The document provides a patent related to the method and system for placement and pricing of Internet-based advertisements or services. The title of the patent is "PROCEDE ET SYSTEME SERVANT A SOUMETTRE ET A EVALUER DES MESSAGES PUBLICITAIRES OU DES SERVICES SUR INTERNET." The patent discusses techniques for providing online campaign pricing and placement based on the performance of advertisements within a given category of Internet media. These techniques allow for variable delivery and pricing for both advertisers and publishers, enabling the pre-empting of under-performance on its own merits and not for its relative performance or price versus other advertisers. The patent also includes methods for allowing publishers to realize increased revenue from their high-value media through the use of tag passbacks to secure a minimum reserve pricing of their choice.
Title: METHOD AND SYSTEM FOR PLACEMENT AND PRICING OF INTERNET-BASED ADVERTISEMENTS OR SERVICES

Abstract: Presented are embodiments of methods and systems that provide for Internet advertisement pricing and placement to be variably based on the advertisement's performance within a given category of Internet media, while at the same time achieving predictable delivery and pricing for both advertisers and publishers. Techniques are presented where an adverter's online campaign will be pre-empted only for underperformance on its own merits, and not for its relative performance or price versus other advertisers. Further, techniques are presented for allowing publishers of advertisements to realize increased revenue from their high value media while using tag passbacks to secure a minimum reserve pricing of their choice.

Diagram:

```
  Publisher
      |      |      |      |      |      |      |
  +---+---+---+---+---+---+---+
  |   |   |   |   |   |   |   |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  +---+---+---+---+---+---+---+

  Prior Ad Server
      |      |      |      |      |      |      |
  +---+---+---+---+---+---+---+
  |   |   |   |   |   |   |   |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  +---+---+---+---+---+---+---+

  Ad Inventory
      |      |      |      |      |      |      |
  +---+---+---+---+---+---+---+
  |   |   |   |   |   |   |   |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  |    |    |    |    |    |    |    |
  +---+---+---+---+---+---+---+
```

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
METHOD AND SYSTEM FOR PLACEMENT AND PRICING OF INTERNET-BASED ADVERTISEMENTS OR SERVICES

Field of Invention

The present invention relates to selecting the best performing advertisements for Internet users, and to a pricing model that determines an appropriate price for those advertisements, and in particular to pricing and ranking ads in an inventory of ads so as to achieve predictable delivery for advertisers while maximizing property value for publishers and networks.

Background of the Invention

When advertisers purchase distribution for their ads on a web site or set of web sites, there are a few standard ways they can pay for that. The simplest models are:

1. A fixed cost per thousand impressions ("CPM model"). If an advertiser pays a fixed rate CPM (e.g., $1.00), they pay the fixed rate of $1 for every thousand times their ad is shown (impression), regardless of user response rate to that ad.

2. A fixed cost-per-click model ("CPC"). If an advertiser pays a fixed rate (e.g., $1) CPC, they pay $1 every time a user clicks on that ad, regardless of the number of times the ad is shown without being clicked.

However in many situations the market value of ad space may vary. For example, if the ad is to be matched to a keyword on an active search page or in contextual advertising,
then the value of that ad space depends on the market value for that keyword (e.g., “casino” is typically more valuable for advertising than “paper”).

As a result, auction models have become common. In this case advertisers bid on how much they’re willing to pay – typically on a CPC basis – to have their ad shown on those pages, against that keyword or context, etc. An ad server implements the placement algorithm and is able to maximize the value of that ad space by selecting the highest paying ads at any given time. In some cases the ad server will also combine performance data for that ad (including click-through-rate (“CTR“) data, for example) with the bid price per click to determine the effective CPM (“eCPM”) rate for each ad, and then choose the highest eCPM ads. Or combining with purchase or other conversion data to establish a cost per action (“CPA”), and then include CPA values among the selection process. In either case the ad selection formula typically relies on an auction-based marketplace. The term eCPM is an industry standard known to persons of ordinary skill in the art. As is readily understood by a person of ordinary skill in the art, CPA is also known as cost-per-conversion, or cost-per-sale.

The eCPM value reflects what the equivalent CPM is if the pricing model is based on CPC or some other non-CPM model. For example, a CPC rate multiplied by the ad’s click-through-rate multiplied by 1000 yields the eCPM for that ad based on its response.

\[
e\text{CPM} = \text{CPC} \times \text{CTR} \times 1,000; \text{ or } e\text{CPM} = \frac{\text{Cost}}{\text{Click}} \times \frac{\text{Click}}{\text{Impression}} \times 1,000
\]

Auctions provide a means for extracting appropriate market value for ad space, but they also create problems. For example, when advertisers purchase a fixed CPM or CPC campaign to distribute their ads with a publisher or media company, they know that they will get that distribution or otherwise there was an issue with the vendor. In an auction marketplace the advertiser does not have the same clear contract with the publisher, since other advertisers may outbid them for the distribution at any time. As an example, if the
advertiser wants to run a campaign that generates 30,000 clicks in a month within a budget of $15,000, then they might bid a maximum CPC of $0.50 per click, they might start off getting the 1000 clicks per day that they want, then a few days later suddenly drop to 100 or 0 clicks per day when their ad is preempted by a higher paying advertiser. At that point they have to adjust their bid to a higher per click rate to restart the campaign (risking exceeding the original advertising budget), or move the campaign to another publisher, etc.

