Abstract:

Title: COMPOSITIONS COMPRISING PAULOWNIN AND/OR PAULOWNIA EXTRACTS AND USES THEREOF

Provided are compositions comprising botanical extracts from certain species of the genus Paulownia, methods of lightening the skin therewith, and other uses thereof. Also provided are compositions comprising the compound paulownin, methods of lightening the skin therewith, and other uses thereof.
The present invention relates to compositions comprising paulownin and/or plant extracts for use on skin. More specifically, it relates to compositions comprising paulownin from any of a variety of natural or synthetic sources and/or comprising extracts of certain botanicals of the genus *Paulownia* for a variety of uses on the skin.

DESCRIPTION OF RELATED ART

Paulownia is a genus of plants native to Asia which has spread gradually to Europe and the USA. Species from the *Paulownia* genus are generally considered ornamental trees with wide craft and ecological applications for their wood. For example, the wood of such trees is popular for making soundboards of stringed instruments in Japan, China, and Korea. It is also popular with timber merchants for use in making furniture. *Paulownia* trees have ecological uses and are considered phyto-remediators, that is, they can process industrial contaminants through their vascular system to help clean and reclaim land.

In Japan, *Paulownia* is called kiri which refers specifically to one species, *Paulownia tomentosa*, also called "Princess Tree." Other names which are commonly used are "empress tree", "Foxglove Tree", "Royal Paulownia", "Pao tong" (in China) and "Odong-Namoo" (in Korea). The scientific name is *Paulownia tomentosa* with a number of synonyms reported in various literature, i.e. "Paulownia imperialis", "Paulownia recurva", and "Bignonia tomentosa". *Paulownia tomentosa* belongs to the family "Paulowniaceae" or sometimes refer to "Scrophulariaceae". The United States Department of Agriculture (plants.USDA.gov) Plant database identifies Princess tree by a unique symbol "PAT02", with *Paulownia tomentosa* and *Paulownia imperialis* as synonym names.

The flower oil of *Paulownia tomentosa* is well studied and found to be richer in aroma as compared to other species. A number of bioactivities are associated with extracts of various parts of *Paulownia tomentosa*, e.g. anti-cancer components from flower extract, anthelminthic activity from non-specified extract, antibacterial activities from fruit and flower extracts,
antioxidant activity from flower extract, and anti-viral properties from stem bark. Leaf extracts of *Paulownia tomentosa* are described for hair growth and hair promoting properties.

Paulownia fortunei also belongs to the family "Paulowniaceae". The flower, leaf, skin, root and fruit of *Paulownia fortunei* are of medical value and are reported for use in treating infections, inflammation and injury, in anti-tumor creams. The bark is reported for use in treating orthopaedic disease, hemorrhoids, and foot odor and the epicarp of the fruit for antimicrobial activity. The leaves are reported for use in dissolving pyogenic infection and promoting hair growth.

Paulownin, also known as isopaulownin or neopaulownin, is a lignan isolated from aerial parts of various plants. The chemical structure can be given as follows:

![Chemical structure of Paulownin]

The present invention relates to applicant's discovery that extracts of Paulownia wood, more specifically the wood of *Paulownia tomentosa*, *Paulownia fortunei*, *Paulownia elongata* and *Paulownia kawakamii*, are beneficial for use in compositions on skin and tend to exhibit significant and unexpected skin lightening and other properties. The present invention also relates to the applicant's discovery that the compound Paulownin exhibits significant and unexpected skin lightening and other properties.
SUMMARY OF THE INVENTION

In one aspect, the present invention is directed to compositions comprising a carrier and an extract selected from the group consisting of *Paulownia fortunei* wood extract, *Paulownia elongata* wood extract, *Paulownia kawakamii* wood extract, and combinations of two or more thereof.

In another aspect the present invention is directed to methods of lightening the skin comprising the step of applying to a skin in need of skin lightening treatment, an extract selected from the group consisting of *Paulownia fortunei* wood extract, *Paulownia elongata* wood extract, *Paulownia kawakamii* wood extract, and combinations of two or more thereof.

In yet other aspects, the present invention is directed to methods of lightening the skin comprising the step of applying to skin in need of skin lightening treatment a composition comprising paulownin and a carrier.
DESCRIPTION OF THE INVENTION

As noted above, applicants have discovered unexpectedly that paulownin, and/or extracts of the wood of *Paulownia tomentosa*, *Paulownia fortunei*, *Paulownia elongata* and *Paulownia kawakamii*, may be used in compositions, preferably skin care compositions, and for methods of use including, but not limited to skin lightening.

As used herein, the term "lightening the skin" refers generally to lightening, brightening, whitening, and/or evening of the skin tone, skin color, and/or shade of skin, and/or to the reduction in sallowness, and/or to the lightening and/or fading of hyperpigmented marks and/or lesions including, but not limited to, pigmented spots, melanin spots, age spots, sun spots, senile lentigos, freckles, lentigos simplex, pigmented solar keratosis, seborrhoeic keratosis, melasma, acne marks, post-inflammatory hyperpigmentation, lentigines, ephelides, combinations of two or more thereof and the like. In certain embodiments, "lightening the skin" also refers to increased skin radiance, glow, translucency and/or luminescence and/or obtaining a more radiant, glowing, translucent or luminous skin tone appearance or a less yellow or sallow skin tone. In certain preferred embodiments, "lightening the skin" refers to lightening and evening the skin tone, increasing skin radiance and/or lightening age spots.

As used herein, the term "skin in need of skin lightening treatment" refers generally to skin that exhibits one or more property selected from the group consisting of: skin having a measured Individual Typology Angle (ITA) value below 41 as determined per the COLIPA GUIDELINE: GUIDELINE FOR THE COLORIMETRIC DETERMINATION OF SKIN COLOUR TYPING AND PREDICTION OF THE MINIMAL ERYTHEMAL DOSE (MED) WITHOUT UV EXPOSURE published in 2007, which is incorporated herein by reference and further described below, darkened and/or sallow skin, including skin darkened by UV, skin with uneven skin tone, or skin with one or more hyperpigmented marks and/or lesions including, but not limited to, pigmented spots, melanin spots, age spots, sun spots, senile lentigos, freckles, lentigos simplex, pigmented solar keratosis, seborrhoeic keratosis, melasma, acne marks, post-inflammatory hyperpigmentation, lentigines, ephelides, combinations of two or more thereof and the like. In the COLIPA guidelines, skin color is defined function of the ITA value as: very light skin >55; Light skin 41-55, Intermediate 28-41, and Tan skin <28. In certain preferred embodiments, "skin in need of skin lightening" refers to individuals with a skin having an ITA value of less than 41, such as about 40 or less, about 35 or less, about 30 or less, or more
preferably about 28 or less. In certain other preferred embodiments, the present invention is directed to compositions and methods for use on skin in need of skin lightening treatment selected from sallow and/or darkened skin. In certain other preferred embodiments, the present invention is directed to compositions and methods for use on skin in need of skin lightening treatment selected from the group consisting of age spots, freckles, marks left after acne, and combinations of two or more thereof.

As used herein, "skin in need of improving the signs of aging" means a skin that is, but not limited to, sagging, loose, lax, rough, wrinkly, thinned, and uneven. Improving the signs of aging means improving the firmness of the skin, improving the texture of the skin, improving the appearance of wrinkles in skin, improving the skin tone or the treatment of external aggressions in skin.

As used herein, "improving the firmness of skin" means the enhancing of the firmness or elasticity of the skin, preventing the loss of firmness or elasticity of skin, or preventing or treating sagging, lax and loose skin. The firmness or elasticity of the skin can be measured by use of a cutometer. See Handbook of Non-Invasive Methods and the Skin, eds. J. Serup, G. Jemec & G. Grove, Chapter 66.1 (2006). The loss of skin elasticity or firmness may be a result of a number of factors, including but not limited to aging, environmental damage, or the result of an application of a cosmetic to the skin.

As used herein, "improving the texture of skin" means the smoothing of the surface of the skin to remove either bumps or crevasses on the skin surface.

As used herein, "improving the appearance of wrinkles in skin" means preventing, retarding, arresting, or reversing the process of wrinkle and fine line formation in skin.

As used herein, "treatment of external aggressions in skin" means the reduction or prevention of the damage from external aggressions in skin. Examples of external aggressions include, but are not limited to, damage to the skin from the use of cleansers (e.g., topical cleansers containing surfactants), make-up, shaving as well as environmental damage such as from UV light (e.g., sun damage from sunlight or damage from non-natural sources such as UV lamps and solar simulators), ozone, exhaust, pollution, chlorine and chlorine containing compounds, and cigarette smoke. Effects of external aggressions on the skin include, but are not limited to, oxidative and/or nitrosative damage to and modifications on lipids, carbohydrates, peptides, proteins, nucleic acids, and vitamins. Effects of external aggressions on the skin also
include, but are not limited to, loss of cell viability, loss or alteration of cell functions, and changes in gene and/or protein expression.

As used herein, "improving the skin tone" means the lightening of the appearance of the skin (e.g., lightening pigmented marks or lesions, reducing skin sallowness, and/or evening the color of the skin).

As used herein, "skin in need of reducing skin inflammation" means a skin exhibiting redness or erythema, edema, or being reactive or sensitive to external elements. External elements include, but are not limited to, sun rays (UV, visible, IR), microorganisms, atmospheric pollutants such as ozone, exhaust pollutants, chlorine and chlorine generating compounds, cigarette smoke, cold temperature, heat, soaps and detergents, cosmetics, jewelry. Inflammatory disorders and related conditions which may be treated or prevented by use of the compositions of this invention include, but are not limited to the following: arthritis, bronchitis, contact dermatitis, atopic dermatitis, psoriasis, seborrheic dermatitis, sumac and poison oak dermatitis, eczema, allergic dermatitis, polymorphous light eruptions, inflammatory dermatoses, folliculitis, alopecia, poison ivy, insect bites, acne inflammation, irritation induced by extrinsic factors including, but not limited to, chemicals, trauma, pollutants (such as cigarette smoke) and sun exposure, secondary conditions resulting from inflammation including but not limited to xerosis, hyperkeratosis, pruritus, post-inflammatory hyperpigmentation, scarring and the like. Preferably, the inflammatory disorders and related conditions which may be treated or prevented using the methods of the invention are arthritis, inflammatory dermatoses, contact dermatitis, allergic dermatitis, atopic dermatitis, polymorphous light eruptions, irritation, including erythema induced by extrinsic factors, acne inflammation, psoriasis, seborrheic dermatitis, eczema, poison ivy, poison oak, poison sumac, insect bites, folliculites, alopecia, and secondary conditions and the like.

As used herein, unless otherwise specified, all percentages of ingredients in compositions are weight percent of active/solids ingredient based on the total weight of composition.

As used herein, a composition that is "essentially free" of an ingredient means the composition that has about 2% or less of that ingredient by weight based on the total weight of the composition. Preferably, a composition that is essentially free of an ingredient has about 1% or less, more preferably about 0.5% or less, more preferably about 0.1% or less, more preferably about 0.05 or less, more preferably about 0.01% or less by weight based on the total weight of
composition of the ingredient. In certain more preferred embodiments, a composition that is essentially free of an ingredient is free of the ingredient, i.e. has none of that ingredient in the composition.

As used herein, "cosmetically/ dermatologically acceptable" means that the ingredients which the term describes are suitable for use in contact with tissues (e.g., the skin or hair) without undue toxicity, incompatibility, instability, irritation, allergic response, and the like.

Any suitable extracts of *Paulownia* wood, for example the wood of *Paulownia tomentosa, Paulownia fortunei, Paulownia elongata* and/or *Paulownia kawakamii*, may be used in accord with the present invention. In certain preferred embodiments, the extracts are extracts of the wood of *Paulownia fortunei, Paulownia elongata* and/or *Paulownia kawakamii*. In certain particularly preferred embodiments, the extract is an extract of the wood of *Paulownia tomentosa*. In general, the wood of the *Paulownia* trees include wood from the stem, branches, or a combination of both. Suitable extracts of *Paulownia* wood may be derived from wood chips, wood dusts and/or small cuttings, and the like.

Suitable extracts of *Paulownia* wood may be obtained using conventional methods including, but not limited to, direct extraction of material from the wood by grinding, macerating, pressing, squeezing, mashing, centrifuging, and/or processes such as cold percolation, agitation/distillation, microwave assisted extraction, sonication, supercritical/subcritical CO\textsubscript{2} compressed gas extraction with or without polar modifiers, pressurized solvent extraction, accelerated solvent extraction, pressurized or normal hot water extraction, surfactant assisted pressurized hot water extraction, oil extraction, membrane extraction, Soxhlet extraction, the gold finger distillation/extraction and/or processes disclosed, for example, in US Pat. Nos. 7442391, 7473435, and 7537791 to Integrated Botanical Technologies, LLC, incorporated herein by reference, and the like, or by other methods such as solvent extraction, and the like. The extracts may be, or may be made from, a fraction of materials, or a combination of one or more fractions of materials, extracted from *Paulownia* wood via any method such as described herein. Any of a variety of solvents including polar solvents, non-polar solvents, or combinations of two or more thereof may be used in methods of comprising solvent extraction. Suitable polar solvents include polar inorganic solvents such as water and the like, polar organic solvents such as alcohols and corresponding organic acids, for example Ci-Cg alcohols including methanol, ethanol, propanol, butanol, and the like and organic
acids, including acetic acid, formic acid, propanoic acid, and the like, polyols and glycols, including \(\text{Ci-C}_8 \) polyols/glycols and the like, and combinations of two or more thereof. Suitable non-polar solvents include non-polar organic solvents such as alkanes, including \(\text{Ci-C}_g \) alkanes, cycloalkanes, including \(\text{Ci-C}_g \) alkanes, alkyl ethers, including \(\text{Ci-C}_g \) alkyl ethers, Petroleum ethers, ketones, including \(\text{Ci-C}_g \) ketones, methylene chloride, ethyl acetate, xylene, toluene, chloroform, vegetable oil, mineral oil and the like. In another embodiment extraction may be obtained by non-polar solvents described above or supercritical fluid extraction with or without a polar modifier such as \(\text{Ci-C}_g \) alcohols, water, \(\text{Ci-C}_g \) polyols/glycols or \(\text{Ci-C}_g \) organic acids. In certain preferred embodiments, the extract of the invention is a polar extract prepared by pulverizing the wood and extracting using a polar solvent having a dielectric constant value of between 1 and 100 at 20°C, preferably a dielectric constant of a value between 4 and 60 at 20°C, more preferably a dielectric constant of a value between 4 and 50 at 20°C, and even more preferably a dielectric constant of a value between 4 and 40 at 20°C. Examples of preferred polar solvents include \(\text{Ci-C}_g \) alcohols, \(\text{Ci-C}_g \) polyols/glycols, \(\text{Ci-C}_g \) organic acids, water and combinations of two or more thereof having a dielectric constant value of between 1 and 100, preferably between 4 and 60, and more preferably between 5 and 40 at 20°C, including, but not limited to, those solvents and combinations of solvents having the desired dielectric constant value as disclosed in "Dielectric Constants of Some Organic Solvent-Water Mixtures at Various Temperatures," Akerlof, Gosta; JACS, Vol. 54, No. 11 (Nov. 1932), pp. 4125-4139, incorporated herein by reference. In certain preferred embodiments, the polar extract is extracted using one or more \(\text{Ci-C}_g \) alcohols, \(\text{Ci-C}_g \) polyols, \(\text{Ci-C}_g \) glycols, and combinations of two or more thereof. In certain more preferred embodiments, the extract is extracted using one or more \(\text{C}_1\text{-C}_4 \) alcohols, \(\text{C}_1\text{-C}_4 \) polyols, and/or \(\text{C}_1\text{-C}_4 \) glycols. In certain more preferred embodiments, the extract is prepared using a solvent comprising methanol, ethanol, or a combination thereof with or without presence of water. In more preferred embodiment, the extract is prepared using anhydrous alcohol or reagent grade denatured alcohol and dried Kiri wood dust agitating at room temperature for 3 days. In certain preferred embodiments, the extract may be further refined by charcoal (also referred to as active carbon) treatment.

