

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 November 2007 (15.11.2007)

PCT

(10) International Publication Number
WO 2007/131210 A2

(51) International Patent Classification:
G01N 33/53 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2007/068304

(22) International Filing Date: 4 May 2007 (04.05.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/746,611 5 May 2006 (05.05.2006) US
60/747,903 22 May 2006 (22.05.2006) US

(71) Applicant (for all designated States except US): OPEXA THERAPEUTICS [US/US]; 2635 N. Crescent Ridge Dr., The Woodlands, TX 77381 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILLIAMS, Jim, C. [US/US]; 2635 N. Crescent Ridge Dr., The Woodlands, TX 77381 (US). MONTGOMERY, Mitzi, M. [US/US]; 2635 N. Crescent Ridge Dr., The Woodlands, TX 77381 (US). NEWSOM, Brian, S. [US/US]; 2635 N. Crescent Ridge Dr., The Woodlands, TX 77381 (US).

(74) Agent: SCOTT, Teddy, C.; Polsinelli Shalton Flanigan Suelthaus PC, Ip Docketing, Plaza Steppes Bldg., 700 W. 47th Street, Suite 1000, Kansas City, MO 64112 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

- without international search report and to be republished upon receipt of that report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2007/131210 A2

(54) Title: T-CELL VACCINE

(57) Abstract: An improved T-cell vaccine and methods of making the vaccine are described. The vaccine may be made by stimulating T-cells with all epitopes of an antigenic polypeptide that may be capable of stimulating autoreactive T cells.

T-CELL VACCINE

FIELD OF THE INVENTION

[0001] The present invention relates to T-cell vaccines and methods of preparing these vaccines. The T-cell vaccines may be used to treat autoimmune diseases, such as multiple sclerosis.

BACKGROUND OF THE INVENTION

[0002] Multiple sclerosis (MS) is an inflammatory disease characterized by the destruction of myelin in the central nervous system (CNS). Growing evidence implicates autoimmune T cell responses to myelin antigens such as myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and myelin proteolipid protein (PLP) in the pathogenesis of the disease (Stinissen *et al.*, *Crit. Rev. Immunol.* 1997; 17:33-75). Activation and clonal expansion of myelin-reactive T cells, followed by their entry into the CNS through the blood brain barrier, results in injury to the myelin membrane. MBP-reactive T cells are found to undergo *in vivo* activation and occur at high precursor frequency in the blood and cerebrospinal fluid of patients with MS (Zhang *et al.*, *J. Exp. Med.*, 1994; 179:973-984; Chou *et al.*, *J. Neuroimmunol.*, 1992; 38:105-114; Allegretta *et al.*, *Science*, 1990; 247:718-721). Recent strategies for combating the disease have focused on diminishing the number of activated myelin-reactive T cells by a procedure termed T cell vaccination. Repeated inoculations with MBP-reactive T cells that have been inactivated by chemical treatment or irradiation has been demonstrated to prevent or cure experimental autoimmune encephalomyelitis (EAE), an animal model for MS (Ben-Nun *et al.*, *Eur. J. Immunol.*, 1981; 11:195-204).

[0003] T cell vaccination has been advanced to clinical trials in patients with MS. In a pilot clinical trial, three subcutaneous inoculations with irradiated MBP-reactive T cells induced T cell responses that reduced the number of circulating MBP-reactive T cells to undetectable levels in a number of subjects (Zhang *et al.*, *Science*, 1993; 261:1451-1454, Medear *et al.*, *Lancet* 1995; 346:807-808). Consequently, patients who were administered the vaccine demonstrated clinical improvement evidenced as a reduction in rate of relapse and MRI lesion activity. The safety profile and technological feasibility of the pilot clinical trial were excellent. Patients had improvements in subjective physical and psychological parameters, and the Kurtzke Expanded Disability Status Scale (EDSS), which is an objective measure of a patient's physical disability.

[0004] The initial T cell vaccination strategy used full length MBP to identify autoreactive epitopes. Vaccination with inactivated autoreactive T cells produced using this method was initially believed to be sufficient to treat MS. However, subsequent studies revealed that some time after vaccination, myelin antigen-reactive T cells reappeared. (Zhang *et al.*). These myelin antigen-reactive T cells frequently exhibited a different reactivity profile than those initially identified, a process termed epitope-shifting. The epitopes recognized by the reappearing T cells were often cryptic epitopes, not accessible to the immune system in the full-length polypeptide and represented a shift in immunodominance.

[0005] Subsequent T cell vaccination strategies have relied on the use of immunodominant myelin antigen epitopes to identify autoreactive T cells of a given MS patient. The structural features of TCR-MHC class II and/or I -peptide interactions drive the T cell response directed towards prominent epitopes. While the molecular basis for immunodominance is related to peptide affinity to MHC, T cells recognize a complex of antigenic fragments associated with MHC on antigen-presenting cells (APC). Immunodominance is considered to be a higher relative number (or frequency) of antigen-specific T cells that reach a threshold activation (e.g., stimulation index) response for a particular antigen. Immunodominance is variably used to describe either the most frequently detectable response among tested individuals or the strongest response within a single individual, yet factors determining either inter- or intra-individual immunodominance are still poorly understood.

[0006] Immunodominance is a central feature of T-cell responses to antigens. Of the many peptides present in complex antigens, responses to peptides can be ordered based on the numbers and/or activity of responding T cells into a relatively stable hierarchy. Despite its importance to understanding immune responses and designing vaccines, immunodominance is poorly understood at the mechanistic level. Immunodominance is not simply explained by the numbers of peptide complexes generated by antigen-presenting cells (APCs), the affinities of peptides for class I or class II molecules, or the affinities of T-cell receptors for peptide-class I or class II complexes, though each of these parameters contributes to the phenomenon.

[0007] Using immunodominant epitopes in production of a T-cell vaccine was based on the recognition that although T cell responses to myelin antigens are heterogeneous in the epitope recognition among different individuals, certain regions of myelin antigens, such as residues 83-99 and 151-170 of MBP, are preferentially recognized in some patients with MS. (Ota *et al.*,

Nature, 1990; 346:183-187). Autologous T cells reactive to the immunodominant peptides were expanded and inactivated, then injected into the patient from which they were isolated. Although this strategy led to a decrease in rates of disease progression, the disease course of the patients continues to progress. Thus, there exists a need for improved T-cell vaccines.

SUMMARY OF THE INVENTION

[0008] A method of identifying an epitope within a polypeptide antigen for an autoreactive T-cell is provided. A sample comprising T cells isolated from a host may be provided. One or more different peptides may be added to a plurality of portions of the sample. The sequences of the peptides may collectively comprise a portion of the sequence of the polypeptide antigen. A portion of the sample comprising activated autoreactive T cells may be identified. A peptide that activates the autoreactive T cells may comprise the epitope.

[0009] The sequences of the peptides may collectively comprise the complete sequence of the polypeptide antigen. The polypeptide antigen may be MBP, PLP, MOG or a combination thereof. The different peptides may comprise overlapping sequence of 8-12 or 4-19 amino acids. The different peptides may comprise about 12-16 or 8-20 amino acids. The number of stimulated autoreactive T cells may be increased by at least a factor of about 2 to 4 compared to a control.

[0010] A method of preparing a T cell vaccine is also provided. A sample comprising T cells isolated from a patient may be provided. The T cells may be contacted with one or more different peptides, which may activate autoreactive T cells. The activated autoreactive T cells may be expanded. The autoreactive T cells may then be attenuated. The different peptides may comprise all epitopes of an antigenic polypeptide capable of stimulating autoreactive T-cells with a stimulation index above a predetermined value. The antigenic polypeptide may be MBP, PLP, MOG or a combination thereof.

[0011] A method of detecting epitope shift in a T cell mediated disease is also provided. The epitopes of an autoreactive antigen may be identified, as described above. The epitopes may be compared to a control. Epitope shift may have occurred if the epitopes are different. Detecting epitope shift may be used to diagnose epitope shift in a subject. Detecting epitope shift may also be used to monitor epitope shift in a subject by comparing epitopes to epitopes at a previous time.

[0012] A T cell vaccine is also provided. The vaccine may comprise T cells that are specific to an antigenic polypeptide. The vaccine may comprise T cells that recognize each epitope of the antigenic polypeptide capable of producing a stimulation index above a predetermined value. The antigenic polypeptide may be MBP, PLP, MOG or a combination thereof. The vaccine may comprise less than 50% T cells that recognize the epitopes of the antigenic polypeptide capable of producing a stimulation index of less than a predetermined value. The T cells may comprise cell markers including, but not limited to, CD3, CD4, CD8, CD25, TCR $\alpha\beta$, TCR $\gamma\delta$, HSP60 (heat-shock protein 60) or a combination thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Figure 1 shows EAA analysis of reactivity of one patient's T cells to MOG peptide mixes.

[0014] Figure 2 shows the frequencies of reactivity to MBP peptide mixes among T cells from 48 subjects.

[0015] Figure 3 shows the frequencies of reactivity to PLP peptide mixes among T cells from 48 subjects.

[0016] Figure 4 shows the frequencies of reactivity to MOG peptide mixes among T cells from 48 subjects.

[0017] Figure 5 shows the ProPred binding predictions within MOG protein for the 3 HLA alleles of the patient. The red amino acid residues represent predicted anchor residues for binding within the HLA groove, while the yellow residues represent the other residues that would fit within the groove.

[0018] Figure 6 shows EAA analysis of reactivity of one patient's T cells to MBP peptide mixes.

[0019] Figure 7 shows the percentage expression of TCR V beta chains at baseline and after 18 days of stimulation with MBPm10 peptides using T cells from one patient.

[0020] Figure 8 shows EAA analysis of reactivity of one patient's T cells to myelin peptide mixes.

[0021] Figure 9, shows growth of T cells that exhibited strong reactivity to two myelin peptides by EAA analysis as shown in Figure 8.

[0022] Figure 10 shows TCR V beta focusing that occurred in one patient's T cell line as the culture progressed from Day 9 to Day 16 while being stimulated by the peptide mix PLPm27.

[0023] Figure 11 shows some of the myelin-reactive T cell frequency data from a patient that had undergone a first retreatment series of three myelin-reactive T cell vaccines.

[0024] Figure 12 shows the reactivity of a patient's Week 24 T cells to peptides spanning full length MBP. Boxes around bars indicate the peptides that contain the two immunodominant MBP sequences previously used in the T cell frequency analysis (TCFA).

[0025] Figure 13 shows the reactivity of a patients Week 24 T cells to peptides spanning full length PLP. Boxes around bars indicate the peptides that contain the two immunodominant PLP sequence previously used in the TCFA.

[0026] Figure 14 shows the reactivity of a patients Week 24 T cells to peptides spanning full length MOG. Boxes around bars indicate the peptides that contain the two immunodominant MOG sequences previously used in the TCFA.

[0027] Figure 15 shows the reactivity pattern to MBP peptides in eight patients. The horizontal red line shows the SI cut-off of 3. Boxes around bars indicate the immunodominant peptides that were previously used.

[0028] Figure 16 shows the reactivity pattern to PLP peptides in eight patients. The horizontal red line shows the SI cut-off of 3. Boxes around bars indicate the immunodominant peptides that were previously used.

[0029] Figure 17 shows the reactivity pattern to MOG peptides in eight patients. The horizontal red line shows the SI cut-off of 3. Boxes around bars indicate the immunodominant peptides that were previously used.

[0030] Figure 18 shows the mean SIs against MBP for samples from a total of 15 MS patients tested using the EAA. Boxes around bars indicate immunodominant peptides.

[0031] Figure 19 shows that mean SIs against PLP for samples from a total of 15 MS patients tested using the EAA. Boxes around bars indicate immunodominant peptides.

[0032] Figure 20 shows that mean SIs against MOG for samples from a total of 15 MS patients tested using the EAA. Boxes around bars indicate immunodominant peptides.

[0033] Figure 21 shows the frequency of reactivity to MBP peptides among 54 subjects. The subjects were healthy ("Norm"), had only blood drawn ("MD"), were enrolled in a repeat vaccination study ("Ext"), or were enrolled in a dose escalation study ("DES"). Boxes around bars indicate locations of the immunodominant peptides used in producing the vaccine of Example 1.

[0034] Figure 22 shows the frequency of reactivity to PLP peptides among 54 subjects. The subjects were healthy (“Norm”), had only blood drawn (“MD”), were enrolled in a repeat vaccination study (“Ext”), or were enrolled in a dose escalation study (“DES”). Boxes around bars indicate locations of the immunodominant peptides used in producing the vaccine of Example 1.

[0035] Figure 23 shows the frequency of reactivity to MBP peptides among 54 subjects. The subjects were healthy (“Norm”), had only blood drawn (“MD”), were enrolled in a repeat vaccination study (“Ext”), or were enrolled in a dose escalation study (“DES”). Boxes around bars indicate locations of the immunodominant peptides used in producing the vaccine of Example 1.

[0036] Figure 24 shows growth curves of five myelin-reactive T cells that had exhibited a stimulation index of less than 2.0. The T cells were isolated from two patients.

[0037] Figures 25A-H show a map of 429 assay (unique assays in rows and peptides in columns). Assays for each patient are listed in order of date performed. Positive peptide mixes are shown in grey.

[0038] Figure 26 shows a map of 65 assay (unique assays in rows and peptides in columns). Assays for each patient are listed in order of date performed. Positive peptide mixes are shown in grey.

[0039] Figure 27 shows epitope shift over time in four subjects.

DETAILED DESCRIPTION

[0040] A T cell vaccine is provided comprising T cells specific for epitopes of an antigenic polypeptide. Also provided are methods of identifying such epitopes and methods of preparing such a vaccine. The vaccine may be a personalized vaccine. Other aspects will become apparent to the skilled artisan by the following description.

1. Definitions.

[0041] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise.

[0042] "Peptide" or "polypeptide" may mean a linked sequence of amino acids and may be natural, synthetic, or a modification or combination of natural and synthetic amino acids.

[0043] "Treatment" or "treating," when referring to protection of an animal from a disease, may mean preventing, suppressing, repressing, or completely eliminating the disease. Preventing the disease involves administering a composition of the present invention to an animal prior to onset of the disease. Suppressing the disease involves administering a composition of the present invention to an animal after induction of the disease but before its clinical appearance.

Repressing the disease involves administering a composition of the present invention to an animal after clinical appearance of the disease.

a. substantially identical

[0044] "Substantially identical" used herein may mean that a first and second sequence are at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more amino acids.

2. T-Cell Immune Response

[0045] In order to initiate a specific immune response to a myelin-reactive T-cell (MRTC), the immune system must be able to identify the autoreactive T cells involved in pathogenesis and isolate particular protein products that will hone the efforts of host defense. Implicit to this model of counteraction is the processing of an immunogenic peptide epitope and its presentation on the surface of antigen-presenting cells. The result of these actions is the induction of a T-cell response that recruits and engages the other molecular participants of the immune response. At the core of this immune system element is the Major Histocompatibility Complex (MHC).

Located on human chromosome 6, the MHC is a highly polymorphic set of genes that encode for molecules essential to self / non-self discrimination and antigen processing and presentation. The power of this multigenic complex lies in its polymorphism, which enables different allelic class I and class II products to bind an almost infinite array of peptides. The nature of the MHC suggests the now fundamental concept of self-MHC restriction. CD4+ T cells are activated only by antigen presenting cells that share class II MHC alleles with them; that is, antigen recognition by CD4+ helper T (Th) cells is class II MHC restricted. Antigen recognition by CD8+ cytotoxic T (Tc) cells, on the other hand, is class I MHC restricted.

[0046] A central dogma of the T cell immune response is the presentation of the peptide by the human leukocyte antigen (HLA, also known as the MHC). HLA molecules are present on the surface of antigen presenting cells (APC). These HLA molecules (of which there are 100's of different alleles) make up the HLA phenotype of a patient. A peptide to be presented to a T-cell must bind specifically within the MHC I or II groove created by the HLA molecule.

[0047] As discussed above, T-cell vaccines produced using full-length antigenic proteins were unsuccessful. Full length antigens are dependent upon processing by the APC in order for the proper peptide to be presented by the HLA. Incomplete processing decreases the ability of the HLA to present disease-relevant epitopes.

[0048] The initial attempt to overcome the problem of processing the full-length antigen was to instead produce the vaccine using peptides. In order to determine which peptides were the appropriate stimulatory antigen, screens were performed of MS patients to identify immunodominant epitopes. These immunodominant epitopes cover in reality a still minor portion of the entire reactivity among individuals with MS. Provided herein is a method to detect the truly individually specific immunoreactive (disease-relevant) peptides within each individual. The method can also be used to trace these idiosyncratic cells. The method may also be used to detect new pathogenic idiosyncrasies as they arise and monitor for persistence of the suppression of others.

[0049] Even though there may be additional disease-relevant peptides for a given patient, the use of immunodominant epitopes was considered to be sufficient because vaccination of a patient with such a vaccine would lead to an anti-idiosyncratic and anti-ergotypic immune response. The anti-idiosyncratic response was believed to be directed to the specific population of T-cells in the vaccine, whereas the anti-ergotypic response was believed to be directed to all activated T-cell populations.

[0050] Using the same set of peptides for every patient does not give any consideration to the individual's HLA phenotype and therefore peptide binding to their APCs is not optimized. The use of only immunodominant peptides frequently results in poorly growing cultures as the T cells are not optimally stimulated by such peptides. For HLA alleles that are known, the production of a T-cell vaccine using peptides that are capable of binding to the patient's HLA generally leads to the production of a robust vaccine. For those unknown HLA alleles, however, the peptides that bind cannot be predicted and therefore must be used in a scanning assay to produce a robust

response. Moreover, even for known alleles, the prediction model is not 100% accurate. Therefore, the EAA approach described herein may also limit the effect of epitope spread to additional peptides on the myelin proteins. The T cell vaccine provided herein may be individualized for any given patient based on the variability and promiscuity of autoreactive T cell receptors among patients.

3. Epitope Screening Analysis (EAA)

[0051] A method of identifying an epitope of an autoreactive polypeptide is provided. A sample comprising T cells isolated from a host is provided. For example, peripheral blood mononuclear cells (PBMCs) or mononuclear cells from the cerebrospinal fluid (CSFMCs) may be collected from a host. The sample may then be divided into a plurality of portions, each of which may be incubated in the presence of one or more different peptides or a control. The sequences of the peptides may collectively comprise a portion of the sequence of the polypeptide antigen, which may be the complete polypeptide. Finally, a portion of the sample may be identified comprising stimulated autoreactive T cells. The portion of the sample comprising stimulated autoreactive T cells may be identified by reference to a stimulation index (SI).

[0052] The EAA may result in growth of both CD4 (MHC II) and CD8 (MHC I). Originally, Th1 CD4 class II cells were thought to be the only pathogenic cells in MS; however, it has become evident that CTL CD8 class I cells are also strongly associated with MS. Some have described that MHC II loci are the predominant genetic link and others have shown that in the background of the MHC II loci there is a strong association with certain MHC I loci for MS and more severe forms of MS. Previous predictive methodologies do not identify the peptides across both MHC II and I. The EAA identifies these peptides without the need to know the MHC II and I relationships. Furthermore, the EAA may use a peptide of sufficient length to tailor the vaccine for the patient. APCs may process a peptide to yield a 10 to 11 amino acid peptide that is presented by the Class II MHC. Peptides may undergo partial proteolysis that yields a sequence that may be bound to Class I MHC, which may be about 9 amino acids in length. As a result, CD4 and CD8 T-cells may grow out by using a suitable peptide if indeed MHC I and MHC II are associated with MS in a particular patient.

a. Peptides

[0053] Peptides comprising a portion of any autoreactive polypeptide may be used in the screening method. The peptides may comprise a portion of MS-associated autoreactive

polypeptides such as MBP (NCBI accession number P02686, or a polypeptide substantially identical thereto), MOG (NCBI accession number CAA52617, or a polypeptide substantially identical thereto), PLP (NCBI accession number AAA60350, or a polypeptide substantially identical thereto), or a combination thereof. The sequences of the peptides may collectively comprise the complete sequence of the polypeptide antigen. The different peptides may comprise overlapping sequence of about 4 to about 19 amino acids or about 8 to about 12 amino acids. The peptides may also comprise from about 8 to about 20 amino acids or about 12 to about 16 amino acids.

b. Stimulation Index (SI)

[0054] The SI may be calculated by comparing [³H] thymidine incorporation of the sample in the presence of a peptide comprising a portion of an MRTC polypeptide target to that in the presence of a media only control. Briefly, separate aliquots of the sample are plated and incubated in the presence of either a peptide comprising a portion of the polypeptide or a media only control in order to stimulate reactive T cells. The cultures are pulsed with [³H] thymidine during the last 6-18 hours of incubation. The SI is calculated as the quotient of the mean counts per minute (cpm) of the antigen aliquots / mean cpm of the control aliquots. The SI of autoreactive T cells may be increased by at least a factor of 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4.0 compared to a control.

(1) Predetermined Value

[0055] The SI may have a predetermined value, which may be 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, or 4.0.

