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Beschreibung

[0001] Die vorliegende Erfindung betrifft eine Implementierung von Multiplizierern in programmierbaren Ar-
rays, insbesondere in einer rekonfigurierbaren Prozessorvorrichtung.

[0002] Eine kommerziell erfolgreiche Form einer rekonfigurierbaren Vorrichtung ist das feldprogrammierbare
Gate-Array (FPGA). Diese Vorrichtungen bestehen auf einer Ansammlung von konfigurierbaren Verarbei-
tungselementen, die in ein konfigurierbares verkniipftes Netzwerk eingebettet sind. Ein Konfigurationsspeicher
ist vorgesehen, um die Verknupfungskonfiguration zu beschreiben — oft wird ein SRAM verwendet. Diese Vor-
richtungen haben eine sehr Feinkdrnige Struktur: Typischerweise ist jedes Verarbeitungselement eines FPGA
ein konfigurierbares Gate. Anstatt in einer zentralen ALU konzentriert zu sein, ist die Verarbeitung so auf die
Vorrichtung verteilt, und die Siliziumflache der Vorrichtung wird effektiver ausgenutzt. Ein Beispiel einer kom-
merziell verfliigbaren FPGA Serie ist die Xilinx 4000 Serie.

[0003] Solche rekonfigurierbaren Vorrichtungen kénnen im Prinzip fur jegliche Rechenanwendung verwendet
werden, fur die ein Prozessor oder ein ASIC verwendet wird. Eine besonders geeignete Verwendung von sol-
chen Vorrichtungen besteht jedoch in der Verwendung als Koprozessor, um Aufgaben zu bewaltigen, die zwar
rechenintensiv, aber nicht so haufig sind, als dass sie einen fiir diesen Zweck gebauten ASIC rechtfertigen wir-
den. Ein rekonfigurierbarer Koprozessor kénnte folglich zu verschiedenen Zeiten mit verschiedenen Konfigu-
rationen programmiert werden, wobei jede Konfiguration fir die Ausflihrung einer anderen rechenintensiven
Aufgabe angepaldt ist, was fiir grofRere Effizienz sorgt als im Falle eines Universalprozessors alleine, und ohne
starke Erhéhung der Gesamtkosten. In neuesten FPGA-Vorrichtungen ist eine dynamische Rekonfiguration
moglich, wobei eine teilweise oder vollstandige Rekonfiguration wahrend der Ausfiihrung von Code mdglich
ist, so dass Zeit-Multiplexing verwendet werden kann, um Konfigurationen zur Verfigung zu stellen, die fir un-
terschiedliche Teilaufgaben zu verschiedenen Phasen der Ausfiihrung eines Codestiickes optimiert sind.

[0004] FPGA-Vorrichtungen sind nicht speziell geeignet fur bestimmte Arten von Rechenaufgaben. Da die
einzelnen Rechenelemente sehr klein sind, sind die Datenwege extrem schmal und es wird eine Vielzahl von
ihnen bendtigt, so dass eine grolRe Zahl von Operationen beim Konfigurationsvorgang nétig sind. Obwohl diese
Strukturen relativ effizient fir Aufgaben sind, bei denen kleine Datenelemente bearbeitet werden und von Zy-
klus zu Zyklus regular sind, so sind sie weniger befriedigend fiir unregelmafRige Aufgaben mit grol3en Datene-
lementen. Solche Aufgaben werden auch von einem Universalprozessor nicht gut bewaltigt, kbnnen jedoch
von erheblicher Bedeutung sein (z. B. bei der Bildbearbeitung).

[0005] Alternative rekonfigurierbare Architekturen sind vorgeschlagen worden. Ein Beispiel ist die PADDI-Ar-
chitektur, entwickelt von der University of California in Berkeley und beschrieben in der Arbeit von D. Chen und
J. Rabacy "A Reconfigurable Multiprocessor IC for Rapid Prototyping of Real Time Data Paths", ISSCC, Feb-
ruar 1992 und A. Yeung und J. Rabacy "A Data-Driven Architecture for Rapid Prototyping of High Throughput
DSP Algorithms", IEEE VLSI Signal Processing Workshop, Oktober 1992. Eine weitere alternative Architektur
ist MATRIX, entwickelt am Massachusetts Institute of Technology und beschrieben von Ethan Mirsky und An-
dré deHon in "MATRIX: A Reconfigurable Computing Architecture with Configurable Instruction Distribution
and Deployable Resources", FCCM '96 — IEEE Symposium on FPGAs for Custom Computing Machines, April
17-19, 1996, Napa, Kalifornien, USA und detaillierter von Andre deHon in "Reconfigurable Architectures for
General-Purpose Computing", Seiten 257 bis 296, Technical Report 1586, MTT Artificial Intelligence Labora-
tory. Die MATRIX-Struktur hat vorteilhafte Gesichtspunkte, aber die grobe Korngrofie bedeutet, dass sie mehr
Silizium verbraucht als eine konventionelle FPGA-Struktur und sie womoglich weniger effizient fur Aufgaben
ist, die von Zyklus zu Zyklus gleichférmig sind. Es wéare daher winschenswert, weitere konfigurierbare Struk-
turen zu entwickeln, welche auf bestmdgliche Weise die Vorteile der MATRIX mit denen herkémmlicher FPGAs
kombinieren.

[0006] Die US 5,291,431 sieht einen Array-Multiplizierer vor, der eine modifizierte Zellen-Kodierung von Ein-
gangssignalen des Multiplizierers verwendet, und der auf der Oberflache eines monolithischen integrierten
Schaltkreises unter Verwendung von einem Computer erzeugter Masken entsprechend einem Siliziumcompi-
lerprogramm gebildet ist, indem ein Array aus Standardzellen, die aus einer Sammlung standardmaRiger Zell-
designs ausgewahlt sind, bei einem Mosaikvorgang angeordnet werden.

[0007] Eine weitere Entwicklung der Anmelder der vorliegenden Erfindung, beschrieben in der internationalen
Patentveréffentlichung WO-A-98/33276, mit einer als "CHESS" bezeichneten Gesamtarchitektur, beschreibt
eine rekonfigurierbare Vorrichtung, die umfasst: eine Vielzahl von Verarbeitungsvorrichtungen; eine Verknup-
fungsmatrix, die eine Verknlipfung zwischen den Verarbeitungsvorrichtungen bereitstellt; und ein Mittel zum
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Definieren der Konfiguration der Verknipfungsmatrix; wobei jede der Verarbeitungsvorrichtungen eine arith-
metische Logikeinheit umfasst, die angepasst ist, Uiber Eingabeoperanden eine Funktion auszufihren und eine
Ausgabe zu erzeugen, wobei die Eingabeoperanden als Eingaben der arithmetischen Logikeinheit von der
Verknlpfung in jedem Zyklus auf dem gleichen Weg zur Verfigung gestellt werden, und wobei Mittel zur Ver-
fligung gestellt werden, um die Ausgabe von einer ersten Verarbeitungsvorrichtung zu einer zweiten Verarbei-
tungsvorrichtung weiterzuleiten, um die Funktion zu bestimmen, die von der zweiten Verarbeitungsvorrichtung
ausgefihrt wird.

[0008] In einer bevorzugten Ausgestaltung von CHESS hat jede der Verarbeitungsvorrichtungen eine erste
Operandeneingabe, eine zweite Operandeneingabe, eine Funktionsergebnisausgabe, eine Ubertragseingabe
und eine Ubertragsausgabe, wobei die erste Operandeneingabe, die zweite Operandeneingabe und die Funk-
tionsergebnisausgabe n-Bit sind, wobei n eine ganze Zahl gréRer als 1 ist, und die Ubertragseingabe und die
Ubertragsausgabe 1-Bit sind. Eine besonderes gute Designldsung findet man, wenn n gleich 4 ist. Der fiir eine
dynamische Instruktion verwendete Mechanismus besteht darin, dass jede der Verarbeitungsvorrichtungen
dazu angepasst ist, zum Bestimmen ihrer Funktion eine n-Bit Instruktionseingabe von einer anderen Verarbei-
tungsvorrichtung zu empfangen.

[0009] Es ist aullerdem vorteilhaft, dass jede der Verarbeitungsvorrichtungen ein verriegelbares Ausgabere-
gister fur die Funktionsausgabe umfasst. Dies ist nutzlich zur Konstruktion einer "tiefen" Pipeline, wenn es z.
B. notwendig ist, eine Anzahl von Operationen parallel auszufiihren und die Bereitstellung der Ausgabe von
verschiedenen ALUs zu synchronisieren.

[0010] Eine besonders wichtige Frage fir alle Architekturen, die oben beschrieben sind, ist die Implementie-
rung eines Multiplizierers. Multiplizierer sind Schlisselelemente fir viele Berechnungen, und viele Anwendun-
gen, die am geeignetsten fir den Gebrauch eines ASIC oder Koprozessors sind, enthalten eine grofe Zahl
von Multiplikationsoperationen. Ein konventioneller Ansatz zur Implementierung eines Multiplizierers wird nun
beschrieben.

[0011] Ein kombinatorischer Multiplizierer ist Gblicherweise als ein repetitierendes Array aus Kernzellen ge-
baut, bei dem jede Zelle einige Bits (z. B. M Bits) des Multiplikanden A mit einigen Bits (z. B. N Bits) des Mul-
tiplikators B multipliziert, um ein (M + N)-Bit-Partialprodukt zu erzeugen. Um den Bau eines vollstandigen Mul-
tiplizierers zu erlauben, muss jede Kernzelle in der Lage sein, zwei zusatzliche Eingaben zu dem Partialprodukt
zu addieren, d. h. die Funktion ((A-B) + C + D) zu berechnen. Die D-Eingabe wird verwendet, um alle Partial-
produkte gleicher Signifikanz zu summieren, und die C-Eingabe wird verwendet, um Ubertrdge von weniger
signifikanten Partialprodukten zu addieren. Das (M + N)-Bitergebnis von jeder Kernzelle wird in zwei Teile un-
terteilt:

1. Die am wenigsten signifikanten M Bits werden der D-Eingabe der angrenzenden Kernzelle zugefihrt, die

ein Ergebnis der gleichen arithmetischen Signifikanz erzeugt

2. Die am meisten signifikanten M Bits werden der C-Eingabe der benachbarten Kernzelle zugefihrt, die

ein M-Bit signifikanteres Ergebnis erzeugt.

[0012] Die Kernzelle eines 1-Bit-1 Bit-Multiplizierers kann auf eine von drei Arten implementiert werden:
1. Als zwei 4-Eingaben-Nachschlagtabellen (lookup-tables, LUTs), wobei jede A, B, C und D als Eingaben
aufweist und eines der beiden Ausgabebits als Ausgabe erzeugt.
2. Als Zwei-Eingabe-UND-Gatter zum Berechnen (A-B) zum Fittern eines Volladdierers, der das Ergebnis
zu C und D addiert. Dies setzt einen 2-Eingaben-LUT und zwei 3-Eingaben-LUTs voraus.
3. Als Volladdierer zum Berechnen von (A + C + D), zum Futtern eines Multiplexers, der entweder dieses
Ergebnis oder D der Ausgabe zufiihrt, abhangig von B.

[0013] Jede dieser Lésungen kostet mehr Ressourcen als nétig ware, um einfach die Volladdition durchzu-
fuhren. Multiplizierer sind folglich teuer (in Bezug auf die Siliziumflache, und folglich in Bezug auf die tatsach-
lichen Kosten) in FPGA-Strukturen. Jeglicher Ansatz in Vorrichtungen dieses allgemeinen Typs, der die Dichte
der Multiplizierer in einem Verarbeitungsarray erhéhen kann, kann in Bezug auf die Reduktion der Kosten au-
Rerst vorteilhaft sein. Die Offenbarung der EP-A-0 833 244 stellt eine feldprogrammierbare Vorrichtung dar, die
eine Multiplikation mit 1 x 1 multiplizierenden Zellen ausfuhrt.

