The present invention relates to a method of controlling phytopathogenic diseases on useful plants, or on propagation material thereof, which comprises applying to the useful plants, the locus thereof, or propagation material thereof, a composition comprising component A) and component B; wherein component A) is a compound of formula (I); or a tautomer of such a compound; and wherein component B) is Azoxystrobin and Cyproconazole; and wherein the useful plant is selected from the group consisting of: a fruit, a vegetable, a cereal, a leguminous plant, a beet, an oil plant, a fibre plant, a lauraceae plant, an ornamental plant, tobacco, a nut, coffee, sugar cane, tea, hops, durian, and a natural rubber plant.
The present invention relates to the use of compositions comprising carboxamide 3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid (9-isopropyl-1,2,3,4-tetrahydro-1,4-methano-naphthalen-5-yl)-amide for controlling phtopathic diseases on useful plants.

The carboxamide 3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid (9-isopropyl-1,2,3,4-tetrahydro-1,4-methano-naphthalen-5-yl)-amide, which has the formula (I):

\[
\text{CF}_2\text{H} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{H} \quad \text{H} \quad \text{CH}_3 \quad \text{CH}_3 \\
\text{CF}_2\text{H} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{H} \quad \text{H} \quad \text{CH}_3 \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{CH}_3
\]

is described in WO 04/035589, WO 2006/037632 and WO2007/1 15765, together with its use as a fungicide and in fungicidal compositions containing it. The compound of formula (I) occurs in four different stereoisomeric forms, all of which have fungicidal activity. These stereoisomers and mixtures thereof are described on pages 31-32 and 42-43 of WO 2006/037632.

It has been found that certain compositions comprising the compound of formula (I) are particularly effective at controlling phytopathogenic diseases, e.g. fungi, on particular useful plants.

In a first aspect, there is provided a method of controlling phytopathogenic diseases on a useful plant, or on propagation material thereof, which comprises applying to the useful plant, the locus thereof, or propagation material thereof, a composition comprising

A) a compound of formula (I):

\[
\text{CF}_2\text{H} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{H} \quad \text{H} \quad \text{CH}_3 \quad \text{CH}_3 \\
\text{CF}_2\text{H} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{H} \quad \text{H} \quad \text{CH}_3 \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{CH}_3
\]
or a tautomer of such a compound;
and B) Azoxystrobin and Cyproconazole
and wherein the useful plant is selected from the group consisting of:
a fruit, a vegetable, a cereal, a leguminous plant, a beet, an oil plant, a fibre plant, a
lauraceae plant, an ornamental plant, tobacco, a nut, coffee, sugar cane, tea, hops, durian,
and natural rubber plants.

The fruit may be selected from the group consisting of: pomes, stone fruits and soft fruits,
e.g. from the group consisting of: apples, pears, banana, plums, peaches, almonds, cherries,
strawberries, raspberries, blackberries, melons, oranges, lemons, grapefruit and mandarins.
Preferably the fruit is grape vine or banana.

The leguminous plant may be selected from the group consisting of: beans, lentils, peas and soybeans.

The oil plant may be selected from the group consisting of: rape, mustard, poppy, olives,
sunflowers, coconut, castor oil plants, cocoa beans and groundnuts.

The vegetable may be selected from the group consisting of: potato, carrot, spinach, lettuce,
asparagus, cabbage, cucurbits, paprika, onion, parsnip, courgette, cucumber, marrow,
avocado, and aubergine. Preferably the vegetable is potato.

The cereal may be selected from the group consisting of: wheat, barley, maize, rice, oat, rye,
buckwheat, quinoa, sorghum, triticale, and fonio. Preferably the cereal is wheat, barley,
maize, rice or rye, more preferably wheat, rice, maize or barley, most preferably wheat.

The beet may be selected from the group consisting of: sugar beet and fodder beet.

The fibre plant may be selected from the group consisting of: cotton, flax, hemp and jute.

The lauraceae plant may be selected from the group consisting of: cinnamon and camphor.