[0056] The predetermined value may also be calculated using a Variance Evaluation Method as follows:

1. EAAs may be run on a given patient population (minimum of 120 assays from 120 unique subjects)
2. A “negative population” may be created by averaging all SI values < 2.5
3. The Standard Deviation (SD) may be calculated for each peptide
4. The following for each peptide may be then be calculated:
 - a. Average + 1SD
 - b. Average + 2SD
 - c. Average + 3SD

5. The following SIs may be considered above the predetermined value:
 - a. SI greater than or equal to the average + 3SD
 - b. Any SI greater than or equal to 2.5

[0057] The SI may also be calculated by testing each well instead of averaging wells performed in triplicate. In this case, any single well meeting the above criteria may deem the assay above the predetermined value.

[0058] The predetermined value may also be evaluated using a Counts per Minute (CPM) Variance Method. This algorithm may set a comprehensive cutoff for all peptides within a given assay. It may be calculated as follows:

1. EAAs may be run and the CPM for all control (media only, no antigen) wells averaged.
2. The SD for CPM of the control wells may then be calculated.
3. The following may then be calculated for the control wells:
 - a. Average + 1SD
 - b. Average + 2SD
 - c. Average + 3SD
4. Any peptide with an average CPM greater than or equal to the average + 3SD of the control wells may be considered above the predetermined value.

[0059] Each well may also be evaluated instead of averaging wells performed in triplicate. In this case, any single well meeting the above criteria may deem the assay above the predetermined value.

[0060] Any peptide, either analyzed in an individual well or as averaged over wells run in triplicate, with an $SI \geq 2.5$, an $SI \geq$ average +3SD by the Variance Evaluation Method, or an $SI \geq$ average +3SD by the CPM variance method may be considered above the predetermined value, which may indicate a T cell(s) positive for reactivity to a peptide.

4. Method of Making a T Cell Vaccine

[0061] A method of preparing a T cell vaccine is provided. A sample comprising T cells isolated from a patient may be provided. A peptide comprising an epitope identified by the screening method may then be added. Autoreactive T cells may then be isolated. The T cells may then be attenuated.

a. Stimulation

[0062] Autologous T cells identified as having an S.I. above a predetermined value for a peptide comprising an epitope identified by the screening method may be subjected to recurrent stimulation cycles with the corresponding peptide, optionally and IL-2, in the presence of APCs such as irradiated autologous PBMCs. Irradiation may be at 3500 or 2500-6000 rads. Stimulation cycles may be carried out for 7-14 days. The stimulation cycles may also be carried out for 7-10 days. The T cells may be propagated in stimulation cycles until the total cell number reaches a therapeutic level. The T-cell lines may be cryopreserved at this point.

[0063] The T-cells may be activated by non-specific stimulation to induce the upregulation of ergotopes. The resulting activated T cells may then be attenuated. The T cells may be attenuated by any method which makes the T cells replication incompetent yet viable. For example, the T cells may be attenuated by irradiation such as gamma irradiation or by chemical inactivation.

b. Activation

[0064] Autoreactive T cells may be activated during growth cycles of stimulation prior to attenuation. Activation of T cells during growth cycles prior to attenuation may induce a general up regulation of ergotopes expressed on the surface of activated but not resting T cells (Irun R. Cohen, Francisco J. Quintana, and Avishai Mimran. Tregs in T cell vaccination: exploring the regulation of regulation. JCI Volume 114 (9) 1227-1232, 2004). Thus, when autoreactive T cells are grown as activated T cells prior to attenuation both anti-ergotypic and anti-idiotypic T cell responses may be expected following vaccination. (Cohen et al., JCI Volume 114 (9): 1227-1232, 2004). Autoreactive T cells may be activated by exposure to mitogens (such as phytohemagglutinin (PHA)) or interleukin-2 in the presence of PHA or through ligation of the TCR/CD3 complex (Kobayashi et al., J. Exp. Med. 170:827). One of the primary mechanisms through which T cell activation may confer responsiveness to IL-2 is through the up-regulation of the receptor subunits (ergotopes) for these cytokines (Chua et al., J. Immunol. 153:128, 1994; Desai et al., J. Immunol. 148:3125, 1992; Presky et al., Proc. Natl. Acad. Sci. USA 93:14002, 1997; and Wu et al., Eur. J. Immunol. 27:147, 1997).

c. APC

[0065] The APCs may be white blood cells. Representative examples of APCs include monocytes, dendritic cells and B cells.

d. T cells

[0066] The T cell vaccine may comprise T cells positive for cell markers CD3, CD4, CD8, CD25, TCR $\alpha\beta$, TCR $\gamma\delta$, HSP60 (heat-shock protein 60) or a combination thereof. The T cell vaccine may also comprise T cell membranes or fragments thereof.

e. Attenuation

[0067] The T cell vaccine may be attenuated. Attenuated may be by any method that makes the T cells replication incompetent yet viable. For example, the T cells may be attenuated by irradiation such as gamma irradiation or by chemical inactivation. The gamma irradiation may be 10,000 or 7,000-12,000 rads.

5. T Cell Vaccines

[0068] A T cell vaccine is also provided. The vaccine may be produced as described above. The vaccine may comprise T cells that are specific to an antigenic polypeptide characterized in that epitopes (optionally, all epitopes) of the antigenic polypeptide capable of producing a stimulation index above a predetermined value are recognized by autoreactive T cells present in the vaccine. The vaccine may comprise 60-90 million, 30-45 million, or 6-9 million T cells. The vaccine may also comprise less than 50% T cells that recognize the epitopes of the antigenic polypeptide capable of producing a stimulation index of less than the predetermined value. The vaccine may also comprise less than 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2% or 1% T cells that recognize the epitopes of the antigenic polypeptide capable of producing a stimulation index of less than predetermined value.

[0069] The T cell vaccine may comprise T cells that are specific to multiple antigenic polypeptides. For example, a T cell vaccine to be administered to a patient with MS may contain T cells specific to MBP, PLP and MOG.

6. Method of Detecting Epitope Shift

[0070] A method of detecting an epitope shift in a T cell mediated disease is provided. The method comprises identifying the epitopes of an autoreactive antigen using the screening method and comparing those epitopes to a control. If the epitopes are different, an epitope shift has been detected. Detecting an epitope shift may be used to diagnose an epitope shift or to monitor epitope shift.

[0071] By providing peptides comprising a portion of the sequence of a polypeptide antigen, the invention provides a method of identifying cryptic epitopes that are masked in the full length protein

[0072] The present invention has multiple aspects, illustrated by the following non-limiting examples.

Example 1

Immunodominant-Based Vaccines

[0073] In previous clinical trials, vaccine cell lines were produced by stimulating T cell cultures with two immunodominant peptides from MBP. In recent clinical trials, vaccine cell lines were produced by stimulating T-cells with a total of six immunodominant peptides (2 from MBP, 2 from PLP and 2 from MOG). For some patients, use of this limited set of peptides resulted in poorly growing cultures and several weeks to produce the vaccine. T cells were not being optimally stimulated because the peptides were not optimally matched to the HLA phenotype for every patient. In addition, the majority of the epitopes involved are not covered by using only suspected immunodominant epitopes and hence a truly individualized vaccine is not achieved. Epitopes that are not covered may be stimulating clonal expansion and pathogenesis *in vivo* and may be unchecked.

Example 2

Myelin Epitopes

[0074] In order to determine whether the choice of proper stimulatory peptides could be improved, additional peptide epitopes within MBP, PLP and MOG were prepared and tested in multiple sclerosis patients. To perform the analysis, a total of 163 different overlapping peptides (the synthesis of each peptide of 16 amino acids (16-mer) is offset by 4 amino acids with an overlap of 12 amino acids of the previous sequence) that covered the full length of MBP, PLP and MOG were synthesized. A total of 44 MBP, 67 PLP and 52 MOG peptide sequences were synthesized. The list of sequences, their identifiers and amino acid number and how they were combined for use in the EAA (Mix ID) is shown in Tables 1-3. The six immunodominant sequences used in Example 1 are bolded.

Table 1 MBP Sequences

Peptide Mix ID	Peptide Seq ID	Amino Acids	Sequence	SEQ ID NO
MBPm1	MBP 1	1 to 16	MASQKRPSQRHGSKYL	1
	MBP 2	5 to 20	KRPSQRHGSKYLATAS	2
MBPm2	MBP 3	9 to 24	QRHGSKYLATASTMDH	3
	MBP 4	13 to 28	SKYLATASTMDHARHG	4
MBPm3	MBP 5	17 to 32	ATASTMDHARHGFLPR	5
	MBP 6	21 to 36	TMDHARHGFLPRHRDT	6
MBPm4	MBP 7	25 to 40	ARHGFLPRHRDTGILD	7
	MBP 8	29 to 44	FLPRHRDTGILD SIGR	8
MBPm5	MBP 9	33 to 48	HRDTGILD SIGRFFGG	9
	MBP 10	37 to 52	GILD SIGRFFGGDRGA	10
MBPm6	MBP 11	41 to 56	SIGRFFGGDRGAPKRG	11
	MBP 12	45 to 60	FFGGDRGAPKRGSGKV	12
MBPm7	MBP 13	49 to 64	DRGAPKRGSGKVPWLK	13
	MBP 14	53 to 68	PKRGSGKVPWLKPGRS	14
MBPm8	MBP 15	57 to 72	SGKVPWLKPGRSPLPS	15
	MBP 16	61 to 76	PWLKPGRSPLPSHARS	16
MBPm9	MBP 17	65 to 80	PGRSPLPSHARSQPG	17
	MBP 18	69 to 84	PLPSHARSQPGLCNMY	18
MBPm10	MBP 19	73 to 88	HARSQPGLCNMYKDSH	19
	MBP 20	77 to 92	QPGLCNMYKDSHHPAR	20
MBPm11	MBP 21	81 to 96	CNMYKDSHHPARTAHY	21
	MBP 22	85 to 100	KDSHHPARTAHYGS LP	22
MBPm12	MBP 23	89 to 104	HPARTAHYGS LPQKSH	23
	MBP 24	93 to 108	TAHYGS LPQKSH GRTQ	24
MBPm13	MBP 25	97 to 112	GSLPQKSH GRTQDENP	25
	MBP 26	101 to 116	QKSH GRTQDENP VVHF	26
MBPm14	MBP 27	105 to 120	GRTQDENP VVHF KNI	27
	MBP 28	109 to 124	DENP VVHF KNI VTPR	28
MBPm15	MBP 29	113 to 128	VVHF KNI VTPR PPP	29
	MBP 30	117 to 132	FKNIVTPR PPP SQGK	30
MBPm16	MBP 31	121 to 136	VTPR PPP SQGGAEG	31
	MBP 32	125 to 140	TPPP SQGGAEG QRP G	32
MBPm17	MBP 33	129 to 144	SQGGAEG QRP GFGY G	33
	MBP 34	133 to 148	AEG QRP GFGY GG RAS	34
MBPm18	MBP 35	137 to 152	RPGFGY GG RAS DYK S	35
	MBP 36	141 to 156	GYGG RAS DYK SAHKG	36
MBPm19	MBP 37	145 to 160	RAS DYK SAHKG FKGV	37
	MBP 38	149 to 164	YKSAHKG FKGV DAQG	38
MBPm20	MBP 39	153 to 168	HKGF KGKV DAQG TLSK	39
	MBP 40	157 to 172	KGVDAQG TLSK IFLK L	40
MBPm21	MBP 41	161 to 176	AQG TLSK IFLKG GRD	41
	MBP 42	165 to 180	LSK IFLKG GRD SRSG	42
MBPm22	MBP 43	169 to 184	FKLGG RDS RSG SPMA	43
	MBP 44	173 to 185	GRDS RSG SPMA R	44

Table 2 PLP Sequences

Peptide Mix ID	Peptide Seq ID	Amino Acids	Sequence	SEQ ID NO
PLPm1	PLP 1	1 to 16	MGLLECCARCLVGAPF	45
	PLP 2	5 to 20	ECCARCLVGAPFASLV	46

PLPm2	PLP 3 PLP 4	9 to 24 13 to 28	RCLVGAPFASLVATGL GAPFASLVATGLCFFG	47 48
PLPm3	PLP 5 PLP 6	17 to 32 21 to 36	ASLVATGLCFFGVALF ATGLCFFGVALFCGCG	49 50
PLPm4	PLP 7 PLP 8	25 to 40 29 to 44	CFFGVALFCGCGHEAL VALFCGCGHEALTGTE	51 52
PLPm5	PLP 9 PLP 10	33 to 48 37 to 52	CGCGHEALTGTEKLI E HEALTGTEKLI E TYFS	53 54
PLPm6	PLP 11 PLP 12	41 to 56 45 to 60	TGTEKLI E TYFSKNYQ KLI E TYFSKNYQDYEY	55 56
PLPm7	PLP 13 PLP 14	49 to 64 53 to 68	TYFSKNYQDYEYLINV KNYQDYEYLINVIHAF	57 58
PLPm8	PLP 15 PLP 16	57 to 72 61 to 76	DYEYLINVIHAFQYVI LINVIHAFQYVIYGT	59 60
PLPm9	PLP 17 PLP 18	65 to 80 69 to 84	IHAFAQYVIYGTASFFF QYVIYGTASFFFYGA	61 62
PLPm10	PLP 19 PLP 20	73 to 88 77 to 92	YGTASFFFYGA L LA SFFFYGA L LAEGFY	63 64
PLPm11	PLP 21 PLP 22	81 to 96 85 to 100	LYGALLAEGFYTTGA LLAEGFYTTGAVRQI	65 66
PLPm12	PLP 23 PLP 24	89 to 104 93 to 108	EGFYTTGAVRQIFGDY TTGAVRQIFGDYKTTI	67 68
PLPm13	PLP 25 PLP 26	97 to 112 101 to 116	VRQIFGDYKTTICGKG FGDYKTTICGKG S AT	69 70
PLPm14	PLP 27 PLP 28	105 to 120 109 to 124	KTTICGKG S ATVTGG CGKG S ATVTGGQKGR	71 72
PLPm15	PLP 29 PLP 30	113 to 128 117 to 132	LSATVTGGQKGRGSRG VTGGQKGRGSRGQHQ	73 74
PLPm16	PLP 31 PLP 32	121 to 136 125 to 140	QKGRGSRGQHQAH S LE GSRGQHQAH S LERVCH	75 76
PLPm17	PLP 33 PLP 34	129 to 144 133 to 148	QHQAH S LERVCHCLGK HSLERVCHCLGKWLGH	77 78
PLPm18	PLP 35 PLP 36	137 to 152 141 to 156	RVCHCLGKWLGH P DKF CLGKWLGH P DKFVGIT	79 80
PLPm19	PLP 37 PLP 38	145 to 160 149 to 164	WLGH P DKFVGITYALT PDKFVGITYALT V WL	81 82
PLPm20	PLP 39 PLP 40	153 to 168 157 to 172	VGITYALT V WLLVFA YALT V WLLVFA C SAV	83 84
PLPm21	PLP 41 PLP 42	161 to 176 165 to 180	VWLLVFACSAVPVYI LVFACSAVPVYI F NT	85 86
PLPm22	PLP 43 PLP 44	169 to 184 173 to 188	CSAVPVYIYFNTW T TC PVYIYFNTW T TCQ S IA	87 88
PLPm23	PLP 45 PLP 46	177 to 192 181 to 196	YFNTW T TCQ S IAFPSK W T TCQ S IAFPSKTSAS	89 90
PLPm24	PLP 47 PLP 48	185 to 200 189 to 204	Q S IAFPSKTSASIGSL FPSKTSASIGSLCADA	91 92
PLPm25	PLP 49 PLP 50	193 to 208 197 to 212	TSASIGSLCADARMY G IGSLCADARMY G VL P W	93 94
PLPm26	PLP 51 PLP 52	201 to 216 205 to 220	CADARMY G VL P NA F PF RMY G VL P NA F PGKVC	95 96
PLPm27	PLP 53 PLP 54	209 to 224 213 to 228	VLPWNA F PGKVC G SNL NA F PGKVC G SNLLSIC	97 98
PLPm28	PLP 55 PLP 56	217 to 232 221 to 236	GKVC G SNLLSICKTAE GSNLLSICKTAEFQMT	99 100

PLPm29	PLP 57	225	to	240	LSICKTAEFQMTFHLF	101
	PLP 58	229	to	244	KTAEFQMTFHLFIAAF	102
PLPm30	PLP 59	233	to	248	FQMTFHLFIAAFVGAA	103
	PLP 60	237	to	252	FHLFIAAFVGAAATLV	104
PLPm31	PLP 61	241	to	256	IAAFVGAAATLVSLLT	105
	PLP 62	245	to	260	VGAAATLVSLLTFMIA	106
PLPm32	PLP 63	249	to	264	ATLVSLLTTFMIAATYN	107
	PLP 64	253	to	268	SLLTFMIAATYNFAVL	108
PLPm33	PLP 65	257	to	272	FMIAATYNFAVLKLMG	109
	PLP 66	261	to	276	ATYNFAVLKLMGRGK	110
PLP67	PLP 67	265	to	277	FAVLKLMGRGK	111

Table 3 MOG Sequences

Peptide Mix ID	Peptide Seq ID	Amino Acids		Sequence	SEQ ID NO
MOGm1	MOG 1	1	to	16	GQFRVIGPRHPIRALV
	MOG 2	5	to	20	VIGPRHPIRALVGDEV
MOGm2	MOG 3	9	to	24	RHPIRALVGDEVELPC
	MOG 4	13	to	28	RALVGDEVELPCRISP
MOGm3	MOG 5	17	to	32	GDEVELPCRISPAGKNA
	MOG 6	21	to	36	ELPCRISPAGKNAATGME
MOGm4	MOG 7	25	to	40	RISPGKNAATGMEVGWY
	MOG 8	29	to	44	GKNATBMEVGWYRPPF
MOGm5	MOG 9	33	to	48	TGMEVGWYRPPFSRVV
	MOG 10	37	to	52	VGWYRPPFSRVVHLYR
MOGm6	MOG 11	41	to	56	RPPFSRVVHLYRNGKD
	MOG 12	45	to	60	SRVVHLYRNGKDQDGD
MOGm7	MOG 13	49	to	64	HLYRNGKDQDGDQAPE
	MOG 14	53	to	68	NGKDQDGDQAPEYRGR
MOGm8	MOG 15	57	to	72	QDGDDQAPEYRGRTELL
	MOG 16	61	to	76	QAPEYRGRTELLKDAI
MOGm9	MOG 17	65	to	80	YRGRTELLKDAIGEGK
	MOG 18	69	to	84	TELLKDAIGEGKVTLR
MOGm10	MOG 19	73	to	88	KDAIGEGKVTLRIRNV
	MOG 20	77	to	92	GEVKVTLRIRNVRFSD
MOGm11	MOG 21	81	to	96	VTLRIRNVRFSDDEGGF
	MOG 22	85	to	100	IRNVRFSDDEGGFTCFF
MOGm12	MOG 23	89	to	104	RFSDEGGFTCFRRDHS
	MOG 24	93	to	108	EGGFTCFRRDHSYQEE
MOGm13	MOG 25	97	to	112	TCFFRDHSYQEEAAME
	MOG 26	101	to	116	RDHSYQEEAAMELKVE
MOGm14	MOG 27	105	to	120	YQEEAAMELKVEDPFY
	MOG 28	109	to	124	AAMELKVEDPFYWWVSP
MOGm15	MOG 29	113	to	128	LKVEDPFYWWVSPGVLV
	MOG 30	117	to	132	DPFYWWVSPGVLVLLAV
MOGm16	MOG 31	121	to	136	WVSPGVLVLLAVLPVL
	MOG 32	125	to	140	GVLVLLAVLPVLLQI
MOGm17	MOG 33	129	to	144	LLAVLPVLLQITVGL
	MOG 34	133	to	148	LPVLLQITVGLVFLC
MOGm18	MOG 35	137	to	152	LLQITVGLVFLCLQYR
	MOG 36	141	to	156	TVGLVFLCLQYRLRGK
MOGm19	MOG 37	145	to	160	VFLCLQYRLRGKLRAE
	MOG 38	149	to	164	LQYRLRGKLRAEIEENL

MOGm20	MOG 39 MOG 40	153 to 168 157 to 172	LRGKLRAEIEENLHRTF LRAEIEENLHRTFDPHF	150 151
MOGm21	MOG 41 MOG 42	161 to 176 165 to 180	IENLHRTFDPHFLRVP HRTFDPHFLRVCWKI	152 153
MOGm22	MOG 43 MOG 44	169 to 184 173 to 188	DPHFLRVPCWKITLFV LRVPCWKITLFVIVPV	154 155
MOGm23	MOG 45 MOG 46	177 to 192 181 to 196	CWKITLFVIVPVLGPL TLFVIVPVLGPLVALI	156 157
MOGm24	MOG 47 MOG 48	185 to 200 189 to 204	IVPVVLGPLVALIICYN LGPLVALIICYNWLHR	158 159
MOGm25	MOG 49 MOG 50	193 to 208 197 to 212	VALIICYNWLHRRLAG ICYNWLHRRLAGQFLE	160 161
MOGm26	MOG 51 MOG 52	201 to 216 205 to 218	WLHRRLAGQFLEELRN RLAGQFLEELRNPF	162 163

Example 3

Generating a Myelin Antigen Repertoire

[0075] Overlapping peptides spanning the MBP protein that are each 16aa in length and overlap by 12aa were generated. All MBP peptides could be manufactured, however, the repertoire of MBP peptides excluded eight peptides. The resulting 36 peptides cover 95.7% of the protein. Only amino acids 1-8 were not covered. The list of MBP peptides is in Table 4 with the peptides not used highlighted in light grey.

