
(19) United States
US 20060149993A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0149993 A1
Srivastava et al. (43) Pub. Date: Jul. 6, 2006

(54) METHOD FOR EVENT TRIGGERED
MONITORING OF MANAGED SERVER
HEALTH

(75) Inventors: Rahul Srivastava, Randolph, NJ (US);
Ananthan Bala Srinivasan, San
Francisco, CA (US); Eric M. Halpern,
San Francisco, CA (US); Dean
Bernard Jacobs, Berkeley, CA (US)

Correspondence Address:
FLIESLER MEYER, LLP
FOUR EMBARCADERO CENTER
SUTE 4OO
SAN FRANCISCO, CA 94111 (US)

(73) Assignee: BEA Systems, Inc., San Jose, CA (US)

(21) Appl. No.: 11/344,307

(22) Filed: Jan. 31, 2006

Related U.S. Application Data

(63) Continuation of application No. 10/338,981, filed on
Jan. 9, 2003.

(60) Provisional application No. 60/359,009, filed on Feb.
22, 2002.

Publication Classification

(51) Int. Cl.
G06F II/00 (2006.01)

(52) U.S. Cl. .. 714.f4

(57) ABSTRACT

A Node Manager monitors the status of multiple servers.
The Node Manager detects server failures, periodically
monitors server health status, and performs server mainte
nance. When the Node Manager detects a server failure, it
determines whether or not the server should be restarted.
While periodically monitoring servers, the Node Manager
may determine how often to trigger a health check, how long
to wait for a response, and how to proceed if the server is
deemed failed. The Node Manager may be controlled by an
Administrative Server directly or by an external adminis
trative agent. An administrative agent may control the Node
Manager by interfacing with the Administrative Server. The
Node Manager and AS may authenticate each other and
encode their communications to each other for increased
security.

Patent Application Publication Jul. 6, 2006 Sheet 1 of 5 US 2006/0149993 A1

u-o

10

Patent Application Publication Jul. 6, 2006 Sheet 2 of 5 US 2006/0149993 A1

205 200
-START

NM START-UP
AND 210

CONFIGURATION

MONITOR
SERVER 22O

DETECT
FAILED 230
SERVERT

Y
240

RESTARTABLE
250

CONDITION Y Y 27O

NOT
CONDITIONS RESTARTED

ADDRESS
CONDITIONS

PREVENT
RESTART

260

RESTART
SERVER 290

FIG. - 2 C END D-295

Patent Application Publication

START

BEGIN
MONITORING
SERVERT

lar HEALTH
CHECK

TRIGGERED2

QUERY SERVER
FOR

HEALTH STATUS

RESPONSE

SERVER
RESPONSE
HEALTHY?

DO NOT
KL

SERVER

Jul. 6, 2006 Sheet 3 of 5

310

320

330

340

RECEIVE WAIT
SERVER FOR

RESPONSE

SERVER
DEEMED
FAILED

KILL
SERVERT

FIG. - 3
394

US 2006/0149993 A1

300

360

370

KILL
SERVER

Patent Application Publication

430

440

450

Jul. 6, 2006 Sheet 4 of 5

START
410

INTIALIZE
SELF HEALTH
MONITOR

NOURY

PERFORM
SELF HEALTH

NOURY

TRANSMT
SELF HEALTH

DATA

FIG. - 4

RECEIVE
HEALTH STATUS

US 2006/0149993 A1

420

400

Patent Application Publication Jul. 6, 2006 Sheet 5 of 5 US 2006/0149993 A1

505 500

ESTABLISH
CONNECTION

BETWEENAS AND
NM

510

DETERMINE
ENCRYPTION KEY

SIZE

GENERATE SESSION
KEYS

AUTHENTICATION
PROCESSING

520 - N

530

540

550

FIG. - 5

US 2006/0149993 A1

METHOD FOREVENT TRIGGERED
MONITORING OF MANAGED SERVER HEALTH

CLAIM TO PRIORITY

0001. This application is a Continuation of U.S. patent
application Ser. No. 10/338,981 entitled METHOD FOR
EVENT TRIGGERED MONITORING OF MANAGED
SERVER HEALTH, by Rahul Srivastava et al., filed Jan. 9,
2003 (Attorney Docket No: BEAS-01 172US4), which
claims priority under 35 U.S.C. S 119(e) to:
0002 U.S. Provisional Patent Application No. 60/359,
O09 entitled ECS NODE MANAGER FOR ENSURING
HIGHAVAILABILITY SERVER AND APPLICATION, by
Rahul Srivastava et al., filed Feb. 22, 2002 (Attorney Docket
Number BEAS-01 172us0), which applications are incorpo
rated herein by reference.

CROSS REFERENCE TO RELATED
APPLICATIONS

0003. The present application is related to the following
United States Patents and Patent Applications, which pat
ents/applications are assigned to the owner of the present
invention, and which patents/applications are incorporated
by reference herein in their entirety:
0004 U.S. patent application Ser. No. 10/339,469
entitled METHOD FOR AUTOMATIC MONITORING OF
MANAGED SERVER HEALTH, by Rahul Srivastava et al.,
filed on Jan. 9, 2003 (Attorney Docket Number BEAS
01 172us3), which claims priority to U.S. Provisional Patent
Application 60/359,009 entitled ECS NODE MANAGER
FOR ENSURING HIGH AVAILABILITY SERVER AND
APPLICATION, by Rahul Srivastava et al., filed Feb. 22,
2002 (Attorney Docket Number BEAS-01 172us0);
0005 U.S. patent application Ser. No. 10/339,144
entitled SYSTEM FOR MONITORING MANAGED
SERVER HEALTH, by Rahul Srivastava et al., filed Jan. 9,
2003 (Attorney Docket Number BEAS-01 172us5), which
claims priority to U.S. Provisional Patent Application
60/359,009 entitled ECS NODE MANAGER FOR ENSUR
ING HIGH AVAILABILITY SERVER AND APPLICA
TION, by Rahul Srivastava et al., filed Feb. 22, 2002
(Attorney Docket Number BEAS-01 172us0);
0006 U.S. patent application Ser. No. 10/340,496
entitled METHOD FOR INITIATING A SUB-SYSTEM
HEALTH CHECK, by Rahul Srivastava et al., filed Jan. 10,
2003 (Attorney Docket Number BEAS-01183us 1), which
claims priority to U.S. Provisional Patent Application No.
60/359,010 entitled Server Self-Health Monitor, by Rahul
Srivastava et al., filed Feb. 22, 2002 (Attorney Docket
Number BEAS-01183us0);
0007 U.S. patent application Ser. No. 10/340,227
entitled METHOD FORMONITORING ASUB-SYSTEM
HEALTH, by Rahul Srivastava et al., filed on Jan. 10, 2003
(Attorney Docket Number BEAS-01183us2), which claims
priority to U.S. Provisional Patent Application No. 60/359,
010 entitled Server Self-Health Monitor, by Rahul Srivas
tava et al., filed Feb. 22, 2002 (Attorney Docket Number
BEAS-01183us0); and
0008 U.S. patent application Ser. No. 10/340,002
entitled SYSTEM FOR MONITORING A SUBSYSTEM

Jul. 6, 2006

HEALTH, by Rahul Srivastava et al., filed on Jan. 10, 2003
(Attorney Docket Number BEAS-01183us3), which claims
priority to U.S. Provisional Patent Application No. 60/359,
010 entitled Server Self-Health Monitor, by Rahul Srivas
tava et al., filed Feb. 22, 2002 (Attorney Docket Number
BEAS-01183us0).

Copyright Notice

0009. A portion of the disclosure of this patent document
contains material which is Subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

0010. The present invention relates generally to manag
ing a network of servers, and more particularly to monitor
ing the health of a network of servers.

BACKGROUND

0011. As computer and computer systems have evolved
over the years, the processes they implement have evolved
in their complexity. One approach to implementing com
puter processes to solve more complex problems is to assign
a number of computers to handle different parts of a process.
Each part or task may be handled by different computers,
computer objects, applications, or servers, hereafter referred
to collectively as servers. These servers make up a distrib
uted network. Within the network, different servers may
handle functions such as management, data base mainte
nance, accessibility, server boot-up, shut-down, and so forth.
0012 Servers within a distributed network perform trans
actions with other servers and use resources within the
system. As the servers require the use of other servers and
resources, the operability and reliability of the servers
become more important. If a server fails while performing a
task, it may affect other servers and resources that were tied
up in transactions with the server at the time of its failure.
Whether a server has failed completely or the server's
condition has degraded is important information to a net
work. Thus, it is important to know the status of a server in
order to maintain the health of the server and the network in
which it operates. A maintenance system should be able to
require a server to provide health information and be able to
maintain or correct servers not operating properly.
0013 What is needed is a system for monitoring and
inquiring into the health of a server and for taking corrective
action if deemed appropriate.

