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Beschreibung

[0001] Die vorliegende Erfindung betrifft eine Implementierung von Multiplizierern in programmierbaren Ar-
rays, insbesondere in einer rekonfigurierbaren Prozessorvorrichtung.

[0002] Eine kommerziell erfolgreiche Form einer rekonfigurierbaren Vorrichtung ist das feldprogrammierbare 
Gate-Array (FPGA). Diese Vorrichtungen bestehen auf einer Ansammlung von konfigurierbaren Verarbei-
tungselementen, die in ein konfigurierbares verknüpftes Netzwerk eingebettet sind. Ein Konfigurationsspeicher 
ist vorgesehen, um die Verknüpfungskonfiguration zu beschreiben – oft wird ein SRAM verwendet. Diese Vor-
richtungen haben eine sehr Feinkörnige Struktur: Typischerweise ist jedes Verarbeitungselement eines FPGA 
ein konfigurierbares Gate. Anstatt in einer zentralen ALU konzentriert zu sein, ist die Verarbeitung so auf die 
Vorrichtung verteilt, und die Siliziumfläche der Vorrichtung wird effektiver ausgenutzt. Ein Beispiel einer kom-
merziell verfügbaren FPGA Serie ist die Xilinx 4000 Serie.

[0003] Solche rekonfigurierbaren Vorrichtungen können im Prinzip für jegliche Rechenanwendung verwendet 
werden, für die ein Prozessor oder ein ASIC verwendet wird. Eine besonders geeignete Verwendung von sol-
chen Vorrichtungen besteht jedoch in der Verwendung als Koprozessor, um Aufgaben zu bewältigen, die zwar 
rechenintensiv, aber nicht so häufig sind, als dass sie einen für diesen Zweck gebauten ASIC rechtfertigen wür-
den. Ein rekonfigurierbarer Koprozessor könnte folglich zu verschiedenen Zeiten mit verschiedenen Konfigu-
rationen programmiert werden, wobei jede Konfiguration für die Ausführung einer anderen rechenintensiven 
Aufgabe angepaßt ist, was für größere Effizienz sorgt als im Falle eines Universalprozessors alleine, und ohne 
starke Erhöhung der Gesamtkosten. In neuesten FPGA-Vorrichtungen ist eine dynamische Rekonfiguration 
möglich, wobei eine teilweise oder vollständige Rekonfiguration während der Ausführung von Code möglich 
ist, so dass Zeit-Multiplexing verwendet werden kann, um Konfigurationen zur Verfügung zu stellen, die für un-
terschiedliche Teilaufgaben zu verschiedenen Phasen der Ausführung eines Codestückes optimiert sind.

[0004] FPGA-Vorrichtungen sind nicht speziell geeignet für bestimmte Arten von Rechenaufgaben. Da die 
einzelnen Rechenelemente sehr klein sind, sind die Datenwege extrem schmal und es wird eine Vielzahl von 
ihnen benötigt, so dass eine große Zahl von Operationen beim Konfigurationsvorgang nötig sind. Obwohl diese 
Strukturen relativ effizient für Aufgaben sind, bei denen kleine Datenelemente bearbeitet werden und von Zy-
klus zu Zyklus regulär sind, so sind sie weniger befriedigend für unregelmäßige Aufgaben mit großen Datene-
lementen. Solche Aufgaben werden auch von einem Universalprozessor nicht gut bewältigt, können jedoch 
von erheblicher Bedeutung sein (z. B. bei der Bildbearbeitung).

[0005] Alternative rekonfigurierbare Architekturen sind vorgeschlagen worden. Ein Beispiel ist die PADDI-Ar-
chitektur, entwickelt von der University of California in Berkeley und beschrieben in der Arbeit von D. Chen und 
J. Rabacy "A Reconfigurable Multiprocessor IC for Rapid Prototyping of Real Time Data Paths", ISSCC, Feb-
ruar 1992 und A. Yeung und J. Rabacy "A Data-Driven Architecture for Rapid Prototyping of High Throughput 
DSP Algorithms", IEEE VLSI Signal Processing Workshop, Oktober 1992. Eine weitere alternative Architektur 
ist MATRIX, entwickelt am Massachusetts Institute of Technology und beschrieben von Ethan Mirsky und An-
dré deHon in "MATRIX: A Reconfigurable Computing Architecture with Configurable Instruction Distribution 
and Deployable Resources", FCCM '96 – IEEE Symposium on FPGAs for Custom Computing Machines, April 
17–19, 1996, Napa, Kalifornien, USA und detaillierter von Andre deHon in "Reconfigurable Architectures for 
General-Purpose Computing", Seiten 257 bis 296, Technical Report 1586, MTT Artificial Intelligence Labora-
tory. Die MATRIX-Struktur hat vorteilhafte Gesichtspunkte, aber die grobe Korngröße bedeutet, dass sie mehr 
Silizium verbraucht als eine konventionelle FPGA-Struktur und sie womöglich weniger effizient für Aufgaben 
ist, die von Zyklus zu Zyklus gleichförmig sind. Es wäre daher wünschenswert, weitere konfigurierbare Struk-
turen zu entwickeln, welche auf bestmögliche Weise die Vorteile der MATRIX mit denen herkömmlicher FPGAs 
kombinieren.

[0006] Die US 5,291,431 sieht einen Array-Multiplizierer vor, der eine modifizierte Zellen-Kodierung von Ein-
gangssignalen des Multiplizierers verwendet, und der auf der Oberfläche eines monolithischen integrierten 
Schaltkreises unter Verwendung von einem Computer erzeugter Masken entsprechend einem Siliziumcompi-
lerprogramm gebildet ist, indem ein Array aus Standardzellen, die aus einer Sammlung standardmäßiger Zell-
designs ausgewählt sind, bei einem Mosaikvorgang angeordnet werden.

[0007] Eine weitere Entwicklung der Anmelder der vorliegenden Erfindung, beschrieben in der internationalen 
Patentveröffentlichung WO-A-98/33276, mit einer als "CHESS" bezeichneten Gesamtarchitektur, beschreibt 
eine rekonfigurierbare Vorrichtung, die umfasst: eine Vielzahl von Verarbeitungsvorrichtungen; eine Verknüp-
fungsmatrix, die eine Verknüpfung zwischen den Verarbeitungsvorrichtungen bereitstellt; und ein Mittel zum 
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Definieren der Konfiguration der Verknüpfungsmatrix; wobei jede der Verarbeitungsvorrichtungen eine arith-
metische Logikeinheit umfasst, die angepasst ist, über Eingabeoperanden eine Funktion auszuführen und eine 
Ausgabe zu erzeugen, wobei die Eingabeoperanden als Eingaben der arithmetischen Logikeinheit von der 
Verknüpfung in jedem Zyklus auf dem gleichen Weg zur Verfügung gestellt werden, und wobei Mittel zur Ver-
fügung gestellt werden, um die Ausgabe von einer ersten Verarbeitungsvorrichtung zu einer zweiten Verarbei-
tungsvorrichtung weiterzuleiten, um die Funktion zu bestimmen, die von der zweiten Verarbeitungsvorrichtung 
ausgeführt wird.

[0008] In einer bevorzugten Ausgestaltung von CHESS hat jede der Verarbeitungsvorrichtungen eine erste 
Operandeneingabe, eine zweite Operandeneingabe, eine Funktionsergebnisausgabe, eine Übertragseingabe 
und eine Übertragsausgabe, wobei die erste Operandeneingabe, die zweite Operandeneingabe und die Funk-
tionsergebnisausgabe n-Bit sind, wobei n eine ganze Zahl größer als 1 ist, und die Übertragseingabe und die 
Übertragsausgabe 1-Bit sind. Eine besonderes gute Designlösung findet man, wenn n gleich 4 ist. Der für eine 
dynamische Instruktion verwendete Mechanismus besteht darin, dass jede der Verarbeitungsvorrichtungen 
dazu angepasst ist, zum Bestimmen ihrer Funktion eine n-Bit Instruktionseingabe von einer anderen Verarbei-
tungsvorrichtung zu empfangen.

[0009] Es ist außerdem vorteilhaft, dass jede der Verarbeitungsvorrichtungen ein verriegelbares Ausgabere-
gister für die Funktionsausgabe umfasst. Dies ist nützlich zur Konstruktion einer "tiefen" Pipeline, wenn es z. 
B. notwendig ist, eine Anzahl von Operationen parallel auszuführen und die Bereitstellung der Ausgabe von 
verschiedenen ALUs zu synchronisieren.

[0010] Eine besonders wichtige Frage für alle Architekturen, die oben beschrieben sind, ist die Implementie-
rung eines Multiplizierers. Multiplizierer sind Schlüsselelemente für viele Berechnungen, und viele Anwendun-
gen, die am geeignetsten für den Gebrauch eines ASIC oder Koprozessors sind, enthalten eine große Zahl 
von Multiplikationsoperationen. Ein konventioneller Ansatz zur Implementierung eines Multiplizierers wird nun 
beschrieben.

[0011] Ein kombinatorischer Multiplizierer ist üblicherweise als ein repetitierendes Array aus Kernzellen ge-
baut, bei dem jede Zelle einige Bits (z. B. M Bits) des Multiplikanden A mit einigen Bits (z. B. N Bits) des Mul-
tiplikators B multipliziert, um ein (M + N)-Bit-Partialprodukt zu erzeugen. Um den Bau eines vollständigen Mul-
tiplizierers zu erlauben, muss jede Kernzelle in der Lage sein, zwei zusätzliche Eingaben zu dem Partialprodukt 
zu addieren, d. h. die Funktion ((A·B) + C + D) zu berechnen. Die D-Eingabe wird verwendet, um alle Partial-
produkte gleicher Signifikanz zu summieren, und die C-Eingabe wird verwendet, um Überträge von weniger 
signifikanten Partialprodukten zu addieren. Das (M + N)-Bitergebnis von jeder Kernzelle wird in zwei Teile un-
terteilt: 

1. Die am wenigsten signifikanten M Bits werden der D-Eingabe der angrenzenden Kernzelle zugeführt, die 
ein Ergebnis der gleichen arithmetischen Signifikanz erzeugt
2. Die am meisten signifikanten M Bits werden der C-Eingabe der benachbarten Kernzelle zugeführt, die 
ein M-Bit signifikanteres Ergebnis erzeugt.

[0012] Die Kernzelle eines 1-Bit·1 Bit-Multiplizierers kann auf eine von drei Arten implementiert werden: 
1. Als zwei 4-Eingaben-Nachschlagtabellen (lookup-tables, LUTs), wobei jede A, B, C und D als Eingaben 
aufweist und eines der beiden Ausgabebits als Ausgabe erzeugt.
2. Als Zwei-Eingabe-UND-Gatter zum Berechnen (A·B) zum Füttern eines Volladdierers, der das Ergebnis 
zu C und D addiert. Dies setzt einen 2-Eingaben-LUT und zwei 3-Eingaben-LUTs voraus.
3. Als Volladdierer zum Berechnen von (A + C + D), zum Füttern eines Multiplexers, der entweder dieses 
Ergebnis oder D der Ausgabe zuführt, abhängig von B.

[0013] Jede dieser Lösungen kostet mehr Ressourcen als nötig wäre, um einfach die Volladdition durchzu-
führen. Multiplizierer sind folglich teuer (in Bezug auf die Siliziumfläche, und folglich in Bezug auf die tatsäch-
lichen Kosten) in FPGA-Strukturen. Jeglicher Ansatz in Vorrichtungen dieses allgemeinen Typs, der die Dichte 
der Multiplizierer in einem Verarbeitungsarray erhöhen kann, kann in Bezug auf die Reduktion der Kosten äu-
ßerst vorteilhaft sein. Die Offenbarung der EP-A-0 833 244 stellt eine feldprogrammierbare Vorrichtung dar, die 
eine Multiplikation mit 1 × 1 multiplizierenden Zellen ausführt.