Table 4 MBP Peptides

Peptide Mix	Seq ID	Amino Acids		
MBPm1	MBP 1	1	to	16
	MBP 2	5	to	20
	MBP 3	9	to	24
MBPm2	MBP 4	13	to	28
	MBP 5	17	to	32
MBPm3	MBP 6	21	to	36
	MBP 7	25	to	40
MBPm4	MBP 8	29	to	44
	MBP 9	33	to	48
MBPm5	MBP 10	37	to	52
	MBP 11	41	to	56
MBPm6	MBP 12	45	to	60
	MBP 13	49	to	64
MBPm7	MBP 14	53	to	68
	MBP 15	57	to	72
MBPm8	MBP 16	61	to	76
	MBP 17	65	to	80
MBPm9	MBP 18	69	to	84
	MBP 19	73	to	88
MBPm10	MBP 20	77	to	92
	MBP 21	81	to	96
MBPm11	MBP 22	85	to	100
	MBP 23	89	to	104
MBPm12	MBP 24	93	to	108
	MBP 25	97	to	112
MBPm13	MBP 26	101	to	116
	MBP 27	105	to	120
MBPm14	MBP 28	109	to	124
	MBP 29	113	to	128
MBPm15	MBP 30	117	to	132
	MBP 31	121	to	136
MBPm16	MBP 32	125	to	140
	MBP 33	129	to	144
MBPm17	MBP 34	133	to	148
	MBP 35	137	to	152
MBPm18	MBP 36	141	to	156
	MBP 37	145	to	160
MBPm19	MBP 38	149	to	164
	MBP 39	153	to	168
MBPm20	MBP 40	157	to	172
	MBP 41	161	to	176
MBPm21	MBP 42	165	to	180
	MBP 43	169	to	184
MBPm22	MBP 44	173	to	185

[0076] Overlapping peptides spanning the PLP protein that are each 16aa in length and overlap by 12aa were also generated. Not all PLP peptides could be manufactured, including the sequences from amino acids 61-72 and 245-248. In addition, the PLP peptide repertoire excluded 20 peptides. The resulting 35 peptides cover 83.0% of the protein. The only regions not covered were amino acids 21-24, 61-80, 117-128, 165-168 and 237-248. The list of PLP peptides is shown in Table 5, with the peptides not used highlighted in light grey and those not able to be manufactured in stippled shading.

Table 5 PLP Peptides

Peptide Mix	Seq ID	Amino Acids	
PLPm1	PLP 1	1	to 16
	PLP 2	5	to 20
PLPm2	PLP 3	9	to 24
	PLP 4	13	to 28
PLPm3	PLP 5	17	to 32
	PLP 6	21	to 36
PLPm4	PLP 7	25	to 40
	PLP 8	29	to 44
PLPm5	PLP 9	33	to 48
	PLP 10	37	to 52
PLPm6	PLP 11	41	to 56
	PLP 12	45	to 60
PLPm7	PLP 13	49	to 64
	PLP 14	53	to 68
PLPm8	PLP 15	57	to 72
	PLP 16	61	to 76
PLPm9	PLP 17	65	to 80
	PLP 18	69	to 84
PLPm10	PLP 19	73	to 88
	PLP 20	77	to 92
PLPm11	PLP 21	81	to 96
	PLP 22	85	to 100
PLPm12	PLP 23	89	to 104
	PLP 24	93	to 108
PLPm13	PLP 25	97	to 112
	PLP 26	101	to 116
PLPm14	PLP 27	105	to 120
	PLP 28	109	to 124
PLPm15	PLP 29	113	to 128
	PLP 30	117	to 132
PLPm16	PLP 31	121	to 136
	PLP 32	125	to 140
PLPm17	PLP 33	129	to 144
	PLP 34	133	to 148
PLPm18	PLP 35	137	to 152

PLPm19	PLP 36	141	to	156
	PLP 37	145	to	160
	PLP 38	149	to	164
PLPm20	PLP 39	153	to	168
	PLP 40	157	to	172
PLPm21	PLP 41	161	to	176
	PLP 42	165	to	180
PLPm22	PLP 43	169	to	184
	PLP 44	173	to	188
PLPm23	PLP 45	177	to	192
	PLP 46	181	to	196
PLPm24	PLP 47	185	to	200
	PLP 48	189	to	204
PLPm25	PLP 49	193	to	208
	PLP 50	197	to	212
PLPm26	PLP 51	201	to	216
	PLP 52	205	to	220
PLPm27	PLP 53	209	to	224
	PLP 54	213	to	228
PLPm28	PLP 55	217	to	232
	PLP 56	221	to	236
PLPm29	PLP 57	225	to	240
	PLP 58	229	to	244
PLPm30	PLP 59	233	to	248
	PLP 60	237	to	252
PLPm31	PLP 61	241	to	256
	PLP 62	245	to	260
PLPm32	PLP 63	249	to	264
	PLP 64	253	to	268
PLPm33	PLP 65	257	to	272
	PLP 66	261	to	276
PLP67	PLP 67	265	to	277

[0077] Overlapping peptides spanning the MOG protein that are each 16aa in length and overlap by 12aa were also generated. Not all MOG peptides could be manufactured, including the sequence from amino acids 141-144. In addition, the MOG peptide repertoire excluded eight peptides. The resulting 40 peptides cover 93.6% of the protein. The only regions not covered were amino acids 69-80 and 141-144. The list of MOG peptides is shown in Table 6 , with the peptides not used highlighted in light grey and those not able to be manufactured in stippled shading.

Table 6 MOG Peptides

Peptide Mixes	Seq ID	Amino Acids		
MOGm1	MOG 1	1	to	16
	MOG 2	5	to	20
	MOG 3	9	to	24
MOGm2	MOG 4	13	to	28
	MOG 5	17	to	32
MOGm3	MOG 6	21	to	36
	MOG 7	25	to	40
MOGm4	MOG 8	29	to	44
	MOG 9	33	to	48
MOGm5	MOG 10	37	to	52
	MOG 11	41	to	56
MOGm6	MOG 12	45	to	60
	MOG 13	49	to	64
MOGm7	MOG 14	53	to	68
	MOG 15	57	to	72
MOGm8	MOG 16	61	to	76
	MOG 17	65	to	80
MOGm9	MOG 18	69	to	84
	MOG 19	73	to	88
MOGm10	MOG 20	77	to	92
	MOG 21	81	to	96
MOGm11	MOG 22	85	to	100
	MOG 23	89	to	104
MOGm12	MOG 24	93	to	108
	MOG 25	97	to	112
MOGm13	MOG 26	101	to	116
	MOG 27	105	to	120
MOGm14	MOG 28	109	to	124
	MOG 29	113	to	128
MOGm15	MOG 30	117	to	132
	MOG 31	121	to	136
MOGm16	MOG 32	125	to	140
	MOG 33	129	to	144
MOGm17	MOG 34	133	to	148
	MOG 35	137	to	152
MOGm18	MOG 36	141	to	156
	MOG 37	145	to	160
MOGm19	MOG 38	149	to	164
	MOG 39	153	to	168
MOGm20	MOG 40	157	to	172
	MOG 41	161	to	176
MOGm21	MOG 42	165	to	180
	MOG 43	169	to	184
MOGm22	MOG 44	173	to	188
	MOG 45	177	to	192
MOGm23	MOG 46	181	to	196
	MOG 47	185	to	200

MOGm25	MOG 48	189	to	204
	MOG 49	193	to	208
	MOG 50	197	to	212
	MOG 51	201	to	216
	MOG 52	205	to	218

[0078] Peptides were synthesized for the entire length of MBP, PLP, and MOG with purities of >95% in most cases. All peptides that could be synthesized were evaluated in subsequent experiments. A total of 16 peptides could not be synthesized by solid-phase peptide synthesis (SPPS). These 16 peptides covered a unique span of 18 amino acids over the 3 proteins (2.6% of the total protein content). All peptides not able to be manufactured were hydrophobic in nature.

Example 4

Epitope Analysis Assay

[0079] The peptides in Example 2 were tested in an *in vitro* PBMC stimulation assay to identify myelin reactive T cells in a patient's blood. Peripheral blood mononuclear cells (PBMCs) were separated from whole blood, washed, counted and plated at 250,000 cells per well in a total of four 96-well plates. Myelin peptide mixes of two overlapping 16-mer peptides were added to triplicate wells of PBMCs with triplicate media only control wells included on each plate and then incubated. After two days of incubation, 20 U/ml of interleukin-2 (IL-2) was added. On the fifth day, the plates were labeled with a radioisotope (tritiated thymidine) and harvested 6 hours later. In this assay, the cells that incorporate tritiated thymidine are representative of T cells being activated and induced to proliferate by the T cell receptor-peptide-MHC complexes. T cells incorporating comparatively more tritiated thymidine than control and experimental cells are more highly activated T cells and are proliferating more rapidly.

[0080] Stimulation Indices (SI) were determined for each peptide mix by dividing the mean radiolabel counts per minute (CPM) of the peptide stimulated wells by the mean CPM of the media only control wells averaged across all four plates. An SI of at least 3 was considered positive. Figure 1 is an example of EAA from one MS patient. Seven of the peptide mixtures were slightly reactive, with the MOGm15 stimulated wells being very reactive. Figures 2-4 show the frequency of reactivity to the peptide mixes in 48 patients.

Example 5

HLA Analysis

[0081] The active peptides identified by EAA, as described in Example 2, were compared to the HLA phenotype of the patient. An algorithm for predicting class II binding regions available at <http://www.imtech.res.in/raghava/propred/> (Singh, H. and G.P.S. Raghava, ProPred: prediction of HLA-DR binding sites) was used to predict binding regions of MOG based on the patient's HLA-DR haplotype of DRB1_0801, DRB1_1501 and DRB5_0101.

[0082] Figure 5 shows the ProPred binding predictions within MOG protein for the 3 HLA alleles of the patient. The red amino acid residues represent predicted anchor residues for binding within the HLA groove, while the yellow residues represent the other residues that would fit within the groove. As a result, these residues would be predicted to be candidate stimulatory epitopes for T cells from this patient.

[0083] The bright yellow box surrounds the sequences included in peptide mix MOGm15 that gave the SI of 10. There are sequences within these peptides that are predicted to bind to all three of the HLA alleles. For two of the alleles there are two predicted binding epitopes and even a part of a third within these sequences. Although the predicted binding of these sequences correlated to a certain extent with the results obtained in the EA assay, there are stimulatory peptides that are not predicted.

[0084] These results show that EAA provides superior predictive results for identifying patient specific stimulatory peptides. The superiority of EAA is enhanced in view of HLA expression variants. Comparative studies between serology and molecular typing for HLA-A and B loci have discovered alleles detected by DNA typing reagents but not detected by serologic reagents. These HLA expression variants are not expressed or expressed in very low amounts on the cell surface. EAA is superior to software screens because there is no need to identify the HLA variants.

Example 6

Production of Vaccine

[0085] Patient-specific peptides identified by EAA were tested to determine whether they could be used to produce and expand myelin-reactive T-cells for use in a vaccine. A 500 ml bag of blood was obtained from the patient to set up vaccine production cultures. Bulk cultures were set

up in AIM V medium along with the optimized peptides. After 48 hours of incubation, rIL-2 was added at 20 U/ml. Seven days later, the cultures were re-stimulated with PBMCs and peptide. The media was changed to 2% AB serum with 100 U/ml rIL2 in X Vivo 15 medium. The cultures were fed and split every 1-4 days as necessary. After an additional seven days, the cultures were once again stimulated with APCs and peptides. The cultures were continued to be fed and split every 1-4 days as necessary. After an additional 7-14 days, the cultures had expanded to at least 100 x 10⁶ cells. The cells were divided into aliquots of 10 x 10⁶ cells and frozen.

Example 7

TCR V_B Analysis

[0086] The vaccine produced in Example 6 was tested to determine whether the selectively expanded T cells had a particular subset of T cells. Enrichment of T cell subsets was evaluated by analyzing the T cell receptor variable beta chain usage (V β). The 24 different known beta chain variable (V β) region families were evaluated using specific fluorescent-labeled monoclonal antibodies and flow cytometry. If a particular subset of T cells is selectively expanded by stimulation with a peptide, an increase would be detected in the percentage of cells expressing one of the V beta families as that subset expands.

[0087] A T cell receptor (TCR) Vbeta analysis was performed after approximately 18 days into the production of a vaccine produced as described in Example 6. A T cell line was produced by stimulating the patient's PBMCs with peptide mix MBPm10, which had produced an SI of 4.6 in the original EAA for this patient. Figure 6 shows that the peptide mix MBPm10 produced an SI of 4.6. This mix was used to stimulate PBMCs from this patient in culture.

[0088] Figure 7 shows the Vbeta analysis performed on the cells at baseline, on PBMCs, and on Day 18 of the T cell culture with MBPm10 peptides for this same patient. At baseline there is the typical relatively even distribution of TCR Vbeta chain usage in the PBMCs. However, after 18 days of stimulation in culture with MBPm10, V beta 5-6 positive T cells now make up 45% of the cells in culture, indicating that stimulation with the MBPm10 peptide mix has been able to focus, or selectively expand, a subset of T cells within the PBMCs of this patient.

Example 8

Growth Analysis

[0089] The ability of stimulation with the EAA-selected peptides to more rapidly expand the stimulated the T cells were tested. The cell growth curves were analyzed for two different stimulatory peptide mixes. The EAA CPM data shown in Figure 8 show a strongly reactive mix in MBPm19 for a patient with an SI of 4.7. A second plate from the same assay shows another reactive mix in PLPm33 with a high SI of 17.9. These two peptides mixes were then used to stimulate PBMCs from this patient to produce T cell lines.

[0090] The growth analysis of the EAA-identified peptides is shown in Figure 9. The PLPm33 stimulated cells expanded from 15 million PBMCs to 200 million T cells in 20 days with 3 stimulations with the peptide mix. The MBPm19 stimulated cells were slower to being rapidly expanding, but they also expanded from 15 million PBMCs to 217 million T cells following an additional restimulation with peptide at day 21. They were harvested on day 27 from the day of culture initiation. This process represents a 6-fold shorter process than previous production methods using only immunodominant peptides from MBP, PLP and MOG.

[0091] For another MS patient, a total of 8.25×10^6 PBMCs were originally seeded for each stimulation condition. By 21 days in culture, following a total of 3 stimulations with peptide (no PHA used), one cell line had expanded to 142×10^6 cells, while the other cell line had expanded to 95×10^6 T cells. Figure 10 shows the TCR V beta focusing that occurred as the culture progressed from Day 9 to Day 16 in culture, while being stimulated by the peptide mix PLPm27. The T cell subset using V beta chain 5-5 is expanding at the expense of most of the other V beta T cell subsets.

Example 9

Monitoring MRTC

[0092] The EAA was used to evaluate myelin reactive T-cell (MRTC) specificity after T-cell vaccination. The detection of epitope spreading, which occurs when the initial, focused immune attack on the myelin proteins spreads to include new epitopes was also tested. Figure 11 shows some of the MRTC frequency data from a patient that had undergone the first retreatment series of 3 vaccines. At Week 52 following the initial series of vaccines, the patient's MRTCs had

rebounded to a total of 29 MRTC per 10 million PBMCs. The TCFA prior, at Week 28, had shown only 4 MRTC/10 million PBMCs.

[0093] A new vaccine was prepared using the same procedures as the first series of vaccines and treatment was re-initiated. The patient received a booster at Week 4 and Week 8 and the MRTCs numbers dropped down to 6/10 million PBMCs. Fifteen weeks later, at Week 24, the patient's MRTC have started reappearing, particularly the MBP reactive T cells.

[0094] Figure 12 shows the reactivity of the patient's Week 24 T cells to the full length MBP peptides. The boxes surround the peptides that contain the two immunodominant MBP sequences used previously in the TCFA. As can be seen, there is still reactivity to MBP peptide 2, which may account for the increased reactivity against MBP also seen in the TCFA.

[0095] Figures 13 and 14 show the reactivity of the patient's week 24 T cells to the peptides spanning full length PLP and MOG proteins, respectively. The boxes surround the peptides that contain the two immunodominant PLP and MOG sequences used previously and in the TCFA. As indicated, there are three areas in PLP and two areas in MOG that show strong reactivity in the EAA. This analysis has been used to produce a new vaccine for the patient using the six newly identified reactive peptide mixes.

Example 10

Summary EAA Analysis 1

[0096] Figures 15-17 show the reactivity pattern to MBP, PLP and MOG peptides, respectively, in 8 MS patients. The red line shows the positive cut-off SI of 3. The two immunodominant peptides of MBP, PLP and MOG that were previously used are identified by the boxes. As indicated in Figure 15, there is an epitope within MBPm19 that is not present in the two immunodominant MBP peptides. For PLP, Figure 16 indicates that there are three other areas of immunoreactivity not included within the immunodominant PLP peptides. The highest immunoreactivity was within all 3 regions at the end of the PLP protein sequence. For MOG, Figure 17 indicates that the transmembrane and immediately intracellular portion of the protein is far more immunoreactive than the previously used immunodominant MOG peptides.

[0097] Figures 18-20 show the mean SIs for samples from a total of 15 MS patients tested using the EA assay. As can be seen, some slightly increased reactivity was seen toward the C-terminus of MBP. When the same data is analyzed for the PLP protein, the immunodominant area, again

at the C-terminus of this protein, is very evident. Analysis of the reactivity against the MOG protein shows the immunodominant area at the transmembrane region as well as the C-terminus region of the protein. Taken together, the data indicate that it is important to include other peptide epitopes from within myelin proteins to identify myelin reactive T cells from MS patients for use in T-cell vaccines in order to produce a more effective vaccine in a more efficient manner.

[0098] Knowledge of the pattern of epitope spreading, or shift, in MS may be used to design peptide-specific T cell vaccination therapies that block ongoing tissue destruction. Sequential EAAs may be used to determine if and when a patient develops reactivity against “new” epitopes within the 3 myelin proteins analyzed. Newly identified reactive peptides may be used to produce T cell lines for a follow-on vaccine.

Example 11

Summary EAA Analysis 2

[0099] EAA was performed on 54 subjects. The subjects included healthy individuals (N=12), MS patients enrolled in a dose escalation clinical trial for Tovaxin (N=16), MS patients enrolled in a repeat vaccination (Extension Study) clinical trial for Tovaxin (N=13), and MS patients enrolled in a blood draw only (Method Development) clinical trial (N=13). Table 4 shows the reactivity of the subjects to the myelin peptide mixes. Tables 5-7 show the reactivity of the subjects to MBP, PLP and MOG peptide mixes, respectively. Figures 21-23 show the reactivity of the subjects to the myelin peptide mixes with the boxes indicating the location of the immunodominant peptides used in the production of the vaccine of Example 1.

Table 7 Myelin Peptide Reactivity

Subject Group:	# reactive/N	Percent Reactive
Healthy	7/12	58
Method Development ¹	9/13	69
Dose Escalation		
Vaccinated ² :	8/9	89
Naïve:	5/7 ³	71
Extension Study		
Vaccinated ² :	9/9	100
Naïve ⁴ :	4/4	100

¹ All 13 subjects tested were taking an approved immunomodulating MS therapy.

² Vaccinated with Tovaxin prepared using 6 peptides only.

³ The two samples that were negative were set up with frozen cells.

⁴ Naïve to Tovaxin; these patients had been previously vaccinated with vaccine prepared with peptides from MBP only.

Table 8 MBP Peptide Reactivity

Subject Group:	# reactive/N	Percent Reactive
Healthy	3/12	25
Method Development	3/13	23
Dose Escalation		
Vaccinated:	2/9	22
Naïve:	2/7	29
Extension Study		
Vaccinated:	5/9	56
Naïve:	1/4	25

Table 9 PLP Peptide Reactivity

Subject Group:	# reactive/N	Percent Reactive
Healthy	5/12	42
Method Development	6/13	46
Dose Escalation		
Vaccinated:	7/9	78
Naïve:	4/7	57
Extension Study		
Vaccinated:	8/9	89
Naïve:	3/4	75

Table 10 MOG Peptide Reactivity

Subject Group:	# reactive/N	Percent Reactive
Healthy	6/12	50
Method Development	7/13	54
Dose Escalation		
Vaccinated:	4/9	44
Naïve:	3/7	43
Extension Study		
Vaccinated:	9/9	100
Naïve:	3/4	75

[0100] Reactivity to at least one of the myelin peptide mixes was seen in 42 of the 54 subjects tested (78%), including 7 of the 12 healthy subjects. The number of peptide mixes that subjects reacted to ranged from 0 to 11. Positive reactivity ranged from the minimal SI of 3.0 to a maximal SI of 21.1.

[0101] As shown by the patterns of reactivity, the majority of the subjects tested had reactive T-cells to peptide sequences in areas of the three myelin proteins outside the six immunodominant peptides that were used to prepare vaccines in Example 1. Forty-one percent of the subjects tested were reactive to the immunodominant peptides of MBP (MBP 83-99 and MBP 151-170). Only 31% of subjects tested were reactive to the PLP immunodominant peptides (PLP 30-49 and PLP 180-199). Only 11% of subjects tested were reactive to the MOG immunodominant peptide sequences (MOG 1-17 and MOG 19-39).

