccac	ccagtagatgc	cgcccttgcgt	cacaagcaat	ctcgaaactc	360
tcagcgaaca	acaagcttcc	catagtagcc	ggtggtatcaa	actcttacat	cgaagcactt	420
gttaatcatt	cctcggtttt	tttattaaac	aactacgatt	gttggatcat	ttgggtcgac	480
gtttccttac	ccgtacttaa	ctcccttgc	tcaaaaacgtg	tgcacccat	gatggaagca	540
ggattactcg	aagaagtaag	agaagtggtc	aatccaaaag	cgaattactc	cgtagggata	600
cgacgagctt	tcggagtc	cgagctccat	aatattttac	gtaacgaatc	tctagtggac	660
cgtgccacaa	aaagtaaaat	gcttgacgta	gccgttaaaa	atatcaaaaa	gaacactgag	720
attttagctt	gtcgacagtt	aaaaaagatt	caacggcttc	acaagaagtg	gaagatgtct	780
atgcacgtg	ttgacgcccac	tgagggttgc	ttgaaacgca	acgtagaaga	acaagacgag	840
gcttgggaga	atcttgtagc	gagaccaagc	gagagaatcg	tgcataagtt	ttataataat	900
aataaccaac	tgaaaaatga	tgtatgttgc	cactgtttgg	cggcatctta	cgccggaggaa	960
agtggaaagta	gagcccacaa	tatgatatga				990

<210> SEQ ID NO 2

<211> LENGTH: 329

<212> TYPE: PRT

<213> ORGANISM: *Arabidopsis thaliana*

<400> SEQUENCE: 2

Met	Lys	Phe	Ser	Ile	Ser	Ser	Leu	Lys	Gln	Val	Gln	Pro	Ile	Leu	Cys
1				5			10					15			
Phe	Lys	Asn	Lys	Leu	Ser	Lys	Val	Asn	Val	Asn	Ser	Phe	Leu	His	Pro
				20			25				30				
Lys	Glu	Lys	Val	Ile	Phe	Val	Met	Gly	Ala	Thr	Gly	Ser	Gly	Lys	Ser
	35				40			45							
Arg	Leu	Ala	Ile	Asp	Leu	Ala	Thr	Arg	Phe	Gln	Gly	Glu	Ile	Ile	Asn
	50			55			60								
Ser	Asp	Lys	Ile	Gln	Leu	Tyr	Lys	Gly	Leu	Asp	Val	Leu	Thr	Asn	Lys

-continued

65	70	75	80
Val Thr Pro Lys Glu Cys Arg Gly Val Pro His His Leu Leu Gly Val			
85	90	95	
Phe Asp Ser Glu Ala Gly Asn Leu Thr Ala Thr Gln Tyr Ser Arg Leu			
100	105	110	
Ala Ser Gln Ala Ile Ser Lys Leu Ser Ala Asn Asn Lys Leu Pro Ile			
115	120	125	
Val Ala Gly Gly Ser Asn Ser Tyr Ile Glu Ala Leu Val Asn His Ser			
130	135	140	
Ser Gly Phe Leu Leu Asn Asn Tyr Asp Cys Cys Phe Ile Trp Val Asp			
145	150	155	160
Val Ser Leu Pro Val Leu Asn Ser Phe Val Ser Lys Arg Val Asp Arg			
165	170	175	
Met Met Glu Ala Gly Leu Leu Glu Glu Val Arg Glu Val Phe Asn Pro			
180	185	190	
Lys Ala Asn Tyr Ser Val Gly Ile Arg Arg Ala Ile Gly Val Pro Glu			
195	200	205	
Leu His Glu Tyr Leu Arg Asn Glu Ser Leu Val Asp Arg Ala Thr Lys			
210	215	220	
Ser Lys Met Leu Asp Val Ala Val Lys Asn Ile Lys Lys Asn Thr Glu			
225	230	235	240
Ile Leu Ala Cys Arg Gln Leu Lys Lys Ile Gln Arg Leu His Lys Lys			
245	250	255	
Trp Lys Met Ser Met His Arg Val Asp Ala Thr Glu Val Phe Leu Lys			
260	265	270	
Arg Asn Val Glu Glu Gln Asp Glu Ala Trp Glu Asn Leu Val Ala Arg			
275	280	285	
Pro Ser Glu Arg Ile Val Asp Lys Phe Tyr Asn Asn Asn Gln Leu			
290	295	300	
Lys Asn Asp Asp Val Glu His Cys Leu Ala Ala Ser Tyr Gly Gly			
305	310	315	320
Ser Gly Ser Arg Ala His Asn Met Ile			
325			

```

<210> SEQ_ID NO 3
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER_INFORMATION: Consensus sequence
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER_INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (4)..(5)
<223> OTHER_INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER_INFORMATION: Xaa = Ser or Thr

<400> SEQUENCE: 3
Gly Xaa Thr Xaa Xaa Gly Lys Xaa
1 5

```

-continued

```

<210> SEQ ID NO 4
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Consensus sequence
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa = Val or Leu or Ile
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(8)
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(10)
<223> OTHER INFORMATION: Xaa = Val or Leu or Ile
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(12)
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (14)..(15)
<223> OTHER INFORMATION: Xaa = any amino acid

<400> SEQUENCE: 4

Xaa Asp Xaa Xaa Gln
1          5          10          15

```

```

<210> SEQ ID NO 5
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Consensus sequence
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(2)
<223> OTHER INFORMATION: Xaa = Val or Leu or Ile
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (6)..(6)
<223> OTHER INFORMATION: Xaa = Ser or Thr

<400> SEQUENCE: 5

Xaa Xaa Xaa Gly Gly Xaa
1          5