[0014] Entsprechend stellt die Erfindung ein Gerat und ein Verfahren zum Multiplizieren einer ersten Zahl mit
einer zweiten Zahl gemafl den unabhangigen Ansprichen 1 und 10 zur Verfligung, unter Verwendung eines
Arrays von Verarbeitungsvorrichtungen. Jede der Verarbeitungsvorrichtungen weist eine Vielzahl von Daten-
eingaben, eine Vielzahl von Datenausgaben und eine Instruktionseingabe zum Steuern der Funktion der Ver-

3/33



DE 698 34 942 T2 2007.06.06

arbeitungsvorrichtung auf, wobei die Verarbeitungsvorrichtungen und eine Eingabe fiir die erste Zahl und eine
Eingabe fiir die zweite Zahl durch eine frei konfigurierbare Verkniipfung verknlpft sind, und wobei jede Verar-
beitungsvorrichtung ein Partialprodukt berechnet, zum Multiplizieren eines oder mehrerer Bits der ersten Zahl
mit einem oder mehreren Bits der zweiten Zahl, und bei jeder Verarbeitungsvorrichtung: der Wert, der bei der
Instruktionseingabe empfangen wird, durch ein oder mehrere Bits der ersten Zahl bestimmt ist; die Datenein-
gaben durch m Bits der zweiten Zahl, eine Summationseingabe zum Summieren aller Partialprodukte gleicher
Signifikanz, und, wenn angebracht, eine Ubertragseingabe zum Addieren eines Ubertrags eines weniger sig-
nifikanten Partialprodukts zur Verfligung gestellt werden; und Datenausgaben als Summationsausgaben vor-
gesehen sind, die die am Wenigsten signifikanten m Bits des Partialprodukts und eine Ubertragsausgabe um-
fassen, die jegliche signifikanteren Bits des Partialprodukts enthalt.

[0015] Die vorliegende Erfindung betrifft Vorrichtungen und Architekturen, welche eine frei verknipfbare Zu-
sammenschaltung umfassen, wobei es im allgemeinen mdglich ist (aulRer moglicherweise fir bestimmte spe-
zielle Falle), jegliche Eingabe und Ausgabe miteinander zu verbinden. Die Ublichste Architektur dieses allge-
meinen Typs ist ein feldprogrammierbares Gate-Array (FPGA). Architekturen, bei denen bestimmte begrenzte
Auswahlmoglichkeiten von Verknupfungen zwischen Eingaben und Ausgaben, oder bestimmten Eingaben und
Ausgaben, moglich sind, sind hier unbeachtlich und fallen nicht in den Rahmen des Begriffs "frei verknupfbar”.

[0016] Es ist den Erfindern der vorliegenden Erfindung bekannt, dass bei einem konventionellen Multiplizie-
rer-Design das erforderliche Ergebnis von jeder Kernzelle entweder (A + C + D) oder D ist, abhangig von dem
Wert von B. (Wenn B Null ist, dann ist (A-B) Null, und auch C wird Null, weil B auch Null ist in der Kernzelle,
die C erzeugt). Mit anderen Worten, ein Volladdierer ware ausreichend, um das benétigte Ergebnis zu berech-
nen, wenn seine Funktion in Abhangigkeit des Wertes von B gesteuert werden kénnte. In einem konventionel-
len FPGA wird die Funktion jeder Logikeinheit zum Zeitpunkt der Konfiguration festgelegt, und eine solche da-
tenabhangige Steuerung der Funktionalitat ist nicht méglich. Mit der Struktur, die oben erlautert ist, ist eine sol-
che Steuerung mdglich und ein dichterer Multiplizierer wird erreicht.

[0017] Spezielle Ausfihrungsformen der Erfindung sind unten beispielhaft mit Bezug auf die beigefligten
Zeichnungen beschrieben:

[0018] Fig. 1 zeigt einen Teil eines Prozessor-Arrays, bei welchem Ausfihrungsformen der Erfindung ver-
wendet werden kénnen, wobei sechs Schaltabschnitte und die Orte von sechs arithmetischen Logikeinheiten
illustriert sind;

[0019] Fig. 2 ist ein Diagramm eines Teils der in Fig. 1 gezeigten Anordnung in gréRerem Malstab, wobei
einer der Schaltabschnitte und eine der lokalen arithmetischen Logikeinheiten illustriert werden;

[0020] Fig. 3 zeigt einen Puffer und ein Register, die in jedem Schaltabschnitt verwendet werden kénnen;
[0021] Fig. 4a zeigt ein Blockdiagramm, das eine einzelne arithmetische Logikeinheit fir die Verwendung in
dem Array von Fig. 1 illustriert; und Fig. 12b zeigt schematisch eine Bitscheibe dieser einzelnen arithmeti-
schen Logikeinheit;

[0022] Fig. 5a und Fig. 5b zeigen die grundlegende Struktur eines kombinatorischen Multiplizierers;

[0023] Fig. 6a und Fig. 6b zeigen konventionelle Ansatze in Bezug auf die Implementierung eines Multiplizie-
rers in einem Verarbeitungselement eines Verarbeitungsarrays;

[0024] Fig. 7 zeigt eine Implementierung eines Multiplizierers in einem Verarbeitungselement eines Verarbei-
tungsarrays;

[0025] Fig. 8 zeigt eine Implementierung eines Multiplizierers in einem Verarbeitungselement eines Verarbei-
tungsarrays entsprechend einer Ausfliihrungsform der Erfindung;

[0026] Fig. 9a zeigt einen Multiplizierer, wie in Fig. 7 oder Fig. 8 gezeigt, mit einer diagrammmafigen Dar-
stellung der zusatzlichen Bits, die bendtigt werden, um jedes der Partialprodukte zur vollen Lange des Ergeb-
nisses zu erweitern;

[0027] FEig. 9b zeigt vier Multiplizierer, wie in Fig. 7 oder Fig. 8 gezeigt, in einer Anordnung, die zur Vorzei-
chenerweiterung angepasst ist;
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[0028] Fig. 10a und Fig. 10b zeigen Arraymultiplizierer mit Multipliziererzellen, wie in den Fig. 7 oder Fig. 8
gezeigt, die jeweils fur den Gebrauch mit vorzeichenbehafteten und vorzeichenlosen Multiplikanden angepasst
sind;

[0029] Fig. 11a und Fig. 11b zeigen Linearmultiplizierer, die Multipliziererzellen, wie in Fig. 7 oder Fig. 8 ge-
zeigt, verwenden fur einen seriellen Multiplikator und einen parallelen Multiplikanden bzw. einen parallelen
Multiplikator und einen seriellen Multiplikanden; und

[0030] Fig. 12a und Fig. 12b zeigen jeweils die Folge von Operationen und die schematische Struktur fir ei-
nen Seriell-Seriell-Multiplizierer, der die Linearmultiplizierer aus Fig. 11 und Fig. 11b verwendet.

[0031] Ausflhrungsformen der Erfindung werden im Kontext der CHESS-Architektur beschrieben, die in der
internationalen Patentveréffentlichung WO-A-98/33276 beschrieben ist. Eine kurze Beschreibung der relevan-
ten Aspekte der Architektur und der Mechanismen zum Weitergeben der Instruktionen zu den Verarbeitungs-
elementen ist wiedergegeben. Die konventionelle Herangehensweise an die Konstruktion eines kombinatori-
schen Multiplizierers wird dann beschrieben, zusammen mit der Anwendung dieser konventionellen Herange-
hensweise an ein CHESS-artiges Array. Ausfiihrungsformen, die die ersten und zweiten Aspekte der Erfindung
in einem CHESS-artigen Array verwenden, werden nachfolgend beschrieben.

[0032] In der folgenden Beschreibung werden die Begriffe "horizontal", "vertikal", "Nord", "Sid", "Ost" und
"West" verwendet, um das Verstandnis der relativen Richtungen zu erleichtern, aber ihre Verwendung impli-
ziert keinerlei Einschrankungen der absoluten Orientierung der Ausflihrungsform der Erfindung.

[0033] Das Prozessorarray fur die Ausfihrungsform der Erfindung ist in einem integrierten Schaltkreis vorge-
sehen. Auf einer Ebene wird das Prozessorarray durch ein rechteckiges (und bevorzugt quadratisches) Array
von "Fliesen" 10 gebildet, von denen eine durch eine dicke Linie umrandet in Eig. 1 dargestellt ist.

[0034] Jede geeignete Zahl von Fliesen kann verwendet werden, z. B. in einem 16 x 16-, 32 x 32- oder 64 x
64-Array. Jede Fliese 10 ist rechteckig und in vier Schaltkreisbereiche unterteilt. Diese Fliesen sind bevorzugt
logisch quadratisch (um eine Symmetrie der Verbindungen bereitzustellen), obwohl es weniger signifikant ist,
dass sie auch physikalisch quadratisch sind (dies kénnte vorteilhaft sein, um eine Symmetrie im Zeitablauf be-
reitzustellen, aber dies ist im allgemeinen wahrscheinlich von geringer Bedeutung). Zwei der Schaltkreisberei-
che 12, die sich auf der Fliese diagonal gegenuber liegen, sind die Orte fiir zwei arithmetische Logikeinheiten
("ALUs"). Die anderen zwei Schaltkreisbereiche, welche sich auf der Fliese 10 diagonal gegentiber liegen, sind
die Orte flr ein Paar von Schaltabschnitten 14.

[0035] Bezugnehmend auf Fig. 1 und Fig. 2 hat jede ALU ein erstes Paar von 4-Bit-Eingaben a, welche direkt
mit der ALU verbunden sind, ein zweites Paar von 4-Bit-Eingaben b, welche auch direkt mit der ALU verbunden
sind, und vier 4-Bit-Ausgaben f, welche direkt innerhalb der ALU verknUpft sind. Jede ALU hat ein unabhangi-
ges Paar von 1-Bit-Ubertragseingaben hci, vci und ein Paar von 1-Bit-Ubertragsausgaben co, welche direkt
inerhalb der ALU verknipft sind. Die ALU kann Standardoperationen liber die Eingabesignale a, b, hci, vci aus-
fuhren, um die Ausgabesignale f, co zu erzeugen, wie z. B. Addition, Subtraktion, UND, NUND, ODER, NO-
DER, XODER, NXODER und Multiplexen, und sie kann optional das Ergebnis der Operation speichern. Die
Arbeitsweise einer einzelnen ALU wird unten detaillierter besprochen. Die Anweisungen an die ALUs kdnnen
jeweils von 4-Bit-Speicherzellen zugefiihrt werden, deren Werte extern festgelegt werden koénnen, oder sie
kdnnen Uber ein Bus-System zugeflihrt werden.

[0036] Aufden Ebenen, die in Fig. 1 und Fig. 2 gezeigt sind, hat jeder Schaltabschnitt 14 acht Busse, die sich
horizontal in ihm ausdehnen, und acht Busse, die sich vertikal in ihm ausdehnen, so dass ein rechteckiges 8
x 8-Array mit 24 Schnittpunkten entsteht, welche in Fig. 2 mit kartesischen Koordinaten nummeriert sind. Alle
diese Busse haben eine Breite von vier Bits, mit der Ausnahme des Ubertragsbusses vc bei X = 4 und dem
Ubertragsbus hc bei Y = 3, welche eine Breite von 1 Bit aufweisen. An vielen der Schnittpunkte wird ein pro-
grammierbarer 4-Bandschalter 18 bereitgestellt, der selektiv zwei Busse verbinden kann, welche sich Ende an
Ende an diesem Kreuzungspunkt treffen, ohne rechtwinklige Verbindung zu dem Bus. An dem Kreuzungspunkt
(4, 3) ist ein programmierbarer Schalter 20 vorgesehen, der selektiv die Ubertragsbusse vc, vh, die sich an
diesem Punkt rechtwinklig schneiden, verbindet.

