PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
Intemathnal Burcau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOGF 9/38, 9/46 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/21081

29 April 1999 (29.04.99)

(21) International Application Number: PCT/US98/21716

(22) International Filing Date: 14 October 1998 (14.10.98)

(30) Priority Data:

08/958,716 23 October 1997 (23.10.97) Us

(71) Applicant: INTERNATIONAL BUSINESS MACHINES
CORPORATION [US/US]; New Orchard Road, Armonk,
NY 10504 (US).

(72) Inventors: BORKENHAGEN, John, Michael; 1359 Westhill
Drive S.W., Rochester, MN 55902 (US). EICKEMEYER,
Richard, James; 5277 Howard Street N.W., Rochester, MN
55901 (US). FLYNN, William, Thomas; 2516 14th Avenue
S.W., Rochester, MN 55902 (US). LEVENSTEIN, Sheldon,
Bernard; 1608 7th Street N.E., Rochester, MN 55906 (US).
WOTTRENG, Andrew, Henry; 4224 Manor View Drive
N.W., Rochester, MN 55901 (US).

(74) Agents: OJANEN, Karuna et al.; IBM Corporation, Dept. 917,
Building 006-1, 3605 Highway 52 North, Rochester, MN
55901-7829 (US).

(81) Designated States: CA, CN, CZ, HU, IL, JP, KR, PL, RU,
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD AND APPARATUS FOR SELECTING THREAD SWITCH EVENTS IN A MULTITHREADED PROCESSOR

(57) Abstract

A system and method for performing

1004

A50 140,

computer processing operations in a data pro-
cessing system (10) includes a multithreaded
processor (100) and thread switch logic (400).
The multithreaded processor is capable of
switching between two or more threads of in-
structions which can be independently exe-
cuted. Each thread has a corresponding state
in a thread state register (440) depending on

M 1-CACHE

CACHE 130 MAIN MEMORY

= D-CACHE
P 120

its execution status. The thread switch logic

contains a thread switch control register (410)
to store the conditions upon which a thread

Bus Interface l

will occur. The thread switch logic has a
time—out register (430) which forces a thread
switch when execution of the active thread

155

in the multithreaded processor exceeds a pro-
grammable period of time. Thread switch

160+Storage

logic also has a forward progress count regis-

ter (420) to prevent repetitive thread switching
between threads in the multithreaded proces-
sor. Thread switch logic also is responsive to 17

==
g
1l

a software manager (460) capable of changing

the priority of the different threads and thus
superseding thread switch events.

10

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
1

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ,
™D
TG
TJ
™
TR
TT
UA
UG
Us
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/21081 PCT/US98/21716

Description

Method and Apparatus for Selecting Thread Switch
Events in a Multithreaded Processor

Related Application Data
The present invention relates to the following U.S. patent

applications, the subject matter of which is Thereby
incorporated by reference: (1) U.S. application entitled
Thread Switch Control in a Multithreaded Processor System,
Serial Number 08/957,002 filed 23 October 1997 concurrently
herewith; (2) U.S. application entitled An Apparatus and Method
to Guarantee Forward Progress in a Multithreaded Processor,
Serial Number 08/956,875 filed 23 October 1997 concurrently
herewith; (3) U.S. application entitled Altering Thread
Priorities 1in a Multithreaded Processor, Serial Number
08/958,718, filed 23 October 1997 concurrently herewith; (4)
U.S. application entitled Method and Apparatus to Force a
Thread Switch in a Multithreaded Processor, Serial Number
08/956,577 filed 23 October 1997 concurrently herewith; (5)
U.S. application entitled Background Completion of Instruction
and Associated Fetch Request in a Multithread Processor, Serial
Number 773,572 filed 27 December 1996; (6) U.S. application
entitled Multi-Entry Fully Associative Transition Cache, Serial
Number 761,378 filed 09 December 1996; (7) U.S. application
entitled Method and Apparatus for Prioritizing and Routing
Commands from a Command Source to a Command Sink, Serial Number
761,380 filed 09 December 1996; (8) U.S. application entitled
Method and Apparatus for Tracking Processing of a Command,
Serial Number 761,379 filed 09 December 1996; (9) U.S.
application entitled Method and System for Enhanced Multithread
Operation in a Data Processing System by Reducing Memory Access
Latency Delays, Serial Number 473,692 filed 7 June 1995; and
(10) U.S. Patent 5,778,243 entitled Multithreaded Cell for a
Memory, issued 07 July 1998.

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

Background of the Invention

The present invention relates in general to an improved
method for and apparatus of a computer data processing system;
and in ©particular, to an improved high performance
multithreaded computer data processing system and method
embodied in the hardware of the processor.

The fundamental structure of a modern computer includes
peripheral devices to communicate information to and from the
outside world; such peripheral devices may be keyboards,
monitors, tape drives, communication lines coupled to a
network, etc. Also included in the basic structure of the
computer is the hardware necessary to receive, process, and
deliver this information from and to the outside world,
including busses, memory units, input/output (I/0) controllers,
storage devices, and at least one central processing unit
(CPU), etc. The CPU is the brain of the system. It executes
the instructions which comprise a computer program and directs
the operation of the other system components.

From the standpoint of the computer's hardware, most
systems operate in fundamentally the same manner. Processors
actually perform very simple operations quickly, such as
arithmetic, logical comparisons, and movement of data from one
location to another. Programs which direct a computer to
perform massive numbers of these simple operations give the
illusion that the computer is doing something sophisticated.
What is perceived by the user as a new or improved capability
of a computer system, however, may actually be the machine
performing the same simple operations, but much faster.
Therefore continuing improvements to computer systemg require
that these systems be made ever faster.

One measurement of the overall speed of a computer system,
also called the throughput, is measured as the number of
operations performed per unit of time. Conceptually, the
simplest of all possible improvements to system speed is to
increase the clock speeds of the various components,
particularly the clock speed of the processor. So that if
everything runs twice as fast but otherwise works in exactly

-2-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

the same manner, the system will perform a given task in half

the time. Computer processors which were constructed from
discrete components years ago performed significantly faster
by shrinking the size and reducing the number of components;

eventually the entire processor was packaged as an integrated
circuit on a single chip. The reduced size made it possible'
to increase the clock speed of the processor, and accordingly
increase system speed.

Despite the enormous improvement in speed obtained from
integrated circuitry, the demand for ever faster computer
systems still exists. Hardware designers have been able to
obtain still further improvements in speed by greater
integration, by further reducing the size of the circuits, and
by other techniques. Designer, however, think that physical
size reductions cannot continue indefinitely and there are
limits to continually increasing processor clock speeds.
Attention has therefore been directed to other approaches for
further improvements in overall speed of the computer system.

Without changing the clock speed, it is still possible to
improve system speed by using multiple processors. The modest
cost of individual processors packaged on integrated circuit
chips has made this practical. The use of slave processors
considerably improves system speed by off-loading work from the
CPU to the slave processor. For instance, slave processors
routinely execute repetitive and single special purpose
programs, such as input/output device communications and
control. It is also possible for multiple CPUs to be placed
in a single computer system, typically a host-based system
which services multiple users simultaneously. Each of the
different CPUs can separately execute a different task on
behalf of a different user, thus increasing the overall speed
of the system to execute multiple tasks simultaneously. It is
much more difficult, however, to improve the speed at which a
single task, such as an application program, executes.
Coordinating the execution and delivery of results of various
functions among multiple CPUs is a tricky business. For slave
I/0 processors this is not so difficult because the functions

-3 -

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

are pre-defined and limited but for multiple CPUs executing
general purpose application programs it is much more difficult
to coordinate functions because, in part, system designers do
not know the details of the programs in advance. Most
application programs follow a single path or flow of steps
performed by the processor. While it is sometimes possible to
break up this single path into multiple parallel paths, a
universal application for doing so is still being researched.
Generally, breaking a lengthy task into smaller tasks for
parallel processing by multiple processors 1is done by a
software engineer writing code on a case-by-case basis. This
ad hoc approach 1is especially problematic for executing
commercial transactions which are not necessarily repetitive
or predictable.

Thus, while multiple processors improve overall system
performance, there are still many reasons to improve the speed
of the individual CPU. If the CPU clock speed is given, it is
possible to further increase the speed of the CPU, i.e., the
number of operations executed per second, by increasing the
average number of operations executed per clock cycle. A
common architecture for high performance, single-chip
microprocessors is the reduced instruction set computer (RISC)
architecture characterized by a small simplified set of
frequently used instructions for rapid execution, those simple
operations performed quickly mentioned earlier. As
semiconductor technology has advanced, the goal of RISC
architecture has been to develop processors capable of
executing one or more instructions on each clock cycle of the
machine. Another approach to increase the average number of
operations executed per clock cycle is to modify the hardware
within the CPU. This throughput measure, clock cycles per
instruction, is commonly used to characterize architectures for
high performance processors. Instruction pipelining and cache
memories are computer architectural features that have made
this achievement possible. Pipeline instruction execution
allows subsequent instructions to begin execution before
previously issued instructions have finished. Cache memories

-4-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

store frequently used and other data nearer the processor and
allow instruction execution to continue, in most cases, without
waiting the full access time of a main memory. Some
improvement has also been demonstrated with multiple execution
units with look ahead hardware for finding instructions to
execute in parallel.