[0014] Entsprechend stellt die Erfindung ein Gerät und ein Verfahren zum Multiplizieren einer ersten Zahl mit 
einer zweiten Zahl gemäß den unabhängigen Ansprüchen 1 und 10 zur Verfügung, unter Verwendung eines 
Arrays von Verarbeitungsvorrichtungen. Jede der Verarbeitungsvorrichtungen weist eine Vielzahl von Daten-
eingaben, eine Vielzahl von Datenausgaben und eine Instruktionseingabe zum Steuern der Funktion der Ver-
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arbeitungsvorrichtung auf, wobei die Verarbeitungsvorrichtungen und eine Eingabe für die erste Zahl und eine 
Eingabe für die zweite Zahl durch eine frei konfigurierbare Verknüpfung verknüpft sind, und wobei jede Verar-
beitungsvorrichtung ein Partialprodukt berechnet, zum Multiplizieren eines oder mehrerer Bits der ersten Zahl 
mit einem oder mehreren Bits der zweiten Zahl, und bei jeder Verarbeitungsvorrichtung: der Wert, der bei der 
Instruktionseingabe empfangen wird, durch ein oder mehrere Bits der ersten Zahl bestimmt ist; die Datenein-
gaben durch m Bits der zweiten Zahl, eine Summationseingabe zum Summieren aller Partialprodukte gleicher 
Signifikanz, und, wenn angebracht, eine Übertragseingabe zum Addieren eines Übertrags eines weniger sig-
nifikanten Partialprodukts zur Verfügung gestellt werden; und Datenausgaben als Summationsausgaben vor-
gesehen sind, die die am Wenigsten signifikanten m Bits des Partialprodukts und eine Übertragsausgabe um-
fassen, die jegliche signifikanteren Bits des Partialprodukts enthält.

[0015] Die vorliegende Erfindung betrifft Vorrichtungen und Architekturen, welche eine frei verknüpfbare Zu-
sammenschaltung umfassen, wobei es im allgemeinen möglich ist (außer möglicherweise für bestimmte spe-
zielle Fälle), jegliche Eingabe und Ausgabe miteinander zu verbinden. Die üblichste Architektur dieses allge-
meinen Typs ist ein feldprogrammierbares Gate-Array (FPGA). Architekturen, bei denen bestimmte begrenzte 
Auswahlmöglichkeiten von Verknüpfungen zwischen Eingaben und Ausgaben, oder bestimmten Eingaben und 
Ausgaben, möglich sind, sind hier unbeachtlich und fallen nicht in den Rahmen des Begriffs "frei verknüpfbar".

[0016] Es ist den Erfindern der vorliegenden Erfindung bekannt, dass bei einem konventionellen Multiplizie-
rer-Design das erforderliche Ergebnis von jeder Kernzelle entweder (A + C + D) oder D ist, abhängig von dem 
Wert von B. (Wenn B Null ist, dann ist (A·B) Null, und auch C wird Null, weil B auch Null ist in der Kernzelle, 
die C erzeugt). Mit anderen Worten, ein Volladdierer wäre ausreichend, um das benötigte Ergebnis zu berech-
nen, wenn seine Funktion in Abhängigkeit des Wertes von B gesteuert werden könnte. In einem konventionel-
len FPGA wird die Funktion jeder Logikeinheit zum Zeitpunkt der Konfiguration festgelegt, und eine solche da-
tenabhängige Steuerung der Funktionalität ist nicht möglich. Mit der Struktur, die oben erläutert ist, ist eine sol-
che Steuerung möglich und ein dichterer Multiplizierer wird erreicht.

[0017] Spezielle Ausführungsformen der Erfindung sind unten beispielhaft mit Bezug auf die beigefügten 
Zeichnungen beschrieben:

[0018] Fig. 1 zeigt einen Teil eines Prozessor-Arrays, bei welchem Ausführungsformen der Erfindung ver-
wendet werden können, wobei sechs Schaltabschnitte und die Orte von sechs arithmetischen Logikeinheiten 
illustriert sind;

[0019] Fig. 2 ist ein Diagramm eines Teils der in Fig. 1 gezeigten Anordnung in größerem Maßstab, wobei 
einer der Schaltabschnitte und eine der lokalen arithmetischen Logikeinheiten illustriert werden;

[0020] Fig. 3 zeigt einen Puffer und ein Register, die in jedem Schaltabschnitt verwendet werden können;

[0021] Fig. 4a zeigt ein Blockdiagramm, das eine einzelne arithmetische Logikeinheit für die Verwendung in 
dem Array von Fig. 1 illustriert; und Fig. 12b zeigt schematisch eine Bitscheibe dieser einzelnen arithmeti-
schen Logikeinheit;

[0022] Fig. 5a und Fig. 5b zeigen die grundlegende Struktur eines kombinatorischen Multiplizierers;

[0023] Fig. 6a und Fig. 6b zeigen konventionelle Ansätze in Bezug auf die Implementierung eines Multiplizie-
rers in einem Verarbeitungselement eines Verarbeitungsarrays;

[0024] Fig. 7 zeigt eine Implementierung eines Multiplizierers in einem Verarbeitungselement eines Verarbei-
tungsarrays;

[0025] Fig. 8 zeigt eine Implementierung eines Multiplizierers in einem Verarbeitungselement eines Verarbei-
tungsarrays entsprechend einer Ausführungsform der Erfindung;

[0026] Fig. 9a zeigt einen Multiplizierer, wie in Fig. 7 oder Fig. 8 gezeigt, mit einer diagrammmäßigen Dar-
stellung der zusätzlichen Bits, die benötigt werden, um jedes der Partialprodukte zur vollen Länge des Ergeb-
nisses zu erweitern;

[0027] Fig. 9b zeigt vier Multiplizierer, wie in Fig. 7 oder Fig. 8 gezeigt, in einer Anordnung, die zur Vorzei-
chenerweiterung angepasst ist;
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[0028] Fig. 10a und Fig. 10b zeigen Arraymultiplizierer mit Multipliziererzellen, wie in den Fig. 7 oder Fig. 8
gezeigt, die jeweils für den Gebrauch mit vorzeichenbehafteten und vorzeichenlosen Multiplikanden angepasst 
sind;

[0029] Fig. 11a und Fig. 11b zeigen Linearmultiplizierer, die Multipliziererzellen, wie in Fig. 7 oder Fig. 8 ge-
zeigt, verwenden für einen seriellen Multiplikator und einen parallelen Multiplikanden bzw. einen parallelen 
Multiplikator und einen seriellen Multiplikanden; und

[0030] Fig. 12a und Fig. 12b zeigen jeweils die Folge von Operationen und die schematische Struktur für ei-
nen Seriell-Seriell-Multiplizierer, der die Linearmultiplizierer aus Fig. 11 und Fig. 11b verwendet.

[0031] Ausführungsformen der Erfindung werden im Kontext der CHESS-Architektur beschrieben, die in der 
internationalen Patentveröffentlichung WO-A-98/33276 beschrieben ist. Eine kurze Beschreibung der relevan-
ten Aspekte der Architektur und der Mechanismen zum Weitergeben der Instruktionen zu den Verarbeitungs-
elementen ist wiedergegeben. Die konventionelle Herangehensweise an die Konstruktion eines kombinatori-
schen Multiplizierers wird dann beschrieben, zusammen mit der Anwendung dieser konventionellen Herange-
hensweise an ein CHESS-artiges Array. Ausführungsformen, die die ersten und zweiten Aspekte der Erfindung 
in einem CHESS-artigen Array verwenden, werden nachfolgend beschrieben.

[0032] In der folgenden Beschreibung werden die Begriffe "horizontal", "vertikal", "Nord", "Süd", "Ost" und 
"West" verwendet, um das Verständnis der relativen Richtungen zu erleichtern, aber ihre Verwendung impli-
ziert keinerlei Einschränkungen der absoluten Orientierung der Ausführungsform der Erfindung.

[0033] Das Prozessorarray für die Ausführungsform der Erfindung ist in einem integrierten Schaltkreis vorge-
sehen. Auf einer Ebene wird das Prozessorarray durch ein rechteckiges (und bevorzugt quadratisches) Array 
von "Fliesen" 10 gebildet, von denen eine durch eine dicke Linie umrandet in Fig. 1 dargestellt ist.

[0034] Jede geeignete Zahl von Fliesen kann verwendet werden, z. B. in einem 16 × 16-, 32 × 32- oder 64 ×
64-Array. Jede Fliese 10 ist rechteckig und in vier Schaltkreisbereiche unterteilt. Diese Fliesen sind bevorzugt 
logisch quadratisch (um eine Symmetrie der Verbindungen bereitzustellen), obwohl es weniger signifikant ist, 
dass sie auch physikalisch quadratisch sind (dies könnte vorteilhaft sein, um eine Symmetrie im Zeitablauf be-
reitzustellen, aber dies ist im allgemeinen wahrscheinlich von geringer Bedeutung). Zwei der Schaltkreisberei-
che 12, die sich auf der Fliese diagonal gegenüber liegen, sind die Orte für zwei arithmetische Logikeinheiten 
("ALUs"). Die anderen zwei Schaltkreisbereiche, welche sich auf der Fliese 10 diagonal gegenüber liegen, sind 
die Orte für ein Paar von Schaltabschnitten 14.

[0035] Bezugnehmend auf Fig. 1 und Fig. 2 hat jede ALU ein erstes Paar von 4-Bit-Eingaben a, welche direkt 
mit der ALU verbunden sind, ein zweites Paar von 4-Bit-Eingaben b, welche auch direkt mit der ALU verbunden 
sind, und vier 4-Bit-Ausgaben f, welche direkt innerhalb der ALU verknüpft sind. Jede ALU hat ein unabhängi-
ges Paar von 1-Bit-Übertragseingaben hci, vci und ein Paar von 1-Bit-Übertragsausgaben co, welche direkt 
inerhalb der ALU verknüpft sind. Die ALU kann Standardoperationen über die Eingabesignale a, b, hci, vci aus-
führen, um die Ausgabesignale f, co zu erzeugen, wie z. B. Addition, Subtraktion, UND, NUND, ODER, NO-
DER, XODER, NXODER und Multiplexen, und sie kann optional das Ergebnis der Operation speichern. Die 
Arbeitsweise einer einzelnen ALU wird unten detaillierter besprochen. Die Anweisungen an die ALUs können 
jeweils von 4-Bit-Speicherzellen zugeführt werden, deren Werte extern festgelegt werden können, oder sie 
können über ein Bus-System zugeführt werden.

[0036] Auf den Ebenen, die in Fig. 1 und Fig. 2 gezeigt sind, hat jeder Schaltabschnitt 14 acht Busse, die sich 
horizontal in ihm ausdehnen, und acht Busse, die sich vertikal in ihm ausdehnen, so dass ein rechteckiges 8 
× 8-Array mit 24 Schnittpunkten entsteht, welche in Fig. 2 mit kartesischen Koordinaten nummeriert sind. Alle 
diese Busse haben eine Breite von vier Bits, mit der Ausnahme des Übertragsbusses vc bei X = 4 und dem 
Übertragsbus hc bei Y = 3, welche eine Breite von 1 Bit aufweisen. An vielen der Schnittpunkte wird ein pro-
grammierbarer 4-Bandschalter 18 bereitgestellt, der selektiv zwei Busse verbinden kann, welche sich Ende an 
Ende an diesem Kreuzungspunkt treffen, ohne rechtwinklige Verbindung zu dem Bus. An dem Kreuzungspunkt 
(4, 3) ist ein programmierbarer Schalter 20 vorgesehen, der selektiv die Übertragsbusse vc, vh, die sich an 
diesem Punkt rechtwinklig schneiden, verbindet.