```

```

<210> SEQ ID NO 6
<211> LENGTH: 102
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 6

Met Gly Ala Thr Gly Ser Gly Lys Ser Arg Leu Ala Ile Asp Leu Ala
1          5          10          15

Thr Arg Phe Gln Gly Glu Ile Ile Asn Ser Asp Lys Ile Gln Leu Tyr
20         25          30

Lys Gly Leu Asp Val Leu Thr Asn Lys Val Thr Pro Lys Glu Cys Arg
35         40          45

Gly Val Pro His His Leu Leu Gly Val Phe Asp Ser Glu Ala Gly Asn
50         55          60

```

-continued

Leu Thr Ala Thr Gln Tyr Ser Arg Leu Ala Ser Gln Ala Ile Ser Lys
65 70 75 80

Leu Ser Ala Asn Asn Lys Leu Pro Ile Val Ala Gly Gly Ser Asn Ser
85 90 95

Tyr Ile Glu Ala Leu Val
100

<210> SEQ ID NO 7

<211> LENGTH: 4720

<212> TYPE: DNA

<213> ORGANISM: Betula pendula

<400> SEQUENCE: 7

gagctcggtgt	aacgtctaac	attttaagt	gaaaagtaac	ttattgccta	tcctttccac	60
tatgccatga	ggctcggtat	tctatattatg	catttgaatt	ggttaatttg	tgataaccagt	120
tgagaagttt	tatctaaagt	tttttattaat	gtgagtcata	gtcggttgg	tttacgtaaa	180
atgattttcg	ttaaaaattt	gtttcaagaa	atttgatttt	caaaaaataa	attttgcgtcg	240
aaaacatttt	tcggtatttg	acatgtacga	aaaatcgcaa	atattttttt	atatttcaaa	300
ctaatcatat	taacctataa	aaattctttt	tttgcaca	attaaaaaaa	aaaaagttaa	360
atataaattt	tcaaggcag	gtctcgag	tgtcatgggc	cggtcctgaa	tgggtccgaa	420
tagtcccagc	caggtcctag	tggtgtctcg	ggcggtccc	agtgtatgtc	tggtcagatt	480
ccggcgatgt	ttagcgccgaa	tctcgaaaat	gttctaaagt	agtcccccg	atgtcccgac	540
ccgggtcccccg	tgacgtcatg	ggcggtccc	gacaatgttt	cgggcaagtc	cgaaaaatgt	600
cctcaagtggg	tttcagcgat	gtccttgg	ggtctcggca	atgtcccaac	tgggtccgg	660
tgaegtctcg	gatgggttcg	acgtgtccc	aggtgggtcc	cgaaataggt	gggtcgcaac	720
gatgtctcg	ggcggtccc	aaaaaattt	ttaagcggt	cccaagcgatt	ttccggccag	780
gtcccaagcga	tgtcccgca	atgtcttgc	tgggtcttgg	cgatgtctt	ggtaaatccc	840
ggcgatgtct	cgactgggtt	tcaaaaat	tttggggag	tcctggcgat	gtcctaagcg	900
ggtctctagca	atgtcccgt	cgggtctcg	gaatatctcg	agcgagtccc	gactgggtcc	960
cggcaatttt	ccgaataggt	catgacgtat	tttcaggccg	gtcttgcacag	tgttttatt	1020
gggtctggc	gatatccaa	cggttcatg	ttgatgttcc	gggtaaatgtcc	caaccaattt	1080
cggcagaat	cttatagtgt	tttgactatg	gtccatcaat	ttgagaatgt	gacacttaaa	1140
ctaaaaaat	gatttatgg	tttaaaaata	agaaactatt	ttatgaaaat	taaagaaaat	1200
tttttggaca	aactaaaaat	ggtttcgtt	actaatattt	gtgtcccac	taaatactga	1260
aaaataaaaa	aaatttattt	aaaaattat	tttatgc	aacaaacgga	gtcataaatt	1320
ccacaagatt	tgaactaaa	atgtcactca	ctacaacgtc	aatgtgaaga	cgtaatatca	1380
ttaaatttac	atatttaat	agaaaataaa	tgtatttgt	tcttaatcaa	atgctgtttt	1440
aatcaattga	attgtcaatt	atotgagaca	aacagacagt	gcacgttgca	acatagacga	1500
aaggcggt	ataatacaga	aacaagatta	atttgggga	gggtgaatag	tcataataat	1560
aataatggaa	aatatgtaa	ttagttatg	taatttattcg	gatttatgt	aagtttttg	1620
tggcataaaa	gttgctgaga	ctttactgca	gtatgcaaaa	atagcaatc	gttcatgcat	1680
caaactttcg	ttcaaatttt	taatgaaaat	tgttaatgt	tactaattaa	attatgatac	1740