In certain embodiments, the *Paulownia* wood extract may be prepared to be essentially free of certain materials. In one embodiment, the extract is essentially free of Ursolic acid, beta-Sitosterol, or both.
In certain embodiments, the composition may additionally include extracts from other parts of a *Paulownia* tree for example, one or more of the bark, leaves, roots, fruits, seeds, or flowers. In other embodiments, the composition is essentially free from extracts of other non-wood parts of *Paulownia* tree.

In certain preferred embodiments, the composition may comprise extracts from cell cultures of plants of the genus *Paulownia*, such as *Paulownia tomentosa*, *Paulownia fortunei*, *Paulownia elongata*, and/or *Paulownia kawakamii*.

Any suitable amounts of *Paulownia* wood extract may be used in the compositions of the present invention. Preferably, the compositions comprise a safe and effective amount of *Paulownia* wood extract. As used herein, a "safe and effective amount" means an amount of the extract or of the composition sufficient to induce the desired effect, but low enough to avoid serious side effects, including cytotoxicity and the like. For embodiments comprising skin lightening uses of the composition, a "skin lightening effective amount" means an amount of extract that is effective to achieve a AL value that is greater than zero in the Skin Epidermal Equivalents Model as a skin Lightening Test (AL) as described below. In certain preferred embodiments, the skin lightening effective amount is an amount effective to achieve a AL value of about 1 or greater.

For embodiments of the present invention related to uses of the compositions for improving a sign of aging in skin, an "effective amount for improving a sign of aging" means an amount that provides a percent inhibition of MMP-1 or MMP-9 production, measured in accord with the Inhibition of UV-Induced MMP induction procedure of Example 11 below, that is greater than zero. In certain preferred embodiments, the effective amount for improving a sign of aging is an amount that provides a percent inhibition of MMP-1 or MMP-9 production, measured in accord with the Inhibition of UV-Induced MMP induction procedure of Example 11 below, that is about 10% or greater.

For embodiments of the present invention related to uses of the compositions for reducing inflammation, an "effective amount for reducing inflammation" means an amount that provides a percent inhibition of skin inflammation (IL-8), measured in accord with the Anti-Inflammatory effects on Release of UV-Induced Pro-inflammatory mediators on Reconstituted Epidermis procedure for IL-8 of Example 7 below, that is greater than zero. In certain preferred embodiments, the effective amount for improving a sign of aging is an amount that provides a
percent inhibition of skin inflammation (IL-8), measured in accord with the Anti-Inflammatory
effects on Release of UV-Induced Pro-inflammatory mediators on Reconstituted Epidermis
procedure for IL-8 of Example 7 below, that is about 10% or greater.

In certain preferred embodiments, the compositions comprise from greater than zero to
about 20% Paulownia wood extract. In certain other preferred embodiments, the compositions
comprise from about 0.0001 to about 20%, from about 0.001 to about 10%, from about 0.01 to
about 5%, from about 0.1 to about 5%, or from about 0.2 to about 2% Paulownia wood extract.
In certain other preferred embodiments, the compositions comprise from greater than zero to
about 1%, from about 0.0001 to about 1%, from about 0.001 to about 1%, or from about 0.01 to
about 1% Paulownia wood extract. In certain other preferred embodiments, the compositions
comprise from about 1 to about 5%, preferably from about 2 to about 5% Paulownia wood
extract.

Any suitable carrier may be used in the compositions of the present invention. Preferably, for a skin care composition, the carrier is a cosmetically-acceptable carrier. As will be recognized by those of skill in the art, cosmetically-acceptable carriers comprise carriers that are suitable for use in contact with the body, in particular the skin for skin whitening applications, without undue toxicity, incompatibility, instability, irritation, allergic response, and the like. A safe and effective amount of carrier is from about 50% to about 99.999%, preferably from about 80% to about 99.9%, more preferably from about 99.9% to about 95%, most preferably from about 99.8% to about 98% of the composition. The carrier can be in a wide variety of forms. For example, emulsion carriers, including, but not limited to, oil-in-water, water-in-oil, water-in-oil-in-water, and oil-in-water-in-silicone emulsions, are useful herein. These emulsions can cover a broad range of viscosities, e.g, from about 100 cps to about 200,000 cps. Examples of suitable cosmetically-acceptable carriers include cosmetically-acceptable solvents and materials for cosmetic solutions, suspensions, lotions, creams, serums, essences, gels, toners, sticks, sprays, ointments, liquid washes and soap bars, shampoos, hair conditioners, pastes, foams, mousses, powders, shaving creams, wipes, patches, strips, powered patches, microneedle patches, bandages, hydrogels, film-forming products, facial and skin masks, make-up, liquid drops, and the like. These product types may contain several types of cosmetically-acceptable carriers including, but not limited to solutions, suspensions, emulsions such as microemulsions and nanoemulsions, gels, solids, liposomes, other encapsulation technologies
and the like. The following are non-limitative examples of such carriers. Other carriers can be formulated by those of ordinary skill in the art.

In one embodiment, the carrier contains water. In a further embodiment, the carrier may also contain one or more aqueous or organic solvents. Examples of organic solvents include, but are not limited to: dimethyl isosorbide; isopropylmyristate; surfactants of cationic, anionic and nonionic nature; vegetable oils; mineral oils; waxes; gums; synthetic and natural gelling agents; alkanols; glycols; and polyols. Examples of glycols include, but are not limited to, glycerin, propylene glycol, butylene glycol, pentalene glycol, hexylene glycol, polyethylene glycol, polypropylene glycol, diethylene glycol, triethylene glycol, capryl glycol, glycerol, butanediol and hexanetriol, and copolymers or mixtures thereof. Examples of alkanols include, but are not limited to, those having from about 2 carbon atoms to about 12 carbon atoms (e.g., from about 2 carbon atoms to about 4 carbon atoms), such as isopropanol and ethanol. Examples of polyols include, but are not limited to, those having from about 2 carbon atoms to about 15 carbon atoms (e.g., from about 2 carbon atoms to about 10 carbon atoms) such as propylene glycol. The organic solvents may be present in the carrier in an amount, based upon the total weight of the carrier, of from about 1 percent to about 99.99 percent (e.g., from about 20 percent to about 50 percent). Water may be present in the carrier (prior to use) in an amount, based upon the total weight of the carrier, of from about 5 percent to about 95 percent (e.g., from about 50 percent to about 90 percent). Solutions may contain any suitable amounts of solvent, including from about 40 to about 99.99%. Certain preferred solutions contain from about 50 to about 99.9%, from about 60 to about 99%, from about 70 to about 99%, from about 80 to about 99%, or from about 90 to 99%.

A lotion can be made from such a solution. Lotions typically contain at least one emollient in addition to a solvent. Lotions may comprise from about 1% to about 20% (e.g., from about 5% to about 10%) of an emollient(s) and from about 50% to about 90% (e.g., from about 60%, to about 80%) of water.

Another type of product that may be formulated from a solution is a cream. A cream typically contains from about 5% to about 50% (e.g., from about 10% to about 20%) of an emollient(s) and from about 45% to about 85% (e.g., from about 50% to about 75%) of water.

Yet another type of product that may be formulated from a solution is an ointment. An ointment may contain a simple base of animal, vegetable, or synthetic oils or semi-solid
hydrocarbons. An ointment may contain from about 2% to about 10% of an emollient(s) plus from about 0.1% to about 2% of a thickening agent(s).

The compositions useful in the present invention can also be formulated as emulsions. If the carrier is an emulsion, from about 1% to about 10% (e.g., from about 2% to about 5%) of the carrier contains an emulsifier(s). Emulsifiers may be nonionic, anionic or cationic.

Lotions and creams can be formulated as emulsions. Typically such lotions contain from 0.5% to about 5% of an emulsifier(s), while such creams would typically contain from about 1% to about 20% (e.g., from about 5% to about 10%) of an emollient(s); from about 20% to about 80% (e.g., from 30% to about 70%) of water; and from about 1% to about 10% (e.g., from about 2% to about 5%) of an emulsifier(s).

Single emulsion skin care preparations, such as lotions and creams, of the oil-in-water type and water-in-oil type are well-known in the art and are useful in the subject invention. Multiphase emulsion compositions, such as the water-in-oil-in-water type or the oil-in-water-in-oil type, are also useful in the subject invention. In general, such single or multiphase emulsions contain water, emollients, and emulsifiers as essential ingredients.

The compositions of this invention can also be formulated as a gel (e.g., an aqueous, alcohol, alcohol/water, or oil gel using a suitable gelling agent(s)). Suitable gelling agents for aqueous and/or alcoholic gels include, but are not limited to, natural gums, acrylic acid and acrylate polymers and copolymers, and cellulose derivatives (e.g., hydroxymethyl cellulose and hydroxypropyl cellulose). Suitable gelling agents for oils (such as mineral oil) include, but are not limited to, hydrogenated butylene/ethylene/styrene copolymer and hydrogenated ethylene/propylene/styrene copolymer. Such gels typically contains between about 0.1% and 5%, by weight, of such gelling agents.

The compositions of the present invention can also be formulated into a solid formulation (e.g., a wax-based stick, soap bar composition, powder, or wipe). The composition of the present invention can also be combined with a solid, semi-solid or dissolvable substrate (e.g., a wipe, mask, pad, glove or strip).

The compositions of the present invention can also be formulated into formulation used for the oral cavity, such as toothpaste, gel, rinse, solution, patch, and the like. The compositions may also be formulated for use in the eye, such as in solutions, emulsions, suspensions used as
drops or washes and the like, or formulated for use in the vaginal mucosa such as via gels, lotions, lubricants, and the like.

The compositions of the present invention may further comprise any of a variety of additional cosmetically active agents. Examples of suitable additional active agents include: additional skin lightening agents, darkening agents, additional anti-aging agents, tropoelastin promoters, collagen promoters, anti-acne agents, shine control agents, anti-microbial agents such as anti-yeast agents, anti-fungal, and anti-bacterial agents, anti-inflammatory agents, anti-parasite agents, external analgesics, sunscreens, photoprotectors, antioxidants, keratolytic agents, detergents/surfactants, moisturizers, nutrients, vitamins, energy enhancers, anti-perspiration agents, astringents, deodorants, hair removers, hair growth enhancing agents, hair growth delaying agents, firming agents, hydration boosters, efficacy boosters, anti-callous agents, agents for skin conditioning, anti-cellulite agents, fluorides, teeth whitening agents, anti-plaque agents, and plaque-dissolving agents, odor-control agents such as odor masking or pH-changing agents, and the like. Examples of various suitable additional cosmetically acceptable actives include hydroxy acids, benzoyl peroxide, D-pantethenol, UV filters such as but not limited to avobenzone (Parsol 1789), bisdisulizole disodium (Neo Heliopan AP), diethylamino hydroxybenzoyl hexyl benzoate (Uvinul A Plus), ecamsule (Mexoryl SX), methyl anthranilate, 4-aminobenzoic acid (PABA), cinoxate, ethylhexyl triazone (Uvinul T 150), homosalate, 4-methylbenzylidene camphor (Parsol 5000), octyl methoxycinnamate (Octinoxate), octyl salicylate (Octisalate), padimate O (Escalol 507), phenylbenzimidazole sulfonylic acid (Ensulizole), polysilicone-15 (Parsol SLX), trolamine salicylate, Bemotrizinol (Tinosorb S), benzophenones 1-12, dioxybenzone, drometrizole trisiloxane (Mexoryl XL), isocrotizinol (Uvasorb HEB), octocrylene, oxybenzone (Eusolex 4360), sulisobenzone, bisoctrizole (Tinosorb M), titanium dioxide, zinc oxide, carotenoids, free radical scavengers, spin traps, retinoids and retinoid precursors such as retinol, retinoic acid and retinyl palmitate, ceramides, polyunsaturated fatty acids, essential fatty acids, enzymes, enzyme inhibitors, minerals, hormones such as estrogens, steroids such as hydrocortisone, 2-dimethylaminooethanol, copper salts such as copper chloride, peptides containing copper such as Cu:Gly-His-Lys, coenzyme Q10, amino acids such as proline, vitamins, lactobionic acid, acetyl-coenzyme A, niacin, riboflavin, thiamin, ribose, electron transporters such as NADH and FADH2, rice protein, and other botanical extracts such as oat, aloe vera, Feverfew, Soy, Shiitake mushroom extracts, and derivatives and mixtures thereof.
In certain preferred embodiments, the compositions of the present invention are skin care compositions that comprise an extract of *Paulownia* wood and at least one additional skin lightening active agent. Examples of suitable additional skin lightening active agents include, but are not limited to, tyrosinase inhibitors, melanin-degradation agents, melanosome transfer inhibiting agents including PAR-2 antagonists, exfoliants, sunscreens, retinoids, antioxidants, Tranexamic acid, tranexamic acid cetyl ester hydrochloride, skin bleaching agents, linoleic acid, linolenic acid, oleic acid, adenosine monophosphate disodium salt, Chamomilla extract, allantoin, opacifiers, tals and silicas, zinc salts, and the like, and other agents as described in Solano et al. Pigment Cell Res. 19 (550-571) and Ando et al. Int J Mol Sci 11 (2566-2575).

Examples of suitable tyrosinase inhibitors include but, are not limited to, Vitamin C and its derivatives, Vitamin E and its derivatives, Kojic Acid, Arbutin, resorcinols, hydroquinone, Flavones e.g. Licorice flavanoids, Licorice root extract, Mulberry root extract, Dioscorea Cposita root extract, Saxifraga extract and the like, Ellagic acid, Salicylates and derivatives, Glucosamine and derivatives, Fullerene, Hinokitiol, Dioic acid, Acetyl glucosamine, 5,5'-dipropyl-biphenyl-2,2'-diol (Magnolignan), 4-(4-hydroxyphenyl)-2-butanol (4-HPB), combinations of two or more thereof, and the like. Examples of vitamin C derivatives include, but are not limited to, ascorbic acid and salts, Ascorbic Acid-2-Glucoside, sodium ascorbyl phosphate, magnesium ascorbyl phosphate, and natural extract enriched in vitamin C. Examples of vitamin E derivatives include, but are not limited to, alpha-tocopherol, beta, tocopherol, gamma-tocopherol, delta-tocopherol, alpha-tocotrienol, beta-tocotrienol, gamma-tocotrienol, delta-tocotrienol and mixtures thereof, tocopherol acetate, tocopherol phosphate and natural extracts enriched in vitamin E derivatives. Examples of resorcinol derivatives include, but are not limited to, resorcinol, 4-substituted resorcinols like 4-alkylresorcinols such as 4-butyresorcinol (rucinol), 4-hexylresorcinol (Synovea HR, Sytheon), phenylethyl resorcinol (Symwhite, Symrise), 1-(2,4-dihydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)-Propane (nivitol, Unigen) and the like and natural extracts enriched in resorcinols. Examples of salicylates include, but are not limited to, 4-methoxy potassium salicylate, salicylic acid, acetylsalicylic acid, 4-methoxysalicylic acid and their salts. In certain preferred embodiments, the tyrosinase inhibitors include a 4-substituted resorcinol, a vitamin C derivative, or a vitamin E derivative. In more preferred embodiments, the tyrosinase inhibitor comprises Phenylethyl resorcinol, 4-hexyl resorcinol, or ascorbyl-2-glucoside.
Examples of suitable melanin-degradation agents include, but are not limited to, peroxides and enzymes such as peroxidases and ligninases. In certain preferred embodiments, the melanin-inhibiting agents include a peroxide or a ligninase.

Examples of suitable melanosome transfer inhibiting agents including PAR-2 antagonists such as soy trypsin inhibitor or Bowman-Birk Inhibitor, Vitamin B3 and derivatives such as Niacinamide, Essential soy, Whole Soy, Soy extract,. In certain preferred embodiments, the melanosome transfer inhibiting agents includes a soy extract or niacinamide.