SUMMARY

0014. In one embodiment of the present invention, a
Node Manager (NM) monitors the status of multiple servers.
The NM detects server failures, periodically monitors server
health status, and performs server maintenance. When the
NM detects a server failure, it determines whether or not the
server is restartable. If the server is restartable, the NM
checks to see if any other conditions exist that limit the
server from being restarted. If no other conditions exist, the
server is restarted. If the failed server is not restartable or

US 2006/0149993 A1

other conditions exist preventing the server from being
restarted, the failed server is not restarted.
0015. In another embodiment of the present invention,
the NM periodically monitors the health of a server whether
or not the NM detects a server failure. This process begins
when the NM makes a health query to a server. Then, the
NM waits for a server response containing the server's
health information. If the server replies that it is healthy, the
NM continues to monitor the server. If the server's reply
indicates the server's health is degenerate or the server does
not reply at all, the NM presumes the server has failed. The
NM may wait a specified period of time before deciding the
server has failed to respond to a query. Once a server is
deemed failed, the NM then determines whether to terminate
the server.

0016. The NM may be controlled by parameters located
within the NM or Administration Server (AS). The param
eters may be burned into system software or modified at
runtime. In another embodiment, the NM may be controlled
by an external administrative agent. An administrative agent
may control the NM by interfacing with the AS. For
increased security, the NM and AS may authenticate each
other and encode their communications between each other.

BRIEF DESCRIPTION OF THE DRAWINGS

0017 FIG. 1 is a block diagram of several nodes having
servers in a self health monitoring system in accordance
with one embodiment of the present invention.
0018 FIG. 2 is a diagram showing the operation of the
automatic monitoring system of a Node Manager in accor
dance with one embodiment of the present invention.
0.019 FIG. 3 is a diagram showing the operation of a
health monitoring and corrective action system of a Node
Manager in accordance with one embodiment of the present
invention.

0020 FIG. 4 is a diagram showing the operation of a
managed server in a health monitoring system in accordance
with one embodiment of the present invention.
0021 FIG. 5 is a diagram showing an encryption method
for a self health monitoring system in accordance with one
embodiment of the present invention.

DETAILED DESCRIPTION

0022. A self health monitoring system may be composed
of several nodes. A node may be a single physical machine
or take some other form. In one embodiment of the present
invention, each node has a Node Manager (NM), an Admin
istration Server (AS), and several other managed servers or
server instances. The AS and NM may send and transmit
messages to each other. The NM may also send and transmit
messages with the other servers located on the node.
0023. In one embodiment, the NM performs two primary
functions. First, the NM automatically detects and restarts
failed servers. The NM continually monitors servers running
on the local machine. Upon detecting a server has failed, the
NM will automatically restart the failed server. The server
restart may occur as soon as the NM detects the server
failure. Secondly, the NM periodically monitors and restarts
failed or degenerate servers. The NM will periodically
monitor servers running on the local machine. When the NM

Jul. 6, 2006

detects that a server is less than healthy, the NM may restart
the server depending on server parameters and the condition
of the server. In one embodiment, runtime java MBeans
hosted on the AS are used in conjunction with the NM to
achieve these functions. The runtime java MBeans offer the
functionality of the NM and the health information acquired
by the NM to clients in a programmatic manner.
0024 FIG. 1 depicts a self health monitoring system 100
in accordance with one embodiment of the present inven
tion. As shown, system 100 includes a first node 10, a second
20, and a third node 30. Each node may contain an AS 11,
21, and 31, and an NM 12, 22, and 32, respectively. In each
node, the AS communicates with the NM. In one embodi
ment of the present invention, the AS and the NM commu
nicate through a (SSL) Secure socket layer connection. Each
node also contains at least one managed server. In one
embodiment, these managed servers may be composed of
server instance processors or logic servers all located on one
hardware machine. Hereinafter, the term "server” shall be
understood to include server instance processors, server
instance logic, and other managed servers. A node may be
one physical machine with servers that communicate with
other servers on the same machine. As shown in FIG. 1,
node 10 includes servers 13-15, node 20 includes servers
23-25, and node 30 includes servers 33-35. An NM may
communicate with the servers within the particular NM's
node. For example, NM 12 can communicate with servers
13, 14, 15, all within node 10. In one embodiment, the NM
communicates with the servers within its node through a
secure socket layer connection.
0025. In accordance with one embodiment of the present
invention, the operation of an automatic monitoring system
for detecting failed servers in the self health monitoring
system of FIG. 1 is shown in flow chart 200 of FIG. 2 and
described as follows. The operation of an NM starts at step
205. Next, the NM undergoes start-up and configuration
operations in step 210. In one embodiment of the present
invention, the NM receives instructions from an AS at
start-up. The AS may instruct the NM to start an instance on
a local machine. The AS may also instruct the NM to provide
information to the AS regarding servers previously moni
tored during previous monitoring periods by the NM. The
NM may assume that all of the monitored servers are alive
upon NM startup and sets each server state to “unknown”.
In step 220, the NM begins monitoring a server. In one
embodiment, the server is monitored over an SSL connec
tion established with the server. In another embodiment, the
server is monitored over a plain text protocol connection or
Some other type of connection.
0026. The NM determines if a server has failed in step
230. In one embodiment, the server failure is detected by a
breakdown of the connection between the NM and the
server. In these embodiments, the NM monitors the server
by confirming the integrity of the connection between the
NM and the server. When the server being monitored dies,
the NM is notified accordingly. In one embodiment, the NM
receives an IOException error when the server dies. The
integrity of the connection may also be verified in other
ways, all considered within the scope of the invention. If the
NM does not detect a failed server, operation of the system
returns to step 220 to continue monitoring the server.
0027) If the NM does detect a failed server in step 230,
the NM will determine if the server is restartable in step 240.

US 2006/0149993 A1

In one embodiment, a restart parameter specifies whether the
server should be restarted upon detecting a server failure.
The restart parameter may reside on the server, the NM, or
in some other memory location. The parameter may be
defined per server instance or for a number of servers. The
parameter may also be modifiable at runtime though com
mands issued through the AS. If the server is not restartable,
operation continues to step 250 and the server is not
restarted. In one embodiment, a message is written to a log
file indicating that the server is not restartable and no further
action is taken by the NM towards the failed server. Once the
event is recorded, the process ends at step 260 and the NM
ceases monitoring the failed server. Though no further action
is performed on the server at step 260, the server may be
monitored again beginning at Step 220 if the server is
restarted or at step 205 if the NM is restarted.
0028) If the server is deemed restartable in step 240,
operation of the system continues to step 270. At step 270,
the system checks to confirm that no other conditions exist
to prevent the server from being restarted. If at step 270 any
conditions exist preventing a server restart, then system
operation proceeds to step 275. In step 275, an action or
inaction is taken to address the condition that is preventing
the server from being restarted. The action or inaction may
be taken by either the NM, AS, or some other server. After
the condition is addressed in step 275, the system determines
whether the condition is satisfied in step 280. If the condition
is not satisfied in step 280, operation returns to step 275. If
the condition is satisfied in step 280, operation continues to
step 270. In one embodiment of the present invention,
operation continues from step 275 to step 270 whether the
condition is satisfied or not. In yet another embodiment of
the present invention, the NM will check to see if the server
may be restarted after each time a restart is considered in
step 270. In this embodiment (not shown), operation con
tinues from step 275 or step 280 to step 240. In any case, the
results of step 280 may be recorded in a log or memory as
either condition satisfied, condition not satisfied, or some
other message. If at step 270 the conditions are satisfied,
then operation continues to step 290.
0029. In one embodiment, system conditions may exist at
step 270 that limit the server to a maximum number of
restarts allowed during a period of time. In this case,
parameters may control the maximum number of server
restarts permitted within the period of time and the length of
the time period. The number of actual restarts for a particular
server may be indicated by a restart counter. If at step 270,
the value in the maximum restarts allowed parameter is
larger than the restart counter, then the maximum number of
restarts has not occurred during the current time period and
the process continues to step 290. If the restart counter value
is larger than the maximum number of server restarts per
mitted within the particular time period, then operation
continues to step 280. Operation of the system may remain
at step 280 until the current time period has elapsed. Once
the time period has elapsed, the restart counter is reset to
Zero and the time period begins again. The system then
continues to step 270. At step 270, the restart counter is
again compared to the maximum number of restarts param
eter and operation continues accordingly. In another
embodiment, system operation will continue past step 280
even though the maximum start parameter has been
exceeded. In this case, a message is logged regarding this
event and operation continues. System operation in this

Jul. 6, 2006

embodiment will consist of a loop between step 270 and step
280 until the time period has elapsed and the restart counter
is reset to Zero.

0030) At step 290, the server is restarted. Then, the NM,
server, or AS may perform actions or process events. In one
embodiment, the server restart counter is incremented. In
another embodiment, certain server parameters may be
configured to take effect upon the next server incarnation.
0031 Parameters determine how a NM is to act upon
detecting server failure. Examples of these parameters in one
embodiment of the present invention are shown below.
These parameters can be defined per server instance and
modified at runtime via the Admin Console.

0032) AutoRestartEnabled =<true false>
0033. This parameter specifies whether the servers are
restartable or not. In one embodiment, the default is true.
0034) RestartIntervalSeconds=<number of seconds>
0035) If a Server is restartable, this parameter specifies
that it can be restarted RestartMax times within the specified
number of seconds. In one embodiment, the default is 3600
seconds (60 minutes).
0036) RestartMax=<numbers
0037. If Servers are restartable, this parameter specifies
the max it times a Server can be started within the period
specified by RestartIntervalSeconds. In one embodiment,
the default is 2.