[0102] The reactivity pattern initially appears consistent with previous studies identifying the peptide sequence MBP 83-99 as more reactive than PLP and MOG peptides. However, in general, the reactivity against MBP peptides was lower than the reactivity seen against PLP and MOG peptides; 30% of all subjects tested were reactive against one or more MBP peptides as opposed to 65% for PLP peptides and 61% for MOG peptides. Table 11 below shows the average number of peptides for each protein that the subjects were reactive against.

Table 11

Average No. of Peptides Subjects are reactive against:				
	MD (n=13)	H.S. (n=12)	DES (n=16)	EXT (n=13)
MBP	0.5	0.3	0.4	0.5
PLP	0.8	0.8	2.0	2.2
MOG	1.0	1.0	1.3	1.8
TOTALS:	2.3	2.1	3.6	4.6

MD=Method Development Blood Draw subjects

H.S.=Healthy Subjects

DES=Dose Escalation (both vaccinated and naïve) patients

EXT=Extension Study patients

[0103] In the case of the MOG protein, previous studies have focused on the extracellular portion of the protein. MOG has an extracellular part including aa 1–122 with an Ig-like domain, a transmembrane part, and an intracellular part comprising aa 123–218. The above results indicate a high level of reactivity to the portion of the protein that is within or immediately past

the transmembrane sequence in the intracellular space, amino acids 113-132 (MOGm15). Interestingly, all (100%) of the Extension study patients, who had been previously vaccinated with the vaccine of Example 1, showed immunoreactivity to the intracellular portion of MOG. This is in contrast to all of the other subjects tested, of which only 49% showed any reactivity to MOG peptides.

Growth of Myelin Reactive T Cell Lines with Low Stimulation Indices

[0104] The following demonstrates the capability of myelin-reactive T cells to grow with an SI of less than 3.0 and especially below 2.0. Using the algorithms described above, statistically significant SIs as low as 1.3 have been observed and therefore should be able grow in response to antigen. To verify this ability, 5 cell lines across two patients are shown with an SI<2.0. The results are shown in Table 12 and Figure 24, which indicate growth of these cell lines with only peptide antigen stimulation and common T cell growth factors.

[0105] PBMC for subject 1042 were run in the EAA, and 2 peptide mixes were positive, including PLPm18 with an SI of 1.8, PLPm26 with an SI of 2.5 and PLPm28 with an SI of 2.5. Cells were subjected to antigenic stimulation as per normal protocol as shown below and collected 14, 19, 26, 33 and 35 days later. PBMC for subject 1014 were run in the EAA, and 4 mixes were positive, including MBPm14 with an SI of 1.7, PLPm17 with an SI of 1.7, PLPm28 with an SI of 2.2 and MOGm6 with an SI of 1.9. Cells for subject 1014 were subjected to antigenic stimulation as shown below and collected 14, 19, 26, 33 and 35 days later.

[0106] PBMCs were isolated via density gradient centrifugation from peripheral blood obtained through venipuncture into ACD-1 anticoagulant. PBMCs were plated at 2.5E+06 cells/well in 24 well plates. Antigen in the form of 16mer peptides identified in the EAA were added at a final concentration of 20ug/ml. Interleukin-2 (IL-2) was added at a final concentration of 100U/ml starting at 48 hours and IL-2 was added at the same concentration with each feeding or splitting of wells. Peptide restimulation in the presence of antigen presenting cells (APCs-autologous PBMCs irradiated at 3500rad) was done at days 7, 14 and 21. Interleukin-15 (IL-15) was added at a final concentration of 5ng/ml-20ng/ml (lot specific) starting at day 14 and continued through the remainder of the culture period. Cells lines were all harvested by day 35 and had achieved expansions of 3.0-8.2 fold.

Table 12

Subject	Peptide Mix	Viable Cell Counts	Viable Cell Count					
			Day 0	Day 14	Day 19	Day 26	Day 33	Day 35
1042	PLPm18 (SI 1.9)	Count/well	2.50E+06	9.60E+05	1.97E+06	1.50E+06	3.76E+06	3.74E+06
		No. of wells	12	12	12	24	24	24
		Total Cells	3.00E+07	1.15E+07	2.36E+07	3.60E+07	9.02E+07	8.98E+07
		Fold Expansion	1.0	0.4	0.8	1.2	3.0	3.0
	PLPm26 (SI 2.5)	Count/well	2.50E+06	1.50E+06	2.40E+06	3.73E+06	2.61E+06	3.54E+06
		No. of wells	12	12	12	24	48	48
		Total Cells	3.00E+07	1.80E+07	2.88E+07	8.95E+07	1.25E+08	1.70E+08
		Fold Expansion	1.0	0.6	1.0	3.0	4.2	5.7
	PLPm28 (SI 2.5)	Count/well	2.50E+06	1.56E+06	3.82E+06	4.34E+06	4.61E+06	5.15E+06
		No. of wells	12	12	12	24	48	48
		Total Cells	3.00E+07	1.87E+07	4.58E+07	1.04E+08	2.21E+08	2.47E+08
		Fold Expansion	1.0	0.6	1.5	3.5	7.4	8.2
1014	Peptide Mix	Viable Cell Counts	Viable Cell Count					
			Day 0	Day 17	Day 19	Day 28	Day 33	Day 35
	MBPm14 (SI 1.7)	Count/well	2.50E+06	2.04E+06	3.41E+06	4.38E+06	3.54E+06	4.42E+06
		No. of wells	9	9	9	31	31	31
		Total Cells	2.25E+07	1.84E+07	3.07E+07	1.36E+08	1.10E+08	1.37E+08
		Fold Expansion	1.0	0.6	1.0	4.5	3.7	4.6
	PLPm17 (SI 1.7)	Count/well	2.50E+06	2.34E+06	3.85E+06	4.77E+06	3.89E+06	4.73E+06
		No. of wells	9	9	9	22	22	30
		Total Cells	2.25E+07	2.11E+07	3.47E+07	1.05E+08	8.56E+07	1.42E+08
		Fold Expansion	1.0	0.7	1.2	3.5	2.9	4.7
	PLPm28 (SI 2.2)	Count/well	2.50E+06	3.09E+06	2.41E+06	2.81E+06	5.17E+06	5.33E+06
		No. of wells	9	9	18	30	30	30
		Total Cells	2.25E+07	2.78E+07	4.34E+07	8.43E+07	1.55E+08	1.60E+08
		Fold Expansion	1.0	0.9	1.4	2.8	5.2	5.3
	MOGm6 (SI 1.9)	Count/well	2.50E+06	2.18E+06	4.27E+06	4.35E+06	4.71E+06	3.93E+06
		No. of wells	12	9	9	28	28	28
		Total Cells	3.00E+07	1.96E+07	3.84E+07	1.22E+08	1.32E+08	1.10E+08
		Fold Expansion	1.3	0.7	1.3	4.1	4.4	3.7

[0107] Figure 24 shows that the 5 T cell lines from subjects 1042 and 1014 reactive to myelin peptide mixes with SIs < 2.0 were capable of growing in response to antigen. Therefore T cell lines exhibiting low SIs can be grown in response to a myelin antigen.

Example 12

EAA Analysis of Myelin Reactive Peptides

[0108] The peptides of Example 3 have been tested in 429 EAAs in clinical trials as follows. A total of 162 out of 429 assays (37.8%) showed positive SIs using the Variance Evaluation Method or CPM Variance Method. Pre-Vaccine EAAs have 158 positive out of 387 assays (40.8%), with Relapse Remitting MS patients (RRMS) showing 150 positive of 368 assays (40.8%), and Clinically Isolated Syndrome (CIS) patients showing 8 positive of 19 assays (42.1%).

[0109] Of screened subjects, 144 assays out of 312 total have been positive from 249 subjects (46.2% and 57.8% respectively). Of these, RRMS patients showed 136 positive out of 301 assays on 238 subjects (45.2% and 57.1%, respectively), and CIS patients showed 8 positive out of 11 assays (72.7%).

[0110] During procurement 14 of 89 assays (15.7%) have been positive, of which RRMS patients have shown 14 positive of 84 assays (16.7%), and CIS patients showed 0 positive out of 5 assays (0%). During baseline EAAs, 6 of 31 assays (19.4%) have been positive, with RRMS patients showing 6 positive out of 28 assays (21.4%), CIS patients showing 0 positive of 3 assays (0%).

[0111] Post-vaccine EAAs have shown 4 out of 42 assays (9.5%) positive, of which RRMS patients showed 3 positive out of 37 assays (8.1%), and CIS patients showed 1 positive out of 5 assays (20.0%).

[0112] Week 4 EAAs have shown 2 positive out of 21 assays (9.5%), of which RRMS patients showed 1 positive out of 19 assays (5.3%), and CIS patients have shown 1 positive out of 2 assays (50.0%). Week 8 EAAs showed 2 positive out of 16 assays (12.5%), of which RRMS patients showed 2 positive out of 14 assays (14.3%) and CIS patients showed 0 positive of 2 assays (0%). Week 12 EAAs showed 0 positive of 5 assays (0%), of which RRMS patients showed 0 positive of 4 assays (0%) and CIS showed 0 positive of 1 assay (0%).

Example 13

EAA Clinical Trial

[0113] Over the course of 6 months a study was conducted with 120 subjects meeting the criteria for the clinical trial. Subjects had Relapse Remitting Multiple Sclerosis (RR-MS; n=114) or high risk Clinically Isolated Syndrome (CIS; n=6) with an Expanded Disability Status Scale (EDSS) of 0-5.5, diagnosis of disease of 0-10 years, 18-55 years of age, MRI criteria suggestive of MS and a positive EAA.

[0114] The above mentioned population of subjects was evaluated by EAA using the Variance Evaluation Method and CPM Variance Method as described above, and deemed eligible for vaccine production. Of the 120 attempts to manufacture vaccine, there were 2 shipping failures (blood was not received within our stated criteria), 1 culture was lost to contamination and 5 samples arrived with low cell volume/yield. Of the remaining 112 subjects, vaccine was successfully generated in 89 subjects, with 22 still in production (98.9% of eligible samples, 92.5% of all samples completed). From this, a positive EAA was deemed predictive of the ability to manufacture a vaccine to therapeutic dose by methods disclosed herein.

[0115] Current methods to grow T cell lines include:

1. Isolation of PBMCs
2. Plating of PBMCs in 24 well plates at 2.5E+06 cells/well
3. Adding antigen at 20ug/ml/peptides, 2 peptides/well
4. Addition of IL-2 (10-200 IU/ml) at 48 hours (and included until harvest)
5. Restimulations with APCs irradiated at 3500 rads (1.0E+06 as described before) and antigen (same antigen/same concentration) at days 7, 14 and 21
6. Addition of IL-15 (1-50 ng/ml) at day 14 (and included until harvest)
7. Potential for addition of mitogen, superantigen or antibody to stimulate growth at d35 if the cells have not grown to sufficient quantity

[0116] Over the course of this study several epitopes with immunodominance were discovered in this population of MS subjects. Several of these epitopes are novel. These are peptides showed reactivity in a large number of subjects screened in our trial. Several of these immunodominant regions have not previously been described in the literature. The epitopes of interest are listed in Tables 13-15.

Table 13 Listed by frequency of identification

Peptide Mix	# of Subjects	% of Subjects
MOGm21	40	33.6%
PLPm26	28	23.5%
MOGm15	27	22.7%
PLPm4	26	21.8%
MOGm23	20	16.8%
MOGm24	15	12.6%
PLPm17	14	11.8%
PLPm32	12	10.1%
PLPm19	11	9.2%
PLPm33	11	9.2%
PLPm18	10	8.4%
MOGm26	9	7.6%
MBPm8	8	6.7%
MOGm5	8	6.7%
MBPm9	7	5.9%
PLPm24	7	5.9%
MBPm13	6	5.0%
MOGm19	6	5.0%
MOGm2	6	5.0%
PLPm27	6	5.0%
PLPm28	6	5.0%
MBPm14	5	4.2%
MBPm20	5	4.2%
MBPm3	5	4.2%
MOGm11	5	4.2%
MOGm7	5	4.2%
PLP67	5	4.2%
MBPm16	4	3.4%
MBPm17	4	3.4%
MBPm22	4	3.4%
MOGm12	4	3.4%
MOGm16	4	3.4%
MOGm3	4	3.4%

MOGm6	4	3.4%
PLPm1	4	3.4%
PLPm11	4	3.4%
PLPm6	4	3.4%
MBPm15	3	2.5%
MBPm19	3	2.5%
MBPm2	3	2.5%
MBPm4	3	2.5%
MBPm7	3	2.5%
MOGm1	3	2.5%
MOGm4	3	2.5%
PLPm13	3	2.5%
PLPm25	3	2.5%
MBPm10	2	1.7%
MBPm12	2	1.7%
MOGm14	2	1.7%
MOGm22	2	1.7%
PLPm22	2	1.7%
MBPm21	1	0.8%
MBPm6	1	0.8%
MOGm20	1	0.8%
PLPm12	1	0.8%

Table 14 Peptide mixes positive in >8% of this population

Peptide Mix	N term		C term	Amino Acid Sequences
PLPm4	25	to	44	see Example 2
PLPm17	129	to	148	
PLPm18	137	to	156	
PLPm19	145	to	160	
PLPm26	201	to	220	
PLPm32	249	to	268	
PLPm33	257	to	276	
MOGm15	113	to	132	
MOGm21	161	to	180	
MOGm23	177	to	196	
MOGm24	185	to	204	

Table 15 Listed as immunodominant sequences

Protein	Peptide Stretch			Amino Acid Sequences
PLP	25	to	44	see Example 2
PLP	129	to	160	
PLP	201	to	220	
PLP	249	to	276	
*MOG	113	to	132	
MOG	161	to	204	

[0117] Figures 25-27 shows the results of this clinical trial. Figures 25A-H show a map of 429 assay (unique assays running down and peptides running across). Assays are aligned by date. Positive peptide mixes are shown in grey. This shows that the peptides mixes found to be positive were unique and unpredictable.

[0118] Figure 26 shows a map of 65 assay (unique assays running down and peptides running across). Assays are aligned by date. Positive peptide mixes are shown in grey. This shows that the peptides mixes found to be positive were unique and unpredictable. The number of positive mixes ranged in a single subject from 0 to 19

[0119] Figure 27 shows the results of EAA analysis indicating epitope shift over time in 4 subjects. Subject 1 showed a small shift with reactivity first around MOGm4, MOGm5 and MOGm6 and moving to MOGm21, MOGm22 and MOGm23. Notice that these two overlap. Subject 2 showed the same peptides reactive over time, but with increasing reactivity to new peptides the further from time zero. Subject 3 showed a significant shift in reactivity from PLP to MOG and subject 4 showed multiple epicenters for reactivity with a gradual shift from one area (C-terminal PLP) to another (N-terminal MOG). Also in this same subject a long term but transient reactivity to the central portion of MOG and finally a reactivity to MBP at the last two timepoints was observed.

CLAIMS

1. A method of identifying an epitope within a polypeptide antigen for an autoreactive T-cell, comprising:
 - (a) providing a sample comprising T cells isolated from a host;
 - (b) adding one or more different peptides to a plurality of portions of the sample, wherein the sequences of the peptides collectively comprise a portion of the sequence of the polypeptide antigen; and
 - (c) identifying a portion of the sample comprising activated autoreactive T cells,wherein a peptide that activates the autoreactive T cells identified by (c) comprises the epitope.
2. The method of claim 1 wherein the sequences of the peptides collectively comprise the complete sequence of the polypeptide antigen.
3. The method of claim 1 wherein the polypeptide antigen is MBP, PLP, MOG or a combination thereof.
4. The method of claim 1 wherein the different peptides comprise overlapping sequence of 8-12 or 4-19 amino acids.
5. The method of claim 1 wherein the different peptides comprise about 12-16 or 8-20 amino acids.
6. The method of claim 1 wherein the Stimulation Index of the sample comprising activated autoreactive T cells is above a predetermined value.
7. A method of preparing a T cell vaccine, comprising
 - (a) providing a sample comprising T cells isolated from a patient;
 - (b) contacting the T-cells with one or more different peptides, whereby autoreactive T-cells are activated;
 - (c) expanding activated autoreactive T cells; and
 - (d) attenuating the autoreactive T cells;wherein the one or more different peptides comprise all epitopes of an antigenic polypeptide capable of stimulating autoreactive T-cells with a stimulation index above a predetermined value.

8. The method of claim 7 wherein the antigenic polypeptide is MBP, PLP, MOG or a combination thereof.

9. A method of preparing a T cell vaccine, comprising

- (a) providing a sample comprising T cells isolated from a patient;
- (b) contacting the T-cells with one or more different peptides comprising an epitope identified by the method of claim 1, whereby autoreactive T-cells are activated;
- (c) expanding activated autoreactive T cells; and
- (d) attenuating the autoreactive T cells;

wherein the one or more different peptides comprise all epitopes of an antigenic polypeptide capable of stimulating autoreactive T-cells with a stimulation index above a predetermined value.

10. A method of detecting epitope shift in a T cell mediated disease, comprising:

- (a) identify the epitopes of an autoreactive antigen according to the method of claim 1; and
- (b) comparing the epitopes of (a) to epitopes at a control,

wherein epitope shift has occurred if the epitopes are different.

11. A method of diagnosing an epitope shift, comprising:

- (a) detecting an epitope shift according to the method of claim 10,

wherein detection of epitope shift indicates that epitope shift has occurred.

12. A method of monitoring an epitope shift, comprising:

- (a) detecting an epitope shift according to the method of claim 10; and
- (b) comparing the epitopes to a previous time,

wherein epitope shift has occurred if the epitopes are different.

13. A T cell vaccine comprising T cells that are specific to an antigenic polypeptide wherein each epitope of the antigenic polypeptide capable of producing a stimulation index above a predetermined value is recognized by autoreactive T cells present in the vaccine.

14. The T cell vaccine of claim 13 wherein the antigenic polypeptide is MBP, PLP, MOG or a combination thereof.

15. The T cell vaccine of claim 13 wherein the autoreactive T cells present in the vaccine comprise less than 50% T cells that recognize the epitopes of the antigenic polypeptide capable of producing a stimulation index of less than a predetermined value.

16. The T cell vaccine of claim 13 wherein the autoreactive T cells present in the vaccine are positive for cell makers selected from one the following: CD3, CD4, CD8, CD25, TCR $\alpha\beta$, TCR $\gamma\delta$, HSP60 or a combination thereof.

