WO 2004/051938 A2 ||| 000 00000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
17 June 2004 (17.06.2004)

AT O YOO AR

(10) International Publication Number

WO 2004/051938 A2

(51) International Patent Classification’: HO4L 12/46
(21) International Application Number:
PCT/US2003/036452

(22) International Filing Date:
12 November 2003 (12.11.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/429,897
10/430,491

27 November 2002 (27.11.2002)
5 May 2003 (05.05.2003)

Uus
Us

(71) Applicant: ANDIAMO SYSTEMS, INC. [US/US]; 375
East Tasman Drive, San Jose, CA 95134 (US).

(72) Inventors: DESAI, Tushar; 1110 Polynesia Drive, #214,
Foster City, CA 94404 (US). GUPTA, Shashank; 430 Oak

(74)

(81)

(84)

Grove Drive, #207, Santa Clara, CA 95054 (US). JAIN,
Praveen; 4684 San Lucas Way, San Jose, CA 95135 (US).
GHOSH, Kalyan, K.; 2281 Esperanca Avenue, Santa
Clara, CA 95054 (US).

Agent: SAMPSON, Roger, S.; Beyer Weaver & Thomas,
LLP, P.O. Box 778, Berkeley, CA 94704-0778 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
K7, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, 7ZM, ZW.

Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: METHODS AND DEVICES FOR EXCHANGING PEER PARAMETERS BETWEEN NETWORK DEVICES

520
< Link up

505 ﬁ

510<

515<

500

(57) Abstract: Methods and devices are provided for
detecting whether peer ports internconnecting two net-
work devices can perform a novel protocol called Ex-
change Peer Parameters (“EPP”). If the peer ports are
so configured to perform EPP, EPP services are ex-
changed between the peer ports. In a first phase, infor-
mation is exchanged about peer port confirgurations
of interest. In a second phase, the results of the ex-
changed of information are applied to hardware and/or
software of the respective ports, as needed.

WO 2004/051938 A2 [N} 00000 0000 000 0 A

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, For two-letter codes and other abbreviations, refer to the "Guid-
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, ance Notes on Codes and Abbreviations" appearing at the begin-
SI, SK, TR), OAPI patent (BE, BJ, CF, CG, CI, CM, GA, ning of each regular issue of the PCT Gazette.

GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

METHODS AND DEVICES FOR EXCHANGING PEER PARAMETERS
BETWEEN NETWORK DEVICES

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention generally relates to data networks. More specifically,
the invention relates to the configuration of routers, switches and other network

devices within such data networks.

2. Description of Related Art

Several limitations may be encountered when configuring networks such as
local area networks, storage area networks and the like. There are a variety of network
devices, such as routers, switches, bridges, etc., which may be used to configure such
networks. Some of these network devices have greater capabilities than others. For
example, some devices may readily be configured to support logical networks
superimposed upon a physical network (e.g., virtual local area networks (“VLANs")
or virtual storage area networks (“VSANSs”)) and some may not.

In order to allow multiple VLANS to share a single inter-switch link on the
underlying physical topology, the interswitch link protocol (“ISL”) was developed at
Cisco Systems. See for example U.S. Pat. No. 5,742,604, entitled “Interswitch link
mechanism for connecting high-performance network switches,” Edsall, et al., issued
on April 21, 1998 to Cisco Systems, Inc., which is hereby incorporated by reference
for all purposes. ISL provides an encapsulation mechanism for transporting packets
between ports of different switches in a network on the basis of VLAN associations
among those ports

In one example, it would be useful to transport packets of different frame types
using the same inter-switch link instead of dedicating inter-switch links for different
frame types. For example, it would be desirable if links between network devices
could carry both Ethernet and Fiber Channel (“FC”) frames.

It is also important to determine as quickly as possible whether a network
device has certain capabilities. For example, it would be very useful to determine
quickly whether a peer port of another network device is configured (or could be
configured) to carry frames of particular VLANs or VSANS, and to configure the °
network device as needed. Otherwise, various problems (including dropped frames)

will ensue if the network device is connected to other devices that are transmitting
-1-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

frames for the wrong VLAN or VSAN. However, testing and configuring network

devices for such capabilities can be time-consuming.

SUMMARY OF THE INVENTION

According to some aspects of the invention, a new protocol, known herein as
Exchange Peer Parameters (“EPP”), is provided for communication between peer
ports of network devices that form part of the fabric of a network. In some
embodiments, EPP protocol is used to exchange information and/or to configure E or
F ports of an FC network.

Methods and devices are provided for detecting whether an attached peer port
of a network device can exchange peer parameters with the corresponding port
according to a novel Exchange Peer Parameters (“EPP”) protocol. If the peer port is
so configured, EPP service exchanges are performed with the peer port. In a first
phase, information is exchanged about peer port configurations of interest. In a
second phase, the results of the exchange of information are applied to hardware
and/or software of the peer ports, as needed.

According to some aspects of the invention, when an inter-switch link is
formed, a port of a peer network device is interrogated to determine whether it can
support EPP protocol. If so, EPP service exchanges are performed with the peer port.

According to other aspects of the invention, configuration information is
exchanged between peer ports in a network after an inter-switch link has been formed
between the peer ports and after data frames have been transmitted to and from the
peer network device. Such an information exchange may occur, for example, when
the trunk mode of one of the ports has been changed during operation of the port. The
results of the exchange of information are applied to hardware and/or software of the
peer ports, as needed.

According to some implementations of the invention, methods and devices are
provided for configuring a port of a network device in trunking mode so that all
frames are transmitted in a novel format known as extended inter-switch link (“EISL”)
format, which will be discussed in more detail below. According to some such aspects
of the invention, when an inter-switch link is formed, a port of a peer network device
is interrogated to determine whether it can be a trunking port. If so, the port is
configured to be in trunking mode using the EPP protocol.

