(57) Abstract: An image display apparatus can improve a visual contrast and reproduce a high-quality video having luster without performing a processing which promotes trouble such as a video signal dynamic range enlargement and while evading trouble of floating black, thereby providing video of an optimal screen luminance to an observer. The image display apparatus includes a liquid crystal display unit (11), a display control unit (14), a back light (12), a back light control unit (13), and an average luminance detection unit (15). The apparatus controls luminance of the light source according to the average luminance of the video displayed. The apparatus further includes a peak detection unit (16) so as to detect a video peak value and correct the luminance control of the back light control unit (13) according to the peak value.
本発明の画像表示装置は、映像信号のダイナミックレンジの拡大のような妨害を助長する処理を行わず、かつ黒浮き妨害を回避しながら、視覚上のコントラスト感を向上させ、また光沢感のある高品位映像を再現し、総じて、観察者に最適な画面輝度の映像を提供できるようにしたものである。画像表示装置は、液晶表示部（１１）と、表示制御部（１４）と、バックライト（１２）と、バックライト制御部（１３）と、平均輝度検出部（１５）とを備え、表示する映像の平均輝度に応じて光源の輝度を制御するものので、さらに、ビク検出部（１６）を備え、映像のピーク値を検出し、このピーク値に応じてバックライト制御部（１３）の輝度制御を補正する。
明細書

画像表示装置

技術分野

本発明は、映像信号を表示する画像表示装置に関し、より詳しくは、光源を有し、表示する映像信号に応じて動的に光源の輝度調整を行う、直視型もしくは投射型の透過型液晶画像表示装置に関する。

背景技術

光源手段を有する透過型の画像表示装置として液晶画像表示装置がある。透過型の画像表示装置は、液晶パネル自体は発光しない非発光型なので、光源を別途必要とする。直視型液晶画像表示装置では、液晶パネルの背面にバックライトと称する光照射部が設けられており、光源として一般的に冷陰極管という蛍光管が使われる。俗に液晶プロジェクタと呼ばれる投射型液晶画像表示装置では、スクリーンに投射された画面の輝度をハロゲンランプやメタルハライドランプなどのランプ光源から得ている。

図15において、一般的な直視型液晶画像表示装置の構成を示す。図15において、201は液晶表示部、202はバックライト、203はバックライト制御部、204は表示制御部、205は入力である。入力205からは、液晶表示部201に表示する映像信号が、例えばY Pb Pr信号（輝度信号と色差信号）の形式で入力される。表示制御部204では、入力した映像信号を液晶表示部201に表示するための制御を行う。具体的にはY Pb Pr信号をRGB信号に変換したり、液晶表示部201の映像信号に従って映像信号を並び替えたり、液剤表示部201に最適なガンマ補正を行うなどの処理を行う。バックライト202は、液晶表示部201が輝度を得るための光源である。バックライト制御部203は、バックライト202の輝度制御を行う。バックライト制御部203は、バックライト202を常にある一定の輝度で発光するよう制御を行う。バックライト制御部203は調光機能を持つ場合がある。調光対応のバックライト制御部では、予め決
められた発光輝度を得るための設定電圧値（もしくは電流通値）を複数種類持ち、例えばマイコンなどがからの指令を受けて、適宜設定値を切り替えることによりパックライト202の輝度を切り替える。

図16A及び16Bは、表示する映像信号の平均輝度レベルと画像表示装置の画面輝度の関係を示す図である。調光制御として2種類の画面輝度の設定を図示している。特性16-1はユーザー設定で、観察者が「明るい」モードを選定した際の、パックライト調光の場合の特性であり、液晶に出を表示した際に得られる画面輝度が420カンデラである。特性16-2は「標準」モードを選定した際の、パックライト調光の場合の特性であり、液晶に出を表示した際に得られる画面輝度が260カンデラである。図16A及び16Bから明らかのように、調光機能によって画像表示装置を観察する観察者は画面輝度を変更できるが、この輝度の変更は画像表示装置に表示される映像信号とは無関係に、常に一定輝度である。

画像表示装置の画面輝度（明るさ）は、液晶表示部201の透過率とパックライト202の発光輝度の積で決まる。前述したように、パックライト202の輝度は映像信号とは無関係に一定であるので、表示する映像信号の階調は、液晶表示部201の透過率のみに従うことになる。つまり、画像表示装置の表示能力は液晶表示部201が表示しうるダイナミックレンジ（白と黒各々の明るさの表示能力）によって決まると言える。

近年、液晶画像表示装置の画質をより高品位に、または見やすくするため、随時変化する映像信号に応じて、映像信号のコントラスト調整や光源の輝度調整を動的に行う改善方法が、様々な提案されている。

パックライトの輝度調整を動的に行う従来の改善方法としては、例えば、特許文献1に開示されているものがある。この特許文献1に開示されている従来の改善方法を図17に示す。図17において、平均輝度検出回路206と、パックライト制御部207を持つことが特徴である。平均輝度検出回路206では、映像信号の平均輝度レベルを検出する。この検出した平均輝度レベルが大きい場合、パックライトの輝度を下げるように、パックライト制御部207がパックライト202を制御する。このときの平均輝度と画面輝度の関係を図18に示す。
これらの処理により、映像信号の平均輝度レベルに対じて表示輝度が制御されるので、画像表示装置を観察する者が、表示映像が明るすぎる、もしくは逆に暗すぎるなどと感じることを効果的に防止でき、見やすい画面を表示できる。また、バックライトが常に一定輝度で発光する場合と比較して、視覚上のダイナミックレンジが拡大したように見える。つまり、画面が暗い場合と明るい場合でメリハリがでるのである。また、暗い背景のなかの一部に、金属の映像など明るい部分が存在する映像などでは、この金属の部分の輝度が増大するため、光沢感が増した高品位映像が再現できる。

また、映像信号のコントラスト調整とバックライトの輝度調整の双方を、相関を持たせ動的に制御する改善方法としては、例えば、特許文献2に開示されているものが存在する。この特許文献2に開示されている従来の改善方法においては、平均輝度を基準に映像信号のダイナミックレンジを拡大し、かつオフセットに従い映像信号をレベルシフトする。このままでは画面上の視覚的輝度レベルがシフトしてしまうので、バックライトの調光によってこれを吸収する。これらの処理により、視覚的なコントラスト感を改善する。

また、映像信号のコントラスト調整（振幅変調）とバックライト（光源）の輝度調整（出力変調）の双方を、相関を持たせ動的に制御する他の改善方法として、特許文献3に開示されているものが存在する。この特許文献3に開示されている従来の改善方法においては、映像信号の暗レベル検出を行い、暗レベル期間が所定のしきい値を超えた場合には、発光部の出力レベルを絞ると同時に、映像信号のダイナミックレンジを拡大する。暗レベルがしきい値を超えない場合には、出力力も映像信号も変調しない。これらの処理により、明レベルの表示に影響を与えずに暗レベルの表示むらを目立たなくしている。

しかしながら、上述の特許文献1のように、映像信号の平均輝度レベルが低ければバックライトの輝度を上げるという改善方法では、以下に述べる問題を有している。つまり、液晶表示部201には、黒を表示するときにもバックライトの光が漏れる、いわゆる黒浮きと呼ばれる現象が発生する。この黒浮き現象により画像が全体的に白っぽくなり、画質を著しく損なう。このため、バックライトの輝度が増大するほど光漏れ等による黒浮きが増大し、光源の高輝度化がコントラ
ストの向上に必ずしも反映されなくなる。

また、上述の特許文献2のように、映像信号のダイナミックレンジを拡大するという改善方法では、以下に述べる問題を有している。つまり、階調がつぶれた映像を含む信号のダイナミックレンジを拡大すると、つぶれた個所が強調されて、妨害となって観察者に認識される。また、映像信号にノイズが重畳されている場合、ダイナミックレンジの拡大によってこのノイズ成分が強調されて、やはり妨害となって観察者に認識される。

