wo 2017/142647 A1 [N NI AP0 OO O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/142647 Al

24 August 2017 (24.08.2017) WIPOIPCT
(51) International Patent Classification: (74) Agent: YAO, Shun; 2800 Fifth Street, Suite 110, Davis,
HO4L 9/08 (2006.01) HO4L 9/00 (2006.01) California 95618 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2017/012868 kind of national protection available): AE, AG, AL, AM,
(22) International Filing Date: A0, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
2) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
10 January 2017 (10.01.2017) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
. KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
(26) Publication Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
(30) Priority Data: NI NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
201610086096.7 15 February 2016 (15.02.2016) CN RU, RW, SA, SC, 8D, SE, 8G, SK, SL, SM, ST, SV, SY,
15/402,030 9 January 2017 (09.01.2017) Us g ;Jv[T%{]TN» TR, TT, TZ, UA, UG, US, UZ, VC, VN,
(71) Applicant: ALIBABA GROUP HOLDING LIMITED o S
[—/US]; Fourth Floor, One Capital Place, P.O. Box 847, (84) Designated States (unless otherwise indicated, for every
George Town, Grand Cayman (KY). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(72) Inventors: YUAN, Peng; Alibaba Group Legal Depart- TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
ment, 5/F, Building 3, No. 969 West Wen Yi Road, Yu TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Hang District, Hangzhou, Zhejiang 311121 (CN). WANG, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Zhigiang; Alibaba Group Legal Department, 5/F, Building LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
3, No. 969 West Wen Yi Road, Yu Hang District, Hang- SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
zhou, Zhejiang 311121 (CN). LIU, Shuanlin; Alibaba GW, KM, ML, MR, NE, SN, TD, TG).
Group Legal Department, 5/F, Building 3, No. 969 West Published:

Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang
311121 (CN).

with international search report (Art. 21(3))

(54) Title: EFFICIENT QUANTUM KEY MANAGEMENT

DISTRIBUTED
ENVIRONMENT

(57) Abstract: One embodiment of the
present application provides a system for

key management. During operation, the sys-

100 APPLICATION

138

APPLICATION
148

tem determines a key block from a key se-

e L U SRR S |

quence obtained based on Quantum Key
Distribution (QKD) and a time sequence

identifier for the key block. The system syn-

KEY MANAGER KEY MANAGER
e e chronizes the key block with a correspond-
| KEYPOOL i | KEYPOOL i ing key block of a partner key management
S o Lo JncA system based on a hash of the key block and

I ? _______________ e __ _f ______ ___ the time sequence identifier. If the synchron-

QUANTUM ENGINE QUANTOM ENGINE ization is successﬁ.il, the system stor.es the
132 142 key block and the time sequence identifier in

N
130

a key pool. If the system receives a request

CONTROL CENTER
110

FIG. 1

for a key from an application, the system ac-
quires the key block from the key pool and
validates the key block with the partner key
management system based on a hash of the
key block and the time sequence identifier.
It the validation is successful, the system
provides the key block to the application.

10

15

20

25

30

WO 2017/142647 1 PCT/US2017/012868

EFFICIENT QUANTUM KEY MANAGEMENT

BACKGROUND
Field
[0001] The present invention relates to the technical field of web interface management
and, in particular, relates to a method and system for efficiently managing quantum key

distribution in a distributed environment.

Related Art

[0002] With the rapid development of the Internet, contents of a web environment, such
as an e-commerce website, are becoming richer. To facilitate secure access to the contents the
users are interested in, such websites can ensure the contents and transactions are secured with
distributed keys. Quantum Key Distribution (QKD) is an efficient way of facilitating secure
communication. QKD allows communicating users to detect the presence of an entity trying to
gain knowledge of a key obtained based on QKD. Since measuring a quantum system, in
principal, disturbs the system, the entity eavesdropping on the key introduces detectable
anomalies through its measurement. In this way, using QKD, a communication system can be
implemented that detects eavesdropping by transmitting information in quantum states.
Typically, the QKD process uses key screening, error code correction, and a privacy
amplification algorithm to securely provide keys to the entities involved in communication.
However, network data transmission can be lossy, and as a result, the probability of encountering
an error in the key synchronization remains significant. If such an error occurs when the key
sequences are processed, the keys stored at the entities may become unsynchronized.

[0003] With existing technologies, if two applications use keys to ensure secure
communication, the applications may share a tag to obtain the keys. When needed, the
applications provide the tag and a length of key to the local system. The system obtains a key
block with the corresponding length from the start of a key pool and initiates a synchronization
request with the remote system. The system sends the length parameters and the hash values of
the selected key to the remote system. Upon receiving the synchronization request, the remote
system also obtains a key block with the corresponding length from its key pool, calculates the

hash value, and compares the hash value with the received hash value. However, if the hash

10

15

20

25

30

WO 2017/142647 2 PCT/US2017/012868

values do not match, the systems notify each other regarding a failed synchronization and discard
the corresponding key. The applications then again request another key from the corresponding
key pool.

[0004] While such key management brings many desirable features to a distributed
environment, some issues remain unsolved in the synchronization of keys in a multi-party

distributed environment.

SUMMARY

[0005] One embodiment of the present application provides a system for efficient key
management. During operation, the system determines a key block from a key sequence
obtained based on Quantum Key Distribution (QKD) and a time sequence identifier for the key
block. The system then synchronizes the key block with a corresponding key block of a partner
key management system based on a hash of the key block and the time sequence identifier. If the
synchronization is successful, the system stores the key block and the time sequence identifier in
a local key pool. If the system receives a request for a key from an application, the system
acquires the key block from the key pool and validates the key block with a partner key
management system based on a hash of the key block and the time sequence identifier. If the
validation is successful, the system provides the key block to the application.