Examples of exfoliants include, but are not limited to, alpha-hydroxy acids such as lactic acid, glycolic acid, malic acid, tartaric acid, citric acid, or any combination of any of the foregoing, beta-hydroxy acids such as salicylic acid, polyhydroxy acids such as lactobionic acid and gluconic acid, and mechanical exfoliation such as microdermabrasion. In certain preferred embodiments, the exfoliant include glycolic acid or salicylic acid.

Examples of sunscreens include, but are not limited to, avobenzone (Parsol 1789), bisdisulizole disodium (Neo Heliopan AP), diethylamino hydroxybenzoyl hexyl benzoate (Uvinul A Plus), ecamusle (Mexoryl SX), methyl anthranilate, 4-aminobenzoic acid (PABA), cinoxate, ethylhexyl triazone (Uvinul T 150), homosalate, 4-methylbenzylidene camphor (Parsol 5000), octyl methoxycinnamate (Octinoxate), octyl salicylate (Octisalate), padimate O (Escalol 507), phenylbenzimidazole sulfonic acid (Ensulizole), polysilicone-15 (Parsol SLX), trolamine salicylate, Bemotrizinol (Tinosorb S), benzophenones 1-12, dioxybenzone, drometrizole trisiloxane (Mexoryl XL), isocitrazinol (Uvasorb HEB), octocrylene, oxybenzone (Eusolex 4360), sulisobenzone, bisoctrizole (Tinosorb M), titanium dioxide, zinc oxide, and the like.

Examples of retinoids include, but are not limited to, retinol (Vitamin A alcohol), retinal (Vitamin A aldehyde), retinyl acetate, retinyl propionate, retinyl linoleate, retinoic acid, retinyl palmitate, isoretinoin, tazarotene, bexarotene, Adapalene, combinations of two or more thereof and the like. In certain preferred embodiments, the retinoid is selected from the group consisting of retinol, retinal, retinyl acetate, retinyl propionate, retinyl linoleate, and combinations of two or more thereof. In certain more preferred embodiments, the retinoid is retinol.

Examples of antioxidants include, but are not limited to, water-soluble antioxidants such as sulfhydryl compounds and their derivatives (e.g., sodium metabisulfite and N-acetyl-cysteine, glutathione), lipoic acid and dihydrolipoic acid, stilbenoids such as resveratrol and derivatives, lactoferrin, iron and copper chelators and ascorbic acid and ascorbic acid derivatives (e.g.,
ascorbic acid, ascorbyl palmitate and ascorbyl polypeptide). Oil-soluble antioxidants suitable for use in the compositions of this invention include, but are not limited to, butylated hydroxytoluene, retinoids (e.g., retinol and retinyl palmitate), tocopherols (e.g., tocopherol acetate), tocoferols, and ubiquinones. Natural extracts containing antioxidants suitable for use in the compositions of this invention, include, but not limited to, extracts containing flavonoids and isoflavonoids and their derivatives (e.g., genistein and diadzein), extracts containing resveratrol, and the like. Examples of such natural extracts include grape seed, green tea, black tea, white tea, pine bark, feverfew, parthenolide-free feverfew, oat extracts, blackberry extract, cotinus extract, soy extract, pomelo extract, wheat germ extract, Hesperedin, Grape extract, Portulaca extract, Licochalcone, chalcone, 2',2'-dihydroxchalcone, 2',2'-hydroxy-2,3,5'-trimethoxychalcone, Primula extract, propolis, and the like.

The additional cosmetically active agent may be present in a composition in any suitable amount, for example, in an amount of from about 0.0001% to about 20% by weight of the composition, e.g., about 0.01% to about 10% such as about 0.01% to about 5%. In certain preferred embodiments, in an amount of 0.1% to 5% and in other preferred embodiments from 1% to 2%.

In certain preferred embodiments, the compositions of the present invention are skin care compositions that comprise an extract of Paulownia wood and at least one additional anti-inflammatory agent. Suitable additional anti-inflammatory active agents include, but are not limited to, compounds that have an IC50 (concentration at which a compound achieves 50% inhibition of inflammation) of less than or equal to 100 μg/ml for Interleukin-2 in the ANTI-INFLAMMATORY ASSAY set forth below. In a preferred embodiment, the IC50 for the second anti-inflammatory compounds is less than about 70 μg/ml, more preferably less than about 50 μg/ml, more preferably less than about 40 μg/ml, more preferably less than about 30 μg/ml.

The ANTI-INFLAMMATORY ASSAY assesses the ability of an agent to reduce the production of cytokines by human lymphocytes stimulated with the T-cell receptor (TCR) activating agent phytohaemagglutinin (PHA), and is conducted in the following manner. Human leukocytes are collected from a healthy adult male via leukopheresis, and adjusted to a density of 1×10⁸ cells/mL in serum free lymphocyte growth medium (ExVivo-15, Biowhittaker, Walkersville, Md.). PBLs are stimulated with 10 μg/mL PHA in the presence or absence of test samples following published methods (Hamamoto Y., et al. *Exp Dermatol* 2:231-235, 1993).
Following a 48 hour incubation at 37° C. with 5% CO₂, the supernatant is removed and evaluated for cytokine content using commercially available multiplex cytokine detection kit.

Examples of suitable anti-inflammatory agents include substituted resorcinols, (E)-3-(4-methylphenylsulfonyl)-2-propenenitrile (such as "Bay 11-7082," commercially available from Sigma-Aldrich of St. Louis, Missouri), tetrahydrocurcumnoids (such as Tetrahydrocurcumnoid CG, available from Sabinsa Corporation of Piscataway, NJ), extracts and materials derived from the following:

Phellodendron Amurense Cortex Extract (PCE)
Non-Denatured Soy (Glycine max)
Feverfew (Tanacetum parthenium)
Ginger (Zingiber officinale)
Ginko (Ginko Biloba)
Madecassoside (centella asiatica extract ingredient)
Cotinus (Cotinus cogygria)
Butterbur Extract (Petasites hybridus)
Goji Berry (Lycium barbarum)
Milk Thistle Extract (Silybum marianum)
Honeysuckle (Lonicera japonica)
Basalm of Peru (Myroxylon pereirae)
Sage (Salvia officinalis)
Cranberry Extract (Vaccinium oxycoccos)
Amaranth Oil (Amaranthus cruentus)
Pomegranate (Punica granatum)
Yerbe Mate (Ilex paraguariensis Leaf Extract)
White Lily Flower Extract (Lilium Candidum)
While Lily Bulb Extract (Lilium Candidum)
Olive Leaf Extract (Olea europaea)
Phloretin (apple extract)
Oat Flour (Aveena Sativa)
Lifenol (Hops: Humulus lupulus) Extract
Bugrane P (Ononis spinosa)
Licochalcone (Licorice: Glycyrrhiza inflate extract ingredient)
Symrelief (Bisabolol and Ginger extract)
Rice extract
combinations of two or more thereof, and the like.

Resorcinol is a dihydroxy phenol compound (i.e., 1,3 dihydroxybenzene) having by the following structure:

```
HO
\|  \|
|   |   |
\|  \|
HO
```

As used herein, "substituted resorcinol" means resorcinol comprising at least one substituent in the 2, 4, 5, or 6 position. Thus, the substituted resorcinol may have as few as one and as many as four substituents. Positions 1 and 3 of the substituted resorcinol comprise -OH groups, as shown above.

In embodiments wherein substituted resorcinol is used for anti-inflammation, it is highly preferred that all of the substituents of the substituted resorcinol are free of phenyl (-C₆H₅ aromatic) moieties. In certain embodiments, all of the substituents are free of aromatic moieties (with or without heteroatoms). In certain such embodiments, it is preferred that all of the substituents of the substituted resorcinol are free of ketone functionalities (carbonyls bonded to two other carbon atoms). In certain other such embodiments, all of the substituents of the substituted resorcinol are free of both phenyl functionalities and ketone functionalities. In certain other such embodiments, the substituted resorcinol comprises at least one substituent comprising 5 to 11 carbon atoms, preferably 5 to 10 carbon atoms, more preferably 5 to 9 carbon atoms, most preferably 5 to 8 carbon atoms. In certain other such embodiments, at least one substituent comprises an alkyl group, such as one having the number of carbon atoms described above. The alkyl group is preferably unsaturated.

In certain embodiments, the 4 position of the resorcinol is substituted, and, in certain embodiments, only the 4 position is substituted. In another embodiment, the 4 position is substituted with an alkyl group. In certain preferred embodiments, the substituted resorcinol
comprises a single substituent at the 4 position that comprises an alkyl group. In certain other preferred embodiments, the substituted resorcinol comprises a single substituent at the 4 position that consists of an alkyl group directly bonded to the benzene ring.

Particularly suitable substituted resorcinols for anti-inflammation agents include 4-hexyl resorcinol and 4-octylresorcinol, particularly 4-hexyl resorcinol. The structures of 4-hexylresorcinol and 4-octylresorcinol are shown below:

![4-hexyl resorcinol](image)

![4-octylresorcinol](image)

4-Hexyl resorcinol is commercially available as "SYNOVEA HR" from Sytheon of Lincoln Park, NJ. 4-Octylresorcinol is commercially available from City Chemical LLC of West Haven, Connecticut.

In certain embodiments, the substituted resorcinol comprises at least two substituents in the 2, 4, 5, or 6 positions. Such substituents may optionally be linked to form a ring, such as a cyclic aliphatic hydrocarbon optionally comprising heteroatoms such as sulfur or oxygen. Such a linked substituent may comprise 5 to 10 carbon atoms, e.g., 8 to 10 carbon atoms, and optionally include 1 to 3 heteroatoms. Examples of suitable substituted resorcinols comprising cyclic aliphatic substituents joining the 2 and 3 positions include Zearalanone and β-Zearalanol:
Zearalanone and β-Zearalanol are commercially available from Sigma Chemicals of St. Louis, Missouri.

In certain other embodiments, the substituted resorcinol comprises halide-containing and/or nitroso-containing substituents. Suitable examples contain -Cl or -N=0 bonded directly to the benzene ring. These substituents may exist for example in the 2 and 4, 2 and 6, or 4 and 6 positions. An example of a dihalide-substituted resorcinol is 2,6-dichlororesorcinol. An example of a dinitroso-substituted resorcinol is 2,4-dinitrososorcinol:

2,6-Dichlororesorcinol and 2,4-Dinitroresorcinol are available from City Chemical LLC of West Haven, Connecticut.

Substituted resorcinols are prepared by means known in the art, for example, using techniques described in US Patent No. 4,337,370, the contents of which are incorporated herein by reference.
The substituted resorcinols may have any suitable molecular weight. In certain embodiments, the molecular weight of the substituted resorcinol ranges between about 175 and about 300.

By "extracts of feverfew," it is meant extracts of the plant "*Tanacetum parthenium,*" such as may be produced according to the details set for the in US Patent Application Publication No. 2007/0196523, entitled "PARTHENOLIDE FREE BIOACTIVE INGREDIENTS FROM FEVERFEW (TANACETUM PARTHENIUM) AND PROCESSES FOR THEIR PRODUCTION." One particularly suitable feverfew extract is commercially available as about 20% active feverfew, from Integrated Botanical Technologies of Ossining, NY.

Compositions of the present invention may include a cosmetically effective amount of one or more additional anti-inflammatory compounds. The compositions preferably include, on an active basis, from about 0.1% to about 10%, more preferably from about 0.5% to about 5%, of the additional anti-inflammatory compound.

In the present compositions, the ratio of the concentrations of the *Paulownia* wood extract to the additional anti-inflammatory compound may be varied. For example, the extract and the anti-inflammatory compound may be present in a concentration by weight ratio (which is determined by dividing the concentration by weight of the dry extract by the concentration by weight of the additional anti-inflammatory compound) of about 0.001 to about 100, preferably about 0.01 to about 10, more preferably about 0.25 to about 2.

In certain preferred embodiments, the compositions of the present invention are skin care compositions that comprise an extract of *Paulownia* wood and at least one additional agent improving the signs of aging. Examples of suitable additional agents improving the signs of aging include, but are not limited to, tropoelastin promoters, collagen promoters, retinoids, hyaluronic acid, dimethylaminoethanol, N,N,N',N'-Tetrakis(2-hydroxypropyl)ethylenediamine, alpha hydrox acids, polyhydroxyacids, and combinations of two or more thereof.

"*Tropoelastin promoter, *as used herein, refers to a class of compounds that possess the biological activity of enhancing the production of tropoelastin. Tropoelastin promoters, according to the present invention, include all natural or synthetic compounds that are capable of enhancing the production of tropoelastin in the human body.

Suitable tropoelastin promoters may be determined, for example, using the
TROPOELASTIN PROMOTER ASSAY. The TROPOELASTIN PROMOTER ASSAY is performed as follows. Rat cardiac myoblasts H9C2 (which may be purchased, for example from ATCC of Manassas, VA) are used. Cultures are maintained in Dulbecco's modified Eagle's medium (DMEM, Invitrogen Life Technologies, Carlsbad, Calif.) supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 units/ml penicillin, and 50 µg/ml streptomycin (Invitrogen Life Technologies, Carlsbad, CA). Cell cultures are transiently transfected with the elastin promoter-luciferase reporter construct (Elp2.2, a 2.2 kb elastin promoter fragment from nt -2267 to nt +2, driving the firefly luciferase gene, which may be obtained from Promega, Madison Wis.). DNA is prepared by Qiagen Maxi columns (Qiagen Valencia, CA). In all transfections, a construct with the thymidine kinase promoter and the Renilla luciferase reporter gene (pRL-TK, Promega, Madison Wis.) is included as an internal control. Typically, cells grown in 48-well plates are transfected with 0.45 µg total DNA per well using Lipofectamine 2000 (Invitrogen Life Technologies, Carlsbad, CA). One day after transfection, cells are treated with agents at indicated concentrations for approximately 24 hours before they are lysed for luciferase assays, using Dual-Luciferase Reporter System from Promega (Madison, Wis.), following manufacturer's protocol. The firefly luciferase activity is measured first (representing elastin promoter activity), followed by the renilla luciferase (internal control), using luminometer LMAX, from Molecular Devices (Sunnyvale, CA). The ratio of these two luciferase activities (RLU) is used to evaluate the Tropoelastin Promoter Activity. The tropoelastin promoter preferably has a Tropoelastin Promoter Activity of at least 1.1, preferably at least 1.25, more preferably at least 1.3, and most preferably at least 1.5, at least one concentration in the range of 0.5 micrograms/milliliter to 2.5 milligrams per milliliter (on an activies basis), and preferably at least one concentration in the range of 1.0 micrograms/milliliter to 2.5 milligrams per milliliter (on an activies basis).

Examples of suitable tropoelastin promoters include, but are not limited to, blackberry extracts, cotinus extracts, feverfew extracts, extracts of Phyllanthus niruri and bimetal complexes having copper and/or zinc constituents. The bimetal complex having copper and/or zinc constituents may be, for example, copper-zinc citrate,
copper-zinc oxalate, copper-zinc tartarate, copper-zinc malate, copper-zinc succinate, copper-zinc malonate, copper-zinc maleate, copper-zinc aspartate, copper-zinc glutamate, copper-zinc glutarate, copper-zinc fumarate, copper-zinc glucarate, copper-zinc polyacrylic acid, copper-zinc adipate, copper-zinc pimelate, copper-zinc suberate, copper-zinc azelate, copper-zinc sebacate, copper-zinc dodecanoate, or combinations thereof. In a preferred embodiment, the tropoelastin promoter is selected from blackberry extracts, cotinus extracts, feverfew extracts, and combinations thereof. In a particularly preferred embodiment, the tropoelastin promoter is selected from blackberry extracts, feverfew extracts, and combinations thereof.

By "cotinus extract," it is meant an extract of the leaves of "Cotinus coggyria," such as a water extract thereof, available from Bilkokoop of Sofia, Bulgaria.

By "blackberry extract," it is meant a blend of compounds isolated from the plant of the genus Rubus, and preferably Rubus fruticosus. In one embodiment, the compounds are isolated from the flowers of the plant. In a further embodiment, the compounds are isolated from dried flowers of the plant. Such compounds may be isolated from one or more parts of the plant (e.g., the whole plant, flower, seed, root, rhizome, stem, fruit and/or leaf of the plant). In a preferred embodiment, the blackberry extract is a blackberry leaf extract.