[0037] Wie in Eig. 2 gezeigt, sind die Busse bs, vco, fs jeweils mit Eingabe b, Ausgabe co und Ausgabe f der
ALU nérdlich des Schaltabschnitts 14 verknlpft. Auerdem sind die Busse fe, hco, be jeweils mit der Ausgabe
f, Ausgabe co und Eingabe b der ALU westlich des Schaltabschnitts 14 verknupft. Auerdem sind die Busse
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aw, hci, fw jeweils mit der Eingabe a, Eingabe ci und Ausgabe f der ALU 8stlich des Schaltabschnitts 14 ver-
knipft. AuRerdem sind die Busse fn, vci, an jeweils mit der Ausgabe f, Eingabe ci und Eingabe a der ALU sud-
lich des Schaltabschnittes 14 verknupft.

[0038] Zusatzlich zu diesen Verbindungen sind die Busse vregw, vrege jeweils Uber programmierbare Schal-
ter 18 mit 4-Bit-Verbindungspunkten vtsw, vtse (durch Kreuze in Fig. 2 gezeigt) im Bereich 12 der ALU nérdlich
des Schaltabschnittes 14 verbunden. Auch sind die Busse hregs, hregn jeweils durch programmierbare Schal-
ter 18 mit 4-Bit-Verbindungspunkten htse, htne im Gebiet 12 der ALU westlich des Schaltabschnitts 14 verbun-
den. AuBerdem sind die Busse hregs, hregn durch programmierbare Schalter 18 jeweils mit 4-Bit-Verbindungs-
punkten htsw, htnw im Gebiet 12 der ALU Jstlich des Schaltabschnitts 14 verbunden. AuRerdem sind die Bus-
se vregw, vrege durch programmierbare Schalter 18 jeweils mit 4-Bit-Verbindungspunkten vtnw, vtne im Gebiet
12 der ALU sudlich des Schaltabschnitts 14 verbunden.

[0039] Wie aulRerdem in Fig. 2 dargestellt, haben die Busse hregn, vrege, hregs, vregw jeweils 4-Bit-Verbin-
dungspunkte 22 (dargestellt durch kleine Quadrate in Fig. 2), welche unten in grofierem Detail mit Bezugnah-
me auf Fig. 3 beschrieben werden.

[0040] Wie oben in Bezugnahme auf Fig. 1 und Fig. 2 erwdhnt wurde, sind an jedem Schaltabschnitt 14 die
Busse hregn, hregs, vregw, vrege jeweils mit 4-Bit-Verbindungen 22 mit einem Register oder Pufferschaltkreis
verbunden, und dieser Schaltkreis wird nun genauer mit Bezugnahme auf Fig. 3 beschrieben. Die vier Verbin-
dungen 22 sind jeweils mit entsprechenden Eingaben eines Multiplexers 26 verbunden. Der Multiplexer 26
wahlt einen der Eingaben als eine Ausgabe, die einem Register oder Puffer 28 bereitgestellt wird. Die Ausgabe
des Registers oder Puffers 28 wird vier Drei-Zustands-Puffern 30s, 30w, 30n, 30e zugefuhrt, welche durch die
Verbindungen 22 jeweils zu den Bussen hregs, vregw, hregn, vrege zurtick verbunden sind. In dem Fall, in dem
ein Puffer 28 benutzt wird, wird das 4-Bit-Signal auf einem ausgewahlten Bus aus der Gruppe der Busse hregs,
vregw, hregn, vrege verstarkt und einem anderen ausgewahlten Bus aus der Gruppe der Busse hregs, vregw,
hregn, vrege zugefiihrt. In dem Fall, in dem ein Register 28 verwendet wird, wird das 4-Bit-Signal auf einem
ausgewahlten Bus der Gruppe der Busse hregs, vregw, hregn, vrege verstarkt und einem ausgewahlten Bus
aus der Gruppe der Busse hregs, vregw, hregn, vrege nach der nachsten aktiven Taktflanke zugefiihrt.

[0041] Eine verbesserte Ausfiihrung der Struktur von Fig. 3 ermdglicht es, ein 4-Bit-Signal auf einem ausge-
wahlten Bus aus der Gruppe der Busse hregs, vregw, hregn und vrege fiir einen anderen Zweck von dem In-
terbus-Routing zu extrahieren. Eine geeignete Konstruktion und Verbindung von Multiplexer 26 (oder in einer
alternativen Anordnung von Puffer 28) erlaubt das Auswahlen eines Wertes, der von dem Verdrahtungsnetz-
werk als Ausgabe des Multiplexers 26 oder Puffers 28 (diese Wahlmdglichkeiten sind jeweils als 260 und 280
in Eig. 3 bezeichnet) empfangen wurde, wobei dieser Wert dann verwendet wird, um die Anweisung der ALU,
die mit dieser Schaltbox verbunden ist, zu bestimmen. Die Anwendungen dieser Anordnung werden unten wei-
ter diskutiert.

[0042] Die Verwendung des Multiplexers 26 oder Puffers 28 fir diesen Zweck bedeutet, dass der Wert, der
verwendet wird, um eine Instruktion an die ALU bereitzustellen, auch der Wert ist, der zum Weiterreichen durch
das Verdrahtungsnetzwerk bereitgestellt wird. Ein anderer Schaltabschnitt 14 muss verwendet werden, wenn
es erwilinscht ist, einen anderen Wert zwischen den Verdrahtungen zu tbertragen. In vielen Anordnungen wird
es jedoch wiinschenswert sein, dass der Wert, der zu der ALU weitergeleitet wird, um ihre Instruktion festzu-
legen, auch der Wert ist, der von einer Verdrahtung zur anderen weitergereicht wird: dies ist angemessen,
wenn es gewunscht wird, die gleiche Instruktion einer Anzahl von ALUs zur Verfigung zu stellen, was oft in
einer tiefen Verarbeitungs-Pipeline auftritt. Eine alternative Ausfiihrung, die nicht gezeigt ist, verwendet zwei
oder mehr Paare von Multiplexern 26 und Puffern 28: in diesem Fall kann ein Paar von Multiplexern/Puffern
einer Instruktionseingabe der assoziierten ALU zugeordnet werden, wahrend das andere Paar oder die Paare
fur das Routing verwendet werden kénnen.

[0043] Es soll darauf hingewiesen werden, dass, obwohl Bitbreiten, GréRen von Schaltabschnitten und Gro-
Ren von Arrays erwahnt worden sind, diese Werte, wo angezeigt, verandert werden kdnnen. Obwohl die pro-
grammierbaren Schalter 16, 18, 20 als an bestimmten Orten des jeweiligen Schaltabschnitts 14 angeordnet
beschrieben wurden, kénnen, wenn erwtinscht und notwendig, auch andere Orte verwendet werden. Die Prin-
zipien der CHESS-Architektur sind auf dreidimensionale Arrays anwendbar, z. B. durch Bereitstellen eines Sta-
pels der oben beschriebenen Arrays, bei dem die Schaltabschnitte in benachbarter Ebenen zueinander gestaf-
felt sind. Es ist mdglich, dass jeder Stapel nur zwei Ebenen, bevorzugt jedoch wenigstens drei Ebenen enthalt,
und die Zahl der Ebenen ist bevorzugt ein Vielfaches von zwei.
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[0044] Die Struktur der ALU, die in dieser Ausfihrungsform der Erfindung verwendet wird, wird im folgenden
mit Verweise auf Fig. 4a und Fig. 4b beschrieben. Wie in Fig. 4a dargestellt, hat die ALU vier Eingaben, A, B,
lund C,,, und zwei Ausgaben, F und C_,. A, B, | und F sind alle vier Bit breit und mit der allgemeinen Verknip-
fung durch benachbarte Schaltblécke verbunden, wie oben beschrieben fur a, b und f. Die Eingabe fiir | ist aus
dem Multiplexer 26, der in Eig. 3 dargestellt ist, extrahiert. C,, und C_, sind beide 1 Bit breit und mit einer stérker
eingeschrankten Verknupfung verbunden, wie ebenfalls oben beschrieben. A und B stellen die Operanden fur
die ALU und F die Ausgaben zur Verfigung. C,, und C,, stellen die Ubertragsfunktion zur Verfligung, sind aber
auch fur die Steuerung wichtig. | stellt eine Instruktionseingabe zur Verfligung, welche die funktionale Opera-
tion der ALU bestimmt: dies steht im Gegensatz zu einem Standard-FPGA, bei welchem die funktionalen Ein-
heiten durch einen Satz von Speicherbits gesteuert wird. Die Bedeutung dieses Merkmals und die Mechanis-
men, die zur Verfigung gestellt werden, um Instruktionseingaben von dem Verdrahtungsnetzwerk zu der ALU

zu leiten, werden unten besprochen.

[0045] Die ALU hat vier Hauptkomponenten:

den ALU-Datenpfad, welcher aus vier identischen Bitscheiben besteht;

den Instruktionsdecoder;

die Ubertrags-/Steuerungseingabe-Aufbereitungslogik; und

die Schaltblock-Programmierschnittstelle (in anderen Ausfihrungsformen der Erfindung muss diese nicht in
der ALU selbst vorliegen, jedoch erlaubt die Anwesenheit dieses Merkmals in der ALU, dass die ALU in einem
Nachschlagtabellen-Betrieb verwendet wird).

[0046] Fig. 4 zeigt ein Blockdiagramm einer einzelnen Bit-Scheibe der ALU.

[0047] Die zwei "Eingabepuffer" 202 und 203 sind nichts weiter als ein Mittel, eine elektrische Verbindung zum
Routing-Netzwerk bereitzustellen. In dieser Architektur gibt es kein adressierbares Eingaberegister (und ent-
sprechend keine Registerdatei): die Operanden werden der Funktionseinheit 201 der ALU in jedem Zyklus vom
selben Ort (dem Verdrahtungsnetzwerk) zur Verfliigung gestellt.

[0048] Die Funktionseinheit 201 arbeitet als eine Nachschlagtabelle (LUT), welche eine Boolesche Funktion,
U, der beiden Eingaben A und B erzeugt. Die exakte Funktion wird durch die vier Steuersignale (L;, L,, L,, L)
bestimmt und erzeugt die Karnaugh-Tafel, die in Tabelle 1 gezeigt ist:

U= |
A 0 1 |
B
0 I, L ‘
1 T

Tabelle 1: Karnaugh-Tafel fir ALU-Bitscheibe
[0049] Die Erzeugung der Steuersignale L; wird unten weiter besprochen.

[0050] "Summenerzeugung" 204 stellt eine Summenausgabe zur Verfiigung, die durch ein XODER von U und
C,, abgeleitet ist:

Summe = U XODER C,,

[0051] C,, wird durch Erzeugen eines Ubertrags 204 gemaR der folgenden Booleschen Gleichung erzeugt:

P = U ODERL,
G = AODERL,
C.. =WENN P DANN C, SONSTG

wobei P als fortpflanzende Funktion und G als erzeugende Funktion betrachtet werden kann. Die Signale L,
werden wiederum auf eine Weise erzeugt, die im Anschlul® beschrieben wird.
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[0052] Das Ausgaberegister 206 verriegelt wahlweise die Summenausgabe, wobei diese Option unter der
Steuerung des ALU-Programmierspeichers auswahlbar ist. Wahlweise kann eine ahnliche Verriegelungsan-
ordnung fir die Ubertragsausgabe zur Verfiigung gestellt werden. Diese Merkmale sind fiir den Gebrauch in
tiefen Pipelines vorteilhaft, bei denen die gleiche Operation mdglicherweise synchron in mehreren ALUs in zeit-
gesteuerter Weise ausgefiihrt werden muss.