[0006] In a variation of this embodiment, the system determines the the key block by
determining whether a length of the key sequence has reached a threshold. Furthermore, if the
length of the key sequence reaches the threshold, the system obtains key block of the threshold
length from the beginning of the key sequence.

[0007] In a variation of this embodiment, the system determines the time sequence
identifier by obtaining a base value and incrementing the base value.

[0008] In a variation of this embodiment, the system synchronizes the key block by
computing a hash of the key block, and sending the key block and the time sequence identifier to
the partner key management system. Furthermore, if the system detects a time sequence
identifier mismatch, the system sets a larger of local and received time sequence identifiers to be
a new base value and the time sequence identifier of the key block.

[0009] In a further variation, the system discards the key block in response to determining
a hash mismatch of the key block.

[0010] In a variation of this embodiment, the key pool is a data structure. A respective

element of the data structure includes a key block and an associated time sequence identifier.

10

15

20

25

30

35

WO 2017/142647 3 PCT/US2017/012868

[0011] In a further variation, the system maintains a read pointer and a write pointer. The
read pointer indicates a location of the key pool from which the key block is retrieved. The write
pointer indicates a location of the key pool where a new key block is added.

[0012] In a variation of this embodiment, the system validates the key block by
computing a hash of the key block and obtaining a key block and the time sequence identifier
from the partner key management system. Furthermore, for time sequence identifier mismatch,
the system identifies a second key block that provides a time sequence identifier match.

[0013] In a further variation, the system identifies a second key block by determining that
the time sequence identifier of the key block is less than the obtained time sequence identifier
and obtaining, from the key pool, a key block that has a time sequence identifier matching the
obtained time sequence identifier. To do so, the system discards any key block that has a time

sequence identifier less than the obtained time sequence identifier from the key pool.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The accompanying drawings herein, which are incorporated herein and constitute
a part of the specification, illustrate several exemplary embodiments of the present application
and, together with the description, serve to illustrate the present application, construing no
limitation thereto. In the drawings:

[0015] FIG. 1 illustrates an exemplary distributed environment facilitating a key
management system for quantum keys, in accordance with an embodiment of the present
application.

[0016] FIG. 2A presents a flowchart illustrating the process of a key management system
initiating key synchronization, in accordance with an embodiment of the present application.

[0017] FIG. 2B illustrates an exemplary schematic of a pool of quantum keys maintained
by a key manager, in accordance with an embodiment of the present application.

[0018] FIG. 3A presents a flowchart illustrating the process of an initiating quantum
engine synchronizing a key block, in accordance with an embodiment of the present application.

[0019] FIG. 3B presents a flowchart illustrating the process of a partner quantum engine
synchronizing a key block, in accordance with an embodiment of the present application.

[0020] FIG. 4A presents a flowchart illustrating the process of an initiating key manager
validating a key block, in accordance with an embodiment of the present application.

[0021] FIG. 4B presents a flowchart illustrating the process of a partner key manager
validating a key block, in accordance with an embodiment of the present application.

[0022] FIG. 5 presents an exemplary key management system, in accordance with an

embodiment of the present application.

10

15

20

25

30

35

WO 2017/142647 4 PCT/US2017/012868

[0023] In the figures, like reference numerals refer to the same figure elements.

DETAILED DESCRIPTION OF EMBODIMENTS

[0024] Embodiments of the present invention solve the problem of facilitating efficient
quantum key management in a distributed environment by (i) maintaining a time sequence
identifier for a key block; and (ii) synchronizing key blocks until the time sequence identifiers at
the partner systems match.

[0025] Suppose that two devices coupled via a network use quantum keys to ensure
secure communication. The key management systems running on these devices can be referred
to as partner systems. Such a system can include a quantum engine and a key manager. The
quantum engine is responsible for obtaining a key sequence and providing the key sequence to
the key manager. The key manager is responsible for maintaining the key sequence and
providing a key block to a requesting application.

[0026] During operation, partner systems use key screening, error code correction, and a
privacy amplification algorithm to obtain consistent and secure key sequences. These systems
then store their key sequences in their respective trusted storage media. Such a key sequence is
essentially a bit array, which appends newly generated keys. If an application running on two
devices needs a key, the partner systems at those devices provide the key to the application. A
respective partner system obtains a key block of a length requested by the application from the
local key sequence (e.g., based on first-in-first-out). A respective partner system then provides
the key block to the application running on the device.

[0027] However, when the keys are distributed across a network, the keys may become
unsynchronized. For example, the keys at partner systems can become mismatched. Partner
systems can also have unaligned key sequences (e.g., one system may lack a certain key
sequence). Upon obtaining the key block, prior to providing the key block the application,
partner systems check whether the key block is synchronized. With existing technologies, the
partner systems discard the respective copies of the key block if they are unsynchronized and
notify the application. The application then reinitiates the process. This repetition continues
until the partner systems obtain a synchronized key block. However, if the key sequence is
unaligned at the partner systems, a key block of a respective iteration would continue to be
unsynchronized. As a result, the entire key sequence can be exhausted without producing a
synchronized key block.