According to some preferred aspects of the invention, the EPP protocol is used

after the Exchange Switch Capabilities (“ESC”) protocol. ESC may be used to
2~

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

exchange a set of protocols supported by the switch. EPP is one such protocol in the
set of protocols. The EPP protocol is used, for example, to determine whether a port
of a network device is configurable for supporting VLANSs, VSANs and/or EISL. The
EPP protocol can be used, for example, to configure an E or F port for EISL. Ifan E
port is so configured, the port is referred to as a “trunking E port” or a TE port.

According to some implementations of the invention, a method is provided for
modifying configurations of peer ports interconnecting network devices. The method
includes: determining that the interconnected peer ports, comprising a first port of a
first network device and a second port of a second network device, can support
Exchange Peer Parameters protocol; exchanging configuration information using the
Exchange Peer Parameters protocol between the interconnected peer ports; and
configuring the interconnected peer ports according to the exchanged information.

The determining step can involve exchanging information between the first
port and the second port via, for example, Exchange Link Parameter protocol or
Exchange Switch Capability protocol. The exchanging step can involve exchanging
frames in, for example, type-length-value format or a fixed frame length format.

The configuration information can include, for example, virtual storage area network
information or trunk mode information. The configuration information can be
exchanged when the interconnected peer ports are being initialized or when the
interconnected peer ports have already been initialized. The configuration step can
include configuring the hardware and/or the software of the interconnected peer ports
according to the exchanged information.

Alternative implementations of the invention provide a method for modifying a
configuration of a network device. The method includes: determining that a first
expansion port of a first network device, the first expansion port attached to a second
expansion port of a second network device, can be configured to transmit frames in
Extended Interswitch Link format; and configuring the first expansion port to transmit
frames in Extended Interswitch Link format.

The determining step can include exchanging trunk mode information between
the first expansion port and the second expansion port via Exchange Peer Parameters
protocol. The configuring step can include configuring the hardware and/or software
of the first expansion port to enable transmission of frames in Extended Interswitch
Link format. The configuring step can involve informing the second expansion port
via Exchange Peer Parameters protocol that the configurations have been applied to

the first expansion port.

-3-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

Some embodiments of the invention provide a computer program for causing a
first expansion port of a first network device to modify a configuration of a second
expansion port of a second network device. The computer program causes the first
expansion port to perform the following steps: determining that the second expansion
port can be configured as a trunking port for transmitting frames in Extended
Interswitch Link format; and configuring the second expansion port as a trunking port.

The determining step may involve exchanging information between the first
expansion port and the second expansion port via Exchange Link Parameter protocol
or via Exchange Switch Capability protocol. The configuring step can include
exchanging information between the first expansion port and the second expansion
port via Exchange Peer Protocol.

Alternative aspects of the invention provide a carrier wave embodying an
encoded data signal for modifying a configuration of a network device. The encoded
data signal includes: a command code field for identifying whether a command is from
a synchronization phase or a commit phase of a process for configuring an expansion
port of the network device; and a command identifier field for indicating whether a
request to perform part of the process has been accepted or rejected.

The encoded data signal may also include trunk configuration information.
The trunk configuration information can include, e.g., administratively configured
trunk mode information for trunk mode negotiation, virtual storage area network list
information, or port virtual storage area network information. The administratively
configured trunk mode information can include a setting selected from the group
consisting of ON, OFF and AUTO.

Yet other embodiments of the invention provide an apparatus for modifying a
configuration of a network device. The apparatus includes: a mechanism for
determining that the interconnected peer ports, comprising a first port of a first
network device and a second port of a second network device, can support Exchange
Peer Parameters protocol; a mechanism for exchanging configuration information
using the Exchange Peer Parameters protocol between the interconnected peer ports;
and a mechanism for configuring the interconnected peer ports according to the
exchanged information. These mechanisms may or may not be separate devices,
according to the implementation.

Still other embodiments of the invention provide a first network device for
modifying a configuration of a second network device. The first network device is

configured to perform the following steps: determining that a port of the second

A4-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

network device can support Exchange Peer Parameter protocol; and causing the port to
be configured based on configuration information exchanged between the first
network device and the port via Exchange Peer Parameters protocol.

The determining step can include exchanging information between the first
network device and the port via Exchange Link Parameter protocol or Exchange
Switch Capability protocol. The configuring step can include exchanging information
between the first network device and the port via Exchange Peer Parameter protocol.

A further understanding of the nature and advantages of the present invention
may be realized by reference to the remaining portions of the specification and the

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates a storage area network.

Fig. 2 depicts an EISL frame.

Fig. 3 illustrates a simplified frame having an EISL header.

Fig. 4 illustrates an exemplary stack for implementing an exchange peer
protocol (“EPP”).

Fig. 5 is a flow diagram that outlines the processes of determining that a device
can be configured for EPP and implementing EPP.

Fig. 5A is a diagram of a time-length-value frame.

Fig. 6 is a table that indicates how differences are resolved between a local
trunk mode and a peer trunk mode.

Fig. 7 is a diagram that indicates VSAN bit map information from port A and
port B and the resulting VSAN intersection bit map.

Fig. 7A is a flow chart that outlines a process for implementing the EPP SYNC
and commit phases after a link has previously been established.

Fig. 8 is a flow chart that outlines the EPP process for an initiating port.

Fig. 9 is a flow chart that outlines the EPP process for a receiving port.

Fig. 10 is a table that describes one example of an EPP header.

Fig. 11 depicts a network device that may be configured to perform the

methods of the present invention.

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Fig. 1 indicates network 100, which is a storage area network (“SAN)
according to some preferred aspects of the present invention. Although the following
description will focus on SANs and their corresponding protocols, etc., the present
invention is applicable to other networks, such as LANS.