また、上述の特許文献3のように、映像信号の暗レベル期間の検出によって、映像信号と光源の光出力値を調節させて変調を行う改善方法では、以下に述べる問題を有している。つまり、映像信号と光源の光出力の変調を、映像信号の暗レベルの情報のみで実施しており、他の映像信号の情報（例えば平均輝度）は参照していないため、映像信号に暗レベルが存在しない映像に対しては、画質改善の効果が発揮されない。また、前述の特許文献2と同様、映像信号の振幅変調は、階調つぶれや、映像信号に重畳されたノイズ妨害を助長する。

（特許文献1）
特開平8－201812号公報（名称「液晶表示装置」）

（特許文献2）
特開2001－27890号公報（名称「画像表示装置および画像表示方法」）

（特許文献3）
特開平6－102484号公報（名称「空間光変調素子を用いた映像表示装置及び映像表示装置」）

発明の開示
本発明は、映像信号のダイナミックレンジの拡大のような妨害を助長する処理を行わず、かつ黒浮き妨害を回避しながら、視覚上のコントラスト感を向上させ、また光沢感のある高品位映像を再現し、観察者に最適な画面輝度の映像を提供できることを目的とするものである。
本発明による画像表示装置は上記した目的を達成するために、以下のような技術手段を具備する。

すなわち、本発明に係る画像表示装置は、基本的な構成として、映像を表示する映像表示手段と、映像表示手段に映像を表示するための制御を行う表示制御手段と、映像表示手段が明るさを得るための光源と、光源の輝度を動的に制御するための光源制御手段と、平均輝度を検出する平均輝度検出手段と、映像信号のピークを検出するピーク検出手段とを備える。

そして、光源制御手段は、光源の輝度を動的に制御する。光源制御手段における光源輝度の動的制御は、映像表示手段が表示する映像の平均輝度に基づいて行われる。平均輝度が低い場合は、平均輝度が高い場合と比較して、映像表示手段の画面輝度が高くなるよう制御する。

また、光源制御手段における光源輝度の動的制御は、さらにピーク検出手段の検出結果に基づいて補正される。映像表示手段が表示する映像にある条件を満たしたピークが存在するもしくはピークが多い場合、存在しないもしくは少ない場合と比較して、映像表示手段の画面輝度が高くなるよう制御する。ピークが存在しないもしくは少ない場合、存在するもしくは多い場合と比較して、映像表示手段の画面輝度が低くなるように、制御する。

また、光源制御手段における光源輝度の動的制御は、ある平均輝度の値に対応する特性変更点を持つ。平均輝度検出手段で検出した平均輝度が特性変更点以下である場合は、前述のピークによる特性切り替えを行って光源輝度を制御する。平均輝度が特性変更点以上である場合は、ピークによる切り替えを行わずに光源輝度を制御する。

つまり、本発明では、基本的には従来例と同じ光源制御をする他、さらに表示する映像のピークによって光源輝度を動的に制御するものである。

具体的には、例えば、表示する映像信号の平均輝度が低く、つまり全体的に暗い映像で、かつピークがない、もしくは少ない映像では、光源輝度の増大は映像表示手段の黒の輝度が上昇する、いわゆる黒浮き妨害をただ増長させるだけである。よって、画面全体が暗い、つまり平均輝度値が低い映像で、かつピークを持たない、もしくはピークの小さい映像では、光源輝度を減少するよう補正する。
これにより、黒浮き妨害を回避する。
また、例えば、表示する映像信号の平均輝度が低く、つまり全体的に暗い映像で、かつピークがある、もしくは多い映像では、映像のピーク部分の輝度をより增大させて強調したほうが、メリハリや立体感のある映像が表示できるので、この場合、光源輝度を増大させる。暗い背景の中に指輪などの金属が表示されてい るような映像が該当し、十分に光源輝度を増大させて金属の光沢感を表現する。
また、映像信号のダイナミックレンジを拡大する処理を行わないので、階調つ ぶれやノイズ成分が強調されるような妨害が発生しない。
また、表示映像のピークの有無のみならず、映像が明るいか暗いかという情報 を平均輝度の検出から得ているので、暗い映像のみならず、暗い映像（平均輝度 の値が低い映像）と明るい映像（平均輝度が高い映像）の切り替わりにて、動的 なコントラストが向上する。
かように、本発明によれば、観察者に最適な表示映像を提供することが可能と なる。

図面の簡単な説明
図1は、本発明の第1実施形態に係る画像表示装置の構成を示すブロック図で ある。
図2は、本発明の第1実施形態に係る画像表示装置における、ピーク検出部の 構成を示すブロック図である。
図3A及び3Bは、本発明の第1実施形態に係る画像表示装置における、パッ クライト制御部の制御特性の1例を示す説明図である。
図4A及び4Bは、本発明の第1実施形態に係る画像表示装置における、パッ クライト制御部の制御特性の他の1例を示す説明図である。
図5A及び5Bは、本発明の第1実施形態に係る画像表示装置における、パッ クライト制御部の制御特性のさらに他の1例を示す説明図である。
図6は、本発明の第2実施形態に係る画像表示装置における、ピーク検出部の 構成を示すブロック図である。
図7A及び7Bは、本発明の第2実施形態に係る画像表示装置における、パッ
クライト制御部の制御特性の1例を示す説明図である。
図8は、本発明の第3実施形態に係る画像表示装置における、ピーク検出部の構成を示すブロック図である。
図9は、本発明の第4実施形態に係る画像表示装置における、ピーク検出部の構成を示すブロック図である。
図10A及び10Bは、本発明の第5実施形態に係る画像表示装置における、バックライト制御部の制御特性の1例を示す説明図である。
図11は、本発明の第6実施形態に係る画像表示装置の構成を示すブロック図である。
図12A及び12Bは、本発明の第6実施形態に係る画像表示装置における、ランプ制御部の制御特性の1例を示す説明図である。
図13は、本発明の第7実施形態に係る画像表示装置の構成を示すブロック図である。
図14A及び14Bは、本発明の第7実施形態に係る画像表示装置における、バックライト制御部の制御特性の1例を示す説明図である。
図15は、従来技術による画像表示装置の構成を示すブロック図である。
図16A及び16Bは、図15の画像表示装置が備えているバックライト制御部の制御特性を示す説明図である。
図17は、他の従来技術による画像表示装置の構成を示すブロック図である。
図18は、図17の画像表示装置が備えているバックライト制御部の制御特性を示す説明図である。

発明を実施するための最良の形態
以下、本発明の実施の形態を、図面を用いて説明する。
＜第1実施形態＞
まず、本発明の第1実施形態に係る画像表示装置を、図1～図5を用いて説明する。
図1は、本発明の第1実施形態に係る画像表示装置の構成を示すブロック図であり、同図に示すように、液晶表示部11、バックライト12、バックライト制
御部１３、表示制御部１４、平均輝度検出部１５、ピーク検出部１６、入力１７から構成されている。

入力１７からは、液晶表示部１１に表示する映像信号であるPＩC（Pｉｃｔｕｒｅ）信号が、例えばY色差信号の形式で入力される。表示制御部１４では、PＩC信号を液晶表示部１１に表示するための制御を行い、ＤＲＶ（Ｄｒｉｖｅ）信号として液晶表示部１１に出力する。バックライト１２は、透過型である液晶表示部１１が画面輝度を得るための光源である。

平均輝度検出部１５では、PＩC信号の平均輝度を検出し、ＡＶＥ（Ａｖｅｒａｇｅ）信号としてパックライト制御部１３に出力する。平均輝度は百分率で表し、表示映像が画面全体ですべて黒の場合、平均輝度は０％である。すべて最高値の白の場合は、平均輝度は１００％である。パックライト制御部１３はＡＶＥ信号を入力し、パックライト１２の輝度をＣＴＬ（Ｃｏｎｔｒｏｌ）信号により制御する。制御の特性は、ＡＶＥ信号が大きければパックライトの輝度を下げ、小さければパックライトの輝度を上げる。

本発明の画像表示装置の特徴は、ピーク検出部１６を有することにある。ピーク検出部１６の出力であるＰＥＫ（Ｐｅａｋ）信号もまた、ＡＶＥ信号と同様にパックライト制御部１３に与される。