The ornamental plant may be selected from the group consisting of: flowers, shrubs, broad-leaved trees and evergreens.
Compositions comprising as active ingredient the compound of formula I may be used to control one or more of the following diseases D1 to D48 of useful plants, which are described as pathogens occurring on useful plants: Botrytis cinerea on grape (D1); Botrytis cinerea on pulse crops (D2); Botrytis cinerea on strawberries (D3); Botrytis cinerea on sunflower (D4); Botrytis cinerea on tomatoes (D5); Botrytis cinerea on vegetables (D6); Cercospora arachidicola in peanuts (D7); Cochliobolus sativus in wheat (D8); Cochliobolus sativus in barley (D9); Colletotrichum species in pulse crops (D10); Erysiphe cichoracearum in cucurbits (D11); Erysiphe graminis on barley (D12); Erysiphe graminis on wheat (D13); Fusarium species in cereals and maize (D14); Gaumannomyces graminis in cereals and lawns (D15); Guignardia bidwellii in vines (D16); Helminthosporium species in maize, rice and potatoes (D17); Hemileia vastatrix on coffee (D18); Microdochium species in wheat and rye (D18); Mycosphaerella fijiensis on banana (D19); Phakopsora species in soybean (D20); Phomopsis viticola in vines (D21); Phragmidium mucronatum in roses (D22); Podosphaera species in fruits (D23); Pyrenophora species in barley (D24); Pyricularia oryzae in rice (D25); Pseudocercosporella herpotrichoides in wheat (D26); Puccinia recondita on barley (D27); Puccinia recondita on wheat (D28); Puccinia striiformis on wheat (D29); Pyrenophora teres on barley (D30); Ramularia collo-cygni in barley (D31); Rhizoctonia solani on cotton (D32); Rhizoctonia solani on potato (D33); Rhizoctonia solani on rice (D34); Rhizoctonia solani on turf (D35); Rhynchosporium secalis on barley (D36); Sclerotinia sclerotiorum on oilseed rape (D37); Sclerotinia homeocarpa on turf (D38); Septoria glycines on soybean (D39);Septoria nodorum on wheat (D40); Septoria tritici on wheat (D41); Sphacelotheca reiliana in maize (D42); Sphaerotheca fulginea in cucurbits (D43);Tilletia species in cereals (D44); Uncinula necator in vines (D45); Urocystis occulta in rye (D46); Ustilago species in cereals and maize (D47) and/or Venturia inequalis on apple (D48).

A composition comprising as active ingredients at least a compound of formula I, Azoxystrobin and Cyproconazole may be used to control one or more of the plant diseases selected from D1 to D48 as described above. Azoxystrobin and Cyproconazole are included in "The Pesticide Manual" [The Pesticide Manual - A World Compendium; Thirteenth Edition; Editor: C. D. S. Tomlin; The British Crop Protection Council].

The weight ratio of A) to B) in the composition may be between 2000:1 and 1:2000, e.g. 100:1 to 1:100, e.g. 50:1 to 1:50. The weight ratio of Azoxystrobin and Cyproconazole in the
composition, where applicable, may be between 2000:1 and 1:2000, e.g. 100:1 to 1:100, e.g. 50:1 to 1:50.

The composition may be used as a fungicide in straight form or it may comprise a solid or liquid carrier or diluent and optionally a wetting, dispersing or emulsifying agent. Examples of such formulations are given in WO2006/037632 and in WO 2007/1 15765. The compound of formula I may also be used with one or more other pesticides, such fungicides, insecticides, herbicides or growth regulators. Examples for such combinations are given in WO2006/037632.

It is preferred that the formulations include from 0.01 to 90% by weight of active agent, from 0 to 20% agriculturally acceptable surfactant and 10 to 99.99% solid or liquid formulation inerts and adjuvant(s), the active agent consisting of at least component A) together with component B) and optionally other active agents, particularly microbicides or conservatives or the like. Concentrated forms of compositions generally contain in between about 2 and 80%, preferably between about 5 and 70% by weight of active agent. Application forms of formulation may for example contain from 0.01 to 20% by weight, preferably from 0.01 to 5% by weight of active agent. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ diluted formulations.