[0053] Eine breite Vielfalt von unterschiedlichen méglichen Bit-Scheiben kénnen eingesetzt werden. Die Wahl
des ausgewahlten Bit-Scheiben-Typs in einer gegebenen Architektur kann eine Funktion des Typs von Instruk-
tion sein, fur die die Architektur insgesamt als am effizientesten arbeitend vorgesehen ist. Es ist klarerweise
erstrebenswert, die Verwendung einer Vielzahl von Funktionen, die als nitzliche Bausteine fiir komplexere
Operationen dienen kénnen, zu ermdéglichen. Andere Merkmale sind ebenfalls wiinschenswert. Ein wiin-
schenswertes Merkmal ist die Fahigkeit, einige Bits von ihrer normalen Funktion abzuzweigen, um die Steue-
rung Uber andere Schaltkreiselemente zu ermdglichen. Ein weiteres winschenswertes Merkmal ist die Fahig-
keit, eine festgelegte Instruktion fur irgendeine der ALUs zu speichern, die in einer bestimmten Konfiguration
keine dynamische Instruktionsschaltung benétigen. Es ist ebenfalls wiinschenswert, dass ein geeigneter An-
fangszustand vorhanden ist, um die ALU als einen Lese/Schreibanschluss fur die Schaltbox (oder die Nach-
schlagtabelle) nutzbar zu machen. Fur diese Anwendung werden keine spezifischen Bit-Scheiben beschrie-
ben: ein Beispiel fur geeignete Bit-Scheiben ist in der internationalen Patentverdffentlichung WO-A-98/33276
dargelegt. Zum Zwecke der vorliegenden Patentanmeldung ist es nur notwendig, dass die ALU in der Lage ist,
die Funktionen zu unterstitzen, die in den verschiedenen unten beschriebenen Multiplizierer Implementatio-
nen beschrieben sind.

[0054] Die Herkunft der Instruktions-Bits fur die ALU wird jedoch diskutiert. Ein Element der CHESS-Architek-
tur, die hier beschrieben ist, ist die Fahigkeit, eine Instruktion fir eine Funktionseinheit als Ausgabe einer an-
deren Funktionseinheit zu erzeugen.

[0055] Eingabesignale, die dynamische Instruktionen | (4-Bit-Instruktionen, die durch eine andere ALU im Ar-
ray erzeugt worden sind, oder optional von einem Speicher, der dem Verdrahtungsnetzwerk zugangig ist, er-
halten wurde) enthalten, werden von Verknupfungen zum Verdrahtungsnetzwerk empfangen: diese kénnen
durch Multiplexer 26 (siehe Fig. 3) wie oben erlautert gewonnen werden. Es ist erwlinscht, dass mehrere
Wahlméglichkeiten zur Verfigung stehen, was durch die Verwendung eines oder mehrerer zusatzlicher ALUs
in der Multiplexer-Konfiguration erreicht werden kann.

[0056] Die 4-Bit-Ausgabe einer ALU kann folglich als dynamische Instruktionseingabe I fir eine weitere ALU
verwendet werden. Der Ubertragsausgang einer ALU kann auch als Ubertragungseingang fiir eine andere
ALU verwendet werden, und dies kann beim Bereitstellen dynamischer Instruktionen ausgenutzt werden. Es
gibt drei grundsatzliche Moglichkeiten, wie die Operation einer ALU dynamisch variiert werden kann:

1. C,, kann verwendet werden, um zwischen zwei Versionen einer Funktion zu multiplexen, wobei die In-

struktions-Bits | konstant bleiben.

2. Die Instruktions-Bits | kdnnen verandert werden, wahrend C,, gleich bleibt.

3. Sowohl die Instruktion als auch der Wert C,, kénnen verandert werden.

[0057] Die Anwendung dieses dynamischen Instruktions-Bereitstellungsmerkmals bei einer Implementation
des Multiplizierers wird unten beschrieben.

[0058] Wie oben angedeutet, ist ein konventioneller kombinatorischer Multiplizierer Gblicherweise als repeti-
tives Array von Kernzellen aufgebaut, wobei jede Zelle einige Bits (z. B. M Bits) des Multiplikanden A mit eini-
gen Bits (z. B. N Bits) des Multiplikators B multipliziert, um ein (M + N)-Bit-Partialprodukt zu erzeugen. Jede
Kernzelle muss auch in der Lage sein, die Funktion ((A-B) + C + D) zu errechnen, wobei die D-Eingabe ver-
wendet wird, um alle Partialprodukte zu summieren, die die gleiche Signifikanz haben, und die C-Eingabe ver-
wendet wird, um Ubertrage von weniger signifikanten Partialprodukten zu addieren. Das (M + N)-Bit-Ergebnis
von jeder Kernzelle ist in zwei Teile aufgeteilt: die am wenigsten signifikanten M Bits werden zur D-Eingabe der
benachbarten Kernzelle geleitet, die ein Resultat der gleichen arithmetischen Signifikanz erzeugt; und die sig-
nifikantesten N Bits werden zur C-Eingabe der benachbarten Kernzelle geleitet, die ein M Bit signifikanteres
Ergebnis erzeugt. Wie vorher angedeutet, ist das bendtigte Ergebnis von jeder Kernzelle entweder (A + C + D)
oder D, abhangig von dem Wert von B.

[0059] Die zugrunde liegende Struktur eines Multiplizierers, die ausgelegt ist wie in einer Langschriftmultipli-

kation, ist in Eig. 5a gezeigt. Der Multiplikand X ist in mehrere Satze von Bits x,, aufgeteilt, und der Multiplikator
Y ist in mehrere Satze von Bits y, aufgeteilt. Der Multiplizierer ist aus einem Array von Grundzellen aufgebaut,
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von denen jede ((x,,y,) + ¢ + d) flr irgendwelche m und n berechnet. Das Resultat wird in zwei Teile unterteilt,
lo und hi, welche jeweils die mehr oder weniger signifikanten Teile des Ergebnisses darstellen. Das lo-Ergebnis
wird zu der d-Eingabe der darunterliegenden Grundzelle geleitet, und das hi-Ergebnis (welches gréRere arith-
metische Signifikanz hat) wird zur c-Eingabe der Grundzelle auf der linken Seite geleitet.

[0060] Die gleiche Multipliziererstruktur ist um 45 Grade geneigt in Fig. 5b dargestellt. Die geneigte Anord-
nung von Fig. 5b zeigt, wie der Multiplizierer auf ein rechteckiges Array passt, wobei der Multiplikator Y von
links zugeflihrt wird. Dieses Layout ist fur eine effektive physikalische Implementierung geeignet.

[0061] Alternative Methoden zum Implementieren solch konventioneller Herangehensweisen in einem feld-
programmierbaren Array, welche vom Typ eines CHESS oder eines konventionellen FPGA sein kénnen, wer-
den nun beschrieben.

[0062] Fig. 6a zeigt eine Implementation einer Multiplizierergrundzelle in einer Struktur vom Typ CHESS, wo-
bei die konventionelle Herangehensweise an die Konstruktion von Multiplizierern angewandt wird. Die Multip-
likation der Bits x,,, und y, wird durch ein UND-Gatter 501 ausgefiihrt. Ein Volladdierer 502 summiert das Re-
sultat dieser partiellen Multiplikation mit den Eingaben ¢ und d, um das lokale lo- und hi-Resultat zu erzeugen.
Eine alternative Implementierung ist in Fig. 6b gezeigt. Hier wird die Addition durch den Addierer 503 durch-
geflhrt, so als sei das Multiplikator-Bit y,, gleich 1. Wenn y,, gleich 0 wére, so wiirde der Multiplexer 504 ver-
wendet werden, um dem lo-Ergebnis den Wert des hereinkommenden d-Signals aufzuzwingen, was in diesem
Fall das korrekte Ergebnis wére. Es muss beachtet werden, dass, obwohl es keinen Ubertrag C in dem Fall,
dass y,, gleich 0 ist, geben sollte, ein Verarbeitungselement einen scheinbaren Ubertrag an der hi-Ausgabe
fortpflanzt. Weil jedoch y,, gleich O fiir das Verarbeitungselement, das den Ubertrag empfangen wird, ist (die
nachste Stufe der Signifikanz fir das gleiche Multiplikator-Bit), wird dieses Signal keinen Effekt auf das Ge-
samtergebnis haben.

[0063] Beide Multipliziererzellen, die in den Eig. 6a und Eig. 6b gezeigt sind, erfordern einen etwas gréRReren
Aufwand zur Implementierung als die Addierer alleine. Typischerweise kostet in einem feldprogrammierbaren
Array der Addierer eine Verarbeitungszelle, wahrend das UND-Gatter (von Eig. 6a) oder der Multiplexer (von
Eig. 6b) eine weitere Verarbeitungszelle kostet.

[0064] Von dem Erfinder der vorliegenden Erfindung wurde ermittelt, dass im Falle von CHESS und vergleich-
baren Architekturen ein Multiplizierer in einer einzigen Verarbeitungszelle implementiert werden kann. Dies
kann erzielt werden, indem man die Funktion einer Funktionseinheit auf datenabhangige Weise bestimmen
I1aRt. Die folgende Herangehensweise verwendet eine Variante der "Multiplexer"-Option, die in Fig. 6b gezeigt
ist. Die Multipliziererzelle, die in Eig. 7 gezeigt ist, und diese Zelle kénnen so gelegt werden, dass sie einen
vollstandigen Multiplizierer bilden. Die funktionale Einheit wird angewiesen, entweder das Resultat der Addition
zu erzeugen, oder den Wert der d-Eingabe weiterzureichen, abhangig vom Wert von y,.. Dies erfordert, dass
die Instruktionseingabe | (bezeichnet mit 510) an die ALU in gewisser Weise von y,, unabhangig ist: dies kann
z. B. erreicht werden, indem die zuséatzliche Logik 505 verwendet wird, um y,, fur die Instruktionseingaben zu
decodieren, die bendtigt werden, um die Funktion zu bestimmen, die fir I-Eingabe, die auf dem Verarbeitungs-
element 506 gezeigt ist, angedeutet ist. Diese zusatzliche Logik 505 mul} nicht ausfihrlich sein: fir einen gro-
Ren Arraymultiplizierer wird folglich jeglicher Overhead, der von der zuséatzlichen Logik vorgesehen wird, klein
sein im Vergleich zu dem Faktor zwei in der Reduktion der Flache der Multipliziererzelle.

[0065] Fig. 8 zeigt, wie die Fahigkeit, die Funktion einer funktionalen Einheit auf datenabhangige Weise zu
verandern, verwendet werden kann, um die Multipliziererdichte weiter zu vergréRern. In diesem Fall wird wie-
derum ein einzelnes Prozessorelement (mit der funktionalen Einheit 507) verwendet, aber es werden in der
Operation zwei Bits, anstatt von einem alleine, des Multiplikators fiir ein einziges Verarbeitungselement ver-
wendet.

[0066] Zwei Bits des Multiplikators werden der Decodierlogik 505 zugefiihrt, welche Instruktionseingaben mit
den vier folgenden Werten produziert: (d + x,, + ¢); (d); (d — x,, — ¢) und (d — 2x,, — ¢). Jede dieser Instruktionen
addiert oder subtrahiert ein anderes Vielfaches des Multiplikanden, wobei die Auswahl der Instruktionen ent-
sprechend der Werte der zwei Bits y,, y,., auswahlbar ist.

[0067] Zu beachtenist, dass in dem oben dargestellten Beispiel die Instruktionen, die ibergeben worden sind,
Resultate von -2, -1, 0 und +1 ergeben, und nicht etwa das 0-, 1-, 2- und 3-fache des Multiplikatorbits. Dies
kann mit einem Vorverarbeitungsschritt korrigiert werden, so dass das richtige Resultat an den Schaltkreisaus-
gaben erscheint.
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[0068] Eine beispielhafte Vorverarbeitungsprozedur, um dies zu erreichen, ist unten zusammengefasst.
1. Der Multiplikand ist zu einer Basis-(-2)-Darstellung konvertiert, bei denen die Bits die Signifikanz haben:

..—32+16-8+4-2+1

[0069] Betrachtet man jedes Paar von Bits, haben die vier Kombinationen die folgenden arithmetischen Werte
in der Basis (-2):

Bit-Werte arithmetische Werte
00 0

01 +1

10 -2

11 —1

[0070] Diese vier Vielfachen des Multiplikanden sind die vier Vielfachen, die das Array von Fiq. 7 der Anwen-
dung zu der Partialsumme in jeder Stufe hinzuaddiert.

