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CORRECTING COMPONENT FAILURES IN ION IMPLANT SEMICONDUCTOR
MANUFACTURING TOOL

TECHNICAL FIELD
[0001] The present disclosure relates to correcting component failures, and, more

particularly, correcting component failures in semiconductor manufacturing tools.

BACKGROUND

[0002] One of the limiting factors of uninterrupted performance of manufacturing
equipment is component failures. For example, failure of flood guns and source guns may
interrupt performance of ion implant tools. Failure of components leads to unplanned down time

which is a high cost for users.

SUMMARY

[0003] The following is a simplified summary of the disclosure in order to provide a basic
understanding of some aspects of the disclosure. This summary is not an extensive overview of
the disclosure. It is intended to neither identify key or critical elements of the disclosure, nor
delineate any scope of the particular implementations of the disclosure or any scope of the
claims. Its sole purpose is to present some concepts of the disclosure in a simplified form as a
prelude to the more detailed description that is presented later.

[0004] In an aspect of the disclosure, a method may include receiving, from a plurality of
sensors associated with an ion implant tool, current sensor data corresponding to a plurality of
features. The method may further include performing feature analysis to generate a plurality of
additional features for the current sensor data. The method may further include providing the
plurality of additional features as input to a trained machine learning model. The method may
further include obtaining one or more outputs from the trained machine learning model. The one
or more outputs may be indicative of a level of confidence of a predicted window. The method
may further include predicting, based on the level of confidence of the predicted window,
whether one or more components of the ion implant tool are within a pre-failure window. The
method may further include, responsive to predicting that the one or more components are within
the pre-failure window, performing a corrective action associated with the ion implant tool.
[0005] In a further aspect of the disclosure, a method may include receiving, from a plurality
of sensors associated with an ion implant tool, historical sensor data corresponding to a plurality
of features. The method may further include determining a plurality of windows comprising a
normal operation window for a first subset of the historical sensor data and a pre-failure window
for a second subset of the historical sensor data. The method may further include performing

feature analysis to generate a plurality of additional features for the historical sensor data. The
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method may further include training a machine learning model using training data including the
plurality of additional features and target output including the plurality of windows to generate a
trained machine learning model. The trained machine learning model may be capable of
generating one or more outputs indicative of whether one or more ion implant tool components
are within the pre-failure window.

[0006] In a further aspect of the disclosure, a system may include a memory and a
processing device coupled to the memory. The processing device may receive, from a plurality
of sensors associated with an ion implant tool, current sensor data corresponding to a plurality of
features. The processing device may further perform feature analysis to generate a plurality of
additional features for the current sensor data. The processing device may further provide the
plurality of additional features as input to a trained machine learning model. The processing
device may further obtain one or more outputs from the trained machine learning model. The one
or more outputs may be indicative of a level of confidence of a predicted window. The
processing device may further predict, based on the level of confidence of the predicted window,
whether one or more components of the ion implant tool are within a pre-failure window. The
processing device may further, responsive to predicting that the one or more components are

within the pre-failure window, perform a corrective action associated with the ion implant tool.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present disclosure is illustrated by way of example, and not by way of limitation
in the figures of the accompanying drawings.

[0008] FIG. 1 is a block diagram illustrating an exemplary system architecture, according to
certain embodiments.

[0009] FIG. 2 is an example data set generator to create data sets for a machine learning
model, according to certain embodiments.

[0010] FIG. 3 is a block diagram illustrating a system for predicting component failure,
according to certain embodiments.

[0011] FIGS. 4-6 are flow diagrams illustrating example methods for predicting component
failure, according to certain embodiments.

[0012] FIGS. 7A-B are block diagrams illustrating systems for predicting component
failure, according to certain embodiments.

[0013] FIGS. 8A-B are graphs illustrating predicting component failure, according to certain
embodiments.

[0014] FIG. 9 is a block diagram illustrating a computer system, according to certain

embodiments.
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DETAILED DESCRIPTION

[0015] Described herein are technologies directed to correcting component failures in
semiconductor manufacturing tools. Component failures interrupt performance of manufacturing
equipment. For example, failure of flood guns and source guns interrupt performance of ion
implant semiconductor manufacturing tools. Failure of components may lead to unplanned down
time, high costs for users, damage of equipment and products, and so forth. Replacing
components prematurely may cause a high maintenance cost, waste of components, and
unneeded time spent replacing components.

[0016] The devices, systems, and methods disclosed herein provide correcting component
failures in semiconductor manufacturing tools (e.g., end of life prediction for the plasma source
gun in an ion implant semiconductor manufacturing tool). The devices, systems, and methods
disclosed herein may provide critical component failure prediction (e.g., by using a deep learning
model) for ion implanting tools using derived sensor readings. A processing device may receive,
from a plurality of sensors associated with manufacturing equipment (e.g., an ion implant tool),
current sensor data corresponding to features (e.g., pressure, temperature, flow, power, etc.). The
processing device may further perform feature analysis to generate additional features for the
current sensor data. Additional features may be generated based on one or features. For example,
additional features may include one or more of a ratio, a range, delta, a maximum value, etc. The
processing device may further provide the additional features as input to a trained machine
learning model and subsequently obtain one or more outputs from the trained machine learning
model. The one or more outputs may be indicative of a level of confidence of a predicted
window. The processing device may predict, based on the level of confidence of the predicted
window, whether one or more components of the ion implant tool are within a pre-failure
window. A pre-failure window may be a window of time (e.g., 24 hours, 48 hours) before failure
of a component is predicted to occur. The processing device may further, responsive to
predicting that the one or more components are within the pre-failure window, perform a
corrective action associated with the ion implant tool. The corrective action (e.g., correcting
and/or preemptively correcting component failures) may include providing an alert, interrupting
operation of the manufacturing equipment, and/or causing the one or more components to be
replaced.

[0017] The devices, systems, and methods disclosed herein also provide training of a
machine learning model for prediction of failure of components. In some embodiments, a
processing device may receive, from sensors associated with manufacturing equipment (e.g., an
ion implant tool), historical sensor data corresponding to features (e.g., historical values for

sensor, pressure, flow, power, etc. data). The processing device may further determine windows
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corresponding to the historical sensor data. The windows may include a normal operation
window for a first subset of the historical sensor data and a pre-failure window for a second
subset of the historical sensor data. The processing device may further perform feature analysis
to generate additional features for the historical sensor data (e.g., ratio, range, delta, maximum,
etc.). The processing device may further train a machine learning model using training data
including the additional features and target output including the windows to generate a trained
machine learning model. The trained machine learning model may be capable of generating one
or more outputs indicative of whether one or more components (e.g., ion implant tool
components) are within the pre-failure window (e.g., to perform corrective action associated with
one or more components of ion implant tools). The machine learning model may be trained using
historical sensor data associated with first manufacturing equipment and may be used to predict
component failure for other manufacturing equipment.