-continued

gtgtcaactta taacaaaaaa tatataaaat ataaaaactat aaatataaa aaaaaaatta	1800
aagactaaaa attaaaaata aaaataaaaa gttgaaagag gaggtggcac agccacccag	1860
tttggcata cctatgggtg gccgaaccaat caccctatacg tcattgaggg ccatttgagt	1920
gtggtaaac caccctcaat agctatggag tgatttgacc atctcccaga tatgaggtga	1980
tggttattgg ttaacccaa atggccaaaa aaaaaaaaaa aaaaaaaaaagt tgattgatag	2040
tttggcgagc cttagatatg gtttagagaga tggctgagcc atccttc tagtttttt	2100
ttttttttt tttttttttt ttacaaaaaa ttattttttta attttttaatt tttaactttt	2160
atatattttat ggttcctat tttctatgtt tatatatata tttttattac aggtgacata	2220
tgtcataatt taattggagc tgatataaca ttttacgatt tctattgaaa ttttggacaa	2280
aaatttagatg cataaaccta tttatttattt gcataccaca gtgaggtcac aataaatttt	2340
tataccatta agagattttt gcaaataatg gtaacaaatg gactaattttt gcattttttt	2400
ttaataataa taaaagaaca aaaagtcttc ttaattaattt aattactcat agcatagttg	2460
ataaattctg tgagggtatt ttaggattcg ggtgagggaaa acaggggta agaggttaat	2520
aagggtggaa taagatctag gtottgtgc cgtgtcattt tcgccaagat ttgcgattgc	2580
gatctcaacc ctccccccacc ttcttatttac caatcccatt cccaaacgccc ctcccccttc	2640
tctctcttc tcttaagctg agagagcaca tataaagaac aaagagctac aattttttt	2700
ttttaaaaaa aagaacaaag aatcccagaa gagagcaaga aaggaaaaaa aaaaaatagg	2760
ctcttggttt tccaaaata ggctttggg ttcacttatt ttttaattt tttttggcc	2820
aactcttgggtt ttgttataa gctaaataaa taggagtaat actatttaat atagtttat	2880
agaacttgat gatgttaagag catatagcaa tgatatactat tttaacttatt taaaatatga	2940
tgttttatct attttattta ttcaactttt actataaattt ataacacata atttatttttta	3000
ctattttattt tcaaaaaata ttattttttta atcattttct tattttttt ttctgcttct	3060
ttgtctcaact cttgctcaac attcttccat ctactaattt ttctccttc tcttggcaaa	3120
gaacaaggac acatataatat atatataatat aagaaatcat tctcatagta tttttttatt	3180
tattttattt tttttaaaaaaa aataagtaaa tataaatgtg gcatatacac	3240
aataatgcaa tgagaataact gagtaatata tagatataata gtattcagcg cattttttta	3300
ttattctctt tattttttta ttttcgttta aaaaaaaaaa aaggatgtta aatgtgcaac	3360
ttgaaaaatg tgaacagcat ttatcttcc ttttactatt cagaccatt tgactaataag	3420
cacaaaggaa gtctgaccca cttgaagccc caaaaacacg agagtggcatt aattatagga	3480
ctcaatgggtt ttgggggtcac aaaattgcag agagagagag agagagaggg agaggagaca	3540
gagtgtgtt tgaaatagta gattattata aagaagaagc cagagggaca gagagaggac	3600
tttaaagaga gagagagaga ggggacgagc agacaagagc gtatcttggaa aatcctaaa	3660
aattcgattt agttttttctt ctttggttact ttaaaaagca taggacaaac taaataaacc	3720
cccccatgaa ataaatctaa ctatataag aaaaaaaaaa aacaagaaaa tagaactctt	3780
ttccctttgtt ttgttcatc attgttaccac accacaccct cttccctcg cctagctact	3840
agctctacag gtaaaaaaca ttattttgtt ttcttcaac aacccacccct ctgtctcttct	3900
ctctctctga tatttgcata cattctctct ctctgttttgc ggggttgcggc cgcttcgtct	3960
tttggttttgtt gtgtctgtgt ctgtgtttt ttgggggtca atctgaggca tttgattgaa	4020

-continued

tattctaagg aagaaaagca gtgaacgtgc tttctttt ccggacgct ctactaaaaa	4080
acttcacgt ttttattag agtttgaga gaacaattat taagcgagtt tacactctgt	4140
attttctat tcccatttct ttttaatca ttcaaagcct tgagacagac aggaacagac	4200
cccttgaca gagagactgt gatagaggct attctttgga atttgagctt ttttttctc	4260
ccccatctt tgagagccat gttgtctct cagaactgag tacttcttctt tttaaaattc	4320
tgggtctctc tctgacctct ctttctagat tctagcctac gaaatggctc tccagtgagt	4380
gagagggaga gagaattttg ttcaattgtt cgatattgtt ttgtttttgt tgggggtgt	4440
cttatgcctt tttgggaggt ttaaatcacg caaaaacaatg ctctgtatg ctaaatttac	4500
ttggagttct tgggtaccct ttttctttt atgccagaaa aaggtgtgtc tgaaaagatt	4560
gccagtaatt tatcaaaagt tggcttataat atgtgtatgc attacttggg ggcctttta	4620
gcttaagata tgaagtgggt agtagcagag aaacaagaag gtggagaaga aaaagaaaac	4680
cagcaagaag agtcagagag aatttagtca gtgcttgctg	4720

<210> SEQ ID NO 8
 <211> LENGTH: 1835
 <212> TYPE: DNA
 <213> ORGANISM: *Arabidopsis thaliana*

<400> SEQUENCE: 8	
tcgtctcaa gaattccaag cttggccaag cttctagaga tctgtatcaa aagctggaaat	60
gagaatgcgc taaatgcgaa aagacagaga gagcgaataa atcgtgcataa aaaaggagtg	120
gggtgggtaa cgggttgagc tagaagaaga aaagggacaa gtgcactta ggagggggc	180
aaccagageg tagatgataa tggttcatgt ggaaacaaca cacatgagca gttggtgaga	240
acttgaatga accctaacag cccaaacaaa cccggagcca cccttaccga accaccactt	300
ctaaaagtc accatgcctt tttcttgagc ttgggtgcac agggtgcac gtgggttgt	360
tccgtttgg gtaatcatgc gatagttaa ataccttgc gataatcata tcaatggta	420
cttttaagca catgttaggt gtcgggtct tatctaaaca tggacatggc aacaagagtt	480
aatgctaaaa taatatacgt acattacctg tgaatgaaatc gtcgctgtct tctgattatg	540
gcttcaaata atatgcagat aaacaagtgt cgattttca gtgaagatatt tatgaaagt	600
cccggtctcc ttaagattac ctgtgaatga atcatccctg tcaggctgtat cctgggtgt	660
tttccccat gatgttcgga agatataatt atataaatga tggaaatttac atgaaataag	720
tttcagtaca ttcttagcag aaaagcaata tcgacgaaga caaatgatgc tgtttaagac	780
aaactgggtt aatatcaatt tacttagtaag agatttgtct gctttctta attctcaaga	840
aacttctact aaaatgcaca gccatgttaa acaatttaca ttcaacttaa aaactaaaat	900
tgttaggatgg gtagctatcc aagaattacg ctttttgtaa acttaatttt gatggcatg	960
tagttaacaa gtattttca tcgatcaattt caagagccat gtctgcatca taatttgaaa	1020
agtgggggg gcttttggc cttagggagg aatgcctct tagttcatgg ctttggactt	1080
cggtttttttt gtcgtttttt tttttttttt tttttttttt tttttttttt tttttttttt	1140
aactattatc atatatgttt aatctacaat ctcgtccgc tagaagaagt ttgggtcaa	1200
agtaagcctt ttcatcggtt caatgttaac catggaggaa ctaattgaaa aatagatgt	1260
tagttggagg gtctgaatgt attatgtcca aacattctct tattattcct gtatcatctc	1320