FIGURE 1

		MOGm2	MOGm3	MOGm4	MOGm5	MOGm6	MOGm7	MOGm8	MOGm9	MOGm10	MOGm11
		Si: 1.0	1.0	1.0	2.6	0.7	0.9	0.9	0.8	0.9	0.7
		1	2	3	4	5	6	7	8	9	10
Mean CPMs	2235.33	2346.67	2175.67	5888.67	1625.00	2077.67	2103.67	1921.67	2030.33	1578.00	
SD	293.31	122.54	546.03	1988.36	309.11	380.58	273.29	383.49	451.84	439.81	
Mean CPMs	2368	3518	3406	24549	3192	2297	4267	3562	2843	2406	
SD	1862	3174	5629	20567	3579	2417	5455	4496	1515	2269	
Mean CPMs	3698	3149	3440	23464	3880	2632	4766	5224	2038	2192	
SD	948.32	3280.33	4158.33	22860.00	3550.33	2448.67	4829.33	4427.33	2132.00	2289.00	
Mean CPMs	948.32	206.20	1273.75	2058.57	344.89	169.73	596.53	833.13	668.97	108.39	
SD	1.2	1.4	1.8	10.0	1.6	1.1	2.1	1.9	0.9	1.0	
	MOGm12	MOGm13	MOGm14	MOGm15	MOGm16	MOGm17	MOGm18	MOGm19	MOGm20	Media Con	
										Alt Meth, + if >	2614.2

FIGURE 2

Frequency of Reactivity to MBP Peptide Mixes - all 48 Subjects

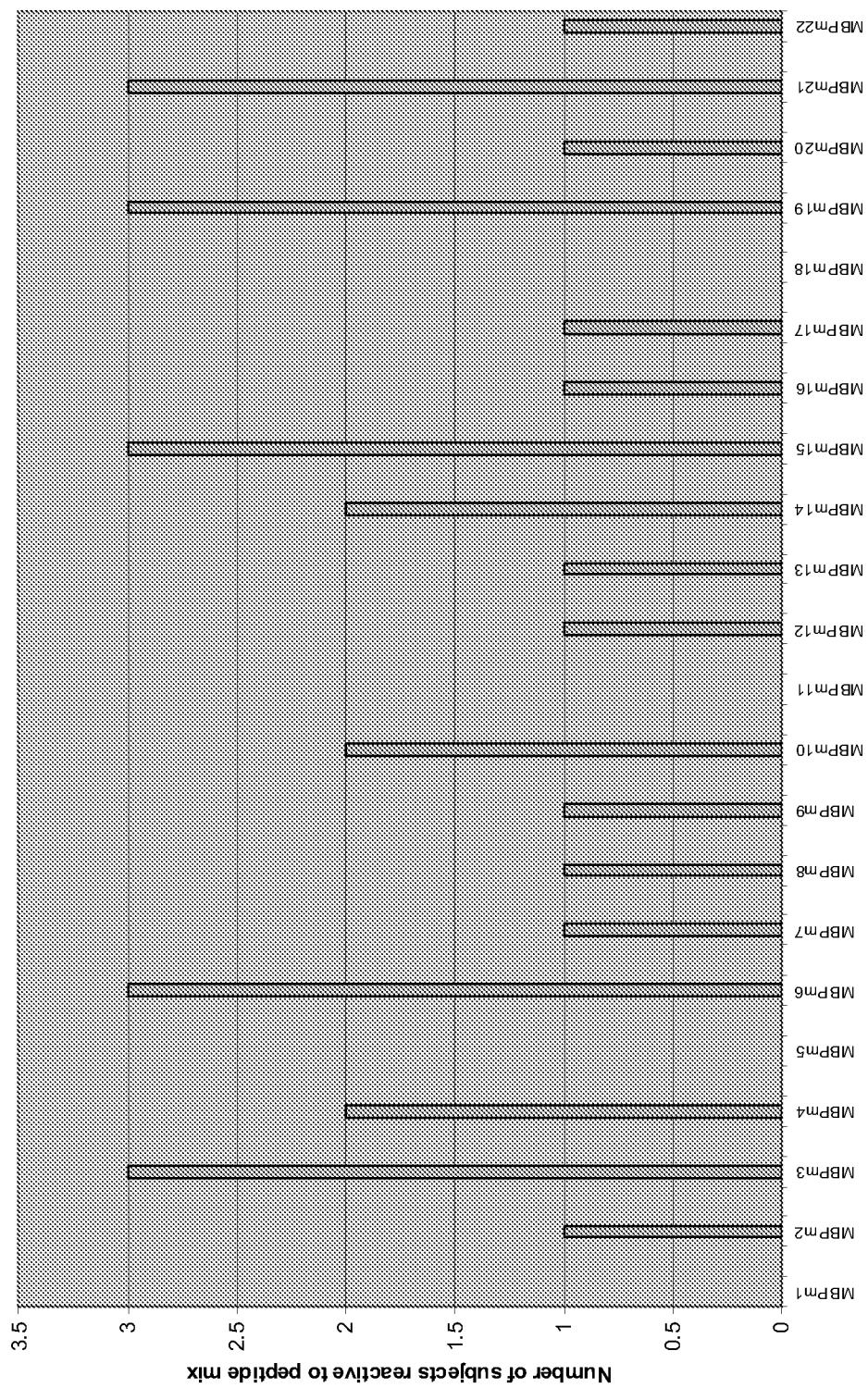


FIGURE 3

Frequency of Reactivity to PLP Peptide Mixes - all 48 subjects

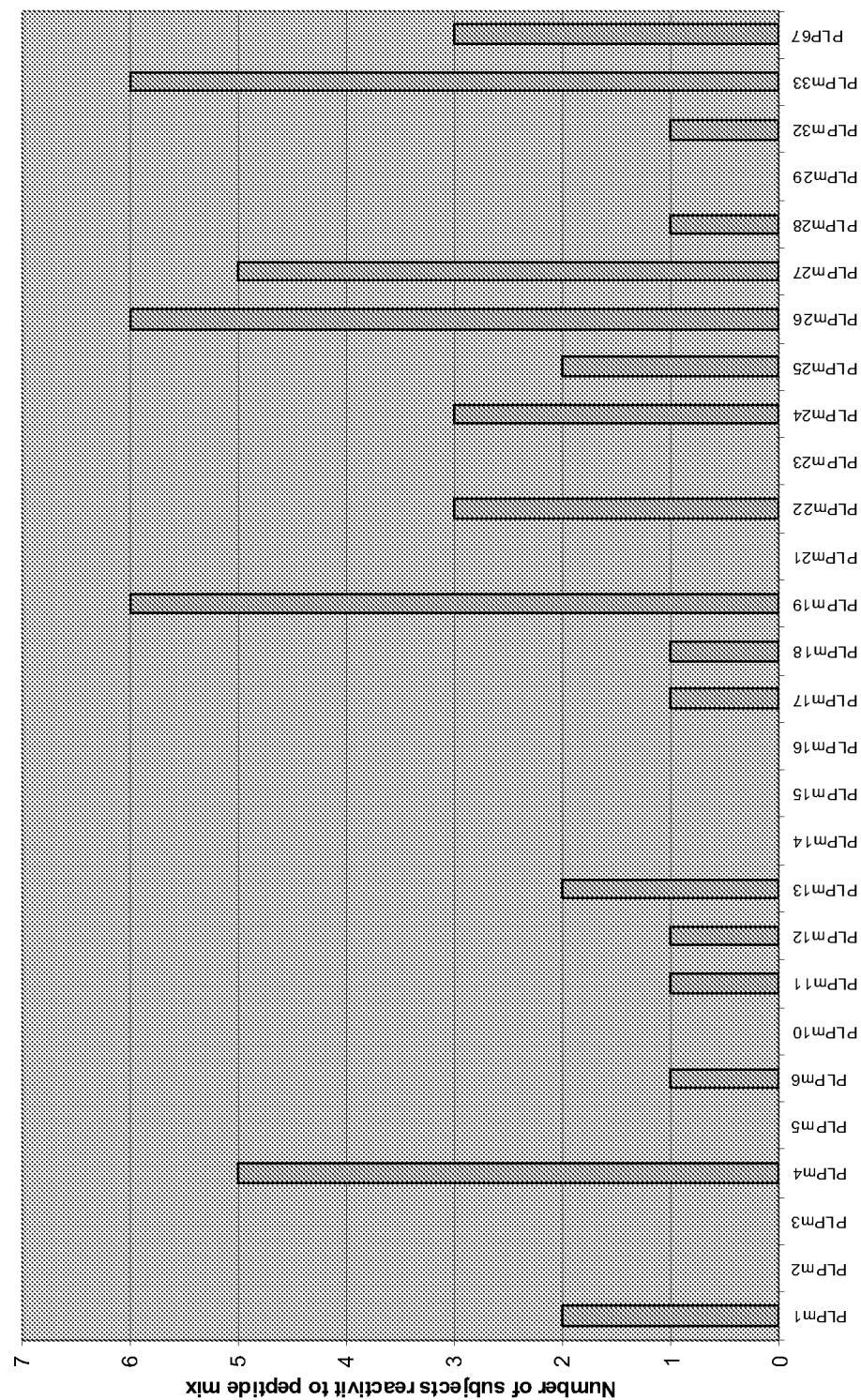


FIGURE 4

Frequency of Reactivity to MOG Peptides - all 48 Subjects Tested

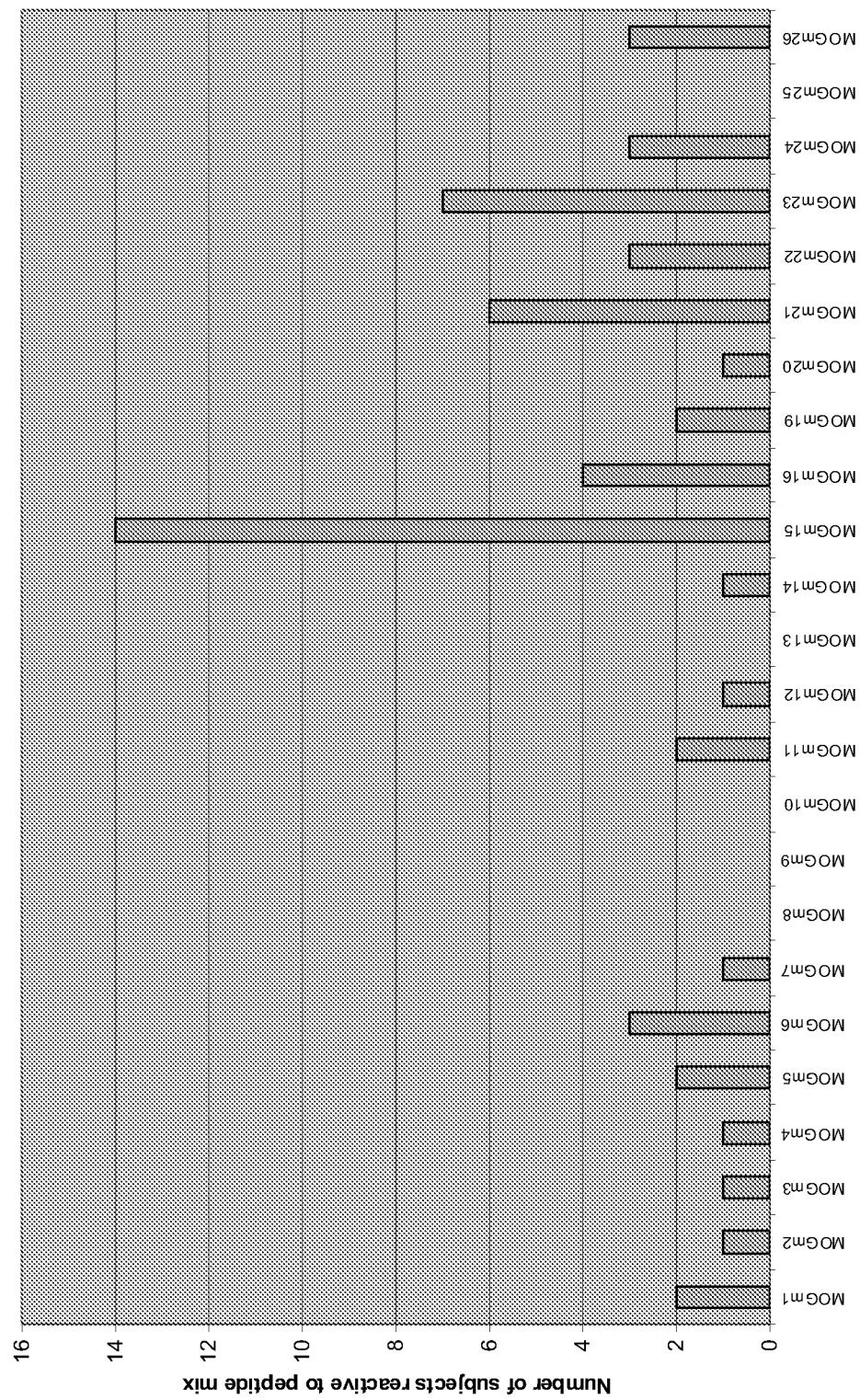


FIGURE 5

MASLSSRPSLPSCLCS	YAGG	YAGG	YAGG	YAGG
MASLSSRPSLPSCLCS	SSSYAGG	SSSYAGG	SSSYAGG	SSSYAGG
MASLSSRPSLPSCLCS	LLQVSSYAGG	LLQVSSYAGG	LLQVSSYAGG	LLQVSSYAGG
CKNATGAEVWYRPPESAV	QDGEDOAPF	DAIGECKV	DAIGECKV	DAIGECKV
CKNATGMEVWYRPPESAV	QDGEDOAPF	DAIGECKV	DAIGECKV	DAIGECKV
CKNATGMEVWYRPPESAV	DangDQDPEYRGRTEL	DangDQDPEYRGRTEL	DangDQDPEYRGRTEL	DangDQDPEYRGRTEL
(2)				
EGGFTICFFRDIHSYQEEAAMELKVE	YFVY	YFVY	YFVY	YFVY
EGGFTICFFRDIHSYQEEAAMELKVE	YFVY	YFVY	YFVY	YFVY
EGGFTICFFRDIHSYQEEAAMELKVE	YFVY	YFVY	YFVY	YFVY
(2)				
ENLHRTFDPHFLRVPCWIKTL	LEELRKFSS	LEELRKFSS	LEELRKFSS	LEELRKFSS
ENLHRTFDPHFLRVPCWIKTL	RLAGQFLEE	RLAGQFLEE	RLAGQFLEE	RLAGQFLEE
ENLHRTFDPHFLRVPCWIKTL	VALIICYAWLHRRRL	VALIICYAWLHRRRL	VALIICYAWLHRRRL	VALIICYAWLHRRRL
(2)				
RETEATRGREGGLRDHPRGKEELIESLGCGKTPPCR				
RETEATRGREGGLRDHPRGKEELIESLGCGKTPPCR				
RETEATRGREGGLRDHPRGKEELIESLGCGKTPPCR				

FIGURE 6

		MBPm8						MBPm10	
		0.7			1.0			0.9	
		0.7	1.0	1.0	0.6	1.0	0.6	0.9	0.9
1	2	3	4	5	6	7	8	9	10
8	24	102	94	32	16	24	72	40	55
8	1506	3013	4064	2023	5968	1744	4159	3072	4315
8	1969	2024	2620	2200	2191	2311	2679	6469	2684
31	4511	5594	4794	2608	2871	2335	3391	4885	4228
Mean	2662.00	3543.67	3826.00	2277.00	3676.67	2130.00	3409.67	4808.67	3742.33
SD	1617.93	1843.21	1106.37	300.00	2013.27	334.50	740.18	1699.79	917.58
24	3519	5573	2735	5434	9762	3060	3282	2290	1311
31	4296	11707	6193	4089	12350	3511	4461	1974	9020
31	4068	5871	4476	2207	2357	6027	4215	1477	3822
Mean	3961.00	7117.00	4468.00	3910.00	8156.33	4199.33	3986.00	1913.67	4717.67
SD	399.40	3458.65	1729.01	1620.93	5186.39	1598.79	621.97	409.84	3931.77
8	8	16	8	0	0	0	8	24	16
8	8	16	8	0	0	0	8	24	111
		0.7	1.2	1.1	2.2	1.1	1.1	0.5	1.3
		0.7	1.2	1.1	2.2	1.1	1.1	0.5	1.0
		MBPm12	MBPm15	MBPm10	MBPm8	MBPm12	MBPm15	MBPm10	MBPm8