[0018] Aspects of the present disclosure also result in technological advantages.
Conventionally, a component is used until failure or is replaced prematurely. By a processing
device predicting a pre-failure window (e.g., end of life, 24 hours, 48 hours) for one or more
components, the processing device may cause corrective action so that the one or more
components are replaced before failure. Replacing the components before failure (e.g., instead of
after failure) reduces downtime, reduces damage to the manufacturing equipment and products,
reduces unscheduled maintenance, reduces expedited shipping of replacement components, etc.
Replacing the components within the pre-failure window (e.g., instead of arbitrarily replacing
components very prematurely) reduces waste of current components that still are usable, reduces
cost associated with too frequently replacing components, reduces maintenance, etc. Receiving
sensor data, reducing noise, and performing feature analysis (prior to using the trained machine
learning model to predict whether one or more components are within the pre-failure window)
provides significant reduction in energy consumption (e.g., battery consumption), bandwidth,
latency, and so forth compared to analyzing all of the sensor data (e.g., including noise and all of
the features).

[0019] FIG. 1 is a block diagram illustrating an exemplary system architecture 100,
according to certain embodiments. The system architecture 100 includes client device 120,
failure prediction server 130, and a data store 140. The failure prediction server 130 may be part
of a failure prediction system 110.

[0020] The client device 120, failure prediction server 130, data store 140, server machine
170, server machine 180, manufacturing equipment 124 (e.g., ion implant tools, etc.), and
sensors 126 may be coupled to each other via a network 160 for failure prediction. In some

embodiments, network 160 is a public network that provides client device 120 with access to the
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failure prediction server 130, data store 140, and other publicly available computing devices. In
some embodiments, network 160 is a private network that provides client device 120 with access
to the failure prediction server 130, data store 140, and other privately available computing
devices. Network 160 may include one or more wide area networks (WANSs), local area
networks (LANSs), wired networks (e.g., Ethernet network), wireless networks (e.g., an 802.11
network or a Wi-Fi network), cellular networks (e.g., a Long Term Evolution (LTE) network),
routers, hubs, switches, server computers, and/or a combination thereof.

[0021] The manufacturing equipment 124 may be used for semiconductor processing. The
manufacturing equipment 124 may include an ion implant tool. An ion implant tool may insert
atoms into a semiconductor device to control the flow of electricity through the semiconductor
device (e.g., to make transistors, etc.). The manufacturing equipment 124 (e.g., ion implant tool)
may include components, such as flood gun 124A, source gun 124B, etc. A flood gun 124A may
be an electromechanical device that provides a steady flow of low-energy electrons to a target
(e.g., flood area, an area on an insulator or a semiconductor). A source gun 124B (e.g., plasma
source gun) may be a plasma source for depositing plasma on a semiconductor device (¢.g., ¢ject
plasma with a significant streaming velocity to have an energetic deposition of the plasma on the
semiconductor device).

[0022] A limiting factor of uninterrupted performance of the manufacturing equipment 124
(e.g., ion implant tool) may be failure of one or more components (e.g., flood gun 124A, source
gun 124B, etc.) which may lead to unplanned down time. Sensors 126 may capture sensor data
(e.g., raw sensor data, temperature, pressure, power, flow, etc.) associated with the
manufacturing equipment 124. For example, an ion implanter tool may be equipped with
hundreds of sensors with acquisition speed of thousands of hertz. Given the number of sensors,
speed of acquisition of sensor data, and life expectancy of components (e.g., six months, etc.),
the volume of sensor data (e.g., raw sensor data) captured may be very large. The sensor data
142 from sensors 126 may be stored in the data store 140.

[0023] As described herein, semiconductor processing may include one or more of
semiconductor manufacturing for wafers or display manufacturing (e.g., flat panel display
manufacturing). Failure prediction may be associated with one or more components of
semiconductor manufacturing equipment (e.g., predicting failure of components used in
semiconductor manufacturing for wafers) or display manufacturing (e.g., predicting failure of
components used in display manufacturing).

[0024] The client device 120 may include a computing device such as personal computers
(PCs), laptops, mobile phones, smart phones, tablet computers, netbook computers, network

connected televisions (“smart TV”), network-connected media players (e.g., Blu-ray player), a

-5-



WO 2020/159730 PCT/US2020/014197

set-top-box, over-the-top (OTT) streaming devices, operator boxes, etc. The client device 120
may be capable of transmitting information (e.g., a selection of manufacturing equipment 124 for
the failure prediction) via network 160 and receiving indications associated a predicted failure
(e.g, level of confidence of a predicted window, instructions to execute a corrective action, etc.)
via network 160. The instructions associated with a predicted failure may specify that one or
more components of the manufacturing equipment 124 are currently associated with a predicted
window 156B of time (e.g., normal operation window, a pre-failure window, a failure window,
etc.). The instructions associated with a predicted failure may indicate one or more of an amount
of time until failure, components that are to be replaced, how to replace the components, whether
operation of the manufacturing equipment 124 has been interrupted (e.g., has been shut down),
or whether operation of the manufacturing equipment 124 should be interrupted. The client
device 120 may display an alert via a graphical user interface (GUI) responsive to receiving the
indications associated with a predicted failure. Each client device 120 may include an operating
system that allows users to generate, view, and edit information and view alerts.

[0025] The client device 120 may include a corrective action component 122. Corrective
action component 122 may receive user input (e.g., via a GUI displayed via the client device
120) and may generate, based on the user input, an indication that failure prediction is to be
executed for manufacturing equipment 124. The corrective action component 122 may transmit
the indication to the failure prediction server 130. In some embodiments, corrective action
component 122 transmits sensor data 142 (e.g., from sensors 126 coupled to manufacturing
equipment 124) to failure prediction server 130. The corrective action component 122 may
receive an indication associated with a predicted failure from the failure prediction server 130
(e.g., responsive to the failure prediction server 130 determining a pre-failure window). The
corrective action component 122 may cause a corrective action to be performed. A corrective
action may refer to correcting and/or preemptively correcting component failures (e.g., based on
predicting a pre-failure window). For example, to cause a corrective action to be performed,
corrective action component 122 may provide an alert (e.g., via a GUI of client device 120, via
manufacturing equipment 124, etc.), may interrupt operation of the manufacturing equipment
124 (e.g., shut down one or more portions of the manufacturing equipment124), and/or may
cause the one or more components to be replaced.

[0026] The failure prediction server 130 may include one or more computing devices such
as a rackmount server, a router computer, a server computer, a personal computer, a mainframe
computer, a laptop computer, a tablet computer, a desktop computer, etc. The failure prediction
server 130 may include a failure prediction component 132. In some embodiments, the failure

prediction component 132 may receive sensor data 142 (e.g., from sensors 126 coupled to
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manufacturing equipment 124). The sensor data 142 may include recorded values over time and
a corresponding time stamp for each value (e.g., a first recorded temperature at a first point in
time, a second recorded temperature at a second point in time, etc.). The sensor data 142 may be
raw trace data (e.g., without any feature engineering). The failure prediction component 132 may
remove noise from current sensor data 150, perform feature analysis to generate additional
features for the current sensor data 150, predict whether one or more components of the
manufacturing equipment 124 are within a pre-failure window, and perform a corrective action
associated with the manufacturing equipment 124 responsive to predicting the one or more
components are within the pre-failure window.