[0028] To solve this problem, an embodiment of the present invention maintains a time
sequence identifier for a respective key block. In an embodiment, a length of a key block can be

preset (which can be referred to as a threshold). Whenever the key sequence at the quantum

10

15

20

25

30

35

WO 2017/142647 5 PCT/US2017/012868

engine reaches the threshold, the quantum engine generates a key block of the threshold length
from the beginning of the key sequence. The quantum engine also adds a time sequence
identifier to the key block and provides the key block to the key manager. Upon receiving the
key block, the key manager stores the key block, along with the time sequence identifier, in a key
pool. In an embodiment, the time sequence identifier is a counter (e.g., an integer) and the
quantum engine increments the counter for each new key block. In this way, the time sequence
identifier indicates the sequence of the key block (e.g., a larger counter value indicates a key
block generated at a later time).

[0029] For each key block, the quantum engines of the partner systems exchange the time
sequence identifier and a hash of the key block to synchronize with each other. A hash mismatch
indicates that the key blocks at the partner systems are mismatched. On the other hand, if the
hash matches, the quantum engines ensure the same time sequence identifier is associated with
the key blocks at each partner system. If the time sequence identifiers do not match, the quantum
engines set the larger value as the time sequence identifier, thereby ensuring a same value at each
partner system.

[0030] When an application requests a key block, the key managers obtain a key block
from the key pool, compute hash of the key block, and verify with each other’s key block using
the time sequence identifier and the hash. If the time sequence identifiers do not match, the key
blocks are misaligned. The key manager with the smaller time sequence identifier then continues
to discard key blocks until the time sequence identifiers match. In this way, the systems ensure
that only the misaligned key blocks are discarded and prevent exhaustion of the entire key
sequence.

[0031] FIG. 1 illustrates an exemplary distributed environment facilitating a key
management system for quantum keys, in accordance with an embodiment of the present
application. In this example, a distributed environment 100 includes end devices 102 and 104
coupled via a network 150 (e.g., a local area network (LAN), a wide area network (WAN), the
Internet, etc.). Suppose that devices 102 and 104 require a key-based secure communication
between them (e.g., a client-server communication). Devices 102 and 104 can include key
management systems 130 and 140, respectively, which facilitate quantum keys to ensure secure
communication. Key management systems 130 and 140 can be referred to as partner systems.

[0032] System 130 can include a quantum engine 132 and a key manager 134. Similarly,
system 140 can include a quantum engine 142 and a key manager 144. Quantum engines 132
and 142 are responsible for obtaining a key sequence and providing the key sequence to key
managers 134 and 144, respectively. Key managers 134 and 144 are responsible for maintaining

the key sequence and providing a key block to a requesting application.

10

15

20

25

30

35

WO 2017/142647 6 PCT/US2017/012868

[0033] During operation, systems 130 and 140 use key screening, error code correction,
and a privacy amplification algorithm to obtain consistent and secure key sequences. With
existing technologies, key managers 134 and 144 store their key sequences in their respective
trusted storage media. If applications 138 and 148 running on devices 102 and 104 need a key
among themselves, key managers 134 and 144 provide the key to applications 138 and 148,
respectively. It should be notes that applications 138 and 148 can be the same application (e.g., a
secure communication application) or a set of inter-dependent applications (e.g., a client and a
server). Key manager 134 or 144 obtains a key block of a length requested by the application
from the local key sequence and provides the key block to application 138 (or 148).

[0034] However, when the keys are distributed across network 150, the keys may become
unsynchronized. For example, the keys at systems 130 and 140 can become mismatched.
Systems 130 and 140 can also have unaligned key sequences (e.g., one system may lack a certain
key sequence). Upon obtaining the key block, systems 130 and 140 check whether the key block
is synchronized at each system. Typically, systems 130 and 140 discard the respective copies of
the key block if they are unsynchronized and notify applications 138 and 148, respectively,
which reinitiate the process. This repetition continues until systems 130 and 140 obtain a
synchronized key block. However, if the key sequence is unaligned, a key block of a respective
iteration would continue to be unsynchronized. As a result, the entire key sequence can be
exhausted without producing a synchronized key block.

[0035] To solve this problem, systems 130 and 140 maintain a time sequence identifier
for a respective key block. In an embodiment, whenever the key sequence at quantum engine
132 reaches the threshold, quantum engine 132 generates a key block of the threshold length
from the beginning of the key sequence. Quantum engine 132 adds a time sequence identifier to
the key block and provides the key block to key manager 134. Similarly, quantum engine 142
provides the key block to key manager 144. Upon receiving the key block, key manager 134
stores the key block, along with the time sequence identifier, in a key pool 136. Similarly, key
manager 144 stores the key block, along with the time sequence identifier, in a key pool 146.

[0036] In an embodiment, the time sequence identifier is a counter generated and
maintained by a control center 110 (e.g., a server), which provides the counter to quantum
engines 132 and 142. In a further embodiment, quantum engines 132 and 142 generate and
maintain the counter, and increment the counter for each new key block. In this way, the time
sequence identifier indicates the sequence of the key block in key pools 136 and 146. For each
key block, one of quantum engines 132 and 142 initiates a synchronization process. Suppose that
quantum engine 132 is the initiator. Quantum engine 132 sends its time sequence identifier and a

hash of the key block to quantum engine 142.

10

15

20

25

30

WO 2017/142647 7 PCT/US2017/012868

[0037] If quantum engine 142 detects a hash mismatch, quantum engine 142 determines a
mismatch and notifies quantum engine 132. Quantum engines 132 and 142 then discard the key
block. However, if the hash matches, quantum engine 142 checks whether the local and received
time sequence identifiers match. If the time sequence identifiers do not match, quantum engine
142 sets the larger value as the new base for the time sequence identifier and allocates that value
as the time sequence identifier for the key block. Quantum engine 142 also provides that value to
quantum engine 132, which also sets the larger value as the new base for the time sequence
identifier and allocates that value as the time sequence identifier for the key block.