[0071] 2. Um den Basis-2-Multiplikanden zur Basis-(-2) zu konvertieren, erzeugen wir ein konstantes
Bit-Muster M, das das Bit-Muster (10) in jedem Paar von Bits enthalt. Folglich ist das am wenigsten signifikante
Bit von M gleich 0 und die alternierenden signifikanteren Bits sind abwechseln 1 und 0. Dann ist:

Basis-(—-2)-Multiplikand = ((Basis 2-Multiplikand) + M exoder M
[0072] Die Operationen sind hierbei:

+ arithmetische Addition
exoder Bit-flir-Bit exklusiv ODER

[0073] Der Effekt des exoder ist eine Inversion alternierender Bits des Ergebnisses der Addition, wobei das
am wenigsten signifikante Bit nicht invertiert wird.
3. Um diesen Vorgang zu verstehen, betrachte man die zwei mdglichen Werte eines der Bits eines Multip-
likanden, fir welchen M gleich 1 ist. Dies sind die Multiplikanden-Bits, die eine negative Signifikanz in der
Basis-(-2) haben.
Bit = 0. In diesem Fall ist die Null in der Basis (-2) genau der gleiche Wert wie die Null in der Basis 2, so
dass keine Anderung notwendig ist. Ein Addieren des 1 Bit von M macht aus dem Summen-Bit eine 1, und
das exoder wirde dies dann invertieren, um ein Null-Ergebnis zu erzeugen — d. h. es ist der Originalwert,
wie bendtigt.
Bit = 1. Man betrachte ein Bit mit dem Wert 2 in der Basis 2, und (-2) in der Basis (-2) — die anderen alter-
nierenden Bits verhalten sich auf gleiche Weise. Wenn das Bit 1 ist, subtrahieren wir durch das Interpretie-
ren des Bit-Wertes (-2) statt (+2) im Ergebnis 4 von dem Wert des Multiplikanden. Wir gleichen dies aus,
indem wir 4 in 2 Schritten zurlckaddieren:
— Wir addieren M zu dem Multiplikanden. Das 1-Bit in dieser Bit-Position ist eine zuséatzliche 2 wert, welches
einen Ubertrag zu dem Bit im Wert von (+4) erzwingt, und setzt den Bit-Wert (-2) auf 0.
— Wir fuhren die Operation exoder mit M durch. Dies hat keinen Einfluss auf den Bitwert (+4), aber invertiert
den Bitwert (-2) wieder zu 1- seinem urspringlichen Wert.

Der Nettoeffekt besteht darin, dass wir (+4) zu dem Wert des Multiplikanden hinzuaddiert haben, um die Neu-
interpretation des (+2)-Bits als (-2) auszugleichen. Das resultierende Bitmuster ist die Reprasentation des Mul-
tiplikanden in der Basis (-2), wie es fur den Multiplikator benétigt wird.

[0074] Folglich kbnnen Instruktionen zur Verfuigung gestellt werden, welche das richtige Resultat bei den je-
weiligen Ausgaben fur jede dieser Optionen zur Verfugung stellen, in dem Sinne, dass die Instruktionen den
Effekt eines Weiterreichens der Datenausgabewerte haben, die das 0-, 1-, 2- und 3-fache der m-Bits des Mul-
tiplikanden reprasentieren, die in dem Verarbeitungselement gemaf der zwei Bits des Multiplikators gehand-
habt werden. Die Decodierlogik 505 muss in diesem Fall ein wenig starker ausgedehnt sein als im Falle der
Fig. 7, aber da auRerdem um den Faktor zwei weniger Verarbeitungsgrundelemente bendtigt werden, um den
Arraymultiplizierer bereitzustellen, sind die zuséatzlichen Einsparungen fiur einen Multiplizierer jeder Grélie au-
Rerst bedeutend.
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[0075] Die Anordnung, die oben mit Bezug auf Fig. 8 beschrieben worden ist, kann weiter verbessert werden
durch das Verwenden zusatzlicher Eingabebits. Insbesondere, wenn eine fiinfte Instruktion verwendet wird, die
zu einem weiteren anderen 4-fachen des Multiplikanden zugeordnet ist (insbesondere d + 2x,, + ¢), wird es
mdglich, den Decoder ohne Abhangigkeiten zwischen den unterschiedlichen Multipliziererstufen zu implemen-
tieren. Solche Abhangigkeiten flihren zu unerwiinschten sich langsam ausbreitenden Ubertragsverzégerungs-
effekten. Letzteres kann erreicht werden, indem drei Bits eines Multiplikanden, anstelle von zwei, betrachtet
werden, und ein Radix-4 modifizierter Booth-Algorithmus implementiert wird (z. B. beschrieben von Koren, I.,
in "Computer Arithmetic Algorithms", 1993, Prentice-Hall Inc., Englewood Cliffs, Seiten 99-103). Das y,- und
Y..,-Bitpaar wird durch y,_, als weitere Eingabe erganzt, und es werden Instruktionen geman der Tabelle 2 un-
ten erzeugt.

Yan Yau Yo Instruction

0o 10 |0 [@

0 [1 |@+x.+9
(d+x,+c¢)
(d+2x,+c)

(=4
—
o

(=3
—
—

1 0 o {d-2x,-c¢)

(1] 1 (d-x,-¢)
M T [0 @9
T (T [T @

Tabelle 2: Instruktionen des Radix-4 modifizierten Booth-Algorithmus fir Multiplizierer vierfacher Dichte

[0076] Tabelle 2 kann wie folgt verstanden werden. Wenn das signifikanteste Bit eines Bitpaars (z. B. y,,,) 1
ist, dann tragt es -2 zu seinem eigenen Bitpaar und +1 zu dem nachsten signifikantesten Bitpaar bei (mit dem
Wert +4 in Bezug auf sein eigenes Bitpaar). Wenn folglich y,_, des nachsten weniger signifikanten Bitpaars 1
ist, tragt es +1 zu dem gegenwartigen Bitpaar bei. Fir jede Reihe in der Tabelle ergibt (-2y,.,, +y, + vy,_,) das
Vielfache des Multiplikanden, das an der gegenwartigen Bit-Position hinzugeflugt werden muss, und man kann
erkennen, dass die Instruktionen dieser Gleichung entsprechen.

[0077] Eine Nachschlagtabelle fir jedes Paar von Multiplikatorbits kann folglich eine Multiplikatorrecodierung
implementieren, mit der Eingabe von diesen Bits und dem benachbarten weniger signifikanten Bit y,_, (oder 0
in dem Fall des am wenigstens signifikanten Bitpaars). In der CHESS-Architektur, beschrieben mit Hinweis auf
Fig. 1 bis 4, kann y,_, in einem anderen Halbbit als y, und y, ., sein, in welchem Fall der Multiplikator um ein Bit
verschoben werden muss, so dass alle drei Bits der Nachschlagtabelle zuganglich sind. Dies kann erreicht
werden, indem eine ALU verwendet wird, die als ein Addierer fir jede Stelle im Multiplikator y wirkt, um den
Wert (y + y) Uber den Rand des Arrays zu berechnen, von welchem der Multiplikator y bereitgestellt wird.

[0078] Man beachte, dass, wenn y,,, gleich 1 ist, ein Ubertrag zum nachsten signifikanteren Bitpaar fortge-
pflanzt wird. Wenn das vorliegende Bitpaar das signifikanteste Bitpaar wéare, wiirde der Ubertrag verloren ge-
hen, was zu einem inkorrekten Resultat fihren wirde. Um diesem vorzubeugen, muss ein Multiplikator ohne
Vorzeichen erweitert werden, um sicherzustellen, dass er wenigstens ein am meisten signifikantes Nullbit auf-
weist — wie unten diskutiert wird, wird diesem Ansatz fir einen Multiplikator mit Vorzeichen nicht gefolgt.

[0079] Das Ubertragsbit fir jede ALU wird addiert oder subtrahiert, abhéngig davon, ob die Instruktion eine
Addition oder eine Subtraktion ist. Das impliziert, dass jeder Ubertrag in zwei ALUs erzeugt und aufgenommen
werden muss, die entweder beide Additionen oder beide Subtraktionen ausfuhren. Da die Wahl zwischen Ad-
dition und Subtraktion durch die Instruktion bestimmt wird, impliziert dies, dass die Ubertrage durch das Array
in die gleiche Richtung transportiert werden miissen wie die Instruktionen. Wenn die Signifikanz der Ubertrage
nicht instruktionsabhangig ware, kénnten die Ubertrage entweder horizontal oder vertikal durch das Array
transportiert werden, und die Wahl kénnte so gemacht werden, dass sie die parallele Verarbeitung des Arrays
vereinfacht.

[0080] Dieses Schema setzt voraus, dass der Multiplikand mit 2 vormultipliziert ist, um durch das Array trans-
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portiert zu werden. Dieses erfordert einen Addierer/Schieber pro Ziffernposition Giber den Rand des Arrays. Es
setzt aullerdem voraus, dass das Array in der Breite des Multiplikanden ausgeweitet wird, um die Breite des
vormultiplizierten Multiplikanden aufzunehmen.

[0081] Fur die Implementation der Architektur, die in Fig. 1 bis 4 beschrieben ist, in welcher die gesamte Ver-
drahtung entlang der 4-Bit-Breite ausgerichtet ist, erfordert dieses Schema, dass der Multiplikand mit 2, 4 und
8 vormultipliziert ist, um durch das Array transportiert zu werden. Dies setzt drei Addierer/Schieber pro Ziffern-
stelle Gber den Rand des Arrays voraus. Es ist auch notwendig, dass das Array durch eine 4-Bit-Ziffer in der
Multiplikandenbreite ausgedehnt wird, um die Breite der vormultiplizierten Multiplikanden aufnehmen zu kon-
nen. Wenn der Multiplikand vorzeichenbehaftet ist, dann wird eine Vorzeichenerweiterung notwendig sein, um
die zusatzliche Breite auszufillen (Vorzeichenerweiterung wird weiter unten erlautert).

[0082] Multiplikatoren, wie oben beschrieben, kdnnen fiir die Verwendung mit vorzeichenbehafteten Zahlen
angepasst werden. Die Gesamtstruktur des Multipliziererarrays wird von vorzeichenbehafteten Multiplikatoren
und vorzeichenbehafteten Multiplikanden unterschiedlich beeinflusst, wie unten erlautert wird. Fir den Zweck
der folgenden Diskussion wird vorausgesetzt, dass die behandelte Zahl als Komplement von zwei dargestellt
ist: in der normalen Form dieser Darstellung hat eine positive Zahl Y einen unveranderten Wert (von Y), wah-
rend eine negative Zahl -Y den Wert R -Y zugeteilt bekommt, wobei R 2X + 1 ist (wobei X der maximale zulas-
sige Wert von Y ist).

[0083] Das signifikanteste Bit einer Zahl ist daher -2" "Wert", und nicht 2", wie bei einer nicht vorzeichenbe-
hafteten Zahl. Dies bedeutet, dass in einem Multipliziererarray, das vorzeichenbehaftete Multiplikatoren verar-
beitet, das Partialprodukt, das vom signifikantesten Bit des Multiplizierers erzeugt wird, eine negative arithme-
tische Signifikanz aufweist, und daher von dem Gesamtresultat abgezogen anstatt addiert werden muss, wie
im Fall ohne Vorzeichen. Jedoch haben die finf Instruktionen des oben beschriebenen Booth-Recodierverfah-
rens bereits die gewlinschten Eigenschaften, und entsprechend handhaben sie einen vorzeichenbehafteten
Multiplikator automatisch. Im Gegensatz zu dem Fall ohne Vorzeichen muss der Multiplikator nicht mit dem si-
gnifikantesten Bit gleich Null erweitert werden — stattdessen ist das signifikanteste Bit ein Vorzeichenbit.