[0027] To predict whether components are within the pre-failure window, the failure
prediction component 132 may provide the current sensor data 150 (e.g., current additional
features 154) to the model 190 (e.g., a convolutional long short-term memory (LSTM)
(convLSTM) model, a deep learning model, a random forest model, etc.) for failure prediction.
The failure prediction component 132 may receive a level of confidence 158 for a predicted
window 156B from the model 190 based on the current sensor data 150.

[0028] Each feature (e g., historical feature 146, current feature 152, etc.) of the sensor data
150 may include a sequence (e.g., first value, second value, etc.), timestamps (e.g., time at first
value, time at second value, etc.), and an indication of which sensor 126 corresponds to the
sequence. Each additional feature (e.g., historical additional feature 148, current additional
feature 154) may be generated by performing one or more operations on one or more of the
features. The one or more operations may include one or more of a ratio, a range, a delta, or a
maximum value of features (e.g., corresponding sensor data) from one or more of the plurality of
sensors 126. For example, a first feature may be a sequence of pressure measurements received
from a pressure sensor of the sensors 126, a second feature may be a sequence of temperature
measurements received from a temperature sensor of the sensors 126, and a first additional
feature may be a ratio of the sequence of pressure measurements divided by each corresponding
temperature measurement (e.g., first additional feature may be a sequence including a first
pressure value at a first point in time divided by a first temperature value at the first point in
time, a second pressure value at a second point in time divided by a second temperature value at
the second point in time, etc.).

[0029] Data store 140 may be a memory (e.g., random access memory), a drive (e.g., a hard
drive, a flash drive), a database system, or another type of component or device capable of
storing data. Data store 140 may include multiple storage components (e.g., multiple drives or
multiple databases) that may span multiple computing devices (e.g., multiple server computers).

The data store 140 may store one or more of sensor data 142 (e.g., historical sensor data 144,
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historical features 146, historical additional features 148, current sensor data 150, current
features 152, current additional features 154, etc.), windows 156 (e.g., historical windows 156A,
predicted windows 156B), levels of confidence 158, etc.

[0030] In some embodiments, failure prediction system 110 further includes server machine
170 and server machine 180. The server machines 170 and 180 may be one or more computing
devices (such as a rackmount server, a router computer, a server computer, a personal computer,
a mainframe computer, a laptop computer, a tablet computer, a desktop computer, etc.), data
stores (e.g., hard disks, memories databases), networks, software components, or hardware
components.

[0031] Server machine 170 includes a data set generator 172 that is capable of generating
one or more data sets (e.g., a set of data inputs 210 and a set of target outputs 220 in FIG. 2) to
train, validate, or test a machine learning model 190. Some operations of data set generator 172
are described in detail below with respect to FIGS. 2 and 6. In some embodiments, the data set
generator 172 may partition the historical sensor data 144 into a training set (e.g., sixty percent
of the historical sensor data 144), a validating set (¢.g., twenty percent of the historical sensor
data 144), and a testing set (e.g., twenty percent of the historical sensor data 144). Server
machine 180 includes a training engine 182. In some embodiments, server machine 180 includes
a training engine 182, a validation engine 184, and a testing engine 186. The training engine 182
may be capable of training a machine learning model 190 using the training set from data set
generator 172. The training engine 182 may generate one or more trained machine learning
models 190.

[0032] The validation engine 184 may be capable of validating a trained machine learning
model 190 using the validation set from data set generator 172. The validation engine 184 may
determine an accuracy of each of the trained machine learning models 190 based on the
validation set. The validation engine 184 may discard trained machine learning models 190 that
have an accuracy that does not meet a threshold accuracy.

[0033] The testing engine 186 may be capable of testing a trained machine learning model
190 using a testing set from data set generator 172. The testing engine 186 may determine a
trained machine learning model 190 that has the highest accuracy of all of the trained machine
learning models based on the testing sets.

[0034] The machine learning model 190 may refer to the model artifact that is created by the
training engine 182 using a training set that includes data inputs and corresponding target outputs
(correct answers for respective training inputs). Patterns in the data sets can be found that map

the data input to the target output (the correct answer), and the machine learning model 190 is
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provided mappings that captures these patterns. In some embodiments, the machine learning
model 190 may use one or more LSTM layers and a softmax layer (see FIGS. 7A-B).

[0035] In some embodiments, the failure prediction component 132 may provide the
historical sensor data 144 and historical windows 156A to the data set generator 172. The data
set generator 172 may provide the historical sensor data 144 as input and the historical windows
156 as output to one or more of training engine 182, validation engine 184, and/or testing engine
186 to one or more of train, validate, or test the machine learning model 190.

[0036] In some embodiments, the failure prediction system 110 may generate different
models 190 based on one or more of different hyperparameters (e.g., different numbers of LSTM
layers), different types of machine learning models, different sets of historical additional features
148, etc. The failure prediction system 110 may one or more of train, validate, or test the
different models 190 and select the model 190 that is most accurate.

[0037] In some embodiments, failure prediction component 132 may provide the current
sensor data 150 as input to the trained machine learning model 190, and run trained machine
learning model 190 on the input to obtain one or more outputs. As described in detail below with
respect to FIG. 4, failure prediction component 132 may be capable of determining a predicted
window 156B (e.g., based on the output of the trained machine learning model 190, by extracting
the a level of confidence of the predicted window 156B from the output, etc.). The failure
prediction component 132 may also determine confidence data based on the output. The
confidence data may indicate a level of confidence that the predicted window 156B corresponds
to the manufacturing equipment 124. The failure prediction component 132 may use the levels of
confidence 158 to select the predicted window 156B.

[0038] The confidence data may include or indicate a level of confidence 158 of the
predicted window 156B corresponding to a future failure of one or more components of the
manufacturing equipment 124. In one example, the level of confidence is a real number between
0 and 1 inclusive, where 0 indicates no confidence of the predicted window 156B corresponding
to a future failure of one or more components of the manufacturing equipment 124 and 1
indicates absolute confidence of the predicted window 156B corresponding to a future failure of
one or more components of the manufacturing equipment 124.

[0039] The failure prediction component 132 may determine multiple predicted windows
156B and corresponding levels of confidence 158 based on the output of the model 190 (e.g.,
10% level of confidence that normal operation window and 90% level of confidence that pre-
failure operation window). In some embodiments, the failure prediction component 132 selects
the predicted window with the highest level of confidence. In some embodiments, the failure

prediction component 132 selects the predicted window that has a level of confidence over 50%.
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[0040] For purpose of illustration, rather than limitation, aspects of the disclosure describe
the training of a machine learning model and use of a trained learning model using current sensor
data 150 to determine predicted windows 156B. In other implementations, a heuristic model or
rule-based model is used to determine predicted windows 156 based on sensor data 142 (e.g,,
historical sensor data 144, current sensor data 150, etc.). Any of the information described with
respect to data inputs 210 of FIG. 2 may be monitored or otherwise used in the heuristic or rule-
based model.

