wo 2013/181464 A 1[I N0FV0 00000000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/181464 A1l

5 December 2013 (05.12.2013) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
HO04L 12/927 (2013.01) HO04L 12/24 (2006.01) kind of national protection available): AE, AG, AL, AM,
21) Tat tional Application Number- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCT/US2013/043473 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
30 May 2013 (30.05.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . o
13/485.615 31 May 2012 (31052012) Us (84) De51gnated States (unless otherwise indicated, fO}" every
’ kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: VMWARE, INC. [US/US]; 3401 Hillview GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Avenue, Palo Alto, CA 94304 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(72) Tnventors: GULATI, Ajay; 2721 Midtown Ct., #108, Palo TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
. EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Alto, CA 94303 (US). SHANMUGANATHAN, Ganesha;
, i MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
262 Higdon Avenue, #1, Mountain View, CA 94041 (US).
) . TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
VARMAN, Peter, Joseph; 1788 Oak Creek Drive, #212, KM, ML, MR, NE, SN, TD, TG)
Palo Alto, CA 94304 (US). > T T '
Published:

74

Agent: PLETTNER, Dave; VMWARE, INC., 3401

Hillview Avenue, Palo Alto, CA 94304 (US).

with international search report (Art. 21(3))

(54) Title: DISTRIBUTED DEMAND-BASED STORAGE QUALITY OF SERVICE MANAGEMENT USING RESOURCE
POOLING

2208 10eA
WM WM 2208 220N—] W
7w 2w 2341 APP
GUEST 08 GUEST 08 [GUEST 0S|
[N | I—\ v
2% 232
I I I 230
VMM
240~ 1ocal SRP
- SCHEDULER MODULE
2
224 5 I -
STORAGE INTERFACE 2
NETWORK
MEMORY PROCESSOR SRR P~ 2% INTLRFAGE

(57) Abstract: A system and method for providing quality of service (QoS) for clients running on host computers to access a com -
mon resource uses a resource pool module and a local scheduler in at least one of the host computers. The resource pool module op -
erates to compute an entitlement of each client for the common resource based on a current capacity for the common resource and
demands of the clients for the common resource. In addition, the resource pool module operates to assign a portion of the computed
current capacity for the common resource to a particular host computer using the computed entitlement of each client running on the
particular host computer. The local scheduler operates to allocate the portion of the computed current capacity among the clients
running on the particular host computer.

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

DISTRIBUTED DEMAND-BASED STORAGE QUALITY OF SERVICE
MANAGEMENT USING RESOURCE POOLING

Ajay Gulati, Ganesha Shanmuganathan and Peter Joseph Varman

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application is entitled to the benefit of U.S. Patent Application
Serial Number 13/485,615 filed on May 31, 2012, which is incorporated herein by

reference.

BACKGROUND

[0002] Sharing resources for networked computers, such as data storage
facilities, can increase efficiency by reducing maintenance and operating costs,
allowing flexibility with respect to individual resource usage, and simplifying
resource management. With respect to shared storage, the benefits include data
consolidation, universal access to data, ease of storage management, and support for

live migration of virtual machines (VMs) for virtualized environments.

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

[0003] An important aspect of sharing resources is Quality of Service (QoS),
which refers to resource management methodologies whereby the shared resources
are allocated among a plurality of users or clients according to a policy. The policy
may guarantee a minimum and/or maximum level of service (e.g., as a percentage of
shared resource). It is also common to distribute services according to assigned
resource “‘shares,” which are alternatively referred to in literature as “weights,” so that
each client is provided a level of service that compares to its peers at the same ratio as
the assigned shares. A combination of these approaches is possible for a particular
policy. Thus, QoS suggests an ability to evenly distribute services or arbitrarily
assign priority to selected applications, users, or data flows to maintain control over

workload performance in shared storage environments.

SUMMARY

[0004] A system and method for providing Quality of Service (QoS) for clients
running on host computers to access a common resource uses a resource pool module
and a local scheduler in at least one of the host computers. The resource pool module
operates to compute an entitlement of each client for the common resource based on a
current capacity for the common resource and demands of the clients for the common
resource. In addition, the resource pool module operates to assign a portion of the
computed current capacity for the common resource to a particular host computer
using the computed entitlement of each client running on the particular host computer.
The local scheduler operates to allocate the portion of the computed current capacity
among the clients running on the particular host computer.

[0005] A method for providing QoS for clients running on host computers to
access a common resource in accordance with an embodiment of the invention
comprises computing a current capacity for the common resource based on a global
average latency for accessing the common resource by the clients, computing an
entitlement of each client for the common resource based on the computed current
capacity and demands of the clients for the common resource, assigning a portion of
the computed current capacity for the common resource to a particular host computer
using the computed entitlement of each client running on the particular host computer,

and allocating the portion of the computed current capacity among the clients running

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

on the particular host computer. In some embodiments, the steps of this method are
performed when program instructions contained in a computer-readable storage
medium is executed by one or more processors of the host computers.

[0006] A system in accordance with an embodiment of the invention comprises
at least one processor, a plurality of clients operably connected to the at least one
processor, a resource interface with a host queue to store requests from the clients to
access a common resource, a resource pool module operably connected to the at least
one processor, and a scheduler operably connected to the resource pool module. The
resource pool module comprises a first component configured to compute a current
capacity for the common resource based a global average latency for accessing the
common resource by the clients, a second component configured to compute an
entitlement of each client for the common resource based on the computed current
capacity and demands of the clients for the common resource, and a third component
configured to assign a portion of the computed current capacity for the common
resource to a host computer using the computed entitlement of each client. The
scheduler is configured to allocate the portion of the computed current capacity
among the at least one client running on the host computer.

[0007] Other aspects and advantages of embodiments of the present invention
will become apparent from the following detailed description, taken in conjunction
with the accompanying drawings, illustrated by way of example of the principles of

the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Fig. 1 is a block diagram of a network computer system in accordance
with an embodiment of the invention.

[0009] Fig. 2 is a block diagram of a host computer of the network computer
system of Fig. 1 in accordance with an embodiment of the invention.

[0010] Fig. 3 is a diagram of virtual machines (VMs), host computers and a
storage of the network computer to illustrate different groups of VMs in accordance
with an embodiment of the invention.

[0011] Fig. 4 is a diagram of a resource pool hierarchical structure with VMs in

accordance with an embodiment of the invention.

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

[0012] Fig. 5 is a block diagram of a storage resource pool (SRP) module
included in a host computer in accordance with an embodiment of the invention.
[0013] Fig. 6 is another diagram of the resource pool hierarchical structure
shown in Fig. 4.

[0014] Fig. 7 is a block diagram that shows a resource pool hierarchical
structure being split based on different datastores in accordance with an embodiment
of the invention.

[0015] Fig. 8 is a flow diagram of a method for providing quality of service
(QoS) for clients running on host computers to access a common resource in
accordance with an embodiment of the invention.

[0016] Throughout the description, similar reference numbers may be used to

identify similar elements.

DETAILED DESCRIPTION

[0017] It will be readily understood that the components of the embodiments as
generally described herein and illustrated in the appended figures could be arranged
and designed in a wide variety of different configurations. Thus, the following more
detailed description of various embodiments, as represented in the figures, is not
intended to limit the scope of the present disclosure, but is merely representative of
various embodiments. While the various aspects of the embodiments are presented in
drawings, the drawings are not necessarily drawn to scale unless specifically
indicated.

[0018] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are
to be considered in all respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims rather than by this
detailed description. All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their scope.