SAN 100 inctudes nodes 105 and 110, which may be host devices such as
personal computers. SAN 100 also includes nodes 115, 120 and 125, which are
storage devices in this instance. Although Internet 130 is not part of SAN 100, it is
connected to SAN 100 via node 131. Similarly, nodes 105 through 125 are connected
to SAN 100 via ports 106, 111, 116, 121 and 126, respectively. ,

SAN 100 also includes network devices 135, 140 and 145. Such network
devices may be of any kind known in the art, such as routers, switches, bridges, etc.
These network devices are connected to their respective nodes by fabric ports. For
example, network device 135 is connected to nodes 105 and 110 by fabric ports 150
and 155, respectively. Such ports are designated with an “F” in Fig. 1.

Connections between network devices are made by expansion ports or “E”
ports. Connections between E ports are referred to as Inter-Switch Links (“ISLs”).
For example, network device 135 is connected to network device 140 via an ISL
between E port 160 of network device 135 and E port 170 of network device 140.
Similarly, the connection between network device 140 and 145 is made by an ISL
between E ports 175 and 180.

As is well known in the art, connections between network devices and nodes of
storage area networks are commonly made via optical fiber. Data are transmitted on
such networks according to various formats, but most commonly using the Fiber
Channel protocol.

Some network devices may be configured to support a novel frame format,
known as extended inter-switch link (“EISL”) format, which is the subject of other
pending patent applications assigned to Andiamo Systems. The description of some
embodiments and applications of EISL in U.S. Patent Application Number 10/034,160
is hereby incorporated by reference for all purposes. In one example, the EISL format
allows a single network device to process frames or packeté having different formats.
For example, a network device configured to support EISL may process both FC
frames and Ethernet frames. The EISL format also supports VLANs, VSANSs and

similar features.

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

An EISL format allows the implementation of a fibre channel network with
features and functionality beyond that provided by ISL format. In one example, the
EISL format allows a port (known herein as a “trunking port”) to transport frames of
more than one format. For example, a trunking port can switch Ethernet and Fiber
Channel (“FC”) frames and is adaptable to transmitting frames of other formats as
they are developed. An EISL header is used on EISL links to enable this
transportation of different frame types. In another example, the EISL format allows
the implementation of multiple virtual storage area networks (VSANs) on a single
physical network. In still other examples, the EISL format provides mechanisms for
implementing forwarding mechanisms such as Multi-Protocol Label Switching
(MPLS) or Time To Live (TTL) fields specifying how packets should be forwarded
and when packets or frames should be dropped. Any format allowing for the
implementation of multiple virtual storage area networks on a physical fibre channel
network while also allowing the transmission of different frame types, forwarding
fields, and/or time to live, etc. is referred to herein as an EISL format.

Fig. 2 indicates one example of an EISL frame. One of skill in the art will
appreciate that the size, sequence and functionality of the fields within this EISL
frame can vary from implementation to implementation. For example, the numbers of
bits indicated for each field are different in alternative EISL frames.

The EISL frame 200 is bounded by start of frame delimiter (“SOF”) 205 an
end of frame delimiter (“EOF”) 280. These delimiters enable an EISL-capable port to
receive frames in a standard format at all times. If an EISL-capable port is not in
EISL mode and receives frames in the EISL format, it accepts the frame according to
some aspects of the invention. However, the port may not be able to send frames in
EISL format.

In this embodiment, EISL header 260 includes VSAN field 240, which
specifies the virtual storage area network number of payload 270. A VSAN allows for
multiple logical or “virtual” storage area networks to be based upon a single physical
storage area network. Accordingly, VSAN field 240 of EISL header 260 indicates the
virtual storage area network to which this frame belongs.

MPLS label stack field 265 provides a common forwarding mechanism for
both FC and Ethernet frames. Cyclic redundancy check ("CRC”) field 275 is used for
error detection.

Exchange Link Parameter (“ELP”) protocol is an existing FC protocol that is

used for communication with E ports. Similarly, Exchange Switch Capability

-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

(“ESC”) protocol is an existing FC protocol that is used for communication between E
ports. These protocols can be used to exchange information regarding the capabilities
of network devices.

According to some aspects of the invention, a new protocol, known herein as
exchange peer protocol (“EPP”), is provided for communication between E ports.
According to some preferred aspects of the invention, the EPP protocol is used after
the ESC protocol. In such implementations, ESC protocol is used to determine if a
network device is capable of performing EPP protocol exchange. The EPP protocol
may be used, for example, to determine the port VSAN of a peer port of a network
device or to determine whether the peer port is configurable for supporting EISL.
When the peer port is enabled for EISL, the peer port is referred to as a “trunking
port”.

Fig. 3 illustrates a simplified version of an EISL frame. Here, frame 300
includes EISL header 305, header 310 and payload 315. Header 310 may be, for
example, an FC header or an Ethernet header. According to some aspects of the
present invention, field 320 is a field of payload 315. In one example, field 320 is a
service access point (“SAP”) field, which is a part of a fiber channel frame that is
reserved for services that may be defined by a client. Field 320, according to some
aspects of the invention, is an SAP field used for encoding EPP. According to some
such aspects of the invention, field 320 is an EPP header and payload 315 includes an
EPP payload, which will be described in more detail below.

Fig. 4 illustrates stack 400 according to some embodiments of the present
invention. Stack 460 includes physical layer 405. For simplicity, all of the fiber
channel layers are illustrated as a single layer, FC 2 layer 410. Switch Interlink
Services (“SW_ILS”) layer 415 provides functionality for ELP 420 and ESC 425,
according to the standard FC format. Layer 415 also provides a mechanism for

vendors to add their own protocols, such as EPP_ILS 430 in this example. The EPP

_ protocol frames exchanged according to SW_ILS service specification are called

EPP_ILS frames.

However, not all ports will recognize SW_ILS. Accordingly, in other
implementations of the present invention, other formats or services may be used to
provide EPP services. For example, other implementations of the invention use
Extended Link Services (ELS) format to provide EPP services.

Fig. 5 is a flow diagram that depicts an exchange of information between two

E ports according to some aspects of the present invention. E port A may be, for

-8-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

example, port 160 of Fig. 1 and E port B may be, for example, E port 170 of Fig. 1. In
other embodiments, one or both ports are F ports and may exchange frames using, for
example, ELS format.