[0041] In some embodiments, the functions of client device 120, failure prediction server
130, server machine 170, and server machine 180 may be provided by a fewer number of
machines. For example, in some embodiments server machines 170 and 180 may be integrated
into a single machine. In some other embodiments, server machine 170, server machine 180, and
failure prediction server 130 may be integrated into a single machine.

[0042] In general, functions described in one embodiment as being performed by client
device 120, server machine 170, and server machine 180 can also be performed on failure
prediction server 130 in other embodiments, if appropriate. In addition, the functionality
attributed to a particular component can be performed by different or multiple components
operating together. For example, in some embodiments, the failure prediction server 130 may
receive the user input indicating manufacturing equipment 124 (e.g., a semiconductor processing
tool) for the failure prediction and the failure prediction server 130 may provide the alert, shut
down the manufacturing equipment 124, etc. based on the level of confidence 158 of the
predicted window 156B. In another example, client device 120 may one or more of remove noise
from the sensor data 142, perform feature analysis on the sensor data 142, determine the level of
confidence 158 of the predicted windows 156B, predict whether the one or more components are
within the pre-failure window, or perform the corrective action. In another example, the data set
generator 172 may remove the noise from the historical sensor data 144 and perform feature
analysis on the historical sensor data 144,

[0043] In addition, the functions of a particular component can be performed by different or
multiple components operating together. One or more of the failure prediction server 130, server
machine 170, or server machine 180 may be accessed as a service provided to other systems or
devices through appropriate application programming interfaces (API).

[0044] In embodiments, a “user” may be represented as a single individual. However, other
embodiments of the disclosure encompass a “user” being an entity controlled by a plurality of
users and/or an automated source. For example, a set of individual users federated as a group of

administrators may be considered a “user.”
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[0045] Although embodiments of the disclosure are discussed in terms of sensor data 150
received from sensors 126 coupled to manufacturing equipment 124, embodiments may also be
generally applied to data received over time (e.g., irregular time series data, etc.). Embodiments
may be generally applied to optimizing processes that generate data over time. Examples of
manufacturing equipment 124 for wafer or display manufacturing are physical vapor deposition
(PVD) equipment, chemical vapor deposition (CVD) equipment, atomic layer deposition (ALD)
equipment, chemical mechanical polishing (CMP) equipment, and etch equipment.

[0046] FIG. 2 is an example data set generator 272 (e.g., data set generator 172 of FIG. 1) to
create data sets for a machine learning model 290 (e.g., model 190 of FIG. 1) using historical
sensor data 244 (e.g., historical sensor data 144 of FIG. 1), according to certain embodiments.
System 200 of FIG. 2 shows data set generator 272, data inputs 210, and target outputs 220.
[0047] In some embodiments, data set generator 272 generates a data set (e.g., training set,
validating set, testing set) that includes one or more data inputs 210 (e.g, training input,
validating input, testing input) and one or more target outputs 220. The data set may also include
mapping data that maps the data inputs 210 to the target outputs 220. Data inputs 210 may also

2 CC

be referred to as “features,” “attributes,” or “information.” In some embodiments, data set
generator 272 may provide the data set to one or more of the training engine 182, validating
engine 184, or testing engine 186, where the data set is used to train, validate, or test the machine
learning model 190. Some embodiments of generating a training set may further be described
with respect to FIG. 6.

[0048] In some embodiments, data inputs 210 may include one or more sets of features
212A for the historical sensor data 244. Each set of features 212 may include at least one of a
historical feature 246 (e.g., historical feature 146 of FIG. 1) or a historical additional feature 248
(e.g., historical additional feature 148 of FIG. 1). For example, a set of features 212 may include
one or more historical additional features 248.

[0049] In some embodiments, data set generator 272 may generate a first data input 210A
corresponding to a first set of features 212A to train, validate, or test a first machine learning
model and the data set generator 272 may generate a second data input 210B corresponding to a
second set of features 212B to train, validate, or test a second machine learning model.

[0050] In some embodiments, the data set generator 272 may discretize the target output 220
(e.g., to use in classification algorithms for regression problems). Discretization of the target
output 220 may transform continuous values of variables into discrete values. In some

embodiments, the discrete values for the target output 220 indicate a historical window 256 (e.g.,

normal operation window, pre-failure window, failure window, etc.). In some embodiments, the
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discrete values for the target output 220 indicate how much time (e.g., days, hours, etc.) from
installation that one or more components failed.

[0051] Data inputs 210 and target outputs 220 to train, validate, or test a machine learning
model may include information form a particular facility (e.g., from a particular semiconductor
manufacturing facility). For example, the historical sensor data 244 may be form the same
manufacturing facility as the current sensor data 150 of FIG. 1. In some embodiments, the
information used to train the machine learning model may be from specific groups of
components of the manufacturing facility having specific characteristics (e.g., components from
a specific timeframe, components for a specific type of manufacturing equipment, etc.) and
allow the trained machine learning model to predict pre-failure windows for a specific group of
components based on historical sensor data associated with one or more components sharing
characteristics of the specific group. In some embodiments, the information used to train the
machine learning model may be for components from two or more manufacturing facilities and
may allow the trained machine learning model to determine outcomes for components based on
input from one manufacturing facility. In some embodiments, the information used to train the
machine learning model may be associated with one or more first ion implant tools and the
trained machine learning model may be used to predict component failure for one or more
second ion implant tools that are difterent from the one or more first ion implant tools.

[0052] In some embodiments, subsequent to generating a data input 210 and training,
validating, or testing machine learning model 190 using the data set, the machine learning model
190 may be further trained, validated, or tested or adjusted (e.g., adjusting weights associated
with input data of the machine learning model 190, such as connection weights in a neural
network, tuning hyperparameters, etc.) using additional historical sensor data and corresponding
historical windows from one or more manufacturing facilities.

[0053] FIG. 3 is a block diagram illustrating a system 300 for determining a level of
confidence 358 (e.g., level of confidence 158 of FIG. 1) of predicted windows 356B (e.g.,
predicted windows 156B of FIG. 1). The system 300 may provide failure prediction for
semiconductor manufacturing tools (e.g., end of life prediction for the plasma source gun in an
ion implant semiconductor manufacturing tool).

[0054] At block 310, the system 300 (e.g., failure prediction system 110 of FIG. 1) performs
data partitioning (e.g., via data set generator 172 of server machine 170 of FIG. 1) of the
historical sensor data 344 (e.g., historical sensor data 144 of FIG. 1) to generate the training set
302, validation set 304, and testing set 306. In some embodiments, the system 300 generates a

plurality of sets of features corresponding to each of the data sets.
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[0055] At block 312, the system 300 performs model training (e.g., via training engine 182
of FIG. 1) using the training set 302. The system 300 may train multiple models using multiple
sets of features of the training set 302 (e.g., a first set of features of the training set 302, a second
set of features of the training set 302, etc.).