図２は、ピーク検出部１６の詳細なブロック図である。図２において、２１は比較器、２２はカウンタ、２３は判別器、２４は閾値m発生器、２５は閾値n発生器、２６はVリセットS、２７はVリセットE、２８は入力、２９は出力である。

入力２８からはPＩC信号が入力され、比較器２１に入力される。比較器２１では、順次入力されるPＩC信号の輝度信号もしくは輝度成分と、閾値m発生器２４で発生する閾値mとを比較し、比較結果をＣＭＰ（Ｃｏｍｐａｒｅ）信号としてカウンタ２２に出力する。ＣＭＰ信号は、例えば閾値mより入力輝度信号レベルが大きい場合はＨｉｇｈを、小さい場合はＬｏｗの状態を取る。VリセットS２６は、映像信号の垂直スタート位相に従いV－ＳＴ（Ｖｅｒｔｉｃａｌ－ｓｔａｒｔ）信号パルスを発生する。VリセットE２７は、映像信号の垂直エンド位相に従いV－ＥＮＤ（Ｖｅｒｔｉｃａｌ－ｅｎｄ）信号パルスを発生する。映
像信号の垂直スタート、垂直エンドは、例えばPIC信号に付随する垂直同期信号の立ち上がり、立ち下りで規定される。カウンタ22は、このV-ST信号とVEND信号で規定される期間において、カウント動作を行う。V-ST信号でカウンタ値をリセットし、CMP信号がHigh、つまりPIC信号の輝度レベルが閾値mより大きい場合は＋1のアップカウント動作を行い、CMP信号がLowの場合はカウンタ値をホールドする。そして、VEND信号でカウンタ値をラッチして確定し、CNT（Count）信号として判別器23に出力する。判別器23では、VEND信号で確定したCNT信号と閾値n発生器25の閾値nを比較し、PEK信号として出力29から出力する。PEK信号の状態は、例えばCNT信号の値が閾値nよりも大きければHigh、小さい場合はLowの状態を取る。

ピーク検出部16では、上記説明の一連の動作をV-ST信号とVEND信号で規定される期間において、画面内のすべての画素に対して行う。PIC信号がVGA解像度の信号であると仮定すれば、一連の動作におけるカウンタ回数は約30万回（=640×480）となる。ここではPIC信号は8ビットのデジタル信号であると仮定する。よって、PIC信号の輝度レベルは、例えば黒が0、最高値である白が255となる。また、閾値mが200、閾値nが300であると仮定する。まずはV-ST信号でカウンタ22のカウント値が0にリセットされる。比較器21において、順次入力されるPIC信号の輝度レベルと閾値m（=200）が画素単位で比較され、m（=200）以上である場合、比較器21が高い信号をカウンタ22に送り、カウンタ22が＋1のアップカウントする。m（=200）以下である場合、比較器21が高いLow信号をカウンタ22に送り、カウンタ22はカウント値をホールドして何もしない。そして、VEND信号でカウンタ22の結果を判別器23に送る。判別器23では、カウンタ22の結果が閾値n（=300）より大きいか小さいかの判断を行う。つまり、垂直同期で規定される映像スタートからエンドまでの1画面の映像信号を入力される順に画素毎に閾値mと比較して、閾値m以上のレベルの画素数をカウントし、カウント結果が閾値n以上であれば、30万画素の画面にて、レベルm以上の画素がn個以上存在したという判断から、ピークあると判定して、結果を出力する。
る。
カウンタ２２によるアップカウントはすべての画素に対してではなく、d 画素おき（d は任意の整数）でもよい場合もあり、その場合処理の動作速度（クロックスピード）を 1/d に落とすことが可能である。また、1 ラインおきでもピーク検出が十分行える場合もある。ここで、ラインとは、液晶表示部１１に PＩＣ信号を表示する際の垂直方向の走査単位を示す。
また、閾値 m が 200、閾値 n が 300 の場合を説明したが、m = 255、つまり画像のなかで最大振幅レベルを持つ画素を検出対象としてもよい。また、n = 1、つまり画像のなかでただひとつでも閾値 m を超えた場合、ピークがあると判断してもよい。
次に、バックライト制御部１３の動作について、図 3 A 及び 3 B を用いて説明する。図 3 A 及び 3 B は、バックライト制御部１３の制御特性を示す図である。図 3 A において、横軸は平均輝度検出部１５にて検出された平均輝度（%）であり、画面が全黒の場合 0 %、全白の場合 100 % である。縦軸は、白（8 ビットデジタル信号で 255 レベル）を表示した液晶表示部 11 が、バックライト制御部１３によって制御されたバックライト 12 に照射された結果の画面輝度（カンデラ、cd/m²）である。平均輝度 0 % は全表示エリアが 0 レベルの黒を表示している場合を意味するので、平均輝度 0 % の場合の 255 レベルの白を表示した際の輝度という表現は厳密には矛盾するが、説明の簡便化のため平均輝度がほぼ 0 % の場合を 0 % と表現する。例えば VGA 解像度において、画面全体が 0 レベルの黒を表示しているなかに、20 画素×20 画素のエリアに 255 レベルの白を表示した場合の平均輝度は 0.13 % であり、このような場合を平均輝度 0 % と表現する。図 3 B は、図 3 A が示す特性図のデータ（数値）を示す図である。
本実施形態の特徴は、この平均輝度と画面輝度の特性が 2 種類あることにある。
図 3 A では、特性 3 - 1 と特性 3 - 2 の 2 つの特性を持つ。この 2 つの特性を、ピーク検出部１６の検出結果である P E K 信号によって切り替える。
図 3 A において、平均輝度が 40 % のポイントが制御特性を切り替える特性変更点であり、この点より平均輝度が大きいか小さいかで（この点を平均輝度が超えたかどうかで）バックライト 12 の制御特性を切り替える。図 3 A において、切
り替えはPEK信号に従い、PEK信号が高い（ピーク検出部16が表示映像にピークがあると判断した）の場合、図3A中の特性3-1を選択し、この特性図が示す画面輝度が得られるよう、バックライト12を制御する。つまり、例えば平均輝度が20％と低い場合は、画面輝度が440カンデラ得られるようバックライト12を制御する。他方、平均輝度が70％と高い場合には、290カンデラの画面輝度が得られるよう制御する。また、映像にピーク部分が無い場合は、PEK信号のLowレベルに従い、図3Aの特性3-2を選定して、バックライト12を制御する。同じ平均輝度検出結果（例えば平均輝度が20％）でも、ピークありの場合は440カンデラ、ピークなしの場合は390カンデラであるよう、バックライト12を補正する。

図3Aは、映像にピーク部分が無い場合において、ピークがあると判断した場合と比較して低い輝度値をとるように補正する。また、この補正は、平均輝度検出値が高い場合の輝度より高い輝度値をとるように制御する。

この制御により、液晶表示部11に表示する画像にピークがある場合は、平均的に明るい画面の場合よりも暗い画面においてバックライトをより光らせて、画面輝度を得る。例えば、暗い背景の中にスプーンのような金属の映像がある画面に対して、画面輝度をあげることにより金属部分の光沢感を表現する。晴天の空のような平均的に明るい映像では画面輝度を下げることで、スプーンのシーンと青空のシーンのシーンチェンジでの、視覚上のコントラスト感を向上させる。ピークの無い映像の場合は、光沢感を表現したい高い輝度の映像がない、もしくは少ないので、この場合バックライトを光らせても、エネルギーは液晶表示部11に遮られて無駄に消費され、また黒浮きも目立つ。よって、図3Aにおいては、特性3-1よりも輝度上昇をおさえる特性3-2に補正し、制御する。

また、例えば図16A及び16Bの従来例の特性で、画面輝度を420カンデラで一律に光らせた場合と比較すると、表示する映像信号の内容にもよるが、図3Aの特性は、図16A及び16Bの特性16-1と比較して、消費電力の面でも有利となる。

図3Aで示した特性を得るためのハードウェアは、例えばROMを用いたルックアップテーブルで実現しても良いし、折れ線近似の演算でLSI内部に実現し
てもよい。

図3Aでは平均輝度に対して画面輝度をリニアに制御する場合を例に挙げたが、例えば図4A及び4Bに示すように、非線形の特性で制御してもよい。

また、図3Aでは、特性変更点が40%の場合を例に挙げたが、図4A及び4Bのように、特性変更点が平均輝度の50%の点である場合もあり得、特性変更点となる平均輝度の値は任意である。