[0037] Wie in Fig. 2 gezeigt, sind die Busse bs, vco, fs jeweils mit Eingabe b, Ausgabe co und Ausgabe f der 
ALU nördlich des Schaltabschnitts 14 verknüpft. Außerdem sind die Busse fe, hco, be jeweils mit der Ausgabe 
f, Ausgabe co und Eingabe b der ALU westlich des Schaltabschnitts 14 verknüpft. Außerdem sind die Busse 
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aw, hci, fw jeweils mit der Eingabe a, Eingabe ci und Ausgabe f der ALU östlich des Schaltabschnitts 14 ver-
knüpft. Außerdem sind die Busse fn, vci, an jeweils mit der Ausgabe f, Eingabe ci und Eingabe a der ALU süd-
lich des Schaltabschnittes 14 verknüpft.

[0038] Zusätzlich zu diesen Verbindungen sind die Busse vregw, vrege jeweils über programmierbare Schal-
ter 18 mit 4-Bit-Verbindungspunkten vtsw, vtse (durch Kreuze in Fig. 2 gezeigt) im Bereich 12 der ALU nördlich 
des Schaltabschnittes 14 verbunden. Auch sind die Busse hregs, hregn jeweils durch programmierbare Schal-
ter 18 mit 4-Bit-Verbindungspunkten htse, htne im Gebiet 12 der ALU westlich des Schaltabschnitts 14 verbun-
den. Außerdem sind die Busse hregs, hregn durch programmierbare Schalter 18 jeweils mit 4-Bit-Verbindungs-
punkten htsw, htnw im Gebiet 12 der ALU östlich des Schaltabschnitts 14 verbunden. Außerdem sind die Bus-
se vregw, vrege durch programmierbare Schalter 18 jeweils mit 4-Bit-Verbindungspunkten vtnw, vtne im Gebiet 
12 der ALU südlich des Schaltabschnitts 14 verbunden.

[0039] Wie außerdem in Fig. 2 dargestellt, haben die Busse hregn, vrege, hregs, vregw jeweils 4-Bit-Verbin-
dungspunkte 22 (dargestellt durch kleine Quadrate in Fig. 2), welche unten in größerem Detail mit Bezugnah-
me auf Fig. 3 beschrieben werden.

[0040] Wie oben in Bezugnahme auf Fig. 1 und Fig. 2 erwähnt wurde, sind an jedem Schaltabschnitt 14 die 
Busse hregn, hregs, vregw, vrege jeweils mit 4-Bit-Verbindungen 22 mit einem Register oder Pufferschaltkreis 
verbunden, und dieser Schaltkreis wird nun genauer mit Bezugnahme auf Fig. 3 beschrieben. Die vier Verbin-
dungen 22 sind jeweils mit entsprechenden Eingaben eines Multiplexers 26 verbunden. Der Multiplexer 26
wählt einen der Eingaben als eine Ausgabe, die einem Register oder Puffer 28 bereitgestellt wird. Die Ausgabe 
des Registers oder Puffers 28 wird vier Drei-Zustands-Puffern 30s, 30w, 30n, 30e zugeführt, welche durch die 
Verbindungen 22 jeweils zu den Bussen hregs, vregw, hregn, vrege zurück verbunden sind. In dem Fall, in dem 
ein Puffer 28 benutzt wird, wird das 4-Bit-Signal auf einem ausgewählten Bus aus der Gruppe der Busse hregs, 
vregw, hregn, vrege verstärkt und einem anderen ausgewählten Bus aus der Gruppe der Busse hregs, vregw, 
hregn, vrege zugeführt. In dem Fall, in dem ein Register 28 verwendet wird, wird das 4-Bit-Signal auf einem 
ausgewählten Bus der Gruppe der Busse hregs, vregw, hregn, vrege verstärkt und einem ausgewählten Bus 
aus der Gruppe der Busse hregs, vregw, hregn, vrege nach der nächsten aktiven Taktflanke zugeführt.

[0041] Eine verbesserte Ausführung der Struktur von Fig. 3 ermöglicht es, ein 4-Bit-Signal auf einem ausge-
wählten Bus aus der Gruppe der Busse hregs, vregw, hregn und vrege für einen anderen Zweck von dem In-
terbus-Routing zu extrahieren. Eine geeignete Konstruktion und Verbindung von Multiplexer 26 (oder in einer 
alternativen Anordnung von Puffer 28) erlaubt das Auswählen eines Wertes, der von dem Verdrahtungsnetz-
werk als Ausgabe des Multiplexers 26 oder Puffers 28 (diese Wahlmöglichkeiten sind jeweils als 260 und 280
in Fig. 3 bezeichnet) empfangen wurde, wobei dieser Wert dann verwendet wird, um die Anweisung der ALU, 
die mit dieser Schaltbox verbunden ist, zu bestimmen. Die Anwendungen dieser Anordnung werden unten wei-
ter diskutiert.

[0042] Die Verwendung des Multiplexers 26 oder Puffers 28 für diesen Zweck bedeutet, dass der Wert, der 
verwendet wird, um eine Instruktion an die ALU bereitzustellen, auch der Wert ist, der zum Weiterreichen durch 
das Verdrahtungsnetzwerk bereitgestellt wird. Ein anderer Schaltabschnitt 14 muss verwendet werden, wenn 
es erwünscht ist, einen anderen Wert zwischen den Verdrahtungen zu übertragen. In vielen Anordnungen wird 
es jedoch wünschenswert sein, dass der Wert, der zu der ALU weitergeleitet wird, um ihre Instruktion festzu-
legen, auch der Wert ist, der von einer Verdrahtung zur anderen weitergereicht wird: dies ist angemessen, 
wenn es gewünscht wird, die gleiche Instruktion einer Anzahl von ALUs zur Verfügung zu stellen, was oft in 
einer tiefen Verarbeitungs-Pipeline auftritt. Eine alternative Ausführung, die nicht gezeigt ist, verwendet zwei 
oder mehr Paare von Multiplexern 26 und Puffern 28: in diesem Fall kann ein Paar von Multiplexern/Puffern 
einer Instruktionseingabe der assoziierten ALU zugeordnet werden, während das andere Paar oder die Paare 
für das Routing verwendet werden können.

[0043] Es soll darauf hingewiesen werden, dass, obwohl Bitbreiten, Größen von Schaltabschnitten und Grö-
ßen von Arrays erwähnt worden sind, diese Werte, wo angezeigt, verändert werden können. Obwohl die pro-
grammierbaren Schalter 16, 18, 20 als an bestimmten Orten des jeweiligen Schaltabschnitts 14 angeordnet 
beschrieben wurden, können, wenn erwünscht und notwendig, auch andere Orte verwendet werden. Die Prin-
zipien der CHESS-Architektur sind auf dreidimensionale Arrays anwendbar, z. B. durch Bereitstellen eines Sta-
pels der oben beschriebenen Arrays, bei dem die Schaltabschnitte in benachbarter Ebenen zueinander gestaf-
felt sind. Es ist möglich, dass jeder Stapel nur zwei Ebenen, bevorzugt jedoch wenigstens drei Ebenen enthält, 
und die Zahl der Ebenen ist bevorzugt ein Vielfaches von zwei.
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[0044] Die Struktur der ALU, die in dieser Ausführungsform der Erfindung verwendet wird, wird im folgenden 
mit Verweise auf Fig. 4a und Fig. 4b beschrieben. Wie in Fig. 4a dargestellt, hat die ALU vier Eingaben, A, B, 
I und Cin, und zwei Ausgaben, F und Cout. A, B, I und F sind alle vier Bit breit und mit der allgemeinen Verknüp-
fung durch benachbarte Schaltblöcke verbunden, wie oben beschrieben für a, b und f. Die Eingabe für I ist aus 
dem Multiplexer 26, der in Fig. 3 dargestellt ist, extrahiert. Cin und Cout sind beide 1 Bit breit und mit einer stärker 
eingeschränkten Verknüpfung verbunden, wie ebenfalls oben beschrieben. A und B stellen die Operanden für 
die ALU und F die Ausgaben zur Verfügung. Cin und Cout stellen die Übertragsfunktion zur Verfügung, sind aber 
auch für die Steuerung wichtig. I stellt eine Instruktionseingabe zur Verfügung, welche die funktionale Opera-
tion der ALU bestimmt: dies steht im Gegensatz zu einem Standard-FPGA, bei welchem die funktionalen Ein-
heiten durch einen Satz von Speicherbits gesteuert wird. Die Bedeutung dieses Merkmals und die Mechanis-
men, die zur Verfügung gestellt werden, um Instruktionseingaben von dem Verdrahtungsnetzwerk zu der ALU 
zu leiten, werden unten besprochen.

[0045] Die ALU hat vier Hauptkomponenten:  
den ALU-Datenpfad, welcher aus vier identischen Bitscheiben besteht;  
den Instruktionsdecoder;  
die Übertrags-/Steuerungseingabe-Aufbereitungslogik; und  
die Schaltblock-Programmierschnittstelle (in anderen Ausführungsformen der Erfindung muss diese nicht in 
der ALU selbst vorliegen, jedoch erlaubt die Anwesenheit dieses Merkmals in der ALU, dass die ALU in einem 
Nachschlagtabellen-Betrieb verwendet wird).

[0046] Fig. 4 zeigt ein Blockdiagramm einer einzelnen Bit-Scheibe der ALU.

[0047] Die zwei "Eingabepuffer" 202 und 203 sind nichts weiter als ein Mittel, eine elektrische Verbindung zum 
Routing-Netzwerk bereitzustellen. In dieser Architektur gibt es kein adressierbares Eingaberegister (und ent-
sprechend keine Registerdatei): die Operanden werden der Funktionseinheit 201 der ALU in jedem Zyklus vom 
selben Ort (dem Verdrahtungsnetzwerk) zur Verfügung gestellt.

[0048] Die Funktionseinheit 201 arbeitet als eine Nachschlagtabelle (LUT), welche eine Boolesche Funktion, 
U, der beiden Eingaben A und B erzeugt. Die exakte Funktion wird durch die vier Steuersignale (L3, L2, L1, L0) 
bestimmt und erzeugt die Karnaugh-Tafel, die in Tabelle 1 gezeigt ist: 

[0049] Die Erzeugung der Steuersignale Li wird unten weiter besprochen.

[0050] "Summenerzeugung" 204 stellt eine Summenausgabe zur Verfügung, die durch ein XODER von U und 
Cin abgeleitet ist: 

Summe = U XODER Cin

[0051] Cout wird durch Erzeugen eines Übertrags 204 gemäß der folgenden Booleschen Gleichung erzeugt: 

 wobei P als fortpflanzende Funktion und G als erzeugende Funktion betrachtet werden kann. Die Signale Li

werden wiederum auf eine Weise erzeugt, die im Anschluß beschrieben wird.

Tabelle 1: Karnaugh-Tafel für ALU-Bitscheibe

P = U ODER L4

G = A ODER L5

Cout = WENN P DANN Cin SONST G
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[0052] Das Ausgaberegister 206 verriegelt wahlweise die Summenausgabe, wobei diese Option unter der 
Steuerung des ALU-Programmierspeichers auswählbar ist. Wahlweise kann eine ähnliche Verriegelungsan-
ordnung für die Übertragsausgabe zur Verfügung gestellt werden. Diese Merkmale sind für den Gebrauch in 
tiefen Pipelines vorteilhaft, bei denen die gleiche Operation möglicherweise synchron in mehreren ALUs in zeit-
gesteuerter Weise ausgeführt werden muss.