FIGURE 7

**Percentage Expression of TCR V beta Chains at Baseline
and After 18 Days of Stimulation with MBPm10**

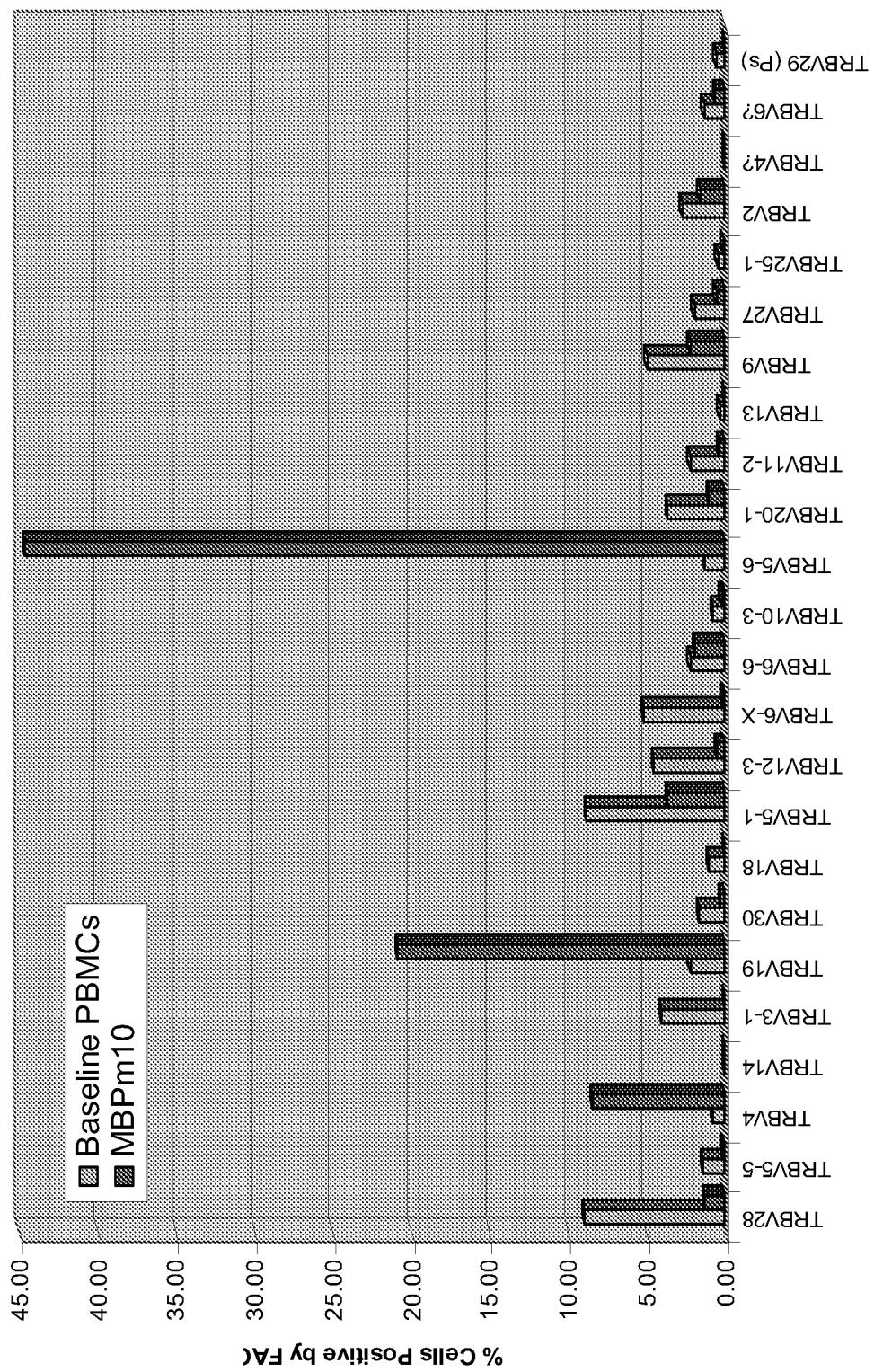


FIGURE 8

FIGURE 9

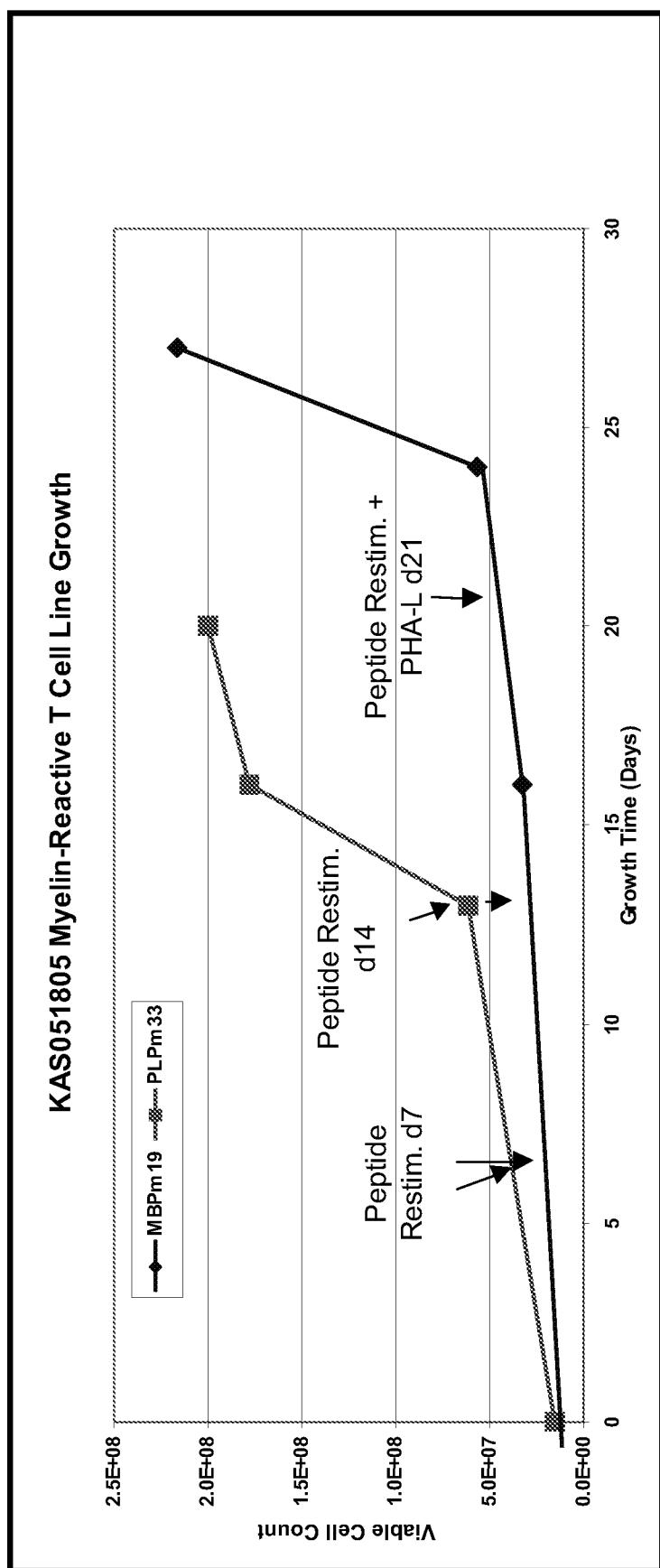


FIGURE 10

TCR V beta Focussing -VEE050305 T Cell Line Production

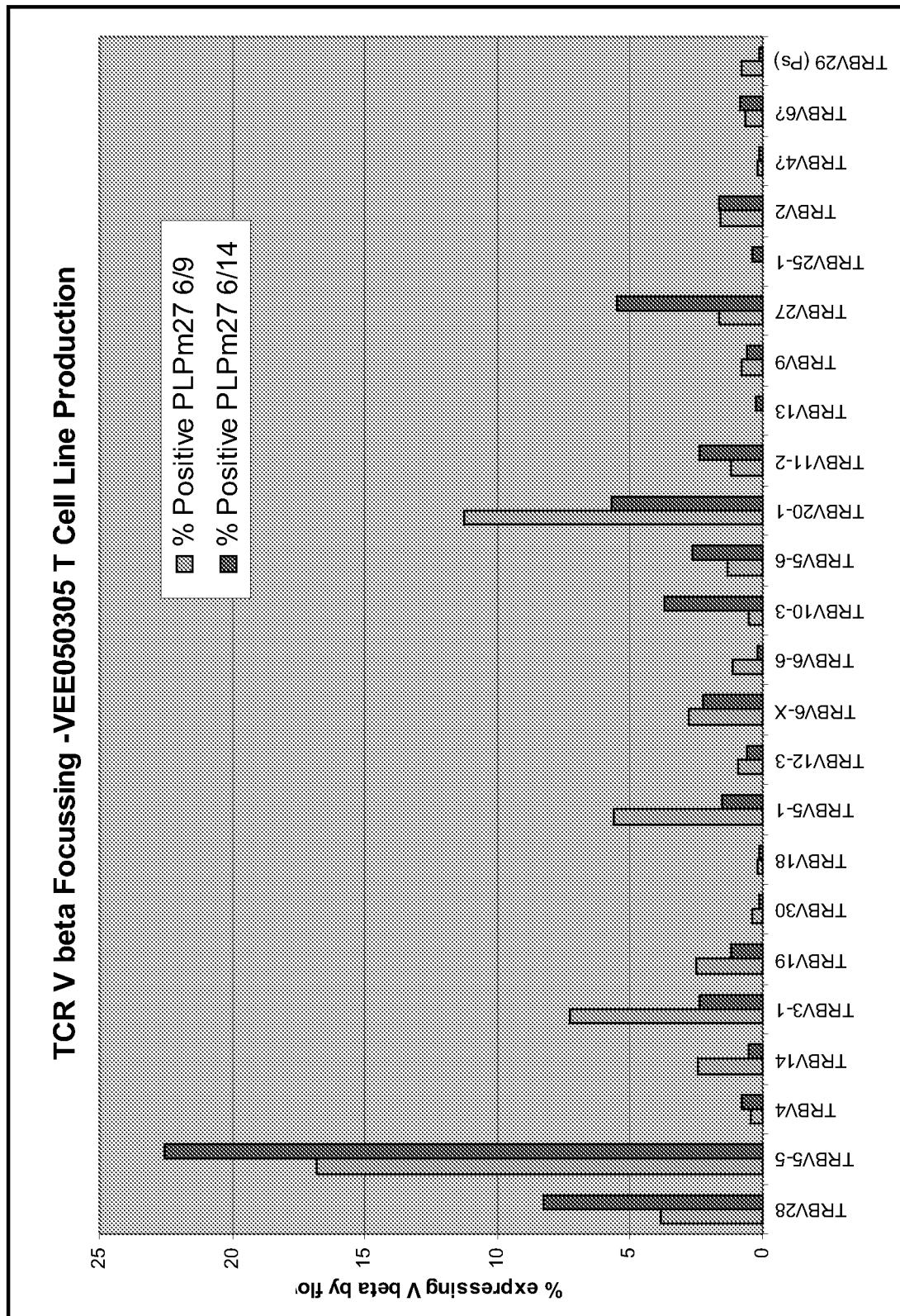


FIGURE 11

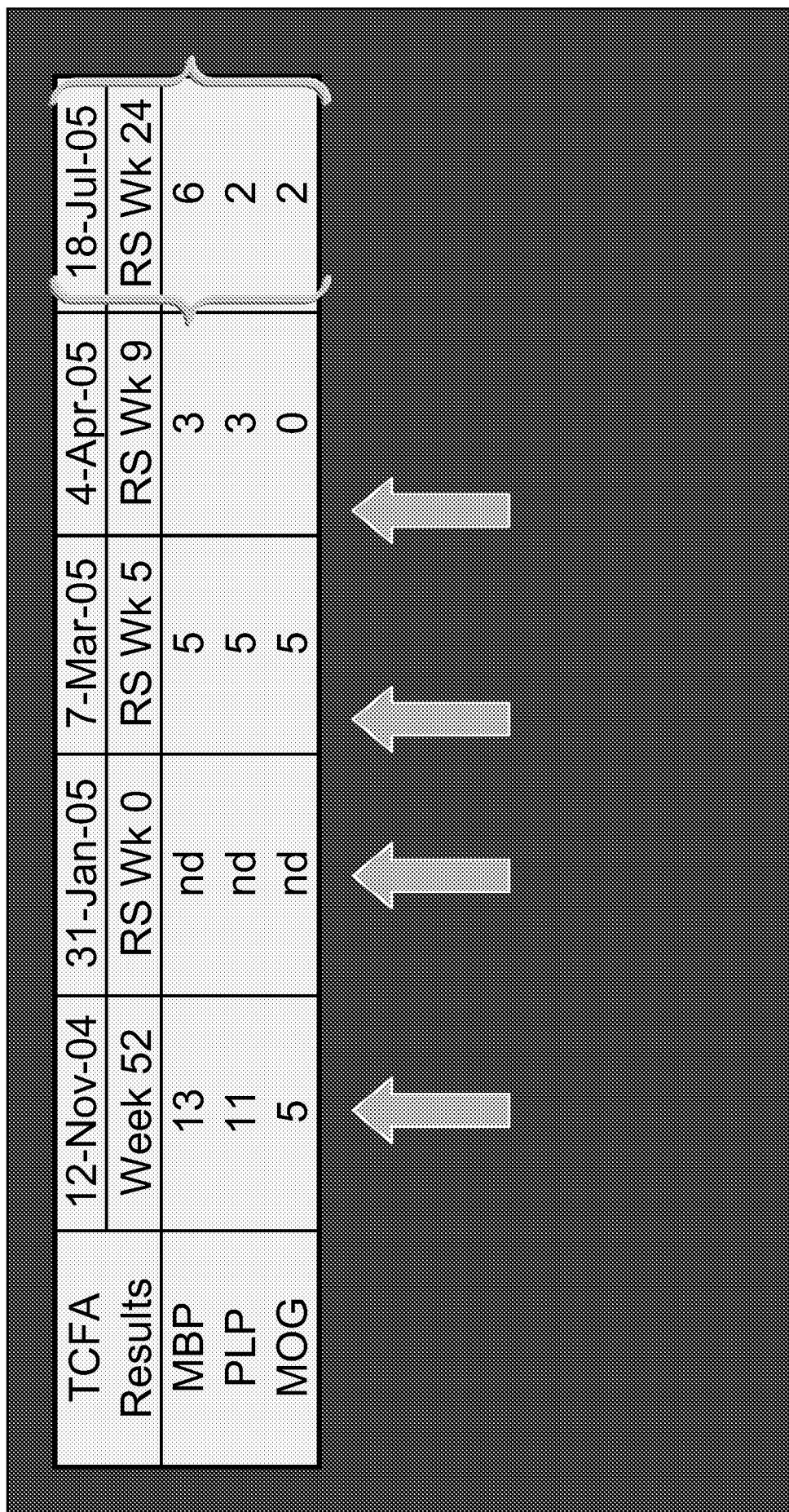


FIGURE 12

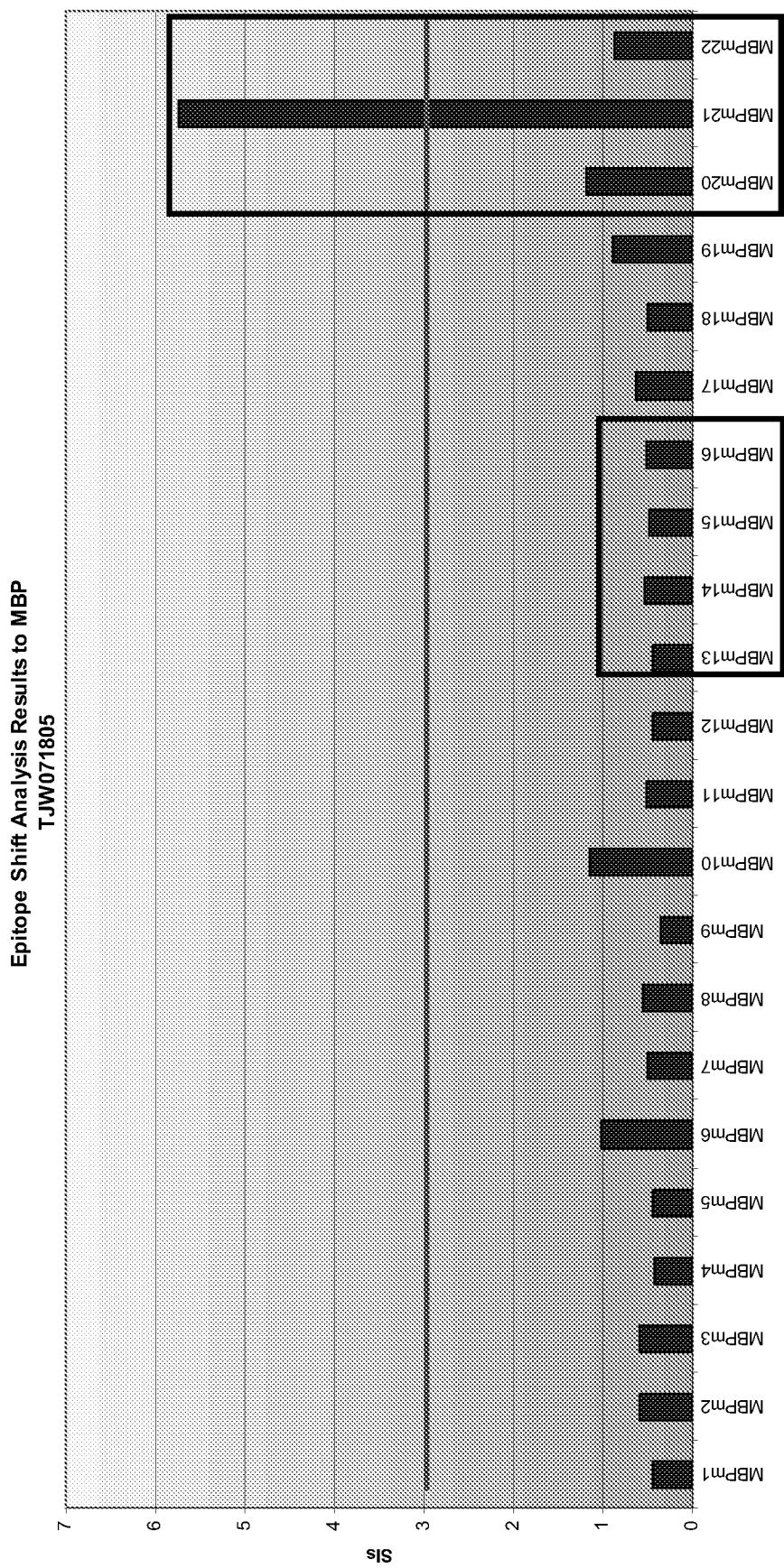


FIGURE 13

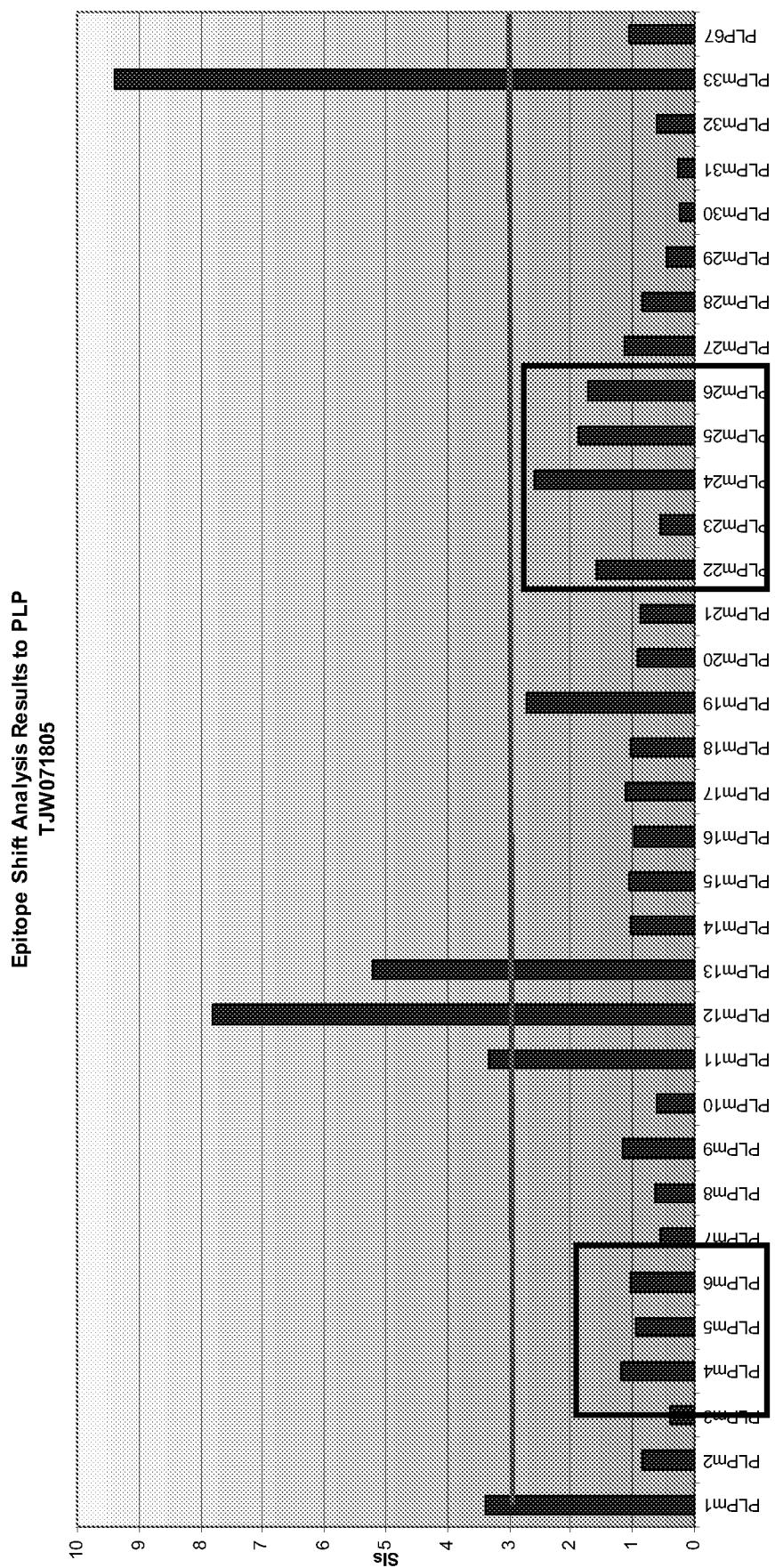


FIGURE 14

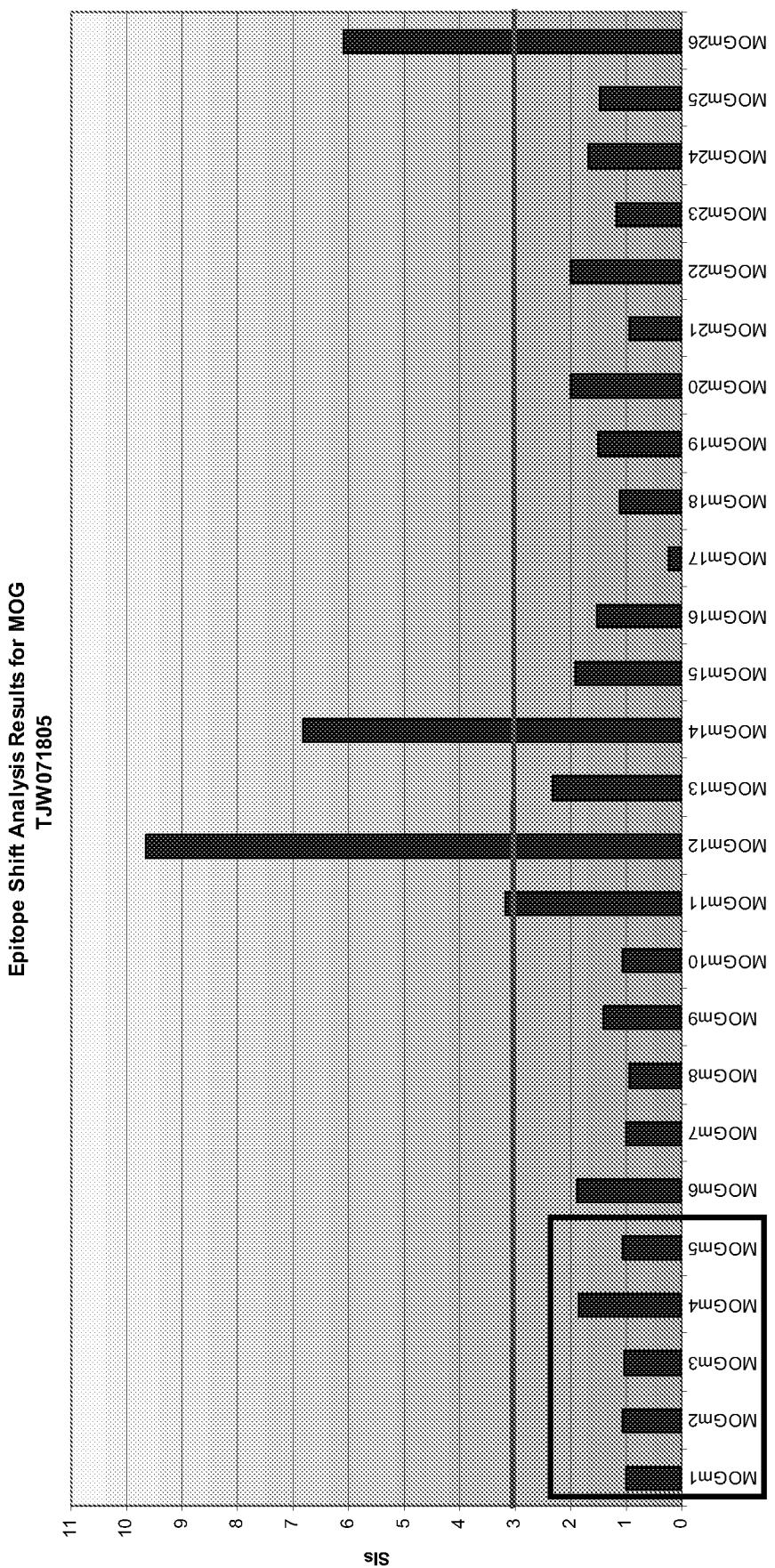


FIGURE 15

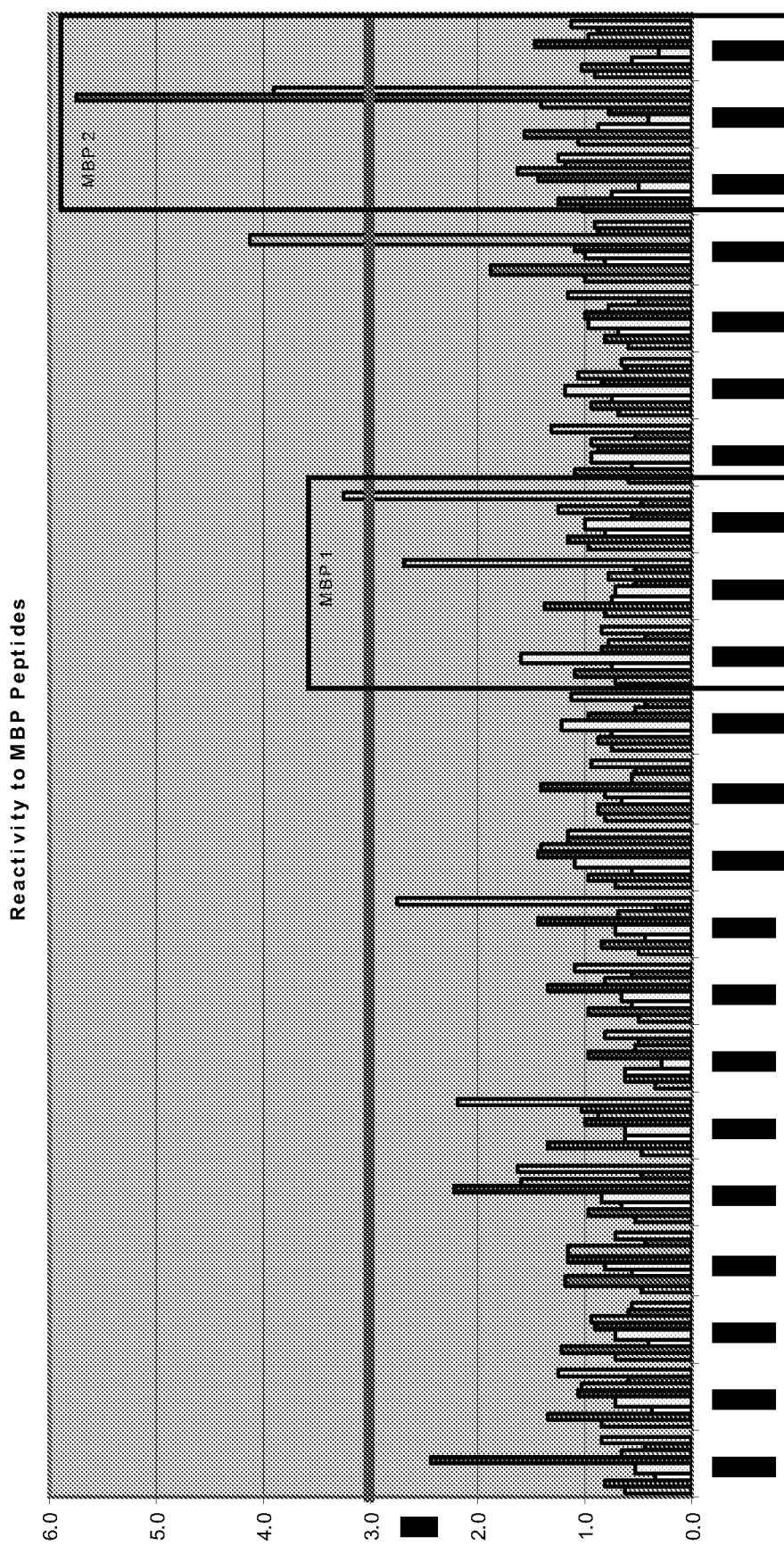


FIGURE 16

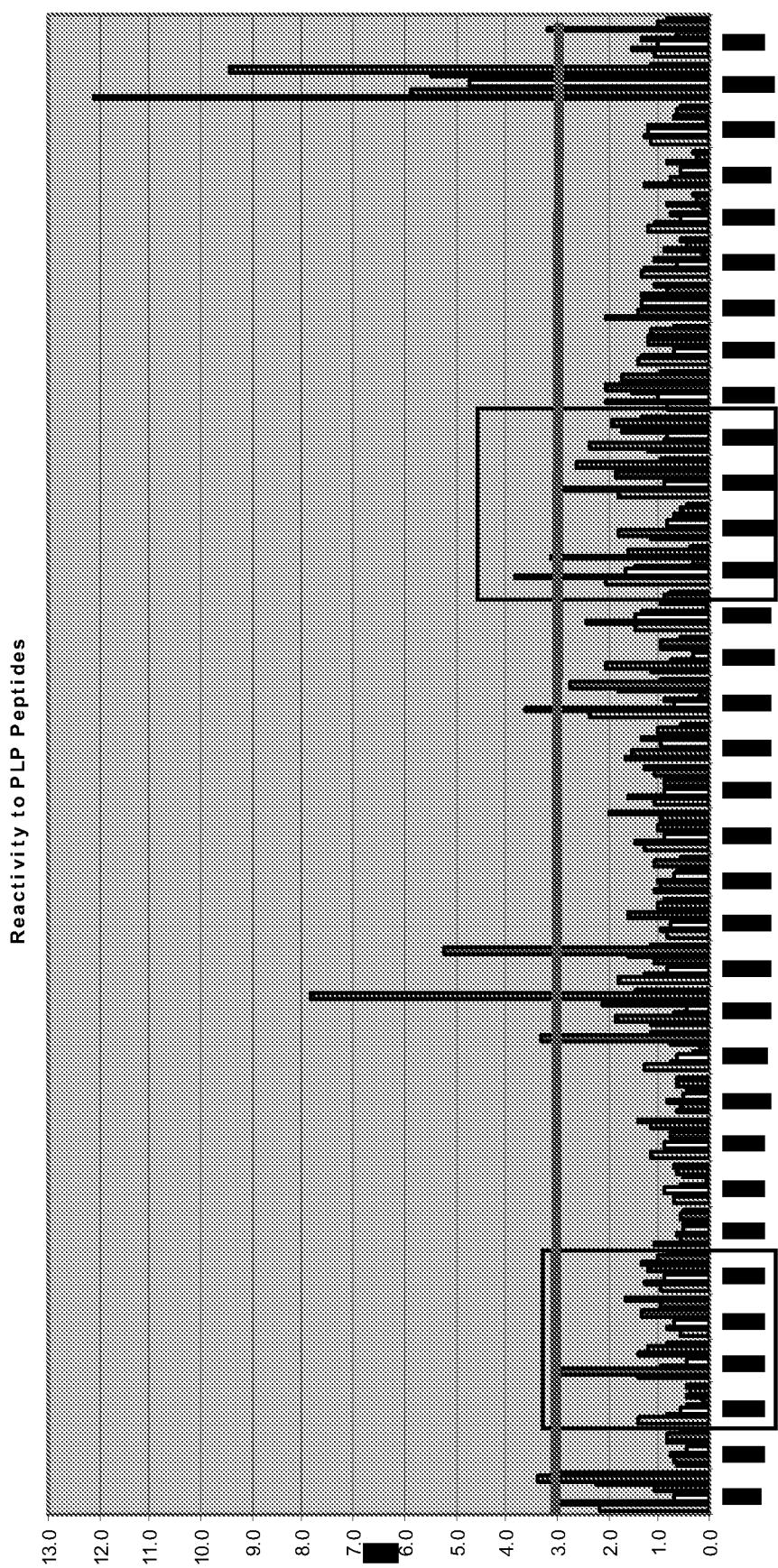


FIGURE 17

Reactivity to MOG Peptides

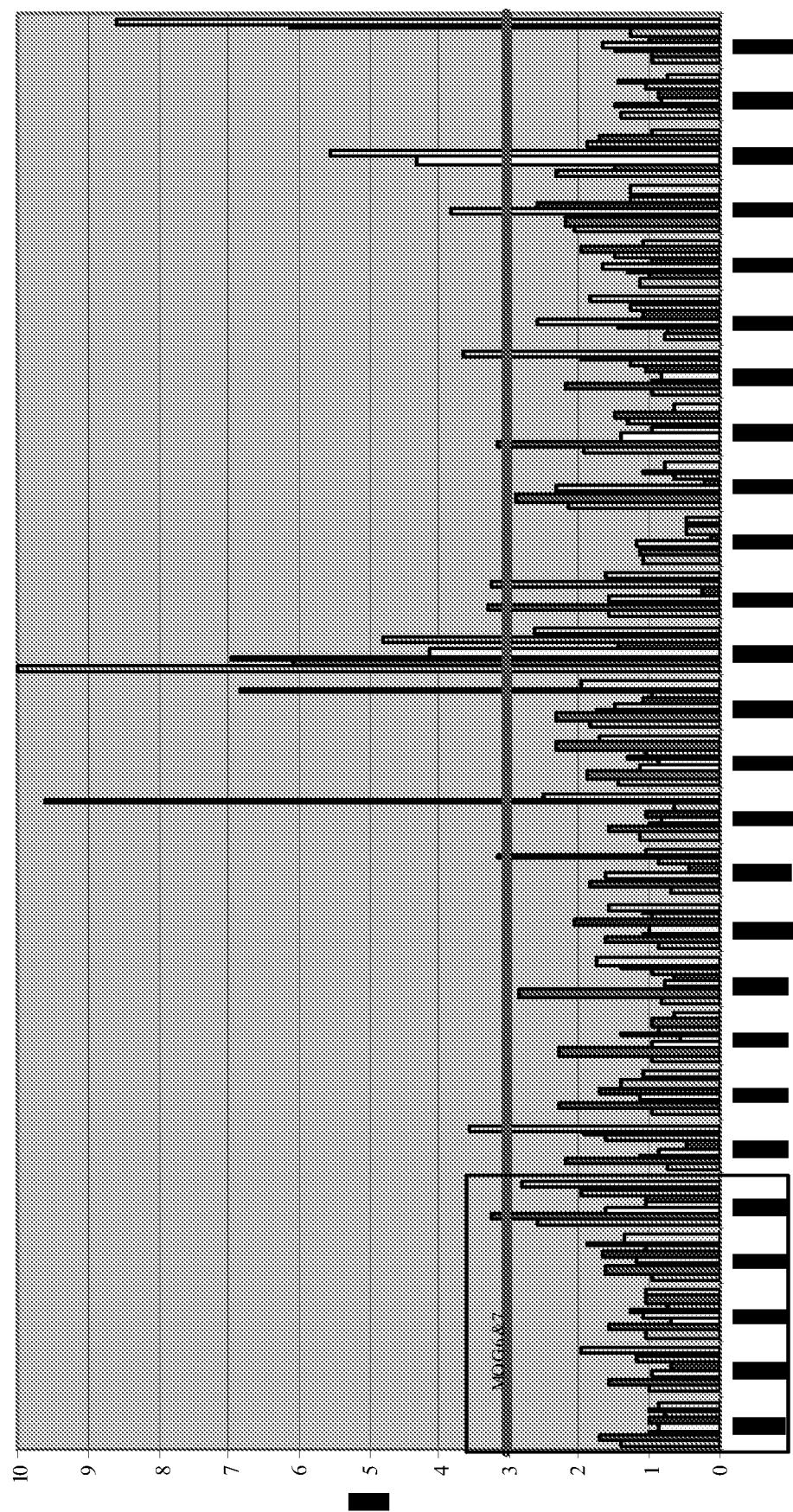


FIGURE 18

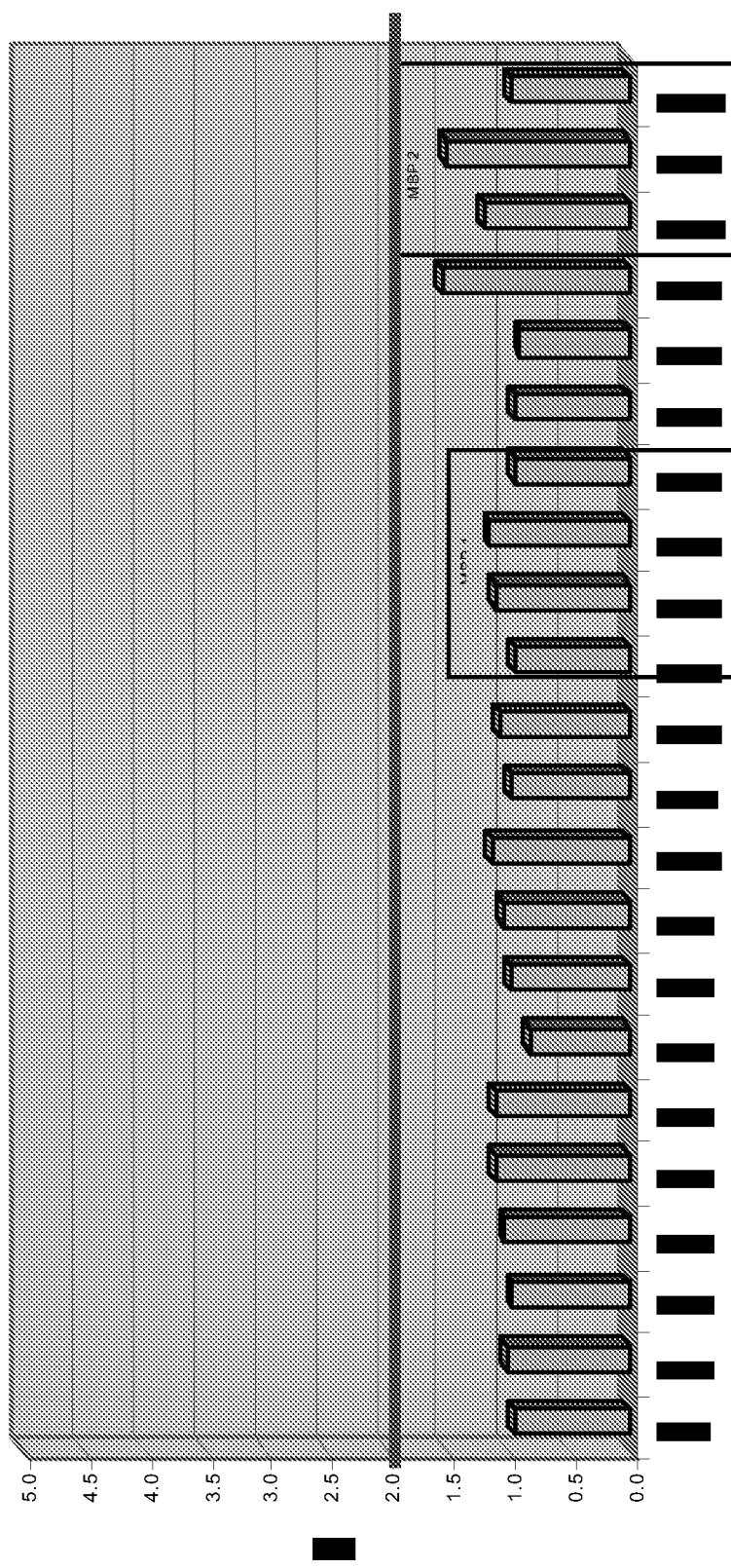

Average SI Against MBP Peptides of 15 MS Patients

FIGURE 19

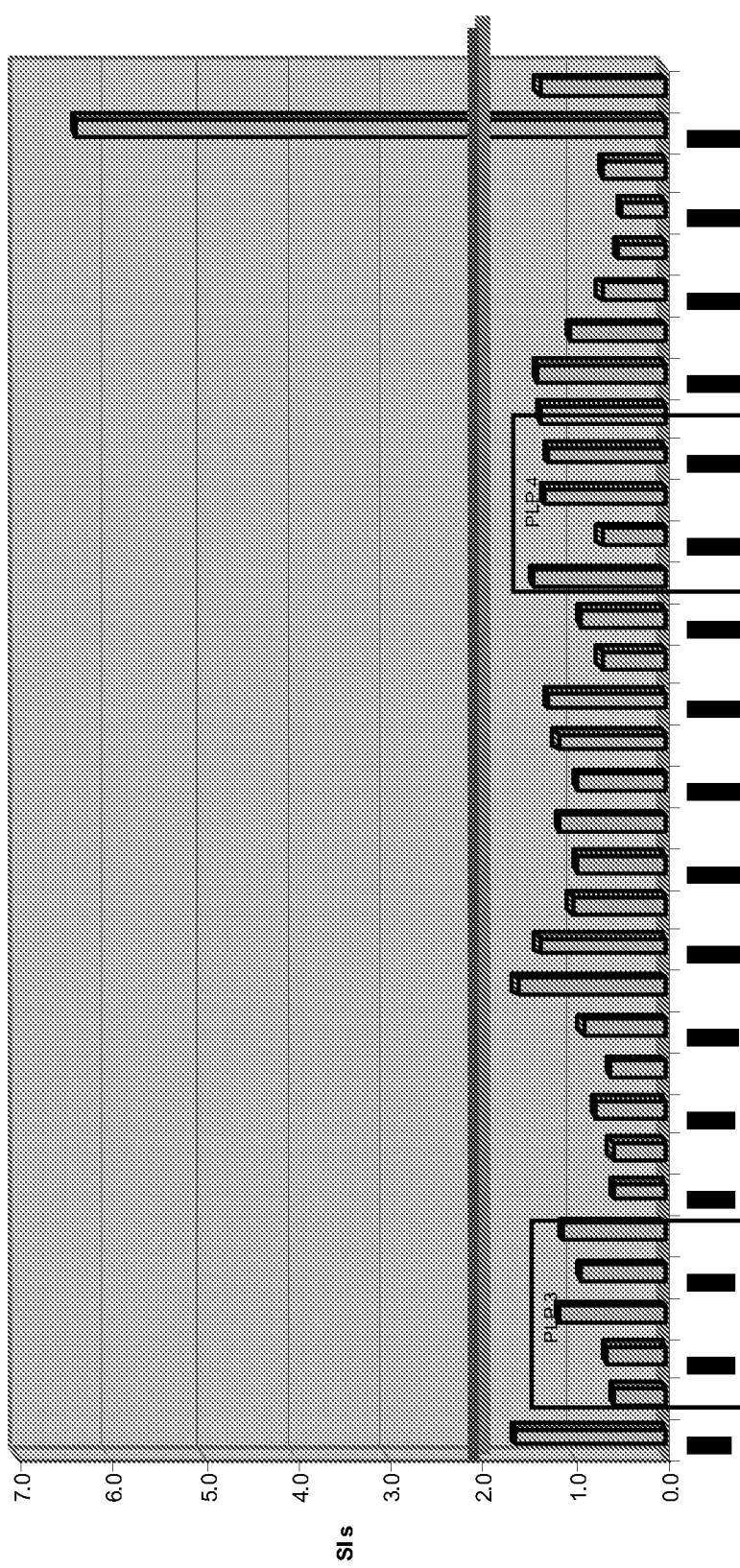

Average SI Against PLP Peptides of 15 MS Patients

FIGURE 20

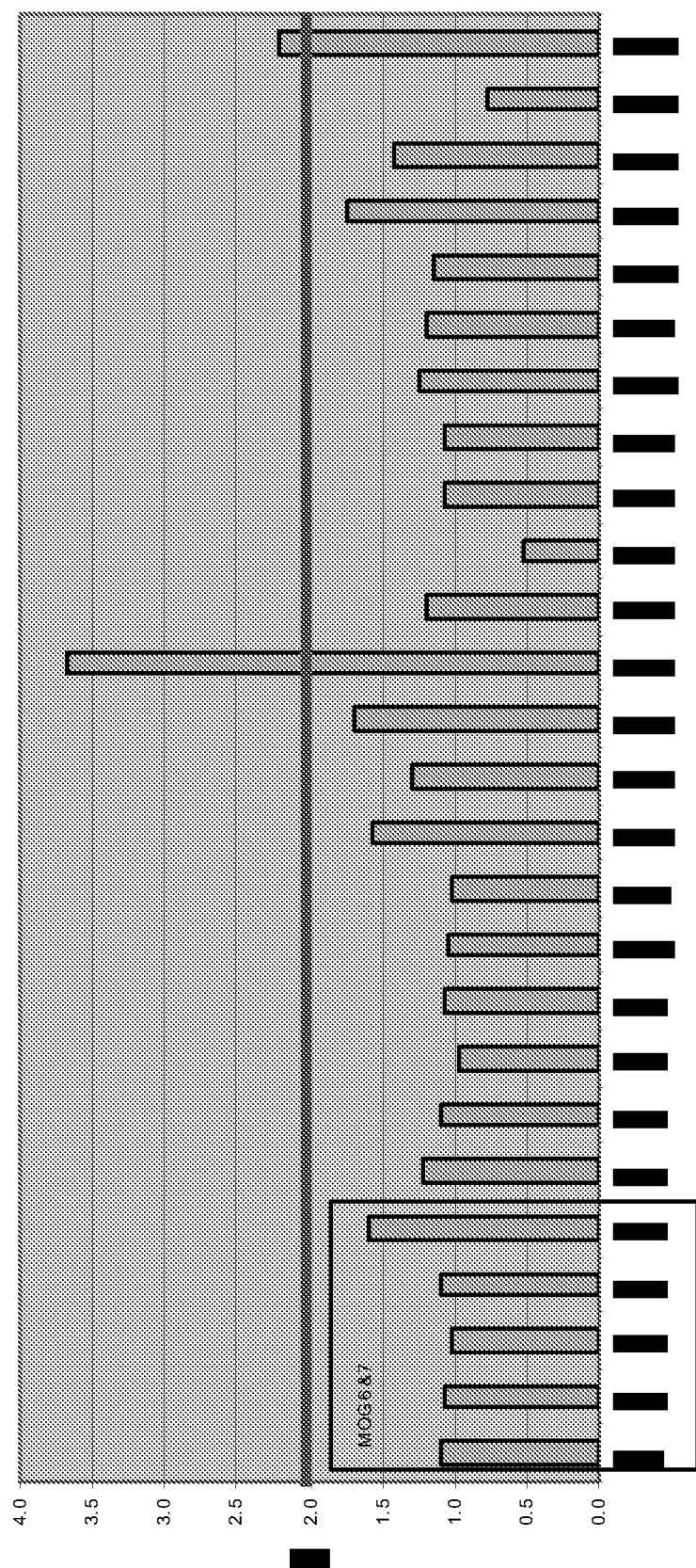

Average SI Against MOG Peptides of 15 MS Patients

FIGURE 21

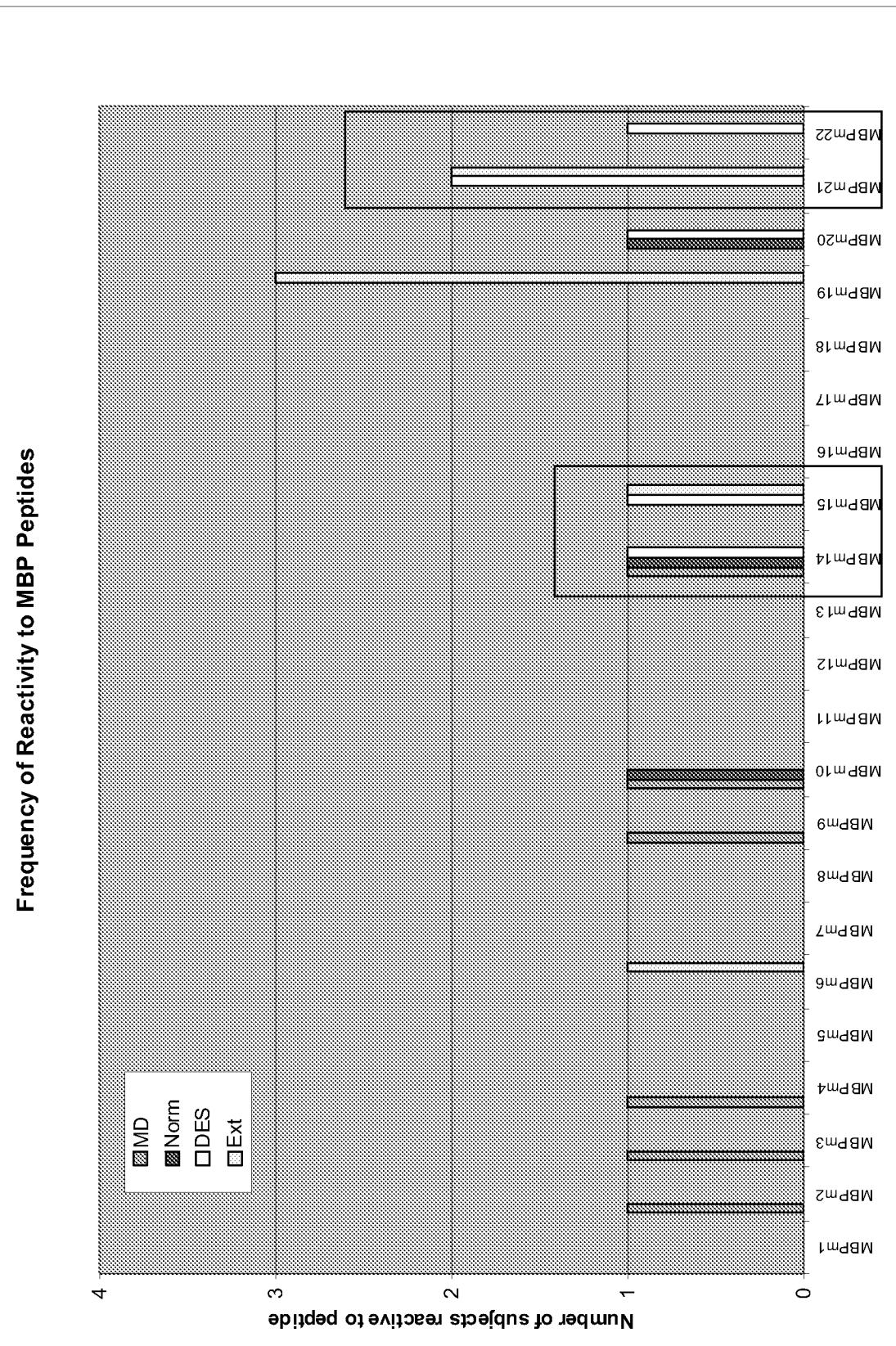


FIGURE 22

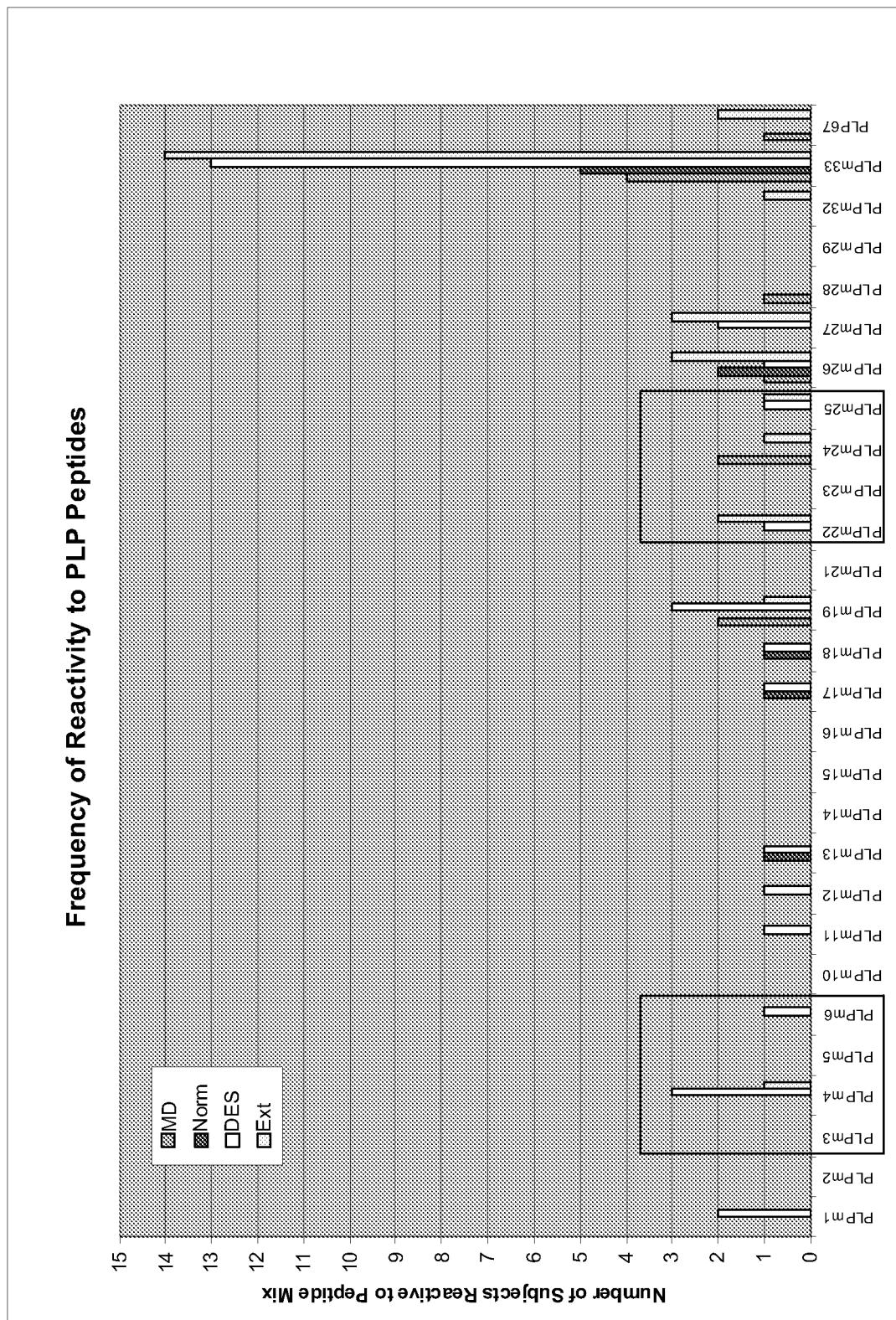


FIGURE 23

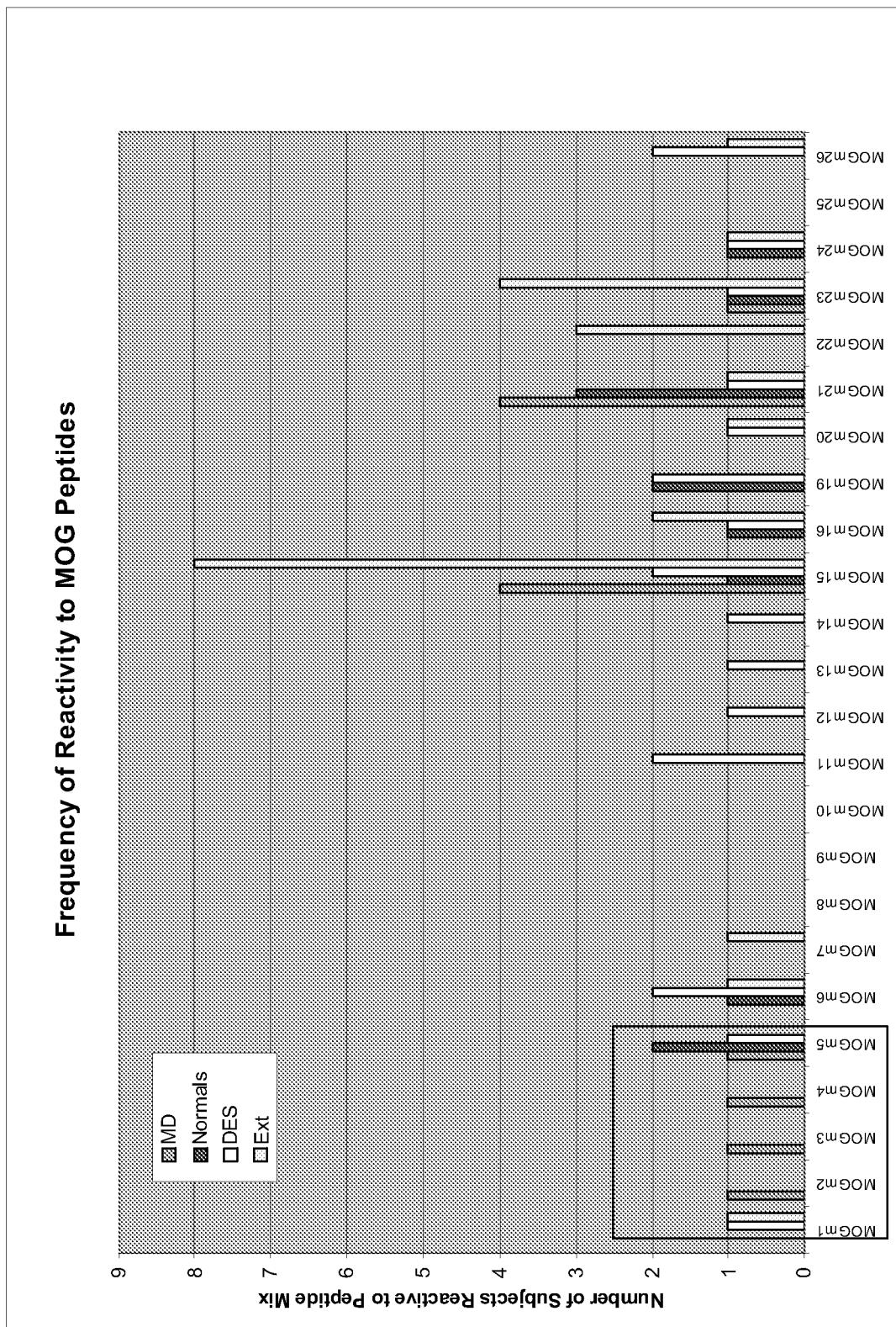


FIGURE 24

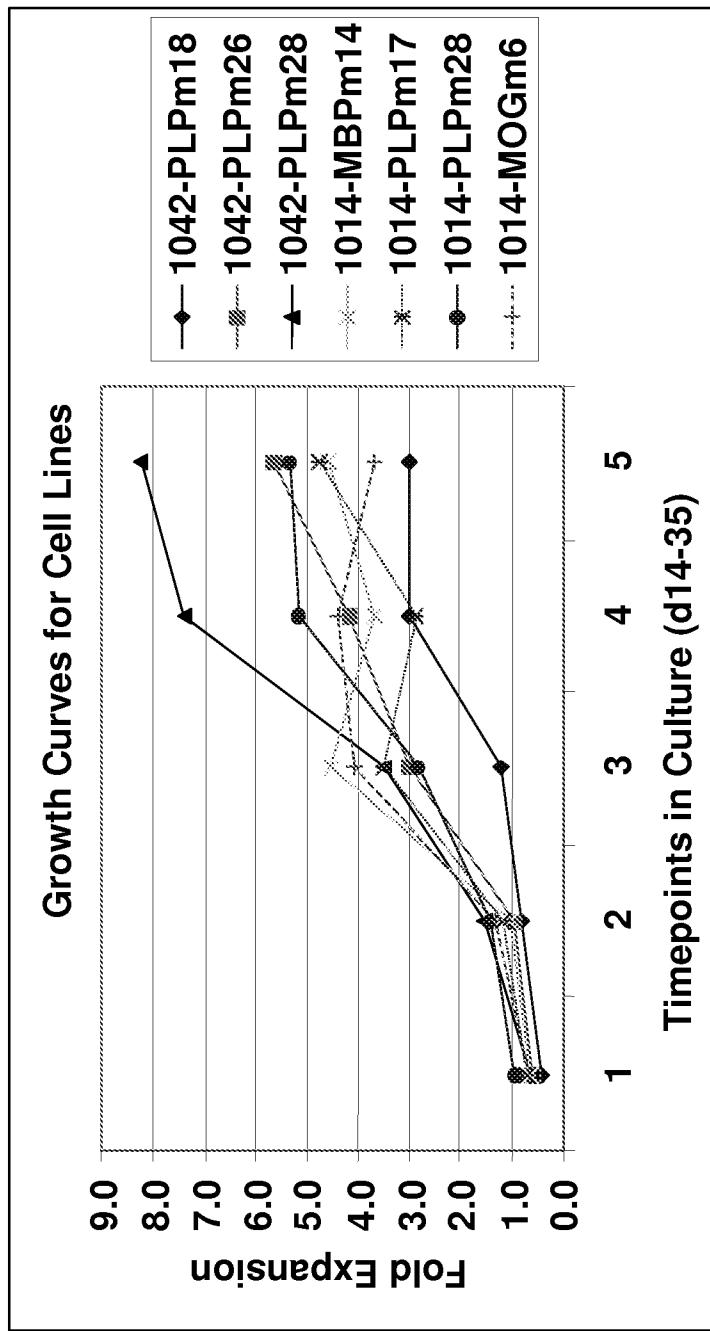


FIGURE 25B

FIGURE 25C

FIGURE 25D

FIGURE 25E

FIGURE 25F

FIGURE 25G

FIGURE 25H

FIGURE 26

FIGURE 27

	UPN	Date	10/12/05	1.0	2/1/06	1.0	3/30/06	1.0	4/27/06	1.0	5/23/06	1.0
MBPm1			1.2	1.0	1.7	1.1	1.3					
MBPm2			1.3	1.7	2.1	1.1	0.6					
MBPm3			1.2	1.4	2.9	0.7	1.2					
MBPm4			1.5	1.9	2.7	0.8	0.8					
MBPm5			1.5	1.4	2.8	1.3	0.8					
MBPm6			1.0	1.2	4.3	1.0	0.6					
MBPm7			1.1	1.5	4.0	0.9	1.3					
MBPm8			1.3	1.9	3.2	0.9	1.4					
MBPm9			1.1	1.1	1.3	1.1	1.2					
MBPm10			1.3	1.4	1.5	0.8	1.2					
MBPm11			1.1	0.9	0.9	1.0	0.6					
MBPm12			1.0	1.0	1.7	1.1	0.6					
MBPm13			1.2	1.5	2.3	3.3	0.9					