0038 Certain methods implemented in java may be used
to access or modify the parameter examples listed above.
Examples of these methods include boolean getAutoRestart
Enabled(), void setAutoRestartEnabled (boolean), int getRe
startIntervalSeconds(), void setRestartIntervalSeconds(int),
int getRestartMax(), and void setRestartMax(int).
0039. In addition to detecting the failure of a server, the
NM may monitor the health of a server or perform mainte
nance on a server. The NM may monitor server health or
perform server maintenance without detecting a change or
degradation in the health status of the server. Server main
tenance and monitoring may be performed simultaneously
on multiple servers at any time. The simultaneous monitor
ing and maintenance may be synchronous or asynchronous.
The operation of a system for monitoring the health of a
server with a NM in accordance with one embodiment of the
present invention is shown in diagram 300 of FIG. 3 and
described as follows. Health monitoring system operation
300 starts off with a start step 310. Next, the system
determines whether the NM should begin monitoring a
server in step 320. If the system determines the NM should
monitor the particular server, operation continues to step
330. If the system determines the particular server should
not be monitored at the current time, the NM will not
monitor the current server. In one embodiment, a server will
not be monitored until a period of time has passed since the
server has been restarted. In this case, a monitor delay
parameter will determine the period of time the NM shall
wait before monitoring the restarted server. The delay
parameter may be stored by the AS, NM, or the server itself.
The delay parameter may correspond to a particular server
or several servers. In one embodiment of the present inven
tion, the value of the delay parameter may be modified at
server runtime.

US 2006/0149993 A1

0040. Next, the NM determines if a health check is
triggered for a particular server in operation 330. A health
check may be triggered by an internal event in the NM. In
another embodiment, the health check is triggered by an
external event occurring outside the NM, the occurrence of
which is communicated to the NM. In one embodiment, a
health check is triggered for a server after a period of time
has elapsed. In this case, a health check interval parameter
may specify a period of time. The expiration of the time
period specified by the interval parameter will trigger a
health check for a server. In one embodiment, an interval
parameter corresponds to a single server. In another embodi
ment, an interval parameter corresponds to several servers.
In any case, the interval parameter may be modified at server
runtime. If a health check is not triggered in step 330, the
system continues in a standby state waiting for a triggering
event to occur regarding a particular server. If a health check
triggering event does occur, system operation continues to
step 340.
0041. In step 340, the NM queries a server for its health
status. In one embodiment of the present invention, the NM
invokes a java servlet located on the server to return the
server's health status to the NM. This java servlet is an
asynchronous servlet that will return the server's health
information upon the occurrence of a particular event. In one
embodiment, the event is the elapse of a period of time. The
NM may inquire about the server's health status by com
municating with the server itself or a server self health
monitor application running on the server. The query may be
transmitted over a TCP connection established between the
NM and server or in some other manner. After querying the
server for its health status, the NM determines if a response
is received from the server in step 350. In one embodiment,
there are at least three possible response scenarios between
the NM and the server subject to the NM's inquiry. In the
first scenario, the server may be unable to receive the NM's
query. The server may be too busy to accept a connection
from the NM. In another scenario, the server may have failed
and be unable to accept an NM connection request. In either
case, the NM may throw an IOException and consider the
server as “failed'. The NM would then set an internal value
of the server state to “failed'. In the final scenario, no
response is received from the server although the NM and
server have established an initial connection. In this case, the
NM will wait for a response from the server for a specified
period of time. In one embodiment, a timeout parameter may
specify the period of time the NM will wait for a response
from the server. Until the length of time specified in the
timeout parameter has transpired, the NM will continue to
wait for a response as indicated in the loop of steps 350 and
360. If the NM has not received a response from the server
in step 350 and the NM has determined not to wait any
longer to receive a response in operation 360, operation
continues to step 370 where the server is deemed failed. In
one embodiment, the NM may attempt to inquire about the
delay of the response or resend a health inquiry to the server
before proceeding from to 370. In this embodiment, the NM
may proceed to step 350,360, or 380 depending on the result
of the delay inquiry or the health inquiry.
0042. If the NM does receive a response in step 350,
operation flows to step 380 where the NM interprets the
server's response. The NM interprets the server's response
to determine if the server is healthy. If the NM determines
the server is healthy from the response received by the

Jul. 6, 2006

server, operation flows to step 330 where the NM waits for
another health check to be triggered. If the NM determines
that the server is not healthy in step 380, operation continues
to step 370. In step 370, the NM deems the server has failed.
In one embodiment, the NM sets a parameter indicating the
state of the particular server to “failed'. The parameter may
be stored internally within the NM, in the AS, or at some
other memory location. Once deemed failed, operation con
tinues to step 390 where the NM determines whether to
terminate the server. In one embodiment, the NM contains
an auto-terminate parameter. The auto-terminate parameter
may relate to a single server or multiple servers at once. A
user may set a value for the auto-terminate parameter or the
parameter may be preset by the system. If the auto-terminate
parameter indicates the server should not be terminated upon
server failure, then operation continues to step 396. In one
embodiment of the present invention, the system enters a
message in a log indicating the failed status of the server and
that the server is not to be restarted. After step 396, system
operation proceeds to step 330. If the auto-terminate param
eter indicates the server should be terminated upon server
failure in step 390, then operation continues to step 392. The
failed server is terminated in step 392. In one embodiment
of the present invention, an entry is made to a log indicating
the server is deemed failed and that the server was termi
nated. Monitoring of the terminated server ends in step 394.
Once the server is terminated, the automatic detection sys
tem of FIG. 1 may detect the terminated server at step 230.
The NM may then proceed to determine whether to restart
the server as shown in FIG. 1.

0043. In one embodiment of the present invention, cer
tain parameters will control how the server periodically
checks the servers running on the local machine. Examples
of parameters controlling the check are shown below.

0044) HealthCheckIntervalSeconds = <number of sec
onds>

0045. This parameter specifies the interval of time (in
seconds) between which periodic scans are done by NM to
check if Servers are Failed. In one embodiment, the default
is 180 seconds.

0046 HealthCheckTimeoutSeconds =<number of sec
onds>

0047. This parameter specifies the length of time (in
seconds) the Node Manager will wait for a response to the
health check query after which it will deem the monitored
server Failed. In one embodiment, the default is 60 seconds.

0.048 AutoKillIfFailedEnabled =<true falsed
0049. This parameter specifies if a Server is deemed
Failed, this parameter will control whether NM will kill the
Server or not. In one embodiment, the default is false.

0050 HealthCheckStartDelaySeconds =<number of sec
onds>

0051. The time that a server takes to startup depends
upon the applications being deployed on it. The NM will
wait for a server to complete its startup before the NM starts
monitoring the server. This parameter specifies the length of
time (in seconds) the NM will wait before starting its
monitoring of the server. In one embodiment, the default is
120 seconds.

US 2006/0149993 A1

0.052 The HealthCheckIntervalSeconds and Health
CheckTimeoutSeconds and parameters can be defined per
NM and on the NM command line. The AutoKillIffailedE
nabled and HealthCheckStartDelaySeconds parameters can
be defined per server instance and can be modified at
runtime via the Admin Console. These new parameters for
the Server will be modifiable at runtime via the Admin
Console. In conjunction with the parameter examples above,
methods implemented in java code can be added to the
server MBean and may be used to access or modify the
parameters. Examples of these java methods include bool
ean getAutoKillIfFailedEnabled (), void setAutoKillIfFaile
dEnabled(boolean), int getHealthCheckStartDelaySeconds.(
), and void setHealthCheckStartDelaySeconds (int secs).
0053. In one embodiment, the NM may allow its func
tionality and access to server health information to become
available to external administrative clients. External admin
istrative clients such as third party application monitors and
high availability frameworks may need to be able to start and
kill servers using the functionality of the NM. In one
embodiment of the present invention, this is done program
matically with runtime MBeans. Use of an admin console is
not required. The MBeans provide a programmatic interface
to the NM's functionality. Further, the MBeans allow the
NM's record of a server's health to be shared. Internal or
external administrative clients may use the MBeans to
access server health information collected by the NM. In one
embodiment, the AS hosts onea NodeManagerRuntime
MBean that provides methods to accomplish different tasks.
Each machine may have one such MBean. One task may
involve starting a specified server. In one embodiment, the
AS may have methods according to the examples shown
below.

0054 java.io.reader start(serverMBean server) throws
NodeManagerException;
0055. This method starts the specified server. It then
returns the reader to local log file containing output of
executed command. The method throws NodeManagerEx
ception if any error occurs.
0056 java.io.reader starinStandby (serverMBean server)
throws NodeManagerException;
0057 This method starts the specified server in Standby
Mode. It then returns the reader to local log file containing
output of executed command. The method throws NodeM
anagerException if any error occurs.
0.058 java.io. Reader shutdown (ServerMBean server)
throws NodeManager-Exception;
0059) This method shuts down the specified server. It
then returns the reader to local log file containing output of
executed command. The method throws NodeManagerEx
ception if any error occurs.
0060 java.io.reader kill(ServerMBean server) throws
NodeManagerException;

0061 This method kills specified server. It is used to kill
the server process when the server does not respond to
shutdown operation. It then returns the reader to local log
file containing output of executed command. The method
throws NodeManagerException if any error occurs.
0062 java.io.reader startMonitoring (ServerMBean
server) throws NodeManagerException:
0063. This method instructs the NM to start monitoring
the specified server. The NM will automatically restart the

Jul. 6, 2006

server if it crashes (if auto restartEnabled is set to true) or
gets into failed state (if AutoKillIfFailedEnabled and
AutoRestartEnabled are set to true). It then returns the reader
to local log file containing output of executed command. The
method throws NodeManagerException if any error occurs.
0064 java.io.reader stopmonitoring
server) throws NodeManagerException:

(serverMBean

0065. This method instructs the NM to stop monitoring
the specified server. It then returns the reader to local log file
containing output of executed command. The method
throws NodeManagerException if any error occurs.