-continued

tgagaaaattc atccgaaaat aataaaacaa aatggcctt tttaaaataa gaagctgatg	1380
cataggatac caaaaagcgcc ttgtccattt ggagcgctcag actttgaaaa taagaccaag	1440
aattccctgt aagctatcat ctcatctttt tttttgtttt aacttgtaga cgttaggctt	1500
aaggcgttcca tgatgttcag tcacatgttg ctgtctactt gattatggaa tttaattcat	1560
tcggctcata agaagataaa aggattatga cggtgaagaa ctctggtcac tccttagtta	1620
cggtcacata aaaacgatgc atcttcccc accaaccatc ttcaagtgaa cccacttcc	1680
cttgcatttag gtaaggagta tgggttaagt catcttcatg aaatttagtcc cctagtggag	1740
ctaattctac tcactccata tttactcattt ccactatata acggcctcaa cgaccatcct	1800
caaagcaacc caaacaccc ttcttcgtcg actct	1835
<210> SEQ ID NO 9	
<211> LENGTH: 35	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: IPT7_Fwd GW primer	
<400> SEQUENCE: 9	
acaaaaaaaaagc aggcttaatg aagttctcaa tctca	35
<210> SEQ ID NO 10	
<211> LENGTH: 34	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: IPT7_REV GW	
<400> SEQUENCE: 10	
tacaagaaaag ctgggtatca tatcatattt tggg	34
<210> SEQ ID NO 11	
<211> LENGTH: 11129	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: fusion construct	
<400> SEQUENCE: 11	
cggcaggata tattcaattt taaatggctt catgtccggg aaatctacat ggatcagcaa	60
tgagtatgtat ggtcaatatg gagaaaaaga aagagtaattt accaattttt tttcaattca	120
aaaatgtaga tgtccgcagc gttattataa aatgaaagta cattttgata aaacgacaaa	180
ttacgatccg tcgtattttt aggcgaaagc aataaacaat ttattctaat tcggaaatct	240
ttatttcgac gtgtctacat tcacgtccaa atgggggctt agatgagaaa cttcacgatc	300
ggatctgcat cgcaggatgc tgctggctac cctgtggAAC acctacatct gtattaacga	360
agcgctggca ttgaccctga gtgattttc tctggcccg ccgcattccat accgcccagg	420
gtttaccctc acaacgttcc agtaaccggg catgttcatc atcagtaacc cgtatotgta	480
gcattcctctc tcgtttcatc ggtatcatta ccccatgaa cagaaatccc ctttacacgg	540
aggcatcagt gaccaaacag gaaaaaaccc cccttaacat ggcccgctt atcagaagcc	600
agacatcaaac gcttctggag aaactcaacg agctggacgc ggtatgaacag gcagacatct	660
gtgaatcgct tcacgaccac gctgatgagc tttaccgcag ctgcctcgcg cgtttccgtg	720