[0084] Fur einen vorzeichenbehafteten Multiplikanden wird ein zusatzlicher Schaltkreis bendtigt, wie in
Fig. 9a gezeigt ist. Fig. 9a zeigt eine vollstandige Multiplikation, die in einer Struktur ausgelegt ist, die eine
Langschriftrechnung wiederspiegelt, mit einer charakteristischen Zelle und mit seinen Eingaben und Ausga-
ben. Wenn der Multiplikand vorzeichenbehaftet ist, dann sind die Partialprodukte auch vorzeichenbehaftet und
mussen, wie auf der linken Seite der Struktur gezeigt ist, um ein korrektes Resultat zu ergeben, auf die volle
Breite des vollstandigen Produkts erweitert werden. Eine direkte Implementierung einer Vorzeichenerweite-
rung wirde einen Overhead von naherungsweise 50% fur eine Multiplikatorzelle des Typs bedeuten, der in
Fig. 8 gezeigt ist. Jedoch gibt es Mdgllichkeiten fiir eine groRere Effizienz bei der Summation dieser Vorzei-
chenerweiterung, da es sich wiederholende 1en und Oen in jedem Partialprodukt gibt. Um das Vorzeichen zu
erweitern, verwenden wir eine grundlegende Eigenschaft der Arithmetik von zweier Komplementen, namlich
das

(-S)ysssssz,72,2,Z2,=00000(S)2,2,72,72, 2,
[0085] Dies erlaubt uns, das Vorzeichen im notwendigen Umfang zu erweitern.

[0086] Arbeitet man sich von der am wenigsten signifikanten zu der am meisten signifikanten Partialsumme
vor, so ist die Summe der bisher kennengelernten Vorzeichenerweiterung das Ergebnis des signifikantesten
Summenbits auf der linken Seite des trapezférmigen Arrays, das in Fig. 9a gezeigt ist. Folglich kdnnen wir den
Effekt einer Summation der Vorzeichenerweiterung erreichen, ohne einen derart groRen Overhead zu bendti-
gen, wenn wir das signifikanteste Summenbit in jeder Partialsumme entlang der linken Seite extrahieren, die-
ses Bit zu einer vollstandigen Stelle erweitern, und das Resultat zur nachsten Partialsumme addieren.

[0087] Fig. 9b zeigt, wie dies effektiv in der Anordnung, die in Fig. 9a gezeigt ist, implementiert werden kann,
indem z. B. Multipliziererzellen verwendet werden, wie sie in Fig. 8 gezeigt sind. In Fig. 9b ist ein Teil des linken
Randes des Arrays flr eine Folge von Multiplikatorbitpaaren 521, 522; 523, 524 gezeigt. Die Vorzeichenerwei-
terung wird von der lo-Ausgabe eines dieser Multiplikatorbitpaare genommen und zu der Vorzeichenerweite-
rungseinheit weitergeleitet, welche als Nachschlagtabelle ausgefiihrt werden kann. Wenn das signifikanteste
Bit der lo-Ausgabe 0 ist, erzeugt die Vorzeichenerweiterungseinheit eine Zahl mit dem Binarwert 0000. Wenn
das signifikanteste Bit der lo-Ausgabe 1 ist, erzeugt die Zeichenerweiterungseinheit eine Zahl mit dem Binar-
wert 1111. Mit dieser Anordnung wird eine Zeichenerweiterung zur Verfliigung gestellt, die aquivalent ist zu dem
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vollstandigen Erweitern des Vorzeichens, wie es in Fig. 9a gezeigt ist, aber ohne wesentliche zusatzliche Kos-
ten.

[0088] Alternativ kdnnte das Multiplikatorarray so weit wie nétig in der Breite erweitert werden, so dass jede
Partialsumme garantiert eine am meisten signifikante Stelle besitzt, die ausschlieRlich aus Vorzeichenbits be-
steht. In diesem Fall ware ein separater Zeichenerweiterungsschaltkreis nicht notwendig, weil die lo-Ausgabe
eines der Multiplikatorbitpaare entweder aus lauter Nullen oder Einsen bestlinde, und diese lo-Stelle einfach
kopiert werden koénnte, um eine neue Zeichenerweiterungsstelle zu erzeugen, die in die nachste Reihe des
Arrays eingegeben werden kdnnte. Die Kosten dieses Ansatzes waren jedoch bedeutend.

[0089] Die obigen Abhandlungen beschreiben einen Arraymultiplizierer, welcher rein kombinatorisch funktio-
niert, ohne Parallelverarbeitungsregister. Parallelverarbeitung kann insbesondere bei grolten Arraymultiplizie-
rern wichtig sein, um eine hohe Geschwindigkeit zu erzielen — daher ist es hilfreich, den Multiplizierer vorsichtig
zu parallelisieren. Die folgenden Faktoren sind wichtig, um die beste Parallelisierung zu wahlen:
1. Eine Parallelverarbeitung quer tber den Multiplikanden zieht bei dieser Architektur nicht nur eine Paral-
lelverarbeitung des Multiplikanden selbst, sondern auch seine x2-, x4- und x8-Ableitungen mit sich. Dies ist
teuer und sollte daher nur dann durchgefiihrt werden, wenn preiswertere Alternativen ausgeschopft worden
sind.
2. Mit einem vorzeichenbehafteten Multiplikanden erzeugt der Vorzeichenerweiterungsmechanismus Ab-
hangigkeiten, die von dem am wenigsten signifikanten zu dem am meisten signifikanten Ende des Multip-
likators verlaufen, was die Partialprodukte dazu zwingt, in dieser Reihenfolge gebildet zu werden. Mit einem
vorzeichenfreien Multiplikanden ist dies nicht der Fall, und die Partialprodukte kdnnen in beliebiger Reihen-
folge gebildet werden.
3. Weil die arithmetische Signifikanz eines Ubertrags davon abhéngig ist, ob die Operation, die ausgefiihrt
wird, eine Addition oder eine Subtraktion ist, muss der Ubertrag nach links fortgepflanzt werden, wie dies
in Fig. 9a fur den Multiplizierer vierfacher Dichte aus Fig. 8 dargestellt ist.
4. Fir einen vorzeichenbehaften Multiplikanden pflanzen sich die Ubertrage nach links fort, und wegen der
Abhangigkeiten im Vorzeichenerweiterungsmechanismus missen die Partialprodukte von oben nach unten
gebildet werden. Dies zwingt die Partialsummen, sich nach rechts fortzupflanzen. Dies bedeutet, dass ver-
tikale Zeitabschnitte durch das Array nicht mdglich sind, weil die Ubertrége die Zeitabschnitte in eine Rich-
tung und die Partialsummen die Zeitabschnitte in die entgegengesetzte Richtung Gberqueren wiirden. Folg-
lich sind wir in diesem Fall gezwungen, entweder horizontale oder diagonale (von oben links nach unten
rechts) Zeitabschnitte einzufihren. Die diagonalen Zeitabschnitte schneiden nicht die Pfade d bis lo, was
eine grolte kombinatorische Verzégerung quer durch das Array anhaufen wirde. Die beste Herangehens-
weise ist daher, horizontale Zeitabschnitte einzuflhren, wo es sich um vorzeichenbehaftete Multiplikanden
handelt, und den Overhead der Parallelisierung des Multiplikanden und der drei Ableitungen in Kauf zu neh-
men. Fig. 10a zeigt den Datenfluss quer durch das vollstandig Multipliziererarray fir einen vorzeichenbe-
hafteten Multiplikanden und fasst die verschiedenen Arrayoverheads fir diesen Fall zusammen.
Diese Zeitabschnitte implizieren, dass der Multiplikand im Multiplizierer in paralleler Form und der Multipli-
kator in einem bitversetzten Format prasentiert werden sollten, bei dem weniger signifikante Stellen vor den
signifikanteren Stellen stehen sollten. Die exakte Taktsteuerung hangt von den Positionen, die fir die Zeit-
abschnitte gewahlt worden sind, ab. Die weniger signifikante Halfte des Ergebnisses wird in einem bitver-
setzten Format erzeugt, und die signifikantere Halfte liegt in einem Parallelformat vor. Zusatzlich kann die
signifikanteste Halfte des Ergebnisses neu getaktet werden, um sie in gleicher Weise bitzuversetzen, wie
die am wenigsten signifikante Halfte des Ergebnisses. Wird dieser Weg gewahlt, fihrt diese zusatzliche
Neutaktung zu einem zusatzlichen Overhead am unteren Ende des Arrays, wie dargestellt.
5. Fir einen Multiplikanden ohne Vorzeichen existiert kein Vorzeichenerweiterungsmechanismus, und folg-
lich kénnen wir die Partialprodukte von dem signifikantesten Ende des Multiplikators zum am wenigsten si-
gnifikanten Ende bilden — in der umgekehrten Richtung zu der in Fig. 10a gezeigten Richtung. In diesem
Fall Gberqueren die lo- und hi-Ausgaben beide die vertikalen Zeitabschnitte in der gleichen Richtung (nach
links), so dass vertikale Zeitabschnitte zulassig sind und auch bevorzugt sind, weil sie weniger Aufwand er-
fordern. Die Fig. 10b illustriert das Multipliziererarray fiir diesen Fall.

[0090] Zeitabschnitte dieser Form implizieren, dass der Multiplikator dem Array in paralleler Form prasentiert
werden sollte, und dass der Multiplikand dem Array im bitversetzten Format prasentiert werden sollte, wobei
die am wenigsten signifikanten Stellen zuerst kommen. Dies ist gerade umgekehrt zu der Datentaktung, die fur
die vorzeichenbehafteten Multiplikatoren mit horizontalen Zeitabschnitten gefordert ist. Die exakte Taktung
hangt von den Positionen ab, die fur die Zeitabschnitte gewahlt sind.

[0091] Wie im Falle der vorzeichenbehafteten Multiplikatoren wird die weniger signifikante Halfte des Ergeb-
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nisses in einem bitversetzten Format und die signifikantere Halfte in einem Parallelformat zur Verfligung ge-
stellt. Zusatzliche Neutaktung konnte verwendet werden, um die signifikantere Halfte des Ergebnisses in der
gleichen Weise wie die am wenigsten signifikante Halfte des Ergebnisses bitzuversetzen. Wird dieser Weg ge-
wahlt, wirde die zusatzliche Neutaktung in diesem Fall am oberen Rand des Arrays einen zusatzlichen Over-
head verursachen, wie dargestellt.

[0092] Der Ansatz einer vierfachen Dichte, wie er in Fig. 8 gezeigt ist, ergibt ein exzellentes Array, aber be-
noétigt fur Arrays brauchbarer GréRRe eine Parallelverarbeitung. Solch eine Parallelverarbeitung setzt jedoch vo-
raus, dass einige der Eingaben und Ausgaben in einem bitversetzten Format prasentiert werden, was bei man-
chen Anwendungen teuer einzurichten sein konnte. Die bitversetzte Taktung ist dadurch erzwungen, dass die
Partialprodukte in einer linearen Kette gebildet werden, was wiederum darin seine Ursache hat, dass die
Grundzelle nur ein Partialprodukt bilden und nur eine weitere Eingabe (und eine Ubertragseingabe) akkumu-
lieren kann. Wird ein Ansatz gewahlt, bei dem die Bildung der Partialprodukte von deren Akkumulation getrennt
ist, dann ist die Bildung jeden Partialprodukts eine unabhangige Operation, und sie kdnnen alle parallel aus-
gefihrt werden. Dies flhrt zu Lésungen, bei denen einige Zellen ungentigend ausgelastet sind und nur ver-
wendet werden, um die Partialprodukte zu bilden (wobei eine Eingabe ungenutzt bleibt), und andere Zellen
werden verwendet, um Paare von Partialprodukten und Partialsummen zu bilden. Bei diesem Ansatz kénnen
die Zellen, die verwendet werden, um die Partialprodukte zu bilden, immer noch eine Booth-Codierung des
Multiplikators verwenden, um die Instruktionseingaben anzusteuern, was ihnen erlaubt, das Partialprodukt,
das zwei Bits des Multiplikators entspricht, in jeder Zelle zu akkumulieren. Die Zellen, die Paare von Partial-
produkten akkumulieren, sind statisch als Addierer konfiguriert und verwenden keine Instruktionseingaben.