0066 java.io. Reader getlogs(Server MBean
String type) throws NodeManagerException:

Server,

0067. This method get logs from the NM for the specified
server. The type is either “WL output' or “WL Error”. It
then returns the reader to local log file containing output of
executed command. The method throws NodeManagerEx
ception if any error occurs.

0068 string get state (ServerMBean server) throws
NodeManagerException;

0069. This method queries the NM for its view of the
specified server state. It is used when the server does not
respond to queries to its ServerRuntimeMBean. The method
will return “unknown if NM is either not monitoring the
server or does not have any knowledge of the server. It then
returns the reader to local log file containing output of
executed command. The method throws NodeManagerEx
ception if any error occurs.

0070. In another embodiment, MBeans may provide an
interface for JMX clients to access the functionality of the
NM. In this case, the MBeans for JMX client interfacing
may have a different interface than the Server configuration
MBeans. Operations such as “start” and “shutdown may
return precise information on their success or failure. They
will throw an exception if the operation fails. All operations
on the Node Manager Runtime MBeans may be blocking. A
TaskMBean interface may be provided around the Server
Lifecycle MBeans to provide an asynchronous interface to
JMX clients. JMX clients can make use of the NM func
tionality to perform a wide variety of Server lifecycle and
health monitoring control operations. Detailed below are the
interactions between these two entities during each of the
Server Lifecycle state transitions. Admin console, weblogi
c. Admin command line utility and other Admin Clients will
be effecting these state transitions by invoking methods on
the ServerLifecycleRuntimeMBean.

0071)
0072)

start() (SHUTDOWN->RUNNING)
startInStandby() SHUTDOWN->STANDBY)

0073) ServerLifecycleRuntimeMBean hosted on the
Admin Server will invoke the start() or startInStandby ()
methods on the corresponding NodeManagerRuntimeM
Bean

0074)
0075). If a NM is configured, ServerLifecycleRuntimeM
Bean hosted on the Admin Server will invoke the shutdown.(
) method on the corresponding NodeManagerRuntimeM
Bean. If not, it will invoke the shutdown() method on the

shutdown() (STANDBY->SHUTDOWN

US 2006/0149993 A1

ServerLifecycleRuntimeMBean hosted on the Managed
Server.

0076) getState()
0077 ServerLifecycleRuntimeMBean hosted on the
Managed Server will return the State attribute of the Server.
ServerLifecycleRuntimeMBean hosted on the Admin Server
will invoke the getState() method on the ServerLifecy
cleRuntimeMBean hosted on the Managed Server. If this
operation times out, it will then invoke the getState()
method on the NodeManagerRuntimeMBean.
0078. The operation of a server that is monitored by a
NM in accordance with one embodiment of the present
invention is shown in diagram 400 of FIG. 4 and described
as follows. The operation of flow chart 400 starts off with a
start step 410. Next, the server is initialized in step 420. In
one embodiment, the NM and the server establish a con
nection as part of the server initialization. While establishing
the connection and initializing the server, the NM may pass
the NM's listening address to the server. In one embodiment,
server initialization includes the server initializing and run
ning a program that monitors its health and interfaces with
query attempts from the NM and other sources. Once a
connection between the NM and the server is established
and the server is initialized, the server may send a message
to the NM indicating the server experienced a successful
start up.

0079. After initialization, the server listens for an inquiry
regarding the server's health status in step 430. The health
status inquiry may come from the NM or an external
administrative agent. If no health status inquiry is received,
the server continues to listen for an inquiry as shown in FIG.
4. If a health status inquiry is received, operation continues
to step 440. In step 440, the server performs a self health
check on itself. Next, the results of the health check are
transmitted by the server in step 450. In one embodiment,
the results are transmitted to the NM or the AS. In another
embodiment, the results are transmitted according to the
instructions of an external administrative agent. The admin
istrative agent may have the results sent to the agent itselfor
some other entity. After transmitting the results of the self
health inquiry, operation of the server returns to step 430
where the server listens for a health status inquiry. In one
embodiment, if at any point the server fails, the server will
inform the NM as soon as it enters a failed state.

0080. The communication between the NM and the AS
may be encoded to increase the integrity of the system. In
one embodiment of the present invention, the communica
tion may be encoded according to a Diffie-Helman based
Authentication and Encryption scheme. The encryption
parameters may be negotiated at link establishment time and
depend upon configuration parameters and installed soft
ware. A flow chart showing the operation of a Diffie-Helman
based Authentication and Encryption scheme 500 in accor
dance with one embodiment of the present invention is
shown in FIG. 5. The operation starts at step 505. Next, the
connection between the AS and NM is established in opera
tion 510. In one embodiment, the connection between the
AS and the NM is initialized by the AS. Once the connection
has been initialized by the AS, the NM receives the initial
connection. Next, the encryption key size is determined in
step 520. In one embodiment, the encryption key size is
determined by a negotiation between the AS and the NM.

Jul. 6, 2006

The AS and NM each have a minimum key length parameter
and maximum key length parameter. The pair for each of the
NM and AS is denoted as (min, max). The minimum key
length parameter is the minimum encryption level a process
will Support. The maximum key length parameter is the
maximum encryption level a process is will support. In one
embodiment, the possible key lengths are 0, 40, or 128 bits.
The AS and NM will negotiate a connection that uses an
encryption level as high as the lowest maximum key length
between the NM and AS, but no lower than the highest
minimum key length between the NM and AS. For example,
if the AS has key length parameters of (0, 128), and the NM
has key length parameters of (40, 128), the connection may
have a key length of 40 or more preferably 128 bits. The key
length may not be 0 bits because the NM has a minimum key
length parameter of 40 bits. Once the key length for the
connection has been established, the key length is in effect
for the lifetime of the connection between the AS and NM.
In one embodiment, the maximum key length parameter
may be reduced by the capabilities of software installed on
the NM or the AS. If the minimum key length parameter for
either the AS or NM is higher than the maximum key length
parameter for the other of the AS or NM, then no overlap
exists in key length parameters. If there is no overlap in key
length parameters, the established link will fail and an
appropriate error message is logged. In one embodiment,
command line arguments may be used to specify the mini
mum encryption level parameter and maximum encryption
level parameter.
0081. After the key size is determined, the session keys
are generated in step 530. In one embodiment, a first session
key is used for transmitted data from the AS to the NM and
a second session key is used from for data transmitted from
the NM to the AS. In one embodiment of the present
invention, the session keys are 128 bits. The input param
eters to the Diffie-Hellman key agreement algorithm may be
fixed or generated. In one embodiment, the input parameters
are fixed into Software existing on the server network and
accessible to the AS. The AS server may transmit the fixed
input parameters to the NM. The Diffie-Hellman algorithm
also requires the generation of a random number. In one
embodiment, the random number is generated from a cryp
tographically secure pseudo-random number source. An
RC4bulk encryption method may be used as the encryption
method for the link. The details of generating a session key
using the Diffie-Hellman algorithm are generally known in
the art and therefore not described here in detail.

0082 Once the session keys are generated in step 530, the
NM and AS may engage in an authentication process at Step
540. In one embodiment, both the NM and AS are authen
ticated using a shared secret. One method of authenticating
both the NM and AS in accordance with the present inven
tion is as follows. First, both the NM and AS will generate
a fingerprint. In one embodiment, the fingerprint may be a
128 bit MD5 message digest created using the send and
receive session keys already negotiated. Next, the AS will
generate a challenge, encrypt the challenge and fingerprint,
and send the encrypted challenge and fingerprint to the NM.
In one embodiment, the challenge may be a 64 bit random
number. Next, the NM will receive and decrypt the chal
lenge and fingerprint from the AS. The information may be
encrypted and decrypted using the AS’s password. If the
information received by the NM is decrypted and does not
match the NM's fingerprint, the NM will reject the authen

US 2006/0149993 A1

tication request by the AS. Next, the NM will encrypt the
challenge received from the server, the session key gener
ated by the NM, and the fingerprint generated by the NM.
The NM will then send the encrypted challenge, session key,
and fingerprint to the AS. The AS will receive and decrypt
the information received from the NM. Upon decrypting the
received information, the AS will compare the received
challenge and fingerprint to its own challenge and finger
print. If either the fingerprints or the challenges do not
match, the AS will reject the authentication request from the
NM. If the comparisons performed by the AS and NM reveal
matching information, then the authentication requests will
be accepted. The encryption and authentication process then
ends at step 550. The encryption by the AS and NM may be
done using a DES encryption method or some other method
Suitable for the particular requirements of the system.
0083. In one embodiment, new command line arguments
are specified for the AS and NM regarding AS/NM com
munication encryption and authentication. These new argu
ments can be modified at runtime via the Admin Console.
Arguments specified for the AS may include the examples
listed below.