[0053] Eine breite Vielfalt von unterschiedlichen möglichen Bit-Scheiben können eingesetzt werden. Die Wahl 
des ausgewählten Bit-Scheiben-Typs in einer gegebenen Architektur kann eine Funktion des Typs von Instruk-
tion sein, für die die Architektur insgesamt als am effizientesten arbeitend vorgesehen ist. Es ist klarerweise 
erstrebenswert, die Verwendung einer Vielzahl von Funktionen, die als nützliche Bausteine für komplexere 
Operationen dienen können, zu ermöglichen. Andere Merkmale sind ebenfalls wünschenswert. Ein wün-
schenswertes Merkmal ist die Fähigkeit, einige Bits von ihrer normalen Funktion abzuzweigen, um die Steue-
rung über andere Schaltkreiselemente zu ermöglichen. Ein weiteres wünschenswertes Merkmal ist die Fähig-
keit, eine festgelegte Instruktion für irgendeine der ALUs zu speichern, die in einer bestimmten Konfiguration 
keine dynamische Instruktionsschaltung benötigen. Es ist ebenfalls wünschenswert, dass ein geeigneter An-
fangszustand vorhanden ist, um die ALU als einen Lese/Schreibanschluss für die Schaltbox (oder die Nach-
schlagtabelle) nutzbar zu machen. Für diese Anwendung werden keine spezifischen Bit-Scheiben beschrie-
ben: ein Beispiel für geeignete Bit-Scheiben ist in der internationalen Patentveröffentlichung WO-A-98/33276 
dargelegt. Zum Zwecke der vorliegenden Patentanmeldung ist es nur notwendig, dass die ALU in der Lage ist, 
die Funktionen zu unterstützen, die in den verschiedenen unten beschriebenen Multiplizierer Implementatio-
nen beschrieben sind.

[0054] Die Herkunft der Instruktions-Bits für die ALU wird jedoch diskutiert. Ein Element der CHESS-Architek-
tur, die hier beschrieben ist, ist die Fähigkeit, eine Instruktion für eine Funktionseinheit als Ausgabe einer an-
deren Funktionseinheit zu erzeugen.

[0055] Eingabesignale, die dynamische Instruktionen I (4-Bit-Instruktionen, die durch eine andere ALU im Ar-
ray erzeugt worden sind, oder optional von einem Speicher, der dem Verdrahtungsnetzwerk zugängig ist, er-
halten wurde) enthalten, werden von Verknüpfungen zum Verdrahtungsnetzwerk empfangen: diese können 
durch Multiplexer 26 (siehe Fig. 3) wie oben erläutert gewonnen werden. Es ist erwünscht, dass mehrere 
Wahlmöglichkeiten zur Verfügung stehen, was durch die Verwendung eines oder mehrerer zusätzlicher ALUs 
in der Multiplexer-Konfiguration erreicht werden kann.

[0056] Die 4-Bit-Ausgabe einer ALU kann folglich als dynamische Instruktionseingabe I für eine weitere ALU 
verwendet werden. Der Übertragsausgang einer ALU kann auch als Übertragungseingang für eine andere 
ALU verwendet werden, und dies kann beim Bereitstellen dynamischer Instruktionen ausgenutzt werden. Es 
gibt drei grundsätzliche Möglichkeiten, wie die Operation einer ALU dynamisch variiert werden kann: 

1. Cin kann verwendet werden, um zwischen zwei Versionen einer Funktion zu multiplexen, wobei die In-
struktions-Bits I konstant bleiben.
2. Die Instruktions-Bits I können verändert werden, während Cin gleich bleibt.
3. Sowohl die Instruktion als auch der Wert Cin können verändert werden.

[0057] Die Anwendung dieses dynamischen Instruktions-Bereitstellungsmerkmals bei einer Implementation 
des Multiplizierers wird unten beschrieben.

[0058] Wie oben angedeutet, ist ein konventioneller kombinatorischer Multiplizierer üblicherweise als repeti-
tives Array von Kernzellen aufgebaut, wobei jede Zelle einige Bits (z. B. M Bits) des Multiplikanden A mit eini-
gen Bits (z. B. N Bits) des Multiplikators B multipliziert, um ein (M + N)-Bit-Partialprodukt zu erzeugen. Jede 
Kernzelle muss auch in der Lage sein, die Funktion ((A·B) + C + D) zu errechnen, wobei die D-Eingabe ver-
wendet wird, um alle Partialprodukte zu summieren, die die gleiche Signifikanz haben, und die C-Eingabe ver-
wendet wird, um Überträge von weniger signifikanten Partialprodukten zu addieren. Das (M + N)-Bit-Ergebnis 
von jeder Kernzelle ist in zwei Teile aufgeteilt: die am wenigsten signifikanten M Bits werden zur D-Eingabe der 
benachbarten Kernzelle geleitet, die ein Resultat der gleichen arithmetischen Signifikanz erzeugt; und die sig-
nifikantesten N Bits werden zur C-Eingabe der benachbarten Kernzelle geleitet, die ein M Bit signifikanteres 
Ergebnis erzeugt. Wie vorher angedeutet, ist das benötigte Ergebnis von jeder Kernzelle entweder (A + C + D) 
oder D, abhängig von dem Wert von B.

[0059] Die zugrunde liegende Struktur eines Multiplizierers, die ausgelegt ist wie in einer Langschriftmultipli-
kation, ist in Fig. 5a gezeigt. Der Multiplikand X ist in mehrere Sätze von Bits xm aufgeteilt, und der Multiplikator 
Y ist in mehrere Sätze von Bits yn aufgeteilt. Der Multiplizierer ist aus einem Array von Grundzellen aufgebaut, 
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von denen jede ((xm·yn) + c + d) für irgendwelche m und n berechnet. Das Resultat wird in zwei Teile unterteilt, 
lo und hi, welche jeweils die mehr oder weniger signifikanten Teile des Ergebnisses darstellen. Das lo-Ergebnis 
wird zu der d-Eingabe der darunterliegenden Grundzelle geleitet, und das hi-Ergebnis (welches größere arith-
metische Signifikanz hat) wird zur c-Eingabe der Grundzelle auf der linken Seite geleitet.

[0060] Die gleiche Multipliziererstruktur ist um 45 Grade geneigt in Fig. 5b dargestellt. Die geneigte Anord-
nung von Fig. 5b zeigt, wie der Multiplizierer auf ein rechteckiges Array passt, wobei der Multiplikator Y von 
links zugeführt wird. Dieses Layout ist für eine effektive physikalische Implementierung geeignet.

[0061] Alternative Methoden zum Implementieren solch konventioneller Herangehensweisen in einem feld-
programmierbaren Array, welche vom Typ eines CHESS oder eines konventionellen FPGA sein können, wer-
den nun beschrieben.

[0062] Fig. 6a zeigt eine Implementation einer Multiplizierergrundzelle in einer Struktur vom Typ CHESS, wo-
bei die konventionelle Herangehensweise an die Konstruktion von Multiplizierern angewandt wird. Die Multip-
likation der Bits xm und yn wird durch ein UND-Gatter 501 ausgeführt. Ein Volladdierer 502 summiert das Re-
sultat dieser partiellen Multiplikation mit den Eingaben c und d, um das lokale lo- und hi-Resultat zu erzeugen. 
Eine alternative Implementierung ist in Fig. 6b gezeigt. Hier wird die Addition durch den Addierer 503 durch-
geführt, so als sei das Multiplikator-Bit ym gleich 1. Wenn ym gleich 0 wäre, so würde der Multiplexer 504 ver-
wendet werden, um dem lo-Ergebnis den Wert des hereinkommenden d-Signals aufzuzwingen, was in diesem 
Fall das korrekte Ergebnis wäre. Es muss beachtet werden, dass, obwohl es keinen Übertrag C in dem Fall, 
dass ym gleich 0 ist, geben sollte, ein Verarbeitungselement einen scheinbaren Übertrag an der hi-Ausgabe 
fortpflanzt. Weil jedoch ym gleich 0 für das Verarbeitungselement, das den Übertrag empfangen wird, ist (die 
nächste Stufe der Signifikanz für das gleiche Multiplikator-Bit), wird dieses Signal keinen Effekt auf das Ge-
samtergebnis haben.

[0063] Beide Multipliziererzellen, die in den Fig. 6a und Fig. 6b gezeigt sind, erfordern einen etwas größeren 
Aufwand zur Implementierung als die Addierer alleine. Typischerweise kostet in einem feldprogrammierbaren 
Array der Addierer eine Verarbeitungszelle, während das UND-Gatter (von Fig. 6a) oder der Multiplexer (von 
Fig. 6b) eine weitere Verarbeitungszelle kostet.

[0064] Von dem Erfinder der vorliegenden Erfindung wurde ermittelt, dass im Falle von CHESS und vergleich-
baren Architekturen ein Multiplizierer in einer einzigen Verarbeitungszelle implementiert werden kann. Dies 
kann erzielt werden, indem man die Funktion einer Funktionseinheit auf datenabhängige Weise bestimmen 
läßt. Die folgende Herangehensweise verwendet eine Variante der "Multiplexer"-Option, die in Fig. 6b gezeigt 
ist. Die Multipliziererzelle, die in Fig. 7 gezeigt ist, und diese Zelle können so gelegt werden, dass sie einen 
vollständigen Multiplizierer bilden. Die funktionale Einheit wird angewiesen, entweder das Resultat der Addition 
zu erzeugen, oder den Wert der d-Eingabe weiterzureichen, abhängig vom Wert von ym. Dies erfordert, dass 
die Instruktionseingabe I (bezeichnet mit 510) an die ALU in gewisser Weise von ym unabhängig ist: dies kann 
z. B. erreicht werden, indem die zusätzliche Logik 505 verwendet wird, um ym für die Instruktionseingaben zu 
decodieren, die benötigt werden, um die Funktion zu bestimmen, die für I-Eingabe, die auf dem Verarbeitungs-
element 506 gezeigt ist, angedeutet ist. Diese zusätzliche Logik 505 muß nicht ausführlich sein: für einen gro-
ßen Arraymultiplizierer wird folglich jeglicher Overhead, der von der zusätzlichen Logik vorgesehen wird, klein 
sein im Vergleich zu dem Faktor zwei in der Reduktion der Fläche der Multipliziererzelle.

[0065] Fig. 8 zeigt, wie die Fähigkeit, die Funktion einer funktionalen Einheit auf datenabhängige Weise zu 
verändern, verwendet werden kann, um die Multipliziererdichte weiter zu vergrößern. In diesem Fall wird wie-
derum ein einzelnes Prozessorelement (mit der funktionalen Einheit 507) verwendet, aber es werden in der 
Operation zwei Bits, anstatt von einem alleine, des Multiplikators für ein einziges Verarbeitungselement ver-
wendet.

[0066] Zwei Bits des Multiplikators werden der Decodierlogik 505 zugeführt, welche Instruktionseingaben mit 
den vier folgenden Werten produziert: (d + xm + c); (d); (d – xm – c) und (d – 2xm – c). Jede dieser Instruktionen 
addiert oder subtrahiert ein anderes Vielfaches des Multiplikanden, wobei die Auswahl der Instruktionen ent-
sprechend der Werte der zwei Bits yn, yn+1 auswählbar ist.