[0019] Reference throughout this specification to features, advantages, or
similar language does not imply that all of the features and advantages that may be
realized with the present invention should be or are in any single embodiment of the

invention. Rather, language referring to the features and advantages is understood to

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

mean that a specific feature, advantage, or characteristic described in connection with
an embodiment is included in at least one embodiment of the present invention. Thus,
discussions of the features and advantages, and similar language, throughout this
specification may, but do not necessarily, refer to the same embodiment.

[0020] Furthermore, the described features, advantages, and characteristics of
the invention may be combined in any suitable manner in one or more embodiments.
One skilled in the relevant art will recognize, in light of the description herein, that
the invention can be practiced without one or more of the specific features or
advantages of a particular embodiment. In other instances, additional features and
advantages may be recognized in certain embodiments that may not be present in all
embodiments of the invention.

[0021] Reference throughout this specification to “one embodiment,” “an
embodiment,” or similar language means that a particular feature, structure, or
characteristic described in connection with the indicated embodiment is included in at
least one embodiment of the present invention. Thus, the phrases “in one
embodiment,” “in an embodiment,” and similar language throughout this specification
may, but do not necessarily, all refer to the same embodiment.

[0022] Conventional Quality of Service (QoS) techniques with respect to
resource management do not provide sufficient controls to accommodate enterprises
with different infrastructures and/or objectives. In addition, some convention QoS
techniques require a centralized scheduler, which can add complexity to QoS
mechanism and can increase susceptibility to system-wide failures.

[0023] In view of the limitations and concerns of conventional QoS techniques,
there is a need for a QoS management to maintain control over workload performance
in shared resource environments without the use of a centralized scheduler.

[0024] Turning now to Fig. 1, a network computer system 100 in accordance
with an embodiment of the invention is shown. As shown in Fig. 1, the network
computer system includes a network 102, a number of host computers 104A,
104B...104N connected to the network, and a shared storage 106 also connected to
the network. Thus, each of the host computers 104 is able to access the shared storage
via the network and share the resource provided by the storage with the other host
computers. Consequently, any process running on any of the host computers can also

access the storage via the network. As described in more detail, in the illustrated

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

embodiment, the host computers in a distributed manner implement a demand-based
QoS mechanism to maintain control over workload performance with respect to
storage resource being shared by the host computers.

[0025] The network 102 can be any type of computer network or a combination
of networks that allows communications between devices connected to the network.
The network 102 may include the Internet, a wide area network (WAN), a local area
network (LAN), a storage area network (SAN), a fibre channel network and/or other
networks. The network 102 may be configured to support protocols suited for
communications with storage arrays, such as Fibre Channel, iSCSI, FCoE and
HyperSCSIL

[0026] The host computers 104A, 104B...104N are physical computer systems
that hosts or supports one or more clients so that the clients are executing on the
physical computer systems. The host computers may be servers that are commonly
found in data centers. As used herein, the term “client” is any software entity that can
run on a computer system, such as a software application, a software process or a
virtual machine (VM). The host computers are described in more detail below.
[0027] The storage 106 is used to store data for the host computers 104A,
104B...104N, which can be accessed like any other storage device connected to
computer systems. In an embodiment, the storage can be accessed by entities, such as
clients running on the host computers, using any file system, e.g., virtual machine file
system (VMEFS) or network file system (NFS). The storage includes one or more
computer data storage devices 108, which can be any type of storage devices, such as
solid-state devices (SSDs), hard disks or a combination of the two. The storage
devices may operate as components of a network-attached storage (NAS) and/or a
storage area network (SAN). The storage includes a storage managing module 110,
which manages the operation of the storage. The storage managing module maintains
a request queue 112, which is a list of pending input/output (10) request for the
storage. In an embodiment, the storage managing module 110 is a computer program
executing on one or more computer systems (not shown) of the storage. The storage
may support multiple data stores or logical unit numbers (LUNs). Although the
storage 106 can be any type of computer data storage, the storage 106 will be

described herein as being a storage array.

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

[0028] Turning now to Fig. 2, components of the host computer 104A in
accordance with an embodiment of the invention are shown. The other host
computers 104B...104N are similar to the host computer 104A. Thus, the host
computer 104A will be used as an example for the other host computer. In Fig. 2, the
physical connections between the various components of the host computer 104A are
not illustrated. In the illustrated embodiment, the host computer 104A is configured
to support a number of clients 220A, 220B...220N, which are VMs. The number of
VMs supported by the host computer can be anywhere from one to more than one
hundred. The exact number of VMs supported by the host computer is only limited
by the physical resources of the host computer. The VMs share at least some of the
hardware resources of the host computer, which include system memory 222, one or
more processors 224, a storage interface 226, and a network interface 228. The
system memory 224, which may be random access memory (RAM)), is the primary
memory of the host computer. The processor 224 can be any type of a processor,
such as a central processing unit (CPU) commonly found in a server. The storage
interface 226 is an interface that allows that host computer to communicate with the
storage array 106. As an example, the storage interface may be a host bus adapter or
a network file system interface. The network interface 228 is an interface that allows
the host computer to communicate with other devices connected to the network 102.
As an example, the network interface may be a network adapter.

[0029] In the illustrated embodiment, the VMs 220A, 220B...220N run on top
of a virtual machine monitor 230, which is a software interface layer that enables
sharing of the hardware resources of the host computer 104A by the VMs. However,
in other embodiments, one or more of the VMs can be nested, i.e., a VM running in
another VM. For example, one of the VMs may be running in a VM, which is also
running in another VM. The virtual machine monitor may run on top of the host
computer's operating system or directly on hardware of the host computer. In some
embodiments, the virtual machine monitor runs on top of a hypervisor that is installed
on top of the hardware components of the host computer. With the support of the
virtual machine monitor, the VMs provide virtualized computer systems that give the
appearance of being distinct from the host computer and from each other. Each VM
includes a guest operating system 232 and one or more guest applications 234. The

guest operating system is a master control program of the respective VM and, among

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

other things, the guest operating system forms a software platform on top of which the
guest applications run.

[0030] Similar to any other computer system connected to the network 102, the
VMs 220A, 220B...220N are able to communicate with other computer systems
connected to the network using the network interface 228 of the host computer 104A.
In addition, the VMs are able to access the storage array 106 using the storage
interface 226 of the host computer. Thus, the VMs of the host computer compete for
the shared storage resource provided by the storage array for the host computer.
Similarly, the host computer competes with other host computers 104B...104N for the
shared storage resource.

[0031] Each of the host computers 104A, 104B...104N of the network computer
system 100 is allowed to keep a certain maximum number of 10 requests outstanding
at the storage array 106 in an issue queue 236 of the storage interface 226 of that host
computer, as illustrated in Fig. 2. The size of the issue queue (also referred to herein
as “host queue depth”) for a particular host computer reflects the capacity of the
storage array to process 10 request that is currently allocated to that particular host
computer. As described in more detail below, the issue queues in the host computers
are used to implement QoS control with respect to the storage resource provided by
the storage array.

[0032] Due to the competition for the shared common resource, i.e., the shared
storage resource provided by the storage array 106, there is a need for a QoS
management mechanism in the network computer system 100 to control distributions
of the shared storage resource among the different entities, such as the VMs hosted by
the host computers 104A, 104B...104N. If the shared resource is to be divided
equally among the different VMs, the process of distributing the shared storage
resource may be straightforward. However, in certain situations, some of the VMs
may need greater amount of the shared storage resource than other VMs. As used
herein, an amount of the shared storage resource may be measured in 10 operations
per second (IOPS), wherein a higher IOPS value means greater access to the shared
storage resource. In addition, the needs of the different VMs may vary based on
changes in the demands of the VMs for the shared storage resource. Furthermore, in
certain situations, the VMs running on different host computers may belong to

different groups, which have needs and requirements with respect to access to the

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

shared storage resource. An example of such groups of VMs is described below with
reference to Fig. 3.