[0038] Quantum engines 132 and 142 provide the key block and the time sequence
identifier to key managers 134 and 144, respectively. Key managers 134 and 144 store the key
block and the time sequence identifier in key pools 136 and 146. When application 138 requests
a key block, key manager 134 obtain a key block from key pool 136 and validates that key block.
To validate, key manager 134 computes a hash of the key block, and sends the time sequence
identifier and the key block to key manager 144. Key manager 144 can also send the time
sequence identifier to key manager 134. Key manager 144 checks whether the local and received
time sequence identifiers match. If the time sequence identifiers do not match, the key blocks are
misaligned.

[0039] Suppose that key manager 144 is the key manager with the smaller time sequence
identifier. Key manager 144 then continues to discard key blocks until the time sequence
identifiers match. In this way, key managers 134 and 144 ensure that only the misaligned key
blocks are discarded and prevent exhaustion of the entire key sequence. Key manager 144 also
checks whether the local and received hashes match. If key manager 144 detects a hash
mismatch, key manager 144 determines a mismatch, which indicates invalid key blocks, and
notifies key manager 134. Key managers 134 and 144 then discard the key block. However, if
the hashes match, which indicates a valid key block, key manager 144 provides the key block to
application 148 and notifies key manager 134. Upon receiving the notification, key manager 134
provides the key block to application 138.

[0040] FIG. 2A presents a flowchart illustrating the process of a key management system
initiating key synchronization, in accordance with an embodiment of the present application.
During operation, the system receives a key sequence based on quantum key distribution (QKD)
(operation S201). The system then determines whether the length of the key sequence is greater
than or equal to the threshold (operation S202). This threshold can be generated by the system
(e.g., based on empirical data or a configuration of an application) or be preset based on a

configuration of the system. If the length is not greater than or equal to the threshold (i.e., is less

10

15

20

25

30

35

WO 2017/142647 8 PCT/US2017/012868

than the threshold), the system continues to receive key sequences based on quantum key
distribution (operation S201).

[0041] If the length is greater than or equal to the threshold, the system generates a key
block of threshold length (operation S203) and obtains a time sequence identifier for the key
block from a current base value (operation S204). This time sequence identifier can be a counter
incremented from the base value. For example, if the current base value is 5, the time sequence
identifier can be 6. The system then adds the time sequence identifier to the key block at a preset
position (operation S205). This present position can be before or after the key block (append or
prepend). The system then stores the key block and the associated time sequence identifier in a
key pool (operation S206).

[0042] FIG. 2B illustrates an exemplary schematic of a pool of quantum keys maintained
by a key manager, in accordance with an embodiment of the present application. In this
example, a key pool 250 includes one or more key blocks and associated time sequence
identifiers. In an embodiment, key pool 250 can be a queue. Examples of a queue include, but
are not limited to, a linear queue (e.g., an array or a linked list), a random queue, and a circular
queue (e.g., based on a linked list, where the last node of the list points to the first node). A
respective element of a key pool (e.g., a node in a linked list) can include a key block and its
associated time sequence identifier. For example, one of the elements of key pool 250 can
include a key block 254 and an associated time sequence identifier 252.

[0043] The queue can have a read pointer 262 and a write pointer 264. When the key
manager receives a new key block and its time sequence identifier, the key manager stores them
in an element pointed to by write pointer 264 and moves write pointer 264 to the next element. If
the queue is a linked list, the key manager stores the key block in the node pointed to by write
pointer 264 and updates write pointer 264 to point to the next node of the linked list (i.e., to
which the node points). When an application requests a key block, the key manager obtains the
key block pointed to by read pointer 262 and moves read pointer 262 to the next element.

[0044] FIG. 3A presents a flowchart illustrating the process of an initiating quantum
engine synchronizing a key block, in accordance with an embodiment of the present application.
During operation, the quantum engine generates a key block (e.g., when the length of the key
sequence reaches a threshold) and a local time sequence identifier for the key block (operation
S301). The quantum engine then sends a synchronization request to the partner system
(operation $302). Sending the request includes generating a message, including the request in
the message, determining an output port for the message based on the address of the device
hosting the partner system, and transmitting the message via the determined output port. The

quantum engine obtains the local time sequence identifier and computes the local hash of the key

10

15

20

25

30

35

WO 2017/142647 9 PCT/US2017/012868

block (e.g., using a hash function) (operation S303). Examples of a hash function include, but
are not limited to, MDS5 algorithm, SHA1 algorithm, and SHA256 algorithm.

[0045] The quantum engine also receives the hash and time sequence identifier from the
partner system (operation S304), and determines whether the local and received hashes match
(operation S305). If not, the quantum engine discards the key block and notifies the partner
system regarding the unsuccessful synchronization (operation S310). If the hash values match,
the quantum engine determines whether the local and received time sequence identifiers match
(operation S306). If not, the quantum engine determines the larger value from the local and
received time sequence identifiers (operation S307) and sets the determined value as the new
local base value and as the time sequence identifier for the key block (operation S308).

[0046] If the time sequence identifiers match (operation S306) or the determined value
has been set as the new local base value (operation S308), the quantum engine forwards the key
block and the time sequence identifier to the key manager, and notifies the partner system
regarding successful synchronization (operation $309). If the quantum engine has set a new base
value, the quantum engine can also include the new base value in the notification. In this way,
the quantum engine of the partner system also receives the new base value and can adjust its own
base value accordingly.