MBPm14			1.3	1.2	3.4	0.7	1.6					
MBPm15			1.2	1.6	3.4	1.1	1.5					
MBPm16			1.2	1.3	2.2	0.6	0.8					
MBPm17			1.1	0.7	1.0	0.9	0.6					
MBPm18			0.7	0.9	2.4	1.7	0.9					
MBPm19			1.3	1.8	2.2	2.6	1.1					
MBPm20			1.4	0.9	1.1	0.9	1.0					
MBPm21			1.3	0.9	1.8	0.8	0.6					
MBPm22			1.6	1.2	2.1	0.7	1.2					
PLPm1			1.4	1.1	1.0	0.5	1.1					
PLPm2			1.0	0.3	0.1	0.6	0.8					
PLPm3			1.2	0.3	0.4	0.4	0.7					
PLPm4			1.6	2.1	1.3	2.1	1.3					
PLPm5			1.1	0.3	0.4	0.6	0.6					
PLPm6			1.3	0.5	0.4	1.3	0.4					
PLPm10			0.6	0.2	0.1	0.8	0.2					
PLPm11			0.9	0.7	0.3	0.6	1.0					
PLPm12			1.5	0.8	0.5	0.5	0.8					
PLPm13			1.4	1.6	0.8	0.8	0.8					
PLPm14			1.0	1.1	0.5	1.0	0.6					
PLPm15			0.9	0.9	0.9	0.7	0.5					
PLPm16			1.2	1.1	1.0	0.9	1.8					
PLPm17			1.7	0.9	2.1	0.5	2.0					
PLPm18			2.0	1.1	1.8	0.9	1.0					
PLPm19			1.5	0.9	1.1	2.9	0.5					
PLPm21			0.9	0.3	0.3	0.4	0.5					
PLPm22			0.9	0.7	1.1	0.5	0.6					
PLPm23			1.0	1.1	0.2	0.5	1.6					
PLPm24			1.7	1.0	1.9	0.8	1.1					
PLPm25			1.3	1.3	1.1	0.7	0.6					
PLPm26			1.2	2.7	1.3	1.0	1.8					
PLPm27			1.2	1.5	2.2	1.0	1.5					
PLPm28			0.9	1.7	0.3	0.7	0.5					
PLPm29			1.0	0.1	0.1	0.9	0.4					
PLPm32			0.8	0.6	0.1	0.5	1.5					
PLPm33			3.0	1.1	2.2	8.0	1.1					
PLPm67			1.0	1.7	2.1	0.8	1.5					
MOGm1			1.2	1.2	0.6	0.8	0.6					
MOGm2			1.7	0.8	1.1	1.2	1.2					
MOGm3			1.3	1.0	0.7	0.8	0.9					
MOGm4			1.4	4.0	0.7	0.9	0.8					
MOGm5			2.6	2.0	2.5	1.0	1.4					
MOGm6			1.2	5.7	1.4	1.0	1.0					
MOGm7			1.4	0.6	0.8	1.1	1.1					
MOGm8			1.1	1.2	0.8	0.7	0.9					
MOGm9			1.4	1.5	1.5	0.9	0.4					
MOGm10			1.3	2.3	0.3	1.1	0.8					
MOGm11			1.1	1.7	0.3	1.1	0.8					
MOGm12			1.3	1.1	0.8	0.6	0.6					
MOGm13			1.4	1.2	3.5	0.7	0.8					
MOGm14			1.0	0.7	1.2	1.0	0.7					
MOGm15			1.6	2.2	2.9	3.5	1.0					
MOGm16			0.8	0.6	0.6	1.3	0.3					
MOGm19			1.1	2.1	1.0	1.0	0.9					
MOGm20			1.0	1.6	1.3	1.1	0.6					