The performance of a conventional RISC processor can be
further increased in the superscalar computer and the Very Long
Instruction Word (VLIW) computer, both of which execute more
than one instruction in parallel per processor cycle. In these
architectures, multiple functional or execution units are
provided to run multiple pipelines in parallel. In a
superscalar architecture, instructions may be completed in-
order and out-of-order. In-order completion means no
instruction can complete before all instructions dispatched
ahead of it have been completed. Out-of-order completion means
that an instruction 1is allowed to complete before all
instructions ahead of it have been completed, as long as a
predefined rules are satisfied.

For both in-order and out-of-order execution in
superscalar systems, pipelines will stall under certain
circumstances. An instruction that is dependent upon the
results of a previously dispatched instruction that has not yet
completed may cause the pipeline to stall. For instance,
instructions dependent on a load/store instruction in which the
necessary data is not in the cache, i.e., a cache miss, cannot
be executed until the data becomes available in the cache.
Maintaining the requisite data in the cache necessary for
continued execution and to sustain a high hit ratio, i.e., the
number of requests for data compared to the number of times the
data was readily available in the cache, 1s not trivial
especially for computations involving large data structures.
A cache miss can cause the pipelines to stall for several
cycles, and the total amount of memory latency will be severe
if the data is not available most of the time. Although memory
devices used for main memory are becoming faster, the speed gap
between such memory chips and high-end processors is becoming

-5-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

increasingly larger. Accordingly, a significant amount of
execution time in current high-end processor designs is spent
waiting for resolution of cache misses and these memory access
delays use an increasing proportion of processor execution
time.

And yet another technique to improve the efficiency of
hardware within the CPU is to divide a processing task into
independently executable sequences of instructions called
threads. This technique is related to breaking a larger task
into smaller tasks for independent execution by different
processors except here the threads are to be executed by the
same processor. When a CPU then, for any of a number of
reasons, cannot continue the processing or execution of one of
these threads, the CPU switches to and executes another thread.

This is the subject of the invention described herein which
incorporates hardware multithreading to tolerate memory
latency. The term "multithreading” as defined in the computer
architecture community is not the same as the software use of
the term which means one task subdivided into multiple related
threads. 1In the architecture definition, the threads may be
independent. Therefore "hardware multithreading" is often used
to distinguish the two uses of the term. The present invention
incorporates the term multithreading to connote hardware
multithreading.

Multithreading permits the processors' pipeline(s) to do
useful work on different threads when a pipeline stall
condition is detected for the current thread. Multithreading
also permits processors implementing non-pipeline architectures
to do useful work for a separate thread when a stall condition
is detected for a current thread. There are two basic forms
of multithreading. A traditional form is to keep N threads,
or states, in the processor and interleave the threads on a
cycle-by-cycle Dbasis. This eliminates all pipeline
dependencies because instructions in a single thread are
separated. The other form of multithreading, and the one
considered by the present invention, is to interleave the
threads on some long-latency event.

-6~

WO 99/21081 PCT/US98/21716

Traditional forms of multithreading involves replicating
the processor registers for each thread. For instance, for a
processor implementing the architecture sold under the trade
name PowerPC™ to perform multithreading, the processor must
maintain N states to run N threads. Accordingly, the following
are replicated N times: general purpose registers, floating
point registers, condition registers, floating point status and
control register, count register, 1link register, exception
register, save/restore registers, and special purpose
registers. Additionally, the special buffers, such as a
segment lookaside buffer, can be replicated or each entry can
be tagged with the thread number and, if not, must be flushed
on every thread switch. Also, some branch prediction
mechanisms, e.g., the correlation register and the return
stack, should also be replicated. Fortunately, there is no
need to replicate some of the larger functions of the processor
such as: level one instruction cache (L1 I-cache), level one
data cache (L1 D-cache), instruction buffer, store queue,
instruction dispatcher, functional or execution units,
pipelines, translation lookaside buffer (TLB), and branch
history table. When one thread encounters a delay, the
processor rapidly switches to another thread. The execution
of this thread overlaps with the memory delay on the first
thread.

Existing multithreading techniques describe switching
threads on a cache miss or a memory reference. A primary
example of this technigque may be reviewed in "Sparcle: An
Evolutionary Design for Large-Scale Multiprocessors," by
Agarwal et al., IEEE Micro Volume 13, No. 3, pp. 48-60, June
1993. As applied in a RISC architecture, multiple register
sets normally utilized to support function calls are modified
to maintain multiple threads. Eight overlapping register
windows are modified to become four non-overlapping register
sets, wherein each register set is a reserve for trap and
message handling. This system discloses a thread switch which
occurs on each first level cache miss that results in a remote
memory request. While this system represents an advance in the

-7 -

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

art, modern processor designs often utilize a multiple level
cache or high speed memory which is attached to the processor.
The processor system utilizes some well-known algorithm to
decide what portion of its main memory store will be loaded
within each level of cache and thus, each time a memory
reference occurs which is not present within the first level
of cache the processor must attempt to obtain that memory
reference from a second or higher level of cache.

It is thus an object of the invention to provide an
improved data processing system which can reduce delays due to
memory latency in a multilevel cache system utilizing hardware
logic and registers embodied in a multithread data processing
system.

Summary of the Invention

The invention addresses this object by providing a
multithreaded processor capable of switching execution between
two threads of instructions, and thread switch logic embodied
in hardware registers with optional software override of thread
switch conditions. Processing various states of various
threads of instructions allows optimization of the use of the
processor among the threads. Allowing the processor to
execute a second thread of instructions increases processor
utilization which is otherwise idle when it is retrieving
necessary data and/or instructions from various memory
elements, such as caches, memories, external I/0, direct access
storage devices for a first thread. The conditions of thread
switching can be different per thread or can be changed during
processing by the use of a software thread control manager.

The invention provides a hardware thread switch control
register containing bits which can be enabled to embody the
events and cause a multithreaded processor to switch threads.
This hardware register has the further advantage of improving
processor performance because it is much faster than software
thread switch control.

Another aspect of the invention is a computer system
having a multithreaded processor capable of switching

-8~

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

processing between at least two threads of instructions when
the multithreaded processor experiences one of a plurality of
processor latency events. The computer system also has at
least one thread state register operatively connected to the
multithreaded processor, to store a state of the threads of
instructions wherein the state of each thread of instructions
changes when the processor switches processing to each thread.
The system also has at least one thread switch control register
operatively connected to the thread state register(s) and to
the multithreaded processor, to store a plurality of thread
switch control events which thread switch control events are
enabled by setting a corresponding plurality of enable bits.
The computer system further comprises a plurality of internal
connections connecting the multithreaded processor to a
plurality of memory elements. Access to any of the memory
elements by the multithreaded processor causes a pProcessor
latency event and the invention also has at least one external
connection connecting the multithreaded processor to an
external memory device, a communication device, a computer
network, or an input/output device wherein access to any of the
devices or the network by the multithreaded processor also
causes a plurality of processor latency events. When one of
the threads executing in the multithreaded processor is unable
to continue execution because of one of the processor latency
events and when that processor latency event is a thread switch
control event whose bit is enabled, the multithreaded processor
switches execution to another of the threads.

The thread switch control register has a plurality of
bits, each associated uniquely with one of a plurality of
thread switch control events and if one of the bits is enabled,
the thread switch control event associated with that bit causes
the multithreaded processor(s) to switch from one thread of
instructions to another thread of instructions. The thread
switch control register is programmable. Moreover, the
enablement of a particular bit can be dynamically changed by
either operating software or by an instruction in one of the
threads.

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

The computer processing system may have more than one
thread switch control register wherein the bit values of one
thread switch control register differs from the bit values of
another of said thread switch control registers.

Typically, there can be many thread switch control events,
for instance, a data miss from at least one of the following:
a Ll-data cache, a L2 cache, storage of data that crosses a
double word boundary, or an instruction miss from at least one
of the following: a Ll-instruction cache, a translation
lookaside buffer, or a data and/or instruction miss from main
memory, Or an error in address translation of data and/or an
instruction. Access to an I/0 device external to the processor
or to another processor may also be thread switch control
events. Other thread switch control events comprise a forward
progress count of a number of times said one of a plurality of
threads has been switched from a one multithreaded processor
with no instruction of the one of a plurality of threads
executing, and a time-out period in which no useful work was
done by the at least one processor.

The computer processing system of the invention comprises
means for processing a plurality of threads of instructions;
means for indicating when the processing means stalls because
one of the threads experiences a processor latency event; means
for registering a plurality of thread switch control events;
and means for determining if the processor latency event is one
of the plurality of thread switch control events. The
processing system may also comprise means for enabling the
processing means to switch processing to another thread if the
processor latency event is a thread switch control event.

The invention is also a method to determine the contents
of a thread switch control register, comprising the steps of
counting a first number of processor cycles in which a
multithreaded processor is stalled because of processor latency
event and counting a second number of processor cycles required
for the multithreaded processor to switch processing of a first
thread of instructions to a second thread of instructions, then
assigning the processor latency event to be a thread switch

-10-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

control event by setting an enable bit in the thread switch
control register if the first number is greater than the second
number. Then 1if the enable bit 1s enabled, the method
comprises outputting a signal to switch threads when the
multithreaded processor experiences the thread switch control
event if the enable bit is enabled. |

The method of computer processing of the invention also
comprises the steps of storing a state of a thread in a thread
state register and storing a plurality of thread switch control
events in a thread switch control register. Then when the
state of the thread changes, a signal is output to the thread
state register and the changed state of the thread is compared
with the plurality of thread switch control events. If the
changed state results from a thread switch control event, a
signal 1is output to a multithreaded processor to switch
execution from the thread.