As such, fixed price models are good for advertiser predictability but bad for publishers and networks looking to maximize the value of dynamic properties. Auction models are good for publishers and networks’ ability to maximize value, but bad for advertiser predictability. Advertisers generally prefer to pay based on a CPC rate, thus assuring they pay only when users show interest in their ad and generate a response. Inapposite, publishers like to be paid on a CPM basis, thus providing a more predictable return — publishers know how much traffic they get to their site (how many pages they serve to their users per-day or per-month); so on a CPM basis they can predict revenue independent of an advertising campaign performance.

Furthermore, the ad traffic generated by users visiting publishers’ sites can be anywhere from a very low value to a very high value for advertising. Even within a single publisher the value of traffic generated often has a range of value to advertisers. However, without an ability to classify that traffic into different groups that separate the higher from the lower value traffic, publishers typically must strike simplistic CPM deals with the networks that deliver advertisements,. These deals provide publishers with a flat CPM rate that does not give publishers upside on their higher value traffic.

Further, missing from the art are methods and systems for placement of internet advertisements or services that provide publishers an upside value on their higher value
traffic, and provide publishers with a more predictable return. The present invention can satisfy one or more of these and other needs.

Summary of the Invention

The present invention relates to a method for pricing and ranking ads in an inventory of ads that achieves both predictable delivery for advertisers and maximized property value for publishers and networks.

In accordance with one aspect of the invention, a system sets ad prices to be variable based on ad performance. This internet-based system for pricing advertisements, comprises an Internet property, operated by a publisher, that contains at least one page capable of displaying advertisements. Advertisement performance metrics to classify Internet ad traffic into performance groups that are associated with a minimum profitable eCPM amount. A rule base associates particular ads in an advertisement inventory to at least one ad traffic classification performance group, and further associates each of the particular ads with a minimum price and a maximum price. An ad server receives a request to deliver an ad, and consults with a classification system to determine the performance group corresponding to parameters of the ad request. The rule base is applied to the advertisement inventory associated with that performance group so as to select one or more associated advertisements, and deliver the one or more advertisements for display on the Internet property page. A historical statistics repository includes the historical performance of each advertisement in the inventory associated with an ad traffic classification. A pricing and optimization engine applies these historical statistics to establish the current performance of each ad in each performance group, compares the current performance to an expected performance, establishes a new price between the minimum price and the maximum price.
In accordance with another aspect of the invention, an Open Purchase Order ad server maintains the profitability of the publisher and network even when a publisher’s agreed CPM or eCPM rates cannot be delivered by the network.

These and other aspects, features, steps and advantages can be further appreciated from the accompanying figures and description of certain illustrative embodiments.

Brief Description of the Drawing Figures

Figure 1 is a flow diagram illustrating steps in accordance with an embodiment of the invention;

Figure 2 diagrams a conventional workflow among a publisher, an ad server, and an ad inventory to deliver an ad to a user;

Figure 3 illustrates a workflow delivering an ad to a user after a tag passback from an OPO Network’s ad server in accordance with an embodiment of the present invention;

Figure 4 illustrates a workflow delivering an ad to a user by an OPO Network’s as server in accordance with an embodiment of the present invention;

Figure 5 depicts the high level business relationships and interactions among an advertiser, a publisher, and a network in accordance with an embodiment of the present invention;

Figure 6A depicts a conventional relationship between a publisher and a network;

Figure 6B depicts the relationship between a publisher, an OPO Network, and a conventional network in accordance with the present invention;

Figure 7 depicts components of an exemplary environment in which processes embodying the invention can be implemented;

Figure 8 is an exemplary GUI for interaction with a publisher to create a new tag on an OPO Network;
Figure 9 is an exemplary GUI for interaction with a publisher to set their price for a new tag on an OPO Network;

Figures 10 and 11 are exemplary GUIs for interaction with a publisher to register their passback tag on an OPO Network;

Figure 12 is an exemplary GUI for interaction with a publisher to retrieve the ad tag from an OPO Network for posting on their web site in order to enable the OPO Network functionality in accordance with one embodiment of the invention;

Figure 13 an exemplary GUI for interaction with a publisher on an OPO Network to setup additional business rules;

Figure 14 is an exemplary GUI for interaction with a publisher to view and manage the performance of their ad tags across different performance groups; and

Figure 15 is an exemplary GUI for interaction with a publisher to view and manage an advertiser and publisher referrals system in place on an OPO Network.

Detailed Description of the Illustrative Embodiments

By way of overview and introduction, presented and described are embodiments of a method and system that prices and ranks ads in an inventory of ads. Different embodiments interrelate at least the following elements:

1. One or more Internet publishers or properties that contain pages where ads may be shown

2. An inventory of ads available to be shown on those properties

3. A rule base that may be used to match particular ads in the inventory to particular classifications of ad traffic

4. A classification system that may be applied to a set of properties or pages

5. A set of prices that correspond to each class in the classification system
The term "ad traffic" has the meaning of a real time series of requests for ads or ad impressions generated by end-viewers of advertisements from their Web browsers, or other Internet content access device.