[0033] Fig. 3 shows the host computers 104A and 104B connected to the
storage array 106 to share the storage resource provided by the storage array. The
host computer 104A includes the VMs 220A and 220B. The host computer 104B
includes the VM 220C and 220D. In this example, the VM 220A running on the host
computer 104A and the VM 220C running on the host computer 104B belong to the
sales division of an enterprise. The VM 220B running on the host computer 104A
and the VM 220D running on the host computer 104B belong to the finance division
of the enterprise. The VMs 220A and 220C of the sales division may be handling
sales in different continents, and thus, need an overall reservation of 1,000 IOPS
based on the peaks and troughs of demand in the different time zones. The VMs
220B and 220D of the finance division may be running background data analytics,
and thus, are restricted to a combined throughput of 500 IOPS to reduce their impact
on the critical sales VMs. In addition, someone may want to allocate the 500 IOPS in
ratio 1:2 between the VMs based on their importance. This is known as shares
control. The QoS management mechanism of the network computers system 100 in
accordance with embodiments of the invention is designed to provide a robust QoS
control of the shared storage resource to address the requirements of different groups
of VMs without the need to have a centralized resource scheduler, which can add
complexity to the QoS mechanism and can increase susceptibility to system-wide
failures. As described below, the QoS management mechanism of the network
computer system uses a concept of storage resource pools (SRP) to manage QoS for
clients distributed throughout the network computer system. Thus, the QoS
management mechanism of the network computer system will be referred to herein as
the SRP-based QoS management mechanism.

[0034] The SRP-based QoS management mechanism allows a user, such as a
system administrator, to specify the desired QoS using throughput reservation values
(lower bounds), limit values (upper bounds) and shares (proportional sharing). These
values may be set for any node of a resource pool hierarchical structure, such as
individual VMs in the resource pool hierarchical structure and/or groups of related
VMs, as conceptually designated by nodes in the resource pool hierarchical structure

that are situated at a higher level than the VMs. The reservation values are absolute

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

guarantees that specify the minimum amount of the shared resource that the nodes,
e.g., VMs and groups of VM, in the resource pool hierarchical structure must
receive. The limit values specify the maximum allocation that should be made to the
nodes in the resource pool hierarchical structure. These values are useful for
enforcing strict isolation and restricting tenants for contractually-set IOPS based on
their service level objectives (SLOs). The shares provide a measure of relative
importance between the nodes in the resource pool hierarchical structure, and are used
to prioritize allocation when capacity is constrained.

[0035] The SRP-based QoS management mechanism also allows the user to
group the clients running on the host computers 104A, 104B...104N in the network
computer system 100 into storage resource pools (i.e. SRPs) so that the clients in a
particular group or SRP can be treated as a single unit for resource allocation. These
units can then be aggregated into larger resource pools or groups to create a resource
pool hierarchical structure. The grouping of the clients can be made regardless of the
underlying host computers on which the clients are running. Thus, clients running on
a particular host computer may belong to different resource pools or groups. Such
distributed architectures are very common in virtualized datacenters. The information
defining the resource pool hierarchical structure may be stored in a shared file stored
in the storage array 106 so that every host computer in the network computer system
is able to access this information. Alternatively, the resource pool hierarchical
structure information may be broadcasted to other host computers in the network
computer system so that every host computer has these values from all the other host
computers.

[0036] An example of a resource pool hierarchical structure with the VMs
220A, 220B, 220C and 220D is illustrated in Fig. 4. The resource pool hierarchical
structure shown in Fig. 4 includes the four VMs 220A, 220B, 220C and 220D, which
can be viewed as being nodes in the lowest level of the resource pool hierarchical
structure. In this example, the VMs 220A and 220C are grouped together, as
illustrated by a node 402A, which can be viewed as the parent node of the two VMs
220A and 220C. Thus, the two VMs 220A and 220C can be viewed as the children or
child nodes of the node 402A. Similarly, the VMs 220B and 220D are grouped
together, as illustrated by another node 402B, which can be viewed as the parent node

of the two VMs 220B and 220D. Thus, the two VMs 220B and 220D can be viewed

10

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

as the children or child nodes of the node 402B. The two nodes 402A and 402B are
further grouped together, as illustrated by a node 404, which is the root node of the
resource pool hierarchical structure. The node 404 can also be viewed as the parent
node of the two nodes 402A and 402B, and conversely, the two nodes 402A and 402B
can be viewed as the children or child nodes of the node 404. This resource pool
hierarchical structure may conceptually represent an organizational structure, such as
a business enterprise with divisions or departments that use one or more VMs for
operation. If representing a business enterprise, the root node 404 of the resource
pool hierarchical structure may represent the entire business enterprise, and the two
nodes 402A and 402B may represent divisions or departments of the enterprise, such
as sales and financial divisions, respectively, where the VMs 220A and 220C operate
for the sales division and the VMs 220B and 220D operate for the financial division.
[0037] The SRP-based QoS management mechanism uses a storage resource
pool (SRP) module 238 and a local scheduling module 240, which are included in
each host computer in the network computer system 100, as illustrated in Fig. 2. The
SRP module in each host computer cooperatively operates with the SRP modules in
the other host computers of the network computer system to determine how much of
the capacity of the storage array 106 should be provided to that host computer, which
is at least based on aggregate demand on the storage array by clients in the host
computer and average latency of the storage array. The SRP module then determines
how much of the storage capacity allocated to the host computer should be provided
to each client, e.g., each VM, in the host computer. The SRP module also distributes
a global reservation value, a global limit value and shares at the root node of a
resource pool hierarchical structure down to the clients based on their current
individual demands of the shared storage resource, their static reservation, limit and
share values. As used herein, a share value is equivalent to the number of assigned
shares. In addition, as used herein, static values are those that are set by a user, such
as a system administrator, or a managing program running on any computer in the
network computer system 100. These static values may be stored in a shared file
stored in the storage array 106 so that every host computer in the network computer
system is able to access this information. Alternatively, these static values may be
broadcasted to other host computers in the network computer system so that every

host computer has these values from all the other host computers. As a result of the

11

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

distribution, each client is assigned a dynamic reservation value, a dynamic limit
value and a dynamic share value for the current monitoring time interval. These
dynamic values, as well as the allocations of the storage capacity to the clients, are
then recalculated for each subsequent monitoring time interval.

[0038] The local scheduler 240 in each host computer operates to schedule the
IO requests by the clients, e.g., the VMs, in that host computer in accordance with the
dynamic reservation values, the dynamic limit values and the dynamic share values,
which were computed by the SRP module 238 in the host computer. Although the
local scheduler and the SRP module are illustrated in Fig. 2 as being separate from the
virtual machine monitor 230, one or both of these components may be implemented
as part of the virtual machine monitor. In some embodiments, the SRP module and
the local scheduler are implemented as software programs running on the host
computer. However, in other embodiments, the SRP module and the local scheduler
may be implemented using any combination of software and hardware.