The extraction process may include by physically removing a piece of such plant, and, for example, grinding it. Further extraction of suitable compounds may also be isolated from the plant by using extraction procedures well known in the art (e.g., the use of organic solvents such as lower C1-C8 alcohols, C1-C8 alkyl polyols, C1-C8 alkyl ketones, C1-C8 alkyl ethers, acetic acid C1-C8 alkyl esters, and chloroform, and/or inorganic solvents such as water, inorganic acids such as hydrochloric acid, and inorganic bases such as sodium hydroxide).

For example, a blackberry leaf extract may be prepared by an extraction with water, alcohols such as ethanol or combination thereof as the solvent. However, an extract produced with a solvent including both ethanol and water is preferred. The blackberry leaves are preferably dried prior to extraction. It is also preferable to use only the leaves of the blackberry plant for the extraction and not also other plant parts such as the fruit (berries) of the blackberry or its branches and roots.
In one embodiment, the extraction process for the production of a blackberry leaf extract comprises the following steps: a) addition of blackberry leaves to a solvent containing an alcohol selected from the group consisting of methanol, ethanol, n-propanol, iso-propanol, b) Extraction of the blackberry leaves with the solvent for up to 72 hours.

Detailed procedures for preparing a suitable blackberry leaf extract are disclosed in US Patent Application Publication No. 2008/0095719, the disclosure of which is incorporated herein in its entirety.

One particularly suitable blackberry extract is produced by extracting the leaves of *Rubus fruticosus* with a mixture of water and ethanol compounded to an activity of about 5% to about 10%, with a maltodextrin matrix, commercially available from Symrise Inc. of Teterboro, NJ, and is sold under the name "SymMatrix."

Extracts of *"Phyllanthus niruri"* may be harvested and used as the whole plant, or optionally one or more parts of the plant (e.g., flower, seed, root, rhizome, stem, fruit and/or leaf of the plant) may be used. The *Phyllanthus niruri* plant or parts thereof may be finely divided, such as by grinding or milling, to a powder. A suitable milled form of *Phyllanthus niruri* is commercially available from Raintree Nutrition, Inc., of Carson City, Nevada. Preferably, a low molecular weight fraction of *Phyllanthus niruri* is used, for instance a fraction of *Phyllanthus niruri* substantially free of molecular species having a molecular weight of greater than about 100,000 daltons. Preferably, such low molecular weight fraction is water extractable from the *Phyllanthus niruri* plant.

Compositions of the present invention may include a cosmatically effective amount of one or more tropoelastin promoters such as those described above. The compositions preferably include, on an active basis, from about 0.1% to about 10% of the tropoelastin promoters, more preferably from about 0.5% to about 5% of tropoelastin promoters, and most preferably from about 0.5% to about 2% of the tropoelastin promoters.

"Collagen promoter," as used herein, refers to compounds that possess the biological activity of enhancing the production of collagen. "Non-retinoid collagen promoters", according to the present invention, include all natural or synthetic compounds that are not retinoids, or
derived from retinoids, and are capable of enhancing the production of collagen in the human body.

Suitable collagen promoters may be determined, for example, using the COLLAGEN PROMOTER ASSAY. The COLLAGEN PROMOTER ASSAY is performed as follows. Rat cardiac myoblasts H9C2, which may be purchased from ATCC (Manassas, VA), are used. Cultures are maintained in Dulbecco's modified Eagle's medium (DMEM, Invitrogen Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 units/ml penicillin, and 50 µg/ml streptomycin (Invitrogen Life Technologies, Carlsbad, CA). Cell cultures are transiently transfected with the Collagen IA promoter-luciferase reporter construct, driving the firefly luciferase gene, which may obtained for example from PREMAS Biotech Pvt. Ltd (Haryana, India). In all transfections, a construct with the thymidine kinase promoter and the Renilla luciferase reporter gene (pRL-TK, Promega, Madison, Wisconsin) is included as an internal control. Cells grown in 48-well plates are transfected with 0.45 µg total DNA per well using Lipofectamine 2000 (Invitrogen Life Technologies, Carlsbad, CA). One day after transfection, cells are treated with agents at the indicated concentrations for approximately 24 hours before they are lysed for luciferase assays, using Dual-Luciferase Reporter System from Promega (Madison, WI), following manufacturer's protocol. The firefly luciferase activity is measured first (representing collagen promoter activity), followed by the renilla luciferase (internal control), using luminometer LMAX, from Molecular Devices (Sunnyvale, CA). The ratio of these two luciferase activities (RLU) is used to evaluate the activity of each promoter.

The suitable collagen promoter preferably has a Collagen Promoter Activity of at least 1.2, preferably at least 1.25, more preferably at least 1.3; at least one concentration in the range of 0.5 micrograms/milliliter to 2.5 milligrams per milliliter (on an actives basis), preferably at least one concentration in the range of 1.0 micrograms/milliliter to 2.5 milligrams per milliliter (on an actives basis).

Examples of suitable non-retinoid collagen promoters include, but are not limited to the following: extracts of feverfew (Tanacetum parthenium), extracts of Centella asiatica, extracts of Siegesbeckia orientalis; extracts of soy; collagen promoting
peptides; ursolic acid; and asiaticoside.

Centella asiatica, also known as Violette marronne on Reunion Island, Gotu Kola or Indian pennywort in India, Centella repanda in North America, and Talapetraka in Madagascar, is a polymorphous herb and belongs to the family of Umbelliferae (Apiaceae), particularly to the Hydrocotyle subfamily. It grows wild throughout the tropics and prefers moist and shady regions at an altitude of about 600 to 1200 meters above sea level. Centella asiatica has three varieties: Typica, Abyssinica, and Floridana. The herb is known and used for its healing, sedative, analgesic, antidepressant, antiviral and antimicrobial properties. The biological activity of the herb appears to be due to the presence of triterpene molecules in the herb. A suitable extract of Centella asiatica is available as TECA from Bayer Consumer HealthCare of Basel, Switzerland.

By "extracts of Siegesbeckia orientalis," is meant any of various extracts of the plant Siegesbeckia orientalis, including Darutoside available from Sederma (Croda International Group of Edison, NJ).

Suitable collagen-promoting peptides include the following:

1. Matrixine peptides, (i.e., a peptide derived from the degradation of extracellular matrix proteins - collagen, elastin, or proteoglycan) including palmitoyl pentapeptides, in particular Pal-Lys-Thr-Thr-Lys-Ser-OH, available as MATRIXYL from Sederma (Croda International Group of Edison, NJ);

2. GHK copper peptide available as PROCYTE from Photomedex of Montgomeryville, PA;

3. Palmitoyl GHK peptide available as Biopoeptide CL from Sederma (Croda International Group of Edison, NJ);

4. Peptides VFTRN, TRNDKL disclosed in EP1775306 B1, and described below in the following formulas I, II and III:

\[
R_1-Al-A_2-A_3-A_4-A_5-A_6-A_7-A_8-A_9-R_3 \quad (I)
\]

\[
/ \quad R_2
\]

wherein formula I contains at least six amino acid residues; and:
A1 is Val, Ala, Leu, Met or absent;
A2 is Arg, Lys or absent;
A3 is Phe, Tyr or absent;
A4 is Thr, Ser, Ala, or Lys;
A5 is Arg or Lys;
A6 is Asn, Asp, Gly, or Gin;
A7 is Asp, Asn, Glu, or absent;
A8 is Lys, Arg or absent; and
A9 is Leu, Met, Val, Ile, Phe or absent;
provided that A3 may only be absent if A2 is absent, A2 may only be absent if A1 is absent, A7 may be absent only if A8 is absent, and A8 may only be absent if A9 is absent;
each R1 and R2, independently, is H, Cl-12 alkyl, C7-10 phenylalkyl, or C(=0)E1, where E 1 is Cl-12 alkyl, C3-14 alkenyl, C3-14 alkynyl, phenyl, 3,4-dihydroxyphenylalkyl, naphthyl, or C 7-10 phenylalkyl; provided that when either R1 or R2 is C(=0)E1, the other must be H; and
R3 is OH, NH2, Cl-12 alkoxy, C7-10 phenylalkoxy, Cl-14 naphthylalkoxy, Cl-12 alkylamino, C7-10 phenylalkylamino, or Cl-14 naphthylalkylamino; or a cosmetically acceptable salt thereof.

\[R1-A'1-A'2-A'3-A'4-A'5-A'6-A'7-A'8-A'9-A'10-A'1 \ 1-R3 \ (II) \]
/
R2

wherein formula II contains at least six amino acid residues; and:
A'1 is Val, Ala, Leu or Met;
A'2 is Arg or Lys;
A'3 is Phe or Tyr;
A'4 is Leu, Met, Val, Ile or Phe;
A'5 is His, Tyr or Phe;
A'6 is Ser, Thr, Ala or Lys;
A'7 is Tyr or Phe;
A'8 is Asp, Asn or Glu;
A'9 is Leu, Met, Val, Ile or Phe;
A'10 is Lys or Arg;
A'11 is Asn, Asp, Gly or Gin;

and

R1, R2, and R3, are the same as those defined in formula I.

\[R1-A'^1-A'^2-A'^3-A'^4-A'^5-A'^6-A'^7-A'^8-A'^9-A'^{10}-R3 \]

(III)

wherein formula III contains at least six amino acid residues; and:
A'^1 is Cys or Ser;
A'^2 is His, Tyr or Phe;
A'^3 is Lys or Arg;
A'^4 is Leu, Met, Val, Ile or Phe;
A'^5 is Leu, Met, Val, He or Phe;
A'^6 is His, Tyr or Phe;
A'^7 is Asn, Asp, Gly or Gin;
A'^8 is Val, Ala, Leu or Met;
A'^9 is Asn, Asp, Gly or Gin;
A'^10 is Lys or Arg; and

R1, R2, and R3, are the same as those defined in formula I.

(5) Biomimetic tetrapeptides, such as those available as Chronoline Tri Peptide from Unipex of Quebec, Canada; and

(6) Palmitoyl tri-peptide, available as Syn-Coll from DSM of Basel, Switzerland.

Ursolic acid is also known as pentacyclic triterpene acid, Prunol, Malol, Urson, beta-ursolic acid and 3-Beta-Hydroxy-Urs-12-En-28-Oic Acid, It is commercially available for example from Sigma-Aldrich of St. Louis, MO.

Asiaticoside, also known chemically as: \[6-[[3,4-dihydroxy-6-(hydroxymethyl)-5-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxymethyl]-3,4,5- \]

28
Compositions of the present invention may include a cosmetically effective amount of one or more collagen promoters. The compositions preferably include, on an active basis, from about 0.1% to about 10% of the collagen promoters, more preferably from about 0.5% to about 5% of collagen promoters, and most preferably from about 0.5% to about 2% of the collagen promoters.

A variety of other materials may also be present in the compositions of the present invention. In certain preferred embodiments, the composition is a skin care composition comprising one or more materials selected from the group consisting of: surfactants, chelating agents, emollients, humectants, conditioners, preservatives, opacifiers, fragrances and the like.

What is meant by an emollient is a compound that helps to maintain the soft, smooth, and pliable appearance of the skin (e.g., by remaining on the skin surface or in the stratum corneum to act as a lubricant). Examples of suitable emollients include those found in Chapter 35, pages 399-415 (Skin Feel Agents, by G Zocchi) in Handbook of Cosmetic Science and Technology (edited by A. Barel, M. Paye and H. Maibach, Published in 2001 by Marcel Dekker, Inc New York, NY), and include, but are not limited to, petrolatum, hexyldecyl stearate and plant, nut, and vegetable oils such as macadamia nut oil, rice bran oil, grape seed oil, palm oil, primrose oil, hydrogenates peanut oil, and avocado oil.

What is meant by a humectant is a compound intended to increase the water content of the top layers of skin (e.g., hygroscopic compounds). Examples of suitable humectants include those found in Chapter 35, pages 399-415 (Skin Feel Agents, by G Zocchi) in Handbook of Cosmetic Science and Technology (edited by A. Barel, M. Paye and H. Maibach, Published in 2001 by Marcel Dekker, Inc New York, NY) and include, but are not limited to, glycerin, sorbitol or trehalose (e.g., α,α'-trehalose, β,β'-trehalose, α,β'-trehalose) or a salt or ester thereof (e.g., trehalose 6-phosphate).

What is meant by a surfactant is a surface-active agent intended to cleanse or emulsify. Examples of suitable surfactants include those found in Chapter 37, pages 431-450 (Classification of surfactants, by L. Oldenhove de Guertechin) in Handbook of Cosmetic Science
and Technology (edited by A. Barel, M. Paye and H. Maibach, Published in 2001 by Marcel Dekker, Inc New York, NY) and include, but are not limited to anionic surfactants such as sulfates, cationic surfactants such as betaines, amphoteric surfactants such as sodium coco glycinate, non-ionic surfactants such as alkyl polyglycosides.

Examples of suitable chelating agents include those which are capable of protecting and preserving the compositions of this invention. Preferably, the chelating agent is ethylenediamine tetracetic acid ("EDTA"), and more preferably is tetrasodium EDTA, available commercially from Dow Chemical Company of Midland, Michigan under the tradename, "Versene 100XL."

Suitable preservatives include, for example, parabens, quaternary ammonium species, phenoxyethanol, benzoates, DMDM hydantoin, organic acids and are present in the composition in an amount, based upon the total weight of the composition, from about 0 to about 1 percent or from about 0.05 percent to about 0.5 percent.

Any of a variety of conditioners which impart additional attributes, such as gloss to the hair are suitable for use in this invention. Examples include, but are not limited to, volatile silicone conditioning agent having an atmospheric pressure boiling point less than about 220°C. Examples of suitable volatile silicones nonexclusively include polydimethylsiloxane, polydimethylcyclosiloxane, hexamethyldisiloxane, cyclomethicone fluids such as polydimethylcyclosiloxane available commercially from Dow Corning Corporation of Midland, Michigan under the tradename, "DC-345" and mixtures thereof, and preferably include cyclomethicone fluids. Other suitable conditioners include cationic polymers, including polyquarterniums, cationic guar, and the like.

Any of a variety of commercially available pearlescent or opacifying agents are suitable for use in this invention. Examples of suitable pearlescent or opacifying agents include, but are not limited to, mono or diesters of (a) fatty acids having from about 16 to about 22 carbon atoms and (b) either ethylene or propylene glycol; mono or diesters of (a) fatty acids having from about 16 to about 22 carbon atoms (b) a polyalkylene glycol of the formula: \(\text{HO-(JO)} _n \text{H} \), wherein \(J \) is an alkylene group having from about 2 to about 3 carbon atoms; and \(\text{a is 2 or 3; fatty alcohols containing from about 16 to about 22 carbon atoms; fatty esters of the formula: KCOOCH}_2L \), wherein \(K \) and \(L \) independently contain from about 15 to about 21 carbon atoms; inorganic solids insoluble in the shampoo composition, and mixtures thereof.

Any fragrance compositions suitable for use on skin and desirable for a skin care composition may be used in accord with the present invention.
In certain preferred embodiments, the present invention is in the form of a substrate comprising a composition of the present invention. Any suitable substrate may be used in the present invention. Examples of suitable substrates and substrate materials are disclosed, for example, in U.S. Published Application Nos. 2005/0226834 and 2009/0241242 which are incorporated herein by reference in their entirety.

In certain preferred embodiments, the substrate is a wipe, glove, or a facial mask. Preferably, such embodiments comprise a water-insoluble substrate as such is defined in the cited references above. For certain embodiments, the water-insoluble substrate may have a size and shape such that it covers the face of a human user to facilitate placing the water-insoluble substrate about the face of the user as a mask substrate. For example, the water-insoluble mask substrate may have openings for a mouth, nose, and/or eyes of the user. Alternatively, the water-insoluble substrate may have no such openings. Such a configuration without openings may be useful for embodiments of the invention in which the water-insoluble substrate is intended to be draped over a non-facial expanse of skin or if the water-insoluble substrate is intended to be used as wipe. The water-insoluble substrate may have various shapes, such as an angular shape (e.g., rectangular) or an arcuate shape such as circular or oval. For certain embodiments, the substrate is a glove such as described in U.S. Published Application No 2006/0141014 which is incorporated herein in its entirety.