The amount of a composition according to the invention to be applied, will depend on various factors, such as the compounds employed; the subject of the treatment; the type of treatment, such as, for example spraying, dusting or seed dressing; the purpose of the treatment, such as, for example prophylactic or therapeutic; the type of fungi to be controlled or the application time.

In agricultural practice the application rates of the compositions according to the invention depend on the type of effect desired, and typically range from 7 to 12000 g of total composition per hectare, more preferably from 20 to 4000 g of total composition per hectare, most preferably from 50 to 2000 g of total composition per hectare. The compositions of the invention are preferably applied at a rate of 1 to 5000 g a.i./ha, e.g. 5 to 2000 g a.i./ha, particularly 10 to 1000 g a.i./ha, e.g. at least 50, 75, 100, 200, 500, 800, 1000, 1500 g a.i./ha, e.g. less than 50, 75, 100, 200, 500, 800, 1000, 1500 g a.i./ha. For example, the compound of formula I, Azoxystrobin and Cyproconazole are, together or separately, applied at a rate of 1 to 5000 g a.i./ha, e.g. 5 to 2000 g a.i./ha, particularly 10 to 1000 g a.i./ha, e.g. at least 50,
75, 100, 200, 500, 800, 1000, 1500 g a.i./ha, e.g. less than 50, 75, 100, 200, 500, 800, 1000, 1500 g a.i./ha.

When the compositions according to the invention are used for treating seed, rates of 0.5 to 100 g of component A) per 100 kg of seed, preferably from 2.5 to 40 g per 100 kg of seed, more preferably from 5 to 10 g per 100 kg of seed, and 0.01 to 200 g of component B) per 100 kg of seed, preferably from 0.1 to 50 g per 100 kg of seed, more preferably from 1 to 20 g per 100 kg of seed are generally sufficient.

The compositions can be used for preventative, protectant, prophylactic and eradicant treatments and can be applied in a number of ways. Application can be to any part of the useful plant including the foliage, stems, branches or roots, to soil surrounding the roots, to the soil generally, or to paddy water. Preferably, the compositions can be applied directly to the foliage of a useful plant by spraying or dusting.

The compositions may be employed in any conventional form, for example in the form of a twin pack, an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP) or any technically feasible formulation in combination with agriculturally acceptable adjuvants. The type of compositions used in any instance will depend upon the particular purpose envisaged.

Throughout this document the expression "composition" stands for the various mixtures or combinations of component (A) and component (B), for example in a single "ready-mix" form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a "tank-mix", and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days. The order of applying the components (A) and (B) is not essential for working the present invention.

The active ingredient combinations are effective especially against phytopathogenic fungi belonging to the following classes: Ascomycetes (e.g. Venturia, Podosphaera, Erysiphe,
Monilinia, Mycosphaerella, Uncinula); Basidiomycetes (e.g. the genus Hemileia, Rhizoctonia, Phakopsora, Puccinia, Ustilago, Tilletia); Fungi imperfecti (also known as Deuteromycetes; e.g. Botrytis, Helminthosporium, Rhynchosporium, Fusarium, Septoria, Cercospora, Alternaria, Pyricularia and Pseudocercosporella); Oomycetes (e.g. Phytophthora, Peronospora, Pseudoperonospora, Albugo, Bremia, Pythium, Pseudosclerospora, Plasmopara).

The term "useful plants" is to be understood as including also useful plants that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors or PPO (protoporphyrinogen-oxidase) inhibitors) as a result of conventional methods of breeding or genetic engineering. An example of a crop that has been rendered tolerant to imidazolinones, e.g. imazamox, by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola). Examples of crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady®, Herculex ® and LibertyLink®.

The term "useful plants" is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.