With reference to Figure 1, process 100 embodies the classification system. Process 100, at step 110, classifies by the topical category of the page (e.g., by the page content). For example if the content of the page generally discusses baseball then baseball can be its category. However, the classification system is not so limited, and other methods and approaches to classifying the category of the page are within the scope of the invention. These other classifications can include, but are not limited to, combinations of the page address or Internet domain name, the dimensions of the ad space to be filled, the type of ad media the publisher has allowed to fill the ad space, the time of day, day of week, or other time-based criteria, the geographical information about the end-viewer’s location or web server’s location, and user demographic data. It is also specifically noted that the classification system does not require any user-based data or user demographic data in order to achieve valuable classification of traffic, although as mentioned this data can also be included according to the discretion of the parties involved.

The rule base contains rules that match each ad in the inventory to a classification of the ad traffic such as a contextual category of the current page determined by a real-time contextualization process. In other embodiments these rules match ads to keywords, or to a combination of categories and keywords, or match ads to other features, and combination of features, as mentioned earlier regarding traffic classification methods. The set of prices contains a minimum CPC price for each category in the classification system. The network and ad server use a CPC pricing model for ads.

At step 130, the ad server prices the same ad differently according to the category of the page. This results from the ad server running an algorithm embodying the invention
which ensures that the CPC assigned by the ad server to each ad delivered to the page is above the minimum CPC for that page's category. In a further embodiment, the ad server also tracks the historical performance, step 140, of that particular ad when placed on pages within the same category of page, to better ensure a profitable eCPM. If the ad is getting a lower than expected CTR then the ad server increases the CPC for that ad in that category, therefore raising the eCPM.

Advertisers are able to manage their customer acquisition budget by specifying a maximum price that they are willing to pay per click for either a particular ad, or for that particular ad when delivered/placed on a particular category of page. The ad server, through the algorithm, increases the CPC for that ad only up to the maximum specified value, and then pre-empts the ad from being shown in that category if the eCPM is still below the target for that category. An incremental increase of the CPC can be specified by the advertiser, and the ad server continues to monitor the ad performance. The CPC for the ad can then be raised in incremental steps if the CTR remains non-competitive for that category of page. As long as the CPC price set by the ad server is greater than the established minimum price per category, and that the price is not more than the maximum CPC price specified by the advertiser, then that ad remains placed.

This process through the algorithm achieves:

1. Ad pricing that changes according to the classification of the ad traffic in which the ad is shown

2. Ad pricing that changes according to the historical performance of that ad in terms of its rate for generating positive user response such as clicks or sales.

3. Automatic removal of ads that do not meet both the advertiser's budget and the publisher's and/or network's market value for its pages.
Other embodiments are within the scope of this description and include, but are not limited to, the following embodiments.

An embodiment where the classification system classifies by website, publisher “account” on the ad server, and/or by “publisher domain” (e.g., all *.yahoo.com pages may be classified under the yahoo.com publisher domain). This embodiment allows minimum prices to be set on a per-publisher basis, separately or in conjunction with the page classifications. In a further embodiment, a minimum price per-ad format is set on a per publisher basis. Here the different “ad formats” are different formats for presenting the same ad content, e.g., different sizes and orientations. Further, the rate may be set per-area of the page, e.g., top, bottom, and so forth.

In another embodiment, the classification system can classify on a time basis — e.g., time of day, day of week, month, holidays, and so forth. Classification parameters can further include user-based information such as recent pages viewed or user demographic classifications. However, these user-based classifications are not necessary for the operation of the present invention.

A minimum price and expected ad performance in one or more classes of ad traffic are established by an advertising network in a manner where that prices are known to be profitable for both the publisher and the network. A maximum price for the ad in each class of traffic is established by the advertiser, such that the ad campaign is also affordable to the advertiser. The actual price charged to the advertiser is revised by the network on a regular basis according to the ad’s performance, where the actual price remains within a range between the minimum price and a maximum prices. Thus, publisher profitability and advertiser affordability are assured. The ad is pre-empted only for underperformance on its own merits, e.g., there is no possible price meeting the requirements of the publisher, the advertiser, and the network.
In another embodiment, a method maintains the publisher’s and network’s profitability even when the agreed upon publisher’s CPM and/or eCPM rates cannot be delivered by the network. In accordance with this method, a network called an Open Purchase Order Network ("OPO" Network) negotiates a CPM rate with the publisher that is higher than the CPM rate the publisher is currently paid for their traffic by another network. The OPO Network classifies the publisher’s traffic into higher and lower value traffic for advertising, delivers the ads to the publisher, and pays the agreed higher CPM for the higher value traffic. The OPO Network also passes back to the publisher that portion of traffic for which the network cannot profitably pay the agreed CPM. The publisher then in turn gives that passed back traffic from the OPO Network to a conventional network that pays the publisher the previously agreed lower CPM rate. According to this method the publisher increases its revenue without risk, and the OPO Network gets the first right of refusal on all traffic sent by the publisher, which previously went directly to the conventional ad network.