[0039] Turning now to Fig. 5, components of the SRP module 238 in
accordance with an embodiment of the invention are shown. As illustrated in Fig. 5,
the SRP module includes a demand updating component 502, a storage queue depth
updating component 504, a storage IOPS capacity computing component 506, a
divvying component 508, and a host queue depth adjusting component 510. In the
illustrated embodiment, these components of the SRP module are shown as being
distinct elements. However, in other embodiments, one or more of these components
may be combined with other components and/or one or more of these components
may be further divided into sub-components. In an embodiment in which the SRP
module is implemented as a software module, the components of the SRP module can
be viewed as processing blocks of the software module. In the following description
of the components of the SRP module, the clients in the host computer 104 A are
described as being VMs. However, as noted above, these clients can be any entities
that can access the storage array 106 for the shared storage resource.

[0040] The resource demand updating component 502 of the SRP module 238
operates to update the demand of each VM in the host computer 104A for the shared
storage resource and the aggregated VM demand for the host computer, i.e., the sum
of the demands of all the VMs in the host computer. The resource demand updating

component determines the average latency (“avgLatency”) for the host computer and

12

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

the average measured IOPS (“avglops™) using statistics maintained by the host
computer, e.g., by the virtual machine monitor 230 or a hypervisor running on the
host computer. These statistics maintained by the host computer include statistics on
the aggregated latency and the total number of 10s performed by each VM of the host
computer during a monitoring interval. The resource demand updating component
then computes the demand for each VM in the host computer in terms of average
number of outstanding 10s (“demandOI0”) using the following equation derived
from Little’s law:

demandOIO = avgLatency x avglops (Equation 1).
These values are then made available so that every host computer in the network
computer system 100 can get these VM demand values in terms of outstanding 10s
(OI0s). In an embodiment, these values are updated in a shared file stored in the
storage array 106. Thus, every host computer in the network computer system is able
to access the shared file to retrieve the demandOIO values for other host computers in
the network computer system. In other embodiments, these values may be
broadcasted to other host computers in the network computer system so that every
host computer has these values from all the other host computers.
[0041] The resource demand updating component 502 then converts the
demandOIO value to a normalized demand IOPS value (“demandlops’) based on the
storage device congestion threshold latency (“L.”) using the following equation:

demandlops = demandOIO/L.. (Equation 2).
The congestion threshold is the maximum latency at which the storage device is
operated. The resource demand updating components controls the storage queue
depth, i.e., the depth of the request queue 112 (shown in Fig. 1), to keep the latency
close to L., so that the storage array 106 is utilized in an efficient manner. This helps
to avoid overestimating the demand of a VM based on local latency variations. As an
example, the congestion threshold can be typically set to 30 milliseconds. For SSD-
backed LUNS, L. can be set to a lower value, e.g., 5 to 10 milliseconds.
[0042] The resource demand updating component 502 then adjusts the
demandlops value to make sure that the value lies within the lower and upper bounds
represented by reservation and limit settings for each VM using the following
equation:

demandlops = min(max(demandlops, R), L) (Equation 3).

13

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

The demand is then aggregated for the host computer by summing the demandlops
values of the VMs and then applying the bound check at the host computer 104A to
make sure that the aggregated value lies within the lower and upper bounds
represented by reservation and limit settings for the host computer.

[0043] The storage queue depth updating component 504 of the SRP module
238 operates to update the capacity of the storage array in terms of the storage queue
depth of the storage array 106, which is then allocated to each host computer in the
network computer system 100, including the host computer 104A in which the SRP
module is operating. The storage queue depth updating component adjust the storage
queue depth to keep the measured latency within the congestion threshold using the

following equation:
Lc
Qt+1) = (1-NQM) +y(S

In the above equation, Q(¢) denotes the storage queue depth at time ¢, .(¢) is the

Q(t) (Equation 4).

current average latency for all the host computers, y € [0,1] is a smoothing parameter
and Lc is the device congestion threshold.
[0044] The storage IOPS capacity computing component 506 of the SRP
module 238 operates to compute the IOPS capacity of the storage array 106. The
storage IOPS capacity computing component converts the updated array queue depth
value, which was computed by the storage queue depth computing component 504, to
an equivalent storage IOPS capacity using the following equation derived using
Little’s Law:

arraylOPS = Q(t+1)/L. (Equation 5).
The conversion from queue depth to IOPS is done because the resource pool settings
used in the divvying operation performed by the divvying component 508, as
described below, are in terms of user-friendly IOPS, rather than the less transparent
OIO values.
[0045] The divvying component 508 of the SRP module 238 operates to
compute dynamic reservation, limit and share values for the VMs that reflect the
current demand distribution, as well as the entitlements of the VMs with respect to the
computed arraylOPS value. The divvying component takes as input the structure of a
resource pool hierarchical structure, the static reservation, limit and shares settings on

nodes of the resource pool hierarchical structure (e.g., the nodes 402A, 402B and 404

14

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

shown in Fig. 4), as well as the demands of the VMs and the nodes. The divvying
component then performs operations to distribute the reservation, limit, array IOPS
and share values at the root node the resource pool hierarchical structure down to the
VMs.
[0046] The root node of a resource pool hierarchical structure holds four
resource types that need to be divided or distributed among the nodes of the resource
pool (RP) hierarchical structure:

(1) reserved RP capacity (R),

(2) RP limit (1),

(3) array IOPS (/), and

(4) total RP shares ().
[0047] The divvying component 508 does a level-by-level pass of the resource
pool hierarchical structure to divide the resources at each level of the resource pool
hierarchical structure beginning with the root node. For each node of the resource
pool hierarchical structure, the divvying component divides up the resources of the
node among its children or child nodes. As used herein, R-divvy, L-divvy, I-divvy
and S-divvy operations are operations performed by the divvying component to
distribute the R, L, I and § values, respectively.
[0048] The R, L, I and § values at the root node of the resource pool hierarchical
structure will sometimes be referred to herein as global R, L, I and § values.
[0049] The resulting R, L, § values for the VMs after the R-divvy, L-divvy and
S-divvy operations are used as the dynamic R, L, S settings for the VMs during the
next monitoring time interval. The value of I obtained per VM as part of I-divvy is
known as the entitlement of the VM. During R-divvy, L-divvy and I-divvy
operations, the limits of the nodes to receive shares of the R, L. and [values are
temporarily capped at their aggregated demands, which allows the resources to be
directed to VMs that currently have higher demands.
[0050] For the R-divvy operation, the divvying component 508 will first divvy
the reserved RP capacity R at the root node among its children or child nodes. At
each child node, its allocated reservation is used as the capacity to divvy among its
children. This process is repeated until all the VMs of the network computer system
100 have received their updated share of R. For the L-divvy and I-divvy operations,

the divvying component follows a similar procedure to divvy the RP limit 1. and the

15

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

array IOPS I so that each VM receives a new dynamic limit setting and entitlement ;.
For the S-divvy operation, the divvying component will divvy the total RP shares S at
the root node among its children or child nodes based on the static share values of the
child nodes. At each child node, its allocated shares are then divided among its
children in the ratio of the children’s share settings.