In one embodiment of the invention, the product includes a plurality of water-insoluble substrates of different shapes. In one embodiment of the invention, the product includes a first water-insoluble substrate and a second water-insoluble substrate. The first water-insoluble substrate is shaped for application onto the forehead and the second water-insoluble substrate is shaped for application proximate to the mouth, such as areas above and/or below the lips, the chin, and/or the cheeks. In one embodiment of the invention, the first water-insoluble substrate is also applied to the nose region of the face. The first water-insoluble substrate may have a surface area of from about 100 cm² to about 200 cm², such as from about 120 cm² to about 160 cm² and the second water-insoluble substrate has a surface area of from about 100 cm² to about 300 cm², such as from about 150 cm² to about 250 cm². In one embodiment of the invention, the water-insoluble substrate has a low stiffness such that it may, for example, readily drape over or conform to the face or other body parts of the user.
The present invention further comprises methods of lightening the skin by applying to skin in need of skin lightening treatment an extract of *Paulownia* wood, as such extracts and embodiments thereof are described above. In certain embodiments, the method comprises applying a composition of the present invention comprising an extract of *Paulownia* wood, for example, *Paulownia tomentosa* wood extract, or *Paulowniafortunei* wood extract, *Paulownia elongata* wood extract, *Paulownia kawakamii* wood extract or a combination of two or more thereof, to skin in need of skin lightening treatment.

Preferably, the methods of the present invention comprise applying a skin lightening effective amount of *Paulownia* wood extract to the skin, preferably a safe and effective amount. In certain preferred embodiments, the methods comprise applying from greater than zero to about 20% *Paulownia* wood extract to the skin in need. In certain other preferred embodiments, the methods comprise applying from about 0.0001 to about 20%, from about 0.001 to about 10%, from about 0.01 to about 5%, from about 0.1 to about 5%, or from about 0.2 to about 2% *Paulownia* wood extract to the skin in need. In certain other preferred embodiments, the methods comprise from greater than zero to about 1%, from about 0.0001 to about 1%, from about 0.001 to about 1%, or from about 0.01 to about 1% *Paulownia* wood extract to the skin. In certain other preferred embodiments, the methods comprise applying from about 1 to about 5%, preferably from about 2 to about 5% *Paulownia* wood extract to the skin.

Any suitable method of applying the extract to the skin in need may be used in accord with the present invention. For example, the extract may be applied directly from a package to the skin in need, by hand to the skin in need, or may be transferred from a substrate such as a wipe or mask, or a combination of two or more thereof. In other embodiments, the extract may be applied via a dropper, tube, roller, spray, patch or added to a bath or otherwise to water to be applied to the skin, and the like.

In certain embodiments, the methods of the present invention further comprise the step of leaving the *Paulownia* wood extract in contact with the skin for period of time. For example, in certain preferred embodiments after application, the extract is left in contact with the skin for a period of about 15 minutes or greater. In certain more preferred embodiments, the extract is left in contact with the skin for about 20 minutes or greater, more preferably about 1 hour or greater.

In certain embodiments, the method of the present invention comprises a regimen comprising applying the *Paulownia* wood extract to skin multiple times over a selected period of
time. For example, in certain embodiments, the present invention provides a method of skin lightening comprising applying to skin in need of skin lightening a composition comprising a *Paulownia* wood extract once or twice daily for at least 12 weeks, preferably at least 8 weeks and more preferably for at least 2 weeks.

In certain preferred embodiments, the methods of the present invention comprise applying at least two different compositions or products comprising Paulownia wood extract to the skin. For example, the methods may comprise applying a first composition comprising Paulownia wood extract to skin in need of skin lightening followed by applying a second composition comprising Paulownia wood extract, but that is otherwise different from the first composition, to the skin in need of skin lightening. In certain preferred embodiments, the first and second composition may be independently selected from the group consisting of lotions, cleansers, masks, wipes, creams, serums, gels, and the like. In certain preferred embodiments, at least one of the first and second compositions is a cleanser, lotion, cream, essence, or serum and the other is a facial mask or wipe. In certain other preferred embodiments, at least one of the first and second compositions is a cleanser and the other is a lotion or cream.

In certain other preferred embodiments, the method comprises applying at least three products comprising Paulownia wood extract to skin in need of skin lightening. Preferably such three products are selected from the group consisting of cleansers, lotions, creams, essences, and facial masks.

The present invention further comprises methods of improving a sign of aging in skin comprising the step of applying to skin in need of improving the signs of aging an extract of *Paulownia* wood as such extracts and compositions thereof are described above, as well as methods of reducing skin inflammation comprising the step of applying to a skin in need of reducing skin inflammation an extract of *Paulownia* wood as such extracts and compositions thereof are described above.

The present invention may comprise application to any skin in need of treatment on the body. For example, application may be made to any one or more of the skin of the face, lips, neck, chest, back, arms, axilla, hands, feet and/or legs.

Preferably, the methods of the present invention comprise applying a safe and effective amount of *Paulownia* wood extract to the skin. In certain preferred embodiments, the methods comprise applying from greater than zero to about 20% *Paulownia* wood extract to the skin in
need. In certain other preferred embodiments, the methods comprise applying from about 0.0001 to about 20%, from about 0.001 to about 10%, from about 0.01 to about 5%, from about 0.1 to about 5%, or from about 0.2 to about 2% *Paulownia* wood extract to the skin in need. In certain other preferred embodiments, the methods comprise from greater than zero to about 1%, from about 0.0001 to about 1%, from about 0.001 to about 1%, or from about 0.01 to about 1% *Paulownia* wood extract to the skin. In certain other preferred embodiments, the methods comprise applying from about 1 to about 5%, preferably from about 2 to about 5% *Paulownia* wood extract to the skin.

Any suitable method of applying the extract to the skin in need may be used in accord with the present invention. For example, the extract may be applied directly from a package to the skin in need, by hand to the skin in need, or may be transferred from a substrate such as a wipe or mask, or a combination of two or more thereof. In other embodiments, the extract may be applied via a dropper, tube, roller, spray, patch or added to a bath or otherwise to water to be applied to the skin, and the like.

In certain embodiments, the methods of the present invention further comprise the step of leaving the *Paulownia* wood extract in contact with the skin for period of time. For example, in certain preferred embodiments after application, the extract is left in contact with the skin for a period of about 15 minutes or greater. In certain more preferred embodiments, the extract is left in contact with the skin for about 20 minutes or greater, more preferably about 1 hour or greater.

In certain embodiments, the method of the present invention comprises a regimen comprising applying the *Paulownia* wood extract to skin multiple times over a selected period of time. For example, in certain embodiments, the present invention provides a method comprising applying to skin in need a composition comprising a *Paulownia* wood extract once or twice daily for at least 12 weeks, preferably at least 8 weeks and more preferably for at least 2 weeks.

In certain preferred embodiments, the methods of the present invention comprise applying at least two different compositions or products comprising *Paulownia* wood extract to the skin. For example, the methods may comprise applying a first composition comprising *Paulownia* wood extract to skin in need followed by applying to such skin a second composition comprising *Paulownia* wood extract, but that is otherwise different from the first composition, to the skin in need.

The compositions of the present invention may be suitable for a variety of other uses. For
example, compositions of the present invention may be useful for cleansing and/or moisturizing dry skin, treating signs of aging and/or for treating inflammation, including post-inflammatory hyperpigmentation, for reducing pore size, acne treatment, for reducing sebum production, for scar mitigation and reducing the appearance of stretch marks, for reducing the appearance of cellulite or orange peel appearance. In certain other embodiments, compositions of the present invention may be applied simultaneously with or within several hours of a mechanical or physical exfoliant such as a microderm abrasion treatment, or with a chemical exfoliant or keratolytic agent such as salicylic acid. In certain other embodiments, compositions of the present invention are applied to mucosa or other tissue such as vaginal, oral, or ocular tissue. In certain other embodiments, compositions of the present invention are applied to mild wounds or post-surgical sites to facilitate healing, to insect bites, to poison ivy or similar skin conditions, or in general to mitigate itch. In certain other embodiments, compositions of the present invention are applied to mitigate skin irritations. The irritation may be of external origins caused by ingredients in skin care and cosmetic products such as retinoid and its derivatives, benzoyl peroxide, alpha-hydroxy acids and derivatives thereof, salicylic acid, surfactants, natural plant extracts, sunscreen actives, urea, and preservatives, etc. The irritation may be of other external origins such as the sun, wind, or shaving. The irritation may also be caused by inherent disease conditions such as acne, rosacea, atopic dermatitis, and other disease states. In other embodiments, compositions of the present invention may be useful to reduce redness of the gums. The extracts may further be suitable for use in reducing the appearance of telangiectasia or spider veins, reducing the appearance of rosacea, skin blotchiness, and skin blemishes. In certain embodiments, compositions of the present invention are applied to hair, scalp or both to improve hair health, quality and strength, to promote hair growth or retard hair loss, to prevent or treat dandruff, to prevent or treat seborrhea, seborrheic capitis and to improve scalp health and moisture. In other embodiments, compositions of the present invention are applied to the gum, in the mouth, to prevent or treat gum redness or irritation, to reduce periodontitis, to treat or prevent gingivitis, to reduce the symptoms or feeling of dry mouth. In yet other embodiments, the compositions of the present invention are applied to the eye to treat, prevent or reduce the appearance of red or irritated eye, to prevent or treat conjunctivitis, to improve eye moisture, to reduce the feeling of dry eye. In other embodiments, the compositions of the present invention
are applied to the vaginal mucosa to prevent or treat signs of irritation or dryness, loss of firmness.

The present invention further comprises skin care compositions comprising paulownin, and methods of treating the skin, for example methods of lightening the skin, treating one or more signs of aging in skin, treating inflammation, and/or the like, by applying to skin in need of skin lightening treatment a composition comprising paulownin, i.e. a compound of the formula:

![paulownin](image)

Paulownin for use herein may be derived via any of a variety of natural sources, such as extraction from botanicals, or may be synthesized using known synthetic methods (see, for example, Stereoselective Synthesis of 3-Alkyl-2-aryltetrahydrofuran-4-ols: Total Synthesis of (±)-Paulownin. Angle, Steven R.; Choi, Inchang; Tham, Fook S. Department of Chemistry. Wright State University, Dayton, OH, USA. Journal of Organic Chemistry (2008), 73(16), 6268-6278; and Total synthesis of (+)-paulownin. Okazaki, Momotoshi; Ishibashi, Fumito; Shuto, Yoshihiro; Taniguchi, Eiji. Faculty Agric, Ehime Univ., Matsuyama, Japan. Bioscience, Biotechnology, and Biochemistry (1997), 61(4), 743-745). In certain preferred embodiments, the paulownin is extracted from botanicals. Examples of suitable botanicals include plants of the genus *Paulownia*, such as *Paulownia tomentosa*, *Paulownia fortunei*, *Paulownia elongata*, *Paulownia kawakamii*, as well as other plants such as *Amanoa oblongifolia*, *Amanoa oblongifolia*, *Dolichandrone crispa*, *Firmiana platanifolia*, *Gmelina arborea*, *Gmelina asiatica*, *Gmelina vitiensis*, *Isodon parvifolius*, *Kigelia pinnata*, *Markhamia platycalyx*, *Markhamia stipulate*, *MiUingtania hortensis*, botanicals of the species *olea*, *Phyllarthron comorense*, *Tabebuia incana*, *Vitex trifolia*, *Prasium majus*, combinations of two or more thereof, and the like. In certain preferred embodiments, the paulownin is extracted from the wood of *Paulownia tomentosa*, *Paulownia fortunei*, *Paulownia elongata*, and/or *Paulownia kawakamii*.

In certain embodiments, paulownin may be obtained via extraction of cell cultures of various plants, including cell cultures of plants of the genus *Paulownia*, such as *Paulownia tomentosa*, *Paulownia fortunei*, *Paulownia elongata*, and/or *Paulownia kawakamii*. The cell
cultures which are extracted to obtain extracts/paulownin for use in the present invention may be of any form including suspension cell cultures and the like.

The compositions of the present invention may comprise any suitable optional cosmetic ingredients as described above and may be in any suitable cosmetic form as described above (e.g. solution, suspension, bars, cleansers, lotions, creams, essences, facial masks, etc.) In addition, the compositions of the present invention may comprise one or more additional skin lightening agents, anti-inflammatory agents, collagen promoters, and/or tropoelastin promoters as described above. In certain preferred embodiments, the compositions comprise one or more additional skin lightening agents. In certain preferred embodiments, the compositions comprise one or more additional anti-inflammatory agents. In certain preferred embodiments, the compositions comprise one or more additional collagen promoters. In certain preferred embodiments, the compositions comprise one or more additional tropoelastin promoters.

In certain embodiments, the method of the present invention comprises applying to skin in need of treatment (e.g. in need of skin lightening, etc.), a composition comprising a botanical extract, wherein the extract comprises at least about 20% by weight of paulownin. In certain more preferred embodiments, the method comprises applying a composition comprising a botanical extract comprising at least about 40% by weight of paulownin, for example at least about 50%, by weight, at least about 60% by weight, at least 70% by weight, or at least 80% by weight of paulownin.

The extracts comprising paulownin may be, or may be made from, one or more fractions of materials derived from *Paulownia* wood via any of the extraction methods as described herein. In certain embodiments, the extracts comprise a fraction, or a combination of two or more fractions, derived from *Paulownia* wood.

In certain embodiments, the methods of the present invention comprise applying to skin in need of treatment a composition comprising paulownin that is isolated and/or purified to at least 90%. In certain preferred embodiments, the composition has incorporated or added thereto a paulownin material that is greater than 90% pure paulownin.

In certain embodiments, the isolated paulownin and/or the composition comprising the paulownin may be prepared to be essentially free of certain materials. In one embodiment, the paulownin material, the composition comprising the paulownin material, or both are essentially free of Ursolic acid, beta-Sitosterol, or both.
Preferably, the methods of the present invention comprise applying an effective amount of paulownin to the skin, preferably a safe and effective amount. In certain preferred embodiments, the methods comprise applying from greater than zero to about 20% paulownin to the skin in need. In certain other preferred embodiments, the methods comprise applying from about 0.0001 to about 20%, from about 0.001 to about 10%, from about 0.01 to about 5%, from about 0.1 to about 5%, or from about 0.2 to about 2% paulownin to the skin in need. In certain other preferred embodiments, the methods comprise from greater than zero to about 1%, from about 0.0001 to about 1%, from about 0.001 to about 1%, or from about 0.01 to about 1% paulownin to the skin. In certain other preferred embodiments, the methods comprise applying from about 1 to about 5%, preferably from about 2 to about 5% paulownin to the skin.

Any suitable method of applying the composition comprising paulownin to the skin in need may be used in accord with the present invention. For example, the extract may be applied directly from a package to the skin in need, by hand to the skin in need, or may be transferred from a substrate such as a wipe or mask, or a combination of two or more thereof. In other embodiments, the extract may be applied via a dropper, tube, roller, spray, patch or added to a bath or otherwise to water to be applied to the skin, and the like.

In certain embodiments, the methods of the present invention further comprise the step of leaving the paulownin in contact with the skin for period of time. For example, in certain preferred embodiments after application, the extract is left in contact with the skin for a period of about 15 minutes or greater. In certain more preferred embodiments, the extract is left in contact with the skin for about 20 minutes or greater, more preferably about 1 hour or greater.

In certain embodiments, the method of the present invention comprises a regimen comprising applying the paulownin to skin multiple times over a selected period of time. For example, in certain embodiments, the present invention provides a method of skin lightening, or other treatment, comprising applying to skin in need a composition comprising paulownin once or twice daily for at least 12 weeks, preferably at least 8 weeks and more preferably for at least 2 weeks.