Other objects, features and characteristics of the present
invention; methods, operation, and functions of the related
elements of the structure; combination of parts; and economies
of manufacture will become apparent from the following detailed
description of the preferred embodiments and accompanying
drawings, all of which form a part of this specification,
wherein like reference numerals designate corresponding parts

in the various figures.

Brief Description of the Drawings

The invention itself, however, as well as a preferred mode
of use, further objectives and advantages thereof, will best
be understood by reference to the following detailed
description of an illustrative embodiment when read in
conjunction with the accompanying drawings, wherein:

Figure 1 is a block diagram of a computer system capable
of implementing the invention described herein.

Figure 2 illustrates a high level block diagram of a
multithreaded data processing system according to the present

invention.

-11-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

Figure 3 illustrates a block diagram of the storage
control unit of Figure 2.

Figure 4 illustrates a block diagram of the thread switch
logic, the storage control unit and the instruction unit of
Figure 2.

Figure 5 illustrate the changes of state of a thread as
the thread experiences different thread switch events shown in
Figure 4.

Figure 6 is a flow chart of the forward progress count of

the invention.

Detailed Description of the Preferred Embodiments

With reference now to the figures and in particular with
reference to Figure 1, there is depicted a high level block
diagram of a computer data processing system 10 which may be
utilized to implement the method and system of the present
invention. The primary hardware components and
interconnections of a computer data processing system 10
capable of utilizing the present invention are shown in
Figure 1. Central processing unit (CPU) 100 for processing
instructions is coupled to <caches 120, 130, and 150.
Instruction cache 150 stores instructions for execution by CPU
100. Data caches 120, 130 store data to be used by CPU 100.
The caches communicate with random access memory in main memory
140. CPU 100 and main memory 140 also communicate via bus
interface 152 with system bus 155. Various input/output
processors (IOPs) 160-168 attach to system bus 155 and support
communication with a variety of storage and input/output (I/O)
devices, such as direct access storage devices (DASD) 170, tape
drives 172, remote communication lines 174, workstations 176,
and printers 178. It should be understood that Figure 1 is
intended to depict representative components of a computer data
processing system 10 at a high level, and that the number and
types of such components may vary.

Within the CPU 100, a processor core 110 contains
specialized functional units, each of which perform primitive
operations, such as sequencing instructions, executing

-12-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

operations involving integers, executing operations involving
real numbers, transferring values between addressable storage
and logical register arrays. Figure 2 illustrates a processor
core 100. In a preferred embodiment, the processor core 100
of the data processing system 10 is a single integrated
circuit, pipelined, superscalar microprocessor, which may be
implemented utilizing any computer architecture such as the
family of RISC processors sold under the trade name PowerPC™;
for example, the PowerPC™ 604 microprocessor chip sold by IBM.

As will be discussed below, the data processing system 10
preferably includes various units, registers, buffers,
memories, and other sections which are all preferably formed
by integrated circuitry. It should be understood that in the
figures, the various data paths have been simplified; in
reality, there are many separate and parallel data paths into
and out of the wvarious components. In addition, wvarious
components not germane to the invention described herein have
been omitted, but it 1is to be understood that processors
contain additional units for additional functions. The data
processing system 10 can operate according to reduced
instruction set computing, RISC, techniques or other computing
techniques.

As represented in Figure 2, the processor core 100 of the
data processing system 10 preferably includes a level one data
cache, L1 D-cache 120, a level two L2 cache 130, a main memory
140, and a level one instruction cache, L1 I-cache 150, all of
which are operationally interconnected utilizing various bus
connections to a storage control unit 200. As shown in Figure
1, the storage control unit 200 includes a transition cache 210
for interconnecting the L1 D-cache 120 and the L2 cache 130,
the main memory 140, and a plurality of execution units. The
L1 D-cache 120 and L1 I-cache 150 preferably are provided on
chip as part of the processor 100 while the main memory 140 and
the L2 cache 130 are provided off chip. Memory system 140 is
intended to represent random access main memory which may or
may not be within the processor core 100 and, and other data
buffers and caches, if any, external to the processor core 100,

-13-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

and other external memory, for example, DASD 170, tape drives
172, and workstations 176, shown in Figure 1. The L2 cache 130
is preferably a higher speed memory system than the main memory
140, and by storing selected data within the L2 cache 130, the
memory latency which occurs as a result of a reference to the
main memory 140 can be minimized. As shown in Figure 1, the
L2 cache 130 and the main memory 140 are directly connected to
both the L1 I-cache 150 and an instruction unit 220 wvia the
storage control unit 200.

Instructions from the L1 I-cache 150 are preferably output
to an instruction unit 220 which, in accordance with the method
and system of the present invention, controls the execution of
multiple threads by the various subprocessor units, e.g.,
branch unit 260, fixed point unit 270, storage control unit
200, and floating point unit 280 and others as specified by the
architecture of the data processing system 10. In addition to
the various execution units depicted within Figure 1, those
skilled in the art will appreciate that modern superscalar
microprocessor systems often include multiple versions of each
such execution unit which may be added without departing from
the spirit and scope of the present invention. Most of these
units will have as an input source operand information from
various registers such as general purpose registers GPRs 272,
and floating point registers FPRs 282. Additionally, multiple
special purpose register SPRs 274 may be utilized. As shown
in Figure 2, the storage control unit 200 and the transition
cache 210 are directly connected to general purpose registers
272 and the floating point registers 282. The general purpose
registers 272 are connected to the special purpose registers
274.

Among the functional hardware units unique to this
multithreaded processor 100 is the thread switch logic 400 and
the transition cache 210. The thread switch logic 400 contains
various registers that determine which thread will be the
active or the executing thread. Thread switch logic 400 is
operationally connected to the storage control unit 200, the
execution units 260, 270, and 280, and the instruction unit

-14 -

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

220. The transition cache 210 within the storage control unit
200 must Dbe capable of implementing multithreading.
Preferably, the storage control unit 200 and the transition
cache 210 permit at least one outstanding data request per
thread. Thus, when a first thread is suspended in response to,
for example, the occurrence of L1 D-cache miss, a second thread
would be able to access the L1 D-cache 120 for data present
therein. If the second thread also results in L1l D-cache miss,
another data request will be issued and thus multiple data
requests must be maintained within the storage control unit 200
and the transition cache 210. Preferably, transition cache 210
is the transition cache of U.S. Application Serial Number
08/761,378 filed 09 December 1996 entitled Multi-Entry Fully
Associative Transition Cache, hereby incorporated by reference.
The storage control unit 200, the execution units 260, 270, and
280 and the instruction unit 220 are all operationally
connected to the thread switch logic 400 which determines which
thread to execute.

As illustrated in Figure 2, a bus 205 is provided between
the storage control unit 200 and the instruction unit 220 for
communication of, e.g., data regquests to the storage control
unit 200, and a L2 cache 130 miss to the instruction unit 220.
Further, a translation lookaside buffer TLB 250 is provided
which contains virtual-to-real address mapping. Although not
illustrated within the present invention various additional
high level memory mapping buffers may be provided such as a
segment lookaside buffer which will operate in a manner similar
to the translation lookaside buffer 250.

Figure 3 illustrates the storage control unit 200 in
greater detail, and, as the name implies, this unit controls
the input and output of data and instructions from the various
storage units, which include the various caches, buffers and
main memory. As shown in Figure 3, the storage control unit
200 includes the transition cache 210 functionally connected
to the L1 D-cache 120, multiplexer 360, the L2 cache 130, and
main memory 140. Furthermore, the transition cache 210
receives control signals from sequencers 350. The sequencers

-15-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

350 include a plurality of sequencers, preferably three, for
handling instruction and/or data fetch requests. Sequencers
350 also output control signals to the transition cache 210,
the L2 cache 130, as well as receiving and transmitting control
signals to and from the main memory 140.

Multiplexer 360 in the storage control unit 200 shown in
Figure 3 receives data from the L1 D-cache 120, the transition
cache 210, the L2 cache 130, main memory 140, and, if data is
to be stored to memory, the execution units 270 and 280. Data
from one of these sources is selected by the multiplexer 360
and is output to the L1 D-cache 120 or the execution units in
response to a selection control signal received from the
sequencers 350. Furthermore, as shown in Figure 3, the
sequencers 350 output a selection signal to control a second
multiplexer 370. Based on this selection signal from the
sequencers 350, the multiplexer 370 outputs the data from the
L2 cache 130 or the main memory 140 to the L1 I-cache 150 or
the instruction unit 220. In producing the above-discussed
control and selection signals, the sequencers 350 access and
update the L1 directory 320 for the L1l D-cache 120 and the L2
directory 330 for the L2 cache 130.

With respect to the multithreading capability of the
processor described herein, sequencers 350 of the storage
control unit 200 also output signals to thread switch logic 400
which indicate the state of data and instruction requests. So,
feedback from the caches 120, 130 and 150, main memory 140, and
the translation 1lookaside buffer 250 1is routed to the
sequencers 350 and is then communicated to thread switch logic
400 which may result in a thread switch, as discussed below.
Note that any device wherein an event designed to cause a
thread switch in a multithreaded processor occurs will be
operationally connected to sequencers 350.