-continued

atgacgggtga	aaacacctctga	cacatgcagc	tcccgagac	ggtcacagct	tgtctgttaag	780
cggatgcggg	gagcagacaa	gcccgtcagg	gcccgtcagg	gggtgttggc	gggtgtcggg	840
gcccggccat	gaccaggatca	cgtagcata	gcccgggtta	tactggctta	actatgcggc	900
atcagagcag	attgtactga	gagtgcacca	tatgcggtgt	gaaataccgc	acagatgcgt	960
aaggagaaaa	tacccgatca	ggcgcttcc	cgcttccctcg	ctcaactgact	cgctgcgctc	1020
ggtcgttccgg	ctggggcgag	cggtatacgg	tcactcaaag	gcccgtataac	ggttattccac	1080
agaatcagggg	gataacgcag	gaaaacat	gtgagcaaaa	ggccagcaaa	aggccaggaa	1140
cctgtaaaaag	gcccgttgc	tggcgcccc	ccataggctc	cgccccctg	acgagcatca	1200
caaaaatcga	cgtcaagtc	agagggtggc	aaacccgcaca	ggactataaa	gataccaggc	1260
gtttccccct	ggaagctccc	tctgtgcgtc	tctgttccg	accctgcgc	ttaccggata	1320
cctgtccggcc	tttccccc	cgggaaagct	ggcgcttct	catagctcac	gtgttaggtta	1380
tctcagttcg	gtgttaggtcg	ttcgctccaa	gtggggctgt	gtgcacgaa	cccccggtca	1440
ggccgaccgc	tgcgccttat	ccggtaacta	tctgttccg	tccaaacccgg	taagacacga	1500
cttacgcaca	ctggcagcag	ccactggtaa	caggattagc	agagcgaggt	atgttaggcgg	1560
tgctacagag	ttcttgaagt	ggtggccata	ctacggctac	actagaagga	cagtatttgg	1620
tatctgcgt	ctgctgaagc	cagttaccc	cggaaaaaga	gttggtagct	cttgatccgg	1680
caaacaacc	acggctggta	gggggtggttt	ttttgtttgc	aaggcagaga	ttacgocgag	1740
aaaaaaagga	tctcaagaag	atcctttgat	cttttctacg	gggtctgacg	ctcagtgaa	1800
cgaaaaactca	cgttaaggga	ttttggcat	gagattatca	aaaaggatct	tcaccttagat	1860
cctttaaat	taaaaatgaa	gttttaatc	aatctaaagt	atatatgagt	aaacttggc	1920
tgacagttac	caatgctta	tcagtgaggc	acatatctca	gcatctgtc	tatttgcgtc	1980
atccatagtt	gcgtgactcc	ccgtcggtta	gataactacg	atacggagg	gttaccatc	2040
tggccccagt	gctgcaatga	taccgcgaga	cccacgctca	ccggctccag	atttacatc	2100
aataaacc	ccagccggaa	ggggcgagcg	cagaagtgg	cctgcaactt	tatccgcctc	2160
catccagtct	attaatttgg	ggggggaaagc	tagatgttt	agttcgccag	ttaatagttt	2220
gcgcacgtt	gttgcatttgc	ctgcaggcat	cgtgggttca	cgctcgctgt	ttggatggc	2280
ttcattcagc	tccgggtccc	aacgatcaag	cgagttaca	tgtatcccc	tgttgtgca	2340
aaaagcggtt	agtcctcccgat	cgttgcaga	agtaagttgg	ccgcagtttt	2400	
atcactcatg	gttatggcag	cactgcataa	ttctcttact	gtcatgcct	ccgtaaatgt	2460
cttttctgt	actgggtgt	actcaacca	gtcattctga	gaatagtgt	tgccggcacc	2520
gagttgtct	tgcggccgt	caacacgggaa	taataccgcg	ccacatagca	gaactttaaa	2580
agtgcgtatc	attggaaaac	gttctccggg	gcgaaaactc	tcaaggatct	taccgtgtt	2640
gagatccagt	tcgtatgtac	ccactcggtc	acccaactga	tcttcagcat	cttttacttt	2700
caccagcggtt	tctgggttag	caaaaacagg	aaggcaaaat	gcccggaaaa	aggaaataag	2760
ggcgacacgg	aaatgttga	tactcatact	cttcctttt	caatattatt	gaagcattta	2820
tcagggttat	tgtctcatga	gcggatacat	atttgaatgt	atttagaaaa	ataaaacaaat	2880
aggggttccg	cgcacatttc	cccgaaaatgt	gccacctgac	gtctaaagaaa	ccattattat	2940
catgacatta	acctataaaa	ataggcgtat	cacgaggccc	tttcgttcc	aagaattcca	3000

-continued

agcttggcca agcttctaga gatctgtgc aaaagctgga atgagaatgc gctaaatgcg	3060
aaaagacaga gagagcgaat aaatcgtgca aaaaaaggag tggggtggtt aacgggttga	3120
gctagaagaa gaaaagggac aagtgcactt taggaggggg gcaaccagag cgttagatgat	3180
aatggttcat gtggaaacaa cacacatgag cagttggtga gaacttgaat gaaccctaac	3240
agcccaacca aacccggagc cacccttacc gaaccaccac ttctaaaagt acaccatgcc	3300
ttttcttga gcttgggtgc acagggtgac aggtgggtt gttcgtttt ggtaatcat	3360
gcgatagttt aaataccctt gcgataatca tatcaatggt gacttttaag cacatgttag	3420
gtgctcggtt cttatctaaa catggacatg gcaacaagag ttaatgctaa aataatatac	3480
gtacattacc tgtgaatgaa tcgtcgctgt cttctgat tggcttcaaa taatatgcg	3540
ataaacaagt gtcgattttt cagtgaagat tttatgaaag tgcccgttct ccttaagatt	3600
acctgtgaat gaatcatccc tgcaggatg atccctgggtt gttttccccc atgtgttcg	3660
gaagatataa ttatataaat gatggaattt acatgaaata agtttcagta cattcttagc	3720
agaaaagcaa tatcgacgaa gacaaatgat gctgtttaag acaaactggg gtaatatacaa	3780
tttactagta agagatttg ctgctttct taattctcaa gaaacttca ctaaatgc	3840
cagccatgtt aaacaattta cattcaactt aaaaactaaa attgttaggat gggtagctat	3900
ccaagaatttta cgtttttgtt aaacttaatt ttgatggca tgcgtttaac aagtattttt	3960
catcgatcaa ttcaagagcc atgtctgcataattgtt ggagtggagg gggctttgt	4020
tgctagggaa ggaatgcctt cttagttcat ggctttggac ttccggacaag gagcgcata	4080
aatggggta ccattttgg aaaaattaca ttgatggcata ccaactattatcatatgt	4140
ttaatctaca atcctcgcc gctagaagaa gtttgggttc aaagtaagcc ttttcatcg	4200
ctcaatgtaa accatggagg gactaatttgaaaatgat gtttagtttgg gggctgt	4260
gtattatgtc caaacatctt cttattatttc ctgtatcatc tctgagaaat tcatcgaaa	4320
ataataaaac aaaatggctt tttttaaat aagaagctga tgcataaggat accaaaagcg	4380
ccttgcctat taggagcgctc agactttgaa aataagacca agaattccct gtaagctatc	4440
atctcatctt tttttttgtt tgaacttgcata gacgttagct ttaagegttc catgtatgtt	4500
agtacatgt tgcgtctac ttgattatgg aatttaatttc attcggtcata taagaagata	4560
aaaggattat gacgttgaag aactctggctc actccttagt tacggtcata taaaacgtat	4620
gcatcttcc ccaccaacca tcttcaagtg aacccacttt cccttgcatt aggtttagg	4680
tatgggttaa gtcataatca tggaaatttgat cccctagtttgg agctaatttc actcactcca	4740
tatttactca ttccactata taacgccttc aacgaccatc ctcaaaagca cccaaacacc	4800
ttcttcgtt cgtactctaga ggatcaatca acaagtttgc acaaaaaaagc aggcttaatg	4860
aagttctcaa tctcatcact gaagcaggta caaccaatct tgcgttcaaa gaacaagcta	4920
tctaagggtca acgtcaactc ttttctccat cccaaagaaa aagtcatctt tgcgtatgg	4980
gctaccggat cgggtttagtc tcgtctcgcc atcgacctag caactcgat tcaaggag	5040
atcataaaact ccgacaaagat tcaactttac aaggccctag acgtccaaac aaacaaagtc	5100
acccctaaag aatgcccggagg cgtgcctcacttgcgttgc gaggatccca ctccgaagcc	5160
ggaacaccaa cggccaccca gtatagccgc cttgcgtcacttgc aagcaatctc gaaactctca	5220
gcgaacaacaa agttccat agtagccggt ggtcaaaact cttacatcga agcacttgc	5280