[0056] At block 314, the system 300 performs model validation (e.g., via validation engine
184 of FIG. 1) using the validation set 304. The system 300 may validate each of the trained
models using a corresponding set of features of the validation set 304. At block 314, the system
may determine an accuracy of each of the one or more trained models and may determine
whether one or more of the trained models has an accuracy that meets a threshold accuracy.
Responsive to determining that none of the trained models has an accuracy that meets a threshold
accuracy, flow returns to block 312 where the system 300 performs model training using
different sets of features of the training set. Responsive to determining that one or more of the
trained models has an accuracy that meets a threshold accuracy, flow continues to block 316.
[0057] At block 316, the system 300 performs model selection to determine which of the
one or more trained models that meet the threshold accuracy has the highest accuracy (e.g., the
selected model 308). Responsive to determining that two or more of the trained models that meet
the threshold accuracy have the same accuracy, flow may return to block 312 where the system
300 performs model training using further refined training sets corresponding to further refined
sets of features for determining a trained model that has the highest accuracy.

[0058] At block 318, the system 300 performs model testing (e.g., via testing engine 186 of
FIG. 1) using the testing set 306 to test the selected model 308. At block 318, the system 300
may determine whether accuracy of the selected model 308 meets a threshold accuracy using the
testing set 306. Responsive to accuracy of the selected model 308 not meeting the threshold
accuracy (e.g., the selected model 308 is overly fit to the validation set 304), flow continues to
block 312 where the system 300 performs model training using different training sets
corresponding to different sets of features. Responsive to determining that the selected model
308 has an accuracy that meets a threshold accuracy based on the testing set 306, flow continues
to block 320. In at least block 312, the model may learn patterns in the historical sensor data to
make predictions and in block 318, the system 300 may apply the model on the remaining data
(e.g., testing set 306) to test the predictions.

[0059] In some embodiments, in addition to using different sets of features (e.g., different
combinations of historical additional features 148) for one or more of training, validating, or
testing of different models, the system 300 may also include different hyperparameters in the
different models to determine which features and which hyperparameters provide the highest

accuracy. In some embodiments, instead of using different sets of features for the one or more of
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training, validating or testing different models, the system 300 uses different hyperparameters in
the different models (e.g., where each model uses the same set of historical additional features
148) to determine which hyperparameters provide the highest accuracy.

[0060] At block 320, system 300 uses the trained model (e.g., selected model 308) to receive
current sensor data 350 (e.g., current sensor data 150 of FIG. 1) and to output a level of
confidence 358 of a predicted window 356B (e.g., level of confidence 158 of a predicted window
156B of FIG. 1).

[0061] Responsive to receiving additional sensor data, the additional sensor data may be
input into block 312 to update the trained model via model re-training,

[0062] FIGS. 4-6 are flow diagrams illustrating example methods 400, 500, and 600
associated with failure prediction, according to certain embodiments. Methods 400, 500, and 600
may be performed by processing logic that may include hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, processing device, etc.), software (such as instructions
run on a processing device, a general purpose computer system, or a dedicated machine),
firmware, microcode, or a combination thereof. In one embodiment, methods 400, 500, and 600
may be performed, in part, by failure prediction system 110. In some embodiments, methods
400, 500, and 600 may be performed by failure prediction server 130. In some embodiments, a
non-transitory computer readable storage medium stores instructions that when executed by a
processing device (e.g., of failure prediction system 110) cause the processing device to perform
methods 400, 500, and 600.

[0063] For simplicity of explanation, methods 400, 500, and 600 are depicted and described
as a series of acts. However, acts in accordance with this disclosure can occur in various orders
and/or concurrently and with other acts not presented and described herein. Furthermore, not all
illustrated acts may be performed to implement the methods 400, 500, and 600 in accordance
with the disclosed subject matter. In addition, those skilled in the art will understand and
appreciate that the methods 400, 500, and 600 could alternatively be represented as a series of
interrelated states via a state diagram or events.

[0064] FIG. 4 is a flow diagram of a method 400 for predicting component failure,
according to certain embodiments. In some embodiments, method 400 is performed by
processing logic of failure prediction component 132 of the failure prediction server 130.

[0065] At block 402, the processing logic receives, from sensors (e.g., sensors 126)
associated with manufacturing equipment (e.g., manufacturing equipment 124, an ion implant
tool), current sensor data (e.g., current sensor data 150) corresponding to features. The features
may be sequences of current sensor data, where each sequence of current sensor data is captured

by a corresponding sensor. In some embodiments, the current sensor data is streamed to the
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processing logic. The processing logic may receive the sensor data in the form of one or more of
a dataset, a matrix, etc. In some embodiments, the sensor data is saved and aggregated in the data
store 140.

[0066] In some embodiments, at block 404, the processing logic removes noise from the
current sensor data. In some embodiments, the processing logic removes the noise from the
current sensor data by averaging the current sensor data over intervals (e.g., average sensor data
values over 10 second periods of time, etc.).In some embodiments, the processing logic removes
the noise by removing the outliers from the current sensor data.

[0067] At block 406, the processing logic performs feature analysis to generate additional
features (e.g., current additional features 154) for the current sensor data. The additional features
may include one or more of a ratio, a range, a delta, or a maximum value of corresponding
sensor data from one or more of the plurality of sensors. In some embodiments, the additional
features may include statistical features (e.g., mean, standard deviation, etc.) of key sensors
[0068] In some embodiments, the processing logic performs the feature analysis by
receiving user input indicating the additional features that are to be calculated. In some
embodiments, a model for feature analysis (e.g, feature engineering) is generated (see FIG. 5,
based on user input of additional features, based on user input of other parameters, without user
input). The model for feature analysis may be a convolutional neural network (CNN) (e.g. that
performs one-dimension convolutions). The CNN may excel at learning the temporal structure in
sensor data 142 and may determine invariant features for failure and normal data (e.g., for
determining normal operation window, pre-failure window, etc.).

[0069] The processing logic may perform the analysis by receiving the current sensor data in
a matrix and processing the matrix via one-dimensional convolutions to output the plurality of
additional features.

[0070] At block 408, the processing logic provides the additional features (e.g., subsequent
to the removing of the noise) as input to a trained machine learning model. The trained machine
learning model may include one or more LSTM layers and a softmax layer. The trained machine
learning model may have learned spatial features as sequences by the one or more LSTM layers.
The time series structure may be built into the prediction. The trained machine learning model
may be weighted to penalize misclassifications (e.g., to avoid having false positives). A current
prediction generated by the method 400 may be based on a previous time step of the current
sensor data 150.

[0071] The trained machine learning model may have been generated based on historical

sensor data from a second plurality of sensors associated with different manufacturing equipment
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(e.g., a second ion implant tool) than the manufacturing equipment (e.g., ion implant tool) of
block 402.

[0072] At block 410, the processing logic obtains one or more outputs from the trained
machine learning model. In some embodiments, the one or more outputs are indicative of a level
of confidence (e.g., level of confidence 158) of a predicted window (e.g., predicted window
156B). In some embodiments, the processing logic extracts from the one or more outputs, the
level of confidence of the predicted window. In some embodiments, the processing logic
determines multiple predicted windows and corresponding levels of confidence (e.g., 10% level
of confidence that normal operation window and 90% level of confidence that pre-failure
window).