In certain preferred embodiments, the methods of the present invention comprise applying at least two different compositions or products comprising paulownin to the skin. For example, the methods may comprise applying a first composition comprising paulownin to skin in need of skin lightening, or other treatment, followed by applying a second composition...
comprising paulownin, but that is otherwise different from the first composition, to the skin in need of skin lightening, or other treatment. In certain preferred embodiments, the first and second composition may be independently selected from the group consisting of lotions, cleansers, masks, wipes, creams, serums, gels, and the like. In certain preferred embodiments, at least one of the first and second compositions is a cleanser, lotion, cream, essence, or serum and the other is a facial mask or wipe. In certain other preferred embodiments, at least one of the first and second compositions is a cleanser and the other is a lotion or cream.

In certain other preferred embodiments, the method comprises applying at least three products comprising paulownin to skin in need of skin lightening, or other treatment. Preferably such three products are selected from the group consisting of cleansers, lotions, creams, essences, and facial masks.
EXAMPLES

The following test methods were used in the Examples:

Melanin Synthesis Inhibition Test

Control samples of B16(F10) murine melanoma cells were prepared and harvested as indicated below, but without addition of any test sample and without exposure to UVB (untreated control). Other control samples were prepared and harvested as indicated below without addition of test sample and exposed to UVB as described below (treated control). One or more samples of B16(F10) cells were prepared and each pre-treated with a test sample (e.g. El) followed by UVB exposure as described below. Upon treatment, UVB stimulated melanogenesis in the cells and test compounds were evaluated based on their ability to inhibit or slow down the rate of melanogenesis. The cells were lysed for protein measurement at 595nm and melanin content at 470nm. The potency of the test compounds were determined by comparing the % inhibition achieved by the test compounds against the treated control.

Testing Procedure:

On a first day, murine melanoma B16(F10) cells were seeded in 60mm plates with a density of ~ 1 million cells per plate and incubated for 48hrs at 37°C, 5% CO₂. On day 2, the cells with a confluency rate of 90-100% were treated with test compound at a predetermined concentration (e.g. 25 µg/mL) for two hours (for test compound samples only) followed by exposure to UVB 200mJ/cm² (for test samples and treated control). The cells were harvested on day 3 (24 h post UVB irradiation for test samples and treated control) and lysed in protein lysis buffer (50mM Tris, pH 8, 2mM EDTA, 150mM NaCl, and 1% Triton X 100 - a nonionic surfactant purchased from BioRad Cat.#: 161-0407), and centrifuged. The resulting supernatant was mixed well with a protein dye assay (Bio-rad protein assay reagent) and a spectrophotometer (Molecular Devices VERSAmax) was used to determine the optical density (protein assay OD) of the sample at 595nm. The cell pellet remaining after removal of the supernatant was dissolved in alkaline DMSO buffer, and the resulting solution used for melanin absorbance assay at 470 nm to determine melanin assay OD.

Three samples each of the untreated control, treated control, and each test sample were made and the Melanin and Protein OD measured for each. The normalized melanin for each
untreated control (3 samples), treated control (3 samples) and test sample (3 samples for each test compound) was calculated via the following equation:

\[\text{Normalized Melanin} = \frac{\text{melanin assay OD}}{\text{protein assay OD}}. \]

The average normalized Melanin of the untreated controls was calculated (sum of the three calculated values/3), and the average normalized Melanin of the treated controls similarly calculated.

The Induction value of the Control was calculated via the equation:

\[\text{Induction value of Control} = \text{average normalized Melanin of treated control} - \text{average normalized Melanin of untreated control}. \]

The Induction value with each test sample is then calculated via the equation:

\[\text{Induction value with Test Sample} = \text{normalized Melanin of the test sample} - \text{average normalized Melanin of untreated control}. \]

The Inhibition % for each test sample is then calculated via the equation:

\[100 \times \left(\frac{\text{Induction value of Control} - \text{Induction value with Test Sample}}{\text{Induction value of Control}} \right). \]

The average Inhibition % is calculated as the sum of the three resulting Inhibition % values for each test sample divided by three.

The calculation sequence for % inhibition are explained by a theoretical example, see the following table.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average normalized melanin</td>
<td>0.98</td>
</tr>
<tr>
<td>Untreated control</td>
<td></td>
</tr>
<tr>
<td>Average normalized melanin</td>
<td>2.56</td>
</tr>
<tr>
<td>UVB treated control</td>
<td></td>
</tr>
<tr>
<td>Induction value of control</td>
<td>2.56 - 0.98 = 1.58</td>
</tr>
<tr>
<td>Average normalized melanin</td>
<td>1.04</td>
</tr>
<tr>
<td>Test sample</td>
<td></td>
</tr>
<tr>
<td>Induction value with Test sample</td>
<td>1.04 - 0.98 = 0.06</td>
</tr>
<tr>
<td>Inhibition % for Test sample</td>
<td>[(1.58 - 0.06)/1.58 \times 100 = 96.20%]</td>
</tr>
</tbody>
</table>
Skin Epidermal Equivalents Model as a skin Lightening Test (AL)

Skin epidermal equivalent tissues are available commercially from MatTek's MelanoDerm™ System and were used for the following tests. MatTek's MelanoDerm™ System consists of normal, human-derived epidermal keratinocytes (NHEK) and melanocytes (NHM) which have been cultured to form a multilayered, highly differentiated model of the human epidermis. Specifically, MEL-300-B tissues, each 9mm in diameter were used in the following tests.

The test materials prepared in an appropriate vehicle and tested concentrations were applied topically to the skin model daily and the experiment lasted for 8 days. Measurement was taken on day 9.

The macroscopic and microscopic visual tissue darkening end points were measured by taking pictures with a digital camera. The Degree of Lightness for each tissue (L- Value) was measured using a spectrophotometer (Konica Minolta CM-2600d). The AL (degree of lightness as compared to control) for each test sample is calculated as per following formula:

\[AL = \text{L-value of treated sample} - \text{L-value of control sample} \]

Cell Viability Test

Cell Viability of the tissue during experiment was evaluated using the MTT assay described as follows. The MTT Tissue Viability Assay is a colorimetric assay system that measures the reduction of a yellow Methylthiazolyldiphenyl-tetrazolium bromide (MTT) into an insoluble purple product by the mitochondria of viable cells. The skin epidermal tissues used previously to determine degree of lightness for each test material and of untreated tissues were used to determine percent viable cells remaining at the end of the experiment. The skin epidermal tissues after degree of lightness test were incubated with MTT reagent for 3h. After incubation extraction buffer is added to lyse the cells and allowed to continue overnight. Samples are read using a plate reader at a wavelength of 570 nm and compared against untreated control and expressed in %Cell Viability as of control. A reduction of \(\geq 30\% \) cell viability as of control consider as a significant indication of cell cytotoxicity caused
by the test materials. The amount of purple color produced is directly proportional to the number of viable cells.

The following examples illustrate the preparation and efficacy of Paulownia wood extracts.

Example 1

Four extracts, at least 20mg each, of Paulownia tomentosa were obtained from Plant Extract Bank in Korea Research Institute of Biosciences & Biotechnologies representing combination of parts of the plant or individual parts of the plant. They were derived from: stem/bark/branches combination (El), leaves (Cl), bark (C2) and stem (E2). All of the extracts were prepared using Methanol under sonication at 50 deg C.

Example 2

The following example illustrates the preparation of Paulownia tomentosa wood extract (E3) in accord with certain embodiments of the present invention.

Paulownia tomentosa wood powder was obtained from Kurosawa Kiri Wood Supply Shop, Kitakata-city, Japan. Ten grams (10g) of dry wood powder was suspended in 250 mL of reagent grade ethanol and stirred at room temperature for 72h. The resulting suspension was filtered and the filtrate dried under low pressure using rotary evaporator at 30 deg C. Dry crude extract was obtained at 3.5% yield (350 mg). The crude extract was dissolved in methanol at a concentration of 1% and was treated with active carbon (700mg) for 5 min at room temperature. Suspension filtered through 0.45micron filter paper. The filtrate was dried to get a visibly lighter color material, E3, 210mg (yields 60% from crude extract).

Example 3

The following example illustrates the preparation of Paulownia tomentosa wood extract (E4) that is essentially free of β-Sitosterol and Ursolic acid.

Deionized grade water (2.4 mL) was added to the Paulownia tomentosa stem/bark/branch extract (El, 24mg) from Example 1 above and sonicated for 5min at room temperature. The resulting suspension was filtered through 0.45µ filter cartridge and the filtrate dried by freeze
drying to obtain water soluble components (E4; 10.3mg) at a yield of 43%. HPLC analysis shows the composition is essentially free from β-Sitosterol and Ursolic acid. No detectable amounts of either compound is present in E4. The limit of detection (lod value) for β-sitosterol was 9ppm (w/v) and for Ursolic acid was 0.5ppm (w/v).

Example 4

The following example illustrates the skin lightening properties of *Paulownia tomentosa* extracts E1-E5 and comparative examples C1-C2.

All seven extracts were tested at different concentrations of up to 2% (as listed in Table 1) via the Skin Epidermal Equivalents Model as a skin Lightening Test (AL) as described above.

Cytotoxicity potential was determined by MTT assay for all extracts and calculated as % reduction of cell viability as compared to control, wherein >30% reduction of cell viability constitute significant cytotoxicity issues. The results are shown in Table 1 below.

A simple one-step extraction of the wood powder with just water as solvent at room temperature was also conducted (E5) and did not result in activity in the Skin Lightening Test. It is believed a more rigorous extraction (additional heat, agitation, etc.) may yield activity.
Table 1
Skin Lightening of extracts from parts of *Paulownia tomentosa* on 3D Skin Model

<table>
<thead>
<tr>
<th>Extract Code</th>
<th>Conc. (%)</th>
<th>Degree of Lightness (AL)</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>1</td>
<td>2.86</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.48</td>
<td>0.19</td>
</tr>
<tr>
<td>C1</td>
<td>1</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>*</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>*</td>
<td>N/A</td>
</tr>
<tr>
<td>E2</td>
<td>1</td>
<td>2.48</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.71</td>
<td>0.43</td>
</tr>
<tr>
<td>E3</td>
<td>0.5</td>
<td>1.2</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.91</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.11</td>
<td>0.17</td>
</tr>
<tr>
<td>E4</td>
<td>2</td>
<td>2.97</td>
<td>0.25</td>
</tr>
<tr>
<td>E5</td>
<td>1</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>none</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Represent significant cytotoxicity issues

Example 5

The following example illustrates the Melanin Synthesis Inhibition properties associated with *Paulownia tomentosa* wood extracts.

Stem/bark/branch extract (El) and wood powder extract (E3) were tested for Melanogenesis Inhibition in accord with the Melanin Synthesis Inhibition Test described above and also for Tyrosinase inhibition. The resulting measurements showed that the skin lightening effect of E1 & E3 were associated, at least in part, with Melanogenesis inhibition and not Tyrosinase inhibition. The IC50 values of extracts E1 and E3 are 30 and 40 µg/mL for melanogenesis inhibition with no tyrosinase enzyme inhibition from either extracts.

Example 6

The NF-κB Inhibition Assay

The NF-KB promoter assay is conducted as follows: rat cardiac myoblasts H9c2 cells were purchased from ATCC (Manassas, VA.). Cultures were maintained in Dulbecco's modified Eagle's...
medium (DMEM, Invitrogen Life Technologies, Carlsbad, CA.) supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 50 µg/ml streptomycin (Invitrogen life technologies, Carlsbad, CA.). Typically, 1x10^4 cells grown in 96-well plates were transiently transfected with 0.45 µg total DNA per well using Lipofectamine 2000 (Invitrogen life technologies, Carlsbad, CA.). In all transfections, a construct with the thymidine kinase promoter and the Renilla luciferase reporter gene (pRL-TK, Promega, Madison, WI.) was included as an internal control in addition to the luciferase promoter. One day after transfection, cells were treated with the extracts at indicated concentrations and stimulated with 100 ng/mL of Tumor Necrosis Factor-a (TNFa, Sigma-Aldrich, St Louis, MO) for approximately 24 hours before they were lysed for luciferase assays, using Dual-Luciferase Reporter System from Promega (Madison, WI), following manufacturer's protocol. Briefly, the firefly luciferase activity was measured first (representing NF-κB promoter activity), followed by the renilla luciferase (internal control), using luminometer LMAX, from Molecular Devices (Sunnyvale, CA). The ratio of these two luciferase activities (RLU) was used to evaluate the activity of each promoter.

\[\text{NF-κB Inhibition} = \left[1 - \left(\frac{\text{RLU}_{\text{ samp. i.e}}}{\text{RLU}_{\text{ control}}} \right) \right] \times 100 \]

Where \(\text{RLU}_{\text{ samp. i.e}} \) and \(\text{RLU}_{\text{ control}} \) are the normalized luciferase activity ratios of the sample and control, respectively.

The NF-KB inhibition assay, described above, was performed for extracts E3 and E5 in various amounts. In Tables 2a and 2b, the normalized NF-κB gene reporter activity and percent NF-KB inhibition are reported.

Table 2a

<table>
<thead>
<tr>
<th>Treatment (Dose, as %w/v)</th>
<th>Normalized NF-κB Gene Reporter Activity (Mean RLU)</th>
<th>Percent NF-κB inhibition over vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>40.5</td>
<td>-</td>
</tr>
<tr>
<td>TNFα (100ng/ml) (Stimulated)</td>
<td>281.4</td>
<td>-</td>
</tr>
<tr>
<td>Treatment (Dose, as %w/v)</td>
<td>Normalized NF-κB Gene Reporter Activity (Mean RLU)</td>
<td>Percent NF-KB inhibition over vehicle</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Untreated</td>
<td>46.9</td>
<td>-</td>
</tr>
<tr>
<td>TNFa (100ng/ml) (Stimulated)</td>
<td>202.4</td>
<td>-</td>
</tr>
<tr>
<td>TNFa + Vehicle (0.004% DMSO)</td>
<td>161.8</td>
<td>0%</td>
</tr>
<tr>
<td>TNFa + E3 (0.002%)</td>
<td>197.7</td>
<td>-15.9%</td>
</tr>
<tr>
<td>TNFa + E3 (0.004%)</td>
<td>201.3</td>
<td>-24.3%</td>
</tr>
</tbody>
</table>

Table 2b

Example 7

Anti-Inflammatory effects on Release of UV-Induced Pro-inflammatory mediators on Reconstituted Epidermis

The effect of *Paulownia tomentosa* extract (E3) was evaluated for topical anti-inflammatory activity on human epidermal equivalents. Epidermal equivalents (EPI 200 HCF), multilayer and differentiated epidermis consisting of normal human epidermal keratinocytes, were purchased.
from MatTek (Ashland, MA). Upon receipt, epidermal equivalents were incubated for 24 hours at 37°C in maintenance medium without hydrocortisone. Equivalents were topically treated (2mg/cm²) with *Paulownia tomentosa* extracts in 70% ethanol/30% propylene glycol 2 hours before exposure to solar ultraviolet light (1000W-Oriel solar simulator equipped with a 1-mm Schott WG 320 filter; UV dose applied: 70 kJ/m² as measured at 360nm). Equivalents were incubated for 24 hours at 37°C with maintenance medium then supematants were analyzed for IL-8 and IL-1α cytokine release using commercially available kits (Millipore Corp., Billerica, MA).