-continued

aatcattcct	cggggttttt	attaaacaac	tacgattgtt	gtttcatgg	ggtcgacgtt	5340
tccttacccg	tacttaactc	ctttgtctca	aaacgtgtcg	accgcatgt	ggaagcagga	5400
ttactcgaag	aagtaagaga	agtgttcaat	ccaaaagcga	attactccgt	agggatacga	5460
cgagctatcg	gagtcggcga	gctccatgaa	tattnacgt	acgaatctt	agtggaccgt	5520
gccacaaaaa	gtaaaatgt	tgacgttagcc	gttaaaaata	tcaaaaagaa	cactgagatt	5580
ttagctgtc	gacagttaaa	aaagattcaa	cggcttcaca	agaagtggaa	gatgtttagt	5640
catcgtgttgc	acgcccactga	ggtgttttgc	aaacgcacg	tagaagaaca	agacgaggct	5700
tgggagaatc	ttgttagcgag	accaagcgag	agaatcgtcg	ataagttta	taataataat	5760
aaccaactga	aaaatgtga	tgttgagcac	tgtttggcg	catcttacgg	cgaggaaagt	5820
ggaagtagag	cccacaatata	gatatgatac	ccagcttttct	tgtacaaaat	ggttgatgag	5880
ctcgaatttc	cccgatcgtt	caaacatttg	gcaataaaat	ttcttaagat	tgaatctgt	5940
tgcgggtctt	gcgatgatta	tcatataatt	tctgttgaat	tacgttaagc	atgtataataat	6000
taacatgtaa	tgcgtacgt	tatttatgag	atgggttttt	atgattagag	tcccgaaatt	6060
atacatttaa	tacgcgtatag	aaaacaaaat	atagcgcgc	aactaggata	aattatcg	6120
cgcgggtgtca	tctatgttac	tagatcggg	attgttaaccc	ggatctctag	ctagaagcta	6180
gcttcacgt	gcgcgaagca	ctcaggcgc	aaggctgt	aaaggaagcg	gaacacgtag	6240
aaagccagtc	cgcagaaacg	gtgctgaccc	cggtatgt	tcaagctactg	ggctatctgg	6300
acaaggaaaa	acgcaagegc	aaagagaaag	caggtagctt	gcagtggct	tacatggcga	6360
tagcttagact	ggcggtttt	atggacagca	agcgaacccg	aattgcccac	tggggcgccc	6420
tctggtaagg	ttgggaagcc	ctgcaaagta	aactggatgg	cttcttgcc	gccaaggatc	6480
tgtatggcga	ggggatcaag	atcatgacgt	gagaattaag	ggagtacatgt	tatgaccccc	6540
gccgatgacg	cgggacaacgc	cgttttacgt	ttggaaactga	cagaaccgc	acgttgaagg	6600
agccactcag	ccgggggttt	ctggagttt	atgagctaag	cacatacgtc	agaaaccatt	6660
attgcgcgtt	caaaagtcgc	ctaaggtcac	tatcagctag	caaataattt	ttgtcaaaaa	6720
tgctccactg	acgttccata	aattccctc	ggtatccaat	tagatctca	tattctactt	6780
caatccagat	cggggggcaa	taagatata	aaaagctga	actcaccgc	acgtctgtcg	6840
agaagtttct	gatcgaaaag	ttcgacagcg	tctccgacct	gatgcagctc	tcggaggcg	6900
aagaatctcg	tgctttcagc	ttcgatgtag	gagggcgtgg	atatgtcctg	cggttaata	6960
gctgcgcgca	tggtttctac	aaagatcg	atgtttatcg	gcactttca	tccggccgc	7020
tcccgattcc	ggaagtgtt	gacattgggg	cattcagcga	gagcctgacc	tattgtatct	7080
cccgccgtgc	acagggtgtc	acgttgcag	acctgcctga	aaccgaactg	cccgctgttc	7140
tgcagccggt	cgcggaggcc	atggatgcga	tgcgtcgcc	cgatcttagc	cagacgagcg	7200
ggttcggccc	attcggacccg	caaggaatcg	gtcaatacac	tacatggcg	gatttcataat	7260
gcgcgatgtc	tgtatccccat	gtgtatact	ggcaaaactgt	gatggacgac	accgtactgt	7320
cgtccgtcgc	gcaggctctc	gatgagctga	tgctttggc	cgaggactgc	cccgaaatcc	7380
ggcacctcg	gcacgcggat	ttcggctcca	acaatgtcct	gacggacaat	ggccgcataa	7440
cagcggtcat	tgactggagc	gaggcgatgt	tcggggattc	ccaatacgc	gtcgccaaca	7500
tcttcttctg	gaggccgtgg	ttggcttgc	tggagcagca	gacgcgtac	ttcgagcgga	7560