In another embodiment the classification system extends beyond page classification to include broader “ad traffic” classification. “Ad traffic” is actual real time series of requests for ads generated by users (end-viewers of ads) from their Web browsers or other Internet content access device. Where navigation information from users generates pages through static criteria, ad traffic develops a dynamic criteria which combines page identification with user based classification and time factors (e.g., time of day, day of week, date range, holidays). Ad traffic also can account for the quantity of unique users getting the ad. The number of times a user has had an ad delivered is monitored, and the ad can be stopped to prevent repetitive placement of the ad to a user — this is commonly known as frequency capping. Thus, ad traffic criteria can include user-based classifications such as geographic location, user demographics, and the number of times that user has an ad delivered by the
present invention in the last day or other period of time. It could also include time of day or
day of week classifications.

A further embodiment of the invention is a method that selects from an inventory of
services not typically classified as advertisements. For example, these services could be
types of syndicated web content, or affiliate links used in affiliate marketing. The fees for
placing the services on a page are then determined by the processes described above.

Another embodiment where a CPM “media buy” may be used to hedge the
performance of a CPC media buy. In this embodiment the pricing and placement algorithms
described above are used to place ads from the CPC inventory when such inventory is
available. When CPC inventory is not available then ads can be shown from the fixed-price
CPM inventory. This results in a combination of the CPC and CPM pricing models so as to
partition space for different ads based on an above/below price level or based on the available
ad inventory.

Figure 2 diagrams a conventional process for delivering ads to a user operating a Web
browser. The user uses his browser 220 to fetch a Web page from a publisher site 210. The
publisher site delivers the page content containing space for an ad, plus an ad tag. That ad tag
is a small piece of software (typically javascript) executable by the web browser 220. The
browser executes the tag, automatically causing the browser to generate a request for ad
content from the ad server 230. The ad server looks in the ad inventory 240 for available ads
to deliver, selects one and delivers it back to the user’s browser which displays it together
with the publisher’s page content.

Figure 3 illustrates a workflow to deliver an ad to a user in accordance with an
embodiment of the present invention. Figure 3 depicts the case where when the browser 320
executes the ad tag, a call is generated to an OPO Ad Server 330. The OPO Ad Server
consults the traffic classification system 390 in order to classify the ad request into a
performance group. The OPO Ad Server then applies matching rules to find available ads for that class or performance group from the ad inventory 340. In the scenario shown in Figure 3 no suitable ads are found. Data about the ad request is stored in the historical statistics repository 380 for later processing. The OPO Ad Server then looks for and finds a passback tag in the Publisher Passback Tags Inventory 360 (the publisher having previously registered that passback tag in that inventory). The OPO Ad Server delivers that passback tag to the user's browser 320, the browser automatically executes that tag causing a subsequent request to be immediately made to fetch the ad from a standard ad server 370. In order for the OPO Ad Server to be able to make optimized ad selections, an ad pricing and optimization engine 350 periodically fetches recent statistics about served ads from the historical statistics repository 380 and applies those statistics with the pricing rules (choosing between a minimum price and a maximum price) to the ads in the ad inventory to update current ad pricing and activation status in each performance group.

Figure 4 is a further embodiment of the present invention illustrating the delivery of an ad to a user by an OPO network server. In this embodiment the OPO Ad Server 430 finds an appropriate ad for the performance group from the Ad Inventory 440. Data about the ad request is recorded in the historical statistics repository 380, this data includes information sufficient for measuring each advertisement's performance. For example, to measuring click-through rate the data includes a record that the chosen ad was delivered, and later records that the ad was clicked. Depending on the implemented classification system the data logged can also include time of day, geographic location, etc. The ad is then delivered directly to the user browser 420. No passback tag is required in this case, and the prior art ad server is also not required. The publisher is paid the higher of the CPM or eCPM amount (not shown) due to the OPO Ad Server finding a matching paid ad to show for the determined performance group of the ad request.
Figures 6A and 6B together illustrate the difference between a publisher’s business relationship with ad networks under the prior art (Fig. 6A) and under an embodiment of the current invention (Fig. 6B).

Figure 6A depicts the conventional where the publisher 610 agrees to send all its ad traffic to a particular ad network 620, and where the ad network is granted the right to deliver its ads into that traffic (i.e., deliver its ads in response to ad requests generated by that publisher’s page views). In exchange the network pays the publisher an agreed rate. By way of example, the rate shown is $1.00 eCPM, and it is understood that in real terms the agreement between the publisher and the network might be to pay on a CPC or CPA basis or on a revenue share basis, but it is imagined that those fees generally work out to a $1.00 eCPM rate paid to that publisher.

Figure 6B depicts the relationship between a publisher, an OPO network, and a conventional network in accordance with an embodiment of the present invention. The publisher 630 sends its ad traffic to the OPO Network 640. The OPO Network employs an OPO Ad Server to examine the traffic in real time, and classify it into performance groups. For that portion of traffic for which the OPO Network has an appropriate paid ad in its inventory, it delivers that ad and pays the publisher at the agreed higher (e.g., $2.00 CPM rate) for that traffic. For that portion of traffic for which the OPO Network does not have paid ads to show, it instead passes the ad request back to the publisher.