MOGm21			2.6	3.6	2.0	1.1	1.2					
MOGm22			1.5	2.5	5.3	3.6	2.1					
MOGm23			1.1	1.3	3.2	4.4	0.6					
MOGm24			1.0	1.2	0.2	0.9	0.4					
MOGm25			0.9	2.2	0.3	0.9	1.0					
MOGm26			0.9	1.6	2.1	1.1	0.7					

	UPN	Date	8/10/05	2.0	12/5/05	2.0	8/16/06	2.0	3/24/06	2.0	5/3/06	2.0
MBPm1			0.9	0.7	0.8	0.7	1.0					
MBPm2			1.3	0.6	4.0	1.3	1.7					
MBPm3			0.8	0.5	1.5	1.6	1.3					
MBPm4			0.8	0.6	1.2	2.1	0.9					
MBPm5			1.0	1.0	1.2	2.9	1.5					
MBPm6			1.1	0.7	1.5	1.1	1.2					
MBPm7			0.7	0.9	0.9	1.1	0.9					
MBPm8			1.0	0.7	1.7	2.2	4.5					
MBPm9			1.8	0.8	2.8	1.4	0.9					
MBPm10			1.2	0.9	2.4	1.4	0.8					
MBPm11			1.2	0.9	2.4	1.4	0.8					
MBPm12			1.1	0.9	1.4	1.6	1.6					
MBPm13			1.6	0.6	2.5	1.0	2.1					
MBPm14			2.0	0.2	1.1	1.3	0.9					
MBPm15			2.1	0.6	0.9	1.2	1.0					
MBPm16			1.3	0.9	1.4	1.3	1.1					
MBPm17			1.1	0.9	1.8	1.3	0.7					
MBPm18			1.0	0.9	1.0	0.9	0.7					
MBPm19			1.3	0.7	1.0	0.9	0.9					
MBPm20			1.3	0.7	1.0	0.9	0.7					
MBPm21			1.8	0.8	2.6	3.2	0.7					
MBPm22			1.0	0.7	1.0	0.9	0.7					
MBPm23			1.3	0.4	0.3	0.2	0.4					
MBPm24			1.3	0.4	0.3	0.2	0.4					
MBPm25			1.3	0.4	0.3	0.2	0.4					
MBPm26			1.3	0.4	0.3	0.2	0.4					

	UPN	Date	7/19/05	3.0	10/12/05	3.0	10/25/05	3.0	11/30/05	3.0	3/3/06	3.0
MBPm1			0.4	1.2	1.2	0.7	0.8	0.9	0.9	1.5		
MBPm2			0.6	0.9	0.9	0.8	0.7	1.2	0.9	1.1		
MBPm3			0.6	0.9	0.9	0.6	0.8	0.9	0.9	1.0		
MBPm4			0.4	1.0	1.0	0.6	1.1	1.3	0.8	1.6		
MBPm5			0.5	1.0	1.0	0.7	0.7	1.5	1.3	1.4		
MBPm6			0.3	1.2	0.9	0.9	1.0	1.0	1.0	2.0		
MBPm7			0.3	1.2	0.9	0.9	1.0	1.0	1.0	2.0		
MBPm8			0.4	1.1	1.1	0.6	1.3	1.5	1.3	1.0		
MBPm9			0.5	1.1	1.1	0.5	0.8	0.9	1.0	1.2		
MBPm10			0.4	1.0	1.0	0.6	1.1	1.3	1.1	1.2		
MBPm11			0.3	1.1	1.1	0.6	1.0	1.2	1.0	1.2		
MBPm12			0.4	1.1	1.1	0.6	1.0	1.2	1.0	1.2		
MBPm13			0.5	1.2	1.2	0.6	1.0	1.2	1.0	1.2		
MBPm14			0.4	1.1	1.1	0.6	1.0	1.2	1.0	1.2		
MBPm15			0.5	1.1	1.1	0.6	1.0	1.2	1.0	1.2		
MBPm16			0.4									