[0067] Zu beachten ist, dass in dem oben dargestellten Beispiel die Instruktionen, die übergeben worden sind, 
Resultate von –2, –1, 0 und +1 ergeben, und nicht etwa das 0-, 1-, 2- und 3-fache des Multiplikatorbits. Dies 
kann mit einem Vorverarbeitungsschritt korrigiert werden, so dass das richtige Resultat an den Schaltkreisaus-
gaben erscheint.
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[0068] Eine beispielhafte Vorverarbeitungsprozedur, um dies zu erreichen, ist unten zusammengefasst. 
1. Der Multiplikand ist zu einer Basis-(–2)-Darstellung konvertiert, bei denen die Bits die Signifikanz haben: 

... – 32 + 16 – 8 + 4 – 2 + 1

[0069] Betrachtet man jedes Paar von Bits, haben die vier Kombinationen die folgenden arithmetischen Werte 
in der Basis (–2): 

 

[0070] Diese vier Vielfachen des Multiplikanden sind die vier Vielfachen, die das Array von Fig. 7 der Anwen-
dung zu der Partialsumme in jeder Stufe hinzuaddiert.

[0071] 2. Um den Basis-2-Multiplikanden zur Basis-(–2) zu konvertieren, erzeugen wir ein konstantes 
Bit-Muster M, das das Bit-Muster (10) in jedem Paar von Bits enthält. Folglich ist das am wenigsten signifikante 
Bit von M gleich 0 und die alternierenden signifikanteren Bits sind abwechseln 1 und 0. Dann ist: 

Basis-(–2)-Multiplikand = ((Basis 2-Multiplikand) + M exoder M

[0072] Die Operationen sind hierbei: 

[0073] Der Effekt des exoder ist eine Inversion alternierender Bits des Ergebnisses der Addition, wobei das 
am wenigsten signifikante Bit nicht invertiert wird. 

3. Um diesen Vorgang zu verstehen, betrachte man die zwei möglichen Werte eines der Bits eines Multip-
likanden, für welchen M gleich 1 ist. Dies sind die Multiplikanden-Bits, die eine negative Signifikanz in der 
Basis-(–2) haben.  
Bit = 0. In diesem Fall ist die Null in der Basis (–2) genau der gleiche Wert wie die Null in der Basis 2, so 
dass keine Änderung notwendig ist. Ein Addieren des 1 Bit von M macht aus dem Summen-Bit eine 1, und 
das exoder würde dies dann invertieren, um ein Null-Ergebnis zu erzeugen – d. h. es ist der Originalwert, 
wie benötigt.  
Bit = 1. Man betrachte ein Bit mit dem Wert 2 in der Basis 2, und (–2) in der Basis (–2) – die anderen alter-
nierenden Bits verhalten sich auf gleiche Weise. Wenn das Bit 1 ist, subtrahieren wir durch das Interpretie-
ren des Bit-Wertes (–2) statt (+2) im Ergebnis 4 von dem Wert des Multiplikanden. Wir gleichen dies aus, 
indem wir 4 in 2 Schritten zurückaddieren:
– Wir addieren M zu dem Multiplikanden. Das 1-Bit in dieser Bit-Position ist eine zusätzliche 2 wert, welches 
einen Übertrag zu dem Bit im Wert von (+4) erzwingt, und setzt den Bit-Wert (–2) auf 0.
– Wir führen die Operation exoder mit M durch. Dies hat keinen Einfluss auf den Bitwert (+4), aber invertiert 
den Bitwert (–2) wieder zu 1- seinem ursprünglichen Wert.

 Der Nettoeffekt besteht darin, dass wir (+4) zu dem Wert des Multiplikanden hinzuaddiert haben, um die Neu-
interpretation des (+2)-Bits als (–2) auszugleichen. Das resultierende Bitmuster ist die Repräsentation des Mul-
tiplikanden in der Basis (–2), wie es für den Multiplikator benötigt wird.

[0074] Folglich können Instruktionen zur Verfügung gestellt werden, welche das richtige Resultat bei den je-
weiligen Ausgaben für jede dieser Optionen zur Verfügung stellen, in dem Sinne, dass die Instruktionen den 
Effekt eines Weiterreichens der Datenausgabewerte haben, die das 0-, 1-, 2- und 3-fache der m-Bits des Mul-
tiplikanden repräsentieren, die in dem Verarbeitungselement gemäß der zwei Bits des Multiplikators gehand-
habt werden. Die Decodierlogik 505 muss in diesem Fall ein wenig stärker ausgedehnt sein als im Falle der 
Fig. 7, aber da außerdem um den Faktor zwei weniger Verarbeitungsgrundelemente benötigt werden, um den 
Arraymultiplizierer bereitzustellen, sind die zusätzlichen Einsparungen für einen Multiplizierer jeder Größe äu-
ßerst bedeutend.

Bit-Werte arithmetische Werte
00 0
01 +1
10 –2
11 –1

+ arithmetische Addition
exoder Bit-für-Bit exklusiv ODER
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[0075] Die Anordnung, die oben mit Bezug auf Fig. 8 beschrieben worden ist, kann weiter verbessert werden 
durch das Verwenden zusätzlicher Eingabebits. Insbesondere, wenn eine fünfte Instruktion verwendet wird, die 
zu einem weiteren anderen 4-fachen des Multiplikanden zugeordnet ist (insbesondere d + 2xm + c), wird es 
möglich, den Decoder ohne Abhängigkeiten zwischen den unterschiedlichen Multipliziererstufen zu implemen-
tieren. Solche Abhängigkeiten führen zu unerwünschten sich langsam ausbreitenden Übertragsverzögerungs-
effekten. Letzteres kann erreicht werden, indem drei Bits eines Multiplikanden, anstelle von zwei, betrachtet 
werden, und ein Radix-4 modifizierter Booth-Algorithmus implementiert wird (z. B. beschrieben von Koren, I., 
in "Computer Arithmetic Algorithms", 1993, Prentice-Hall Inc., Englewood Cliffs, Seiten 99–103). Das yn- und 
yn+1-Bitpaar wird durch yn–1 als weitere Eingabe ergänzt, und es werden Instruktionen gemäß der Tabelle 2 un-
ten erzeugt. 

[0076] Tabelle 2 kann wie folgt verstanden werden. Wenn das signifikanteste Bit eines Bitpaars (z. B. yn+1) 1 
ist, dann trägt es –2 zu seinem eigenen Bitpaar und +1 zu dem nächsten signifikantesten Bitpaar bei (mit dem 
Wert +4 in Bezug auf sein eigenes Bitpaar). Wenn folglich yn–1 des nächsten weniger signifikanten Bitpaars 1 
ist, trägt es +1 zu dem gegenwärtigen Bitpaar bei. Für jede Reihe in der Tabelle ergibt (–2yn+1 + yn + yn–1) das 
Vielfache des Multiplikanden, das an der gegenwärtigen Bit-Position hinzugefügt werden muss, und man kann 
erkennen, dass die Instruktionen dieser Gleichung entsprechen.

[0077] Eine Nachschlagtabelle für jedes Paar von Multiplikatorbits kann folglich eine Multiplikatorrecodierung 
implementieren, mit der Eingabe von diesen Bits und dem benachbarten weniger signifikanten Bit yn–1 (oder 0 
in dem Fall des am wenigstens signifikanten Bitpaars). In der CHESS-Architektur, beschrieben mit Hinweis auf 
Fig. 1 bis 4, kann yn–1 in einem anderen Halbbit als yn und yn+1 sein, in welchem Fall der Multiplikator um ein Bit 
verschoben werden muss, so dass alle drei Bits der Nachschlagtabelle zugänglich sind. Dies kann erreicht 
werden, indem eine ALU verwendet wird, die als ein Addierer für jede Stelle im Multiplikator y wirkt, um den 
Wert (y + y) über den Rand des Arrays zu berechnen, von welchem der Multiplikator y bereitgestellt wird.

[0078] Man beachte, dass, wenn yn+1 gleich 1 ist, ein Übertrag zum nächsten signifikanteren Bitpaar fortge-
pflanzt wird. Wenn das vorliegende Bitpaar das signifikanteste Bitpaar wäre, würde der Übertrag verloren ge-
hen, was zu einem inkorrekten Resultat führen würde. Um diesem vorzubeugen, muss ein Multiplikator ohne 
Vorzeichen erweitert werden, um sicherzustellen, dass er wenigstens ein am meisten signifikantes Nullbit auf-
weist – wie unten diskutiert wird, wird diesem Ansatz für einen Multiplikator mit Vorzeichen nicht gefolgt.

[0079] Das Übertragsbit für jede ALU wird addiert oder subtrahiert, abhängig davon, ob die Instruktion eine 
Addition oder eine Subtraktion ist. Das impliziert, dass jeder Übertrag in zwei ALUs erzeugt und aufgenommen 
werden muss, die entweder beide Additionen oder beide Subtraktionen ausführen. Da die Wahl zwischen Ad-
dition und Subtraktion durch die Instruktion bestimmt wird, impliziert dies, dass die Überträge durch das Array 
in die gleiche Richtung transportiert werden müssen wie die Instruktionen. Wenn die Signifikanz der Überträge 
nicht instruktionsabhängig wäre, könnten die Überträge entweder horizontal oder vertikal durch das Array 
transportiert werden, und die Wahl könnte so gemacht werden, dass sie die parallele Verarbeitung des Arrays 
vereinfacht.

[0080] Dieses Schema setzt voraus, dass der Multiplikand mit 2 vormultipliziert ist, um durch das Array trans-

Tabelle 2: Instruktionen des Radix-4 modifizierten Booth-Algorithmus für Multiplizierer vierfacher Dichte
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portiert zu werden. Dieses erfordert einen Addierer/Schieber pro Ziffernposition über den Rand des Arrays. Es 
setzt außerdem voraus, dass das Array in der Breite des Multiplikanden ausgeweitet wird, um die Breite des 
vormultiplizierten Multiplikanden aufzunehmen.

[0081] Für die Implementation der Architektur, die in Fig. 1 bis 4 beschrieben ist, in welcher die gesamte Ver-
drahtung entlang der 4-Bit-Breite ausgerichtet ist, erfordert dieses Schema, dass der Multiplikand mit 2, 4 und 
8 vormultipliziert ist, um durch das Array transportiert zu werden. Dies setzt drei Addierer/Schieber pro Ziffern-
stelle über den Rand des Arrays voraus. Es ist auch notwendig, dass das Array durch eine 4-Bit-Ziffer in der 
Multiplikandenbreite ausgedehnt wird, um die Breite der vormultiplizierten Multiplikanden aufnehmen zu kön-
nen. Wenn der Multiplikand vorzeichenbehaftet ist, dann wird eine Vorzeichenerweiterung notwendig sein, um 
die zusätzliche Breite auszufüllen (Vorzeichenerweiterung wird weiter unten erläutert).

[0082] Multiplikatoren, wie oben beschrieben, können für die Verwendung mit vorzeichenbehafteten Zahlen 
angepasst werden. Die Gesamtstruktur des Multipliziererarrays wird von vorzeichenbehafteten Multiplikatoren 
und vorzeichenbehafteten Multiplikanden unterschiedlich beeinflusst, wie unten erläutert wird. Für den Zweck 
der folgenden Diskussion wird vorausgesetzt, dass die behandelte Zahl als Komplement von zwei dargestellt 
ist: in der normalen Form dieser Darstellung hat eine positive Zahl Y einen unveränderten Wert (von Y), wäh-
rend eine negative Zahl -Y den Wert R -Y zugeteilt bekommt, wobei R 2X + 1 ist (wobei X der maximale zuläs-
sige Wert von Y ist).