Figure 4 is a logical representation and block diagram of
the thread switch logic hardware 400 that determines whether
a thread will be switched and, if so, what thread. Storage
control unit 200 and instruction unit 220 are interconnected
with thread switch 1logic 400. Thread switch logic 400

-16 -

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

preferably is incorporated into the instruction unit 220 but
if there are many threads the complexity of the thread switch
logic 400 may increase so that the logic is external to the
instruction unit 220. For ease of explanation, thread switch
logic 400 is illustrated external to the instruction unit 220.

Some events which result in a thread to be switched in
this embodiment are communicated on lines 470, 472, 474, 476,
478, 480, 482, 484, and 486 from the seguencers 350 of the
storage control unit 200 to the thread switch logic 400. Other
latency events can cause thread switching; this list is not
intended to be inclusive; rather it is only representative of
how the thread switching can be implemented. A request for an
instruction by either the first thread 70 or the second thread
T1 which is not in the instruction unit 220 is an event which
can result in a thread switch, noted by 470 and 472 in Figure
4, respectively. Line 474 indicates when the active thread,
whether T0 or T1, experiences a Ll D-cache 120 miss. Cache
misses of the L2 cache 130 for either thread T0 or T1 is noted
at lines 476 and 478, respectively. Lines 480 and 482 are
activated when data is returned for continued execution of the
T0 thread or for the T1 thread, respectively. Translation
lookaside buffer misses and completion of a table walk are
indicated by lines 484 and 486, respectively.

These events are all fed into the thread switch logic 400
and more particularly to the thread state registers 440 and the
thread switch controller 450. Thread switch logic 400 has one
thread state register for each thread. In the embodiment
described herein, two threads are represented so there is a T0
state register 442 for a first thread T0 and a Tl state
register 444 for a second thread T1, to be described herein.
Thread switch logic 400 comprises a thread switch control
register 410 which controls what events will result in a thread
switch. For instance, the thread switch control register 410
can block events that cause state changes from being seen by
the thread switch controller 450 so that a thread may not be
switched as a result of a blocked event. The thread state
registers and the logic of changing threads are the subject of

-17-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

U.S. application entitled Thread Switch Control in a
Multithreaded Processor System, Serial Number 08/957,002 filed
23 October 1997 concurrently herewith and herein incorporated
by reference. The forward progress count register 420 is used
to prevent thrashing and may be included in the thread switch
control register 410. The forward progress count register 420
is the subject of U.S. application entitled An Apparatus and
Method to Guarantee Forward Progress 1in a Multithreaded
Processor, Serial Number 08/956,875 filed 23 October 1997
concurrently herewith and herein incorporated by reference,
R0997-105. Thread switch time-out register 430, the subject
of U.S. application entitled Method and Apparatus to Force a
Thread Switch in a Multithreaded Processor, Serial Number
08/956,577 filed 23 October 1997 concurrently herewith and
herein incorporated by reference, R0997-107, allocates fairness
and livelock issues. Also, thread priorities can be altered
using software 460, the subject of U.S. application entitled
Altering Thread Priorities in a Multithreaded Processor, Serial
Number 08/958,718, filed 23 October 1997 concurrently herewith
and herein incorporated by reference, R0O997-106. Finally, but
not to be limitative, the thread switch controller 450
comprises a myriad of 1logic gates which represents the
culmination of all logic which actually determines whether a
thread is switched, what thread, and under what circumstances.
Each of these logic components and their functions are set
forth in further detail.

Thread State Registers

Thread state registers 440 comprise a state register for
each thread and, as the name suggests, store the state of the
corresponding thread; in this case, a T0 thread state register
442 and a T1 thread state register 444. The number of bits and
the allocation of particular bits to describe the state of each
thread can be customized for a particular architecture and
thread switch priority scheme. An example of the allocation
of bits 1in the thread state registers 442, 444 for a

-18-

10

15

20

25

30

35

40

WO 99/21081 PCT/US98/21716

multithreaded processor having two threads is set forth in the
table below.

Thread State Register Bit Allocation

(®)) Instruction/Data
0 = Instruction
1 = Data
(1:2) Miss type sequencer
00 None
01 Translation lookaside buffer miss (check bit 0 for I/D)

10 L1 cache miss
11 L2 cache miss
€)] Transition
0 = Transition to current state does not result in thread switch
1 = Transition to current state results in thread switch

i mwun

47 Reserved
®) (0 = Load
1 = Store
9:14) Reserved
(15:17) Forward progress counter

111 Reset (instruction has completed during this thread)

000 = Ist execution of this thread w/o instruction complete
001 = 2nd execution of this thread w/o instruction complete
010 = 3rd execution of this thread w/o instruction complete
011 = 4th execution of this thread w/o instruction complete
100 = 5th execution of this thread w/o instruction complete
(18:19) Priority (could be set by sofiware)
00 = Medium
01 = Low
10 = High
11 = <lllegal>
(20:31) Reserved
(32:63) Reserved if 64 bit implementation

In the embodiment described herein, bit 0 identifies
whether the miss or the reason the processor stalled execution
is a result of a request for an instruction or for data. Bits
1 and 2 indicate if the requested information was not available
and if so, from what hardware, i.e., whether the translated
address of the data or instruction was not in the translation
lookaside buffer 250, or the data or instruction itself was not
in the L1 D-cache 120 or the L2 cache 130, as further explained
in the description of Figure 5. Bit 3 indicates whether the
change of state of a thread results in a thread switch. A
thread may change state without resulting in a thread switch.
For instance, if a thread switch occurs when thread TI

-19-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

experiences an L1 cache miss, then if thread Tl experiences a
L2 cache miss, there will be no thread switch because the
thread already switched on a L1 cache miss. The state of T1,
however, still changes. Alternatively, if by choice, the
thread switch logic 400 is configured or programmed not to
switch on a L1 cache miss, then when a thread does experience
an L1 cache miss, there will be no thread switch even though
the thread changes state. Bit 8 of the thread state registers
442 and 444 is assigned to whether the information requested
by a particular thread is to be loaded into the processor core
or stored from the processor core into cache or main memory.
Bits 15 through 17 are allocated to prevent thrashing, as
discussed later with reference to the forward progress count
register 420. Bits 18 and 19 can be set in the hardware or
could be set by software to indicate the priority of the
thread.

Figure 5 represents four states in the present embodiment
of a thread processed by the data processing system 10 and
these states are stored in the thread state registers 440, bit
positions 1:2. State 00 represents the "ready" state, i.e.,
the thread is ready for processing because all data and
instructions required are available; state 10 represents the
thread state wherein the execution of the thread within the
processor is stalled because the thread is waiting for return
of data into either the L1 D-cache 120 or the return of an
instruction into the L1 I-cache 150; state 11 represents that
the thread is waiting for return of data into the L2 cache 130;
and the state 01 indicates that there is a miss on the
translation lookaside buffer 250, i.e., the virtual address was
in error or wasn't available, called a table walk. Also shown
in Figure 5 is the hierarchy of thread states wherein state 00,
which indicates the thread is ready for execution, has the
highest priority. Short latency events are preferably assigned
a higher priority.

Figure 5 also illustrates the change of states when data
is retrieved from various sources. The normal uninterrupted
execution of a thread T0 is represented in block 510 as state

-20-

10

15

20

25

30

35

WO 99/21081 ' PCT/US98/21716

00. If a L1 D-cache or I-cache miss occurs, the thread state
changes to state 10, as represented in block 512, pursuant to
a signal sent on line 474 (Figure 4) from the storage control
unit 200 or line 470 (Figure 4) from the instruction unit 220,
respectively. If the required data or instruction is in the
L2 cache 130 and is retrieved, then normal execution of T0
resumes at block 510. Similarly block 514 of Figure 5
represents a L2 cache miss which changes the state of thread
of either T0 or T1 to state 11 when storage control unit 200
signals the miss on lines 476 or 478 (Figure 4). When the
instructions or data in the L2 cache are retrieved from main
memory 140 and loaded into the processor core 100 as indicated
on lines 480 and 482 (Figure 4), the state again changes back
to state 00 at block 510. The storage control unit 200
communicates to the thread registers 440 on line 484 (Figure
4) when the virtual address for requested information is not
available in the translation lookaside buffer 250, indicated
as block 516, as a TLB miss or state 01. When the address does
become available or if there 1is a data storage interrupt
instruction as signaled by the storage control unit 200 on line
486 (Figure 4), the state of the thread then returns to state
00, meaning ready for execution.

The number of states, and what each state represents is
freely selectable by the computer architect. For instance, if
a thread has multiple L1 cache misses, such as both a Ll I-
cache miss and L1 D-cache miss, a separate state can be
assigned to each type of cache miss. Alternatively, a single
thread state could be assigned to represent more than one event
Or occurrence. An example of a thread switch algorithm for
two threads of equal priority which determines whether to
switch threads is given. The algorithm can be expanded and
modified accordingly for more threads and thread switch
conditions according to the teachings of the invention. The
interactions between the state of each thread stored in the
thread state registers 440 (Figure 4) and the priority of each
thread by the thread switching algorithm are dynamically
interrogated each cycle. If the active thread T0 has a L1

-21-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

miss, the algorithm will cause a thread switch to the dormant
thread Tl1 wunless the dormant thread T1 is waiting for
resolution of a L2 miss. If a switch did not occur and the L1
cache miss of active thread T0 turns into a L2 cache miss, the
algorithm then directs the processor to switch to the dormant
thread T1 regardless of the T1's state. If both threads are
waiting for resolution of a L2 cache miss, the thread first
having the L2 miss being resolved becomes the active thread.
At every switch decision time, the action taken is optimized
for the most likely case, resulting in the best performance.
Note that thread switches resulting from a L2 cache miss are
conditional on the state of the other thread, if not extra
thread switches would occur resulting in loss of performance.