The term "useful plants" is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-0 392 225). Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818, and EP-A-0 353 191. The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.

The term "locus" of a useful plant as used herein is intended to embrace the place on which the useful plants are growing, where the plant propagation materials of the useful plants are
sown or where the plant propagation materials of the useful plants will be placed into the soil. An example for such a locus is a field, on which crop plants are growing.

The term "plant propagation material" is understood to denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes. There may be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of plants. Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion. Preferably "plant propagation material" is understood to denote seeds.

With the compositions according to the invention it is possible to inhibit or destroy the phytopathogenic microorganisms which occur in plants or in parts of plants (fruit, blossoms, leaves, stems, tubers, roots) in different useful plants, while at the same time the parts of plants which grow later are also protected from attack by phytopathogenic microorganisms.

The compositions may be produced in conventional manner, e.g. by mixing the active ingredients with at least one appropriate inert formulation adjuvant (for example, diluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects). Also conventional slow release formulations may be employed where long lasting efficacy is intended. Particularly formulations to be applied in spraying forms, such as water dispersible concentrates (e.g. EC, SC, DC, OD, SE, EW, EO and the like), wettable powders and granules, may contain surfactants such as wetting and dispersing agents and other compounds that provide adjuvancy effects, e.g. the condensation product of formaldehyde with naphthalene sulphonate, an alkylaryl sulphonate, a lignin sulphonate, a fatty alkyl sulphate, and ethoxylated alkylphenol and an ethoxylated fatty alcohol.

A seed dressing formulation is applied in a manner known per se to the seeds employing the compositions according to the invention and a diluent in suitable seed dressing formulation form, e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds. Such seed dressing formulations are known in the art. Seed dressing formulations may contain the single active ingredients or the combination of active ingredients in encapsulated form, e.g. as slow release capsules or microcapsules.
Claims

1. A method of controlling phytopathogenic diseases on useful plants, or on propagation material thereof, which comprises applying to the useful plants, the locus thereof, or propagation material thereof, a composition comprising component A) and component B);

 wherein component A) is a compound of formula (I):

 \[
 \text{CF}_2\text{H} \quad \text{O} \quad \text{N} \quad \text{CH}_3 \\
 \text{N} \quad \text{H} \\
 \text{CH}_3
 \]

 or a tautomer of such a compound;

 and wherein component B) is

 Azoxystrobin and Cyproconazole;

 and wherein the useful plant is selected from the group consisting of:

 a fruit, a vegetable, a cereal, a leguminous plant, a beet, an oil plant, a fibre plant, a lauraceae plant, an ornamental plant, tobacco, a nut, coffee, sugar cane, tea, hops, durian, and a natural rubber plant.

2. A method according to claim 1, wherein:

 the fruit is selected from the group consisting of: apples, pears, banana, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries, melons, oranges, lemons, grapefruit and mandarins;

 the leguminous plant is selected from the group consisting of: beans, lentils, peas and soybeans;

 the oil plant is selected from the group consisting of: rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans and groundnuts;

 the vegetable is selected from the group consisting of: potato, carrot, spinach, lettuce, asparagus, cabbage, cucurbits, paprika, onion, parsnip, courgette, cucumber, marrow, avocado, and aubergine;

 the cereal is selected from the group consisting of: wheat, barley, maize, rice, oat, rye, buckwheat, quinoa, sorghum, triticale, and fonio;
the beet is selected from the group consisting of: sugar beet and fodder beet;
the fibre plant is selected from the group consisting of: cotton, flax, hemp and jute;
the lauraceae plant is selected from the group consisting of: cinnamon and camphor;
the ornamental plant is selected from the group consisting of: flowers, shrubs, broad-leaved trees and evergreens.

3. A method according to claim 1, wherein the useful plant is a cereal selected from the group consisting of: wheat, barley, maize, and rice.