The information exchanged in section 505 of Fig. 5 represents the detection
phase of EPP, wherein the EPP capability of an attached peer port is detected.
Detection phase 505 is performed using ELP and ESC according to one
implementation of this method.

Area 510 represents the SYNC phase of EPP, wherein configuration
information of interest to the peer port is exchanged. According to some such
embodiments, the configuration information is exchanged in time-length-value
(“TLV?) format, which will be described below with reference to Fig. 5A.

Finally, area 515 represents the commit phase of EPP. In the commit phase,
the results of the exchange of configuration information that took place during the
SYNC phase are applied to hardware and/or software of the peer ports, as needed. In
the implementation illustrated in Fig. 5, the EPP detection phase 505 uses ESC service
exchanges during E-port initialization. In ESC, the originator port can publish the
protocol/services supported by the originator port. The peer port is required to
respond with the service it agrees to work with or it can respond as “command
unsupported.”

At time 520, a link has been established between port A and port B. In step
525, port A sends an ELP request to port B. In this instance, port A has initiated the
process. However, as will be explained in more detail below, the present invention
includes a mechanism for dealing with situations in which both ports A and B have
simultaneously initiated the process. ELP request 525 includes link-level parameters
such as buffer-to-buffer credit (indicating how much data can be transmitted from one
buffer to another before new credits are required).

In step 530, port B sends information to port A indicating an acceptance of the
ELP request. In essence, step 525 involves the sending of port A’s link-level
parameters to port B and step 530 involves the sending of port B’s link-level
parameters to port A. In step 535, port A sends an acknowledgement to port B. At
this time, port A knows port B’s link configuration and port B knows port A’s link
configuration.

Then, in step 540, port A sends other information regarding the configuration
of the network device that includes port A. In this step, port A indicates the

services/protocols that port A can support. In some embodiments, the information will

9.

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

include a vendor string that indicates the particular vendor and model number of the
network device and its capabilities. In one such embodiment, step 540 includes the
transmission of services/protocols that port A can support in code/service pairs. Some
codes may be standard FC codes which correspond with standard FC services (e.g.,
FSPF). However, one such code is a unique code that corresponds with EPP.

In step 545, port B sends an acceptance to port A and also sends information regarding
the vendor and switch capabilities of the switch associated with port B. In this
example, both port A and port B support EPP. Accordingly, detection phase 505 was
successful and in steps 530 and 545, port B accepted port A’s request and ESC
information, respectively. However, port B could have rejected either of those
requests. Alternatively, port B could have selected a different service if port B did not
support EPP. .

The combination of a request and an acceptance (or of a request and a
rejection) will sometimes be referred to herein as an “exchange.” In the embodiment
described with respect to Fig. 5, the exchanges are performed according to an SW_ILS
format, as described above.

After determining that port B supports EPP and that port B could be configured
to be a trunking port, port A sends an EPP_SYNC_ILS to port B in step 550 and EPP
SYNC_ILS phase 510 begins. In this embodiment, the EPP_SYNC_ILS includes
configuration information for use by Port B in configuring itself to be a trunking E
port. However, in other embodiments, EPP may be used for port VSAN consistency
checks without configuring port B as a trunking port.

Fig. 5A illustrates frame 585 in type-length-value (“TLV”) format, which is a
preferred format for data exchanged between ports A and B during SYNC phase 510.
Type field 590 encodes how value field 592 is to be interpreted. In other words, type
field 590 indicates what kind of value will be encoded in value field 592. Length field
591 indicates the length of value field 592, e.g., in bytes. Value field 592'is a payload
that encodes information to be interpreted as specified by type field 590.

TLV format is inherently quite flexible, because both the type and length of
value field 592 can be varied. However, in other embodiments of the invention, fixed-
length frames may be used for the same purpose.

Referring again to Fig. 5, the exchange of trunking information will be
described. Asmnoted above, trunking information is one type of information that may
be exchanged during step 550 of SYNC phase 510. According to some embodiments

of the present invention, trunking configuration information includes admin trunk

-10-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

mode information (administratively configured by the user), which may be “ON,”
“OFF” or “AUTO.” “OFF” indicates that the sending port is configured not to operate
as a trunking port. “ON” indicates that the sending port can operate as a trunking port
if the receiving port does not explicitly prohibit this from happening. “AUTO”
indicates that the sending port can operate as a trunking port if the receiving port is
configured with trunking mode “ON.”

Fig. 6 is table that indicates trunk mode negotiation according to some aspects
of the present invention. If the sending trunk mode (here, port A) has an admin trunk
mode setting of “OFF,” then the sending port will be treated as a non-trunking port. If
the admin trunk mode of the sending port is “ON,” the sending port will be treated as a
trunking port if the receiving port (here, port B) has an admin trunk mode of “ON” or
“AUTO.” If the sending port has an admin trunk mode of “AUTO,” the receiving port
must have an admin trunk mode of ON for the sending trunk mode to operate as a
trunking port. Otherwise, the receiving port will operate as a normal port.

Referring again to Fig. 5, in step 555 port B sends an acknowledgement to port
A. In step 560, port B sends its own configuration information, which may include
trunking configuration information as described above, to port A.

In addition to exchanging admin trunk mode information, ports A and B may
exchange VSAN list information during SYNC phase 510. The exchange of VSAN
list information according to one such implementation will now be explained with
reference to Fig. 7. In this example, ports A and B exchange bit maps that indicate
which VSANS to allow. Here, port A sends bit map 705 to port B in which bits 1
through 5 have a value of “1,” indicating that VSANS 1 through 5 should be allowed.
Port B, in turn, sends bit map 710 indicating that VSAN’s 4 through 8 should be
allowed. In preferred implementations, the bit maps indicate the status of more (or
less) than 8 VSANS and include a correspondingly greater (or smaller) number of bits.