[0083] Das signifikanteste Bit einer Zahl ist daher –2n "Wert", und nicht 2n, wie bei einer nicht vorzeichenbe-
hafteten Zahl. Dies bedeutet, dass in einem Multipliziererarray, das vorzeichenbehaftete Multiplikatoren verar-
beitet, das Partialprodukt, das vom signifikantesten Bit des Multiplizierers erzeugt wird, eine negative arithme-
tische Signifikanz aufweist, und daher von dem Gesamtresultat abgezogen anstatt addiert werden muss, wie 
im Fall ohne Vorzeichen. Jedoch haben die fünf Instruktionen des oben beschriebenen Booth-Recodierverfah-
rens bereits die gewünschten Eigenschaften, und entsprechend handhaben sie einen vorzeichenbehafteten 
Multiplikator automatisch. Im Gegensatz zu dem Fall ohne Vorzeichen muss der Multiplikator nicht mit dem si-
gnifikantesten Bit gleich Null erweitert werden – stattdessen ist das signifikanteste Bit ein Vorzeichenbit.

[0084] Für einen vorzeichenbehafteten Multiplikanden wird ein zusätzlicher Schaltkreis benötigt, wie in 
Fig. 9a gezeigt ist. Fig. 9a zeigt eine vollständige Multiplikation, die in einer Struktur ausgelegt ist, die eine 
Langschriftrechnung wiederspiegelt, mit einer charakteristischen Zelle und mit seinen Eingaben und Ausga-
ben. Wenn der Multiplikand vorzeichenbehaftet ist, dann sind die Partialprodukte auch vorzeichenbehaftet und 
müssen, wie auf der linken Seite der Struktur gezeigt ist, um ein korrektes Resultat zu ergeben, auf die volle 
Breite des vollständigen Produkts erweitert werden. Eine direkte Implementierung einer Vorzeichenerweite-
rung würde einen Overhead von näherungsweise 50% für eine Multiplikatorzelle des Typs bedeuten, der in 
Fig. 8 gezeigt ist. Jedoch gibt es Mögllichkeiten für eine größere Effizienz bei der Summation dieser Vorzei-
chenerweiterung, da es sich wiederholende 1en und 0en in jedem Partialprodukt gibt. Um das Vorzeichen zu 
erweitern, verwenden wir eine grundlegende Eigenschaft der Arithmetik von zweier Komplementen, nämlich 
das 

(–S) S S S S S Z4 Z3 Z1 Z0 = 0 0 0 0 0 (–S) Z4 Z3 Z2 Z1 Z0

[0085] Dies erlaubt uns, das Vorzeichen im notwendigen Umfang zu erweitern.

[0086] Arbeitet man sich von der am wenigsten signifikanten zu der am meisten signifikanten Partialsumme 
vor, so ist die Summe der bisher kennengelernten Vorzeichenerweiterung das Ergebnis des signifikantesten 
Summenbits auf der linken Seite des trapezförmigen Arrays, das in Fig. 9a gezeigt ist. Folglich können wir den 
Effekt einer Summation der Vorzeichenerweiterung erreichen, ohne einen derart großen Overhead zu benöti-
gen, wenn wir das signifikanteste Summenbit in jeder Partialsumme entlang der linken Seite extrahieren, die-
ses Bit zu einer vollständigen Stelle erweitern, und das Resultat zur nächsten Partialsumme addieren.

[0087] Fig. 9b zeigt, wie dies effektiv in der Anordnung, die in Fig. 9a gezeigt ist, implementiert werden kann, 
indem z. B. Multipliziererzellen verwendet werden, wie sie in Fig. 8 gezeigt sind. In Fig. 9b ist ein Teil des linken 
Randes des Arrays für eine Folge von Multiplikatorbitpaaren 521, 522; 523, 524 gezeigt. Die Vorzeichenerwei-
terung wird von der lo-Ausgabe eines dieser Multiplikatorbitpaare genommen und zu der Vorzeichenerweite-
rungseinheit weitergeleitet, welche als Nachschlagtabelle ausgeführt werden kann. Wenn das signifikanteste 
Bit der lo-Ausgabe 0 ist, erzeugt die Vorzeichenerweiterungseinheit eine Zahl mit dem Binärwert 0000. Wenn 
das signifikanteste Bit der lo-Ausgabe 1 ist, erzeugt die Zeichenerweiterungseinheit eine Zahl mit dem Binär-
wert 1111. Mit dieser Anordnung wird eine Zeichenerweiterung zur Verfügung gestellt, die äquivalent ist zu dem 
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vollständigen Erweitern des Vorzeichens, wie es in Fig. 9a gezeigt ist, aber ohne wesentliche zusätzliche Kos-
ten.

[0088] Alternativ könnte das Multiplikatorarray so weit wie nötig in der Breite erweitert werden, so dass jede 
Partialsumme garantiert eine am meisten signifikante Stelle besitzt, die ausschließlich aus Vorzeichenbits be-
steht. In diesem Fall wäre ein separater Zeichenerweiterungsschaltkreis nicht notwendig, weil die lo-Ausgabe 
eines der Multiplikatorbitpaare entweder aus lauter Nullen oder Einsen bestünde, und diese lo-Stelle einfach 
kopiert werden könnte, um eine neue Zeichenerweiterungsstelle zu erzeugen, die in die nächste Reihe des 
Arrays eingegeben werden könnte. Die Kosten dieses Ansatzes wären jedoch bedeutend.

[0089] Die obigen Abhandlungen beschreiben einen Arraymultiplizierer, welcher rein kombinatorisch funktio-
niert, ohne Parallelverarbeitungsregister. Parallelverarbeitung kann insbesondere bei großen Arraymultiplizie-
rern wichtig sein, um eine hohe Geschwindigkeit zu erzielen – daher ist es hilfreich, den Multiplizierer vorsichtig 
zu parallelisieren. Die folgenden Faktoren sind wichtig, um die beste Parallelisierung zu wählen: 

1. Eine Parallelverarbeitung quer über den Multiplikanden zieht bei dieser Architektur nicht nur eine Paral-
lelverarbeitung des Multiplikanden selbst, sondern auch seine x2-, x4- und x8-Ableitungen mit sich. Dies ist 
teuer und sollte daher nur dann durchgeführt werden, wenn preiswertere Alternativen ausgeschöpft worden 
sind.
2. Mit einem vorzeichenbehafteten Multiplikanden erzeugt der Vorzeichenerweiterungsmechanismus Ab-
hängigkeiten, die von dem am wenigsten signifikanten zu dem am meisten signifikanten Ende des Multip-
likators verlaufen, was die Partialprodukte dazu zwingt, in dieser Reihenfolge gebildet zu werden. Mit einem 
vorzeichenfreien Multiplikanden ist dies nicht der Fall, und die Partialprodukte können in beliebiger Reihen-
folge gebildet werden.
3. Weil die arithmetische Signifikanz eines Übertrags davon abhängig ist, ob die Operation, die ausgeführt 
wird, eine Addition oder eine Subtraktion ist, muss der Übertrag nach links fortgepflanzt werden, wie dies 
in Fig. 9a für den Multiplizierer vierfacher Dichte aus Fig. 8 dargestellt ist.
4. Für einen vorzeichenbehaften Multiplikanden pflanzen sich die Überträge nach links fort, und wegen der 
Abhängigkeiten im Vorzeichenerweiterungsmechanismus müssen die Partialprodukte von oben nach unten 
gebildet werden. Dies zwingt die Partialsummen, sich nach rechts fortzupflanzen. Dies bedeutet, dass ver-
tikale Zeitabschnitte durch das Array nicht möglich sind, weil die Überträge die Zeitabschnitte in eine Rich-
tung und die Partialsummen die Zeitabschnitte in die entgegengesetzte Richtung überqueren würden. Folg-
lich sind wir in diesem Fall gezwungen, entweder horizontale oder diagonale (von oben links nach unten 
rechts) Zeitabschnitte einzuführen. Die diagonalen Zeitabschnitte schneiden nicht die Pfade d bis lo, was 
eine große kombinatorische Verzögerung quer durch das Array anhäufen würde. Die beste Herangehens-
weise ist daher, horizontale Zeitabschnitte einzuführen, wo es sich um vorzeichenbehaftete Multiplikanden 
handelt, und den Overhead der Parallelisierung des Multiplikanden und der drei Ableitungen in Kauf zu neh-
men. Fig. 10a zeigt den Datenfluss quer durch das vollständig Multipliziererarray für einen vorzeichenbe-
hafteten Multiplikanden und fasst die verschiedenen Arrayoverheads für diesen Fall zusammen.  
Diese Zeitabschnitte implizieren, dass der Multiplikand im Multiplizierer in paralleler Form und der Multipli-
kator in einem bitversetzten Format präsentiert werden sollten, bei dem weniger signifikante Stellen vor den 
signifikanteren Stellen stehen sollten. Die exakte Taktsteuerung hängt von den Positionen, die für die Zeit-
abschnitte gewählt worden sind, ab. Die weniger signifikante Hälfte des Ergebnisses wird in einem bitver-
setzten Format erzeugt, und die signifikantere Hälfte liegt in einem Parallelformat vor. Zusätzlich kann die 
signifikanteste Hälfte des Ergebnisses neu getaktet werden, um sie in gleicher Weise bitzuversetzen, wie 
die am wenigsten signifikante Hälfte des Ergebnisses. Wird dieser Weg gewählt, führt diese zusätzliche 
Neutaktung zu einem zusätzlichen Overhead am unteren Ende des Arrays, wie dargestellt.
5. Für einen Multiplikanden ohne Vorzeichen existiert kein Vorzeichenerweiterungsmechanismus, und folg-
lich können wir die Partialprodukte von dem signifikantesten Ende des Multiplikators zum am wenigsten si-
gnifikanten Ende bilden – in der umgekehrten Richtung zu der in Fig. 10a gezeigten Richtung. In diesem 
Fall überqueren die lo- und hi-Ausgaben beide die vertikalen Zeitabschnitte in der gleichen Richtung (nach 
links), so dass vertikale Zeitabschnitte zulässig sind und auch bevorzugt sind, weil sie weniger Aufwand er-
fordern. Die Fig. 10b illustriert das Multipliziererarray für diesen Fall.

[0090] Zeitabschnitte dieser Form implizieren, dass der Multiplikator dem Array in paralleler Form präsentiert 
werden sollte, und dass der Multiplikand dem Array im bitversetzten Format präsentiert werden sollte, wobei 
die am wenigsten signifikanten Stellen zuerst kommen. Dies ist gerade umgekehrt zu der Datentaktung, die für 
die vorzeichenbehafteten Multiplikatoren mit horizontalen Zeitabschnitten gefordert ist. Die exakte Taktung 
hängt von den Positionen ab, die für die Zeitabschnitte gewählt sind.

[0091] Wie im Falle der vorzeichenbehafteten Multiplikatoren wird die weniger signifikante Hälfte des Ergeb-
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nisses in einem bitversetzten Format und die signifikantere Hälfte in einem Parallelformat zur Verfügung ge-
stellt. Zusätzliche Neutaktung könnte verwendet werden, um die signifikantere Hälfte des Ergebnisses in der 
gleichen Weise wie die am wenigsten signifikante Hälfte des Ergebnisses bitzuversetzen. Wird dieser Weg ge-
wählt, würde die zusätzliche Neutaktung in diesem Fall am oberen Rand des Arrays einen zusätzlichen Over-
head verursachen, wie dargestellt.