また、図3Aでは平均輝度100%のとき200カンデラ、平均輝度0%でかつピークありの場合画面輝度500カンデラの特性を例に挙げたが、例えば図5A及び5Bに示すように、平均輝度100%のとき100カンデラ、平均輝度0%でかつピークありの場合画面輝度350カンデラである場合もある。これら平均輝度と画面輝度の関係は、液晶表示部11の特性やバックライト12の特性に依存するものであり、液晶表示部11の特性や、実際に表示画面を評価したその評価結果、または消費電力などを考慮して、最良な値を定めてバックライト制御部13で制御すればよい。

以上説明したように、本実施形態の画像表示装置は、液晶映像表示部とバックライトとバックライト制御部と表示制御部と平均輝度検出部とピーク検出部を備え、表示する映像の平均輝度とピークに応じて、バックライトの輝度を動的に制御する画像表示装置である。

つまり、本実施形態では、表示する映像の平均輝度によってバックライトの制御を動的に行き、さらにピークの値によって制御特性を補正する。すなわち、例えば、ピークのない暗い映像、つまり表示映像のピークがある条件以下でかつ平均輝度レベルが低い場合は、バックライト輝度の増大は、映像表示手段の黒の輝度が上昇する、いわゆる黒浮き妨害をただ増長させるだけであるので、平均輝度が低い映像で、かつピーク値を持たない、もしくはピーク値の小さい映像では、バックライト輝度の増大を抑えるよう補正する。また、暗い映像（平均輝度の値が低い映像）と明るい映像（平均輝度が高い映像）の切り替わりにて、動的なコントラストが向上する。

これにより、黒浮き妨害を回避しつつ光沢感を表現し、観察者に最適な表示映像を提供することが可能となる。
＜第２実施形態＞

次に、本発明の第２実施形態に係る画像表示装置を、図6、図7A及び7Bを用いて説明する。

図6は、本発明の第２実施形態に係る画像表示装置におけるピーク検出部16のブロック図であり、同図において前記した図2と等価なものには、同一符号を付してある。図6において、61、62、65、66が比較器、63、64がカウンタ、67が判別器、68～71が、それぞれ閾値ma、mb、na、nbを発生する閾値発生器、72が出力である。

入力28からはPIC信号が入力され、比較器61、62に各々入力される。比較器61では、順次入力されるPIC信号の輝度信号もしくは輝度成分と、閾値ma発生器68で発生する閾値maを比較し、比較結果をカウンタ63に出力する。カウンタ63は、V-ST信号とV-END信号で規定される期間において、カウント動作を行い、結果を比較器65に出力する。比較器65では、カウンタ63の出力と、閾値na発生器70の閾値naを比較し、CMP−A信号として判別器67に出力する。

比較器62では、順次入力されるPIC信号の輝度信号もしくは輝度成分と、閾値mb発生器69で発生する閾値mbを比較し、比較結果をカウンタ64に出力する。カウンタ64は、V-ST信号とV-END信号で規定される期間において、カウント動作を行い、結果を比較器66に出力する。比較器66では、カウンタ64の出力と、閾値nb発生器71の閾値nbを比較し、CMP−B信号として判別器67に出力する。

判別器67は、CMP−A信号とCMP−B信号を入力し、両信号から3段階のピーク検出値であるMOD信号を算出して、出力72から出力する。

本実施形態が前記第1実施形態と異なる点は、閾値の異なる2系統のピーク検出手段を持ち、映像信号が持つピークレベルの度合いを3段階で検出していることにある。ピークのレベルと出現頻度から、MOD（Mode）信号は、イメージ的に「ピークが無い」、「ピークが少しある」、「ピークが多い」の3段階の値をとる。このMOD信号を、パックライト制御部13に出力する。

例えば、ma＝160、mb＝200、na＝nb＝400と仮定する。PI
C信号が1画面のなかに、輝度レベル230の画素が500個存在した場合を仮定すると、比較器65、比較器66はそれぞれ「ピークあり」と判断するので、判別器67はMOD信号を「ピークが多い」として出力する。また、例えば、入力映像輝度信号が画面のなかに、180レベルの画素が500個、230レベルの画素が100個存在したと仮定する。この場合、比較器65は「ピークがない」と判断し、比較器66は「ピークがある」と判断する。よって、この場合、判別器67はMOD信号を「ピークが少ない」として、出力する。

また、例えば、PIC信号が1画面のなかに、100レベルの画素が500個、180レベルの画素が100個存在したと仮定する。この場合、比較器65および比較器66はともには「ピークがない」と判断する。よって、この場合、判別器67は、MOD信号を「ピークがない」として、出力する。

図7A及び7Bは、本実施形態におけるバックライト制御部13の制御特性を示す図であり、図7Aにおいて、横軸は平均輝度検出部15にて検出された平均輝度であり、縦軸はバックライト12によって照射された結果の液晶表示部11の画面輝度である。

図7A及び7Bから明らかのように、第2実施形態におけるバックライト制御部13は、3つの特性を持つ。この異なる3つの特性を、図6で説明したピーク検出部16の検出結果であるMOD信号によって切り替える。具体的には、MOD信号が「ピークが多い」という状態である場合は特性7－1を選択し、バックライト12を制御する。「ピークが少しある」という状態である場合は特性7－2を選択する。「ピークがない」という状態である場合は特性7－3を選択する。第1実施形態の構成が2値検出による切り替えであったのに比べて、本実施形態では、より細かい制御を行うことが可能となる。

なお上記の例では、ピークの有無を3状態で検出して、3つの制御特性を持った例を挙げたが、ピークの有無を4つ以上の状態で検出して、検出状態の数に対応した制御特性を持たせてもよい。

以上説明したように、本実施形態では、ピーク検出により複数の状態を検出させ、そのピーク検出状態の数の制御特性を持たせることで、より理想的な処理を
行うことが可能となる。

＜第3実施形態＞

次に、本発明の第3実施形態に係る画像表示装置を、図8を用いて説明する。

図8は、本発明の第3実施形態に係る画像表示装置におけるピーク検出部16の構成を示すブロック図であり、同図において前記した図2と均等なものは、同一符号を付してある。図8において、81、83は比較器、82はラッチ、84は閾値p発生器である。

本実施形態の特徴は、比較器81がループを構成して、表示する映像における最大輝度レベルを検出している点にある。つまり、比較結果であるFBK(Feedback)信号を比較器81の入力にフィードバックしている。比較器81のフィードバック動作は順次入力されるPIC信号の画素単位であり、PIC信号とFBK信号のレベルを比較して、大きいほうの信号を更新したFBK信号として出力する。

比較器81の処理開始であるPIC信号の映像スタートの時点で、VリセットS26の出力であるV－ST信号に従いFBK信号をゼロにリセットする。例えばPIC信号が映像スタートから順に、a0、a1、a2、a3という画素の順に入力されて、レベルがそれぞれa0=50、a1=200、a2=140、a3=50であると仮定する。映像スタート時点ではFBK信号はゼロにリセットされるので、1番目の画素a0を入力する時間では、比較器81はa0とゼロを比較して、FBK信号として50(＝a0)を出力する。次の画素a1が入力される時間では、a1とフィードバックされるFBK信号が比較されるので、実質a0とa1のレベルの比較となり、更新するFBK信号のレベルは200(＝a1)となる。その次の時間では、a2とフィードバックされるFBK信号との比較であるので、FBK信号のほうが大きく、FBK信号は200が維持される。
次の時間のa3との比較でも、FBK信号は200が維持される。このように、画素単位で順次入力に対して比較処理を行い、垂直映像スタートから入力される画素のうち最大レベルの情報を検出する。この動作を垂直映像エンドまで繰り返して、1画面内で最大レベルを検出する。