The OPO Network owes the publisher nothing for that transaction. But, the publisher is able to forward that ad request immediately to the prior art network 650 that is able to pay the publisher the same (e.g., $1.00) baseline eCPM. As a result the publisher is able to generate higher revenues from the same ad traffic without any increased risk, and the OPO Network has a right of first refusal on all traffic, keeping that portion which is of highest value and passing back the rest.
Figure 7 depicts components of an exemplary environment in which processes embodying the invention can be implemented. Not all the components are required to practice the invention, and variations in the arrangement and type of the components may be made. The particular component configuration is not critical to the present invention.

The server shown in Figure 7 is connected to a communication network that can be a local area network ("LAN"), a wide area network ("WAN"), the Internet, or a combination of all three interconnected by routers (not shown). A router is an intermediary communications network device that links many computers through a mesh of possible connections, a router receives transmitted messages and forwards them to their correct destinations over available routes. On an interconnected set of networks — including those based on differing architectures and protocols—a router acts as a link between the networks, enabling messages to be sent from one to another. The communication links within a network typically include twisted pair, fiber optics, or coaxial cable, while communication links between networks may utilize analog telephone lines, full or fractional dedicated digital lines including T1, T2, T3, and T4, Integrated Services Digital Networks (ISDNs), Digital Subscriber Lines (DSLs), wireless links such as WiFi, WiMAX, GPRS, CDMA, TDMA, TSM, hybrids of the foregoing or future technologies, or other communications links known to those skilled in the art. Communication to the communication network is preferably by an interface unit associated with a client computer (not shown), the interface unit can be a remote computer (not shown).

Furthermore, computers, and other electronic devices can be remotely connected to the communication network via a modem and temporary telephone link. The number of WANs, LANs, and routers may be increased or decreased arbitrarily.
As such, it will be appreciated that the Internet itself may be formed from a vast number of such interconnected networks, computers, and routers. Generally, the term "Internet" refers to the worldwide collection of networks, gateways, routers, and computers that use Transmission Control Protocol/Internet Protocol ("TCP/IP") and other packet based protocols to communicate with one another. An embodiment of the invention may be practiced over the Internet. Processes embodying the invention also may be practiced in a peer-to-peer or grid computing architecture.

The media used to transmit information in communication links as described above illustrates one type of computer-readable media, namely communication media. Generally, computer-readable media includes any media that can be accessed by a computing device. Computer-readable media may include computer storage media, communication media, or any combination thereof.

Communication media typically embodies computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term "modulated data signal" means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, communication media includes wired media such as twisted pair, coaxial cable, fiber optics, wave guides and other wired media, and wireless media such as acoustic, RF, infrared and other wireless media.

Figure 7 depicts an exemplary server 721. Server 720 may operate to provide a World Wide Web site (web site), and an email system or a short message service (SMS) system, a multimedia system (MMS) for sending text and images or video in a single message, an instant messenger, and/or other message systems, among other things. When providing a
web site, server 221 receives a request from a browser application of a different device in the network, and in response transmits back data configured as pages. For instance, server 721 communicates pages to the user with advertisements placed within the page according to the embodiments of the invention described above.

Those of ordinary skill in the art will appreciate that the server 721 may include many components which are not shown in Figure 7. However, Figure 7 shows enough components sufficient to disclose an illustrative environment for practicing embodiments of the present invention. Server 721 is connected to the communications network via a network interface unit. Those of ordinary skill in the art will appreciate that the network interface unit includes the necessary circuitry for connecting server 721 to the communication network, and is constructed for use with various communication protocols such as the TCP/IP protocol. Typically, the network interface unit is a card contained within server 721.

Server 721 also can include a central processing unit, a video display adapter, and a mass memory, all connected via a bus. The mass memory generally includes random access memory ("RAM"), read-only memory ("ROM"), and one or more permanent mass storage devices, e.g., a hard disk drive, a tape drive, an optical drive, and/or a floppy disk drive. The mass memory stores an operating system that controls the operation of server 721. A basic input/output system ("BIOS") is also provided for controlling the low-level operation of server 721. The hard disk drive is utilized by server 721 to store, among other things, application programs, databases, and program data. Among the programs and databases stored in server 721 is the algorithm, base rules, classifications, and advertisement performance criteria metrics discussed above for embodiments of the invention. The programs can be stored in memory such as RAM 716, ROM 732, or on CR-ROM 726. The databases can be stored on disk drive 728, in database 790, or in another data store as is known in the art.
The mass memory may include volatile and nonvolatile, removable and non-removable media, which can implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data. Examples of computer storage media include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.

The mass memory may also store program code and data for providing a web site. More specifically, the mass memory may store applications, including but not limited to: a WWW server application, email server application, and programs. WWW server application includes computer executable instructions which, when executed by server 721, generate browser displays, including performing the logic described above. Server 721 may include a JAVA virtual machine, an SMTP handler application for transmitting and receiving email, an HTTP handler application for receiving and handing HTTP requests, and an HTTPS handler application for handling secure connections. The HTTPS handler application may also be used for communication with an external security application to send and receive sensitive information, such as email, in a secure fashion.

