
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0005111 A1

US 2008.0005111A1

Savage (43) Pub. Date: Jan. 3, 2008

(54) ATOMIC TRANSACTION FILE MANAGER (52) U.S. Cl. .. T07/8

(75) Inventor: Kevin J. Savage, Sammamish, WA
(US) (57) ABSTRACT

Correspondence Address: Embodiments provide developers with easy to use file
SRY. YESCROSOFT atomicity mechanisms and undo/redo functionality that are

not tied to any particular document format by using modern
SESS'YE11 US file systems. More specifically, a transaction file manager is

9 (US) configured to automatically utilize a directory name change
(73) Assignee: Microsoft Corporation, Redmond, WA operation to ensure the atomicity of file modifications (i.e.,

(US) a change to one file is either consistently applied across all
files within the directory, or not at all) without regard to any

21) Appl. No.: 11A382.248 particular file format. Further, to Support versioning of
(21) Appl. No 9 changes to multiple files, embodiments also keep the order
(22) Filed: May 8, 2006 of sets of changes by using a Sortable directory naming

mechanism within the transaction file manager. Most mod
Publication Classification ern file system will allow for these two things, thus provid

ing a system that atomically applies changes across arbitrary
(51) Int. Cl. sets of files using any file format, while also providing

G06F 7/30 (2006.01) multilevel undo/redo functionality.

100

105 --------------------------------
Transaction File Manager

Initiate 125
File Write 120

Transaction () File(s) ()

135

120

Directory VXX

Committed Store

Patent Application Publication Jan. 3, 2008 Sheet 1 of 3 US 2008/0005111 A1

Initiate
Tatton () 120

Rol D
115
to-1 Temporary Directory N. Temporary Directory

130

145

Directory VXX

Committed Store Fig.1

Patent Application Publication Jan. 3, 2008 Sheet 2 of 3 US 2008/0005111 A1

200

as N Y an 25- a N 25- 2 g 210

Save 245 Save 250 Save 255

C X () ()
260 265 270

Directory V1 Directory V2 Directory V3

Fig. 2

Patent Application Publication Jan. 3, 2008 Sheet 3 of 3

Receive File
305 Transaction

Initiation

Identify The File
310 Transaction AS

Requiring Atomic
Consistency

Automatically Create
315 A Temporary Directory

Folder For Saving in
Memory Data For The File(s)

In The File Transaction

Fig. 3

405

410

415

4 O

Receive User input
Requesting An Undo Redo
Change To A Set Of Files

ACCeSSA Set Of
Directories Related To

The Set Of Files

Select A Chosen Directory
From Set Of Directories

For Accessing A Particular
Version Of The Set

Of Files

Fig. 4

505

510

515

520

US 2008/0005111 A1

Receive An Initialization
Of A File Transaction
For A Set Of Files

ACCessing A Storage That
Includes Temporary Directory

And First Directory For Different
Versions Of The Set Of Files

Identify The File Transaction
Abnormal Terminated, Which

Indicates That At Least One File
Within The Temporary Directory
Does Not include A Change

Use The First
Directory For The
File Transaction

Fig. 5

US 2008/0005111 A1

ATOMIC TRANSACTION FILE MANAGER

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001 N/A

BACKGROUND

0002 Computerized systems provide many advantages
towards peoples’ ability to perform tasks. Indeed, the com
puter system's capacity to process information has trans
formed the way we live and work. Computers now aid in
enumerable applications such as word processing, computer
simulations, advanced gaming. Voice recognition, and much
more. Moreover, computing systems now come in a wide
variety of forms including, for example, desktop computers,
laptop computers, Personal Digital Assistants (PDAs), and
even mobile telephones and other devices.
0003) Most of today's computing systems include a file
system that incorporates a multitude of different types of
files for different types of applications and usage. Quite
frequently, the problem arises that data from these multiple
files on a single disk are somehow related, and the modifi
cation to one file may imply a desire for modification to a
different, related file. Further, it may be important to ensure
that there is no inconstancy between files after such modi
fications. As such, customers may expect atomic data integ
rity to be maintained across multiple files despite cata
strophic failures in hardware and/or software. In other
words, often times it is desirable to ensure the atomicity of
the files such that a write operation is either entirely per
formed on each related file, or not at all—even in the event
of a hardware and/or software failure.

0004) Take for example the design and implementation of
a product for consumption. A development schedule may
appear in a spreadsheet document and a technical specifi
cation may be stored in a text editing document. As can be
appreciated, both of these documents need to be kept in
sync. More specifically, the technical specification might
call out work items that also need be reflected in the spread
sheet development schedule, and vice versa. As such, it is
important to ensure that changes to one document get
reflected in the other document even in the event of com
puting failures.
0005) Modern file systems typically do not provide for
transactions (i.e., write operations) across multiple files, so
developers are on their own when it comes to handling these
cases. This can be a very challenging thing to implement,
especially if atomic data integrity is desired. For example,
one solution might be for a developer to combine both files
into a single file and then use the file name change operation
to ensure atomicity when making changes to that file. Such
integrity, however, may not be possible given functional
requirements of the particular computing system. For
instance, in the case of a text and spreadsheet document,
these file formats typically cannot be combined into one file
without losing the ability to edit them in the opposite format
and/or without writing an extensive amount of import/export
code.