-continued

ggcatccgga	gcttgcagga	tcggccggc	tccggggcgt	tatgtccgc	attgggtttg	7620			
accaactcta	tca	gagcttg	gttgcggca	at	tgcatga	tg	cagcttg	gcgcagggtc	7680
gatgcgacgc	aat	cgtccga	tccggagccg	ggactgtcg	gcgtacacaa	atcgcccgc	a	7740	
gaagcgcggc	cgtctggacc	gatggctgtg	tagaagtact	cgccgatagt	ggaaaccgac	7800			
gccccagcac	tcgtccgagg	gcaaaggaa	agagtagatg	ccgaccggga	tcttcgatcc	7860			
ccgatcgtt	aaacattgg	caataaagt	tcttaagatt	gaatcctgtt	gcccgtt	7920			
cgatgattat	cata	atatttt	ctgttgaatt	acgttaagca	tgtataatt	aacatgtat	a	7980	
gcatgacgtt	atttatgaga	tgggtttta	tgattagagt	cccgcaatta	tacat	taat	8040		
acg	cgataga	aaacaaaata	tagcgcgc	actaggataa	attatcg	gcgcgtt	cat	8100	
ctatgttact	agatcggaa	ttgccaagct	gatcagattt	tcgttcccg	ccttcggtt	8160			
aaactatcag	tg	tttgcacag	gatataattgg	cggttaaacc	taagagaaaa	gagcgtt	ttat	8220	
tagaataatc	ggatattaa	aaggcgt	ga	aaaggtttat	ccgttgc	tcc	atttgtatgt	8280	
gcatgccaac	cacagggttc	cc	ctcgggag	tgcttggc	tccgtgc	gat	aatgacttct	8340	
gttcaaccac	ccaaacgtcg	gaaagcctg	ca	gacggagca	gcatccaa	aa	aagatccctt	8400	
ggctcgtctg	gg	tgcggctag	aagg	tgcgt	gg	ctgtgatcc	ctcaacgcgg	8460	
tcg	ggacgt	agegcagegc	cgaaaatcc	tcgatcg	caaa	atccgacgt	gtcgaaaagc	8520	
gtgatctgt	tgtcg	tcttgcacg	tc	tgc	cc	caatcg	ccgc	8580	
gtc	acaggat	gatctgg	gagtt	gtc	tttgc	caat	ccgg	8640	
aactccacga	aaatatccga	acgc	acgaa	atatcg	cggt	gat	cttgc	8700	
cagtcgcgc	cgacg	ccgt	gac	ccgt	gat	tttgc	tcgc	8760	
cgacggccag	cagg	tagg	cc	gat	cc	tc	tcaatcg	8820	
ctcttcgttc	gtc	tgg	gaagg	cgt	at	tc	tttgc	8880	
tgg	tttcatc	agecat	ccgc	tt	gcct	at	tcgc	8940	
gc	agacggcagg	atccc	gttgc	cc	gg	cc	gcctc	9000	
accc	gctcgc	gggtgg	gct	cc	gt	cc	tc	9060	
aagg	aaagtc	tacac	gaa	cc	tc	at	tc	9120	
atacc	gaa	atcg	at	cc	tc	tc	atcg	9180	
tcc	ctgtgt	ttt	gttgc	at	tc	tc	atcg	9240	
act	gagg	gg	gg	ac	tc	tc	tc	9300	
tt	gaatccc	cg	cc	gc	at	tc	tc	9360	
tg	agggcgg	tgtcg	agg	cg	tc	tc	at	9420	
acat	gcgg	aa	cgg	gt	tc	tc	at	9480	
ggc	acat	aa	ggc	ac	tc	tc	tc	9540	
cgc	ccgc	aa	gac	gc	cc	tc	tc	9600	
cgg	cccc	cc	gg	cc	tc	tc	tc	9660	
tag	cgtgg	ac	agg	tc	c	tc	tc	9720	
ggc	acc	gg	aa	at	tc	tc	tc	9780	
cct	gcgc	cc	tt	tc	tc	tc	tc	9840	

-continued

cgacgctcac	cgggctgggtt	gcccctcgccg	ctggggctggc	ggccgcgttat	ggccctgc当地	9900
acgcgc当地	aacgcgc当地	aagccgtgtg	cgagacacccg	cgccgc当地	cggtgtggat	9960
acctcgccga	aaacttggcc	ctcaactgaca	gatgaggggc	ggacgttgac	acttgagggg	10020
ccgactcacc	cggcgc当地	ttgacagatg	aggggc当地	tcgatttccg	ccggc当地	10080
ggagctggcc	agecctcgaa	atcggc当地	acgcctgatt	ttacgctgag	ttccca	10140
tgtatgtggac	aagcctgggg	ataagtgc当地	tgccgttattg	acacttgagg	ggcgc当地	10200
ctgacagatg	aggggc当地	tccttgacac	ttgaggggc当地	gagtgtgtac	agatgagggg	10260
cgcacattt	gacattttag	gggctgtcca	caggc当地	atccagcatt	tgcaagggtt	10320
tccggccctt	tttgc当地	cgctaa	ctttaacc	tgctttt当地	ccaatattta	10380
taaacctt	ttttaacc	ggctgc当地	tgtgc当地	accgc当地	ccgaaggggg	10440
gtgc当地	ttctcgaa	ctcccgcc	gctaa	cgcc	ccccaggggg	10500
ctgc当地	cggc当地	cggc当地	ccaaaaatgg	cagc当地	agtc当地	10560
attgc当地	tc当地	aa	ggatggatgg	cgatc当地	ccccggaa	10620
attgacgtgc	cgc当地	ggatc当地	ttcagc当地	aggtgc当地	cagtgc当地	10680
ggc当地	ctggc当地	gtggc当地	gc当地	tc当地	ggactt当地	10740
gcccccc	caat	tttac	cttggc当地	cttggc当地	tggtcg当地	10800
gttgc当地	gtgaa	tttgc当地	cttgc当地	ccggta	ggc当地	10860
tc当地	tc当地	atacttgc当地	atcgtgtt当地	gc当地	ggtgegt当地	10920
ctgatctc	ggatc当地	cttctctc当地	aacgc当地	gacggatgat	gtt当地	10980
ccatgtgg	tcactcc	gtcc	tc当地	gggg	tgca	11040
tcagttctca	atggaa	at	tctgc当地	ac	acc	11100
aagctccacc	gggtgca	aa	ggc当地	cg	cc	11129