Thread Switch Control Register
In any multithreaded processor, there are latency and

performance penalties associated with switching threads. In
the multithreaded processor in the preferred embodiment
described herein, this latency includes the time required to
complete execution of the current thread to a point where it
can be interrupted and correctly restarted when it is next
invoked, the time required to switch the thread-specific
hardware facilities from the current thread's state to the new
thread's state, and the time required to restart the new thread
and begin 1its execution. Preferably the thread-specific
hardware facilities operable with the invention include the
thread state registers described above and the memory cells
described in U.S. Patent 5,778,243 entitled Multithreaded Cell
for a Memory, herein incorporated by reference. In order to
achieve optimal performance in a coarse grained multithreaded
data processing system, the latency of an event which generates
a thread switch must be greater than the performance cost
associated with switching threads in a multithreaded mode, as
opposed to the normal single-threaded mode.

The latency of an event used to generate a thread switch
is dependent upon both hardware and software. For example,
specific hardware considerations in a multithreaded processor

-22-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

include the speed of external SRAMs used to implement an L2
cache external to the processor chip. Fast SRAMs in the L2
cache reduce the average latency of an L1 miss while slower
SRAMS increase the average latency of an L1 miss. Thus,
performance is gained if one thread switch event is defined as
a L1 cache miss in hardware having an external L2 cache data'
access latency greater than the thread switch penalty. As an
example of how specific software code characteristics affect
the latency of thread switch events, consider the L2 cache hit-
to-miss ratio of the code, i.e., the number of times data is
actually available in the L2 cache compared to the number of
times data must be retrieved from main memory because data is
not in the L2 cache. A high L2 hit-to-miss ratio reduces the
average latency of an L1 cache miss because the L1 cache miss
seldom results in a longer latency L2 miss. A low L2 hit-to-
miss ratio increases the average latency of an L1 miss because
more L1 misses result in longer latency L2 misses. Thus, a L1
cache miss could be disabled as a thread switch event if the
executing code has a high L2 hit-to-miss ratio because the L2
cache data access latency is less than the thread switch
penalty. A L1 cache miss would be enabled as a thread switch
event when executing software code with a low L2 hit-to-miss
ratio because the L1 cache miss is likely to turn into a longer
latency L2 cache miss.
Some types of latency events are not readily detectable.

For instance, in some systems the L2 cache outputs a signal to
the instruction unit when a cache miss occurs. Other L2
caches, however, do not output such a signal, as in for
example, if the L2 cache controller were on a separate chip
from the processor and accordingly, the processor cannot
readily determine a state change. In these architectures, the
processor can include a cycle counter for each outstanding L1
cache miss. If the miss data has not been returned from the
L2 cache after a predetermined number of cycles, the processor
acts as if there had been a L2 cache miss and changes the
thread's state accordingly. This algorithm is also applicable
to other cases where there are more than one distinct type of

-23-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

latency. As an example only, for a L2 cache miss in a
multiprocessor, the latency of data from main memory may be
significantly different than the latency of data from another
processor. These two events may be assigned different states
in the thread state register. If no signal exists to
distinguish the states, a counter may be used to estimate which
state the thread should be in after it encounters a L2 cache
miss.

The thread switch control register 410 1is a software
programmable register which selects the events to generate
thread switching and has a separate enable bit for each defined
thread switch control event. Although the embodiment
described herein does not implement a separate thread switch
control register 410 for each thread, separate thread switch
control registers 410 for each thread could be implemented to
provide more flexibility and performance at the cost of more
hardware and complexity. Moreover, the thread switch control
events 1in one thread switch control register need not be
identical to the thread switch control events in any other
thread switch control register.

The thread switch control register 410 can be written by
a service processor with software such as a dynamic scan
communications interface disclosed in U.S. Patent No. 5,079,725
entitled Chip Identification Method for Use with Scan Design
Systems and Scan Testing Techniques or by the processor itself
with software system code. The contents of the thread switch
control register 410 is used by the thread switch controller
450 to enable or disable the generation of a thread switch.
A value of one in the register 410 enables the thread switch
control event associated with that bit to generate a thread
switch. A value of zero in the thread switch control register
410 disables the thread switch control event associated with
that bit from generating a thread switch. 0f course, an
instruction in the executing thread could disable any or all
of the thread switch conditions for that particular or for
other threads. The following table shows the association

-24 -

10

15

20

25

30

35

40

45

WO 99/21081 PCT/US98/21716

between thread switch events and their enable bits in the
register 410.

Thread Switch Control Register Bit Assignment

) Switch on L1 data cache fetch miss
¢)) Switch on L1 data cache store miss
2 Switch on L1 instruction cache miss
3) Switch on instruction TLB miss
6] Switch on L2 cache fetch miss
5) Switch on L2 cache store miss
6) Switch on L2 instruction cache miss
0 Switch on data TLB/segment lookaside buffer miss
8) Switch on L2 cache miss and dormant thread not L2 cache miss
9) Switch when thread switch time-out value reached
(10) Switch when L2 cache data returned
(11 Switch on IO external accesses
(12) Switch on double-X store: miss on first of two*
(13) Switch on double-X store: miss on second of two*
(14) Switch on store multiple/string: miss on any access
(15) Switch on load multiple/string: miss on any access
(16) Reserved
an Switch on double-X load: miss on first of two*
(18) Switch on double-X load: miss on second of two*
(19) Switch on or 1,1,1 instruction if machine state register (problem state) bit,

msr(pr)=1. Allows sofiware priority change independent of msr(pr). If
bit 19 is one, or 1,1,1 instruction sets low priority. If bit 19 is zero,
priority is set to low only if msr(pr)=0 when the or 1,1,1 instruction is
executed. See changing priority with software, to be discussed later.

(20) Reserved
21 Thread switch priority enable
(22:29) Reserved
30:31) Forward progress count
(32:63) Reserved in 64 bit register implementation

* A double-X load/store refers to loading or storing an clementary halfword, a
word, or a double word, that crosses a doubleword boundary. A double-X
load/store in this context is not a load or store of multiple words or a string of
words.

Thread Switch Time-out Register
As discussed above, coarse grained multithreaded

processors rely on long latency events to trigger thread
switching. Sometimes during execution, a processor in a
multiprocessor environment or a background thread in a
multithreaded architecture, has ownership of a resource that
can have only a single owner and another processor or active
thread requires access to the resource before it can make
forward progress. Examples include updating a memory page

-25_

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

table or obtaining a task from a task dispatcher. The
inability of the active thread to obtain ownership of the
resource does not result in a thread switch event, nonetheless,
the thread is spinning in a loop unable to do useful work. 1In
this case, the background thread that holds the resource does
not obtain access to the processor so that it can free up the
resource because it never encountered a thread switch event and
does not become the active thread.

Allocating processing cycles among the threads is another
concern; if software code running on a thread seldom encounters
long latency switch events compared to software code running
on the other threads in the same processor, that thread will
get more than it's fair share of processing cycles. Yet
another excessive delay that may exceed the maximum acceptable
time is the latency of an inactive thread waiting to service
an external interrupt within a limited period of time or some
other event external to the processor. Thus, it becomes
preferable to force a thread switch to the dormant thread after
some time 1f no useful processing is being accomplished to
prevent the system from hanging.

The logic to force a thread switch after a period of time
is a thread switch time-out register 430 (Figure 4), a
decrementer, and a decrementer register to hold the decremented
value. The thread switch time-out register 430 holds a thread
switch time-out value. The thread switch time-out register 430
implementation used in this embodiment is shown in the

following table:

Thread Switch Time-out Register Bits

0:21) Reserved
(223D Thread switch time-out value

The embodiment of the invention described herein does not
implement a separate thread switch time-out register 430 for
each thread, although that could be done to provide more
flexibility. Similarly, if there are multiple threads, each
thread need not have the same thread switch time-out value.

-26 -

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

EBach time a thread switch occurs, the thread switch time-out
value from the thread switch time-out register 430 is loaded
by hardware into the decrement register. The decrement
register is decremented once each cycle until the decrement
register value equals zero, then a signal is sent to the thread
switch controller 450 which forces a thread switch unless no
other thread is ready to process instructions. For example,
if all other threads in the system are waiting on a cache miss
and are not ready to execute instructions, the thread switch
controller 450 does not force a thread switch. If no other
thread is ready to process instructions when the value in the
decrement register reaches zero, the decremented value is
frozen at zero until another thread is ready to process
instructions, at which point a thread switch occurs and the
decrement register is reloaded with a thread switch time-out
value for that thread. Similarly, the decrement register could
just as easily be named an increment register and when a thread
is executing the register could increment up to some
predetermined value when a thread switch would be forced.