0006) As an alternative, a developer may attempt to
provide a check-summing so that inconsistencies can be
detected and corrected. In such an approach, hashes or other

Jan. 3, 2008

representations of the data within each file may be used to
determine changes made to other related files, and mecha
nisms can be developed for determining specific changes for
keeping the files in sync. Similar to above, however, this
approach also requires file format changes that may not be
possible since the developer who is writing the application
may not control the file format. In addition, a large amount
of coding would be required to implement such an approach,
especially across multiple file formats—which again may or
may not even be possible.
0007 Another option might be to use a database that
supports multi-file transactions. Similar to those techniques
described above, however, this mechanism may not be
conceivable given the functional requirements of an appli
cation. Further, this approach is not trivial to implement
since it involves coming up with the right schema, Writing
database client code, etc. Accordingly, all of the above
solutions identified are labor intensive, require a great deal
of processing resources, and may be tricky to implement and
develop.

0008. In addition to keeping related multi-file atomicity,
it is also desirable to support multiple levels of undo/redo
across changes to such files. To briefly summarize, users
often make mistakes during data entry and need to be able
to revert changes, and also undo such changes. As will be
easily recognized, such undo/redo functionality has great
value, but typically requires extensive coding and other
sophisticated file formatting in order to appropriately be
implemented.

BRIEF SUMMARY

0009. The above-identified deficiencies and drawback of
current computing filing systems are overcome through
example embodiments of the present invention. For
example, embodiments described herein provide for ensur
ing atomicity for multiple writes to document(s) without
regard to any particular document format type and without
creating complex code for syncing document fields. In
addition, other embodiments provide for multiple levels of
undo/redo functionality for changes to document(s) without
regard to any particular file format type. Note that this
Summary is provided to introduce a selection of concepts in
a simplified form that are further described below in the
Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in
determining the scope of the claimed subject matter.
0010. One example embodiment provides for ensuring
atomic consistency across multiple writes to document(s)
without regard to any particular document format type. In
this embodiment, a file transaction initialization is received
for making multiple writes to file(s) located within a first
directory of a file system. The file transaction is then
identified as requiring atomicity across multiple writes to the
file(s) such that the multiple writes either succeed or fail as
a whole even with hardware and/or software failures. Based
on the required atomic consistency, a temporary directory
folder different from the first is automatically created. Note
that the temporary directory folder is used to save in
memory data to the file(s) for making the multiple writes
thereto.

0.011) Another example embodiment provides for mul
tiple levels of undo/redo functionality for changes to docu

US 2008/00051 11 A1

ment(s) without regard to any particular document format
type by using a sortable directory mechanism. In this
embodiment, user input is received requesting an undo/redo
change to a set of files. Note that the set of files are
atomically maintained Such that a change to one file must
either be consistently applied to each file within the set, or
not at all. Thereafter, a set of directories related to the set of
file(s) is accessed. Each of the set of directories includes an
atomic set of the files that were committed to permanent
storage such that each directory within the set represents a
version or writes that were atomically maintained across the
set of files. Based on the user input, a chosen directory is
selected from the set of directories for accessing a particular
version of the set of files in order to apply multiple levels of
the undo/redo changes as desired.
0012. In another example embodiment, a system is pro
vided for protecting against hardware and/or software fail
ures by rolling back to a previous version of a set of
documents based on a transaction that only partially com
pleted. Similar to above, an initialization for a file transac
tion is received for a set of files, which are atomically
maintained such that a change to one file must either be
consistently applied to each file within the set, or not at all.
Based on the initialization, a storage that includes a tempo
rary directory and a first directory for different versions of
the set of files is accessed. Note that the temporary directory
was automatically created from a previous file transaction
initialization that made a change to one of the files from the
set, while the first directory includes a copy of the set of files
without the change to any file therein. Thereafter, it is
identified that the file transaction abnormally terminated,
which indicates that one of the files from the set within the
temporary directory does not include the change such that
this change has not been atomically applied to each of the
files within the set. Accordingly, the committed directory is
used for the file transaction such that set of files rolls-back
to the version without the change to any file within the set.
0013 Additional features and advantages of the inven
tion will be set forth in the description which follows, and
in part will be obvious from the description, or may be
learned by the practice of the invention. The features and
advantages of the invention may be realized and obtained by
means of the instruments and combinations particularly
pointed out in the appended claims. These and other features
of the present invention will become more fully apparent
from the following description and appended claims, or may
be learned by the practice of the invention as set forth
hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

0014. In order to describe the manner in which the
above-recited and other advantageous features of the inven
tion can be obtained, a more particular description of the
invention briefly described above will be rendered by ref
erence to specific embodiments thereof which are illustrated
in the appended drawings. Understanding that these draw
ings depict only typical embodiments of the invention and
are not therefore to be considered to be limiting of its scope,
the invention will be described and explained with addi
tional specificity and detail through the use of the accom
panying drawings in which:
0.015 FIG. 1 illustrates a transaction file manager used
for ensuring atomicity across multiple writes to document(s)
in accordance with example embodiments;

Jan. 3, 2008

0016 FIG. 2 illustrates a file system used for undo/redo
functionality for changes to documents in accordance with
example embodiments;
0017 FIG. 3 illustrates a flow diagram of a method of
ensuring atomic consistency for multiple writes across docu
ment(s) without regard to any particular document format
type in accordance with example embodiments;
0018 FIG. 4 illustrates a flow diagram of a method of
providing multiple levels of undo/redo functionality for
changes to documents in accordance with example embodi
ments; and
0.019 FIG. 5 illustrates a flow diagram for a method of
protecting against hardware and/or software failures by
rolling back to a previous version of a set of documents
based on a transaction that only partially completed in
accordance with example embodiments.