[0047] FIG. 3B presents a flowchart illustrating the process of a partner quantum engine
synchronizing a key block, in accordance with an embodiment of the present application. During
operation, the quantum engine receives a synchronization request from the remote system for a
key block (operation S331). The quantum engine then obtains the local time sequence identifier
and computes the local hash of the key block (operation $332), and sends the hash and the time
sequence identifier to the partner system (operation S333). The quantum engine receives a
notification message from the partner system (operation S334) and determines whether the
synchronization has been successful (operation S335).

[0048] If the synchronization has been successful, the quantum engine obtains the time
sequence identifier, if any, from the notification message, and sets a new local base value and the
time sequence identifier for the key block (operation S336). The quantum engine then forwards
the key block and the timer sequence identifier to the key manager (operation S337). If the
synchronization has not been successful, the quantum engine discards the key block (operation
S338).

[0049] FIG. 4A presents a flowchart illustrating the process of an initiating key manager
validating a key block, in accordance with an embodiment of the present application. During
operation, the key manager receives a request for a key from an application (operation S401).

The key manager retrieves a key block and its time sequence identifier from the local key pool

10

15

20

25

30

WO 2017/142647 10 PCT/US2017/012868

(operation S402) and computes a hash of the key block (operation S403). The key manager can
receive a time sequence identifier from the partner system (operation S404). The key manager
determines whether the local time sequence identifier is smaller than the received one (operation
S5405).

[0050] If so, the key manager discards the current key block, and retrieves a key block
and its time sequence identifier from the local key pool (operation S406). The key manager then
continues to check whether the local time sequence identifier is smaller than the received one
(operation S405). If the local time sequence identifier is not smaller than the received one, the
local and received time sequence identifiers are at least equal. The key manager then receives a
notification message from the partner system (operation S407). If the notification indicates
successful key retrieval (i.e., a successful validation) (operation S408), the key manager forwards
the key block to the application (operation S410). Otherwise, the key manager discards the
current key block and notifies the application regarding key failure (operation S409).

[0051] FIG. 4B presents a flowchart illustrating the process of a partner key engine
validating a key block, in accordance with an embodiment of the present application. During
operation, the key manager receives a synchronization request for a key block with a hash and
time sequence identifier for the key block from the partner system (operation S431). The key
manager obtains the key block and its time sequence identifier from the local key pool, and
computes a hash of the key block (operation S432). The key manager then sends the local time
sequence identifier to the partner system (operation S433).

[0052] The key manager determines whether the local time sequence identifier is smaller
than the received one (operation S434). If so, the key manager discards the current key block,
and retrieves a key block and its time sequence identifier from the local key pool (operation
S435). The key manager then continues to check whether the local time sequence identifier is
smaller than the received one (operation S435). If the local time sequence identifier is not
smaller than the received one, the local and received time sequence identifiers are at least equal.
The key manager then checks whether the local and received hashes match (operation S436).

[0053] If the hashes do not match, the key manager discards the current key block and
notifies the application regarding key failure (operation S437) and notifies the partner system
regarding unsuccessful key retrieval (operation S438). If the hashes match, the key manager
forwards the key block to the application and notifies the partner system regarding the successful

key retrieval (i.e., a successful validation) (operation S439).

Exemplary Apparatus

10

15

20

25

30

35

WO 2017/142647 11 PCT/US2017/012868

[0054] FIG. 5 presents an exemplary key management system, in accordance with an
embodiment of the present application. A key management system 500 can facilitate efficient
category management. System 500 includes a processor 510, a memory 520, and a
storage device 530. Storage device 530 typically stores instructions that can be loaded into
memory 520 and executed by processor 510 to perform the methods described above. In one
embodiment, the instructions in storage device 530 can implement a quantum engine module
532, a time sequence identifier module 534, a key manager module 536, and a synchronization
module 538, all of which can communicate with each other through various means. Storage
device 530 can store a database and memory 520 can store a cache.

[0055] In an embodiment, modules 532, 534, 536, and 538 can be partially or entirely
implemented in hardware and can be part of processor 510. Further, in an embodiment, key
management system 500 may not include a separate processor and memory. Instead, in addition
to performing their specific tasks, modules 532, 534, 536, and 538, either separately or in
concert, may be part of special-purpose computation engines.

[0056] Storage device 530 stores programs to be executed by processor 510.
Specifically, storage device 530 stores a program that implements an e-commerce server and/or a
web server. During operation, an application program can be loaded from storage device 530
into memory 520 and executed by processor 510. As a result, key management system 500 can
perform the functions described above. Key management system 500 can be further coupled to
an optional display device 580 (e.g., a monitor, a display pad, a projector, etc.), a keyboard 560,
and a pointing device 570, and can be coupled via one or more network interfaces to a network
590.

[0057] During operation, key management system 500 can run on a computing device.
Quantum engine module 532 operates as the quantum engine of key management system 500.
Quantum engine module 532 obtains key sequences based on QKD, and if the length of the key
sequence reaches a threshold, generates key blocks of the threshold length, as described in
conjunction with FIG. 2A. Time sequence identifier module 534 determines a time sequence
identifier for a key block. Key manager module 536 operates as the key manager of the key
management system 500. Key manager module 536 obtains a key block and its associated time
sequence identifier, and stores them in a local key pool (e.g., in memory 520 and/or storage
device 530) , as described in conjunction with FIG. 2B. Upon receiving a request for a key from
an application, key manager module 536 provides a valid key block to the application.

[0058] Synchronization module 538, in conjunction with quantum engine module 532,
synchronizes a newly generated key block with a partner system, as described in conjunction

with FIGs. 3A and 3B. In this way, prior to providing a key block and its time sequence

10

15

20

25

30

35

WO 2017/142647 12 PCT/US2017/012868

identifier to key manager module 536, quantum engine module 532 ensures that the key block
and the time sequence identifier are synchronized. Furthermore, synchronization module 538, in
conjunction with key manager module 536, validates a key block requested by an application
with a partner system, as described in conjunction with FIGs. 4A and 4B. In this way, prior to
providing the key block to the application, key manager module 536 ensures the key block is
valid.