[0092] Der Ansatz einer vierfachen Dichte, wie er in Fig. 8 gezeigt ist, ergibt ein exzellentes Array, aber be-
nötigt für Arrays brauchbarer Größe eine Parallelverarbeitung. Solch eine Parallelverarbeitung setzt jedoch vo-
raus, dass einige der Eingaben und Ausgaben in einem bitversetzten Format präsentiert werden, was bei man-
chen Anwendungen teuer einzurichten sein könnte. Die bitversetzte Taktung ist dadurch erzwungen, dass die 
Partialprodukte in einer linearen Kette gebildet werden, was wiederum darin seine Ursache hat, dass die 
Grundzelle nur ein Partialprodukt bilden und nur eine weitere Eingabe (und eine Übertragseingabe) akkumu-
lieren kann. Wird ein Ansatz gewählt, bei dem die Bildung der Partialprodukte von deren Akkumulation getrennt 
ist, dann ist die Bildung jeden Partialprodukts eine unabhängige Operation, und sie können alle parallel aus-
geführt werden. Dies führt zu Lösungen, bei denen einige Zellen ungenügend ausgelastet sind und nur ver-
wendet werden, um die Partialprodukte zu bilden (wobei eine Eingabe ungenutzt bleibt), und andere Zellen 
werden verwendet, um Paare von Partialprodukten und Partialsummen zu bilden. Bei diesem Ansatz können 
die Zellen, die verwendet werden, um die Partialprodukte zu bilden, immer noch eine Booth-Codierung des 
Multiplikators verwenden, um die Instruktionseingaben anzusteuern, was ihnen erlaubt, das Partialprodukt, 
das zwei Bits des Multiplikators entspricht, in jeder Zelle zu akkumulieren. Die Zellen, die Paare von Partial-
produkten akkumulieren, sind statisch als Addierer konfiguriert und verwenden keine Instruktionseingaben.

[0093] Der Vorteil dieses Ansatzes im Vergleich zu dem Ansatz der linearen Akkumulation besteht darin, dass 
die Eingaben und Ausgaben parallel zur Verfügung stehen, und dass der Baum von Addierern eine geringere 
Wartezeit aufweist als die lineare Kette von Addierern. Die Nachteile sind, dass er mehr Zellen benötigt als der 
Ansatz der linearen Akkumulation und die Zellverknüpfungen so sind, dass einige lange Verbindungen über 
das Array benötigt werden, die die Bearbeitungsgeschwindigkeit verringern könnten, und dass ein solcher An-
satz unvereinbar ist mit der unten beschriebenen effizienten Vorzeichenerweiterung des Multiplikanden, weil 
diese effiziente Form der Vorzeichenerweiterung voraussetzt, dass die Partialprodukte mit dem am wenigsten 
signifikanten Teil zuerst verarbeitet werden, was zu einer zusätzlichen Abhängigkeit führt, die eine lineare Ak-
kumulation der Partialprodukte zwingend macht.

[0094] Alternativen zu den parallelisierten Arraymultiplizierern aus Fig. 10a und Fig. 10b können bei analo-
gen Seriell-Parallel-Multipliziereren zur Verfügung gestellt werden. Bei diesen sind die einander folgenden 
"Zeitscheiben" der vollständigen Kalkulation auf denselben linearen Hardware-Streifen in aufeinander folgen-
den Taktzyklen abgebildet, anstatt im Raum verteilt zu sein, wie dies bei Arraymultiplizierer der Fall ist. Die zur 
Verfügung stehenden Optionen sind die gleichen wie bei den Arraymultiplizierern, aber bei den Arraymultipli-
zierern beeinflussen die Kosten der Parallelisierung des Multiplikanden die Auswahl der Parallelisierung, wo-
hingegen dies kein wesentliches Thema im Fall eines Seriell-Parallel-Multiplizierers ist. Auf der anderen Seite 
werden jegliche Arrayoverheads, die entlang der Länge des linearen Multiplizierers zur Verfügung gestellt wer-
den müssen, proportional teurer sein als im Fall eines Arraymultiplizierers.

[0095] Fig. 11a zeigt einen seriellen Multiplikator mit einem parallelen Multiplikanden. Dies ist im Ergebnis 
äquivalent zu der Projektion des Arraymultiplizierers von Fig. 10a auf ein lineares Array, wobei das lineare Ar-
ray die Arbeit aufeinander folgender horizontaler Streifen des Arrays in aufeinander folgenden Taktschritten er-
füllt. Der Multiplikator ist inkrementell in serieller Weise eingegeben, während der Multiplikand dem Verarbei-
tungsarray 111 parallel zur Verfügung steht. Im ersten Schritt wird das erste (am wenigsten signifikante Bit) des 
Multiplikators mit dem folgenden Multiplikanden multipliziert. Das Ergebnis wird im Register 113 ausgelesen, 
mit Ausnahme für das am wenigsten signifikante Bit, welches separat nach außen geleitet wird. Jeder Zeit-
schritt erzeugt in dieser Weise eine weitere Stelle des am wenigsten signifikanten Teils des Ergebnisses, und 
mit dem letzten Zeitschritt ist der Rest des Ergebnisses (der signifikanteste Teil) in paralleler Form vom Regis-
ter 113 zugänglich. Um dem Multiplikator zu erlauben, sofort für eine weitere Berechnung wiederverwendet zu 
werden, wird das Ergebnis des signifikantesten Teils, welches parallel zum Schieberegister 112 übertragen 
wird, in digitalem seriellem Format von einem separaten Bus abgerufen.

[0096] Vorteile dieser Form eines Parallel-Seriell-Multiplizierers sind, dass der Booth-Codieroverhead für nur 
eine Stelle des Multiplikators anfällt, und der Multiplikand und seine drei Vielfachen nicht parallel verarbeitet 
werden müssen (sie werden konstant gehalten für die Dauer jeder Multiplikation), und dass nur ein Schiebe-
register notwendig ist, um die signifikanteste Hälfte des Ergebnisses festzuhalten, weil die Überträge bereits 
fortgepflanzt wurden, und das Ergebnis in normaler binärer Darstellung (ohne Vorzeichen oder als Komple-
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ment von zwei) vorliegt. Nachteile dieses Parallel-Seriell-Multiplizierers sind, dass drei Vielfache des Multipli-
kanden aufwendig zu berechnen sind, und dass das Fehlen der Parallelisierung beim Übertragspfad die Ge-
schwindigkeit bei großen Multiplikanden begrenzen könnte.

[0097] Fig. 11b zeigt, ähnlich dazu, einen Parallel-Multiplizierer mit seriellen Multiplikanden: dieses Mal als 
Resultat einer Projektion des Arraymultiplizierers von Fig. 10b auf ein lineares Array. Für diesen Fall sind nun 
zwei Schieberegister 114 und 115 für die lo- und die c-Komponenten vorgesehen. Jeder Taktschritt erzeugt 
erneut eine Stelle des am wenigsten signifikanten Teils des Ergebnisses, wobei der am meisten signifikante 
Teil des Ergebnisses in paralleler Form mit dem letzten Taktschritt verfügbar wird, obwohl die lo- und c-Kom-
ponenten des signifikantesten Teils des Ergebnisses immer noch zusammenaddiert werden müssen, um die 
Darstellung des Komplements von zwei zu erhalten. Für die sofortige Wiederverwendung des Multiplikators ist 
es hier notwendig, dass diese beiden Teile des Resultats parallel zu den beiden Schieberegistern 114 und 115
übertragen werden, für den Zugang in einem digitalen-seriellen Format, Summation und der Weiterleitung zu 
einem separaten Bus. Eine besonders effektive Weise, dies durchzuführen ist das Auslesen der Schieberegis-
ter 114 und 115 Stelle für Stelle, und das Hinzuaddieren der Stellen in der Reihenfolge, in der sie durch den 
Addierer 116 erscheinen (dies erlaubt, dass der Übertrag effektiv gehandhabt werden kann).

[0098] Die Vorteile dieser Form eines Addierers sind eine Parallelverarbeitung aller Pfade, um jegliche Fort-
pflanzungs-Verzögerungsprobleme zu vermeiden, und das Vorliegen nur einer Overheadstelle für die Erzeu-
gung x2-, x4- und x8-Versionen des Multiplikanden. Nachteile ziehen den Overhead der Booth-Codierung für 
die volle Länge des Multiplikators mit sich, und einen doppelten Overhead von Schieberegistern, um die signi-
fikantesten Teile des Ergebnisses festzuhalten (weil Überträge nicht vollständig fortgepflanzt werden, bevor 
der Übertrag zu den Registern stattfindet).

[0099] Die Wahl des Seriell-Parallel-Multiplizierers wird durch die Anforderungen der speziellen Funktion und 
der speziellen Architektur bestimmt: als generelles (nicht universelles) Prinzip benötigt der Multiplizierer mit pa-
rallelem Multiplikanden und seriellem Multiplikator weniger Hardware, während der Multiplizierer mit seriellem 
Multiplikanden und parallelem Multiplikator weniger Einschränkungen bei der Geschwindigkeit aufweist.

[0100] Beide Eingaben werden dem Seriell-Seriell-Multiplizierer seriell zugeführt, und zwar mit der am we-
nigsten signifikanten Stelle zuerst. Natürlich hat der Multiplizierer, nachdem die am wenigsten signifikanten 
D-Stellen jedes Operanden geliefert worden sind, genug Information, um die am wenigsten signifikanten 
D-Stellen des Ergebnisses zu bilden. Bezugnehmend auf Fig. 12a kann zum Taktschritt D das Produkt der am 
wenigsten signifikanten D-Stellen der zwei Operanden gebildet werden. Dieses wird im allgemeinen 2D-Stellen 
umfassen, von denen wenigstens D signifikante Stellen sich nicht noch einmal ändern werden und von dem 
Schaltkreis ausgegeben werden können. Die signifikantesten Stellen werden zurückgehalten, und im nächsten 
Zeitschritt werden weitere Terme zu ihnen addiert, um das nächste Partialprodukt zu bilden.

[0101] Die zusätzlichen Terme, die zu jedem Zeitschritt addiert werden, sind in Fig. 12a durch Paare von 
Rechtecken markiert, welche die Nummer des Taktschrittes tragen. Zum Taktschritt 5, z. B., zeigt das vertikale 
Rechteck (schattiert) mit der Nummer 5 das Produkt von Stelle 5 von X und den Stellen 1 bis 5 einschließlich 
von Y. Das horizontale Rechteck mit der Ziffer 5 zeigt das Produkt von Stelle 5 von Y und Stellen 1 bis 4 ein-
schließlich von X. Beide Produkte müssen zu dem Partialprodukt addiert werden, das zum Taktschritt 4 erzeugt 
wurde, um das Partialprodukt zum Taktschritt 5 zu bilden.

[0102] Die horizontal und vertikal schattierten Rechtecke in Fig. 12a korrespondieren mit den Seriell-Paral-
lel-Multiplikationen, wie sie unter Bezugnahme auf die Fig. 11a und Fig. 11b beschrieben wurden. Der Fall der 
Fig. 12a unterscheidet sich jedoch darin, dass die parallelen Komponenten nicht durch die gesamte Berech-
nung hindurch konstant sind, sondern zu jedem Taktschritt geändert werden. Die Berechnung kann daher, wie 
in Fig. 12a gezeigt, durch zwei Schieberegister 121, 122 ausgeführt werden, wobei jedes einen jeweiligen Se-
riell-Parallel-Multiplizierer versorgt, wobei die Ausgabe der zwei Multiplizierer 123, 124 durch einen seriellen 
Addierer 125 addiert wird. Jeder der Seriell-Parallel-Multiplizierer 123, 124 kann auf jede der Weisen, die in 
Fig. 11a und Fig. 11b gezeigt sind, gebaut werden.

[0103] Der Fachmann erkennt, dass bei der Anwendung der beanspruchten Erfindung eine Vielzahl von Ver-
änderungen und Modifikationen möglich ist.