[0051] The divvying component 508 performs the R-divvy, L-divvy, I-divvy
and S-divvy operations to try to give each child node a portion of the parent capacity
in proportion to its shares, subject to their reservation and limit constraints. One
algorithm to accomplish this goal is to serially give a small fixed amount of the parent
capacity to a selected child node until the entire parent capacity has been distributed
to the children. To illustrate this algorithm, let a; denote the allocation made to a
child i at some stage of the divvying process, and s; be its share value. In this
algorithm, the divvying process first gives each child node its reservation, i.e., the
initial value of g; is the static reservation value of the child i. For the next quanta of
the resource, the divvying process chooses the child node with the smallest
normalized allocation (ai/s;) among the children that are below their static limit value,
and increases its allocation by a small amount d. The process continues until the
entire parent capacity has been divvied out. A concern with this algorithm is that it
has a runtime of O(log n * capacity/d) for n VMs, which can be quite high for large
capacity values. Another problem is to come up with a good value of 6. Thus, other
distribution algorithm can be employed by the divvying component to divide the
resources of a parent node to its child nodes in a more efficient manner.

[0052] As an example, one distribution algorithm that can be employed by the
divvying component 508 for R-divvy, L-divvy and /-divvy operations involves using
the demand of a node as its temporary limit (/) value during the distribution process,
while its r and s values are the static reservation and share values, respectively. If the
sum of the demands of the child nodes is smaller than the capacity being divvied at
the parent, the static limits of the child nodes are used instead of their demands. For
the R-divvy operation, the reservation set (R) at the root node is used as the capacity
to divvy, while for the L-divvy and /-divvy operations, the capacities are the root limit
setting (1.) and the array IOPS (I), respectively. For the S-divvy operation, the
parent’s share value is simply divided in the ratio of the children’s shares. A pseudo-

code for this distribution algorithm is presented below.

16

WO 2013/181464

10

15

20

Data: C: Capacity to divvy

Child ¢;, 1 <1 <n, parameters: r;, [;, s;.
Result: a;: allocation computed for child c¢;.
Variables: w; = s,/ ¥7_; s;
V : Ordered set {vy, Uy, = Uy, V; < V;41} Of elements

Dl .
from set {2,4,1 <i< n}

wi wi
index[i]: equals k if v; is either r; or [.
typeli]: equals L (R) if v; is a limit (reservation).

Sets: RB = {1,---n},LB = {}, PS = {}.
n

RBcap = Z r;,LBcap = 0,PSwt = 0.
j=1

foreachk =1,---,2n do

PCT/US2013/043473

/*Can allocation of elements in PS be increased to v;7*/

If (PSwt* vi +LBcap+RBcap>C) then
|_ break

[*If type[k] 1s the limit of a child in PS: Transfer the child

from PS set to LB set™*/
if (rype[k] = L) then
LB = LB U {index[k]}
LBcap = LBcap + lipgexi]
PS = PS — {index[k]}
PSwt = PSWt + Wingex(k]
else
/* type[k] = R: Move child from RB to PS*/
PS = PS U {index[k]}
PSwt = PSWt + Wingex(k]
RB = RB — {index[k]}
RBcap = RBcap + Tingex(k]
if i € RB, a; = ry; /*allocation equals reservation */
if i € LB, a; = l;; /*allocation equals limit */

/* PS members get rest of capacity in shares ratio.*/

17

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

ifi € PS, a; = (w;/ X jepsw;) X (C — LBcap — RBcap);

[0053] The above algorithm has a runtime of O(n*log n) for n VMs, bounded by
the time to create the sorted sequence V. At the end of the process, some children
would have been capped at their limit (LB set), some would not have received any
allocation beyond their reservation (RB set), and the rest would have received
allocation in proportion to their shares (PS set).

[0054] An example of the divvying process performed by the divvying
component 508 is now described with reference to Fig. 6, which shows the same
resource pool hierarchical structure depicted in Fig. 4. However, in Fig. 6, the static
reservation, limit and share values for each node of the resource pool hierarchical
structure are shown. In addition, the computed demands of the VMs 220A, 220B,
220C and 220D are shown. Furthermore, the results of the divvying process, i.e., the
dynamic reservation, limit and share values, are shown for the nodes 402A and 402B
and the VMs. In Fig. 6, the tuple U denotes static settings or values and the tuple D
denotes the dynamic divvy results for the reservation, limit and share values. In this
example, the efficient distribution algorithm described above is used for the divvying
process.

[0055] For the R-divvy operation, the divvying component 508 uses the VM
demands updated by the resource demand updating component 502 as temporary caps
on the limit settings at the nodes of the resource pool hierarchical structure. Since the
demands on the VMs are 600, 400, 400 and 100, respectively, the temporary limit
caps on the VMs are set to 600, 400, 400 and 100, respectively. The divvying
component also aggregates the VM demands to get the demand values for the nodes
402A and 402B. In this example, the aggregate demands for the nodes 402A and
402B are 1,000 and 500, respectively, since the sum of the demands of the VMs 220A
and 220C is 1,000 and the sum of the demands of the VMs 220B and 220D is 500.
Thus, the temporary limits caps on the nodes 402A and 402B are set to 1,000 and 500
respectively.

[0056] The divvying component 508 then proceeds level-by-level down from
the root node 404 to the VMs 220A, 220B, 220C and 220D to divvy the parent
reservation among its children. At the root node 404 of the resource pool hierarchical

structure, the reservation value R, which has been set to 1,200 by a user, is divvied

18

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

between the nodes 402A and 402B in the ratio of their shares (3:1), resulting in
allocations of 900 and 300, respectively. Since these values lie between the
reservation and limit values for the nodes 402A and 402B, these are the final results
of the R-divvy operation at the root node.

[0057] At the next level of the resource pool hierarchical structure, the
reservation of R=900 at the node 402A is divvied up among the VMs 220A and 220C.
Based on the ratio of their shares (1:2), the VM 220A would be allocated 300 for its
reservation value, which is below its reservation of 400. Hence, the divvying
component 508 would actually give the VM 220A its user set reservation amount of
400 and the VM 220C would get the rest, which is a value of 500. For the VMs 220B
and 220D, the reservation of R=300 at the node 402B would be divvied up equally
among the VMs 220B and 220D based on the ratio of their shares (1:1). However,
since the limit for the VM 220D has been temporarily capped at its demand, the VM
220D is given 100, while the VM 220B gets the remaining amount of 200.

[0058] For the L-divvy operation, the divvying component 508 similarly divides
the limit values of the parents among their children, level-by-level. The user set limit
of 1=2300 at the root node 404 is divided among the nodes 402A and 402B in the
ratio of their shares (3:1). However, the allocation to the node 402B is capped at its
limit setting of 500, which results in allocations of 1,800 and 500 to the nodes 402A
and 402B, respectively.

[0059] At the next level, the limit of 1.=1800 at the node 402A is divvied up
among the VMs 220A and 220C. Based on the ratio of their shares (1:2), the VM
220A is allocated 600 for its limit value and the VM 220C is allocated 1,200 for its
limit value. For the VMs 220B and 220D, the limit of =500 would be divvied up
equally among the VMs 220B and 220D based on the ratio of their shares (1:1).
However, since the limit for the VM 220D has been temporarily capped at its demand,
the VM 220D is given 100, while the VM 220B gets the remaining amount of 400.
[0060] For the S-divvy operation, at each level of the resource pool hierarchical
structure, the divvying component 508 simply divides the shares at a parent node
among its child nodes in the ratio of their shares. Thus, the user set shares of §=1,000
at the root node 404 is divided among the nodes 402A and 402B in the ratio of their
shares (3:1), which results in allocation of 750 and 250 to the nodes 402A and 402B,
respectively. At the next level, the share value of $=750 at the node 402A is divvied

19

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

up among the VMs 220A and 220C based on the ratio of their shares (1:2), which
results in allocation of 250 and 500 to the VMs 220A and 220C, respectively. In
addition, the share value of $=250 at the node 402B is divvied up among the VMs
220B and 220D based on the ratio of their shares (1:1), which results in allocation of
125 and 125 to the VMs 220B and 220D, respectively.