4. A method according to claim 1, wherein the method is a method of protecting against one selected from the group consisting of:
 - Botrytis cinerea on grape (D1);
 - Botrytis cinerea on pulse crops (D2);
 - Botrytis cinerea on strawberries (D3);
 - Botrytis cinerea on sunflower (D4);
 - Botrytis cinerea on tomatoes (D5);
 - Botrytis cinerea on vegetables (D6);
 - Cercospora arachidicola in peanuts (D7);
 - Cochliobolus sativus in wheat (D8);
 - Cochliobolus sativus in barley (D9);
 - Colletotrichum species in pulse crops (D10);
 - Erysiphe cichoracearum in cucurbits (D11);
 - Erysiphe graminis on barley (D12);
 - Erysiphe graminis on wheat (D13);
 - Fusarium species in cereals and maize (D14);
 - Gaumannomyces graminis in cereals and lawns (D15);
 - Guignardia bidwellii in vines (D16);
 - Helminthosporium species in maize, rice and potatoes (D17);
 - Hemileia vastatrix on coffee (D18);
 - Microdochium species in wheat and rye (D18);
 - Mycosphaerella fijiensis on banana (D19);
 - Phakopsora species in soybean (D20);
 - Phomopsis viticola in vines (D21);
 - Phragmidium mucronatum in roses (D22);
 - Podosphaera species in fruits (D23);
 - Pyrenophora species in barley (D24);
Pyricularia oryzae in rice (D25);
Pseudocercosporella herpotrichoides in wheat (D26);
Puccinia recondita on barley (D27);
Puccinia recondita on wheat (D28);
Puccinia striiformis on wheat (D29);
Pyrenophora teres on barley (D30);
Ramularia collo-cygni in barley (D31);
Rhizoctonia solani on cotton (D32);
Rhizoctonia solani on potato (D33);
Rhizoctonia solani on rice (D34);
Rhizoctonia solani on turf (D35);
Rhynchosporium secalis on barley (D36);
Sclerotinia sclerotiorum on oilseed rape (D37);
Sclerotinia homeocarpa on turf (D38);
Septoria glycines on soybean (D39);
Septoria nodorum on wheat (D40);
Septoria tritici on wheat (D41);
Sphacelotheca reilliana in maize (D42);
Sphaerotheca fuliginea in cucurbits (D43);
Tilletia species in cereals (D44);
Uncinula necator in vines (D45);
Urocystis occulta in rye (D46);
Ustilago species in cereals and maize (D47); and
Venturia inequalis on apple (D48).

5. A method according to anyone of claims 1 to 5, wherein the weight ratio of A) to B) is between 2000:1 and 1:2000.

6. A method according to anyone of claims 1 to 5, wherein the weight ratio of A) to B) is between 2000:1 and 1:2000, and the weight ratio of Azoxystrobin to Cyproconazole in component B) is between 2000:1 and 1:2000.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A01N45/02 A01N43/54 A01N43/653 A01P3/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2007/115765 AI (SYNGENTA PARTICIPATIONS AG [CH]; HAAS ULRICH JOHANNES [CH]; MI LLAS COLI) 18 October 2007 (2007-10-18) cited in the application on page 1 - page 2, page 13, line 8, page 13, line 32 - page 14, line 10, page 18, claim 12</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" later document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "Z" document member of the same patent family

Date of the actual completion of the international search
21 April 2011

Date of mailing of the international search report
06/05/2011

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax. (+31-70) 340-3016

Authorized officer
Sawi cki, Marci n
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wo 2007115765 Al</td>
<td>18-10-2007</td>
<td>AT 462302 T</td>
<td>15-04-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2647878 Al</td>
<td>18-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101460061 A</td>
<td>17-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2012592 T3</td>
<td>12-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2012592 Al</td>
<td>14-01-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2343551 T3</td>
<td>03-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009532402 T</td>
<td>10-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090031503 A</td>
<td>26-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2012592 E</td>
<td>21-06-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2008144010 A</td>
<td>20-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI 2012592 TI</td>
<td>31-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010216825 Al</td>
<td>26-08-2010</td>
</tr>
</tbody>
</table>