[0073] At block 412, the processing logic predicts, based on the level of confidence of the
predicted window, whether one or more components of the manufacturing equipment (e.g., ion
implant tool) are within a pre-failure window. The processing logic may predict that the one or
more components are within the pre-failure window by determining the level of confidence of
the predicted window indicates greater than 50% confidence of the pre-failure window.

[0074] At block 414, the processing logic determines whether the level of confidence of the
predicted window indicates the one or more components of the ion implant tool are within the
pre-failure window. Responsive to the level of confidence of the predicted window indicating the
one or more components are not within the pre-failure window, flow continues to block 402
where additional sensor data is received (e.g., a loop of method 400). Responsive to the level of
confidence of the predicted window indicating the one or more components are within the pre-
failure window, flow continues to block 416. The one or more components may be a component
of an ion implant tool, such as at least one of a flood gun or a source gun.

[0075] At block 416, the processing logic performs a corrective action associated with the
ion implant tool (e.g., responsive to predicting that the one or more components are within the
pre-failure window). The corrective action may include one or more of causing a graphical user
interface to display an alert, interrupting operation (e.g., shutting down, slowing speed, stopping
specific processes, etc.) of the manufacturing equipment (e.g., ion implant tool), or causing the
one or more components to be replaced.

[0076] FIG. 5 is a flow diagram of a method 500 for training a machine learning model for
predicting component failure, according to certain embodiments. In some embodiments, method
500 is performed by processing logic of failure prediction system 110 of FIG. 1. In some
embodiments, method 500 is performed by processing logic of server machine 180 of FIG. 1. In
some embodiments, method 500 is performed by training engine 182 of server machine 180 of

FIG 1.
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[0077] At block 502, the processing logic receives, from sensors (e.g., sensors 126)
associated with manufacturing equipment 124 (e.g., an ion implant tool), historical sensor data
(e.g., historical sensor data 144) corresponding to features (e.g., measurement values and
corresponding times stamps received form the sensors 126 associated with the manufacturing
equipment 124).

[0078] In some embodiments, at block 504, the processing logic removes noise from the
historical sensor data. The processing logic may remove the noise from the historical sensor data
by one or more of averaging the historical sensor data over intervals or removing outliers.
[0079] At block 506, the processing logic determines windows (e.g., historical windows
156A) including a normal operation window for a first subset of the historical sensor data and a
pre-failure window for a second subset of the historical sensor data. The processing logic may
determine windows by determining a time of failure (e.g., based on a peak of sensor data values,
based on a peak of health index values such as in FIG. 8B). The processing logic may determine
sensor data captured more than a set amount of time (e.g., 24 hours, 48 hours) before the time of
failure corresponds to the normal operation window, sensor data captured between the time of
failure and the set amount of time before the failure corresponds to the pre-failure window, and
the sensor data captured after the time of failure corresponds to the failure window.

[0080] At block 508, the processing logic performs feature analysis to generate additional
features (e.g., historical additional features 148) for the historical sensor data. The additional
features may include one or more of a ratio, a range, a delta, or a maximum value of
corresponding sensor data from one or more of the plurality of sensors. The processing logic
may perform the feature analysis by receiving the historical sensor data in a matrix and
processing the matrix via one-dimensional convolutions to output the plurality of additional
features.

[0081] In some embodiments, the processing logic receives user input corresponding to the
additional features (e.g., operations and specific sensors associated with the additional features).
The processing logic may train a CNN (e.g., based on the user input of the additional features,
with user input of parameters, without user input, etc.) and the trained CNN may be used in
method 400 to determine additional features (e.g., current additional features 154) for using the
trained machine learning model

[0082] At block 510, the processing logic trains a machine learning model (e.g., including
one or more LSTM levels and a softmax layer) using training data including the additional
features (e.g., subsequent to the removing of the noise) and target output including the windows
to generate a trained machine learning model. The trained machine learning model may be

capable of generating one or more outputs indicative of whether one or more ion implant tool
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components (e.g., from one or more ion implant tools, from one or more manufacturing
equipment 124, etc.) are within the pre-failure window (see method 400 of FIG. 4).

[0083] In some embodiments, the processing logic trains multiple models using one or more
of different features (e.g., historical features 146, historical additional features 148) or different
hyperparameters. The processing logic may one or more of train, validate, or test the different
models (e.g., evaluate the models) to select the model that gives the highest accuracy.

[0084] In some embodiments, the processing logic deploys the trained machine learning
model to predict whether one or more components of manufacturing equipment (e.g., flood gun,
source gun, etc. of ion implant tools) are within a pre-failure window for performing a corrective
action (e.g., associated with one or more ion implant tools). In some embodiments, the trained
machine learning model is to receive input based on current sensor data from a second plurality
of sensors associated with a second ion implant tool (e.g., different than the ion implant tool used
for training the machine learning model) for the predicting whether the one or more components
are within the pre-failure window.

[0085] FIG. 6 is a flow diagram of a method 600 for generating a data set for a machine
learning model for predicting component failure, according to certain embodiments. Failure
prediction system 110 may use method 600 to at least one of train, validate, or test a machine
learning model, in accordance with embodiments of the disclosure. In some embodiments, one or
more operations of method 600 may be performed by data set generator 172 of server machine
170 as described with respect to FIGS. 1 and 2. It may be noted that components described with
respect to FIGS. 1 and 2 may be used to illustrate aspects of FIG. 6.

[0086] Referring to FIG. 6, at block 602, the processing logic initializes a data set T to an
empty set.

[0087] At block 604, the processing logic generates first data input (e.g., first training input,
first validating input) that includes a first set of features for the historical sensor data (as
described with respect to FIG. 2). The first data input may include one or more features (e.g.,
historical features 146) and/or one or more additional features (e.g., historical additional features
148) of historical sensor data (e.g., historical sensor data 144).

[0088] At block 606, processing logic generates a first target output for one or more of the
data inputs (e.g., first data input). The first target output provides an indication of a historical
window (e.g., historical window 156A).

[0089] At block 608, processing logic optionally generates mapping data that is indicative of
an input/output mapping. The input/output mapping (or mapping data) may refer to the data

input (e.g., one or more of the data inputs described herein), the target output for the data input
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(e.g., where the target output identifies a predicted window), and an association between the data
input(s) and the target output.

[0090] At block 610, processing logic adds the mapping data generated at block 610 to data
set T.

[0091] At block 612, processing logic branches based on whether data set T is sufficient for
at least one of training, validating, or testing machine learning model 190. If so, execution
proceeds to block 614, otherwise, execution continues back at block 604. It should be noted that
in some embodiments, the sufficiency of data set T may be determined based simply on the
number of input/output mappings in the data set, while in some other implementations, the
sufficiency of data set T may be determined based on one or more other criteria (e.g., a measure
of diversity of the data examples, accuracy, etc.) in addition to, or instead of, the number of
input/output mappings.