[0061] In the above example, the VMs 220B and 220D have identical static
settings. However, due to the difference in their demands, the resulting dynamic
settings are different for the VMs 220B and 220D. With respect to the VMs 220A
and 220C, excess reservation was given to the VM 220C over the VM 220A since the
VM 220A has a higher share value. However, to meet the user-set reservation for the
VM 220A, the VM 220C received less than twice the reservation of the VM 220A.
[0062] Turning back to Fig. 5, the host queue depth adjusting component 510 of
the SRP module 238 operates to compute a new host queue depth value, i.e., the depth
of the issue queue 236, based on the entitlements of the VMs 220A, 220B...220N in
the host computer 104A with respect to the array IOPS, which were computed by the
divvying component 508. The host queue depth adjusting component computes the
new host queue depth value using the following equation to adjust the host queue

depth:

Qn = Q(t + 1) x Htentosh (Equation 6)

where Q(t + 1) is the array queue depth value, arrayIlOPS is the array IOPS capacity,
and F; is the entitlement of a VM in the host computer.

[0063] Turning back to Fig. 2, the local scheduler 240 operates to allocate the
share of the array capacity for the host computer 104A, i.e., the new host queue depth
value computed by the host queue depth adjusting component 510 of the SRP module
238, among its VMs 220A, 220B...220N. The local scheduler uses the dynamic VM
reservations, limits and shares settings computed by the SRP module to schedule the
IO requests from the VMs. The local scheduler enforces the limit defined by the new
host queue depth value on the total number of outstanding 1Os at the host computer.
In an embodiment, the local scheduler is the mClock scheduler described in “mClock:
Handling Throughput Variability for Hypervisor 10 Scheduling” by Ajay Gulati, Arif
Merchant and Peter Varman. However, in other embodiments, any IO scheduler that

can schedule IO requests of VMs in a host computer using the dynamic VM

20

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

reservation, limit and shares settings computed by the SRP module, while abiding by

the limit defined by the host queue depth value, can be used as the local scheduler.

[0064] In this fashion, each host computer in the network computer system 100 is
able to independently allocate a portion of the total capacity of the storage 106 to itself
based on the average latency of the storage and manage the allocated storage resource
among the clients running on that host computer using the computed dynamic reservation,
limit and share values, which are computed based on the demands of the clients for the
shared storage resource. Thus, a centralized QoS manager/scheduler is not required for
the network computer system to efficiently allocate the shared storage resource.

[0065] In some embodiments, the clients running on the host computers 104A,
104B...104N may include sub-components that also require the shared storage resource.
Thus, in these embodiments, these sub-components may be considered as “clients” that
consume the shared storage resource. As an example, a VM running on one of the host
computers may be associated with one or more virtual machine files, such as virtual
machine disk (VMDKSs), which are stored in the storage 106. These VMDKSs of VMs
consume the shared storage resource, and thus, may be assigned reservation, limit and
share values to efficiently share the resource. In an embodiment, the VMDKSs of VMs are
also included in a resource pool hierarchical structure, and considered by the SRP module
238 and the local scheduler 240 of each host computer for QoS control.

[0066] As example of a resource pool hierarchical structure 700 that includes
VMDAKSs is shown in Fig. 7. As shown in Fig. 7, the hierarchical structure 700 includes a
root node 702, nodes 704 A and 704B, VMs 706A, 706B, 706C, 706D and 706E, and
VMDKSs 708A, 708B, 708C, 708D, 708E, 708F, 708G and 708H. For this resource pool
hierarchical structure, the SRP module 238 and the local scheduler 240 of each host
computer would simply distribute the capacity of the storage 106 and the global
reservation, limit and share values assigned to the root node 702 down to the VMDKSs in
the manner described above. In some situations, the VMDKSs may be stored in different
datastores. For example, the VMDKs 708A, 708B, 708D, 708E, and 708H may be stored
in a datastore 1 and the VMDKs 708C, 708E and 708F may be stored in a datastore 2. In
these situations, the SRP module in each of the host computers 104A, 104B...104N may
be configured to split the resource pool hierarchical structure into per datastore resource
pool hierarchical structure using datastore information, which may be provided by a user.

For example, the resource pool hierarchical structure 700 may be split into resource pool

21

WO 2013/181464 PCT/US2013/043473

10

15

20

25

30

hierarchical structure 750A and 750B, which correspond to the datastores 1 and 2,
respectively. The SRP module in each of the host computers will then operate on each of
the per datastore resource pool hierarchical structures 750A and 750B in the manner
described above to provide QoS control.

[0067] A method for providing quality of service (QoS) for clients running on host
computers to access a common resource in accordance with an embodiment of the
invention is described with reference to a flow diagram of Fig. 8. At block 802,
computing a current capacity for the common resource is computed based a global
average latency for accessing the common resource by the clients. At block 804, an
entitlement of each client for the common resource is computed based on the computed
current capacity and demands of the clients for the common resource. At block 806, a
portion of the computed current capacity for the common resource is assigned to a
particular host computer using the computed entitlement of each client running on the
particular host computer. At block 808, the portion of the computed current capacity is
allocated among the clients running on the particular host computer.

[0068] Although the operations of the method(s) herein are shown and

described in a particular order, the order of the operations of each method may be
altered so that certain operations may be performed in an inverse order or so that
certain operations may be performed, at least in part, concurrently with other
operations. In another embodiment, instructions or sub-operations of distinct
operations may be implemented in an intermittent and/or alternating manner.

[0069] It should also be noted that at least some of the operations for the methods
may be implemented using software instructions stored on a computer useable storage
medium for execution by a computer. As an example, an embodiment of a computer
program product includes a computer useable storage medium to store a computer
readable program that, when executed on a computer, causes the computer to perform
operations, as described herein.

[0070] Furthermore, embodiments of at least portions of the invention can take
the form of a computer program product accessible from a computer-usable or
computer-readable medium providing program code for use by or in connection with

a computer or any instruction execution system. For the purposes of this description,

a computer-usable or computer readable medium can be any apparatus that can

22

WO 2013/181464 PCT/US2013/043473

10

15

20

contain, store, communicate, propagate, or transport the program for use by or in
connection with the instruction execution system, apparatus, or device.

[0071] The computer-useable or computer-readable medium can be an
electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or
apparatus or device), or a propagation medium. Examples of a computer-readable
medium include a semiconductor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a read-only memory (ROM), a
rigid magnetic disc, and an optical disc. Current examples of optical discs include a
compact disc with read only memory (CD-ROM), a compact disc with read/write
(CD-R/W), a digital video disc (DVD), and a Blue-ray disc.

[0072] In the above description, specific details of various embodiments are
provided. However, some embodiments may be practiced with less than all of these
specific details. In other instances, certain methods, procedures, components,
structures, and/or functions are described in no more detail than to enable the various
embodiments of the invention, for the sake of brevity and clarity.

[0073] Although specific embodiments of the invention have been described
and illustrated, the invention is not to be limited to the specific forms or arrangements
of parts so described and illustrated. The scope of the invention is to be defined by

the claims appended hereto and their equivalents.

23

WO 2013/181464 PCT/US2013/043473

WHAT IS CLAIMED IS:

1. A method for providing quality of service (QoS) for clients running on host
computers to access a common resource, the method comprising:

computing a current capacity for the common resource based a global average
latency for accessing the common resource by the clients;

computing an entitlement of each client for the common resource based on the
computed current capacity and demands of the clients for the common resource;

assigning a portion of the computed current capacity for the common resource
to a particular host computer using the computed entitlement of each client running on
the particular host computer; and

allocating the portion of the computed current capacity among the clients

running on the particular host computer.