0084 WebLogic.management.minEncryptionBits
=<numbered

0085. This argument specifies the minimum encryption
level the process will accept. Possible values are 0, 40, 128.
In one embodiment, the default value is 0.
0.086 WebLogic.management.maxEncryptionBits
=<numbered

0087. This argument specifies the maximum encryption
level the process will accept. Possible values are 0, 40, 128.
In one embodiment, the default value is 128.
0088 WebLogic.management.enableChannelBinding=
01
0089. This argument sets an Authentication Protocol. In
one embodiment, the a value of 1 enables the Authentication
Protocol and the default is 0.

0090 WebLogic.management-passwordKey =<string>
0.091 This argument specifies the key to be used to
decrypt the encrypted NM passwords stored in the configu
ration file. The key must be specified if WebLogic.manage
ment.enableChannelBinding is set to 1.
0092. The utility WebLogic.wtc.gwt.genpasswd will be
used to encrypt NM passwords to be stored in the configu
ration file.

0093 Arguments specified for the NM may include the
examples listed below.
0094 WebLogic.nodemanagerminEncryptionBits
=<numbered

0.095 This argument specifies the minimum encryption
level the process will accept. Possible values are 0, 40, 128.
In one embodiment, the default value is 0.
0.096 WebLogic.nodemanager maxEncryptionBits
=<numbered

0097. This argument specifies the maximum encryption
level the process will accept. Possible values are 0, 40, 128.
In one embodiment, the default value is 128.

Jul. 6, 2006

0098 WebLogic.nodemanager enableChannelBinding=
01
0099. This argument sets an Authentication Protocol
enable. In one embodiment, a value of 1 enables the Authen
tication Protocol and the default is 0.

0.100 WebLogic.nodemanager password = <string>
0101 This argument specifies the NM password. The
NM password must be specified if WebLogic.nodemanager
.enableChannelBinding is set to 1.
0102 WebLogic.nodemanager.adminServerPassword
=<string>

0103) This argument specifies the Admin Server pass
word. Must be specified if WebLogic.nodemanageren
ableChannelBinding is set to 1.

0104. In one embodiment, an alternate NM may have
features in addition to those described above. In particular,
the alternate NM may function to aggregate administrative
actions and information in the NM. The actions and infor
mation could then be accessed by third party application
monitors and high availability frameworks using standard
JMX interfaces. The NM may also achieve internal interac
tions with the admin console and cluster group leader using
standard JMX interfaces.

0105. In one embodiment, certain services are required
by the administrator for the alternate NM to operate prop
erly. One such service is a ProcessControl (“PC”) service.
The PC service operates to start, kill and restart managed
servers on the local node. The service can be hosted by the
AS and by the NM on the other nodes. Restart capability is
provided to internal and external clients via Runtime
MBeans. Another service is the HealthMonitoring (“HM)
service. The HS service monitors state and other runtime
attributes of managed servers on local or remote nodes.
Either the AS or an individual NM can host the HM service.
Server health information is provided to internal and exter
nal clients via Runtime MBeans.

0106 The alternate NM has several advantageous char
acteristics. In one embodiment, some aspects of the con
figuration for the alternate NM are similar to the basic NM
of the present invention. The alternate NM may be hosted on
a stripped-down managed server. In this case, the alternate
NM registers as a managed server with the AS. With this
configuration, the NM performs startup independently of the
AS. Further, no configuration MBeans are required for
runtime configuration changes

0107 The alternate NM may include a “watchdog” ser
vice. The watchdog service operates to monitor the NM on
platforms where operating system monitoring is not avail
able, such as non-NT and Solaris platforms. The watchdog
service may be configured to spawn the NM when it
performs startup, thereby allowing administrators to manu
ally start just one process. In one embodiment, a system
could use a watchdog service to bootstrap the NM service on
a local node upon command of an AS. This watchdog service
configuration would eliminate manual configuration of the
NM on each remote node and allow runtime configuration
through configuration MBeans implemented in java. For
Solaris and NT systems, the NM may be used as the
operating system in one embodiment of the present inven

US 2006/0149993 A1

tion. In this case, the NM may be installed on a node in
conjunction with other software and can be started manually.
0108. The alternate NM can be configured to enable its
operation to enhance aspects of an entire domain or local
node. One NM could be used for an entire domain. This
would simplify security in that multiple certificates would
not need to be managed. In one embodiment, the NM is the
highest release. The alternate NM may be used to aggregate
cluster heartbeats for all cluster members on a local node.
The cluster members may include managed servers on the
local node. The alternate NM may also be configured to
operate as a Surrogate AS.
0109 The present invention includes a Node Manager
that monitors the status of multiple servers. The NM detects
server failures, periodically monitors server health status,
and performs server maintenance. When the NM detects a
server failure, it determines whether or not the server should
be restarted. While periodically monitoring servers, the NM
may determine how often to trigger a health check, how long
to wait for a response, and how to proceed if the server is
deemed failed. The NM may be controlled by an AS directly
or by an external administrative agent. An administrative
agent may control the NM by interfacing with the AS. The
NM and AS may authenticate each other and encode their
communications to each other for increased security.
0110. An Appendix is attached to this application con
taining examples within the scope and spirit of the present
invention.

0111. In addition to an embodiment consisting of specifi
cally designed integrated circuits or other electronics, the
present invention may be conveniently implemented using a
conventional general purpose or a specialized digital com
puter or microprocessor programmed according to the teach
ings of the present disclosure, as will be apparent to those
skilled in the computer art.
0112 Appropriate software coding can readily be pre
pared by skilled programmers based on the teachings of the
present disclosure, as will be apparent to those skilled in the
software art. The invention may also be implemented by the
preparation of application specific integrated circuits or by
interconnecting an appropriate network of conventional
component circuits, as will be readily apparent to those
skilled in the art.

0113. The present invention includes a computer program
product which is a storage medium (media) having instruc
tions stored thereoii/in which can be used to program a
computer to perform any of the processes of the present
invention. The storage medium can include, but is not
limited to, any type of disk including floppy disks, optical
discs, DVD, CD-ROMs, microdrive, and magneto-optical
disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs,
VRAMs, flash memory devices, magnetic or optical cards,
nanosystems (including molecular memory ICs), or any type
of media or device Suitable for storing instructions and/or
data.

0114 Stored on any one of the computer readable
medium (media), the present invention includes Software for
controlling both the hardware of the general purpose? spe
cialized computer or microprocessor, and for enabling the
computer or microprocessor to interact with a human user or
other mechanism utilizing the results of the present inven

Jul. 6, 2006

tion. Such software may include, but is not limited to, device
drivers, operating systems, and user applications. Ulti
mately, such computer readable media further includes soft
ware for implementing Node Managers.

0115 Included in the programming (software) of the
general/specialized computer or microprocessor are soft
ware modules for implementing the teachings of the present
invention, including, but not limited to, separating planes of
a source image, averaging at least one of foreground and
background colors, replacing colors, and compensating for
error introduced by color replacement in one plane by
feeding error into a second plane, storage, communication of
results, and reconstructing an image according to the pro
cesses of the present invention.

0116. Other features, aspects and objects of the invention
can be obtained from a review of the figures and the claims.
It is to be understood that other embodiments of the inven
tion can be developed and fall within the spirit and scope of
the invention and claims.

0.117) The foregoing description of preferred embodi
ments of the present invention has been provided for the
purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations
will be apparent to the practitioner skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical
application, thereby enabling others skilled in the art to
understand the invention for various embodiments and with
various modifications that are Suited to the particular use
contemplated. It is intended that the scope of the invention
be defined by the following claims and their equivalence.

Appendix

1 Product Perspective (O)

0118. The existing NM implementation enables the
administrator to start and kill Servers remotely from the
Administration Console. However, there is no automatic
monitoring or restart of these Servers after that.

0119) The goal of this release is to improve the availabil
ity of these Servers by monitoring them and automatically
restarting them if necessary.

0.120. In addition, NM's functionality and information
will be exposed to JMX clients via new runtime MBeans.

1.1 Product Functions (O)
1.1.1 Automatic Detection and Restart of Crashed Servers

0121 NM will continuously monitor Servers running on
the local machine and will automatically detect and restart
failed Servers. This detection and restart will occur as soon
as NM detects the Server failure.

1.1.2 Monitoring and Restart of Failed Servers

0122) NM will periodically monitor Servers running on
the local machine and will automatically detect and restart
Failed Servers. This detection and restart will occur as soon
as possible after the Server is deemed to be Failed.

US 2006/0149993 A1

1.1.3 Node Manager Runtime MBeans

0123 New Node Manager Runtime MBeans will be
provided. They will be hosted on the Admin Server and will
offer methods that wrap NM functionality and expose the
health information collected by NM.
2 Automatic Detection and Restart of Failed Servers

2.1 Functional Description

0124 NM will continuously monitor Servers running on
the local machine and will automatically detect and restart
failed Servers. This detection and restart will occur as soon
as NM detects the Server failure.

2.2 Functional Requirements

0125 NM will continuously monitor Servers running on
the local machine and will automatically detect and restart
failed Servers. This detection and restart will occur as soon
as possible after the Server failure.

0126 Once a Server failure is detected, NM's actions will
be controlled by these parameters:

0127 AutoRestartEnabled=<true false
0128 Specifies whether Servers are restartable or not.
Default is true.

0129 RestartIntervalSeconds=<number of seconds>
0130. If a Server is restartable, this parameter specifies
that it can be restarted RestartMax times within the specified
number of seconds. Default is 3600 seconds (60 minutes).