[0092] At block 614, processing logic provides data set T to train, validate, or test machine
learning model 190. In some embodiments, data set T is a training set and is provided to training
engine 182 of server machine 180 to perform the training. In some embodiments, data set T is a
validation set and is provided to validation engine 184 of server machine 180 to perform the
validating. In some embodiments, data set T is a testing set and is provided to testing engine 186
of server machine 180 to perform the testing. In some embodiments, the data set T may be
partitioned into a training set, a validation set, and a testing set (e.g., the training set may be
60%, the validation set may be 20%, and the validation set may be 20%). Responsive to the
machine learning model being trained (e.g., and validated, tested, and meeting a threshold
accuracy), the trained machine learning model may be used (e.g., by failure prediction
component 132) for failure prediction (see FIGS. 3-4).

[0093] In the case of a neural network, for example, input values of a given input/output
mapping (e.g., numerical values associated with data inputs 210) are input to the neural network,
and output values (e.g., numerical values associated with target outputs 220) of the input/output
mapping are stored in the output nodes of the neural network. The connection weights in the
neural network are then adjusted in accordance with a learning algorithm (e.g., back propagation,
etc.), and the procedure is repeated for the other input/output mappings in data set T. The trained
machine learning model may be implemented by failure prediction component 132 (of failure
prediction server 130) to predict a failure window for one or more components.

[0094] FIGS. 7A-B are block diagrams illustrating systems 700A and 700B for failure
prediction, according to certain embodiments.

[0095] Referring to FIG. 7A, system 700A may receive input data 710. The input data 710

may be sensor data in a matrix. Noise may be removed from the sensor data (e.g., by averaging
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the raw data over intervals to generate the sensor data, by removing outliers from the sensor
data).

[0096] System 700A may perform one-dimensional convolutions 720 (e.g., of a trained
CNN) on the input data 710. In some embodiments a CNN (e.g., that performs one-dimensional
convolutions) was trained based on user input associated with additional features (e.g., indicating
the operations to be used to generate the additional features). The system 700A may perform the
one-dimensional convolutions 720 on the input data 710 (e.g., subsequent to removal of noise) to
perform feature analysis to generate additional features for the input data. The additional features
may include one or more of a ratio, a range, a delta, a maximum value, etc. of corresponding
sensor data.

[0097] System 700A may input the additional features into a LSTM layer 730 of a machine
learning model. The number of LSTM layers may be a hyperparameter that is tuned by training
and retraining the machine learning model based on sensor data.

[0098] System 700A may transmit the output of the LSTM layers 730 to the softmax layer
740 and the softmax layer 740 may generate a corresponding level of confidence for one or more
predicted windows (e.g., classes).

[099] Referring to FIG. 7B, system 700B includes LSTM layers 730 that may receive
additional features based on the input data 710. The output of the LSTM layers 730 may
transmitted to the softmax layer 740. The softmax layer may generate one or more outputs. The
one or more outputs may include a corresponding level of confidence for one or more predicted
windows. For example, the softmax layer may generate a first level of confidence of the normal
operation window, a second window of confidence for the pre-failure window, and a third level
of confidence for the failure window. The levels of confidence may add up to 100%. The
window that corresponds to a level of confidence greater than 50% may be used.

[0100] FIGS. 8A-B are graphs 800A and 800B illustrating failure prediction, according to
certain embodiments.

[0101] Referring to FIG. 8A, graph 800A displays features values (e.g., historical additional
features 148, current additional features 154, etc.) over time. A first window of time may
correspond to class O (e.g., normal operation window). A second window of time may
correspond to class 1 (e.g., pre-failure window). A third window of time may correspond to

class 2 (e.g., failure window). Class 0 may end and class 1 may begin a set amount of time (e.g.,
24 hours, 48 hours, etc.) before the failure date (e.g., historical failure date, predicted failure
date). Class 1 may end and class 2 may begin at the time of failure of the one or more
components. The historical sensor data may be labeled according to the corresponding window

(e.g,class 0, 1, or 2).

-20 -



WO 2020/159730 PCT/US2020/014197

[0102] Referring to FIG. 8B, graph 800B displays a health index plotted over time (e.g., has
corresponding time stamps). The health index may be based on one or more of the outcome of
convolutional LSTM, sensor data, additional features, etc.

[0103] The health index may be substantially stable over a normal operation window.
During the pre-failure window, the health index may peak and substantially at time of failure, the
health index may drop. A first subset of the sensor data may correspond to time stamps in the
normal operation window, a second subset of the sensor data may correspond to time stamps in
the pre-failure window, and a third subset of the sensor data may correspond to time stamps in
the failure window. Each of the subsets of sensor data may be labeled according to the
corresponding window (e.g.., class).

[0104] FIG. 9 is a block diagram illustrating a computer system 900, according to certain
embodiments. In some embodiments, computer system 900 may be connected (e.g., via a
network, such as a Local Area Network (LAN), an intranet, an extranet, or the Internet) to other
computer systems. Computer system 900 may operate in the capacity of a server or a client
computer in a client-server environment, or as a peer computer in a peer-to-peer or distributed
network environment. Computer system 900 may be provided by a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a server, a network router, switch or bridge, or any device capable of executing a set
of instructions (sequential or otherwise) that specify actions to be taken by that device. Further,
the term "computer” shall include any collection of computers that individually or jointly execute
a set (or multiple sets) of instructions to perform any one or more of the methods described
herein.

[0105] In a further aspect, the computer system 900 may include a processing device 902, a
volatile memory 904 (e.g., random access memory (RAM)), a non-volatile memory 906 (e.g.,
read-only memory (ROM) or electrically-erasable programmable ROM (EEPROM)), and a data
storage device 916, which may communicate with each other via a bus 908.

[0106] Processing device 902 may be provided by one or more processors such as a general
purpose processor (such as, for example, a complex instruction set computing (CISC)
microprocessot, a reduced instruction set computing (RISC) microprocessor, a very long
instruction word (VLIW) microprocessor, a microprocessor implementing other types of
instruction sets, or a microprocessor implementing a combination of types of instruction sets) or
a specialized processor (such as, for example, an application specific integrated circuit (ASIC), a
field programmable gate array (FPGA), a digital signal processor (DSP), or a network

processor).
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[0107] Computer system 900 may further include a network interface device 922. Computer
system 900 also may include a video display unit 910 (e.g., an LCD), an alphanumeric input
device 912 (e.g., a keyboard), a cursor control device 914 (e.g., a mouse), and a signal generation
device 920.

[0108] In some implementations, data storage device 916 may include a non-transitory
computer-readable storage medium 924 on which may store instructions 926 encoding any one
or more of the methods or functions described herein, including instructions encoding the failure
prediction component 132 or corrective action component 122 of FIG. 1 and for implementing
methods described herein.

[0109] Instructions 926 may also reside, completely or partially, within volatile memory 904
and/or within processing device 902 during execution thereof by computer system 900, hence,
volatile memory 904 and processing device 902 may also constitute machine-readable storage
media.