Patentansprüche

1.  Eine integrierte Schaltung für die Multiplikation einer ersten Zahl mit einer zweiten Zahl, die integrierte 
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Schaltung umfasst:  
eine erste Zahleneingabe zum Empfangen der ersten Zahl, eine zweite Zahleneingabe zum Empfangen der 
zweiten Zahl, und eine Ausgabe zum Bereitstellen des Ergebnisses der Multiplikation;  
eine Verschlüsselung (505) für Booth Verschlüsselungsgruppen von wenigstens zwei Bits der ersten Zahl; ein 
Array (111) von Verarbeitungseinrichtungen (12; 507; 521–524), wobei jede Verarbeitungseinrichtung eine 
Vielzahl von Dateneingaben, eine Übertragseingabe, eine Übertragsausgabe, und eine Vielzahl von Daten-
ausgaben besitzt, und jede Verarbeitungseinrichtung in der Lage ist, ein Partialprodukt für die Multiplikation 
von wenigsten zwei Bits der ersten Zahl mit m Bits der zweiten Zahl auszuführen, wobei m größer oder gleich 
eins ist; und  
Verknüpfungsvorrichtungen (14) zur Verknüpfung der Eingaben und Ausgaben derart, dass für jede Verarbei-
tungseinrichtung:  
die Dateneingaben von m Bits der zweiten Zahl zur Verfügung gestellt werden; und eine Summationseingabe 
für eine Summe von Partialprodukten der gleichen Signifikanz;  
eine Übertragseingabe wird bereitgestellt, wenn geeignet, um einen Übertrag von einem weniger signifikanten 
Partialprodukt zu addieren;  
die Datenausgaben werden als Summationsausgabe zur Verfügung gestellt, die die am wenigsten signifikan-
ten m Bits des Partialproduktes beinhaltet; und  
eine Übertragsausgabe wird bereitgestellt, die jedwede signifikanten Bits des Partialproduktes enthält; wobei  
die integrierte Schaltung ein programmierbares Array umfasst wobei jede Verarbeitungseinrichtung (12; 507; 
521–524) in dem Array eine Instruktionseingabe (INST) zur Steuerung der Funktion umfasst, die in der Verar-
beitungseinrichtung ausgeführt wird und wobei die Verschlüsselungseinrichtung (505) eine Instruktion für eine 
Vielzahl von Verarbeitungseinrichtungen basierend auf einer Gruppe von Booth verschlüsselten Bits der ersten 
Zahl generiert; und  
die integrierte Schaltung eine Vielzahl von Feldern (10) umfasst, von denen jedes Feld eine Vielzahl von Zeilen 
und Spalten umfasst, jede Zeile und jede Spalte eine alternierende Sequenz einer Verarbeitungseinrichtung 
(12) umfasst und einen Schaltungsbereich (14), jeder der Schaltungsbereiche beinhaltet eine Vielzahl von 
Schaltern für eine konfigurierbare Verbindung der Eingaben und Ausgaben, mit der Verbindungsvorrichtung, 
die von den Schalterbereichen in der Vielzahl von Feldern zur Verfügung gestellt wird.

2.  Eine integrierte Schaltung gemäß Anspruch 1, wobei der Wert, der an der Instruktionseingabe empfan-
gen wird, durch zwei Bits der ersten Zahl bestimmt wird, so dass die bereitgestellten Instruktionen jeweils ver-
ursachen, dass Werte, die das 0-, 1-, 2 und 3-fache der m Bits der die zweite Zahl repräsentierenden Werte zu 
den Datenausgaben weitergegeben werden, entsprechend der Werte der zwei Bits der ersten Zahl.

3.  Eine integrierte Schaltung gemäß Anspruch 1, wobei der Wert, der an der Instruktionseingabe empfan-
gen wird, durch drei Bits der ersten Zahl bestimmt wird, in der Weise, dass die bereitgestellten Instruktionen 
jeweils verursachen, dass zu den Datenausgaben Werte weitergereicht werden, die das 0, 1, 2, 3 und 4-fache 
der m Bits der zweiten Zahl repräsentieren, entsprechend der Werte der drei Bits der ersten Zahl.

4.  Eine integrierte Schaltung gemäß Anspruch 3, wobei das Verhältnis zwischen den drei Bits der ersten 
Zahl und den Werten, die zu den Datenausgaben weitergereicht werden, mit dem Radix-4 modifizierten Booth 
Algorithmus übereinstimmen.

5.  Eine integrierte Schaltung nach einem der vorhergehenden Ansprüche, wobei die zweite Zahl vorzei-
chenbehaftet ist, wobei Mittel zur Verfügung gestellt werden, um das Vorzeichen durch fortschreitende Addition 
der am meisten signifikanten Summenbits zu jeder Partialsumme abzuleiten, unter Verwendung des am meis-
ten signifikanten Bits der zweiten Zahl.

6.  Eine integrierte Schaltung nach einem der vorhergehenden Ansprüche, die das zur Verfügungstellen 
entweder der ersten Zahl oder der zweiten Zahl in einer Parallelverarbeitung umfasst, wobei eine der ersten 
Zahl und der zweiten Zahl im Array von Verarbeitungseinrichtungen parallel und wobei die andere der ersten 
Zahl und der zweiten Zahl dem Array von Verarbeitungseinrichtung fortschreitend von am wenigsten signifi-
kanten zum signifikantesten Bit zu Verfügung gestellt wird.

7.  Eine integrierte Schaltung gemäß Anspruch 6, wobei das Array von Verarbeitungseinrichtungen weiter 
eine Vielzahl von Hilfsverarbeitungseinheiten umfasst, die zum Summieren der Partialprodukte vorgesehen 
sind, wobei die Bildung der Partialprodukte durch eine Verarbeitungseinrichtung ohne große Abhängigkeit von 
der Ausgabe einer anderen Verarbeitungseinrichtung durchgeführt werden kann.

8.  Ein Verfahren zum Multiplizieren einer ersten Zahl mit einer zweiten Zahl unter Verwendung einer inte-
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grierten Schaltung, die eine erste Zahleneingabe zum Empfangen der ersten Zahl, eine zweite Zahleneingabe 
zum Empfangen der zweiten Zahl, eine Ausgabe zum Bereitstellen des Ergebnisses der Multiplikation, ein Ar-
ray (111) von Verarbeitungseinrichtungen (12, 507; 521–524) umfasst, jede Verarbeitungseinrichtung weist 
eine Vielzahl von Dateneingaben, eine Übertragseingabe, eine Übertragsausgabe, eine Vielzahl von Daten-
ausgaben auf, und Vorrichtungen (14), die die Eingaben und Ausgaben verbinden,  
die integrierte Schaltung umfasst ferner eine Vielzahl von Feldern (10), jedes Feld umfasst eine Vielzahl von 
Reihen und Spalten, jede Reihe und jede Spalte umfasst eine Wechselfolge einer Verarbeitungseinrichtung 
(12) und eines Schalterbereiches (14), die Schalterbereiche, von denen jeder eine Vielzahl von Schaltern für 
eine konfigurierbare Verbindung der Eingaben und Ausgaben umfasst, mit der Verbindungsvorrichtung, die 
durch die Schalterbereiche in der Vielzahl von Feldern zur Verfügung gestellt wird,  
umfasst das Verfahren die Multiplikationsschritte von:  
zur Verfügung stellen von m Bits der zweiten Zahl an den Dateneingängen jeder Verarbeitungseinrichtung, wo-
bei m größer oder gleich eins ist, und eine Summationseingabe für die Summe von Partialprodukten der glei-
chen Signifikanz;  
zur Verfügung stellen einer Übertragseingabe, wenn angebracht, um einen Übertrag eines weniger signifikan-
ten Partialprodukts zu addieren;  
Berechnen eines Partialprodukts mit jeder Verarbeitungseinrichtung;  
Bereitstellen einer Summationsausgabe an den Datenausgaben, die die am wenigsten signifikanten m Bits des 
Partialproduktes enthält; und  
Bereitstellen einer Übertragsausgabe, die jedwede signifikanten Bits des Partialprodukts enthält;  
und wobei die integrierte Schaltung ein programmierbares Array umfasst, bei dem jede Verarbeitungseinrich-
tung in dem Array eine Instruktionseingabe (INST) zur Steuerung der Funktion besitzt, die in der Verarbeitungs-
einrichtung ausgeführt werden soll  
und das Verfahren umfasst ferner Booth Verschlüsselungsgruppen von wenigstens zwei Bits der ersten Zahl 
und generiert eine Instruktion für eine Vielzahl von Verarbeitungseinrichtungen basierend auf einer Gruppe von 
Booth Verschlüsselungsbits der ersten Zahl und stellt die Instruktion zu einer Vielzahl von Verarbeitungsein-
richtungen bereit.

9.  Ein Verfahren zum Multiplizieren gemäß Anspruch 8, wobei der Wert, der an der Instruktionseingabe 
empfangen wird, durch zwei Bits der ersten Zahl bestimmt wird, in der Weise, dass die bereitgestellten Instruk-
tionen jeweils verursachen, dass Werte, die das 0, 1, 2 und 3-fache der m Bits der die zweite Zahl repräsen-
tierenden Werte zu den Datenausgaben weitergegeben werden, entsprechend der Werte der zwei Bits der ers-
ten Zahl.

10.  Verfahren zum Multiplizieren gemäß Anspruch 8, wobei der Wert, der am Instruktionseingang empfan-
gen wird, durch drei Bits der ersten Zahl bestimmt wird, in der Weise, dass die bereitgestellten Instruktionen 
jeweils verursachen, dass zu den Datenausgaben Werte weitergereicht werden, die das 0, 1, 2, 3 und 4-fache 
der m Bits der zweiten Zahl repräsentieren, entsprechend der Werte der drei Bits der ersten Zahl.

11.  Verfahren zum Multiplizieren gemäß Anspruch 10, wobei das Verhältnis zwischen den drei Bits der ers-
ten Zahl und den Werten, die zu den Datenausgaben weitergereicht werden, mit dem Radix-4 multiplizierten 
Booth-Algorithmus übereinstimmen.

12.  Verfahren zum Multiplizieren gemäß einem der Ansprüche 8 bis 11, wobei wenigstens eine der ersten 
Zahl und der zweiten Zahl vorzeichenbehaftet ist.

13.  Verfahren zum Multiplizieren nach Anspruch 12, wobei die zweite Zahl vorzeichenbehaftet ist, wobei 
das Vorzeichen durch fortschreitende Addition der am meisten signifikanten Summenbits zu jeder Partialsum-
me abgeleitet ist, unter Verwendung des am meisten signifikanten Bits der zweiten Zahl.

14.  Verfahren zum Multiplizieren nach einem der Ansprüche 8 bis 13, welches das zur Verfügung stellen 
entweder der ersten Zahl oder der zweiten Zahl in einer Parallelverarbeitung umfasst, wobei eine der ersten 
Zahl und der zweiten Zahl im Array von Verarbeitungseinrichtungen parallel und die andere der ersten Zahl 
und der zweiten Zahl dem Array von Verarbeitungseinrichtungen fortschreitend vom am wenigsten signifikan-
ten zum signifikantesten Bit zur Verfügung gestellt wird.

15.  Verfahren zum Multiplizieren nach Anspruch 14, wobei das Array von Verarbeitungseinrichtungen wei-
ter eine Vielzahl von Hilfsverarbeitungseinheiten umfasst, die zum Summieren der Partialprodukte vorgesehen 
sind, wobei die Bildung der Partialprodukte durch eine Verarbeitungseinrichtung unabhängig von der Ausgabe 
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einer anderen Verarbeitungseinrichtung ausgeführt werden kann.

Es folgen 15 Blatt Zeichnungen
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Anhängende Zeichnungen
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