Both ports A and B, or the network devices associated with the respective
ports, then compute an intersection bit map that indicates the VSANs common to both
ports. In this case, intersection bit map 715 indicates that VSANs 4 and 5 are both
allowed. In some embodiments of the present invention, the intersection bit map is
computed at the end of the EPP_SYNC phase. In other embodiments of the present
invention, the intersection bit map is computed at other times. However, this process
should occur prior to the beginning of the commit phase.

After the intersection bit map has been computed, the network devices

associated with ports A and B each will store the intersection bit map in memory and

-11-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

only VSANs 4 and 5 will be permitted to send data frames along this data path.
VSANs 4 and 5 are known as “operational VSANS” on the link between port A and
port B.

According to some embodiments of the present invention, the configuration
information exchanged during SYNC phase 510 includes port VSAN information. In
some such aspects of the invention, port VSAN information is particularly importanf
when the ports are functioning as non-trunking ports. If ports are functioning as
trunking ports, the EISL header will contain a VSAN number indicating the VSAN to
which the frame belongs.

However, according to some aspects of the invention, if the ports are not
functioning as trunking ports, there will be no EISL header and consequently no
VSAN number. If a port is not trunking, frames will be transmitted in the native FC
format, not in EISL format. However, a VSAN will be implicitly associated with each
frame. This VSAN is the port VSAN of the receiving port.

By default, every E port has a port VSAN number equal to 1. However,
various port VSAN numbers may be assigned. If there is a mismatch between port
VSAN numbers, various actions may take place according to various aspects of the
present invention. According to some such aspects, a system administrator would be
notified if, for example, a port having a port VSAN number of 1 sent a packet to a port
having a port VSAN number of 2. According to other aspects of the invention, one or
more of the ports would be brought down in the event of such a port VSAN mismatch.

At the end of step 560, port A knows the configuration of port B and port B
knows the configuration of port A. In step 565, port A sends an acknowledgement to
port B indicating that it has received port B’s EPP_SYNC configuration information.
Then, the EPP_SYNC phase of the process has concluded. On completion of SYNC
phase 510, ports A and B will evaluate the configuration information that needs to be
applied.

In the current example, ports A and B are configured to become trunking E
ports. Accordingly, prior to EPP_Commit phase 515, port B is configured to be a
trunking E port in programming step 568. According to some aspects of the invention,
programming step 568 involves hardware programming necessary for supporting
trunking mode operation and the preparation of EISL frames. In one instance, when
the port is enabled for trunking mode, all frames are transmitted in EISL format.

When step 568 is complete, the EPP_Commit phase commences in step 570 by
the sending of an EPP_Commit request from port B to port A. After port A receives

-12-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

the EPP_Commit request, port A performs its own programming operation in step
572, which is parallel to the programming step 568 of port B: according to some
aspects of the invention, programming step 572 involves hardware pro gramming
necessary for supporting trunking mode operation and the preparation of EISL frames.
In one instance, when the port is enabled for trunking mode, all frames are transmitted
in BISL format. Then, in step 575, port A sends an SW_ACC to port B, indicating
that port A has completed its programming step.

Then, in step 580, port B sends an acknowledgement to port A indicating
receipt of the SW_ACC sent in step 575 and completion of the EPP commit exchange
on its side. At this time, port A has completed the EPP commit exchange. In the
present example, this means that ports A and B are now configured for trunk mode
operation

At some time after ports A and B have been transmitting data, an operator may
decide to reconfigure some aspect of the ports. For example, the VSAN number may
change on one or both of the ports and a new intersection bit map would need to be
computed. Ifthis is the case, the foregoing process need not go back through the ELP
and ESC phases, but may proceed directly to the EPP_SYNC and EPP_Commit
phases.

This process will be outlined with reference to Fig. 7A. In step 750, a network
administrator changes the local admin trunk mode of port A from “AUTO” to “ON.”
In step 755, the EPP SYNC process begins with a parallel to step 550 of Fig. 5,in
which the new local admin trunk mode of port A is transmitted to port B. In step 760,
pbrt B sends an “ACK” to port A. In this example, the peer admin trunk mode (of port
B) remains set to “AUTO.” Consequently, port B sends its peer admin trunk mode to
port A in step 765, port A responds with an “ACK” in step 770 and both ports change
their operational trunk mode to T (trunking) in step 775. The necessary EPP commit
programming for trunking operation is performed in step 780.

Fig. 8 is a flow chart that depicts the process flow of an EPP method from the
initiating port’s perspective, according to one aspect of the present invention. The first
step is step 805, the ready state. In step 810, an EPP_SYNC request is sent to the
receiving port. In step 815, the initiating port requests an acceptance from the
receiving port for the EPP_SYNC request. If the response is received within a
predetermined time, the response is evaluated in step 820. If the response is not
received within the predetermined time, the method proceeds to step 830 and the

initiating port enters a retry waiting state.

13-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

Sometimes port B will send its own EPP_SYNC request during the time port A
is awaiting a response to port A’s EPP_SYNC request. This circumstance is known as
a “collision.” In the event of a collision, in step 816 port A determines whether to
accept the EPP_SYNC request from port B. If port A does accept the EPP_SYNC
request from port B, the process continues to step 910 of Fig. 9, which is described
below. If port A does not accept the EPP_SYNC request from port B, port A sends a
rejection (e.g., an “SW_RJT”) to port B in step 817. Then, the process returns to step
815.

In step 835, it is determined whether the retry count or time is exceeded. If
this retry count is exceeded, a failure will be reported and the system will return to a
ready state. If the retry count is not exceeded, the EPP_SYNC request will be sent
once again in step 810 and the process will proceed from step 810.

In step 820, if the response is determined to be acceptable, the method
proceeds to step 825, where the system waits for an EPP_Commit state. If the
response is determined not to be acceptable in step 820, an SW_RJT response is sent
to the receiving port and the initiating port returns to the ready state of step 805.