The thread switch time-out register 430 can be written by
a service processor as described above or by the processor
itself with software code. The thread switch time-out value
loaded into the thread switch time-out register 430 can be
customized according to specific hardware configuration and/or
specific software code to minimize wasted cycles resulting from
unnecessary thread switching. Too high of a wvalue in the
thread switch time-out register 430 can result in reduced
performance when the active thread is waiting for a resource
held by another thread or if response latency for an external
interrupt or some other event external to the processor is too
long. Too high of a value can also prevent fairness if one
thread experiences a high number of thread switch events and
the other does not. A thread switch time-out value twice to
several times longer than the most frequent longest latency
event that causes a thread switch is recommended, e.g., access
to main memory. Forcing a thread switch after waiting the
number of cycles specified in the thread switch time-out

..27-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

register 430 prevents system hangs due to shared resource
contention, enforces fairness of processor cycle allocation
between threads, and limits the maximum response latency to
external interrupts and other events external to the processor.

Forward Progress Guarantee

That at least one instruction must be executed each time
a thread switch occurs and a new thread becomes active is too
restrictive in certain circumstances, such as when a single
instruction generates multiple cache accesses and/or multiple
cache misses. For example, a fetch instruction may cause an
L1 I-cache 150 miss if the instruction requested is not in the
cache; but when the instruction returns, required data may not
be available in the L1 D-cache 120. Likewise, a miss in
translation lookaside buffer 250 can also result in a data
cache miss. So, 1if forward progress is strictly enforced,
misses on subsequent accesses do not result in thread switches.
A second problem is that some cache misses may require a large
number of cycles to complete, during which time another thread
may experience a cache miss at the same cache level which can
be completed in much less time. If, when returning to the
first thread, the strict forward progress is enforced, the
processor is unable to switch to the thread with the shorter
cache miss. To remedy the problem of thrashing wherein each
thread is locked in a repetitive cycle of switching threads
without any instructions executing, there exists a forward
progress count register 420 (Figure 4) which allows up to a
programmable maximum number of thread switches called the
forward progress threshold value. After that maximum number
of thread switches, an instruction must be completed before
switching can occur again. In this way, thrashing is
prevented. Forward progress count register 420 may actually
be bits 30:31 in the thread switch control register 410 or a
software programmable forward progress threshold register for
the processor. The forward progress count logic uses bits
15:17 of the thread state registers 442, 444 that indicate the
state of the threads and are allocated for the number of thread

-28-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

switches a thread has experienced without an instruction
executing. Preferably, then these bits comprise the forward
progress counter.

When a thread changes state invoking the thread switch
algorithm, if at least one instruction has completed in the
active thread, the forward-progress counter for the active
thread is reset and the thread switch algorithm continues to
compare thread states between the threads in the processor.
If no instruction has completed, the forward-progress counter
value in the thread state register of the active thread is
compared to the forward progress threshold value. If the
counter value is not equal to the threshold value, the thread
switch algorithm continues to evaluate the thread states of the
threads in the processor. Then if a thread switch occurs, the
forward-progress counter is incremented. If, however, the
counter value is equal to the threshold value, no thread switch
will occur until an instruction can execute, i.e., until
forward progress occurs. Note that if the threshold register
has value zero, at least one instruction must complete within
the active thread before switching to another thread. If each
thread switch requires three processor cycles and if there are
two threads and if the thread switch logic is programmed to
stop trying to switch threads after five tries; then the
maximum number of cycles that the processor will thrash is
thirty cycles. One of skill in the art can appreciate that
there a potential conflict exists between prohibiting a thread
switch because no forward progress will be made on one hand
and, on the other hand, forcing a thread switch because the
time-out count has been exceeded. Such a conflict can easily
be resolved according to architecture and software. Figure
6 is a flowchart of the forward progress count feature of
thread switch logic 400 which prevents thrashing. At block
610, bits 15:17 in thread state register 442 pertaining to
thread T0 are reset to state 111. Execution of this thread is
attempted in block 620 and the state changes to 000. If an
instruction successfully executes on thread T0, the state of
thread T0 returns to 111 and remains so. If, however, thread

-29-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

T0 cannot execute an instruction, a thread switch occurs to
thread T1, or another background thread if more than two
threads are permitted in the processor architecture. When a
thread switch occurs away from Tl or the other background
thread and execution returns to thread T0, a second attempt to
execute thread T0 occurs and the state of thread T0 becomes 001
as in block 630. Again, if thread TO0 encounters a thread
switch event, control of the processor is switched away from

'thread T0 to another thread. Similarly, whenever a thread

switch occurs from the other thread, e.g., Tl1l, back to thread
T0, the state of T0 changes to 010 on this third attempt to
execute T0 (block 640); to 011 on the fourth attempt to execute
T0 (block 650), and to state 100 on the fifth attempt to
execute T0 (block 660).

In this implementation, there are five attempts to switch
to thread T0. After the fifth attempt or whenever the wvalue
of bits 15:17 in the thread state register (TSR) 442 is equal
to the value of bits 30:31 plus one in the thread switch
control register (TSC) 410, i.e., whenever TSC(30:31) + 1 = TSR
(15:17), no thread switch away from thread T0 occurs. It will
be appreciated that five attempts is an arbitrary number; the
maximum number of allowable switches with unsuccessful
execution, 1.e., the forward progress threshold wvalue, 1is
programmable and it may be realized in certain architectures
that five 1is too many switches, and in other architectures,
five is too few. In any event, the relationship between the
number of times that an attempt to switch to a thread with no
instructions executing must be compared with a threshold value
and once that threshold value has been reached, no thread
switch occurs away from that thread and the processor waits
until the latency associated with that thread is resolved. 1In
the embodiment described herein, the state of the thread
represented by bits 15:17 of the thread state register 442 is
compared with bits 30:31 in the thread switch control register
410. Special handling for particular events that have
extremely long latency, such as interaction with input/output
devices, to prevent prematurely blocking thread switching with

-30-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

forward progress logic improves processor performance. One way
to handle these extremely long latency events is to block the
incrementing of the forward progress counter or ignore the
output signal of the comparison between the forward progress
counter and the threshold value if data has not returned.
Another way to handle extremely long latency events is to use'
a separate larger forward progress count for these particular

events.

Thread Switch Manager
The thread state for all software threads dispatched to

the processor is preferably maintained in the thread state
registers 442 and 444 of Figure 4 as described. 1In a single
processor one thread executes its instructions at a time and
all other threads are dormant. Execution is switched from the
active thread to a dormant thread when the active thread
encounters a long-latency event as discussed above with respect
to the forward progress register 420, the thread switch control
register 410, or the thread switch time-out register 430.
Independent of which thread is active, these hardware registers
use conditions that do not dynamically change during the course
of execution.

Flexibility to change thread switch conditions by a thread
switch manager improves overall system performance. A software

. thread switch manager can alter the frequency of thread

switching, increase execution cycles available for a critical
task, and decrease the overall cycles lost because of thread
switch latency. The thread switch manager can be programmed
either at compile time or during execution by the operating
system, e.g., a locking loop can change the frequency of thread
switches; or an operating system task can be dispatched because
a dormant thread in a lower priority state is waiting for an
external interrupt or is otherwise ready. It may be
advantageous to disallow or decrease the frequency of thread
switches away from an active thread so that performance of the
current instruction stream does not suffer the latencies
resulting from switching into and out of it. Alternatively,

-37-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

a thread can forgo some or all of its execution cycles by
essentially lowering its priority, and as a result, decrease
the frequency of switches into it or increase the frequency of
switches out of the thread to enhance overall system
performance. The thread switch manager may also
unconditionally force or inhibit a thread switch, or influence
which thread is next selected for execution.

A multiple-priority thread switching scheme assigns a
priority value to each thread to qualify the conditions that
cause a switch. It may also be desirable in some cases to have
the hardware alter thread priority. For instance, a low-
priority thread may be waiting on some event, which when it
occurs, the hardware can raise the priority of the thread to
influence the response time of the thread to the event.
Relative priorities between threads or the priority of a
certain thread will influence the handling of such an event.
The priorities of the threads can be adjusted by the thread
switch manager software through the use of one or more
instructions, or by hardware in response to an event. The
thread switch manager alters the actions performed by the
hardware thread switch logic to effectively change the relative
priority of the threads.

Three priorities are used with the embodiment described
herein of two threads and provides sufficient distinction
between threads to allow tuning of performance without
adversely affecting system performance. With three priorities,
two threads can have an equal status of medium priority. The
choice of three priorities for two threads is not intended to
be limiting. In some architectures a "normal" state may be
that one thread always has a higher priority than the other
threads. It is intended to be within the scope of the
invention to cover more than two threads of execution having
one or multiple priorities that can be set in hardware or
programmed by software.

The three priorities of each thread are high, medium, and
low. When the priority of thread 70 is the same as thread T1,
there is no effect on the thread switching logic. Both threads

-32-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

have equal priority so neither is given an execution time
advantage. When the priority of thread T0 is greater than the
priority of thread T1, thread switching from T0 to T1 is
disabled for all L1 cache misses, i.e., data load, data store,
and instruction fetch, because L1l cache misses are resolved
much faster than other conditions such as L2 misses and
translates. Thread T0 is given a better chance of receiving
more execution cycles than thread T1 which allows thread T0 to
continue execution so long as it does not waste an excessive
number of execution cycles. The processor, however, will still
relingquish control to thread T1 if thread T0 experiences a
relatively long execution latency. Thread switching from 71
to T0 is unaffected, except that a switch occurs when dormant
thread T0 is ready in which case thread T0 preempts thread TI.
This case would be expected to occur when thread T0 switches
away because of an L2 cache miss or translation request, and
the condition is resolved in the background while thread TO is
executing. The case of thread T0 having a priority less than
thread T1 is analogous to the case above, with the thread
designation reversed.