2. The method of claim 1, wherein the computing the entitlement of each client
includes distributing the computed current capacity for the common resource among

the clients based on at least one QoS parameter set for each of the clients.

3. The method of claim 2, wherein the distributing the computed current capacity
for the common resource includes temporarily limiting the amount of the computed

current capacity distributed to a client to the computed entitlement for that client.

4. The method of claim 2, wherein the distributing the computed current capacity
for the common resource includes distributing the computed current capacity for the

common resource among the clients based on shares assigned to the clients.

5. The method of claim 1, further comprising distributing a global reservation
value for the common resource among the clients to derive dynamic reservation
values for the clients, including temporarily limiting the amount of the computed
current capacity distributed to a client to the computed entitlement for that client,
wherein the dynamic reservation values of the clients are used for the allocating the
portion of the computed current capacity among the clients running on the particular

host computer.

24

WO 2013/181464 PCT/US2013/043473

6. The method of claim 5, wherein the distributing the global reservation value
for the common resource among the clients includes distributing the global
reservation value through a hierarchical structure of parent and child nodes such that
the global reservation value at a root node of the hierarchical structure is distributed to

lower nodes of the hierarchical structure in a level-by-level process.

7. The method of claim 1, further comprising computing the demand of each
client running on a particular host computer using a local average latency for
accessing the common resource from the particular host computer and an average
number of inputs/outputs in response requests to access the common resource from

that client.

8. The method of claim 7, further comprising storing the computed demand in a
shared file that is accessible by each of the host computers or transmitting the
computed demand to other host computers in connection with the particular host

computer.

0. The method of claim 1, wherein the assigning the portion of the computed
current capacity for the common resource to the particular host computer includes
adjusting the depth of a host queue of the particular host computer, the host queue
being used to store outstanding requests for the common resource from the clients

running on the particular host computer.

10. The method of claim 1, wherein the computing the current capacity for the
common resource includes computing the current capacity for the common resource
using the global average latency, a smoothing parameter and a resource congestion

threshold value.

11. A system comprising:
at least one processor;
a plurality of clients operably connected to the at least one processor;
a resource interface with a host queue to store requests from the clients

to access a common resource;

25

WO 2013/181464 PCT/US2013/043473

a resource pool module operably connected to the at least one
processor, the resource pool module comprising:

a first component configured to compute a current capacity for
the common resource based a global average latency for accessing the common
resource by the clients;

a second component configured to compute an entitlement of
each client for the common resource based on the computed current capacity and
demands of the clients for the common resource; and

a third component configured to assign a portion of the
computed current capacity for the common resource to a host computer using the
computed entitlement of each client; and

a scheduler operably connected to the resource pool module, the
schedule being configured to allocate the portion of the computed current capacity

among the at least one client running on the host computer.

12. The system of claim 11, wherein the resource pool module is configured to
distribute the computed current capacity for the common resource among the clients
based on at least one QoS parameter set for each of the clients to compute the

entitlement of each client for the common resource.

13. The system of claim 12, wherein the resource pool module is configured to
temporarily limit the amount of the computed current capacity distributed to a client
to the computed entitlement for that client to compute the entitlement of each client

for the common resource.

14. The system of claim 12, wherein the resource pool module is configured to
distribute the computed current capacity for the common resource among the clients

based on shares assigned to the clients.

15. The system of claim 11, wherein the resource pool is configured to distribute a
global reservation value for the common resource among the clients to derive
dynamic reservation values for the clients, wherein the resource pool is further

configured to temporarily limit the amount of the computed current capacity

26

WO 2013/181464 PCT/US2013/043473

distributed to a client to the computed entitlement for that client, and wherein the
dynamic reservation values of the clients are used to allocate the portion of the

computed current capacity among the clients.

16. The system of claim 15, wherein the resource pool module is configured to
distribute the global reservation value through a hierarchical structure of parent and
child nodes such that the global reservation value at a root node of the hierarchical
structure is distributed to lower nodes of the hierarchical structure in a level-by-level

process.

17. The system of claim 11, wherein the resource pool module is configured to
compute the demand of each client using a local average latency for accessing the
common resource from the host computer and an average number of inputs/outputs in

response requests to access the common resource from that client.

18. The system of claim 17, wherein the resource pool module is further
configured to store the computed demand in a shared file that is accessible by other
host computers or configured to transmit the computed demand to other host

computers in connection with the host computer.

19. The system of claim 11, wherein the resource pool module is configured to
adjust the depth of a host queue of the host computer to assign the portion of the
computed current capacity for the common resource to the host computer, the host
queue being used to store outstanding requests for the common resource from the

clients.

20. The system of claim 11, wherein the resource pool module is configured to
compute the current capacity for the common resource using the global average

latency, a smoothing parameter and a resource congestion threshold value.
21. A computer-readable storage medium containing program instructions for

providing quality of service to clients in host computers to access a common resource,

wherein execution of the program instructions by one or more processors of the host

27

WO 2013/181464 PCT/US2013/043473

computers the one or more processors causes the one or more processors to perform
steps comprising:

computing a current capacity for the common resource based a global average
latency for accessing the common resource by the clients;

computing an entitlement of each client for the common resource based on the
computed current capacity and demands of the clients for the common resource;

assigning a portion of the computed current capacity for the common resource
to a particular host computer using the computed entitlement of each client running on
the particular host computer; and

allocating the portion of the computed current capacity among the clients

running on the particular host computer.

22. The computer-readable storage medium of claim 21, wherein the computing
the entitlement of each client includes distributing the computed current capacity for
the common resource among the clients based on at least one QoS parameter set for

each of the clients.

23. The computer-readable storage medium of claim 22, wherein the distributing
the computed current capacity for the common resource includes temporarily limiting
the amount of the computed current capacity distributed to a client to the computed

entitlement for that client.

24. The computer-readable storage medium of claim 22, wherein the distributing
the computed current capacity for the common resource includes distributing the
computed current capacity for the common resource among the clients based on

shares assigned to the clients.

25. The computer-readable storage medium of claim 21, wherein the steps further
comprises distributing a global reservation value for the common resource among the
clients to derive dynamic reservation values for the clients, including temporarily
limiting the amount of the computed current capacity distributed to a client to the

computed entitlement for that client, wherein the dynamic reservation values of the

28

WO 2013/181464 PCT/US2013/043473

clients are used for the allocating the portion of the computed current capacity among

the clients running on the particular host computer.

26. The computer-readable storage medium of claim 25, wherein the distributing
the global reservation value for the common resource among the clients includes
distributing the global reservation value through a hierarchical structure of parent and
child nodes such that the global reservation value at a root node of the hierarchical
structure is distributed to lower nodes of the hierarchical structure in a level-by-level

process.

27. The computer-readable storage medium of claim 21, wherein the steps further
comprises computing the demand of each client running on a particular host computer
using a local average latency for accessing the common resource from the particular

host computer and an average number of inputs/outputs in response requests to access

the common resource from that client.

28. The computer-readable storage medium of claim 21, wherein the steps further
comprises the computed demand in a shared file that is accessible by each of the host

computers.

29. The computer-readable storage medium of claim 21, wherein the assigning the
portion of the computed current capacity for the common resource to the particular
host computer includes adjusting the depth of a host queue of the particular host
computer, the host queue being used to store outstanding requests for the common

resource from the clients running on the particular host computer.