ラッチ82は、垂直映像エンドのタイミングで比較器81の演算結果を取り込
み、比較器83に出力する。比較器83では、閾値p発生器84からの閾値pと、ラッチ82の出力とを比較して、ラッチ82の出力レベルが閾値pより大きい場合、「ピークあり」と判断して、結果をPEK信号として出力29からバックライト制御部13に出力する。バックライト制御部13では、PEK信号で前述の図3A及び3Bの特性を切り替え、バックライト12を制御する。

以上説明したように、本実施形態では、ループを組んで順次入力信号と過去の最大レベルをとし画素単位で比較することにより、表示する映像における最大レベルを検出する。比較動作は、入力映像信号の垂直映像スタートから垂直映像エンドまでの1画面に対して行う。かような構成と動作をする本実施形態では、前記第1実施形態のピーク検出と比較して、カウンタが省略できる分、回路規模が小さくなり、消費電力も有利となる。また、管理する閾値も1つで済み、システム調整が容易となる。

＜第4実施形態＞

次に、本発明の第4実施形態に係る画像表示装置を、図9を用いて説明する。

図9は、本発明の第4実施形態に係る画像表示装置におけるピーク検出部16の構成を示すブロック図であり、同図において前記した図2、図6、図8と同等なものには、同一符号を付してある。図9において、91、92は比較器、93は判別器、94、95は、閾値pa、pbを各々発生する閾値発生器、96は出力である。

本実施形態の特徴は、ラッチ82の出力に対して2種類の閾値pa、pbと比較し、3種類のピークの状態を検出し、PMOD（Peak Mode）信号として「ピークが小さい」、「ピークが中間レベル」、「ピークが大きい」の情報を持、出力96からバックライト制御部13に出力するようにしたことにある。

例えば、pa=200、pb=150であると仮定する。ラッチ82の出力が230レベルである場合、比較器91、92ともに「ピークがある」と判断する。よって、判別器93では、「ピークが大きい」と判断する。

また例えば、pa=200、pb=150であり、かつラッチ82の出力が160レベルである場合、比較器91は「ピークがない」という結果を出力し、比較器92は「ピークがある」という結果を出力する。よって、判別器93は「ピークがある」と判断する。
が中間レベル」と判断する。

また例えば、\(p_a = 200 \), \(p_b = 150 \)であり、かつラッチ82の出力が100レベルである場合、比較器91、92ともには「ピークがいない」という結果を出力する。よって、判別器93は「ピークが小さい」と判断する。

バックライト制御部13は、PMOD信号を受け取り、図7A及び7Bの特性を用いて、3段階のバックライト制御を行う。PMOD信号が「ピークが大きい」場合は、特性7-1を選択する。「ピークが中間レベル」の場合は特性7-2を、「ピークが小さい」の場合は特性7-3をそれぞれ選択する。

なお上記の例では、ピークのレベルを3状態で検出し、3つの制御特性を持った例を挙げたが、ピークのレベルを4つ以上の状態で検出し、検出状態の数に対応した制御特性を持たせてもよい。

以上説明したように、本実施形態では、第3実施形態で説明したピーク検出を、複数の閾値から複数の状態として検出してバックライトを制御することにより、より理想的な処理を行うことが可能となる。

＜実施形態5＞

次に、本発明の第5実施形態に係る画像表示装置を、図10A及び10Bを用いて説明する。

図10A及び10Bは、本発明の第5実施形態に係る画像表示装置のバックライト制御部13の制御特性を示す図である。図10Aにおいて、横軸は平均輝度検出部15にて検出された平均輝度（%）であり、縦軸はバックライト12によって照射された結果の液晶表示部11の画面輝度である。

本実施形態の特徴は、閾値を設定して、ある範囲では画面輝度を平均輝度によらずに一定値に制御するようにしたものである。図10A及び10Bでは、平均輝度が低い側の閾値raは20%である場合を示している。検出された平均輝度が20%以下の場合、平均輝度によらずに画面輝度は一定値であり、ピーク検出部16においてピークが検出された場合の画面輝度は500ケンダラ、ピークが検出されなかった場合の画面輝度は400ケンダラである。また平均輝度が高い側の閾値rbは80%の場合を示している。検出された平均輝度が80%以上の場合、平均輝度によらずに画面輝度は一定値であり、またピーク検出部16の検
出結果にもとづく、画面輝度は200カンデラである。

これにより、画像の平均輝度を検出した場合、一般的に閾値ra以下、もしくは閾値rb以上の検出結果の頻出度が低いことを考慮した特性である。頻出の低い部分を固定値とし、バックライトのダイナミックレンジを検出頻度の高い部分で有効に使用するものである。

なお、図10A及び10Bでは、閾値ra、rbをそれぞれ20％、80％の場合を想定したが、例えば閾値raは30％でもよい。閾値rbは70％でもよい。また、閾値raのみを有効（例えば30％）にして、閾値rbは100％、つまり無効にする特性でもよい。もしくは閾値rbのみ有効（例えば70％）にして、閾値raは0％、つまり無効にする特性でもよい。

以上述べたように、本実施形態の特徴は、バックライト制御特性において閾値を設定して、ある範囲で画面輝度が平均輝度によらずに一定値をとるようにしたことにあら。閾値は、平均輝度が低い側と高い側の両側において設定するか、もしくはどちらか一方のみを設定する。この特徴により、バックライトのダイナミックレンジを検出頻度の高い部分で有効に使用し、表示映像に最適な制御を行うことが可能となる。

＜第6実施形態＞

次に、本発明の第6実施形態に係る画像表示装置を、図11、図12A及び12Bを用いて説明する。

図11は、本発明の第6実施形態に係る画像表示装置である投映型液晶プロジェクタの構成を示すブロック図であり、同図において前記した図1と同様なものには同一符号を付してある。図11において、111はスクリーン、112は投射レンズ、113は液晶ライトバルブ、114はランプ、115はランプ制御部である。

ランプ制御部115では、平均輝度検出部15で検出された平均輝度信号であるAVE信号と、ピーク検出部16で検出されたPEK信号とに基づき、ランプ114の制御を行う。ランプ114は、ランプ制御部115の制御に従い、液晶ライトバルブ113に光を照射する。液晶ライトバルブ113は1枚もしくは3枚からなる透過型液晶パネルで構成されており、光源であるランプ114の光を
RGBそれぞれに変調する。液晶ライトパルプ113を通じた光は、投射レンズ112で拡大され、スクリーン111に投影され、表示像となる。

ランプ制御部115におけるランプ114の制御特性を、図12A及び12Bに示す。図12Aにおいて、横軸は平均輝度検出部15にて検出された平均輝度（％）であり、縦軸はランプ制御部115によって制御されたランプ114に照射された結果のスクリーン111のスクリーン輝度（ルーメン）である。特性12-1と特性12-2は、PEK信号で切り替える。つまり、ピーク検出部16においてピークがあるもしくは多いと判断した場合、特性12-1に示すスクリーン輝度を得るよう、ランプ114を制御する。ピークがないもしくは少ないと判断した場合、特性12-2に示すスクリーン輝度を得るよう、ランプ114を制御する。

以上のように、本発明の画像表示装置は、直視型液晶表示装置のみならず投射型液晶表示装置に対しても好適である。

＜実施形態7＞

次に、本発明の第7実施形態に係る画像表示装置を、図13、図14A及び14Bを用いて説明する。

図13は、本発明の第7実施形態に係る画像表示装置の構成を示すブロック図であり、同図において前記した図1と同等なものには、同一符号を付してある。

図13において、101は映像判定部であり、この処理部にて表示する画像の特徴を判定する。判定結果を、P-BRT（Picture-Bright）信号と、P-PEK（Picture-Peak）信号として、バックライト制御部13に出力する。P-BRT信号は、表示する映像信号の明るさの度合いを示す信号であり、例えば表示する映像信号の平均輝度値の検出による検出結果である。また、P-PEK信号は、表示する映像信号のピーク値の度合いを示す信号であり、例えば、前記の第1実施形態の図2で説明した処理にて得られる。

また、図14A及び14Bは、本発明の第7実施形態に係る画像表示装置のバックライト制御部13の制御特性を示す図である。図14Aにおいて、横軸はP-BRT信号であり、値が大きくなるほど、表示する映像が明るい、もしくは平均輝度が大きいことを表している。縦軸はバックライト12の発光面の明るさ（輝
度）を示している。例えば液晶表示部１１の透過率が5%であるとすると、パックライト輝度が2000カンデラであれば、その光が液晶表示部１１を通過して、表示画面として得られる輝度は、およそ1000カンデラである。