DETAILED DESCRIPTION

0020. The present invention extends to methods, systems,
and computer program products for ensuring atomicity and
providing multilevels of undo/redo functionality for mul
tiple writes across document(s) without regard to any par
ticular document format type and without creating complex
code for syncing document fields. The embodiments of the
present invention may comprise a special purpose or gen
eral-purpose computer including various computer hardware
or modules, as discussed in greater detail below.
0021. The above-identified deficiencies and drawbacks of
current filing systems are overcome through embodiments
that provide developers with easy to use mechanisms that
are not tied to any particular document format and that
ensure consistency across multiple writes to multiple docu
ments (or even a single document) using modern file sys
tems. Embodiments provide for a transaction file manager
configured to automatically utilize a directory name change
operation to ensure the atomicity of file modifications (i.e.,
a change to one file is either consistently applied across all
files within the directory, or not at all) without regard to any
particular file format. Existing code provided by developers
that attempts to keep changes or writes to files consistent
may utilize embodiments described herein; however, files
for Such existing schemes should typically be written to a
directory provided by the transaction file manager (whose
root path may be supplied by the developer (or other) using
this scheme).
0022. To support versioning of changes to multiple files,
embodiments also keep the order of sets of changes by using
a Sortable directory naming mechanism within the transac
tion file manager. This embodiment assumes the atomicity of
the directory name change operation described above, and
also ensures the order of directory name changes (or some
other identifier) so that the sort order of the directory names
can be used as a versioning scheme.
0023. Most modern file system will allow for these two
things, thus providing a system that atomically applies
changes across arbitrary sets of files using any file format,
while also providing multilevel undo/redo functionality. As
Such, minimal modifications may be needed to existing
applications, which provides a large advantage in terms of
development time savings over attempting an approach
customized for a particular application (i.e., embodiments

US 2008/00051 11 A1

provide for atomicity across multiple writes to a set of files,
without regard to a particular file format and without cre
ating complex code for syncing document fields). Although
in some instances, this mechanism may not be a first choice
depending upon the size of the file and performance require
ments of a particular user, with modern disk speeds this
approach is a viable option that provides significant develop
time savings.

0024. Although more specific reference to advantageous
features are described in greater detail below with regards to
the Figures, embodiments within the scope of the present
invention also include computer-readable media for carrying
or having computer-executable instructions or data struc
tures stored thereon. Such computer-readable media can be
any available media that can be accessed by a general
purpose or special purpose computer. By way of example,
and not limitation, such computer-readable media can com
prise RAM, ROM, EEPROM, CD-ROM or other optical
disk storage, magnetic disk storage or other magnetic Stor
age devices, or any other medium which can be used to carry
or store desired program code means in the form of com
puter-executable instructions or data structures and which
can be accessed by a general purpose or special purpose
computer. When information is transferred or provided over
a network or another communications connection (either
hardwired, wireless, or a combination of hardwired or
wireless) to a computer, the computer properly views the
connection as a computer-readable medium. Thus, any Such
connection is properly termed a computer-readable medium.
Combinations of the above should also be included within
the scope of computer-readable media.

0.025 Computer-executable instructions comprise, for
example, instructions and data which cause a general pur
pose computer, special purpose computer, or special purpose
processing device to perform a certain function or group of
functions. Although the subject matter has been described in
language specific to structural features and/or methodologi
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

0026. As used herein, the term “module' or “component'
can refer to software objects or routines that execute on the
computing system. The different components, modules,
engines, and services described herein may be implemented
as objects or processes that execute on the computing system
(e.g., as separate threads). While the system and methods
described herein are preferably implemented in software,
implementations in hardware or a combination of Software
and hardware are also possible and contemplated. In this
description, a "computing entity” may be any computing
system as previously defined herein, or any module or
combination of modulates running on a computing system.

0027 FIG. 1 illustrates a system for protecting the integ
rity of changes across multiple files of potentially different
and arbitrary file formats in accordance with embodiments
herein described. As shown, a computing or filing system
100 includes a transaction file manager 110 that monitors the
writes or modifications to files or documents of various
format types. In this embodiment, a notice 105 is received to
initiate a file transaction, which may be any well known

Jan. 3, 2008

transaction type, e.g., creating a file, opening a file, editing
a file, closing a file, or any other mechanism for activating
a file for making changes thereto.

0028 Note that the file or documents formats may be any
arbitrary type of text document, spreadsheet, or other file
format that includes data that can be modified. Nevertheless,
it is worth noting that embodiments are not directed towards
providing mechanisms for identifying what data needs to be
changed within various types of documents. Rather, embodi
ments currently described are directed towards ensuring the
atomicity of a set of files through a directory naming and
management system. In other words, embodiments protect
the integrity of changes across multiple files of potentially
different and arbitrary file format, without having to make
extensive modifications to the part of software that performs
writes on individual files. The only requirement is that these
files get written out to a specific directory as described
below.