[0059] Embodiments of the present invention may be implemented on various universal
or dedicated computer system environments or configurations. For example, such computer
systems may include personal computers, server computers, handheld or portable devices, tablet-
type devices, multiprocessor systems, microprocessor-based systems, set-top boxes,
programmable electronic consumption devices, network PCs, minicomputers, mainframe
computers, distributed computing environments including any of the above systems or devices,
and the like.

[0060] Embodiments of the present invention may be described within the general
context of computer-executable instructions executed by a computer, such as a program module.
Generally, the program module includes a routine, a program, an object, an assembly, a data
structure and the like for implementing particular tasks or achieving particular abstract data
types. Embodiments of the present invention may also be implemented in distributed computing
environments, in which tasks are performed by remote processing devices connected via a
communication network. In the distributed computing environments, program modules may be
located in local and remote computer storage media that may include a storage device.

[0061] The data structures and computer instructions described in this detailed
description are typically stored on a computer-readable storage medium, which may be any
device or medium that can store code and/or data for use by a computer system. The computer-
readable storage medium includes, but is not limited to, volatile memory, non-volatile memory,
magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs),
DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-
readable media now known or later developed.

[0062] The methods and processes described in the detailed description section can be
embodied as code and/or data, which can be stored in a computer-readable storage medium as
described above. When a computer system reads and executes the code and/or data stored on the
computer-readable storage medium, the computer system performs the methods and processes
embodied as data structures and code and stored within the computer-readable storage medium.

[0063] Furthermore, methods and processes described herein can be included in hardware

modules or apparatus. These modules or apparatus may include, but are not limited to, an

10

WO 2017/142647 13 PCT/US2017/012868

application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a
dedicated or shared processor that executes a particular software module or a piece of code at a
particular time, and/or other programmable-logic devices now known or later developed. When
the hardware modules or apparatus are activated, they perform the methods and processes
included within them.

[0064] The above description is presented to enable any person skilled in the art to make
and use the embodiments, and is provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodiments will be readily apparent to
those skilled in the art, and the general principles defined herein may be applied to other
embodiments and applications without departing from the spirit and scope of the present
disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be

accorded the widest scope consistent with the principles and features disclosed herein.

10

15

20

25

30

WO 2017/142647 14 PCT/US2017/012868

What Is Claimed Is:

1. A computer-implemented method for efficient key management, comprising:

determining a key block from a key sequence obtained based on Quantum Key
Distribution (QKD) and a time sequence identifier for the key block;

synchronizing the key block with a corresponding key block of a partner key management
system based on a hash of the key block and the time sequence identifier;

in response to a successful synchronization, storing the key block and the time sequence
identifier in a local key pool;

in response to receiving a request for a key from an application, acquiring the key block
from the key pool and validating the key block with the partner key management system based
on a hash of the key block and the time sequence identifier; and

in response to a successful validation, providing the key block to the application.

2. The method of claim 1, wherein determining the key block from the key sequence
comprises:

determining whether a length of the key sequence has reached a threshold; and

in response to the length of the key sequence having reached the threshold, obtaining a

key block of threshold length from a beginning of the key sequence.

3. The method of claim 1, wherein determining the time sequence identifier includes

obtaining a base value and incrementing the base value.

4. The method of claim 1, wherein synchronizing the key block with the partner key
management system includes:

computing a hash of the key block;

sending the key block and the time sequence identifier to the partner key management
system; and

in response to detecting a time sequence identifier mismatch, setting a larger of local and

received time sequence identifiers to be a new base value and the time sequence identifier of the

key block.

5. The method of claim 4, further comprising discarding the key block in response to

determining a hash mismatch of the key block.

6. The method of claim 1, wherein the key pool is a data structure, and wherein a

10

15

20

25

30

WO 2017/142647 15 PCT/US2017/012868

respective element of the data structure includes a key block and an associated time sequence

identifier.

7. The method of claim 6, further comprising:

maintaining a read pointer, which indicates a location of the key pool from which the key
block is retrieved; and

maintaining a write pointer, which indicates a location of the key pool where a new key

block is added.

8. The method of claim 1, wherein validating the key block with a partner key
management system includes:

computing a hash of the key block;

obtaining a key block and the time sequence identifier from the partner key management
system; and

in response to detecting a time sequence identifier mismatch, identifying a second key

block that provides a time sequence identifier match.

9. The method of claim 7, wherein identifying a second key block includes:

determining that the time sequence identifier of the key block is less than the obtained
time sequence identifier; and

obtaining, from the key pool, a key block that has a time sequence identifier matching the
obtained time sequence identifier, thereby discarding any key block that has a time sequence

identifier less than the obtained time sequence identifier from the key pool.

10. A non-transitory machine-readable storage medium storing instructions that when
executed by one or more processors cause to perform:

determining a key block from a key sequence obtained based on Quantum Key
Distribution (QKD) and a time sequence identifier for the key block;

synchronizing the key block with a corresponding key block of a partner key management
system based on a hash of the key block and the time sequence identifier;

in response to a successful synchronization, storing the key block and the time sequence
identifier in a local key pool;

in response to receiving a request for a key from an application, acquiring the key block
from the key pool and validating the key block with the partner key management system based
on a hash of the key block and the time sequence identifier; and

in response to a successful validation, providing the key block to the application.