There are different possible approaches to implementing
management of thread switching by changing thread priority.
New instructions can be added to the processor architecture.
Existing processor instructions having side effects that have
the desired actions can also be used. Several factors
influence the choice among the methods of allowing software
control: (a) the ease of redefining architecture to include
new instructions and the effect of architecture changes on
existing processors; (b) the desirability of running identical
software on different versions of processors; (c) the
performance tradeoffs between using new, special purpose
instructions versus reusing existing instructions and defining
resultant side effects; (d) the desired level of control by the
software, e.g., whether the effect can be caused by every
execution of some existing instruction, such as a specific load
or store, or whether more control is needed, by adding an
instruction to the stream to specifically cause the effect.

-33-

10

15

20

25

30

35

WO 99/21081 PCT/US98/21716

The architecture described herein preferably takes
advantage of an unused instruction whose values do not change
the architected general purpose registers of the processor;
this feature is critical for retrofitting multithreading
capabilities into a processor architecture. Otherwise special
instructions can be coded. The instruction is a "preferred
nop" or 0,0,0; other instructions, however, can effectively act
as a nop. By using different versions of the or instruction,
or 0,0,0 or 1,1,1 etc. to alter thread priority, the same
instruction stream may execute on a processor without adverse
effects such as illegal instruction interrupts. An extension
uses the state of the machine state register to alter the
meaning of these instructions. For example, it may be
undesirable to allow a user to code some or all of these thread
priority instructions and access the functions they provide.
The special functions they provide may be defined to occur only
in certain modes of execution, they will have no effect in
other modes and will be executed normally, as a nop.

One possible implementation, using a dual-thread
multithreaded processor, uses three instructions which become
part of the executing software itself to change the priority
of itself:

tsop 1 or 1,1,1 - Switch to dormant thread
tsop 2 or 1,1,1 - Set active thread to LOW priority
- Switch to dormant thread
- NOTE: Only valid in privileged mode unless TSC[19]=1
tsop 3 or 2,2,2 - Set active thread to MEDIUM priority
tsop 4 or 3,3,3 - Set active thread to HIGH priority
- NOTE: Only valid in privileged mode
Instructions tsop 1 and tsop 2 can be the same instruction
as embodied herein as or 1,1,1 but they can also be separate
instructions. These instructions interact with bits 19 and 21
of the thread switch control register 410 and the
problem/privilege bit of the machine state register as
described herein. If bit 21 of the thread switch control
register 410 has a value of one, the thread switch manager can
set the priority of its thread to one of three priorities

represented in the thread state register at bits 18:19. If bit

34

WO 99/21081 PCT/US98/21716

19 of the thread switch control register 410 has a value zero,
then the instruction tsop 2 thread switch and thread priority
setting 1is controlled by the problem/privilege bit of the
machine state register. On the other hand, if bit 19 of the
thread switch control register 410 has a value one, or if the
problem/privilege bit of the machine state register has a value
zero and the instruction or 1,1,1 is present in the code, the
priority for the active thread is set to low and execution is
immediately switched to the dormant or background thread if the
dormant thread is enabled. The instruction or 2,2,2 sets the
priority of the active thread to medium regardless of the value
of the problem/privilege bit of the machine state register.
And the instruction or 3,3,3, when the problem/privilege bit
of the machine state register bit has a value of zero, sets the
priority of the active thread to high. If bit 21 of the thread
switch control register 320 is zero, the priority for both
threads is set to medium and the effect of the or x,x,x
instructions on the priority is blocked. If an external
interrupt request is active, and if the corresponding thread's
priority is low, that thread's priority is set to medium.

The events altered by the thread priorities are: (1)
switch on L1 D-cache miss to load data; (2) switch on L1 D-
cache miss for storing data; (3) switch on L1 I-cache miss on
an instruction fetch; and (4) switch if the dormant thread in
ready state. In addition, external interrupt activation may
alter the corresponding thread's priority. The following table
shows the effect of priority on conditions that cause a thread
switch. A simple TSC entry in columns three and four means to
use the conditions set forth in the thread switch control (TSC)
register 410 to initiate a thread switch. An entry of TSC[0:2]
treated as 0 means that bits 0:2 of the thread switch control
register 410 are treated as if the value of those bits are zero
for that thread and the other bits in the thread switch control
register 410 are used as is for defining the conditions that
cause thread switches. The phrase when thread T0 ready in
column four means that a switch to thread TO0 occurs as soon as
thread T0 is no longer waiting on the miss event that caused

35

10

15

20

25

30

WO 99/21081 PCT/US98/21716

it to be switched out. The phrase when thread Tl ready in
column 3 means that a switch to thread T1 occurs as soon as
thread T1 is no longer waiting on the miss event that caused
it to be switched out. If the miss event is a thread switch
time-out, there is no guarantee that the lower priority thread
completes an instruction before the higher priority thread
switches back in.

T0 Priority T1 Priority T0 Thread Switch T1 Thread Switch
Conditions Conditions

High High TSC TSC

High Medium TSC[0:2] treated as 0 | TSC or if 70 ready

High Low TSC[0:2] treated as 0 TSC or if T0 ready

Medium High TSC or if T1 ready TSC[0:2] treated as 0

Medium Medium TSC TSC

Medium Low TSC[0:2] treated as 0 TSC or if T0 ready

Low High TSC or if T1 ready TSC[0:2] treated as 0

Low Medium TSC or if T1 ready TSC[0:2] treated as 0

Low Low TSC TSC

It is recommended that a thread doing no productive work
be given low priority to avoid a loss in performance even if
every instruction in the idle loop causes a thread switch.
Yet, it is still important to allow hardware to alter thread
priority if an external interrupt is requested to a thread set
at low priority. 1In this case the thread is raised to medium
priority, to allow a quicker response to the interrupt. This
allows a thread waiting on an external event to set itself at
low priority, where it will stay until the event is signalled.

While the invention has been described in connection with
what is presently considered the most practical and preferred
embodiments, it is to be understood that the invention is not
limited to the disclosed embodiments, but on the contrary, is
intended to cover various modifications and equivalent
arrangements included within the spirit and scope of the
appended claims.

-36-

s
b W N O W o o U W N R

=

w

W N e

WO 99/21081 PCT/US98/21716

Claims

1. A computer processor comprising:

at least one multithreaded processor (100) to switch
execution between a plurality of threads of
instructions; and

at least one thread switch control register (410) having
a plurality of bits, each of said bits associated
uniquely with one of a plurality of thread switch
control events, the at least one thread switch
control register interconnected with the
multithreaded processor.

2. The processor of Claim 1 wherein if one of the bits is
enabled, the thread switch control event associated with that
bit causes the at least one multithreaded processor to switch
from one of a plurality of threads to another of said plurality
of threads.

3. The processor of Claim 1 or 2 wherein the thread switch

control register is programmable.

4. The processor of one of Claims 1 to 3 wherein at least one
instruction can disable at least one of the bits in the thread
switch control register.

5. The processor of one of Claims 1 to 4 comprising more than
one thread switch control register.

6. The processor of Claim 5 wherein the bit values of one
thread switch control register differs from the bit values of
another of said thread switch control registers.

7. The processor of one of Claims 1 to 6 wherein the
plurality of thread switch control events comprise a data miss
from at least one of the following: a Ll-data cache, a L2
cache, a translation lookaside buffer.

-37-

W N

=

o U1 R W N

O g o0 Uk W NP

WO 99/21081 PCT/US98/21716

8. The processor of one of Claims 1 to 7 wherein the
plurality of thread switch control events comprise an
instruction miss from at least one of the following: a Ll1-
instruction cache, a translation lookaside buffer.

9. The processor of one of Claims 1 to 8 wherein the
plurality of thread switch control events comprise an error in
address translation of data and/or an instruction.

10. The processor of one of Claims 1 to 9 wherein the
plurality of thread switch control events comprise access to
an I/0 device external to said processor.

11. The processor of one of Claims 1 to 10 wherein the
plurality of thread switch control events comprise access to
another processor.

12. The processor of one of Claims 2 to 11 wherein the
plurality of thread switch control events comprise a forward
progress count of a number of times the one of a plurality of
threads has been switched from the at least one multithreaded
processor with no instruction of the one of a plurality of

threads executing.

13. The processor of one of Claims 1 to 12 wherein the
plurality of thread switch control events comprise a time-out

period.

14. A computer processing system comprising:

means for ©processing a plurality of threads of
instructions;

means for indicating when the processing means stalls
because one of the plurality of threads experiences
a processor latency event;

means for registering a plurality of thread switch
control events; and

-38-

10
11

Y Ul o W N

O W o < o U1 B W N

T)
TSI R

=W N =

oY U1 i W N

WO 99/21081 PCT/US98/21716

means for determining if the processor latency event is
one of the plurality of thread switch control

events.

15. The computer processing system of Claim 14, further
comprising:
means for enabling the processing means to switch
processing to another of the plurality of threads if
the processor latency event is one of the plurality
of thread switch control events.