0029. In any event, upon initiation of the file transaction
105, transaction file manager 110 automatically creates a
temporary directory 115 (e.g., named as “Directo
ry VTemp'). Note that typically a developer will specify the
naming convention used for the transaction set, thus pro
viding a root path for the temporary 115 and other such
directories managed by the transaction file manager 110. For
example, typically when initializing a transaction a user will
specify the file group name and root directory prior to
executing a set of related transactions. However, in other
embodiments the group file name and root directory or path
may be a default one defined by the transaction file manager
110 or otherwise provided in any other well known manner.

0030 Upon initialization of a file transaction 105, the
transaction file manager 110 searches the committed Store
135 or otherwise looks for a previous transaction that may
have only partially completed during some form of hardware
or/and software failure (which is typically a catastrophic
failure that causes the system to crash). The transaction file
manager 110 then returns a Boolean to the user indicating if
any intact versions where found. If a partially intact version
is discovered, transaction file manager 110 is also configured
to rollback the partially completed transactions such that the
consistency is ensured for files that are to be atomically
maintained. In other words the transaction file manger 110
determines what version of a directory 145 within commit
ted store 135 should be used when the file transaction 105 is
initiated based on the atomicity needed for the desired files
(i.e., changes must consistently be applied among all files, or
not at all).
0031. Note that although typically the atomic changes as
described herein appear across multiple files, there may be
instances when changes for a single file must also atomically
be applied. For example, there may be instance where a set
of data needs to be included within a file, or otherwise the
data should not appear at all if any one piece of the data is
missing within the file. As such, embodiments described
herein also contemplate using the directory name changing
mechanism for ensuring atomicity of multiple writes (as
well as the undo/redo functionality described below) to a
single document in order to protect against hardware and/or
software failures. Although the following description will
typically refer to the data atomicity and other operations for
multiple related files, such reference is used herein for

US 2008/00051 11 A1

illustrative purposes only and is not meant to limit or
otherwise narrow the scope of embodiments unless explic
itly claimed. In addition, it should be noted that the changes
or writes 130 may refer to creation of files 120, as well as
modification to existing files 120. Accordingly, when
describing modification or changes made to files. Such
descriptions should be broadly construed to include the
addition or creation of files, which relate to other files within
the system that needed to be synced.

0032. In any event, once the file set is identified that the
file transaction 105 is directed towards, a temporary direc
tory 115 is automatically created for making writes to the
corresponding files. Accordingly, as writes 125 are made the
temporary directory 115 is filled with copies of the docu
ments 120 with the appropriate changes made thereto. These
writes to the files 120 are repeated as indicated in recycling
indicator 130 until either all of the files have been appro
priately modified or updated 120, the developer or user
indicates that the writes should be committed, and/or some
catastrophic hardware and/or software failure occurs. In the
event that the write file(s) 125 have been consistently or
atomically applied 130 to all the appropriate related files
120, and/or the developer otherwise indicates that the writes
should be committed, the temporary directory 115 can be
committed to store 145 and renamed to a particular directory
version 145 as will be described in greater detail below.

0033. In other words, upon the initiation 105 of a trans
action, the transaction file manager 110 creates a temporary
directory 115 in a root path of a directory typically provided
by the developer, wherein the full path of the temporary
directory 115 may be returned to the caller. The developer or
application uses the temporary directory 115 for saving
in-memory data to multiple, related on-disk files during the
transaction 130. When satisfied, the user can tell the trans
action file manager 110 to commit the transaction, wherein
a new version name (or other renaming mechanism) for the
committed directory 145 is created based off the transaction
set name and a current version known to the transaction file
manger 110. That is, the temporary directory 115 is renamed
to the new version name (in this instance “Directory VXX'.
where “XX' indicates a specific version type) when commit
ted, thus atomically maintaining the file changes across the
multiple or single files as previously described.

0034) Note that although a versioning name was used for
the renaming mechanism, embodiments herein may also
apply to other naming conventions. Accordingly, the use of
the renaming to specific versions based on a previous
version name as described herein is for illustrative purposes
only and is not meant to limit or otherwise narrow the scope
of embodiments unless explicitly claimed. Nevertheless, as
will be described in greater detail below, using a versioning
type naming provides for a Sortable (e.g., numerical) naming
convention that may be used for rollback and other undo/
redo purposes.

0035. As mentioned above, the transaction file manager
110 also includes a rollback mechanism for catastrophic or
other hardware and/or software failures. Rather than com
mitting the transaction described above, the developer may
wish to rollback to a previous version. In such instance, the
transaction file manager 110 provides rollback functionality
that can be called after the transaction start, but in lieu of
transaction commit (where the renaming of the temporary

Jan. 3, 2008

directory 115 occurs). Typically, in such rollback situation,
the transaction file manager 110 deletes the temporary
directory 115 along with all of its contents 120.