0131 RestartMax =<numbers
0132) If Servers are restartable, this parameter speci
fies the max it times a Server can be started within the
period specified by RestartIntervalSeconds. Default is
2.

0133) These parameters will be defined per Server
instance. They will also be modifiable at runtime via the
Admin Console.

2.3 Software Interfaces (Javadoc, MBean, Objects, Classes)

0134) This feature has only an administrative interface,
and it is via the new parameters described in section 3.2.

0135) These new parameters for the Server will be modi
fiable at runtime via the Admin Console.

0136. These methods will be added to the weblogic.man
agement.configuration.ServerMBean to access or modify
these parameters:

boolean getAutoRestartEnabled();

void setAutoRestartEnabled (boolean);
int getRestartIntervalSeconds();

void setRestartIntervalSeconds(int);
int getRestartMax();

void setRestartMax(int);

Jul. 6, 2006

3. Monitoring and Restart of Failed Servers
3.1 Functional Description
0.137 NM will periodically monitor Servers running on
the local machine and will automatically detect and restart
Failed Servers. This detection and restart will occur as soon
as possible after the Server is deemed to be Failed.
3.2 Functional Requirements
0.138 NM will periodically check Servers running on the
local machine and will automatically detect and restart
Failed Servers. This detection and restart will occur as soon
as possible after the Server is deemed to be Failed.
0.139. This check will be controlled by these parameters:
0140 HealthCheckIntervalSeconds=<number of sec
onds>

0.141. The interval of time (in seconds) between which
periodic scans are done by NM to check if Servers are
Failed. Default is 180 seconds.

0.142 HealthCheckTimeoutSeconds=<number of sec
onds>

0.143. The length of time (in seconds) the Node Man
ager will wait for a response to the health check query
after which it will deem the monitored server Failed.
Default is 60 seconds.

0144) AutoKillIfFailedEnabled=<true falses
0.145) If a Server is deemed Failed, this parameter will
control whether NM will kill the Server or not. Default
is false.

0146 The time that a Server takes to startup depends
upon the applications being deployed on it. NM will wait for
a Server to complete its startup before it (the NM) starts
monitoring the Server. This wait time can be specified using
the following parameter:
0147 HealthCheckStartDelaySeconds=<number of sec
onds>

0.148. The length of time (in seconds) the Node Man
ager will wait before starting its monitoring of the
Server. Default is 120 seconds.

0149 HealthCheckIntervalSeconds and HealthCheck
TimeoutSeconds and parameters will be defined per NM,
and can be specified on the NM command line.
0150. AutoKillIfFailedEnabled and HealthCheckStart
DelaySeconds parameters will be defined per Server
instance and will be modifiable at runtime via the Admin
Console. After NM has killed a Failed server, its restartabil
ity is controlled by the parameters defined in section 3.2
above.

3.3 External Interface Requirements
3.3.1 Software Interfaces (Javadoc, MBean, Objects,
Classes)
0151. This feature has only an administrative interface,
and it is via the new command line arguments described in
section 4.2.

0152 These new parameters for the Server will be modi
fiable at runtime via the Admin Console.

US 2006/0149993 A1

0153. These methods will be added to the ServerMBean
to access or modify these parameters:

boolean getAutoKillIfFailedEnabled();

void setAutoKillIfFailedEnabled (boolean);
int getHealthCheckStartDelaySeconds();

void setHealthCheckStartDelaySeconds(int secs);

4. Node Manager Runtime MBeans

4.1 Functional Description

0154) These MBeans will serve the following purposes:

1. Expose NM Functionality to External Administrative
Clients

0.155) External administrative clients (3" party applica
tion monitors, HA frameworks, etc.) need to be able to start
and kill Servers using the NM. They should be able to do this
programmatically without using the admin console.

0156 These MBeans will provide a programmatic inter
face to NM's functionality.

2. Expose NM's View of Server Health

0157. As described in section 4 above, NM periodically
collects health information on Servers. Internal or external
administrative clients (e.g., admin console) need to be able
to access this information.

0158. These MBeans will provide an interface to this
information.

4.2 Functional Requirements

0159. The Admin Server will host the new “NodeMan
agerRuntimeMBean'. There will be one NodeManagerRun
timeMBean per machine in the domain.

0160 This MBean will offer methods that wrap NM
functionality and expose the health information collected by
NM.

0161 The ServerLifecycleRuntimeMBean hosted on the
Admin Server will use these MBeans internally. They will
NOT be exposed to external JMX clients.

4.3 External Interface Requirements

4.3.2 Software Interfaces (Javadoc, MBean, Objects,
Classes)
0162 public interface NodeManagerRuntimeMBean
extends WebLogic.management.runtime. RuntimeMBean

Method Summary

java.io. Reader start(ServerMBean server) throws NodeM
anagerException;

0163 starts the specified Server.

0.164 Returns Reader to local log file containing out
put of executed command. Throws NodeManagerEx
ception if any error occurs.

Jul. 6, 2006

java.io. Reader startInStandby (ServerMBean server) throws
NodeManagerException;

0.165 starts the specified Server in Standby state.

0166 Returns Reader to local log file containing out
put of executed command. Throws NodeManagerEx
ception if any error occurs.

java.io. Reader shutdown(ServerMBean server) throws
NodeManagerException;

0167 shuts down the specified Server.

0168 Returns Reader to local log file containing out
put of executed command. Throws NodeManagerEx
ception if any error occurs.

java.io. Reader kill(ServerMBean server) throws NodeMan
agerException;

01.69 kills the specified Server. Used to kill the server
process when the server does not respond to shutdown
operation.

0170 Returns Reader to local log file containing out
put of executed command. Throws NodeManagerEx
ception if any error occurs.

java.io. Reader startMonitoring(ServerMBean
throws NodeManagerException;

0171 Instruct NM to start monitoring the specified
server. NM will automatically restart the server if

0172 it crashes (if AutoRestartEnabled is set to true)
or gets into Failed state (if AutoKillIfFailedEnabled
and AutoRestartEnabled are set to true).

server)

0173 Returns Reader to local log file containing out
put of executed command. Throws NodeManagerEx
ception if any error occurs.

java.io. Reader stopMonitoring(ServerMBean server) throws
NodeManagerException;

0174)
Sever.

Instruct NM to stop monitoring the specified

0.175 Returns Reader to local log file containing out
put of executed command. Throws NodeManagerEx
ception if any error occurs.

java.io. Reader getLogs(ServerMBean server, String type)
throws NodeManagerException;

0176 Get logs from the NM for the specified server. The
type is either “WL output' or “WL error”.

0177 Returns Reader to log retrieved. Throws NodeM
anagerException if any error occurs. String getState(Serv
erMBean server) throws NodeManagerException;

0.178 Query the NM for its view of specified server's
state. Used when server does not respond to queries to its
ServerRuntimeMBean.

0179 Will return “Unknown” if NM is either not moni
toring or does not have any knowledge of the server. Throws
NodeManagerException if any error occurs.

US 2006/0149993 A1
11

5.1 Node Manager Managed Server Communication
5.1.1 Health Monitoring Communication
0180 NM will periodically poll the Server to check its
health. The algorithm used in this polling is as follows:
0181 1. Upon startup, NM reads an on-disk file to
retrieve information on Servers it was monitoring during
its previous incarnation.

0182. It assumes that all of the monitored Servers are
alive when it starts up. It assumes no knowledge of their
current States (i.e., it sets its view of their State to
“Unknown”).

0183 2. NM invokes the NMCommandServlet deployed
on the Server. This is an asynchronous Servlet that will
return the Server's health information after HealthCheck
IntervalSeconds have elapsed.

0184 3. One of the following happens when NM invokes
the Servlet:

3.1 IOException is Thrown.

0185. This could mean a number of different things:
0186 Server has crashed or is not running
0187 Server too busy to accept TCP connection
0188 Server has Failed, unable to accept TCP connec
tion

0189 Transient IO exception

0.190 All cases are treated as if Server has Failed. NM
sets its internal value of Server state to "Failed'.

0191) To Handle “False Negatives”, NM Kills the Server.
0192) If the Server's AutoKillIfFailedEnabled param
eter is “true', NM sets its internal value of Server state
to “Failed and kills the Server.

0193 If AutoKillIfFailedEnabled is false, NM sets it
internal value of Server state to "Failed Not Restart
able', logs a warning and continues.

3.3 Server returns its State value after HealthCheckInterval
Seconds.

3.3.1 Server State is Running
0194 No action.
3.3.2 Server State is Failed

0.195. If the Server's AutoKillIfFailedEnabled param
eter is “true', NM sets its internal value of Server state
to “Failed and kills the Server.

0196) If AutoKillIfFailedEnabled is false, NM sets it
internal value of Server state to "Failed Not Restart
able', logs a warning and continues.

0197) 4. In the next iteration, if NM sees that its interval
value of Server state is “Failed', it will try to restart the
Server.

0198 NM checks the Server's AutoRestartEnabled
parameter. If it is true and less than RestartMax restarts
have been done in the current RestartIntervalSeconds
window, NM will restart the Server.