Table 3

<table>
<thead>
<tr>
<th>Treatment (Dose, as %w/v)</th>
<th>Mean of IL-8 Release (pg/mL)</th>
<th>Percent Inhibition of Skin Inflammation (over vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated, No UV</td>
<td>170.79</td>
<td>-</td>
</tr>
<tr>
<td>UV (60KJ)</td>
<td>262.9</td>
<td>-</td>
</tr>
<tr>
<td>UV (60KJ) + Vehicle (70:30 Ethanol: Propylene Glycol)</td>
<td>253.8</td>
<td>0%</td>
</tr>
<tr>
<td>UV (60KJ) + Paulownia tomentosa extract 0.1%</td>
<td>135.1</td>
<td>46.8%</td>
</tr>
<tr>
<td>UV (60KJ) + Paulownia tomentosa 5%</td>
<td>125.9</td>
<td>50.3%</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Treatment (Dose, as %w/v)</th>
<th>Mean of IL-1α Release (pg/mL)</th>
<th>Percent Inhibition of Skin Inflammation (over vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated, No UV</td>
<td>91.4</td>
<td>-</td>
</tr>
<tr>
<td>UV (60KJ)</td>
<td>188.7</td>
<td>-</td>
</tr>
<tr>
<td>UV (60KJ) + Vehicle (70:30 Ethanol: Propylene Glycol)</td>
<td>320.1</td>
<td>0%</td>
</tr>
<tr>
<td>UV (60KJ) + Paulownia tomentosa extract 0.1%</td>
<td>161.2</td>
<td>55.2%</td>
</tr>
<tr>
<td>UV(60KJ) + Paulownia tomentosa extract 5%</td>
<td>183.3</td>
<td>42.7%</td>
</tr>
</tbody>
</table>
Based on the example above, topical application of the *Paulownia tomentosa* extract was able to significantly reduce the UV-stimulated release of inflammatory mediators. Therefore, *Paulownia tomentosa* extracts would be expected to provide an effective anti-inflammatory benefit when applied to skin.

Example 8

Inhibition of Reactive Oxygen Species Formation in Reconstituted Epidermis UV-induced hydrogen peroxide formation was determined using a modification of the method of Martin et al, *Arch Dermatol Res.* (2008) 300:69-80, in reconstituted epidermis and the human epithelial cell line, KB. Epidermal equivalents (EPI 200 HCF), multilayer and differentiated epidermis consisting of normal human epidermal keratinocytes, were purchased from MatTek (Ashland, MA). Upon receipt, epidermal equivalents were incubated for 24 hours at 37°C in maintenance medium without hydrocortisone. After 24 hours, the tissues were incubated for 30 minutes with 5 µM of the hydrogen peroxide-sensitive fluorescent probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-fluorescein diacetate, acetyl ester (CM-H2DCFDA) (Invitrogen Corp., Carlsbad, CA). After incubation, the plate was rinsed to remove excess probe and equivalents were topically treated (2mg/cm²) with *Paulownia tomentosa* extract (E3) in 70% ethanol/30% propylene glycol vehicle. The plate was immediately read on a fluorescent plate reader set at wavelengths 485nm excitation/ 530nm emission to detect basal peroxide formation. The plate was then exposed to UV (1000W-Oriel solar simulator equipped with a 1 mm Schott WG 320 filter; UV dose applied 4.2 kJ/m² as measured at 360nm). The plate was read 60 minutes post UV exposure.

<table>
<thead>
<tr>
<th>Treatment (Dose, as %w/v)</th>
<th>Mean Fluorescent Units</th>
<th>Percent Inhibition of ROS Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV + Vehicle (70:30 Ethanol: Propylene Glycol)</td>
<td>761.5</td>
<td>0%</td>
</tr>
<tr>
<td>UV + Paulownia tomentosa 0.1%</td>
<td>361.4</td>
<td>52.5%</td>
</tr>
</tbody>
</table>
Based on the example, topical application of Paulownia tomentosa extracts was able to significantly reduce the UV-stimulated production of ROS in reconstituted epidermis. Therefore when applied to skin, Paulownia tomentosa extracts would be expected to provide protection against induction of ROS from solar irradiation.

Example 9

Inhibition of Reactive Oxygen Species Formation in human epithelial cells

KB cells obtained from ATCC (ATCC#CCL-17, Manassas, VA) were plated in 96-well tissue culture treated plates at a density of 5000 cells/well in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (Invitrogen Corp., San Diego, CA). After 48 hours, cells were incubated for 30 minutes with 5 µM of the hydrogen peroxide-sensitive fluorescent probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-fluorescein diacetate, acetyl ester (CM-H2DCFDA) (Invitrogen Corp., Carlsbad, CA). After incubation, the plate was rinsed to remove excess probe and Paulownia tomentosa extract (E3) was added at the indicated concentrations. The plate was immediately read on a fluorescent plate reader set at wavelengths 485nm excitation/ 530nm emission to detect basal peroxide formation. The plate was then exposed to UV (1000W-Oriel solar simulator equipped with a 1 mm Schott WG 320 filter; UV dose applied 4.2 kJ/m² as measured at 360nm). The plate was read 60 minutes post UV exposure.

<table>
<thead>
<tr>
<th>Treatment (Dose, as %w/v)</th>
<th>Mean Fluorescent Units</th>
<th>Percent Inhibition of ROS Production (over vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>untreated</td>
<td>79.7</td>
<td>-</td>
</tr>
<tr>
<td>UV treated</td>
<td>220.5</td>
<td>-</td>
</tr>
<tr>
<td>UV + Vehicle (DMSO)</td>
<td>219.3</td>
<td>0%</td>
</tr>
<tr>
<td>UV + Paulownia tomentosa</td>
<td>160.9</td>
<td>26.6%</td>
</tr>
</tbody>
</table>

Table 6
Based on the examples, treatment with *Paulownia tomentosa* extract was able to significantly reduce the UV-stimulated production of ROS in human epithelial cells. Therefore when applied to skin, *Paulownia tomentosa* extracts would be expected to provide protection against induction of ROS from solar irradiation.

Example 10

Protection from Elastase Degradation

Human leukocyte elastase (HLE) was purchased from Sigma (St. Louis, Mo.), and reconstituted at 1 unit/ml in phosphate buffered saline (PBS, Invitrogen life Technologies, Carlsbad, CA). Soluble bovine neck ligament elastin labeled with BODIPY FL dye was purchased from Molecular Probes, Inc. (Eugene, OR), such that the fluorescence was quenched in the conjugate, and could be activated upon elastase digestion. Human leukocyte elastase (0.0625 U/ml), elastin substrate (25 µg/ml), and increasing concentrations of test material were incubated for two hours at 37°C. Fluorescence was measured at excitation at 490 nm and emission at 520 nm using a fluorescent plate reader Gemini from Molecular Devices (Sunnyvale, CA). Background fluorescence of substrate alone had been subtracted from each measurement. *Paulownia tomentosa* extract (E3) was prepared in DMSO at a stock concentration of 10 mg/ml and serially diluted. *Paulownia tomentosa* extract inhibited HLE activity in a dose dependent manner as shown in Table 7.

<table>
<thead>
<tr>
<th>Paulownia tomentosa extract (Dose, as %w/v)</th>
<th>Elastase Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00001%</td>
<td>23.1%</td>
</tr>
<tr>
<td>0.001%</td>
<td>30.2%</td>
</tr>
<tr>
<td>0.005%</td>
<td>66.6%</td>
</tr>
<tr>
<td>0.01%</td>
<td>75.5%</td>
</tr>
<tr>
<td>0.02%</td>
<td>99.4%</td>
</tr>
</tbody>
</table>

Table 7

Based on the examples, treatment with *Paulownia tomentosa* extract was able to significantly reduce the UV-stimulated production of ROS in human epithelial cells. Therefore when applied to skin, *Paulownia tomentosa* extracts would be expected to provide protection against induction of ROS from solar irradiation.
This example demonstrates that *Paulownia tomentosa* extracts can protect elastin fibers from damage and degradation.

Example 11

Inhibition of UV-Induced MMP induction

The ability of *Paulownia tomentosa* extract (E3) to inhibit UV induced matrix metalloproteinases-1 and -9 (MMP-1 and -9) was evaluated in epidermal equivalents derived from normal human epidermal keratinocytes. MMPs are a family of enzymes that play a major role in physiological remodeling and pathological destruction of extracellular matrix. It is well established that suberythemal doses of UV light induce MMP secretion in human skin, which in turn degrades the extracellular matrix and plays a significant role in photoaging wrinkle formation and loss of firmness and elasticity. See G. J. Fisher, et al., J Investig Dermatol. Symposium Proceedings. 14(1): 20-24 (2009).

In order to evaluate the ability of *Paulownia tomentosa* extracts to inhibit UV induced MMPs, epidermal equivalents (EPI 200 HCF), multilayer and differentiated epidermis consisting of normal human epidermal keratinocytes, were purchased from MatTek (Ashland, MA). Upon receipt, epidermal equivalents were incubated for 24 hours at 37°C in maintenance medium without hydrocortisone. Equivalents were topically treated (2mg/cm²) with *Paulownia tomentosa* extract (E3) in 70% ethanol/30% propylene glycol 2 hours before exposure to solar ultraviolet light (100OW-Oriel solar simulator equipped with a 1-mm Schott WG 320 filter; UV dose applied: 70 kJ/m² as measured at 360nm). Equivalents were incubated for 48 hours at 37°C with maintenance medium then supernatants were analyzed for MMP-1 and -9 using commercially available kits (R&D Systems, Minneapolis, MN). Data in Table 8 represents the mean of 2 independent experiments, each experimental condition is conducted using duplicate tissues.

<table>
<thead>
<tr>
<th>Treatment (Dose, as % w/v)</th>
<th>Mean of MMP-1 Release (ng/ml)</th>
<th>Percent Inhibition of MMP-1 Production</th>
</tr>
</thead>
</table>

Table 8
Based on the example topical application of Paulownia tomentosa extract was able to significantly reduce the UV-stimulated release of MMP-1 and -9. Therefore when applied to skin, Paulownia tomentosa extracts would be expected to provide protection against induction of MMP-1 and -9 following solar irradiation.

Example 12

Inhibition of TNF-a - Induced MMP induction

In order to evaluate the ability of Paulownia tomentosa extract (E3) to inhibit TNF-a induced MMPs, epidermal equivalents (EPI 200 HCF), multilayer and differentiated epidermis consisting of normal human epidermal keratinocytes, were purchased from MatTek (Ashland, MA). Upon receipt, epidermal equivalents were incubated for 24 hours at 37°C in maintenance medium without hydrocortisone. Equivalents were topically treated (2mg/cm²) with Paulownia tomentosa extract (E3) in 70% ethanol/30% propylene glycol 2 hours before treatment with...
TNF-α (100 ng/mL). Equivalents were incubated for 48 hours at 37°C with maintenance medium then supernatants were analyzed for MMP-1 and -9 using commercially available kits (R&D Systems, Minneapolis, MN).

Table 10

<table>
<thead>
<tr>
<th>Treatment (Dose, as % w/v)</th>
<th>Mean of MMP-1 Release (ng/ml)</th>
<th>Percent Inhibition of MMP-1 Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>4848.4</td>
<td>-</td>
</tr>
<tr>
<td>TNF-α induced</td>
<td>7867.2</td>
<td>0%</td>
</tr>
<tr>
<td>TNF-α + Paulownia tomentosa 1%</td>
<td>7225.2</td>
<td>0.8%</td>
</tr>
<tr>
<td>TNF-α + Paulownia tomentosa 5%</td>
<td>5370.6</td>
<td>31.7%</td>
</tr>
</tbody>
</table>

Table 11

<table>
<thead>
<tr>
<th>Treatment (Dose, as % w/v)</th>
<th>Mean of MMP-9 Release (ng/ml)</th>
<th>Percent Inhibition of MMP-9 Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>13217.6</td>
<td>-</td>
</tr>
<tr>
<td>TNF-α induced</td>
<td>42958.6</td>
<td>0%</td>
</tr>
<tr>
<td>TNF-α + Paulownia tomentosa 1%</td>
<td>35145.3</td>
<td>18.2%</td>
</tr>
<tr>
<td>TNF-α + Paulownia tomentosa 5%</td>
<td>16101.1</td>
<td>62.5%</td>
</tr>
</tbody>
</table>

Based on the example topical application of Paulownia tomentosa extract was able to significantly reduce the TNF-α stimulated release of MMP-1 and -9. Therefore when applied to skin, Paulownia tomentosa extracts would be expected to provide protection against induction of MMP-1 and -9.
Example 13

The TROPOELASTIN PROMOTER ASSAY was performed using *Tanacetum parthenium* (parthenolide-free feverfew extract from Integrated Botanical Technologies of Ossining, NY).

Tanacetum parthenium was diluted in cell culture media (DMEM Media of Invitrogen, San Diego CA) and *Paulownia tomentosa* was diluted in DMSO to the concentration of "active" indicated in Table 12 below. The compounds were added to the transfected H9c2 cells and were incubated for 24 hours. Test samples were compared to respective controls. The results are shown in Table 12 below.

<table>
<thead>
<tr>
<th>Compound/Extract</th>
<th>Respective Concentrations of Actives (on active basis)</th>
<th>Normalized Tropoelastin Promoter Activity (RLU)</th>
<th>Percent change over respective controls</th>
<th>Ratio of NFκB-Inhibitor: Tropoelastin Promoter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated control</td>
<td>-</td>
<td>2.69</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tanacetum parthenium</td>
<td>0.002%</td>
<td>2.74</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Tanacetum parthenium</td>
<td>0.005%</td>
<td>2.73</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Vehicle control (DMSO)</td>
<td>0.005%</td>
<td>2.25</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Paulownia tomentosa</td>
<td>0.005%</td>
<td>2.97</td>
<td>32%</td>
<td></td>
</tr>
<tr>
<td>Paulownia tomentosa + Tanacetum parthenium</td>
<td>0.005% + 0.002%</td>
<td>3.48</td>
<td>55%</td>
<td>2.5:1</td>
</tr>
<tr>
<td>Paulownia tomentosa + Tanacetum parthenium</td>
<td>0.005% + 0.005%</td>
<td>3.64</td>
<td>62%</td>
<td>1:1</td>
</tr>
</tbody>
</table>

As can be seen from the results shown in Table 12, *Paulownia tomentosa* and *Tanacetum parthenium* demonstrated percent changes in tropoelastin promotion over the respective controls.
of 32% and 2%, respectively. In contrast, the combination of both *Paulownia tomentosa* and *Tanacetum parthenium* demonstrated a 55% improvement in tropoelastin promotion over the vehicle control. This was much greater than a mere additive effect in performance.

A similar synergistic effect was observed when the concentration of *Tanacetum parthenium* was raised from 0.002% to 0.005%. *Tanacetum parthenium* at the higher concentration also showed a percent change in tropoelastin promotion over the control of 2%, whereas the combination of *Paulownia tomentosa* and *Tanacetum parthenium* achieved a percent change in tropoelastin promotion over the vehicle control of 62%.

The data demonstrates that the combination of *Paulownia tomentosa* and a tropoelastin promoter (*Tanacetum parthenium*) produces a surprising and synergistic increase in tropoelastin promotion activity.

Example 14

The following skin care composition was prepared using the ingredients shown in Table 13 in accord with the present invention.

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Ingredient Trade Name</th>
<th>CTFA / INCI Name</th>
<th>Percentage in Formulation (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PURIFIED WATER</td>
<td>WATER</td>
<td>59.69</td>
</tr>
<tr>
<td>2</td>
<td>Ultrez 10</td>
<td>Carbomer</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>VERSENE NA</td>
<td>Disodium EDTA</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>Brij 72</td>
<td>Steareth-2</td>
<td>0.50</td>
</tr>
<tr>
<td>5</td>
<td>Brij 721</td>
<td>Steareth-21</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>Finsolv TN</td>
<td>C12-15 Alkyl Benzoate</td>
<td>2.00</td>
</tr>
<tr>
<td>7</td>
<td>Miglyol 812 Neutral Oil</td>
<td>Caprylic/Capric triglyceride</td>
<td>2.50</td>
</tr>
<tr>
<td>8</td>
<td>Emery 917</td>
<td>Glycerin</td>
<td>3.00</td>
</tr>
<tr>
<td>9</td>
<td>PENRECO SNOW WHITE</td>
<td>Petrolatum</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>Dimethicone</td>
<td>Dow Corning Q7-9120 Silicone Fluid (20 cst)</td>
<td>2.00</td>
</tr>
</tbody>
</table>
The above composition was prepared as follows: The purified water was added to a main tank at a temperature of 20-40 °C with smooth agitation. The Versene NA (disodium EDTA) was then added to the main tank. Agitation on the tank was stopped and Ultrez 10 (Carbomer) was added by evenly coating the top of the water mixture. The mixture was allowed to soak and agitation and heating was started. The mixture was heated and maintained at 55-60°C, and further mixed for 15 minutes or until homogeneous.