0036) Also note that if upon initialization of a file trans
action 105, transaction file manager 110 determines that a
temporary directory 115 already exists, the transaction file
manager 110 may assume that a catastrophic or other
hardware and/or software failure occurred. In other words, it
may be assumed that a previous transaction only partially
completed, indicating that atomicity does not exists across
the files (or file) as desired. In such case, the temporary
directory 115 should be removed. The transaction file man
ager 110 can now access the last (or other) known good
committed directory 145, if one exists. Note, however, that
typically a catastrophic hardware and/or software failure
will cause the temporary directory 115 to automatically be
lost, so there may not be a need for this rollback feature.
Instead, the transaction file manager 110 simply identifies
the latest directory version used or committed 145 and
reports this to the user or otherwise uses it 145 for com
pleting the transaction request 105.

0037. It should be noted that one way to determine that a
file transaction 105 abnormally terminated is by identifying
the presence of a temporary directory 115 while not pres
ently processing a transaction 105 (either at the beginning of
a transaction or at Some other time). As such, the consistency
and atomicity across file operations for the previous trans
action cannot be guaranteed. In other words, a simple way
to determine if the previous transaction 105 failed is to see
if the temporary directory 115 exists, e.g., at the beginning
of a new transaction 105. This enables the transaction file
manager 110 to determine the hardware and/or software
failure without having to understand anything about the
contents of the directory, which can be left to the application
(user) making the changes. This mechanism if very powerful
because it requires far less modification to the application
(user) code in order to integrate with the transaction file
manager 110. Nevertheless, other embodiments herein are
not limited to identifying hardware/software failures in this
particular manner, and other well known mechanisms and
techniques are also contemplated herein for identifying
when not to trust the data within a temporary directory 115.

0038 Further note that there may be other instances in
which the transaction file manager 115 may implement the
rollback functionality described herein. For example, the
transaction file manager 110 may run a background task that
has a global component that goes and checks for the exist
ence of other left-over files from different sets of transaction
operations (i.e., files that were part of a previous transaction
that were not committed). Accordingly, in Summary, there
are generally three instances that transaction file manager
110 might perform a rollback operation, which include: (1)
upon initiation of a new transaction when it notices that a
temporary directory 115 from a previous transaction is
hanging around; (2) when the user explicitly calls cancel/
rollback to the transaction file manager 110 in the middle of
a transaction 105; and (3) as a background task that a
running transaction file manager 110 might perform after it
has been initialized. Nevertheless, there may be other

US 2008/00051 11 A1

instances in which the rollback functionality may be imple
mented. Accordingly, the above list of instances for when
this rollback feature is advantageously used is not meant to
be exhaustive; and therefore is not meant to limit or other
wise narrow the scope of embodiments unless otherwise
explicitly claimed.
0.039 Embodiments also provide for an undo/redo
mechanism that can advantageously flip-flop directories to a
particular version as desired. For example, as shown in FIG.
2, a computing system 200 includes various data structures
that are changed in accordance with embodiments described
previously above. For example, data structure 205 in a first
form can be saved 245 to a directory 260 under the version
naming convention “Directory V1, where “V1 indicates
the first committed version in the committed store 135. Data
structure 205 can then be edited 210 to create a new data
structure 220 that is then saved 205 in committed store 135
as directory 265 named “Directory V2. Note that typically
the root path for these directories 260, 265 will be the same.
Further, other edits 225 can be made to data structure 230
that may or may not be committed or otherwise saved.
Nevertheless, in this example further edits 235 produce a
third data structure 240 that can be then saved 255 as
“Directory V3270.
0040. A user may now be presented with an application
interface providing various options to Switch between the
three directories (i.e., Directory V1260, Directory V2265,
and Directory V3270) as desired. Note that although the
naming convention is used to identify the various versions of
the directories, other mechanisms such as time and date and
any other well known naming schemes or identifiers could
be used for determining and presenting a user with options
for undo/redo purposes. For instance, rather than using
numerals for the various versions, the version may be listed
in alphabetical order or have any other conventional mark
ing mechanism to determine ordering of the directories.
Accordingly, any particular naming convention or identifier
used for undo/redo purposes described herein is for illus
trative purposes only. Nevertheless, note that only commit
ted versions of the data structures are saved as directory
versions, and thus the user can be assured that the one or
more files within the various directories are atomically
maintained Such that changes within one file occur across all
of the files within that particular directory.
0041. In the above embodiments, a developer or user may
optionally decide to delete any of the previous versions in
any particular order depending upon the requirements of an
application or as the user desires. For example, the devel
oper could opt to delete all but the latest version (committed
last version), delete all but the earliest version (revert to the
first version), and/or delete just the last version (revert one
change backwards). Such options for which versions can be
saved and delete may be based on configuration or other
settings defined by the transaction file manager 110. Alter
natively, or in conjunction, Such options may be based on
policy considerations or desires from the developer. For
instance, the developer may set up policies that directories
past a certain date or of a certain size should always be
deleted. Of course, any of the various versions provided
from the various directories can be saved and otherwise
deleted as desired by the developer or user.
0042. Note that the above approach protects the integrity
of changes across multiple files (or potentially within a

Jan. 3, 2008

single file) of various and arbitrary file formats whose files
are managed by the underlining file or transaction file
manager 110. Accordingly, embodiments provide the ability
to perform transaction file writes across multiple files of
different file formats without having to make extensive
modifications to particular software that performs writes on
individual files—other then requiring that these files get
written out to the same directory (which starts as a tempo
rary directory 115 until committed 145).