[0093] Der Vorteil dieses Ansatzes im Vergleich zu dem Ansatz der linearen Akkumulation besteht darin, dass
die Eingaben und Ausgaben parallel zur Verfligung stehen, und dass der Baum von Addierern eine geringere
Wartezeit aufweist als die lineare Kette von Addierern. Die Nachteile sind, dass er mehr Zellen benétigt als der
Ansatz der linearen Akkumulation und die Zellverkniipfungen so sind, dass einige lange Verbindungen Gber
das Array bendtigt werden, die die Bearbeitungsgeschwindigkeit verringern kénnten, und dass ein solcher An-
satz unvereinbar ist mit der unten beschriebenen effizienten Vorzeichenerweiterung des Multiplikanden, weil
diese effiziente Form der Vorzeichenerweiterung voraussetzt, dass die Partialprodukte mit dem am wenigsten
signifikanten Teil zuerst verarbeitet werden, was zu einer zusatzlichen Abhangigkeit fihrt, die eine lineare Ak-
kumulation der Partialprodukte zwingend macht.

[0094] Alternativen zu den parallelisierten Arraymultiplizierern aus Fig. 10a und Fig. 10b kénnen bei analo-
gen Seriell-Parallel-Multipliziereren zur Verfligung gestellt werden. Bei diesen sind die einander folgenden
"Zeitscheiben" der vollstdndigen Kalkulation auf denselben linearen Hardware-Streifen in aufeinander folgen-
den Taktzyklen abgebildet, anstatt im Raum verteilt zu sein, wie dies bei Arraymultiplizierer der Fall ist. Die zur
Verfligung stehenden Optionen sind die gleichen wie bei den Arraymultiplizierern, aber bei den Arraymultipli-
zierern beeinflussen die Kosten der Parallelisierung des Multiplikanden die Auswahl der Parallelisierung, wo-
hingegen dies kein wesentliches Thema im Fall eines Seriell-Parallel-Multiplizierers ist. Auf der anderen Seite
werden jegliche Arrayoverheads, die entlang der Lange des linearen Multiplizierers zur Verfliigung gestellt wer-
den missen, proportional teurer sein als im Fall eines Arraymultiplizierers.

[0095] Fig. 11a zeigt einen seriellen Multiplikator mit einem parallelen Multiplikanden. Dies ist im Ergebnis
aquivalent zu der Projektion des Arraymultiplizierers von FEig. 10a auf ein lineares Array, wobei das lineare Ar-
ray die Arbeit aufeinander folgender horizontaler Streifen des Arrays in aufeinander folgenden Taktschritten er-
fullt. Der Multiplikator ist inkrementell in serieller Weise eingegeben, wahrend der Multiplikand dem Verarbei-
tungsarray 111 parallel zur Verfigung steht. Im ersten Schritt wird das erste (am wenigsten signifikante Bit) des
Multiplikators mit dem folgenden Multiplikanden multipliziert. Das Ergebnis wird im Register 113 ausgelesen,
mit Ausnahme fiir das am wenigsten signifikante Bit, welches separat nach aufen geleitet wird. Jeder Zeit-
schritt erzeugt in dieser Weise eine weitere Stelle des am wenigsten signifikanten Teils des Ergebnisses, und
mit dem letzten Zeitschritt ist der Rest des Ergebnisses (der signifikanteste Teil) in paralleler Form vom Regis-
ter 113 zuganglich. Um dem Multiplikator zu erlauben, sofort fir eine weitere Berechnung wiederverwendet zu
werden, wird das Ergebnis des signifikantesten Teils, welches parallel zum Schieberegister 112 lbertragen
wird, in digitalem seriellem Format von einem separaten Bus abgerufen.

[0096] Vorteile dieser Form eines Parallel-Seriell-Multiplizierers sind, dass der Booth-Codieroverhead fur nur
eine Stelle des Multiplikators anfallt, und der Multiplikand und seine drei Vielfachen nicht parallel verarbeitet
werden mussen (sie werden konstant gehalten fir die Dauer jeder Multiplikation), und dass nur ein Schiebe-
register notwendig ist, um die signifikanteste Halfte des Ergebnisses festzuhalten, weil die Ubertrage bereits
fortgepflanzt wurden, und das Ergebnis in normaler binarer Darstellung (ohne Vorzeichen oder als Komple-
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ment von zwei) vorliegt. Nachteile dieses Parallel-Seriell-Multiplizierers sind, dass drei Vielfache des Multipli-
kanden aufwendig zu berechnen sind, und dass das Fehlen der Parallelisierung beim Ubertragspfad die Ge-
schwindigkeit bei grolen Multiplikanden begrenzen kénnte.

[0097] Fig. 11b zeigt, ahnlich dazu, einen Parallel-Multiplizierer mit seriellen Multiplikanden: dieses Mal als
Resultat einer Projektion des Arraymultiplizierers von Fig. 10b auf ein lineares Array. Fir diesen Fall sind nun
zwei Schieberegister 114 und 115 flr die lo- und die c-Komponenten vorgesehen. Jeder Taktschritt erzeugt
erneut eine Stelle des am wenigsten signifikanten Teils des Ergebnisses, wobei der am meisten signifikante
Teil des Ergebnisses in paralleler Form mit dem letzten Taktschritt verfiigbar wird, obwohl die lo- und c-Kom-
ponenten des signifikantesten Teils des Ergebnisses immer noch zusammenaddiert werden missen, um die
Darstellung des Komplements von zwei zu erhalten. Fir die sofortige Wiederverwendung des Multiplikators ist
es hier notwendig, dass diese beiden Teile des Resultats parallel zu den beiden Schieberegistern 114 und 115
Ubertragen werden, fir den Zugang in einem digitalen-seriellen Format, Summation und der Weiterleitung zu
einem separaten Bus. Eine besonders effektive Weise, dies durchzufihren ist das Auslesen der Schieberegis-
ter 114 und 115 Stelle fur Stelle, und das Hinzuaddieren der Stellen in der Reihenfolge, in der sie durch den
Addierer 116 erscheinen (dies erlaubt, dass der Ubertrag effektiv gehandhabt werden kann).

[0098] Die Vorteile dieser Form eines Addierers sind eine Parallelverarbeitung aller Pfade, um jegliche Fort-
pflanzungs-Verzégerungsprobleme zu vermeiden, und das Vorliegen nur einer Overheadstelle fur die Erzeu-
gung x2-, x4- und x8-Versionen des Multiplikanden. Nachteile ziehen den Overhead der Booth-Codierung fur
die volle Lange des Multiplikators mit sich, und einen doppelten Overhead von Schieberegistern, um die signi-
fikantesten Teile des Ergebnisses festzuhalten (weil Ubertréage nicht vollstéandig fortgepflanzt werden, bevor
der Ubertrag zu den Registern stattfindet).

[0099] Die Wahl des Seriell-Parallel-Multiplizierers wird durch die Anforderungen der speziellen Funktion und
der speziellen Architektur bestimmt: als generelles (nicht universelles) Prinzip bendtigt der Multiplizierer mit pa-
rallelem Multiplikanden und seriellem Multiplikator weniger Hardware, wahrend der Multiplizierer mit seriellem
Multiplikanden und parallelem Multiplikator weniger Einschrankungen bei der Geschwindigkeit aufweist.

[0100] Beide Eingaben werden dem Seriell-Seriell-Multiplizierer seriell zugefiihrt, und zwar mit der am we-
nigsten signifikanten Stelle zuerst. Naturlich hat der Multiplizierer, nachdem die am wenigsten signifikanten
D-Stellen jedes Operanden geliefert worden sind, genug Information, um die am wenigsten signifikanten
D-Stellen des Ergebnisses zu bilden. Bezugnehmend auf Eig. 12a kann zum Taktschritt D das Produkt der am
wenigsten signifikanten D-Stellen der zwei Operanden gebildet werden. Dieses wird im allgemeinen 2D-Stellen
umfassen, von denen wenigstens D signifikante Stellen sich nicht noch einmal dndern werden und von dem
Schaltkreis ausgegeben werden kénnen. Die signifikantesten Stellen werden zuriickgehalten, und im nachsten
Zeitschritt werden weitere Terme zu ihnen addiert, um das nachste Partialprodukt zu bilden.

[0101] Die zusatzlichen Terme, die zu jedem Zeitschritt addiert werden, sind in Fig. 12a durch Paare von
Rechtecken markiert, welche die Nummer des Taktschrittes tragen. Zum Taktschritt 5, z. B., zeigt das vertikale
Rechteck (schattiert) mit der Nummer 5 das Produkt von Stelle 5 von X und den Stellen 1 bis 5 einschlief3lich
von Y. Das horizontale Rechteck mit der Ziffer 5 zeigt das Produkt von Stelle 5 von Y und Stellen 1 bis 4 ein-
schlieRlich von X. Beide Produkte missen zu dem Partialprodukt addiert werden, das zum Taktschritt 4 erzeugt
wurde, um das Partialprodukt zum Taktschritt 5 zu bilden.

[0102] Die horizontal und vertikal schattierten Rechtecke in Fig. 12a korrespondieren mit den Seriell-Paral-
lel-Multiplikationen, wie sie unter Bezugnahme auf die Fig. 11a und Fig. 11b beschrieben wurden. Der Fall der
Fig. 12a unterscheidet sich jedoch darin, dass die parallelen Komponenten nicht durch die gesamte Berech-
nung hindurch konstant sind, sondern zu jedem Taktschritt geandert werden. Die Berechnung kann daher, wie
in Fig. 12a gezeigt, durch zwei Schieberegister 121, 122 ausgefiihrt werden, wobei jedes einen jeweiligen Se-
riell-Parallel-Multiplizierer versorgt, wobei die Ausgabe der zwei Multiplizierer 123, 124 durch einen seriellen
Addierer 125 addiert wird. Jeder der Seriell-Parallel-Multiplizierer 123, 124 kann auf jede der Weisen, die in
Fig. 11a und Fig. 11b gezeigt sind, gebaut werden.

[0103] Der Fachmann erkennt, dass bei der Anwendung der beanspruchten Erfindung eine Vielzahl von Ver-
anderungen und Modifikationen méglich ist.