If an EPP_Commit is received by the initiating port in step 825, then the
process continues to step 840, wherein hardware programming is performed on the
initiating port. In step 845, it is determined whether the hardware pro gramming is
completed. If not, the method proceeds to step 855, wherein the hardware
programming step is reported and the system enters the retry condition of step 830. If
the hardware programming is a success, the method proceeds to step 850 and an
SW_ACC response for the EPP_Commit is transmitted to the receiving port.

The process then continues to step 860, wherein the initiating port waits for an
acknowledgement from the receiving port. If the acknowledgement is not received
within a predetermined time, then the process proceeds to step 855. If the
acknowledgement is received within the predetermined time, the initiating port returns
to the steady state of step 805.

Fig. 9 indicates the EPP process from the perspective of the receiving port. In
step 905, the receiving port is in a ready state. In step 910, an SW_ACC is sent to the
initiating port for the EPP_SYNC. In step 915, the receiving port waits for an
acknowledgement for the SW_ACC response. If this response is not received within a
predetermined time, there is a timeout and the receiving port returns to the ready state
of step 905. If the acknowledgement is received within the predetermined, the method

proceeds to step 920 and hardware programming is performed on the receiving port.

-14-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

In 925 it is determined whether the hardware programming is completed. If not, a
failure report is made in step 930 and the receiving port returns to a ready state in step
905. If the hardware programming is done, the method proceeds to step 935 and an
EPP_Commit is sent to the initiating port.

In step 940, the receiving port waits for an SW_ACC for the EPP_Commit that
it has sent to the initiating port. Ifno such response is received within a predetermined
time, the process proceeds to step 930 and a failure is reported. The receiving port
then returns to the ready state of step 905. If a response is received during the
predetermined time, then the method proceeds to step 945 and the response is
evaluated. If the response is determined to be acceptable, a success is notified. In step
950, if the response is not determined to be acceptable, an error is reported and the
system returns to the ready state of 905.

Fig. 10 indicates the components, values and sizes of EPP header fields
according to some embodiments of the present invention. Other embodiments may
have more or fewer fields. Moreover, the fields may have lengths other than those
depicted in Fig. 10.

In one implementation of the present invention that uses SW_ILS, the
command identifier field indicates values chosen from a range of vendor specific
command identifiers. The command identifier may indicate, for example, an EPP
request, an SW_RJT (reject) or an SW_ACC (accept). In one embodiment, the value
of the command ID is 0X71000000. The revision field identifies the revision of the
EPP service. For the first revision, the value is 1. The revision number should be
changed every time there is a change in the EPP header.

As noted above, in some implementations EPP uses a two-phase mechanism to
establish the operating environment. The first phase is the synchronizing phase
(EPP_SYNC), where the configuration information on both sides is synchronized.

The second phase is the commit phase (EPP_COMMIT), where the actual hardware
programming is performed. The EPP command code field is used to identify whether
the EPP request sequence is from the EPP_SYNC phase or the EPP_COMMIT phase.

The session field is used to identify a particular session on the side that
initiated the EPP request sequence. In some cases of error or failure, EPP will retry its
protocol exchange. The session number will be changed for each retry of the EPP
operation. This feature helps identify stale sessions.

The worldwide name (WWN) indicates the WWN of the network device to

which the port belongs. According to some aspects of the present invention, the

-15-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

WWN information is used for resolving “collisions” of simultaneous EPP_SYNC
requests.

The payload length field is used to identify the total length of the payload,
including the EPP header. The reserved field is reserved for future use.

There will be times when 2 ports will simultaneously send EPP requests to one
another. Such “collisions” will be resolved based on the WWN of the network device
with which the port is associated. The port within the network device having the
lower WWN will send an SW_ACC to the other port. The port whose network device
has the WWN will send SW_RIJT to the other port, with a reason code indicating
collision.

Generally, the techniques of the present invention may be implemented on
software and/or hardware. For example, they can be implemented in an operating
system kernel, in a separate user process, in a library package bound into network
applications, on a specially constructed machine, or on a network interface card. In a
specific embodiment of this invention, the technique of the present invention is
implemented in software such as an operating system or in an application running on
an operating system.

A software or software/hardware hybrid implementation of the techniques of
this invention may be implemented on a general-purpose programmable machine
selectively activated or reconfigured by a computer program stored in memory. Such
a programmable machine may be a network device designed to handle network traffic,
such as, for example, a router or a switch. Such network devices may have multiple
network interfaces including frame relay and ISDN interfaces, for example. Specific
examples of such network devices include routers and switches.

For example, the methods of this invention may be implemented in specially
configured network devices such as the MDS 9000 family of switches manufactured
by Cisco Systems, Inc. of San Jose, California. A generalized architecture for some
such machines will appear from the description given below. In an alternative
embodiﬁent, the techniques of this invention may be implemented on a general-
purpose network host machine such as a personal computer or workstation. Further,
the invention may be at least partially implemented on a card (e.g., an interface card)
for a network device or a general-purpose computing device.

Referring now to Fig. 11, a network device 1160 suitable for implementing the
techniques of the present invention includes a master central processing unit (CPU)

1162, interfaces 1168, and a bus 1167 (e.g., a PCI bus). When acting under the
-16-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

35

control of appropriate software or firmware, the CPU 1162 may be responsible for
implementing specific functions associated with the functions of a desired network
device. For example, when configured as an intermediate router, the CPU 1162 may
be responsible for analyzing packets, encapsulating packets, and forwarding packets
for transmission to a set-top box. The CPU 1162 preferably accomplishes all these
functions under the control of software including an operating system (e.g. Windows
NT), and any appropriate applications software.

CPU 1162 may include one or more processors 1163 such as a processor from
the Motorola family of microprocessors or the MIPS family of microprocessors. In an
alternative embodiment, processor 1163 is specially designed hardware for controlling
the operations of network device 1160. In a specific embodiment, a memory 1161
(such as non-volatile RAM and/or ROM) also forms part of CPU 1162. However,
there are many different ways in which memory could be coupled to the system.
Memory block 1161 may be used for a variety of purposes such as, for example,
caching and/or storing data, programming instructions, etc.