0043 Also, embodiments provide for the ability to ret
rofit an application fairly easily to Support the above features
using pre-existing implementations that use this approach.
In other words, the multi-file transaction manager 110 can
get called once prior to making multiple writes to start the
transaction 105, and once at the end of the transaction 105.
The code that writes out changes to individual files does not
necessarily need to be modified, and no file format changes
are necessarily required. Further note that no special file
naming scheme is required. In fact, as mentioned above, the
only need is for the writes to occur within a common
directory (e.g., temporary directory 115), whose path and
name are typically provided by the transaction file manager
110, while the upper components of the path may be
specified by the developer who is using the transaction file
manger 110.

0044) Note that a potential limitation of some of the
embodiments described herein is that typically related files
are stored in a Subdirectory partially managed by the trans
action file manager 110, which may take away some control
from the application and the user in terms of where files are
saved. Accordingly, if this control is needed, other embodi
ments perform an initial copy or move of the relevant files
to a directory managed by the transaction file manager 110
from the desired end location(s) for these files, followed by
a final copy or move operation at the end of the transaction
back to the desired location(s). Depending on the particular
scenario, these initial and final moves/copies may not sig
nificantly detract from the benefits of the transaction file
manager 110 and other embodiments described herein.

0045. In addition, embodiments described herein provide
the ability to Support undo and redo without adding any
additional restrictions in terms of file format changes, etc.
Accordingly, this approach can be built upon to provide
versioning Support of undo/redo functionality to the end
USC.

0046) The following provides some pseudo code for an
application program interface (API) that gives an example of
one that may be exposed to the developer and allow the
functionality of the transaction file manager 110. Note that
the following pseudo code is a representation of one API that
may be used to practice embodiments describe herein;
however, as one would appreciate there may be any number
of similar type codes that can be used to implement various
advantageous features as described herein. Accordingly, the
following pseudo code and description thereof is used for
illustrated purposes only and is not meant to limit or
otherwise narrow the scope of embodiments herein.

US 2008/00051 11 A1

Transaction File Manager API

Part 1 & 2
class FileTransactionManager : IDisposable

public File:TransactionManager();
Part 3

... <values-Lastest version</values
public String LatestVersion;

... <values-Count of the number of versions</values
public Int32 Count:

Part S

Jan. 3, 2008

if f <param name="groupNameParameter-Name to give to file group. Used as
the prefix to the file group versions, which are stored as directory names.<?parame

will be stored.<?params
fi, <returns>Whether prior versions were found.</returns>
public Boolean Initialize(

String groupNameParameter,
String rootDirectory Parameter);

Part 6
public void Dispose();

Part 7
fi, <returns>Temporary directory name where client should write any

files it wishes toinclude in the transaction</returns>
public String BeginTransaction();

Part 8

group version directory name</summary>
public void CommitTransaction();

Part 9
public void RollbackTransaction();

o revert</returns
public Boolean RevertToFirstVersion();

o revert</returns
public Boolean RevertLatestVersion();

o revert</returns
public Boolean EliminateAllButLatestVersion();

public void CollapseLastTwoCommits();

0047. Note that part one and two of the pseudo code
creates an instance of the transaction file manager. In part
three, the latest version of the directory or files may be
returned. In this embodiment, any well known mechanisms
for identifying the latest or desired version can be incorpo
rated. For example, in the case where undo/redo or other
various rollbacks has occurred, rather then acquiring the
latest version, it may be desirable to mark some other current
directory as including the desired files.

0.048. In part four of the pseudo code, the count of the
number of versions may also be retrieved and presented to
the user. Part five includes an initialize operation that is
called prior to the beginning of a transaction initiation. The
initialize operation allows the user to specify the root
directory where subdirectories and files managed by the
transaction file manager are placed and the name prefix/
suffix for these subdirectories. Further, a Boolean indicator
is returned for indicating whether previous versions from
earlier sessions where found. If the client only calls initialize
during application launch, this mechanism can be used to

fi, <param name="rootDirectory Parameter's Root directory where the file group

// Commits the transaction. The temporary directory is renamed to the next file

fi, <returns>True if one or more reverts were successful. False if there is nothing

fi, <returns>True if one or more reverts were successful. False if there is nothing

fi, <returns>True if one or more reverts were successful. False if there is nothing

determine if a catastrophic or other error occurred and there
is a recoverable earlier version. Accordingly, as described
above, revert mechanism may be used to limit any tempo
rary state from a transaction that was opened during a
catastrophic event.
0049 Part seven of the pseudo code starts the transaction
Such that a temporary directory is created using the file
group name as a prefix. The temporary directory name may
be returned to the caller, and the caller can prepend this
directory name to the path of any file it wishes to include in
the transaction. This temporary directory can then be used
for saving in-memory data to multiple, related (if applicable)
on-disk files in the transaction.