1. A genetic construct comprising a first nucleic acid sequence (effector) encoding cytokinin biosynthetic isopentenyl-transferase enzyme operable linked to a second nucleic acid sequence (promoter) allowing expression of said first nucleic acid sequence in cambial cells, said first nucleic acid sequence being selected from the group of

- a nucleic acid sequence comprising SEQ ID NO:1;
- a nucleic acid sequence encoding SEQ ID NO:2;
- a nucleic acid sequence encoding an amino acid sequence comprising a conserved domain area A, B and/or C having an amino acid sequence selected from the group of SEQ ID NO:3, 4 and 5,
- a nucleic acid sequence encoding an amino acid sequence comprising an area D having at least 80% identity to amino acid sequence SEQ ID NO:6;
- a nucleic acid sequence encoding an amino acid sequence showing at least 80% identity to SEQ ID NO: 2; and
- a nucleic acid sequence encoding an enzyme belonging to enzyme class EC 2.5.1.27.

2. The genetic construct according to claim 1, wherein said first nucleic acid sequence encodes adenosine phosphate-isopentenyltransferase enzyme 7, IPT7.

3. The genetic construct according to claim 1, wherein said first nucleic acid sequence is derived from *Arabidopsis*.

4. The genetic construct according to claim 1, wherein said second nucleic acid sequence is birch meristem promoter pBpCRE1, preferably defined by SEQ ID NO: 7.

5. The genetic construct according to claim 1, wherein said second nucleic acid sequence is a cambial specific promoter.

6. The genetic construct according to claim 5, wherein said promoter is *Populus* cambial specific promoter pLM5.

7. A vector comprising the genetic construct according to claim 1.

8. A tree, characterized in that it

- overexpresses an endogenous nucleic acid sequence, or
- expresses an exogenous nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme in cambial cells.

9. The tree according to claim 8, wherein said tree expresses the genetic construct comprising a first nucleic acid sequence (effector) encoding cytokinin biosynthetic isopentenyl-transferase enzyme operable linked to a second nucleic acid sequence (promoter) allowing expression of said first

nucleic acid sequence in cambial cells, said first nucleic acid sequence being selected from the group of
a) a nucleic acid sequence comprising SEQ ID NO:1;
b) a nucleic acid sequence encoding SEQ ID NO:2;
c) a nucleic acid sequence encoding an amino acid sequence comprising a conserved domain area A, B and/or C having an amino acid sequence selected from the group of SEQ ID NO:3, 4 and 5,
d) a nucleic acid sequence encoding an amino acid sequence comprising an area D having at least 80% identity to amino acid sequence SEQ ID NO:6;
e) a nucleic acid sequence encoding an amino acid sequence showing at least 80% identity to SEQ ID NO: 2; and
f) a nucleic acid sequence encoding an enzyme belonging to enzyme class EC 2.5.1.27.

10. The tree according to claim 8, wherein said tree expresses at least 40%, preferably at least 50% higher levels of cytokinin signaling in cambial cells during cambial development compared to WT tree.

11. The tree according to claim 8, wherein the stem volume growth in said tree is at least 35% higher, preferably at least 40% higher compared to WT tree.

12. The tree according to claim 8, wherein said tree belongs to angiosperms.

13. The tree according to claim 12, wherein said tree is selected from the group of genera *Betula*, *Populus* and *Eucalyptus*, preferably *Populus*.

14. The tree according to claim 8, wherein said tree belongs to gymnosperms.

15. The tree according to claim 14, wherein said tree is selected from the group of spruce and pine.

16. A wood product obtainable from the tree as defined in claim 8.

17. A method for producing a transgenic plant capable of increased biomass production and/or increased stem volume growth compared to wild type plant, which comprises the steps of

introducing a nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme operationally linked to a promoter allowing expression in cambial cells, to a tree cell,
cultivating said cell to form a cell culture,
regenerating the cell culture to a plant, in which the nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme is expressed in cambial cells during cambial development.

18. A method for improving the production of biomass and/or increased stem volume growth in trees, which comprises the steps of

introducing a nucleic acid sequence encoding cytokinin biosynthetic isopentenyl-transferase enzyme operationally linked to promoter allowing expression in cambial cells, to a tree cell,
cultivating said cell to form a cell culture,
regenerating the cell culture to a plant, in which the gene encoding cytokinin biosynthetic isopentenyl-transferase enzyme is expressed in cambial cells during cambial development,
allowing said plant to grow to an adult tree having enhanced radial growth compared to wild type tree.

19. The genetic construct according to claim 6, wherein said *Populus* cambial specific promoter pLM5 is defined by SEQ ID NO:8.

* * * * *