図14A及び14Bには、2つの異なる特性が記されている。この特性14-1と特性14-2は、前述のP-PΕK信号によって切り替えられる。具体的には、P-PΕK信号が小さい場合、特性14-2を選択してパックライトを制御する。P-PΕK信号が大きい場合、特性14-1を選択してパックライトを制御する。

つまり、図14A及び14Bが意味するところは、ピークが大きくもしくは多く、かつ画面が暗い場合は、よりパックライトの発光量を増大させる。ピークが小さくもしくは少なく、かつ画面が暗い場合は、パックライトの発光量を抑える。

以上説明したように、本実施形式では、映像表示が所定のレベルより暗いこと、もしくは表示する映像が暗いか明るいかを検出する手段と映像のピーク検出手段をもちいて、パックライト（光源）の光量を制御する。その特性は、映像表示の1画面の平均レベルがある値より暗い場合において、ピークがあるもしくは多いと判断した場合には、前記光源を、ピークがないもしくは少ないと判断した場合と比較して高い輝度値をとる。上記制御により、例えば夜空に花火が打ち上がるようなシーンで、花火が開花して暗い夜空のなかに明るい映像が発生した映像に対してのみ、その輝度の高い花火のつやを十分表現するために、パックライトの光量を増大させる。花火の開花の有無は、ピーク検出によって判定する。これらに関しては、花火の発光のつやが十分表現可能となり、また花火のシーン（夜空）と全体的に明るいシーン（観客など）とのシーンチェンジで、拡大されたダイナミックコントラストを表現することが可能となる。

以上説明したように、本発明の画像表示装置は、直視型液晶あるいは投射型液晶からなる映像表示手段と、表示制御手段と、パックライト等の光源と、パックライト制御手段等の光源制御手段と、平均輝度検出手段と、ピーク検出手段とを備え、表示する映像の平均輝度とピークとに応じて、パックライト等の光源の輝度を動的に制御する装置である。

本発明では、平均輝度によってパックライト（光源）を動的に制御する。つまり、平均輝度の大きい（明るい）映像ではパックライト輝度を下げ、平均輝度の
小さい（暗い）映像ではバックライト輝度を上げる。従来の一定輝度でバックライトを発光させる場合と比較して、明るい映像で明るすぎる、または暗い映像で暗すぎるなどと、観察者が不快に感じることを防止する。また、暗い映像と明るい映像の切り替えでメリハリがつき、視覚上のコントラスト感の向上が表現できる。

さらに、本発明では、表示する映像のピークの値によってバックライト（光源）の制御特性を動的に補正する。ピークのない暗い映像、つまり映像のピークがある条件以下でかつ平均輝度レベルが低い場合は、バックライト輝度の増大は、液晶映像表示部の黒の輝度が上昇する、いわゆる黒浮き妨害をただ増長させるだけである。よって、平均輝度が低い映像で、かつピーク値を持たない、もしくはピーク値の小さい映像では、バックライト輝度の増大を抑えるよう動的に補正する。これにより、黒浮き妨害を回避しつつ光沢感を表現することが可能となる。

さらに、本発明では、全体的に暗い映像において、ピークがある、もしくは多いと判断した場合、バックライトの輝度を増大させる。暗い背景の中に指輪などの金属が表示されているような映像では、十分にバックライトの輝度を増大させて金属の光沢感を表現する。これにより、黒浮き妨害を回避しつつ光沢感を表現することが可能となる。

また、本発明では、映像信号のダイナミックレンジを拡大する処理を行わないので、階調つぶれやノイズ成分が強調されるような妨害が発生しない。

総じて、本発明によれば、観察者に最適な表示映像を提供することが可能となる。
請求の範囲

1. 映像表示手段と、表示制御手段と、光源と、光源制御手段と、平均輝度検出手段とを備え、表示する映像の平均輝度に応じて光源の輝度を制御する画像表示装置であって、
ピーク検出手段を備え、映像のピーク値を検出し、このピーク値に応じて前記光源制御手段の輝度制御を補正することを特徴とする画像表示装置。

2. 請求の範囲第1項記載において、
前記光源制御手段は、前記平均輝度検出手段の検出結果である平均輝度検出値に対応する特性変更点を持ち、前記平均輝度検出値が前記特性変更点を超えた場合は、前記ピーク検出手段の検出結果によらずに前記光源を制御し、前記平均輝度検出値が前記特性変更点以下である場合は、前記ピーク検出手段の検出結果に従い光源制御手段を補正することを特徴とする画像表示装置。

3. 請求の範囲第2項記載において、
前記平均輝度検出値が前記特性変更点以下である場合で、かつ前記ピーク検出手段においてピークがないもしくは少ないと判断した場合には、前記光源を、ピークがあるもしくは多いと判断した場合と比較して低い輝度値をとり、かつ前記平均輝度検出値が前記特性変更点を超えた場合の輝度より高い輝度値をとるように、前記光源制御手段を補正することを特徴とする画像表示装置。

4. 請求の範囲第1項乃至第3項の何れか1項に記載において、
前記ピーク検出手段は、映像のなかにレベルm（mは前記ピーク検出手段の内部設定値）より大きいレベルの画素がn個（nは前記ピーク検出手段の内部設定値）以上存在する場合に、ピークがあるもしくは多いと判定することを特徴とする画像表示装置。

5. 請求の範囲第1項乃至第3項の何れか1項に記載において、
前記ピーク検出手段は、画像のなかにレベルma（maは前記ピーク検出手段の内部設定値）より大きいレベルの画素がna個（naは前記ピーク検出手段の内部設定値）以上存在する場合と、画像のなかにレベルmb（mbは前記ピーク検出手段の内部設定値）より大きいレベルの画素がnb個（nbは前記ピーク検出手段の内部設定値）以上存在する場合に、画像のなかにレベルma（maは前記ピーク検出手段の内部設定値）より大きいレベルの画素がna個（naは前記ピーク検出手段の内部設定値）以上存在する場合と、画像のなかにレベルmb（mbは前記ピーク検出手段の内部設定値）より大きいレベルの画素がnb個（nbは前記ピーク検出手段の内部設定値）以上存在する場合に、それぞれにおいてピークがあるもしくは多いと判定することを特徴とする画像表示装置。
手段の内部設定値）以上存在する場合とを各々検出することにより、ピークの有無もしくは多い少ないを段階的に判定して、前記光源制御手段を段階的に補正することを特徴とする画像表示装置。

6. 請求の範囲第1項乃至第3項の何れか1項に記載において、前記ピーク検出手段は、レベルmxと個数nx（mxとnxは各々前記ピーク検出手段の内部設定値）の組み合わせを3つ以上持ち、複数の組み合わせの結果からピークの有無もしくは多い少ないを段階的に判定して、前記光源制御手段を段階的に補正することを特徴とする画像表示装置。

7. 請求の範囲第1項乃至第3項の何れか1項に記載において、前記ピーク検出手段は、画像のなかの最大映像レベルを検出し、前記最大映像レベルとレベルp（pは前記ピーク検出手段の内部設定値）の大小を比較し、最大映像レベルがレベルpより大きい場合にピークがあると判定することを特徴とする画像表示装置。

8. 請求の範囲第1項乃至第3項の何れか1項に記載において、前記ピーク検出手段は、画像のなかの最大映像レベルを検出し、前記最大映像レベルとレベルpa、レベルpb（pa、pbは各々前記ピーク検出手段の内部設定値）の大小を各々比較して、ピークのレベルを段階的に判定して、前記光源制御手段を段階的に補正することを特徴とする画像表示装置。

9. 請求の範囲第1項乃至第3項の何れか1項に記載において、前記ピーク検出手段は、画像のなかの最大映像レベルを検出し、前記最大映像レベルと比較するレベルpx（pxは前記ピーク検出手段の内部設定値）を3つ以上持ち、各々の比較から、ピークのレベルを段階的に判定して、前記光源制御手段を段階的に補正することを特徴とする画像表示装置。