16. A method to determine contents of a thread switch control
register, comprising the steps of:
counting a first number of processor cycles in which a
multithreaded processor 1is stalled Dbecause of
processor latency event;
counting a second number of processor cycles required for
the multithreaded processor to switch processing of
a first thread of instructions to a second thread of
instructions;
assigning the processor latency event to be a thread
switch control event by setting an enable bit in the
thread switch control register if the first number
is greater than the second number.

17. The method of Claim 16, further comprising:
outputting a signal to switch threads when the
multithreaded processor experiences the thread
switch control event if the enable bit is enabled.

18. A method of computer processing comprising the steps of:
storing a state of a thread in a thread state register;
storing a plurality of thread switch control events in a

thread switch control register;
signaling the thread state register when the state of the
thread changes;

-390 -

o]

O TCREN

W o 31 6O U w N R

I I I T R I R R R N e N e e e o
© N 0 U B WM R O WO oUW N P O

19.

20.

WO 99/21081

comparing the changed state of the thread with the
plurality of thread switch control events.

The method of Claim 18, further comprising:

signalling a multithreaded processor to switch execution
from the thread if the changed state results from a
thread switch control event.

A computer system, comprising:

a multithreaded processor (100) capable of switching
processing between at least two threads of
instructions when the multithreaded processor
experiences one of a plurality of processor latency
events;

at least one thread state register (440) operatively
connected to the multithreaded processor to store a
state of the threads of instructions wherein the
state of each thread of instructions changes when
the processor switches processing to each thread;

at least one thread switch control register (410)
operatively connected to the at least one thread
state register and to the multithreaded processor,
to store a plurality of thread switch control events
which thread switch control events are enabled by
setting a corresponding plurality of enable bits;

a plurality of internal connections connecting the
multithreaded processor to a plurality of memory
elements (120, 130, 140, 150) wherein access to any
of the plurality of memory elements by the
multithreaded processor causes a processor latency
event;

wherein when one of the threads executing in the

multithreaded processor is unable to continue execution

because of one of the processor latency events and when
that processor latency event is a thread switch control
event and when that corresponding enable bit is set, the

-40-

PCT/US98/21716

w N
o v

W N o W N

WO 99/21081 PCT/US98/21716

multithreaded processor switches execution to another of
the threads.

21. The computer system of Claim 20 further comprising at
least one external connection (155) connecting the
multithreaded processor to at least one external memory device
(170), at least one external communication device (174), an
external computer network (174), or at least one input/output
device (166) wherein access to any of the devices or the
network by the multithreaded processor causes one of the
plurality of processor latency events.

-41-

PCT/US98/21716

WO 99/21081

1/7

| 34N9Id

S/MPN9/T W/l 74N 01
__| g
8/1 S/M —ade| = qSva
/
Jiuldg S/M
L 0/1
Ja1depy =(ISvda = asva/
S/M S/M URLO?)
_| Il
doI dO1 d01 do1 do1I
WIS/ N u1S/3IM N URIO) N 9b6el01s [| 96eJ0IS|-09T
891 991 191 a9l
£~6G1
adeJJalu] sng 61
_ 0Z1 ndd
JHIVI-A [
40
AYOWIW NTYW 0$T VI 40SSII0Yd
1 U 7
JHIVD-1 ott
Sonl 7 N0oT

PCT/US98/21716

WO 99/21081

217

2 34N9I4

. 1dniJjalug
. 31607 ﬁmwgopxm
421 IMS otz
peaJuyl
052 ~00h
.mﬁcmw mm:: + 0ac
1uTod 1uiod 1N ‘mmm - X
BUT1ROT4 Sydd pax14 youelg qa11
u u u
. J N : _
8¢ 0/2
4
\ f_ 3/
\\
1TUf} UOTIDdNIISU] mcwmw
N : : <07’ v € » uoilisuesj
J \
0¢¢ 00¢
\\
1 { {
4 onl
ayoe) 0st
uo112onJ41su N AJouRy UIBy \| ayoed oNﬂ/ ayae)-(d

PCT/US98/21716

WO 99/21081

317

1dnJJalu] [eulaixdy

¢ J4NOI4

21607 si1un | 08
—— tun |
06¢ UI1IMS ¢ uoryndaxy | ~04¢
peadyl 09¢
\ Y &
0o% 00Z
] y \
S0¢ | g uIa
viunfe—C sy ¢l
uot u1a _ A
-JNJlsu] 11 J S S
¢ \ L/ \] 7Ny 'Y
. 0¢s | sasousnbas [) mﬁ ETRITR
0Ce e B
\\ L. C
09¢ i N ayde)-(
11
— ~— ayoe) |, ,
0/¢ UoIlIsS
. —ueJ|]
ayoe)-1 ! SN 0c1
11 01¢
\ hlﬂ H v r v
051 e1eq [0J1U0) 1011U07) e1eq
0T~ (owoy utew | 7] ouey z1 | 0%l

WO 99/21081

h/7

460

Software

4

PCT/US98/21716

Thread Switch

Thread
Switch
Control
Register

410

Softwa re'L Count

Forward Progress

420

Thread Switch
Time Out

430

‘i

Logic

440

/

State Regs

Thread @
State
Register

LY

TN

Thread 1
State
Register

:

Thread
Switch

—————ﬂ Controller

L — 1450

290
External

Interrupt

FIGURE 4A

Active
Thread
18 or T1?

260-282

Architected Registers

400

Assoc Execution Units

@

WO 99/21081

®

5/7

PCT/US98/21716

‘TB'I-Cache Miss 470

"UZ Instruction Complete

"Tl [-Cache Miss 472

"Tl Instruction Complete

le L1 D-Cache Miss 474

Active Thread

10 L2 Miss 476

PRE! L2 Miss 478

< TP Data 480

Returned
(Restart VC Miss)

¢ T1 Data 482

Returned
(Restart VC Miss)

le TLB Miss 484

¢ Table Walk Complete 486

200

| -220
Instruction _
Unit :
Storage
Control
Unit

¢ —e

FIGURE 4B

WO 99/21081

6/7

PCT/US98/21716

Thread State Register. One Per Thread
Miss Type Bits (1 to 2)

510
Ready
State="00")
x L1 M1§s
TLB Miss on this
on this thread
thread
512
v 516 s [
TLB 4 L1 Mis
Table Walk Table Walk "¢ Data/Inst i
State="01" =rig”
Complete Returned State="10
from L2
L2 Miss
on this
thread
v 514
L2 Miss |/
Data/Inst State="11"
Returned
from MS
State Hierarchy
Highest = State "00" idle
Next = State “10” L1 Miss
Next = State "11" L2 Miss
Lowest = State "01" Table Walk

FIGURE 5

WO 99/21081

one per thread

717

Reset
10
State="111"

610

Switch to
this thread

Inst Executed

on this thread

1st _Execution
No Instruction
Complete
State="000"

620

Switch to
this thread

Inst Executed
on this thread

2nd Execution
No Instruction
Complete
State="001"

—630

Switch to
this thread

Inst Executed
on this thread

3rd_Execution
No Instruction
Complete
State="010"

~— 640

Switch to
this thread

Inst Executed
on this thread

——

4th Execution
No Instruction
Complete
State="011"

——650

A

Switch to
this thread

5th_Execution
No Instruction
Complete
State="100"

660

Progress Cnt Max = TSC (30 to 31) + 1 ,
Block Thread Switch if TSR (15 to 17) for executing
thread is equal to or greater than Progress Cnt Max

PCT/US98/21716

FIGURE 6

INTERNATIONAL SEARCH REPORT int. ional Application No

PCT/US 98/21716

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 F9/38 G06F9/46

According to Internationat Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

see abstract

35; claims; figures

see cotumn 10, line 37 - column 17, line

A EP 0 747 816 A (IBM) 11 December 1996 1,14,16,

18,20

see column 2, Tine 32 - column 3, Tline 4
see column 4, line 4 - column 11, line 37;
claims; figures

A US 5 423 008 A (NAGHSHINEH KIANOOSH ET 1,14,16,
AL) 6 June 1995 18,20
see abstract
see column 2, line 32 - column 3, line 3

A EP 0 617 361 A (DIGITAL EQUIPMENT CORP) 1,14,16,
28 September 1994 18,20
see abstract
see column 5, line 3 - column 7, last line

S

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority ciaim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

other means

"P" document published prior to the intemationat filing date but
later than the priority date claimed

"O" document referring to an oral disclosure, use, exhibitionor -

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principte or theory undertying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual compietion of the international search

1 April 1999

Date of mailing of the international search report

12/04/1999

Name and mailing addrass of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340 2040 Tx. 31 651 epo ni,

Fax: (+31,70) 340-3016

Authorized officer

Wiltink, J

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

tnt tional Appiication No

PCT/US 98/21716

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.

A GB 2 234 613 A (SUN MICROSYSTEMS INC) 1,14,16,
6 February 1991 18,20

see abstract

see page 2, line 25 - page 4, line 11;

claims

Fom PCT/ISA/210 (continuation of second sheat) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int

ional Application No

PCT/US 98/21716

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0747816 A 11-12-1996 JP 9006633 A 10-01-1997

US 5423008 A 06-06-1995 NONE

EP 0617361 A 28-09-1994 NONE

GB 2234613 06-02-1991 AU 638232 B 24-06-1993
AU 5067290 A 07-02-1991
HK 36894 A 29-04-1994
JP 3071248 A 27-03-1991
SG 124693 G 31-03-1994
us 5361337 A 01-11-1994

Form PCT/ISA/210 (patent family annex) (July 1892)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