[0110] While computer-readable storage medium 924 is shown in the illustrative examples
as a single medium, the term "computer-readable storage medium" shall include a single medium
or multiple media (e.g., a centralized or distributed database, and/or associated caches and
servers) that store the one or more sets of executable instructions. The term "computer-readable
storage medium" shall also include any tangible medium that is capable of storing or encoding a
set of instructions for execution by a computer that cause the computer to perform any one or
more of the methods described herein. The term "computer-readable storage medium" shall
include, but not be limited to, solid-state memories, optical media, and magnetic media.

[0111] The methods, components, and features described herein may be implemented by
discrete hardware components or may be integrated in the functionality of other hardware
components such as ASICS, FPGAs, DSPs or similar devices. In addition, the methods,
components, and features may be implemented by firmware modules or functional circuitry
within hardware devices. Further, the methods, components, and features may be implemented in

any combination of hardware devices and computer program components, or in computer

programs.
[0112] Unless specifically stated otherwise, terms such as “receiving,” “performing,”
“providing,” “obtaining,” “extracting,” “predicting,” “removing,” “causing,” “interrupting,”
“determining,” “training,” “deploying,” or the like, refer to actions and processes performed or

implemented by computer systems that manipulates and transforms data represented as physical
(electronic) quantities within the computer system registers and memories into other data
similarly represented as physical quantities within the computer system memories or registers or

other such information storage, transmission or display devices. Also, the terms "first," "second,"
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"third," "fourth," etc. as used herein are meant as labels to distinguish among different elements
and may not have an ordinal meaning according to their numerical designation.

[0113] Examples described herein also relate to an apparatus for performing the methods
described herein. This apparatus may be specially constructed for performing the methods
described herein, or it may include a general purpose computer system selectively programmed
by a computer program stored in the computer system. Such a computer program may be stored
in a computer-readable tangible storage medium.

[0114] The methods and illustrative examples described herein are not inherently related to
any particular computer or other apparatus. Various general purpose systems may be used in
accordance with the teachings described herein, or it may prove convenient to construct more
specialized apparatus to perform methods described herein and/or each of their individual
functions, routines, subroutines, or operations. Examples of the structure for a variety of these
systems are set forth in the description above.

[0115] The above description is intended to be illustrative, and not restrictive. Although the
present disclosure has been described with references to specific illustrative examples and
implementations, it will be recognized that the present disclosure is not limited to the examples
and implementations described. The scope of the disclosure should be determined with reference

to the following claims, along with the full scope of equivalents to which the claims are entitled.
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WHAT IS CLAIMED IS:
In the claims:

1. A method comprising:

receiving, from a plurality of sensors associated with an ion implant tool, current sensor
data corresponding to a plurality of features;

performing feature analysis to generate a plurality of additional features for the current
sensor data;

providing the plurality of additional features as input to a trained machine learning
model;

obtaining one or more outputs from the trained machine learning model, wherein the
outputs are indicative of a level of confidence of a predicted window;

predicting, based on the level of confidence of the predicted window, whether one or
more components of the ion implant tool are within a pre-failure window; and

responsive to predicting that the one or more components are within the pre-failure

window, performing a corrective action associated with the ion implant tool.

2, The method of claim 1 further comprising removing noise from the current sensor data
by averaging the current sensor data over intervals, wherein the input comprises the plurality of

additional features subsequent to the removing of the noise.

3. The method of claim 1, wherein:
the plurality of additional features comprise one or more of a ratio, a range, a delta, or a
maximum value of corresponding sensor data from one or more of the plurality of sensors; and
the performing of the feature analysis comprises receiving the current sensor data in a
matrix and processing the matrix via one-dimensional convolutions to output the plurality of

additional features.

4. The method of claim 1, wherein the trained machine learning model comprises one or

more LSTM layers and a softmax layer.

5. The method of claim 1, wherein the trained machine learning model is generated based
on historical sensor data from a second plurality of sensors associated with a second ion implant

tool.
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6. The method of claim 1, wherein the predicting that the one or more components are
within the pre-failure window comprises determining the level of confidence of the predicted

window indicates greater than 50% confidence of the pre-failure window.

7. The method of claim 1, wherein the predicting, based on the level of confidence of the
predicted window, whether the one or more components of the ion implant tool are within the
pre-failure window comprises:

predicting, based on the level of confidence of the predicted window, whether at least one

of a flood gun or a source gun are within the pre-failure window.

8. The method of claim 1, wherein the corrective action comprises one or more of’
causing a graphical user interface to display an alert;
interrupting operation of the ion implant tool; or

causing the one or more components to be replaced.

9. A method comprising:

receiving, from a plurality of sensors associated with an ion implant tool, historical
sensor data corresponding to a plurality of features;

determining a plurality of windows comprising a normal operation window for a first
subset of the historical sensor data and a pre-failure window for a second subset of the historical
sensor data;

performing feature analysis to generate a plurality of additional features for the historical
sensor data; and

training a machine learning model using training data including the plurality of additional
features and target output including the plurality of windows to generate a trained machine
learning model, the trained machine learning model capable of generating one or more outputs
indicative of whether one or more ion implant tool components are within the pre-failure

window.

10. The method of claim 9 further comprising removing noise from the historical sensor data
by averaging the historical sensor data over intervals, wherein the training data comprises the

plurality of additional features subsequent to the removing of the noise.

11. The method of claim 9, wherein:
the plurality of additional features comprise one or more of a ratio, a range, a delta, or a
maximum value of corresponding sensor data from one or more of the plurality of sensors; and

the performing of the feature analysis comprises receiving the historical sensor data in a matrix
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and processing the matrix via one-dimensional convolutions to output the plurality of additional

features.

12. The method of claim 9, wherein the one or more outputs indicative of whether the one or
more ion implant tool components are within the pre-failure window comprise one or more
outputs indicative of whether at least one of a flood gun or a source gun are within the pre-failure

window.

13. The method of claim 9, wherein the trained machine learning model is to receive input
based on current sensor data from a second plurality of sensors associated with a second ion
implant tool for predicting whether the one or more ion implant tool components are within the

pre-failure window.

14. A system comprising:

a memory; and
a processing device coupled to the memory, the processing device to:

receive, from a plurality of sensors associated with an ion implant tool, current
sensor data corresponding to a plurality of features;

perform feature analysis to generate a plurality of additional features for the
current sensor data;

provide the plurality of additional features as input to a trained machine learning
model;

obtain one or more outputs from the trained machine learning model, wherein the
outputs are indicative of a level of confidence of a predicted window;

predict, based on the level of confidence of the predicted window, whether one or
more components of the ion implant tool are within a pre-failure window; and

responsive to predicting that the one or more components are within the pre-

failure window, perform a corrective action associated with the ion implant tool.

15. The system of claim 14, wherein the processing device is further to remove noise from
the current sensor data by averaging the current sensor data over intervals, wherein the input

comprises the plurality of additional features subsequent to removing the noise.
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