An oil phase was prepared by adding Finsolv TN (CI 2-15 alkyl benzoate) to a clean, suitable phase container with agitation and heating to achieve 55-60 °C. After such temperature was achieved Brij 72 & 721 (Steareth-2, -21 resp.), Miglyol (Caprylic/Capric triglyceride), Emery 917 (glycerin), and Penreco snow white (Petrolatum) were added and mixed at 55-60 °C until addition to main tank.

The oil phase was added to the main tank with increased agitation and heating was stopped. The resulting mixture was mixed at high speed for 10-20 minutes. At 50°C or lower, the Dimethicone (Dow Corning Silicone Fluid) was added. The batch mixture was then cooled to 40°C and Phenonip XB (preservative mix) was added. The mixture was further mixed for 10 min or until uniform. Sodium hydroxide was added quickly (target pH = 5.4) with further mixing for 10 minutes or until uniform pH is achieved.

An actives premix was made by adding Transcutol CG, Butylene glycol, Citric acid, and Princess Tree extract to a separate beaker and mixing well until uniform.
The final formulation was made by adding the actives premix to the main phase of the main tank, and mixing for an additional 10-20 minutes to dissolve completely or until uniform. The final volumes were made up with water, the formulation mixed for 10 minutes, and pH recorded.

The samples of composition were placed in 50°C oven for 2 week and showed primary good stability.

Example 15

The following skin care composition was prepared using the ingredients shown in Table 14 in accord with the present invention.

TABLE 14

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>CTFA / INCI Name</th>
<th>Percentage in Formulation (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purified Water</td>
<td>75.55</td>
</tr>
<tr>
<td>2</td>
<td>Disodium EDTA</td>
<td>0.15</td>
</tr>
<tr>
<td>3</td>
<td>Ammonium Acryloyldimethyltaurate/VP Copolymer</td>
<td>0.30</td>
</tr>
<tr>
<td>4</td>
<td>Chlorphenesin C</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>Butylene glycol</td>
<td>6.00</td>
</tr>
<tr>
<td>6</td>
<td>Cetearyl Olivate/Sorbitan Olivate</td>
<td>0.50</td>
</tr>
<tr>
<td>7</td>
<td>Stearic Acid</td>
<td>0.50</td>
</tr>
<tr>
<td>8</td>
<td>Ethylhexylglycerin</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>Cyclopentasiloxane & Cyclohexasiloxane</td>
<td>5.00</td>
</tr>
<tr>
<td>10</td>
<td>Cyclopentasiloxane & Dimethicone Crosspolymer</td>
<td>3.00</td>
</tr>
<tr>
<td>11</td>
<td>Dimethiconol & Dimethicone</td>
<td>2.00</td>
</tr>
<tr>
<td>12</td>
<td>Sodium hydroxide</td>
<td>2.40</td>
</tr>
<tr>
<td>13</td>
<td>Polyacrylate 13 & Polysorbate 20</td>
<td>1.00</td>
</tr>
<tr>
<td>14</td>
<td>Methylisothiazolinone</td>
<td>0.15</td>
</tr>
<tr>
<td>15</td>
<td>Fragrance</td>
<td>0.01</td>
</tr>
<tr>
<td>16</td>
<td>FD&C Red</td>
<td>0.12</td>
</tr>
</tbody>
</table>
The above composition was prepared as follows: The purified water was added to a main tank followed by addition of disodium EDTA and mixed until the EDTA dissolved. Ammonium acryloyldimethyltaurate/VP Copolymer was sprinkled in and the resulting mixture heated to 70-75°C. After set temperature is achieved, Cetearyl Olivate/Sorbitan Olivate and Stearic acid were added while agitating the mixture for 5 minutes at set temperature.

An actives premix was prepared by dissolving Princess tree extract into butylene glycol at 40-50°C in a separate container. Polyacrylate 13 and polyisobutene and polysorbate 20 were added to the Princess tree mix and then mixed until uniform. The temperature was lowered to 35-40°C and set aside until ready to add to the main tank.

A Chlorophenesin premix was prepared by adding Chlorophenesin to butylenes glycol in a separate container and heating to 35°C, followed by addition of Methylisothiazolinone. The resulting mixture was heated to 50-55°C and the temperature maintained until ready to mix into main tank.

An oil phase was prepared in a separate container by adding Cyclopentasiloxane and Dimethicone Crosspolymer to Cyclopentasiloxane and Cyclohexasiloxane while mixing and heating to 55-60°C until uniform. Then Ethylhexylglycerin was added and mixed until uniform, followed by addition of Stearic acid with the temperature maintained between 55-60°C.

The oil phase was then added to the main tank slowly with vigorous agitation at a temperature of 70-75°C. Dimethiconol and dimethicone were added to the main batch and the resulting mixture stirred for 20 minutes or until uniform, after which the heating was stopped. The main pH was adjusted to between 5.0-5.5 with sodium hydroxide. The Chlorophenesin phase was added slowly at 50-55°C while maintaining agitation. The mixture was cooled to 35-40°C and the fragrance, FD&C red and D&C Yellow added and mixed well while maintaining the temperature.

The final formulation was achieved by adding the active premix to the main tank slowly with gentle mixing. The mixture was mixed for an additional 10-20 until uniform. The final volumes were made up with water, the formulation mixed for 10 minutes, and pH recorded.
The samples of composition were placed in 50°C oven for 2 week and showed primary
good stability.

Example 16

The following general method illustrates the preparation of Paulownia wood extracts from
species of Paulownia in accord with certain embodiments of the present invention.

Wood of *Paulownia elongata* was obtained from The Paulownia Barn, LLC; Swansea, SC
29160 as shavings or Mount Hope Farms, Hagerstown, MD 21740 as fresh cut wood. Wood
samples of *Paulownia fortunei*, *Paulownia tomentosa*, and *Paulownia kawakamii* were obtained from
Mount Hope Farms as fresh cut woods. Ten grams (lOg) of dry wood shavings from each wood were
suspended separately in glass containers, each with 250 mL of reagent grade ethanol and kept at
room temperature for 72h with occasional mixing of the contents. The resulting suspension was
filtered and the filtrate dried under low pressure using rotary evaporator at 30 deg C. Dry crude
extract was obtained at 3-5% yield.

<table>
<thead>
<tr>
<th>Wood Name</th>
<th>Extract Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paulownia elongata</td>
<td>E6</td>
</tr>
<tr>
<td>Paulownia fortune</td>
<td>E7</td>
</tr>
<tr>
<td>Paulownia kawakamii</td>
<td>E8</td>
</tr>
<tr>
<td>Paulownia tomentosa</td>
<td>E9</td>
</tr>
</tbody>
</table>

Example 17

The following example illustrates the skin lightening properties of *Paulownia spp.* extracts
E6-E9.

All four extracts were tested at different concentrations of up to 2% (Data shown in Table 16)
via the Skin Epidermal Equivalents Model as a skin Lightening Test (AL) as described above.
Cytotoxicity potential was determined by MTT assay for all extracts and calculated as % reduction of
cell viability as compared to control, wherein ≥30% reduction of cell viability constitute significant
cytotoxicity issues by the test materials. The amount of purple color produced is directly proportional
to the number of viable cells. In this experiment, none of the extracts at tested concentrations showed any significant cell viability issues.

Table 16
Skin Lightening of extracts from species of Paulownia on 3D Skin Model

<table>
<thead>
<tr>
<th>Extract Code</th>
<th>Conc. (%)</th>
<th>Degree of Lightness (AL)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6</td>
<td>1</td>
<td>0.76</td>
<td>0.159</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.21</td>
<td>0.096</td>
</tr>
<tr>
<td>E7</td>
<td>1</td>
<td>0.43</td>
<td>0.415</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.39</td>
<td>0.023</td>
</tr>
<tr>
<td>E8</td>
<td>1</td>
<td>0.44</td>
<td>0.414</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.89</td>
<td>0.354</td>
</tr>
<tr>
<td>E9</td>
<td>1</td>
<td>1.12</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.99</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Example 18: Isolation and identification of Paulownin

Isolation of major component (Paulownin) from *Paulownia tomentosa* extract was accomplished with a combination of fractionation and prep HPLC steps. A sample of 170mg was obtained with identical retention times and UV spectra as of the major signal of the extract at a purity of >90%. Spectroscopic studies confirmed its identity as of Paulownin.

Example 19

Paulownin was tested at different concentrations of up to 2% (Data shown in Table 17) via the Skin Epidermal Equivalents Model as a skin Lightening Test (AL) as described above. Cytotoxicity potential was determined by MTT assay as described above. Paulownin did not show any significant cytotoxicity at tested concentration.

Table 17
<table>
<thead>
<tr>
<th>Extract Code</th>
<th>Cone. (%)</th>
<th>Degree of Lightness (AL)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major component (Paulownin)</td>
<td>0.5</td>
<td>0.69</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.52</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.79</td>
<td>0.009</td>
</tr>
</tbody>
</table>

*p-value was calculated by the T-Test referencing test article data with vehicle control

Example 20:
The following example illustrates the NF-κB inhibition properties for Paulownia spp. Extracts E6-E9.
The NF-κB inhibition assay, described above, was performed for extracts E6-E9 and also for a >90% pure sample of Paulownin. Their NF-κB inhibition is reported as IC50 values in Tables 18 and 19, respectively.

Table 18: Paulownia species inhibit NF-κB Inhibition.

<table>
<thead>
<tr>
<th>Extract Code</th>
<th>NF-κB Inhibition, IC50 (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6</td>
<td>38</td>
</tr>
<tr>
<td>E7</td>
<td><30</td>
</tr>
<tr>
<td>E8</td>
<td>130</td>
</tr>
<tr>
<td>E9</td>
<td>47</td>
</tr>
</tbody>
</table>

Table 19: Paulownin inhibits NF-κB Inhibition

<table>
<thead>
<tr>
<th>Extract Code</th>
<th>NF-κB Inhibition, IC50 (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paulownin</td>
<td>148</td>
</tr>
</tbody>
</table>

Example 21

Preparation and testing of a paulownin enriched fraction

Paulownin enriched fraction from Kiri wood extract was prepared as follows:
Kiri wood powder (lg) was dissolved in sufficient methanol and loaded to reverse phase silica gel (2g). A sequence elution with water (100%), mixture of water/ methanol (1:1) and methanol (100%) provides different fractions of the extract. The eluant obtained with methanol (100%) combined and dried to obtain a sample of fraction enriched with a major component (>50%) of Paulownin.

The paulownin enriched fraction was tested at different concentrations of up to 0.5% (Data shown in Table 20 below) via the Skin Epidermal Equivalents Model as a skin lightening test (AL) as described above. Cytotoxicity potential was determined by MTT assay as described above. Paulownin enriched fraction did not show significant cytotoxicity at tested concentrations.

Table 20: Skin Lightening of Paulownia enriched fraction

<table>
<thead>
<tr>
<th>Extract Code</th>
<th>Conc. (%)</th>
<th>Degree of Lightness (ΔL)</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paulownin enriched fraction</td>
<td>0.05</td>
<td>0.31</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>2.01</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>3.00</td>
<td>0.14</td>
</tr>
</tbody>
</table>
What is claimed is:

1. A method of improving a sign of aging in skin comprising applying to skin an effective amount for improving a sign of aging of an extract selected from the group consisting of *Paulownia tomentosa* wood extract, *Paulownia fortunei* wood extract, *Paulownia elongata* wood extract, *Paulownia kawakamii* wood extract, and combinations of two or more thereof.

2. The method of claim 1 wherein said extract is a polar extract.

3. The method of claim 2 wherein said polar extract was extracted using one or more solvents comprising C1-C8 alcohols, C1-C8 glycols or a combination of two or more thereof.

4. The method of claim 2 wherein said polar extract was extracted using one or more solvents comprising ethanol, methanol, or combinations thereof.

5. The method of claim 2 wherein said extract was extracted using a solvent having a dielectric constant of from about 4 to about 60 at 20°C.

6. The method of claim 1 wherein said extract is a non-polar extract.

7. The method of claim 1 wherein said applying step comprises applying from greater than zero to about 20% of the extract to skin in need of improving a sign of aging.

8. The method of claim 1 wherein said applying step comprises applying from about 0.01 to about 5% of the extract to the skin in need of improving a sign of aging.

9. The method of claim 1 wherein said extract is a polar extract of *Paulownia tomentosa* wood.

10. The method of claim 8 wherein said extract is a polar extract of *Paulownia tomentosa* wood.
11. The method of claim 1 wherein said applying step comprises applying a composition comprising an extract selected from the group consisting of *Paulownia tomentosa* wood extract, *Paulownia fortunei* wood extract, *Paulownia elongata* wood extract, and combinations of two or more thereof, and a carrier to the skin, said composition being in the form of a solution, suspension, lotion, cream, serum, gel, stick, spray, ointment, liquid wash, soap bar, shampoo, hair conditioner, paste, foam, powder, mousse, shaving cream, hydrogel, or film-forming product.

12. The method of claim 11 wherein said applying step comprises transferring said composition from a substrate to the skin.

13. The method of claim 10 wherein said substrate comprises a wipe or facial mask.

14. The method of claim 13 wherein the extract is an extract of *Paulownia tomentosa* wood.

15. The method of claim 1 wherein the applying step comprises applying a composition comprising an extract of *Paulownia tomentosa* wood and a tropoelastin promoter.

16. The method of claim 15 wherein said tropoelastin promoter is selected from the group consisting of blackberry extracts, cotinus extracts, feverfew extracts, extracts of *Phyllanthus niruri* and combinations of two or more thereof.

17. The method of claim 1 wherein the applying step comprises applying a composition comprising an extract of *Paulownia tomentosa* wood and a collagen promoter.

18. The method of claim 17 wherein the collagen promoter is a non-retinoid collagen promoter.

19. The method of claim 18 wherein the non-retinoid collagen promoter is selected from the group consisting of extracts of *Tanacetum parthenium*, extracts of...
Centella asiatica, extracts of Siegesbeckia orientalis; extracts of soy, and combinations of two or more thereof.

20. The method of claim 18 wherein the collagen promoter is a retinoid.

21. The method of claim 20 wherein the retinoid is selected from the group consisting retinol, retinal, retinyl acetate, retinyl propionate, retinyl linoleate, retinyl palmitate, and combinations of two or more thereof.

22. A method of improving a sign of aging in skin comprising applying to skin an effective amount for improving a sign of aging of paulownin.

23. The method of claim 22 wherein said applying step comprises applying a composition comprising from about 0.001% to about 10% paulownin and a carrier to the skin, said composition being in the form of a solution, suspension, lotion, cream, serum, gel, stick, spray, ointment, liquid wash, soap bar, shampoo, hair conditioner, paste, foam, powder, mousse, shaving cream, hydrogel, or film-forming product.

24. The method of claim 23 wherein said composition comprises from about 0.01% to about 1% of paulownin to skin in need of improving a sign of aging.

25. The method of claim 22 wherein the applying step comprises applying a composition comprising paulownin and a tropoelastin promoter.

26. The method of claim 25 wherein said tropoelastin promoter is selected from the group consisting of blackberry extracts, cotinus extracts, feverfew extracts, extracts of Phyllanthus niruri and combinations of two or more thereof.

27. The method of claim 22 wherein the applying step comprises applying a composition comprising paulownin and a collagen promoter.
28. The method of claim 27 wherein the collagen promoter is a non-retinoid collagen promoter.

29. The method of claim 28 wherein the non-retinoid collagen promoter is selected from the group consisting of extracts of Tanacetum parthenium, extracts of Centella asiatica, extracts of Siegesbeckia orientalis; extracts of soy, and combinations of two or more thereof.

30. The method of claim 28 wherein the collagen promoter is a retinoid.

31. The method of claim 30 wherein the retinoid is selected from the group consisting of retinol, retinal, retinyl acetate, retinyl propionate, retinyl linoleate, retinyl palmitate, and combinations of two or more thereof.