30. The computer-readable storage medium of claim 21, wherein the computing
the current capacity for the common resource includes computing the current capacity
for the common resource using the global average latency, a smoothing parameter and

a resource congestion threshold value.

29

PCT/US2013/043473

WO 2013/181464

17

801

¢hHh—

0bh—

ok

801 431NdINOD
w 1SOH
V\} TN
3 .
/\) TN
O T3
431NdINOD
1SOH
\] 4M13N0 1S3N034
F1NA0N ONIDYNVIA
\ 3OvH0L 431NdINOD
OVOLS \ 1SOH
m Yy0l
901

PCT/US2013/043473

WO 2013/181464

2T

¢ Il

Y0 _&\

JOV443IN]| 9¢Z —T~—4 3N3N0 INSSI
40SS3004d AHOWIN
HdOMLAN s 0V4HILNI JOVHOLS
A N
8c2 H i) f
\ 9¢¢ ee 270
JINAON 431NQ3IHIS
s [W01 [~ope
A 5 A 4
NINA
T j
0£2 o e H
252 N\
01510 N S0 153N9 — S0 153n9
[] []
ddv kL —~rez vz~ ddv oo AT ddY
NA —_] NA NA
Nozz 80ce vozz”

SUBSTITUTE SHEET (RULE 26)

WO 2013/181464 PCT/US2013/043473

3

STORAGE |~—106

104\A\ / \ /1848

HOST HOST
COMPUTER COMPUTER
N / \ o = / \ -
VM VM VM VM

FIG. 3

PCT/US2013/043473

WO 2013/181464

A7

Gl

ININOAINOD ININOAINOD ININOAINOD ININOAIN0D
ONILSNIQY ININOAINOD INILNAINOD ONILVAdN ONILVAdN
H1d3d 3N3N0 INIAAIC ALIOYdYD H1d3d 3N3N0 ANYIN3Q
1SOH Sd0I39v40.S 39VH0.S 304N0S3Y
01S 805 JINAON dHS 90 705 ¢05

\

g8ec

WO 2013/181464

402A

[U:<R=1200, L=2300, S=1000>

lJ<600 Max, 3>
D:(900, 1800, 750)

4

PCT/US2013/043473

404

‘\\\\\\\\\\\\ 4028

U:<0, 500, 1>
D 3 0,500, 250)

/\ /\

U:<400, Max, 1>
DEMAND: 600
D:(400, 600, 250)

U:<200, Max, 2>
DEMAND: 400
D:(500, 1200, 500)

U:<0, 500, 1>
DEMAND: 400
D:(200, 400, 125)

U:<0, 500, 1>
DEMAND: 100
D:(100, 100, 125)

)

220A

\\7

220C

(

220B

FIG. 6

8

220D

19l;

PCT/US2013/043473

6/7

WO 2013/181464

980, \/ 200, HB0L D80L 480 380L 080L 980 V80.
Wy G/ C Y/

390 N%O , | 8902 <
0L VPOl S \/ Y

¢ 340LSVLV(

1 N N7
404/ ¢0. 480/ 190, 190/ V90.
380/ c ~V80.
LY
H80Z| 80/ G0,/ Y0,
| 3H0LSVLVA
0/
Y §
V90 002

Y0/

WO 2013/181464 PCT/US2013/043473

17

802
COMPUTE A CURRENT CAPACITY FOR THE COMMON RESOURCE f
BASED A GLOBAL AVERAGE LATENCY FOR ACCESSING THE
COMMON RESOURCE BY THE CLIENTS

y

804
COMPUTE AN ENTITLEMENT OF EACH CLIENT FOR THE COMMON f
RESOURCE BASED ON THE COMPUTED CURRENT CAPACITY
AND DEMANDS OF THE CLIENTS FOR THE COMMON RESOURCE

y 806
ASSIGN A PORTION OF THE COMPUTED CURRENT CAPACITY FOR f
THE COMMON RESOURCE TO A PARTICULAR HOST COMPUTER
USING THE COMPUTED ENTITLEMENT OF EACH CLIENT RUNNING
ON THE PARTICULAR HOST COMPUTER

I808

ALLOCATE THE PORTION OF THE COMPUTED CURRENT
CAPACITY AMONG THE CLIENTS RUNNING ON THE
PARTICULAR HOST COMPUTER

FIG. 8

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/043473

A. CLASSIFICATION OF SUBJECT MATTER
HO04L 12/927(2013.01)i, HO4L 12/24(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classitication symbols)
HO4L 12/927; GO8C 15/00; GO6F 15/173; H04J 3/02; HO4B 10/08; HO4B 10/00; GO6F 12/00; GO6F 13/00; HO4L 12/24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: QoS, latency, resource pool module, local scheduler, sharing resource, distributed, virtual
machine(VM)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2011-0243553 Al (RUSSELL, JESSE E.) 06 October 2011 1,2,7,8,11,12,17
See paragraphs [0018], [0117]-[0119]; claims 1, 6, 10, 18, 21, 23, 25, 27, 40 ,18,21,22 27,28

, 150; and figure 6.
A 3-6,9,10,13-16,19

,20,23-26,29,30

A US 2007-0028068 Al (GOLDING, RICHARD ANDREW et al.) 01 February 2007 1-30
See paragraphs [0016], [0017], [0023]-[0026], [0061]-[0064]; and figures 4, 5.

A US 2009-0296734 A1 (NAG SIDDHARTHA) 03 December 2009 1-30
See paragraphs [0010], [0124], [0125]; claims 1, 2; and figures 9-11.

A US 2006-0294238 A1 (NAIK, VIJAY K. et al.) 28 December 2006 1-30
See paragraphs [0023]-[0036], [0048]-[0050]; and figure 1.

A US 2008-0130495 A1l (DOS REMEDIOS RENE MARIA BUNIEL et al.) 05 June 2008 1-30
See paragraphs [0009]-[0015]; claim 2; and figure 5.

|:| Further documents are listed in the continuation of Box C. g See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
23 August 2013 (23.08.2013) 23 August 2013 (23.08.2013)
Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
. 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, LEE Dong Yun
3 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8734

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/043473

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2011-0243553 Al 06/10/2011 US 8332517 B2 11/12/2012
WO 2011-123594 A2 06/10/2011
WO 2011-123594 A9 08/12/2011

US 2007-0028068 Al 01/02/2007 US 7694082 B2 06/04/2010

US 2009-0296734 Al 03/12/2009 AU 2003-291702 Al 07/06/2004
AU 2003-291702 A8 07/06/2004
CA 2506954 Al 21/05/2004
EP 1563396 A2 17/08/2005
US 2004-0172464 Al 02/09/2004
US 2006-0020694 Al 26/01/2006
US 2006-0056298 Al 16/03/2006
US 2010-0325293 Al 23/12/2010
US 2013-028268 Al 31/01/2013
US 7013338 Bl 14/03/2006
US 7266683 Bl 04/09/2007
US 7774468 Bl 10/08/2010
US 7788354 B2 31/08/2010
US 7886054 Bl 08/02/2011
US 8032646 B2 04/10/2011
US 8185640 B2 22/05/2012
US 8316275 B2 20/11/2012
US 8458332 B2 04/06/2013
WO 2004-042533 A2 21/05/2004
WO 2004-042533 A3 08/07/2004

US 2006-0294238 Al 28/12/2006 None

US 2008-0130495 Al 05/06/2008 US 7630314 B2 08/12/2009

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report