0050 Part eight of the pseudo code then commits the
transaction Such that temporary directory is renamed to the
next file group version directory name. As previously noted,
this version directory name may be accomplished in any
well known manner for identifying the various versions.
0051 Part nine deletes any state associated with the open
transaction for rollback or other purpose. Similarly, part ten

US 2008/00051 11 A1

provides a mechanism for deleting all versions except the
earliest one for reverting back. Part eleven, on the other
hand, will revert the latest version, thus allowing the current
version to now be the previous version. Part twelve, on the
other hand, eliminates all versions prior to the latest, thereby
making the latest version the first and only version remain
ing. Accordingly, this command rolls-back the currently
open transaction, if there is one. Finally, part thirteen over
rides the second to last commit with the last commit. Similar
to above, this command rolls-back to the currently open
transaction, if there is one.

0.052 The present invention may also be described in
terms of methods comprising functional steps and/or non
functional acts. The following is a description of steps
and/or acts that may be performed in practicing the present
invention. Usually, functional steps describe the invention in
terms of results that are accomplished, whereas non-func
tional acts describe more specific actions for achieving a
particular result. Although the functional steps and/or non
functional acts may be described or claimed in a particular
order, the present invention is not necessarily limited to any
particular ordering or combination of steps and/or acts.
Further, the use of steps and/or acts in the recitation of the
claims—and in the following description of the flow dia
grams for FIGS. 3-5 is used to indicate the desired specific
use of Such terms.

0053 As previously mentioned, FIGS. 3-5 illustrate flow
diagrams for various exemplary embodiments of the present
invention. The following description of FIGS. 3-5 will
occasionally refer to corresponding elements from FIGS. 1
and 2. Although reference may be made to a specific element
from these Figures, such references are used for illustrative
purposes only and are not meant to limit or otherwise narrow
the scope of the described embodiments unless explicitly
claimed.

0054 FIG. 3 illustrates a flow diagram for a method 300
of ensuring atomicity for multiple writes across document(s)
without regard to any particular document format type and
without creating complex code for syncing document fields.
Method 300 includes an act for receiving 305 a file trans
action initialization. For example, transaction file manager
110 may receive initiate file transaction request 105 for
making multiple writes to file(s) located within a first
directory (e.g., a committed directory 145"Directory Vxx')
of a file system 100. Method 300 also includes a step of
identifying 310 the file transaction as requiring atomic
consistency. For example, transaction file manager 110 can
be used to determine that file(s) associated with the initiate
file transaction 105 require atomicity across the multiple
writes such that the multiple writes either succeed or fail as
a whole even with a hardware and/or software failure.

0055 Based on the required atomicity, method 300 fur
ther includes an act for automatically creating 315 a tem
porary directory folder for saving in-memory data for the
file(s) in the file transaction. For instance, upon receiving
initiate file transaction 105, transaction file manager 110 can
automatically create temporary directory 115 folder (which
is different from a directory 145 within committed store
135), which will be used for making the multiple writes 130
thereto. Note that when each of the multiple writes 130 are
made to the file(s) (or when otherwise desired by the user or
developer), a commit notification may be received that

Jan. 3, 2008

converts the temporary directory 115 to permanent storage
135 by renaming the temporary directory 115 such that it
will persist upon the occurrence of the hardware and/or
software failure.

0056. Also note that such renaming described above may
further identify the committed directory 145 as a version
generated after the first directory 145 in order to allow a user
to undo changes made by the multiple writes and rollback to
the file(s) 120 in the first directory 145 version. Further, the
renaming is typically based on the naming used for the first
directory 145. For example, if the first directory was name
“rootpath/Directory V1, then the new committed directory
may be named “root path/Directory V2 or something simi
lar. As such, data of the file(s) within the committed direc
tory 145 can potentially be modified in main memory and
then used in Subsequent file transactions. It is further noted
that the path or root directory for the first directory 145,
temporary directory 115, and/or committed directory 145
may be specified by a developer that created the file trans
action system. Moreover, the temporary directory and/or
committed directory 145 may automatically be determined
based on the path specified for the first directory.

0057. Note that in the event that only a portion of the
multiple writes 130 are made to the file(s) 120 within the
temporary directory 115 before the occurrence of a hardware
and/or software failure, other embodiments may further
include receiving a second initiate file transaction 105 at the
transaction file manager 110 for making second multiple
writes 130 to the file(s) 120. It may then be determined that
the transaction abnormally terminated, which indicates that
possibly not all writes 130 were made to the temporary
directory 115 in order to maintain atomicity. Such abnormal
termination may be due to a catastrophic hardware and/or
Software failure, or due to some other action Such as a
request to abort from the application or user. As such, the
temporary directory 115 may be deleted to remove incon
sistent files and preserve atomicity thereof.

0058. Note that often times during catastrophic hardware
and/or software failures, the temporary directory 115 will
automatically be lost; and therefore the transaction file
manager 110 automatically allows execution of new trans
actions even though the previous transaction did not suc
ceed. The difference from the previous case is that the
temporary files from the prior transaction were removed due
to the abnormal termination itself.