Server 721 also comprises an input/output interface for communicating with external devices, such as a mouse, keyboard, scanner, or other input devices not shown in Figure 7. The server also supports text-to-voice conversion, voice-to-text conversion, or both, for communicating with a wide variety of client machines and permitting requests to the system and outputs of scores and ratings and other information from the system to be conveyed aurally and free of the need for a visual interface.
Data may be stored in a data store, such as, for example, database 730, to which server 721 has access. Access to database 730 can also be made available to client computer 710, or any computer connected to the communication network. Database 730 can be a one or a combination of any of the mass storage technologies discussed above, as is known by a person of skill in the art.

Those of ordinary skill in the art will appreciate that client computer may include many more components than those described above. However, it is not necessary that those generally-conventional components be shown in order to disclose an illustrative environment for practicing embodiments of the present invention.

Client computer includes a central processing unit (CPU), a video display adapter, and memory. The memory generally includes RAM, ROM, and a permanent mass storage device, such as a disk drive. The memory stores an operating system, a BIOS, and programs for controlling the operation of the client computer. The memory can also be loaded with client software specific to practicing embodiments of the present invention. It will be appreciated that these components may be stored on a computer-readable medium and loaded into memory of client computer 210 using a drive mechanism associated with the computer-readable medium, such as a floppy disk drive, an optical drive, such as a CD-ROM/DVD-ROM drive, and/or a hard disk drive. An input/output interface can also be provided for receiving input from a mouse, keyboard, or other input device. The memory, network interface unit, video display adapter, and input/output interface are all connected to the processing unit via a bus. Other peripherals may also be connected to the processing unit in a similar manner. For example, the interface may also be provided at a terminal, for displaying accessed data, computed scores, and so on.

It should be understood that the client machine could be embodied as any one of a great variety of electronic devices ranging from general purpose computing machines such as
workstations, desktop, laptop and notebook computers, thin clients, and terminals to less
general devices such as personal digital assistants (PDAs) or smart phones, to a special
purpose devices such as DVB-H enabled mobile devices. Regardless of the physical form of
the client computer, it includes a local memory, a processor, and input/output capabilities to
permit interaction with a user.

Figure 8 is an exemplary GUI user interface that a publisher can use to create a new
tag on an OPO Network. The GUI accepts a name for the new tag, the tag size, and assign
the tag to a group for organization.

Figure 9 is an exemplary GUI user interface that a publisher can use to set their price
for a new tag on an OPO Network. This GUI is used in conjunction with one embodiment of
an OPO Network for establishing the minimum CPM or eCPM price for ads within a
performance group. In this instance, the publisher sets the minimum price himself,
empowering him to manage his own economics.

Figures 10 and 11 are exemplary GUI user interfaces that a publisher can use to
register their passback tag on an OPO Network. In this example the passback tags are called
Alternate Tags. The publisher may specify the third-party network where that alternate tag
runs, and they may also specify the full content of the tag without selecting a third-party
network name.

Figure 12 is an exemplary GUI user interface that a publisher can use to retrieve the
ad tag from an OPO Network that the publisher would need to post onto their web site in
order to enable the OPO Network functionality in accordance with one embodiment of the
invention.

Figure 13 is an exemplary GUI user interface that a publisher on an OPO Network
can use to setup additional business rules for the network to apply to traffic from the
publisher's site or sites. This GUI presents competitive blocking rules that enable the publisher to block ads from competitive organizations.

Figure 14 is an exemplary GUI user interface that a publisher can use to view and manage the performance of their ad tags across different performance groups.

Figure 15 is an exemplary GUI user interface that a publisher can use to view and manage an advertiser and publisher referrals system in place on an OPO Network. In this further embodiment of the invention, each publisher and advertiser on the network is able to earn referral commissions or credits on the network when they refer new publishers or advertisers who sign up on the network. This GUI provides the publisher with a list of other publishers on the same network that were referred by that publisher.

Thus, while there have been shown, described, and pointed out fundamental novel features of the invention as applied to several embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the illustrated embodiments, and in their operation, may be made by those skilled in the art. Substitutions of elements from one embodiment to another are also fully intended and contemplated. The invention is defined solely with regard to the claims appended hereto, and equivalents of the recitations therein.
CLAIMS