10. 請求の範囲第2項乃至第9項の何れか1項に記載において、前記光源制御手段は、前記特性変更点より小さい値の第1の閾値ra（raは前記光源制御手段の内部設定値）を持ち、前記平均輝度検出値が前記第1の閾値raより小さい場合、前記光源の輝度を固定値で制御することを特徴とする画像表示装置。

11. 請求の範囲第2項乃至第9項の何れか1項に記載において、
前記光源制御手段は、前記特性変更点より大きい値の第2の閾値rb（rbは前記光源制御手段の内部設定値）を持ち、前記平均輝度検出値が前記第2の閾値rbより大きい場合、前記光源の輝度を固定値で制御することを特徴とする画像表示装置。

12. 請求の範囲第1項乃至第11項のいずれか1項に記載において、前記映像表示手段は直視型液晶であることを特徴とする画像表示装置。

13. 請求の範囲第1項乃至第11項のいずれか1項に記載において、前記映像表示手段は投射型液晶であることを特徴とする画像表示装置。

14. 映像表示手段と、表示制御手段と、光源と、光源制御手段と、映像表示が所定のレベルより暗いことを検出する手段とを備え、映像表示が所定のレベルより暗い場合に、前記光源制御手段は、光源の輝度を高くするように制御することを特徴とする画像表示装置。

15. 請求の範囲第14項記載において、さらに映像のピーク検出手段を備え、ピークがあるもしくは多いと判断した場合には、前記光源を、ピークがないもしくは少ないと判断した場合と比較して高い輝度値をとるように、前記光源制御手段を補正することを特徴とする画像表示装置。

16. 請求の範囲第15項記載において、前記映像表示が所定のレベルより暗いことを検出する手段は、表示する映像の平均輝度を検出することを特徴とする画像表示装置。

17. 請求の範囲第14項乃至第16項のいずれか1項に記載において、前記ピーク検出手段は、映像のなかにレベルm（mは前記ピーク検出手段の内部設定値）より大きいレベルの画素がn個（nは前記ピーク検出手段の内部設定値）以上存在する場合に、ピークがあるもしくは多いと判定することを特徴とする画像表示装置。

18. 請求の範囲第14項乃至第16項のいずれか1項に記載において、前記ピーク検出手段は、画像のなかにレベルma（maは前記ピーク検出手段の内部設定値）より大きいレベルの画素がna個（naは前記ピーク検出手段の内部設定値）以上存在する場合と、画像のなかにレベルmb（mbは前記ピーク検
出手段の内部設定値）より大きいレベルの画素がn個（nは前記ピーク検出手段の内部設定値）以上存在する場合とを各々検出することにより、ピークの有無もしくは多い少ないを段階的に判定して、前記光源制御手段を段階的に補正することを特徴とする画像表示装置。

19. 請求の範囲第14項乃至第16項の何れか1項に記載において、前記ピーク検出手段は、レベルmxと個数nx（mxとnxは各々前記ピーク検出手段の内部設定値）の組み合わせを3つ以上持ち、複数の組み合わせの結果からピークの有無もしくは多い少ないを段階的に判定して、前記光源制御手段を段階的に補正することを特徴とする画像表示装置。

20. 請求の範囲第14項乃至第16項の何れか1項に記載において、前記ピーク検出手段は、画像のなかの最大映像レベルを検出し、前記最大映像レベルとレベルp（pは前記ピーク検出手段の内部設定値）の大小を比較し、最大映像レベルがレベルpより大きい場合にピークがあると判定することを特徴とする画像表示装置。

21. 請求の範囲第14項乃至第16項の何れか1項に記載において、前記ピーク検出手段は、画像のなかの最大映像レベルを検出し、前記最大映像レベルとレベルpa、レベルpb（pa、pbは各々前記ピーク検出手段の内部設定値）の大小を各々比較して、ピークのレベルを段階的に判定して、前記光源制御手段を段階的に補正することを特徴とする画像表示装置。

22. 請求の範囲第14項乃至第16項の何れか1項に記載において、前記ピーク検出手段は、画像のなかの最大映像レベルを検出し、前記最大映像レベルと比較するレベルpx（pxは前記ピーク検出手段の内部設定値）を3つ以上持ち、各々の比較から、ピークのレベルを段階的に判定して、前記光源制御手段を段階的に補正することを特徴とする画像表示装置。

23. 請求の範囲第15項乃至第22項の何れか1項に記載において、前記光源制御手段は、前記特性変更点より小さい値の第1の閾値ra（raは前記光源制御手段の内部設定値）を持ち、前記平均輝度検出値が前記第1の閾値raより小さい場合、前記光源の輝度を固定値で制御することを特徴とする画像表示装置。
24. 請求の範囲第１５項乃至第２２項の何れか１項に記載において、前記光源制御手段は、前記特性変更点より大きい値の第２の閾値 \(r_2 \) （ \(r_2 \) は前記光源制御手段の内部設定値）を持ち、前記平均輝度検出値が前記第２の閾値 \(r_2 \) より大きい場合、前記光源の輝度を固定値で制御することを特徴とする画像表示装置。

25. 請求の範囲第１４項乃至第２４項の何れか１項に記載において、前記映像表示手段は直視型液晶であることを特徴とする画像表示装置。

26. 請求の範囲第１４項乃至第２４項の何れか１項に記載において、前記映像表示手段は投射型液晶であることを特徴とする画像表示装置。
図1

PIC信号

表示制御部

DRV信号

液晶表示部

光線

バックライト

CTL信号

平均輝度検出部

AVE信号

バックライト制御部

ピーク検出部

PEK信号

図2

PIC信号

比較器

CMP信号

カウンタ

CNT信号

判別器

閾値m発生器

閾値n発生器

VリセットS

VリセットE

V-ST信号

V-END信号

28 21 22 23 29

24

26

27

1/16
图3A

特性变更点

图表显示了两种特性3-1和特性3-2在不同平均亮度（%）下的画面亮度（cd/m²）变化。表3B列出了具体数据。

<table>
<thead>
<tr>
<th>平均亮度（%）</th>
<th>画面亮度（cd/m²）</th>
<th>特性3-1</th>
<th>特性3-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>470</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>440</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>410</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>380</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>350</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>320</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>290</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>260</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>230</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
図4A

図4B

<table>
<thead>
<tr>
<th>平均輝度 (％)</th>
<th>画面輝度 (cd/m²)</th>
<th>特性4-1</th>
<th>特性4-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>490</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>470</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>440</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>400</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>350</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>260</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>230</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>210</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
図5A

図5B

<table>
<thead>
<tr>
<th>平均輝度 (%)</th>
<th>画面輝度 (cd/m²)</th>
<th>特性5-1</th>
<th>特性5-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>350</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>325</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>300</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>275</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>225</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>175</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>125</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
图7A

图7B

<table>
<thead>
<tr>
<th>平均辉度 (%)</th>
<th>画面辉度 (cd/m²)</th>
<th>特性7-1</th>
<th>特性7-2</th>
<th>特性7-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>450</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>450</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>490</td>
<td>442</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>450</td>
<td>420</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
図10A

図10B

<table>
<thead>
<tr>
<th>平均輝度（%）</th>
<th>画面輝度（cd/m²）</th>
<th>特性10-1</th>
<th>特性10-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>500</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>460</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>350</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>270</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>230</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>210</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
図12A

図12B

<table>
<thead>
<tr>
<th>平均輝度 (%)</th>
<th>スクリーン輝度 (ルーメン)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>特性12-1</td>
</tr>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>960</td>
</tr>
<tr>
<td>20</td>
<td>920</td>
</tr>
<tr>
<td>30</td>
<td>880</td>
</tr>
<tr>
<td>40</td>
<td>840</td>
</tr>
<tr>
<td>50</td>
<td>800</td>
</tr>
<tr>
<td>60</td>
<td>760</td>
</tr>
<tr>
<td>70</td>
<td>720</td>
</tr>
<tr>
<td>80</td>
<td>680</td>
</tr>
<tr>
<td>90</td>
<td>640</td>
</tr>
<tr>
<td>100</td>
<td>600</td>
</tr>
</tbody>
</table>
図14A