The interfaces 1168 are typically provided as interface cards (sometimes
referred to as “line cards”). Generally, they control the sending and receiving of data
packets over the network and sometimes support other peripherals used with the
network device 1160. Among the interfaces that may be provided are Ethernet
interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring
interfaces, and the like. In addition, various very high-speed interfaces may be
provided, such as fast Ethernet interfaces, Gigabit Ethernet interfaces, ATM
interfaces, HSSI interfaces, POS interfaces, FDDI interfaces, ASI interfaces, DHEI
interfaces and the like. Generally, these interfaces may include ports appropriate for
communication with the appropriate media. In some cases, they may also include an
independent processor and, in some instances, volatile RAM. The independent
processors may control such communications intensive tasks as packet switching,
media control and management. By providing separate processors for the
communications intensive tasks, these interfaces allow the master microprocessor
1162 to efficiently perform routing computations, network diagnostics, security
functions, etc.

Although the system shown in Fig. 11 illustrates one specific network device
of the present invention, it is by no means the only network device architecture on
which the present invention can be implemented. For example, an architecture having

a single processor that handles communications as well as routing computations, etc.

-17-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

is often used. Further, other types of interfaces and media could also be used with the
network device.

Regardless of the network device’s configuration, it may employ one or more
memories or memory modules (such as, for example, memory block 1165) configured
to store data, program instructions for the general-purpose network operations and/or
other information relating to the functionality of the techniques described herein. The
program instructions may control the operation of an operating system and/or one or
more applications, for example.

Because such information and program instructions may be employed to
implement the systems/methods described herein, the present invention relates to
machine-readable media that include program instructions, state information, etc. for
performing various operations described herein. Examples of machine-readable media
include, but are not limited to, magnetic media such as hard disks, floppy disks, and
magnetic tape; optical media such as CD-ROM disks; magneto-optical media; and
hardware devices that are specially configured to store and perform program
instructions, such as read-only memory devices (ROM) and random access memory
(RAM). The invention may also be embodied in a carrier wave traveling over an
appropriate medium such as airwaves, optical lines, electric lines, etc. Examples of
program instructions include both machine code, such as produced by a compiler, and

files containing higher level code that may be executed by the computer using an

_ interpreter.

While the invention has been particularly shown and described with reference
to specific embodiments thereof, it will be understood by those skilled in the art that .
changes in the form and details of the disclosed embodiments may be made without
departing from the spirit or scope of the invention. For instance, it will be appreciated
that at least a portion of the functions described herein that are performed by a
network device such as a router, a switch and/or selected components thereof, may be
implemented in another device. For example, these functions can be performed by a
host device (e.g., a personal computer or workstation). Such a host can be operated,
for example, by a network administrator. Considering these and other variations, the

scope of the invention should be determined with reference to the appended claims.

-18-

WO 2004/051938 PCT/US2003/036452

10

15

20

25

30

WE CLAIM:

1. A method for modifying configurations of peer ports interconnecting
network devices, the method comprising:

determining that the interconnected peer ports, comprising a first port of a first
network device and a second port of a second network device, can support Exchange
Peer Parameters protocol;

exchanging configuration information using the Exchange Peer Parameters
protocol between the interconnected peer ports; and

configuring the interconnected peer ports according to the exchanged

information.

2. The method of claim 1, wherein the configuration information

comprises virtual storage area network information.

3. The method of claim 1, wherein the configuration information

comprises trunk mode information.

4. The method of claim 1, wherein the configuration step further
comprises configuring hardware of the interconnected peer ports according to the

exchanged information.

5. The method of claim 1, wherein the configuration step further
comprises configuring software of the interconnected peer ports according to the

exchanged information.

6. A method for modifying a configuration of a network device, the
method comprising:

determining that a first expansion port of a first network device, the first
expansion port attached to a second expansion port of a second network device, can be
configured to transmit frames in Extended Interswitch Link format; and

configuring the first expansion port to transmit frames in Extended Interswitch
Link format.

-19-

WO 2004/051938 PCT/US2003/036452
7. The method of claim 6, wherein the determining step comprises

exchanging trunk mode information between the first expansion port and the second

expansion port via Exchange Peer Parameters protocol.

8. The method of claim 6, wherein the configuring step comprises
5 configuring the hardware and/or software of the first expansion port to enable

transmission of frames in Extended Interswitch Link format.

9. The method of claim 6, wherein the configuring step comprises
informing the second expansion port via Exchange Peer Parameters protocol that the

configurations have been applied to the first expansion port.

10 10. A computer program for causing a first expansion port of a first
network device to modify a configuration of a second expansion port of a second
network device, the computer program causing the first expansion port to perform the
following steps:

determining that the second expansion port can be configured as a trunking
15 port for transmitting frames in Extended Interswitch Link format; and

configuring the second expansion port as a trunking port.

11. The computer program of claim 10, wherein the determining step
comprises exchanging information between the first expansion port and the second

expansion port via Exchange Link Parameter protocol.

20 12. The computer program of claim 10, wherein the determining step
comprises exchanging information between the first expansion port and the second

expansion port via Exchange Switch Capability protocol.

13. The computer program of claim 10, wherein the configuring step
comprises exchanging information between the first expansion port and the second

25 expansion port via Exchange Peer Protocol.

14, An apparatus for modifying a configuration of a network device, the
apparatus comprising:

means for determining that the interconnected peer ports, comprising a first
port of a first network device and a second port of a second network device, can

30 support Exchange Peer Parameters protocol;

-20-

WO 2004/051938 PCT/US2003/036452

10

15

20

means for exchanging configuration information using the Exchange Peer
Parameters protocol between the interconnected peer ports; and
means for configuring the interconnected peer ports according to the

exchanged information.