1. An internet-based system for pricing advertisements ("ads") provided by advertisers to be displayed on pages of internet properties operated by publishers, the system comprising:

 a classification system, including a server interconnected with at least one data store, the server having a processor operated by stored executable instructions, the data store containing ad classification criteria, and the executable instructions instructing the processor to access the ad classification criteria in order to classify internet ad traffic into performance groups, wherein each performance group is associated with a minimum effective cost per thousand impressions (eCPM) amount;

 an advertisement inventory associated with a rule base having rules operable to associate each of a plurality of ads in the inventory with at least one of the performance groups and further operable to associate each one of the ads with a minimum price and an expected ad performance measure set for the performance group, and with a price incremental step and a maximum price set by an associated one of the advertisers providing the ad, the price incremental step having a value less than the difference between the minimum price and the maximum price;

 an ad server in communication over the internet with a computer having a display screen, the ad server configured to receive an ad request transmitted by the computer over the internet requesting delivery of an ad to a page of one of the internet properties displayed on the display screen of the computer, wherein the ad server executes operating instructions programmed to consult the classification system to determine a performance group corresponding to parameters of the ad request, apply the rules in the rule base to ads in the advertisement inventory associated with the performance group, select one of the ads in the advertisement inventory in response to the ad request, deliver the one ad over the internet for display on the internet property page, and receive notice of a performance event
for the delivered ad from the computer over the internet;

 a historical statistics repository which includes historical performance data for the ads in the inventory, the historical performance data including data provided by the ad server about the ad request, the performance group, the delivered ad and the performance event; and

 a pricing and optimization engine configured to apply the historical performance data to establish a current ad performance measure for the ad in the one performance group, compare the current performance measure to the expected ad performance measure for the one performance group, determine that the current performance measure is less than the expected performance measure, and establish a new price between the minimum price and the maximum price for the ad, the new price differing from a current price by an amount equal to the price incremental step;

 wherein the pricing and optimization engine applies the current performance measure and the new price to compute an expected eCPM for the ad, and disassociates the ad from the performance group when a new price cannot be established that yields an expected eCPM at or above the minimum eCPM for the performance group.

2. The system according to claim 1, wherein the classification system is further configured to classify the ad request by referring to content of the page currently displayed on the display screen and content of a page previously displayed on the computer screen.

3. The system according to claim 1, wherein the new price is a lowest price within a range between the minimum possible price and the maximum price that yields an eCPM amount greater or equal to the minimum eCPM for the associated performance group.

4. The system according to claim 1, wherein the classification system
is further operable to classify the ad request according to at least one of an associated publisher, an internet domain name of the requested page, an ad media type specified by the publisher for the ad space, a contextual keyword or keywords on the requested page, the time of day when the request was made, the day of the week when the request was made, a geographical location of a present user of the at least one computer, or demographic data of the user of the computer.

5. The system according to claim 1, wherein the classification system is further configured to classify the internet ad traffic free of any information about a present user of the at least one computer and free of any information about a demographic group of the user.

6. The system according to claim 1, wherein the ad has less than a predefined number of historical impressions in the performance group,

 a new price cannot be established to yield an expected eCPM at or above the minimum eCPM for the performance group, and the pricing and optimization engine maintains the ad in the particular performance group.

7. The system according to claim 1, wherein the ad performance measure is a click-through rate (CTR).

8. The system according to claim 1, wherein the ad performance measure is a cost per action (CPA).

9. The system according to claim 1, wherein the minimum price is set by an Open Purchase Order ("OPO") network.

10. The system according to claim 1, wherein the minimum price is set by the publisher.
11. The system according to claim 1, wherein the ad server comprises an Open Purchase Order (OPO) as server, and
the OPO ad server is further operable to determine that no ads are available in the ad inventory that may be delivered in response to the request according to the rules in the rules base, and deliver a passback tag registered to the publisher to meet the request.

12. The system according to claim 11, wherein the publisher passback tag is identical to a tag that the publisher was previously running on its internet property, thereby enabling the publisher to generate revenue on the passed-back ad tag that is equivalent to revenue generated with the tag that was previously running.

13. A method for delivering advertisements ("ads") provided by advertisers to web pages by an ad server over the internet, comprising the steps of:
 classifying the web pages by a classification system in communication with the ad server and at least one data store, the at least one data store containing ad classification criteria, and the server operable to access the ad classification criteria in order to classify internet ad traffic into performance groups, wherein each performance group is associated with a minimum effective cost per thousand impressions (eCPM) amount;
applying rules, populated in a rule base accessible to the ad server, to an inventory of ads to associate each of the ads in an advertisement inventory with at least one of the performance groups and a minimum price and an expected ad performance measure set for the performance group, and with a price incremental step and a maximum price set by an associated one of the advertisers, the price incremental step having a value less than the difference between the minimum price and the maximum price;
receiving at an ad server an ad request transmitted by a computer over the internet requesting delivery of an ad to a page of one of the internet properties displayed on a display screen of the computer;

determining a performance group corresponding to parameters of the ad request;

applying the rules in the rule base to ads in the advertisement inventory associated with the performance group to select one of the ads in the advertisement inventory in response to the ad request according to at least one factor;

delivering the one ad over the internet for display on the internet property page, and receiving notice of a performance event for the delivered ad from the computer over the internet; and

recording historical performance data for the ads in the inventory in a historical statistics repository, the historical performance data including data provided by the ad server about the ad request, the performance group, the delivered ad and the performance event;

wherein the pricing and optimization engine assigns the price of the one ad within a range defined by a minimum price and an expected ad performance set according to a classification of the one web page, and a price incremental step and a maximum price set by an advertiser providing the one ad, and dynamically adjusts a current price to set a new price as a function of the minimum price, a current ad performance measure of the one ad, and an expected ad performance measure for the performance group, wherein the new price differs from the current price by an amount equal to the price incremental step and the price incremental step has a value less than the difference between the minimum price and the maximum price; and

wherein the pricing and optimization engine disassociates the ad from the set of available ads when a new price cannot be established that yields an expected eCPM at or above the minimum eCPM for the performance group.
14. The method of claim 13, wherein the at least one factor is at least one of ad price, historical ad performance, and ad delivery volume targets.