Jul. 6, 2006

0199 If Server has already been restarted RestartMax
times in the current RestartIntervalSeconds window,
NM will wait till the next RestartIntervalSeconds win
dow begins before doing another restart.

0200. If AutoRestartEnabled is false, NM will not
restart the Server.

5.2.1 Server State Transition Notifications

0201 When certain transitions occur in the Server's State
value, it will inform the NM of them. This will be particu
larly useful in the following cases:

0202) When the NM starts a Server, there is currently
no mechanism to determine if the Server started suc
cessfully or not. Now, the Server will inform the NM
once it has entered a Standby State.

0203) If a Server fails, NM will discover this only in
the next iteration of its health-monitoring query. Now,
the Server will inform the NM as soon as it has entered
a Failed State.

0204 Passing the NM's listening address to the Server
when the latter is starting up will facilitate this com
munication.

0205 Impact on JMX Clients

0206. In WLS 6.1, JMX clients (like the Admin Con
sole) performed Server lifecycle operations by invok
ing methods on the Server configuration MBeans. In
Acadia, these clients will be accessing the new Server
Lifecycle MBeans for this purpose.

0207. These new MBeans have a different interface
than the Server configuration MBeans.

0208 Detailed below are the changed semantics:

0209 Operations such as “start” and “shutdown” will
now return precise information on their success or
failure. They will throw an exception if the operation
fails. Look at SLC for details.

0210 All operations on the Node Manager Runtime
MBeans are now blocking. A TaskMBean interface is
being provided around the Server Lifecycle MBeans to
provide an asynchronous interface to JMX clients.

0211 The new Server Lifecycle and Node Manager
Runtime MBeans provide a rich set of functionality.
JMX clients can make use of these to perform a wide
variety of Server lifecycle and health monitoring con
trol operations. Look at SLC and section 5.2.3 above
for details on this.

0212 5.3 NM-Server Lifecycle Interactions

0213 Detailed below are the interactions between
these two entities during each of the Server Lifecycle
state transitions.

0214) Admin console, weblogic. Admin command line
utility and other Admin Clients will be effecting these
state transitions by invoking methods on the ServerLi
fecycleRuntimeMBean.

US 2006/0149993 A1

0215)

0216)

1. start() SHUTDOWN->RUNNING
startInStandby() SHUTDOWN->STANDBY)

0217 ServerLifecycleRuntimeMBean hosted on the
Admin Server will invoke the start() or startInStandby.(
) methods on the corresponding NodeManagerRunt
imeMBean.

0218 2. shutdown() STANDBY->SHUTDOWN
0219). If a NM is configured, ServerLifecycleRunt
imeMBean hosted on the Admin Server will invoke the
shutdown() method on the corresponding NodeMan
agerRuntimeMBean. If not, it will invoke the shut
down() method on the ServerLifecycleRuntimeMBean
hosted on the Managed Server.

3. getState()

0220 ServerLifecycleRuntimeMBean hosted on the
Managed Server will return the State attribute of the
Server.

0221 ServerLifecycleRuntimeMBean hosted on the
Admin Server will invoke the getState() method on the
ServerLifecycleRuntimeMBean hosted on the Man
aged Server. If this operation times out, it will then
invoke the getState() method on the NodeManager
RuntimeMBean.

6. Diffie-Hellman Based Authentication/Encryption Scheme
0222 A Diffie-Hellman based Authentication/Encryption
scheme was proposed as an alternative to the current X.509
Certificates based scheme.

0223. After much discussion, it was decided that custom
ers do not require this. Detailed below is the proposal.

6.1 Functional Description

0224 All data being sent over the network link between
the Admin Server and NM will be encrypted using a new
scheme based on the Diffie-Hellman algorithm. The encryp
tion parameters will be negotiated at link establishment time
and will depend upon configuration parameters and installed
encryption Software.

0225. The Admin Server and NM will be authenticated
with each other using a shared secret based mechanism.
6.2 Functional Requirements

6.2.1 Concepts and Definitions

0226 Admin Server begins the communication ses
sion.

0227. ANM receives the initial connection.
0228 Both processes are aware of the encryption fea
ture, and have two configuration parameters.

0229. The first configuration parameter is the Mini
mum encryption level a process will accept. It is
expressed as a key length: 0, 40, or 128 bits.

0230. The second configuration parameter is the Maxi
mum encryption level a process is willing to Support. It
also is expressed as a 0, 40, or 128 bit key size.

Jul. 6, 2006

0231. For convenience, this document will denote the
two parameters as (min, max). So (40, 128) means a
process will accept at least 40-bit encryption but desires
128-bit if possible.

0232 Encryption parameters negotiated are for the
lifetime of the communication session.

6.2.2 Encryption Key Size Negotiation
0233. The first step is for the two processes to agree on
the largest common key size Supported by both. This nego
tiation itself need not be encrypted or hidden.
0234. A pre-processing step temporarily reduces the
maximum key size parameter configured to agree with the
installed software's capabilities. This must be done at link
negotiation time, because at configuration time it may not be
possible to verify a particular machine's installed encryption
package. For example, the administrator may configure (0.
128) encryption for an unbooted machine that only has a
40-bit encryption package installed. When the machine
actually negotiates a key size, it should represent itself as (0.
40). In some cases this may cause a run-time error; for
example (128, 128) is not possible with a 40-bit encryption
package.

0235. The following table shows how the configured
parameters are modified based on which encryption package
is installed. This is a local computation that each process
performs itself. The result serves as input for the subsequent
cross-machine negotiation.

configured
parameters no encryption 40-bit encryption
(min, max) package installed package installed

128-bit encryption
package installed

O, O O, O O, O O, O
0, 40 O, O 0, 40 0, 40
0, 128 0, 0 0, 40, 0, 128

40, 40 eror 40, 40 40, 40
40, 128 error 40, 40 40, 128
128, 128 error eror 128, 128

0236 Next the two processes jointly agree on the largest
key size acceptable to both. It may be that there is no
overlap, in which case network link establishment fails (with
an appropriate log error message). This table shows the
outcome for all possible combinations of min/max param
eters:

O, O 0, 40 0, 128 40, 40 40, 128 128, 128

O, O O O O eror eror ed
0, 40 O 40 40 40 40 ed
0, 128 O 40 128 40 128 128

40, 40 eror 40 40 40 40 ed
40, 128 eror 40 128 40 128 128
128, 128 eror eror 128 eror 128 128

6.2.3 Session Key Agreement

0237 Two session keys will be generated for the
encrypted network link using the Diffie-Hellman algorithm.
One session key will be used for data flowing from the

US 2006/0149993 A1

Admin Server to the NM, and the other key will be used for
traffic flowing in the reverse direction. The generated session
keys will always be 128-bit.
0238. Input parameters to the Diffie-Hellman key agree
ment algorithm will be fixed (burned-in to WebLogic soft
ware). Admin Server will transmit the parameters it wants to
use to the NM. This permits the burned-in parameters to be
changed in future releases.
0239). The actual Diffie-Hellman parameters to burn-in
for the first release of this feature are shown in Appendix A.
0240 Diffie-Hellman session key agreement also
requires a cryptographically secure pseudo-random number
source. The seed value for the pseudo-random number
generator must contain a large amount of unpredictable data,
so that a network-based attacker cannot iterate through
likely seed values.
6.2.6 40-bit Protocol Requirements
0241. If a 40-bit key size is negotiated, the 128-bit
session key produced by Diffie-Hellman should be used for
RC4bulk encryption. However, 88 bits must be disclosed in
the clear in one of the link establishment messages. This
allows an attacker to conduct a 40-bit brute-force key search.
Security is better than with a simple 40-bit key, because the
88-bits act as salt and prevent an attacker from using
pre-computed lookup tables.
0242 A network attacker may not be permitted to defeat
the 88-bit disclosure requirement by tampering with packets
or deleting packets:

0243 The actual bits disclosed in the clear must be used
by the Admin Server. If they do not agree with the locally
computed Diffie-Hellman session key, or are not supplied as
expected, Admin Server will generate a log error message
and terminate the connection.

0244 Both the processes implicitly agree to permute their
Diffie-Hellman session key when 40-bit encryption is nego
tiated, as shown below. This prevents a network attacker
from tampering with messages and tricking the Admin
Server into a 128-bit session when 40-bit was the NM s
negotiation result.
6.2.7 Authentication Protocol

0245) To guard against a Man-in-the-Middle attack,
Admin Server and NM will be authenticated using a shared
secret, as follows:

0246 Both processes will generate a 128-bit MD5
message digest (fingerprint) using the send and receive
session keys negotiated (see Section 6.2.3 above)

0247 Admin Server will generate a 64-bit random
number (challenge). It will then DES-encrypt the chal
lenge and the fingerprint using its password as the key
and send this to the NM.

0248 NM will decrypt the received message with the
Admin Server s password. If the Fingerprints don t
match, it will reject the authentication request.

0249 NM will generate a 64-bit session key. NM will
then DES-encrypt the previously-received challenge,
the generated session key and the fingerprint using its
password as the key and send this to the Admin Server.

Jul. 6, 2006

0250 Admin Server will decrypt the received message
with the NM S password. It will check the received
challenge and fingerprint with its local values. If either
doesn’tt match, it will reject the authentication request.

0251) If the above sequence is completed successfully,
Admin Server and NM will be considered authenticated with
each other.