回転照度（cd/m²）

図14B

<table>
<thead>
<tr>
<th>P-BRT信号</th>
<th>パックライト輝度（cd/m²）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>特性14-1</td>
</tr>
<tr>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>0.1</td>
<td>1820</td>
</tr>
<tr>
<td>0.2</td>
<td>1640</td>
</tr>
<tr>
<td>0.3</td>
<td>1460</td>
</tr>
<tr>
<td>0.4</td>
<td>1280</td>
</tr>
<tr>
<td>0.5</td>
<td>1200</td>
</tr>
<tr>
<td>0.6</td>
<td>1120</td>
</tr>
<tr>
<td>0.7</td>
<td>1040</td>
</tr>
<tr>
<td>0.8</td>
<td>960</td>
</tr>
<tr>
<td>0.9</td>
<td>880</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
</tr>
</tbody>
</table>
図15
图 16A

图 16B

<table>
<thead>
<tr>
<th>平均辉度（%）</th>
<th>画面辉度 (cd/m²)</th>
<th>特性 16-1</th>
<th>特性 16-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>420</td>
<td>260</td>
<td></td>
</tr>
</tbody>
</table>
図17
図18

平均輝度(%)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| Int.Cl | G09G3/36, G02F1/133 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| Int.Cl | G09G3/36, G02F1/133 |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X A</td>
<td>JP 2000-98995 A (Mitsubishi Electric Corp.), 07 April, 2000 (07.04.00), Par. Nos. [0014] to [0021]; Figs. 3, 4 (Family: none)</td>
<td>1,4-6,12-19, 25,26</td>
</tr>
<tr>
<td>X A</td>
<td>JP 5-127608 A (Canon Inc.), 25 May, 1993 (25.05.93), Par. Nos. [0013] to [0018]; Figs. 4, 5 (Family: none)</td>
<td>1,12,13 2-11,14-26</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.

See patent family annex.

Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

13 February, 2003 (13.02.03)

Date of mailing of the international search report

25 February, 2003 (25.02.03)

Name and mailing address of the ISA/

Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/10919

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X A</td>
<td>JP 11-65531 A (Fujitsu Ltd.), 09 March, 1999 (09.03.99), Par. Nos. [0028] to [0032]; Figs. 4, 5 (Family: none)</td>
<td>1,12,13 2-11,14-26</td>
</tr>
<tr>
<td>X A</td>
<td>JP 2001-147673 A (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.), 29 May, 2001 (29.05.01), Par. Nos. [0035] to [0039]; Figs. 2 to 4 (Family: none)</td>
<td>14,25,26 1-13,15-24</td>
</tr>
<tr>
<td>X A</td>
<td>JP 2001-92415 A (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.), 06 April, 2001 (06.04.01), Par. No. [0004] (Family: none)</td>
<td>1,12-14,25,26 2-11,15-24</td>
</tr>
<tr>
<td>X A</td>
<td>JP 2001-134226 A (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.), 18 May, 2001 (18.05.01), Par. Nos. [0025] to [0046]; Figs. 1 to 4 (Family: none)</td>
<td>1,12,13 2-11,14-26</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

The technical feature common to claims 1-26 relates to “an image display apparatus including video display means, display control means, a light source, light source control means and means for detecting brightness of video display, wherein the light source control means controls the luminance of the light source according to the brightness of the video display”. However, the search has revealed that this technical feature is not novel since it is disclosed in document JP 11-65531 A (Fujitsu Ltd.), 1999.03.09, paragraphs 28-32, JP 5-127608 (Canon Inc.), 1993.05.25, Claim 1, and the like. (continued to extra sheet)

1. ☒ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest ☐ The additional search fees were accompanied by the applicant’s protest.
☒ No protest accompanied the payment of additional search fees.
As a result, this technical feature makes no contribution over the prior art and cannot be considered as a special technical feature within the meaning of PCT Rule 13.2, second sentence. Accordingly, there is no feature common to all the claims. Since there exists no other common feature which can be considered as a special technical feature within the meaning of PCT Rule 13.2, second sentence, no technical relationship within the meaning of PCT Rule 13 between the different inventions can be seen. Consequently, it appears that claims 1-26 do not satisfy the requirement of unity of invention.
国際調査報告
国際出願番号 PCT/JP02/10919

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C17, G09G3/36, G02F1/133

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））

Int. C17 G09G3/36, G02F1/133

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年
日本国出願実用新案公報 1971-2003年
日本国出願実用新案公報 1994-2003年
日本国実用新案登録公報 1996-2003年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー＊</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2000-98995 A（三菱電機株式会社）2000.04.07、段落番号14-21、図3、4（ファミリー無し）</td>
<td>1、4-6、12-19、25、26</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>2、3、7-11、20-24</td>
</tr>
</tbody>
</table>

※ 引用文献のカテゴリー
A 特に連関のある文献ではなく、一般的な技術水準を示すもの
B 国際出願日の出願時または特許法上の公表日以前に公表されたもの
C 特に連関のある文献で、国際出願日以後に公表されたもの
L 特に連関のある文献で、国際出願日以前に公表されたもの
Q より優先権主権に無理を提起する文献
P 国際出願日以前で、かつ優先権の主権の基礎となる出願

C箇の続きにも文献が挙げられている。

パテントファミリーに関する別紙を参照。

国際調査を完了した日 13.02.03
国際調査報告の発送日 25.02.03

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
原野 幹夫
電話番号 03-3581-1101 内線 6489

様式PCT／ISA／210（第2ページ）（1998年7月）
| 引用文献の
カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 | 関連する
請求の範囲の番号 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 5-127608 A（キャノン株式会社）、1993.05.25、段落番号13-18、図4、5（ファミリー無し）</td>
<td>1, 12, 13</td>
</tr>
<tr>
<td>X</td>
<td>JP 11-65531 A（富士通株式会社）、1999.03.09、段落番号28-32、図4、5（ファミリー無し）</td>
<td>1, 12, 13</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001-147673 A（松下電器産業株式会社）、2001.05.29、段落番号35-39、図2-4（ファミリー無し）</td>
<td>14, 25, 26</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001-92415 A（松下電器産業株式会社）、2001.04.06、段落番号4（ファミリー無し）</td>
<td>1, 12-14, 25, 26</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001-134226 A（松下電器産業株式会社）、2001.05.18、段落番号25-46、図1-4（ファミリー無し）</td>
<td>1, 12, 13</td>
</tr>
</tbody>
</table>

様式 PCT/ISA/210（第2ページの続き）（1998年7月）
国際調査報告
国際出願番号 PCT／JP02／10919

第Ⅰ欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）
法第8条第3項（PCT第17条⑵⑴）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. [] 請求の範囲 は、この国際調査機関が調査をすることを要しない対象に係るものである。
 つまり、

2. [] 請求の範囲 は、有意味な国際調査をすることができ程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

3. [] 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第Ⅱ欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求の範囲1－26に共通の事項は「映像表示手段と、表示制御手段と、光源と、光調制手段と、映像表示の明るさにより光の強度を制御することを特徴とする映像表示装置」である。しかしながら、調査の結果、当該事項は文献JP 11－65531 A（富士通株式会社）、1999.03.09、出願番号28－32、JP 5－127608 A（キャノン株式会社）、1993.05.25、請求項1等に開示されているから、新規でないことが明らかとなった。結果として、当該事項は発表技術の域を越えず、PCT規則13.2の第2文の意味において、この共通事項は特別な技術的特徴ではない。それ故、請求の範囲1－26に共通の事項は、PCT規則13.2の第2文の意味において特別な技術的特徴と考えられる他の共通の事項は存在しないので、これらの相違する発明の間にPCT規則13の意味における技術的な関連を見いだすことはできない。よって、請求の範囲1－26は発明の単一性の要件を満たしていないことが明らかである。

1. [] 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。

2. [] 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。

3. [] 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。

4. [] 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意
[] 追加調査手数料の納付と共に出願人から異議申立てがあった。
[] 追加調査手数料の納付と共に出願人から異議申立てがなかった。

様式PCT／ISA／210（第1ページの続表（1））（1998年7月）