Patentanspriiche

1. Eine integrierte Schaltung fur die Multiplikation einer ersten Zahl mit einer zweiten Zahl, die integrierte

15/33



DE 698 34 942 T2 2007.06.06

Schaltung umfasst:

eine erste Zahleneingabe zum Empfangen der ersten Zahl, eine zweite Zahleneingabe zum Empfangen der
zweiten Zahl, und eine Ausgabe zum Bereitstellen des Ergebnisses der Multiplikation;

eine Verschlisselung (505) fir Booth Verschliisselungsgruppen von wenigstens zwei Bits der ersten Zahl; ein
Array (111) von Verarbeitungseinrichtungen (12; 507; 521-524), wobei jede Verarbeitungseinrichtung eine
Vielzahl von Dateneingaben, eine Ubertragseingabe, eine Ubertragsausgabe, und eine Vielzahl von Daten-
ausgaben besitzt, und jede Verarbeitungseinrichtung in der Lage ist, ein Partialprodukt fiir die Multiplikation
von wenigsten zwei Bits der ersten Zahl mit m Bits der zweiten Zahl auszufiihren, wobei m gréRer oder gleich
eins ist; und

Verknlpfungsvorrichtungen (14) zur Verknupfung der Eingaben und Ausgaben derart, dass fir jede Verarbei-
tungseinrichtung:

die Dateneingaben von m Bits der zweiten Zahl zur Verfligung gestellt werden; und eine Summationseingabe
fur eine Summe von Partialprodukten der gleichen Signifikanz;

eine Ubertragseingabe wird bereitgestellt, wenn geeignet, um einen Ubertrag von einem weniger signifikanten
Partialprodukt zu addieren;

die Datenausgaben werden als Summationsausgabe zur Verfiigung gestellt, die die am wenigsten signifikan-
ten m Bits des Partialproduktes beinhaltet; und

eine Ubertragsausgabe wird bereitgestellt, die jedwede signifikanten Bits des Partialproduktes enthalt; wobei
die integrierte Schaltung ein programmierbares Array umfasst wobei jede Verarbeitungseinrichtung (12; 507;
521-524) in dem Array eine Instruktionseingabe (INST) zur Steuerung der Funktion umfasst, die in der Verar-
beitungseinrichtung ausgefihrt wird und wobei die Verschlisselungseinrichtung (505) eine Instruktion fir eine
Vielzahl von Verarbeitungseinrichtungen basierend auf einer Gruppe von Booth verschlisselten Bits der ersten
Zahl generiert; und

die integrierte Schaltung eine Vielzahl von Feldern (10) umfasst, von denen jedes Feld eine Vielzahl von Zeilen
und Spalten umfasst, jede Zeile und jede Spalte eine alternierende Sequenz einer Verarbeitungseinrichtung
(12) umfasst und einen Schaltungsbereich (14), jeder der Schaltungsbereiche beinhaltet eine Vielzahl von
Schaltern fur eine konfigurierbare Verbindung der Eingaben und Ausgaben, mit der Verbindungsvorrichtung,
die von den Schalterbereichen in der Vielzahl von Feldern zur Verfugung gestellt wird.

2. Eine integrierte Schaltung gemafR Anspruch 1, wobei der Wert, der an der Instruktionseingabe empfan-
gen wird, durch zwei Bits der ersten Zahl bestimmt wird, so dass die bereitgestellten Instruktionen jeweils ver-
ursachen, dass Werte, die das 0-, 1-, 2 und 3-fache der m Bits der die zweite Zahl reprasentierenden Werte zu
den Datenausgaben weitergegeben werden, entsprechend der Werte der zwei Bits der ersten Zahl.

3. Eine integrierte Schaltung gemaR Anspruch 1, wobei der Wert, der an der Instruktionseingabe empfan-
gen wird, durch drei Bits der ersten Zahl bestimmt wird, in der Weise, dass die bereitgestellten Instruktionen
jeweils verursachen, dass zu den Datenausgaben Werte weitergereicht werden, die das 0, 1, 2, 3 und 4-fache
der m Bits der zweiten Zahl reprasentieren, entsprechend der Werte der drei Bits der ersten Zahl.

4. Eine integrierte Schaltung gemaR Anspruch 3, wobei das Verhaltnis zwischen den drei Bits der ersten
Zahl und den Werten, die zu den Datenausgaben weitergereicht werden, mit dem Radix-4 modifizierten Booth
Algorithmus Ubereinstimmen.

5. Eine integrierte Schaltung nach einem der vorhergehenden Anspriiche, wobei die zweite Zahl vorzei-
chenbehaftet ist, wobei Mittel zur Verfliigung gestellt werden, um das Vorzeichen durch fortschreitende Addition
der am meisten signifikanten Summenbits zu jeder Partialsumme abzuleiten, unter Verwendung des am meis-
ten signifikanten Bits der zweiten Zahl.

6. Eine integrierte Schaltung nach einem der vorhergehenden Anspriiche, die das zur Verfiigungstellen
entweder der ersten Zahl oder der zweiten Zahl in einer Parallelverarbeitung umfasst, wobei eine der ersten
Zahl und der zweiten Zahl im Array von Verarbeitungseinrichtungen parallel und wobei die andere der ersten
Zahl und der zweiten Zahl dem Array von Verarbeitungseinrichtung fortschreitend von am wenigsten signifi-
kanten zum signifikantesten Bit zu Verfugung gestellt wird.

7. Eine integrierte Schaltung gemafl Anspruch 6, wobei das Array von Verarbeitungseinrichtungen weiter
eine Vielzahl von Hilfsverarbeitungseinheiten umfasst, die zum Summieren der Partialprodukte vorgesehen
sind, wobei die Bildung der Partialprodukte durch eine Verarbeitungseinrichtung ohne grof3e Abhangigkeit von
der Ausgabe einer anderen Verarbeitungseinrichtung durchgefiihrt werden kann.

8. Ein Verfahren zum Multiplizieren einer ersten Zahl mit einer zweiten Zahl unter Verwendung einer inte-
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grierten Schaltung, die eine erste Zahleneingabe zum Empfangen der ersten Zahl, eine zweite Zahleneingabe
zum Empfangen der zweiten Zahl, eine Ausgabe zum Bereitstellen des Ergebnisses der Multiplikation, ein Ar-
ray (111) von Verarbeitungseinrichtungen (12, 507; 521-524) umfasst, jede Verarbeitungseinrichtung weist
eine Vielzahl von Dateneingaben, eine Ubertragseingabe, eine Ubertragsausgabe, eine Vielzahl von Daten-
ausgaben auf, und Vorrichtungen (14), die die Eingaben und Ausgaben verbinden,

die integrierte Schaltung umfasst ferner eine Vielzahl von Feldern (10), jedes Feld umfasst eine Vielzahl von
Reihen und Spalten, jede Reihe und jede Spalte umfasst eine Wechselfolge einer Verarbeitungseinrichtung
(12) und eines Schalterbereiches (14), die Schalterbereiche, von denen jeder eine Vielzahl von Schaltern fir
eine konfigurierbare Verbindung der Eingaben und Ausgaben umfasst, mit der Verbindungsvorrichtung, die
durch die Schalterbereiche in der Vielzahl von Feldern zur Verfigung gestellt wird,

umfasst das Verfahren die Multiplikationsschritte von:

zur Verflgung stellen von m Bits der zweiten Zahl an den Dateneingangen jeder Verarbeitungseinrichtung, wo-
bei m gréRer oder gleich eins ist, und eine Summationseingabe fiir die Summe von Partialprodukten der glei-
chen Signifikanz;

zur Verfiigung stellen einer Ubertragseingabe, wenn angebracht, um einen Ubertrag eines weniger signifikan-
ten Partialprodukts zu addieren;

Berechnen eines Partialprodukts mit jeder Verarbeitungseinrichtung;

Bereitstellen einer Summationsausgabe an den Datenausgaben, die die am wenigsten signifikanten m Bits des
Partialproduktes enthalt; und

Bereitstellen einer Ubertragsausgabe, die jedwede signifikanten Bits des Partialprodukts enthalt;

und wobei die integrierte Schaltung ein programmierbares Array umfasst, bei dem jede Verarbeitungseinrich-
tung in dem Array eine Instruktionseingabe (INST) zur Steuerung der Funktion besitzt, die in der Verarbeitungs-
einrichtung ausgefiihrt werden soll

und das Verfahren umfasst ferner Booth Verschlisselungsgruppen von wenigstens zwei Bits der ersten Zahl
und generiert eine Instruktion flr eine Vielzahl von Verarbeitungseinrichtungen basierend auf einer Gruppe von
Booth Verschlusselungsbits der ersten Zahl und stellt die Instruktion zu einer Vielzahl von Verarbeitungsein-
richtungen bereit.

9. Ein Verfahren zum Multiplizieren gemafy Anspruch 8, wobei der Wert, der an der Instruktionseingabe
empfangen wird, durch zwei Bits der ersten Zahl bestimmt wird, in der Weise, dass die bereitgestellten Instruk-
tionen jeweils verursachen, dass Werte, die das 0, 1, 2 und 3-fache der m Bits der die zweite Zahl reprasen-
tierenden Werte zu den Datenausgaben weitergegeben werden, entsprechend der Werte der zwei Bits der ers-
ten Zahl.

10. Verfahren zum Multiplizieren gemaf Anspruch 8, wobei der Wert, der am Instruktionseingang empfan-
gen wird, durch drei Bits der ersten Zahl bestimmt wird, in der Weise, dass die bereitgestellten Instruktionen
jeweils verursachen, dass zu den Datenausgaben Werte weitergereicht werden, die das 0, 1, 2, 3 und 4-fache
der m Bits der zweiten Zahl reprasentieren, entsprechend der Werte der drei Bits der ersten Zahl.

11. Verfahren zum Multiplizieren gemaf Anspruch 10, wobei das Verhaltnis zwischen den drei Bits der ers-
ten Zahl und den Werten, die zu den Datenausgaben weitergereicht werden, mit dem Radix-4 multiplizierten
Booth-Algorithmus bereinstimmen.

12. Verfahren zum Multiplizieren gemaf einem der Anspruche 8 bis 11, wobei wenigstens eine der ersten
Zahl und der zweiten Zahl vorzeichenbehaftet ist.

13. Verfahren zum Multiplizieren nach Anspruch 12, wobei die zweite Zahl vorzeichenbehaftet ist, wobei
das Vorzeichen durch fortschreitende Addition der am meisten signifikanten Summenbits zu jeder Partialsum-
me abgeleitet ist, unter Verwendung des am meisten signifikanten Bits der zweiten Zahl.

14. Verfahren zum Multiplizieren nach einem der Anspriiche 8 bis 13, welches das zur Verfiigung stellen
entweder der ersten Zahl oder der zweiten Zahl in einer Parallelverarbeitung umfasst, wobei eine der ersten
Zahl und der zweiten Zahl im Array von Verarbeitungseinrichtungen parallel und die andere der ersten Zahl
und der zweiten Zahl dem Array von Verarbeitungseinrichtungen fortschreitend vom am wenigsten signifikan-
ten zum signifikantesten Bit zur Verfligung gestellt wird.

15. Verfahren zum Multiplizieren nach Anspruch 14, wobei das Array von Verarbeitungseinrichtungen wei-

ter eine Vielzahl von Hilfsverarbeitungseinheiten umfasst, die zum Summieren der Partialprodukte vorgesehen
sind, wobei die Bildung der Partialprodukte durch eine Verarbeitungseinrichtung unabhangig von der Ausgabe
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einer anderen Verarbeitungseinrichtung ausgefiihrt werden kann.

Es folgen 15 Blatt Zeichnungen
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Anhangende Zeichnungen
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Figur 3

21/33



DE 698 34 942 T2 2007.06.06

>

Summen-

ausgabe

Cn —-e . 1
Cout —
F (sumne)
Figur 4a
204 . .
/ Ubertragseingabe
/202 2N i
N B
[ Summen- a g
-B—-—.E:I.ngabe- ,J erzeu~ ;'tg ,T:_-
puffer gung g 3
LI
Funktions- U I'——""
einheit oy
ar-
206
-A——Ausgabe- | trags-
erzeu-
puffer gung _\205
203 Figur 4b Ubertragsausgabe

22/33



DE 698 34 942 T2 2007.06.06

/ X (Multiplikand) /

y(Multiplikator) T

l X*Y (Exgebnis)

FIG. 5a

23/33



v

Y (Multiplikator)

DE 698 34 942 T2 2007.06.06

v

X (Multiplikand)

v

d x

\P‘

Y

hi <€

FIG. 5b

24/33

Yn
c
lo
)
.6,&
;\
4



DE 698 34 942 T2 2007.06.06

FIG. 6a
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