6.3 External Interface Requirements
6.3.1 Hardware Interfaces (O)
6.3.2 Software Interfaces (Javadoc, MBean, Objects,
Classes)
0252) These new command line arguments will be speci
fied for the Admin Server.

0253 WebLogic.management.minEncryptionBits=
<numbers

0254) the Minimum encryption level the process
will accept. Possible values are 0, 40, 128. Default
value is 0.

0255 WebLogic.management.maxEncryptionBits=
<numbers

0256 the Maximum encryption level the process
will accept. Possible values are 0, 40, 128. Default
value is 128.

0257 WebLogic.mianagement.ena
bleChannelBinding=0.1

0258) a value of 1 enables the Authentication Pro
tocol (Section 5.2.7). Default is 0.

0259 WebLogic.management-passwordKey=<string>

0260) key to be used to decrypt the encrypted NM
passwords Stored in the configuration file.

0261. It must be specified if WebLogic.management.ena
bleChannelBinding is set to 1.
0262 The utility WebLogic.wtc.gwt.genpasswd will be
used to encrypt NM passwords to be stored in the configu
ration file.

0263. These new command line arguments will be speci
fied for the NM.

0264 WebLogic.nodemanagerminEncryptionBits=
<numbers

0265 the Minimum encryption level the process
will accept. Possible values are 0, 40, 128. Default
value is 0.

0266 WebLogic
<numbers

nodemanager maxEncryptionBits=

0267) the Maximum encryption level the process
will accept. Possible values are 0, 40, 128. Default
value is 128.

0268 WebLogic.nodemanageren
ableChannelBinding=0.1

0269 a value of 1 enables the Authentication Pro
tocol (Section 5.2.7). Default is 0.

US 2006/0149993 A1

0270 WebLogic.nodemanager password=<string>
0271) the NMS password.

0272 Must be specified if WebLogic.nodemanageren
ableChannelBinding is set to 1.

0273 WebLogic.nodemanager.adminServ
erPassword=<string>

0274) the Admin Servers password.
0275 Must be specified if WebLogic.nodemanageren
ableChannelBinding is set to 1.
0276. These new arguments will be modifiable at runtime
via the Admin Console.

7.5 Alternate Node Manager
0277. In one embodiment of the invention, an alternate
type of node manager architecture is used. The alternate
node manager may be operable to achieve at least the
following functions:

0278 Aggregation of administrative actions and infor
mation in NM for access by 3" party application
monitors and HA frameworks using standard JMX
interfaces

0279 Internal interactions with admin console, cluster
group leader, etc. using standard JMX interfaces

0280 Described below are some of the design points of
the new NM architecture.

Summary of New NM Architecture
Services Required by Administrator/App Monitor

1. ProcessControl (“PC”) service
0281 start, kill and restart Managed Svrs (“MS) on
local node

0282) will be hosted by Admin Svir (“AS”)
0283 will be hosted by NM on other nodes
0284 provide restart capability to internal and external
clients via Runtime MBeans

2. HealthMonitoring (“HM') service

0285 monitor State and other runtime attributes of MS
on local or remote node

0286) can be hosted either by AS or individual NMs
0287 provide this info to internal and external clients
via Runtime MBeans

New NM Charactertistics

0. hosted on stripped-down MS
0288 registered as a MS with the AS (in config.xml)

1. Configuration

0289 all config passed as command line args (like for
today’s NM)

0290 startup independent of AS
0291 no Config MBeans for runtime configuration
changes (like for today’s NM)

Jul. 6, 2006

2. Watchldog (“WD)
0292 reqd to mon NM on platforms where OS moni
toring not av1 (non NT and Solaris platforms)

0293] 1 WD per NM
0294 can spawn the NM when started so Admins will
have to manually start just 1 process

3. NM may be the OS service on NT and Solaris
0295) installed when installing WLS on node
0296 can also be started manually

4. Interoperability
0297 could have1 NM per Domain
0298 (Security) won't have to manage multiple Cer
tificates

(0.9) NM must be of highest release wrt all MSs on
OC

5. If NM is not used:

0300 won't get PC Svc on remote nodes
0301 HM svc will won't be able to restart remote MSs
0302) better scalability if HM svc hosted on NMs

6. Additional Enhancements

0303)
#5)

0304 use WD to bootstrap NM on local node upon
AS’s command (will eliminate manual config of NM
on each remote node and allow runtime config via
Config MBeans)

0305 use NM to aggregate Cluster heartbeats for all
cluster members on local node (broader implications—
Eric/Mesut/Dean)

0306
tions)

make NM highly preferable (advantages listed in

make NM a surrogate AS2 (broader implica

What is claimed is:
1. A method for monitoring at least one server comprising:
determining, at the occurrence of a triggering event, a

health status of the at least one server, the server
configured to return the health status of the server in
response to a query of the health status;

detecting at least one of a degenerate health status of the
at least one server and a failure to respond to the query
of the health status; and

performing treatment on the at least one server when at
least one of a degenerate health status of the at least one
server and a failure to respond to the query of the health
status is detected, by:
determining a value of an auto-terminate parameter, the

value specified in the auto-terminate parameter indi
cating whether the server can be automatically
killed; and

determining whether to kill the at least one server based
at least in part upon whether the auto-terminate
parameter indicates that the server may be killed
when degenerate health or a failure to respond has
been detected.

US 2006/0149993 A1

2. The method of claim 1 wherein determining, at the
occurrence of a triggering event includes determining a
period of time has elapsed.

3. The method of claim 1 wherein determining, at the
occurrence of a triggering event includes receiving a signal
from an entity external to an object monitoring the server.

4. The method of claim 1 wherein detecting at least one
of a degenerate health status of the at least one server and a
failure to respond to the query of the health status comprises:

determining whether the server responds to the query
signal.

5. The method of claim 4 wherein determining whether
the server responds to the query signal includes waiting a
specified period of time before determining the server has
not responded to the query signal.

6. The method of claim 1 wherein detecting at least one
of a degenerate health status of the at least one server and a
failure to respond to the query of the health status comprises:

receiving the server's response to the query signal; and

determining the server's health status based upon the
server's response.

7. The method of claim 1 wherein performing treatment
includes terminating the server if the server is deemed failed.

8. The method of claim 1 further comprising controlling
monitoring of the at least one server at an administration
SeVe.

9. The method of claim 8 further comprising encoding
communication between an entity performing monitoring of
the at least one server and the administration server.

10. The method of claim 1 wherein determining the health
status of the server includes:

invoking a servlet on the server, the servlet configured to
return a health status of the server.

11. The method of claim 10 wherein invoking a servlet on
the server, the servlet configured to return a health status of
the server includes:

invoking an asynchronous servlet configured to return the
health status to the monitoring instance upon the occur
rence of an event.

12. The method of claim 1 wherein determining, at the
occurrence of a triggering event includes:

determining whether an interval period has elapsed, the
interval period corresponding to a time between Suc
cessive health checks performed on a server, wherein a
value specified in a health check interval parameter
corresponds to the interval period.

13. The method of claim 12, further comprising accessing
and setting the health check interval parameter.

14. The method of claim 1 wherein determining, at the
occurrence of a triggering event includes:

determining whether a timeout period has elapsed, the
timeout period corresponding to a time the monitoring
instance will wait for a response to a health check query
performed by the monitoring instance to the server,
wherein a value specified in a health check timeout
parameter corresponds to the timeout period.

15. The method of claim 14 further comprising accessing
and setting the health check interval parameter.

Jul. 6, 2006

16. The method of claim 1, further comprising:
continuing operations with the server in a degenerated

health status, if it is determined not to kill the server.
17. The method of claim 1, further comprising:
restarting the server if it is determined to do so.
18. A machine-readable medium carrying one or more

sequences of instructions for implementing interoperable
management of application servers, which instructions,
when executed by one or more processors, cause the one or
more processors to carry out the steps of

determining, at the occurrence of a triggering event, a
health status of the at least one server, the server
configured to return the health status of the server in
response to a query of the health status;

detecting at least one of a degenerate health status of the
at least one server and a failure to respond to the query
of the health status; and

performing treatment on the at least one server when at
least one of a degenerate health status of the at least one
server and a failure to respond to the query of the health
status is detected, by:
determining a value of an auto-terminate parameter, the

value specified in the auto-terminate parameter indi
cating whether the server can be automatically
killed; and

determining whether to kill the at least one server based
at least in part upon whether the auto-terminate
parameter indicates that the server may be killed
when degenerate health or a failure to respond has
been detected.

19. A monitoring apparatus for remotable monitoring of
an application server, the apparatus comprising:

a monitoring instance, triggered at the occurrence of a
triggering event to query health status of the application
Server,

a monitoring servlet to return the health status of the
application server in response to a query of the health
status; wherein

when the monitoring instance detects at least one of a
degenerate health status of the application server and a
failure to respond to the query of the health status, the
monitoring instance performs treatment on the appli
cation server when at least one of a degenerate health
status of the application server and a failure to respond
to the query of the health status is detected; and wherein
performing treatment includes:
determining a value of an auto-terminate parameter, the

value specified in the auto-terminate parameter indi
cating whether the application server can be auto
matically killed; and

determining whether to kill the application server based
at least in part upon whether the auto-terminate
parameter indicates that the application server may
be killed when degenerate health or a failure to
respond has been detected.