10

15

20

25

30

WO 2017/142647 16 PCT/US2017/012868

11. The non-transitory machine-readable storage medium of claim 10, wherein
determining the key block from the key sequence comprises:

determining whether a length of the key sequence has reached a threshold; and

in response to the length of the key sequence having reached the threshold, obtaining a

key block of threshold length from a beginning of the key sequence.

12. The non-transitory machine-readable storage medium of claim 10, wherein
determining the time sequence identifier includes obtaining a base value and incrementing the

base value.

13. The non-transitory machine-readable storage medium of claim 10, wherein
synchronizing the key block with the partner key management system includes:

computing a hash of the key block;

sending the key block and the time sequence identifier to the partner key management
system; and

in response to detecting a time sequence identifier mismatch, setting a larger of local and
received time sequence identifiers to be a new base value and the time sequence identifier of the

key block.

14. The non-transitory machine-readable storage medium of claim 13, wherein the
instructions that when executed by the one or more processors cause further to perform

discarding the key block in response to determining a hash mismatch of the key block.

15. The non-transitory machine-readable storage medium of claim 10, wherein the key
pool is a data structure, wherein a respective element of the data structure includes a key block

and an associated time sequence identifier.

16. The non-transitory machine-readable storage medium of claim 10, wherein the
instructions that when executed by the one or more processors cause further to perform:

maintaining a read pointer, which indicates a location of the key pool from which the key
block is retrieved; and

maintaining a write pointer, which indicates a location of the key pool where a new key

block is added.

17. The non-transitory machine-readable storage medium of claim 10, wherein validating

10

15

20

25

30

WO 2017/142647 17 PCT/US2017/012868

the key block with a partner key management system includes:

computing a hash of the key block;

obtaining a key block and the time sequence identifier from the partner key management
system; and

in response to detecting a time sequence identifier mismatch, identifying a second key

block that provides a time sequence identifier match.

18. The non-transitory machine-readable storage medium of claim 17, wherein
identifying a second key block includes:

determining that the time sequence identifier of the key block is less than the obtained
time sequence identifier; and

obtaining, from the key pool, a key block that has a time sequence identifier matching the
obtained time sequence identifier, thereby discarding any key block that has a time sequence

identifier less than the obtained time sequence identifier from the key pool.

19. A system for facilitating efficient key management, the computing system
comprising:

a processor; and

a memory coupled to the processor and storing instructions, which when executed by the
processor cause the processor to perform:

determining a key block from a key sequence obtained based on Quantum Key
Distribution (QKD) and a time sequence identifier for the key block;

synchronizing the key block with a corresponding key block of a partner key management
system based on a hash of the key block and the time sequence identifier;

in response to a successful synchronization, storing the key block and the time sequence
identifier in a local key pool;

in response to receiving a request for a key from an application, acquiring the key block
from the key pool and validating the key block with the partner key management system based
on a hash of the key block and the time sequence identifier; and

in response to a successful validation, providing the key block to the application.

20. The computing system of claim 19, wherein the key pool is a data structure, wherein
a respective element of the data structure includes a key block and an associated time sequence

identifier.

21. A method for efficient key management, comprising:

10

WO 2017/142647 138 PCT/US2017/012868

receiving a request for a key from an application running on a computing device;

acquiring a key block and a time sequence identifier for the key block from a key pool,
wherein the key pool comprises a key sequence obtained based on Quantum Key Distribution
(QKD);

validating the key block based on a hash of the key block and the time sequence
identifier; and

in response to a successful validation, providing the key block to the application.

22. The method of claim 21, wherein acquiring the key block from the key sequence
includes:

determining whether a length of the key sequence has reached a threshold; and

in response to the length of the key sequence having reached the threshold, obtaining the

key block of threshold length from a beginning of the key sequence.

PCT/US2017/012868

WO 2017/142647

1/8

oLl

el

vl

1442
d3OVNVIN ASX

ANION3 ANLNYND

lIlIlI«lllll

o€l
100d A3

llllllﬁlllll

8yl
NOILVOI'lddV

vel
dJOVNVYIN ASX

Y

8¢cl

NOILYOI'ddY

00l
LNIANOHIANS
d3Lndid1sid

WO 2017/142647 PCT/US2017/012868

2/8

RECEIVE KEY SEQUENCE BASED ON QKD

LENGTH 2
THRESHOLD?

S203
7~

GENERATE KEY BLOCK OF THRESHOLD LENGTH

- S204

OBTAIN TIME SEQUENCE IDENTIFIER FOR KEY BLOCK FROM
CURRENT BASE VALUE

S205
S~

ADD TIME SEQUENCE IDENTIFIER TO KEY BLOCK AT PRESET
POSITION

P S206
STORE KEY BLOCK AND ASSOCIATED TIME SEQUENCE
IDENTIFIER IN KEY POOL

FIG. 2A

PCT/US2017/012868

WO 2017/142647

3/8

a¢ 'Old

AT
NO019 AdM

0]0)e)

(414
ISL

0G¢ \

100d AdM

¥9¢
d3LNIOd JLIHM

c9¢
d341NIOd dv3d

WO 2017/142647 PCT/US2017/012868

4/8

GENERATE KEY BLOCK AND LOCAL TIME SEQUENCE
IDENTIFIER FOR KEY BLOCK

v Pt S303

OBTAIN LOCAL TIME SEQUENCE IDENTIFIER AND COMPUTE
LOCAL HASH OF KEY BLOCK

PARTNER SYSTEM

RECEIVE HASH AND TIME SEQUENCE IDENTIFIER FROM |

S305

NO

HASHES MATCH?