15. A first network device for modifying a configuration of a second
network device, the first network device configured to perform the following steps:

determining that a port of the second network device can support Exchange
Peer Parameter protocol; and

causing the port to be configured based on configuration information
exchanged between the first network device and the port via Exchange Peer

Parameters protocol.

16. The first network device of claim 15, wherein the determining step
comprises exchanging information between the first network device and the port via

Exchange Link Parameter protocol.

17. The first network device of claim 15, wherein the determining step
comprises exchanging information between the first network device and the port via

Exchange Switch Capability protocol.

18. The first network device of claim 15, wherein the configuring step
comprises exchanging information between the first network device and the port via

Exchange Peer Parameter protocol.

21-

PCT/US2003/036452

WO 2004/051938

1/13

1ewauj

ovl
| 0L 091

oclL

L°OId

3 -

lllllllllll

00!

GOl

oLl

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/036452

WO 2004/051938

2/13

\ 00¢

¢ ‘Oid

092

J
M 10)= 10 peojfed AOEIS ahmnmmr d
3 lege1s1dnW | |8 1s13 m

N

S S G G

082 = S/2 0.2 1eT4 ovw momf

SUBSTITUTE SHEET (RULE 26)

WO 2004/051938 PCT/US2003/036452

3/13

315

)
FIG. 3

320

310 ;
300

305

SUBSTITUTE SHEET (RULE 26)

WO 2004/051938

415

PCT/US2003/036452

4/13
Q
o)
"‘?
V5]
-
j—
A
jaal
S 8 =
O 2} .
e
g 2 =1 9
Q m
g LL
A
=]
]
7

420
~—"TN
N—1N
405
N——]

410
400

SUBSTITUTE SHEET (RULE 26)

WO 2004/051938

PCT/US2003/036452

5/13

520
Link up

525

ELP request

ESC (Vendor String)

45
SW_ACC

Y

515<

500

550
EPP_SYNC_LLS (trunk config) {
—=)

e ———

SW_ACC (programming done)

——————
—————
————
-
-
—————
- -

-
-
——
-
-
- —

FIG. 5

SUBSTITUTE SHEET (RULE 26) -

WO 2004/051938 PCT/US2003/036452

6/13
3
(L]
>
O
L
L
iS)
c
3
g
3
el 3
=

SUBSTITUTE SHEET (RULE 26)

WO 2004/051938 PCT/US2003/036452

713

OPERATIONAL TRUNK MODE

PEER ADMIN TRUNK MODE
LOCAL ADMIN
TRUNK MODE OFF ON AUTO
OFF NT NT - NT
ON NT T T
AUTO NT T NT

NT=Non-trunking
T=trunking

FIG. 6

| SUBSTITUTE SHEET (RULE 26)

WO 2004/051938 PCT/US2003/036452

8/13
(s} o -~ o
~ o - (=
© o -~ o
Te) -~ — —
O
L
<t -~ ~ -~
(32] Al (e o
(p) [am) n
N |~ 8 oY < =3 NG
~ ~ o o

SUBSTITUTE SHEET (RULE 26)

WO 2004/051938 PCT/US2003/036452

9/13

750

Network administrator /
changes local admin trunk 7
mode of port A

755

New local admin trunk mode of //
port A transmitted to port B

760

Port B sends - /

“ACK” to port A -]

765
Port B sends peer admin trunk |~

mode to port A

770

Port A responds //
with an “ACK”

Ports A and B change 715
their operational trunk
modes to “trunking”

780

EPP commit programming for trunking //
operation is performed

FIG. 7A

SUBSTITUTE SHEET (RULE 26)

WO 2004/051938 PCT/US2003/036452

10/13
805
—
'
Notify Failure Ready State
Yes -
LEPP initiate _ 817
Retry Cgucr;t 810
exceede Send EPP SYNC o
835 request N—{ Send Rejection

Ti 815 L :
Retry-Time-out ~ 816

Retry Wait Wait Sfoi\l SW_ALL
—— for SYNC Sfate
State Timeout ¢

Accept EPP?

Recv Response

820

Response

OK? step 910

No

L~ 825

. Wait for
Timeout | Epp_COMMIT
state

840~ l Recv EPP_COMMIT

Do Hardware
Programming

Timeout

845

855~ l

Revert HW
programming

s Hardware
Programming
done?

Failure

Ack1
/s 860 [Recvd

S Wait for ACK1
850 uccess / state
Send SW_ALL for

EPP_COMMIT

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2004/051938

PCT/US2003/036452

11/13
905
—
Ready State ~ |«e—
——»
i Recv EPP_SYNC
L—910
Send SW_ALL for
EPP_SYNC
Wait for ACK1 | —915
State
Timeout
‘ Recv ACK1
Do Hardware ,— 920
Programming
i Hardware
Revert Hw | Failure S :
programming Programming

done?

Timeout

935 Success

Send
EPP_COMMIT

940\ ¢
Wait for SW ALL

for EPP_COMMIT

945

950

~

(SW_ALL)

No

Response

(SW_RJT) N\ OK?

Notify Success

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 2004/051938 PCT/US2003/036452

12/13
ltem Value Size (bytes)
Command Id 0x71000000 4
Revision 1 (for first version) 1
0x0001 (EPP_SYNC)
EPP Command Code 1
0x0002 (EPP_COMMIT)
Session 0x0001 thru Oxffff 2
Switch WWN Global switch Name 8
Reserved 0x0000 2
length of EPP payload
Payload Length 2
(without FC header)

FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/US2003/036452

WO 2004/051938

13/13

Vil —~

Ll "OIH

T WOYd3d

sio)sibay

(s)psep aur

ot%\

/E:
N
1611~ GSLL
€911 ~ |
(8)40SsSID0¥d
6511~
ANOWAN
\ - AHOWIAN
59}1 2011 - L
/ III
stk || (o) I
}
AILVIV m (S)30V4HILNI
~—zz1L || d
| ./

89L1 l/

0911

LOLL

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