15. The method of claim 13, wherein the ad performance measure is a click-through rate (CTR).

16. The method of claim 13, wherein the ad performance measure is a cost per action (CPA).
FIGURE 1

START

110 classify the page where the ad(s) is/are to be shown

120 apply rules populated in a rule base to an inventory of ads and a set of web pages in a network

130 assign prices to all available ads according to an algorithm which considers a set of prices corresponding to the page traffic classification and each available ad's historical performance

140 ranking the available ads according to a combination of factors such as ad price, historical performance, and delivery volume targets

END
FIGURE 2
(Prior Art)
Figure 7

Server

Central Processing Unit 712

RAM 716
Operating System 720
WWW Server 730
Email Server 731
Programs 734

CR-ROM DVD-ROM Drive 726

Input/Output Interface 724

Hard Disk Drive 728
Database 790

Video Display Adapter 714
Network Interface Unit 710

SUBSTITUTE SHEET (RULE 26)
Figure 8

If your ad will appear on a framed page, check this box. This will enable Connectiv to gather content from the appropriate frame and serve relevant ads.

Your ad tag code must be included in the same frame as your pages main content in order for us to display relevant ads.
ContextWeb will recommend a Tag Price CPM based on the data you provide. Enter the required data *P* as well as much additional information as you can to get the best price recommendation.

The price will be used unless indicated another price is selected. See below for details on how to generate recommendations.

[Diagram of the interface]
Define Alternate Tag Wizard | Single Screen | ? Help | Feedback

Define an Alternate Tag that will be served when ContextWeb does not have an advertiser match.

You may create up to ten alternate tags. Use the fields below to add your tags, indicating the ad tag name, alternate network, creative size, and if you enter more than one alternate tag, the percentage for which you wish each alternate tag to be used. The percentage must add up to 100%. Then paste your code into the area provided.

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Alternate Tag 1</th>
<th>Target Size</th>
<th>Ad Network</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>728 x 90</td>
<td>Dart</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Falck</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate Network</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Advertising.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Burst Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Casale Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Google Adsense</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tribal Fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ValueClick (FKA FaskClick)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yahoo! Publisher Network</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24/7 Real Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>other</td>
<td></td>
</tr>
</tbody>
</table>

Add another Alternate Tag Clear this tag

Skip this Step and Continue Next
Figure 11

Define Alternate Tag Wizard Single Screen Help Feedback

Define an Alternate Tag that will be served when ContextWeb does not have advertiser match.

You may create up to ten alternate tags. Use the fields below to add your tags, indicating the ad tag, tag name, alternate network, creative size, and if you enter more than one alternate tag, the percentage for which you wish each alternate tag to be used. The percentage must add up to 100%. Then paste your code into the area provided.

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Alternate Tag</th>
<th>Target Size 728 x 90 Leaderboard</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
<script language="Javascript1.1"> var contextweb_color_url="#66CCFF";
var contextweb_color_text="#000000";
var contextweb_color_border="#66CCFF";
var contextweb_color_bg="#FFFFFF";
</script>

</scrip>
```

Add another Alternate Tag Clear this tag

Previous Cancel Skip this Step and Continue Next
Figure 12

Below is the code for the ad tag for your web page. Click anywhere in the field below to select the code. Then copy the code to your clipboard, and paste it into any approved web page or web site where you wish the ad to appear.

```
<svg language="Javascript1.1">
  var contextweb_color_url="#66CCFF",
  var contextweb_color_text="#000000",
  var contextweb_color_border="#000000",
  var contextweb_color_bg="#000000",
</svg>

```

Please cut and paste the JavaScript tag above to your website. Typical implementations are (see examples):

1. For a proprietary ad server: paste the code above into your adserver as a Rich/HTML and/or JavaScript ad.
2. For web pages: paste the above code into your HTML where you would like the ad to be shown.
Figure 13

Competitive Ad Filters

Define Competitive Ad Filters

Competitive ad filters will enable you to block competitors' ads from displaying on your web pages. These filters may be defined by URL or by keyword. In the fields below, list the URLs and/or keywords for those sites you wish to filter from your pages. Please read our policy regarding filter limitations. After your ads have been activated, you may return to this page to see a list of competitive graphical ads that you may filter.

Examples:
- example.com
- sports.example.com
- block all ads across all subdomains
- block only ads across the 'sports' subdomain
- sports.example.com/widgets
- sports.example.com/index.html
- block all ads below a specific directory
- block all ads for a specific page

Competitive Ad URLs (limit to 250)
Put each URL on a separate line. Do not include the 'www'.

Competitive Ad Keywords (limit to 250)
Put each keyword on a separate line.

Competitive Graphical Ads
Below are competitive graphical ads based on the criteria you have provided. You may block these ads by checking the corresponding check box.

[Check boxes for blocking ads]
Figure 15