S306

TIME SEQUENCE YES

IDENTIFIERS MATCH?2

DETERMINE LARGER VALUE FROM LOCAL AND RECEIVED TIME
SEQUENCE IDENTIFIERS

SET DETERMINED VALUE AS NEW LOCAL BASE VALUE AND
TIME SEQUENCE IDENTIFIER FOR KEY BLOCK

FORWARD KEY BLOCK AND TIME SEQUENCE IDENTIFIER TO
KEY MANAGER, AND NOTIFY PARTNER SYSTEM REGARDING
SUCCESSFUL SYNCHRONIZATION (AND INCLUDE NEW BASE IN
NOTIFICATION)

DISCARD KEY BLOCK AND NOTIFY PARTNER SYSTEM
REGARDING UNSUCCESSFUL SYNCHRONIZATION
FIG. 3A

WO 2017/142647 PCT/US2017/012868

5/8

RECEIVE SYNCHRONIZATION REQUEST FROM REMOTE
SYSTEM FOR KEY BLOCK

OBTAIN LOCAL TIME SEQUENCE IDENTIFIER AND COMPUTE
LOCAL HASH OF KEY BLOCK

S333

SEND HASH AND TIME SEQUENCE IDENTIFIER TO PARTNER
SYSTEM

S334
7~

RECEIVE NOTIFICATION MESSAGE FROM PARTNER SYSTEM

SYNCHRONIZATION
SUCCESSFUL?
536
OBTAIN TIME SEQUENCE IDENTIFIER, IF ANY, FROM
NOTIFICATION MESSAGE, AND SET AS NEW LOCAL BASE
VALUE AND TIME SEQUENCE IDENTIFIER FOR KEY BLOCK
5337
FORWARD KEY BLOCK AND TIME SEQUENCE IDENTIFIER TO
KEY MANAGER
8338
DISCARD KEY BLOCK Iqi

FIG. 3B

WO 2017/142647 PCT/US2017/012868

6/8

RETRIEVE KEY BLOCK AND ITS TIME SEQUENCE IDENTIFIER
FROM LOCAL KEY POOL

RECEIVE TIME SEQUENCE IDENTIFIER FROM PARTNER
SYSTEM

TIME SEQUENCE
DENTIFIER SMALLER?

5406

DISCARD CURRENT KEY BLOCK AND RETRIEVE KEY BLOCK
AND ITS TIME SEQUENCE IDENTIFIER FROM LOCAL KEY POOL
S407

-~

RECEIVE NOTIFICATION MESSAGE FROM PARTNER SYSTEM

SUCCESSFUL
KEY RETRIEVAL ?

5409

DISCARD CURRENT KEY BLOCK AND NOTIFY APPLICATION
REGARDING KEY FAILURE

/8410

FORWARD KEY BLOCK TO APPLICATION I‘i

FIG. 4A

WO 2017/142647 PCT/US2017/012868

7/8

RECEIVE SYNCHRONIZATION REQUEST FOR KEY BLOCK WITH
HASH AND TIME SEQUENCE IDENTIFIER OF KEY BLOCK FROM
PARTNER SYSTEM

OBTAIN KEY BLOCK AND ITS TIME SEQUENCE IDENTIFIER
FROM LOCAL KEY POOL, AND COMPUTE HASH OF KEY BLOCK

SEND LOCAL TIME SEQUENCE IDENTIFIER TO PARTNER
SYSTEM

TIME SEQUENCE
IDENTIFIER SMALLER?

/8435

DISCARD CURRENT KEY BLOCK AND RETRIEVE KEY BLOCK
AND ITS TIME SEQUENCE IDENTIFIER FROM LOCAL KEY POOL

S436
YES

NO

DISCARD CURRENT KEY BLOCK AND NOTIFY APPLICATION
REGARDING KEY FAILURE

FIG. 4B

WO 2017/142647 PCT/US2017/012868

8/8
DISPLAY
580 NETWORK
590
KEY MANAGEMENT SYSTEM QUANTUM ENGINE
500 y MODULE
/ 532
/ \
/ r .
/ TIME SEQUENCE
[PROCESSOR N/ IDENTIFIER MODULE
510 STORAGE | 534
\ DEVICE | \
) | 530 - .
MEMORY KEY MANAGER
520 | |l 1\ MODULE
‘ \ 536
v
\
\ | SYNCHRONIZATION
\ MODULE
538
\ POINTING
KEYBOARD ~— DEVICE
560 570

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 17/12868

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - HO4L 9/08, HO4L 9/00 (2017.01)

CPC - HO4L9/08

égggming to International Patent Classification (IPC) or to both national classification and IPC

‘B. FIELDS SEARCHED

See Search History Document

Minimum documentation searched (classification system followed by classification symbols)

See Search History Document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

_See Search History Document

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

[:I Further documents are listed in the continuation of Box C.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2012/0250863 A1 (BUKSHPUN et al.) 04 October 2012 (04.10.2012), entire document, 1-22
especially abstract and para (para [0042], [0048], [0051], [0053]-[0055], [0066]-[0073], Fig. 1,
Fig. 9, Fig. 15.
A US 2013/0083926 A1 (HUGHES et al.) 04 April 2013 (04.04.2013), entire document. 1-22
A US 2008/0219449 A1 (BALL et al.) 11 September 2008 (11.09.2008), entire document. 1-22
A US 2013/0251145 A1 (LOWANS et al.) 26 September 2013 (26.09.2013), entire document. 1-22

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O" document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the apﬁlication but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

08 March 2017 (08.03.2017)

Date of mailing of the international search report

18 APR 2017

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report