0059 FIG. 4 illustrates a flow diagram for a method 400
of providing multiple levels of undo/redo functionality for
changes to document(s) without regard to any particular
document format type by using a sortable directory mecha
nism. Method 400 includes an act for receiving 405 user
input requesting an undo/redo change to a set of files. For
example, transaction file manager 110 may receive a request
from a user to perform an undo/redo to changes that have
been committed to store 135 for a particular set of files 120.
Thereafter, method 400 further includes an act for accessing
410 a set of directories related to the set of files. For
example, transaction file manager 110 may access a set of
directories 145 (e.g., “Directory VXX”, which may include
Directory V1260, Directory V2265, and Directory V3270,
etc.) related to the files 120, wherein each of the set of
directories 145 includes an atomic set of the files 120 that
were committed to permanent storage 135 such that each

US 2008/00051 11 A1

directory (e.g., Directory V1260, Directory V2265, and
Directory V3270) within the set 145 represents a version of
writes 130 that were atomically maintained across the set of
files 120.

0060 Based on the user input, method 400 also includes
a step of selecting 415 a chosen directory from the set of
directories for accessing a particular version of the set of
files. For example, transaction file manager 110 may present
the list of directory versions (e.g., Directory V1260, Direc
tory V2265, and Directory V3270) for allowing a user to
choose a particular version to revert to. Upon receiving the
user input, the transaction file manager 110 selects the
chosen directory 145 for allowing a user access to the files
120 of that particular version in order to apply multiple
levels of the undo/redo changes as desired. This chosen
directory may then be renamed or otherwise marked to
easily identify it as the chosen directory in Subsequent
transaction requests 105 for the set of files 120.
0061 Note that such selections and presentations to the
user may be based on time periods assigned to the chosen
directory. In one embodiment, the exact time of the desired
rollback may not be known; however, an approximate time
value can be compared to the time values associated with the
committed directories 145 for choosing a close approxima
tion thereto. Typically, however, the selection of the chosen
directory 145 will be based on a naming convention (e.g.,
“V. XX'), which represents an easily identifiable sorted order
of the particular version of the set of files 120 that were
committed to each of the set of directories 145. This naming
convention may include numerical numbers for easily iden
tifying the sorted order, or may use other sorting mecha
nisms such as alphabetical or other ordering.
0062) Note that in other embodiments, the rollback fea
ture may be based on other necessities. For example, a
background task may run that looks for the existence of
abnormally terminated files—i.e., by identifying temporary
directories for which no current writes 130 are occurring.
Accordingly, when a hardware/software failure causes the
system to reboot or terminate a process, the temporary
directories left around that contain partially written files can
be cleaned up and/or otherwise deleted. Of course, as
mentioned above, there may be other reasons and mecha
nisms by which the above rollback feature is advantageously
used in accordance with embodiments herein.

0063 FIG. 5 illustrates a flow diagram for a method 500
of ensuring atomicity across multiple writes to a set of
documents in order to protect against hardware and/or
software failures by rolling back to a previous version of the
set of documents based on a transaction that only partially
completed. Method 500 includes an act for receiving 505 an
initialization of a file transaction for a set of files. For
example, transaction file manager 110 may receive initiate
file transaction 105 for files 120, which are atomically
maintained such that a change to one file must either be
consistently applied to each file within the set, or not at all.
0064. Based on the initialization, method 500 also
includes an act for accessing 510 a storage that includes
temporary directory and first directory for different versions
of the set of files. For example, upon receiving initiate file
transaction 105, transaction file manager 110 can access a
path or particular storage that includes temporary directory
115 and first or committed directory 145 for different ver

Jan. 3, 2008

sions of the set of files 120. Note that the temporary
directory 115 was automatically created from a previous file
transaction initialization 105 that made changes to one, but
not all, of the files 120. The first directory 145, on the other
hand, includes a copy of the set of files 120 without the
change to any of the files 120.
0065. Thereafter, method 500 includes an act for identi
fying 515 that the file transaction abnormally terminated,
which indicates that at least one file within the temporary
directory does not include the change. In other words,
transaction file manager 110 uses the presence of the tem
porary directory 115 (or some other indication) to determine
that the previous transaction terminated abnormally, which
indicates that consistency and atomicity of writes 130 to files
120 cannot be guaranteed. Note that the abnormal termina
tion (other than Such things as a hardware/software failure)
may be input received from a developer expressing a desire
to not commit the transaction, but rather roll it back. That is,
after the transaction start 105, but in lieu of transaction
commit, the developer requests the rollback functionality of
current embodiments. Of course, as previously mentioned,
there may be other mechanisms and reasons for performing
Such rollback feature. Such as a background operation for
cleaning up non-committed files.
0.066 Method 500 then includes a step of using the first
directory for the file transaction. In other words, the trans
action file manager 110 rolls back to the previous transaction
by typically deleting the temporary directory 115, which
includes the version without the change to any of the files
120 within the set. When deleting the temporary directory
115, such deletion ensures that it is not considered in
Subsequent file 120 transactions and also that inconsistent
temporary files in the file system created during the previous
abnormally terminated transaction are removed. Note that
the change or write 130 may be an addition of a file 120 to
the set, and not just a modification to an existing file. In other
words, between versions it is possible that the total number
of files may not be the same due to the addition of other
related files, which will also need to be synched. Also note
that typically the temporary directory 115 and the first
directory share a common root path.
0067. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be con
sidered in all respects only as illustrative and not restrictive.
The scope of the invention is, therefore, indicated by the
appended claims rather than by the foregoing description.
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
Scope.

I claim:
1. In a computing system configured to modify files, a

method of ensuring atomicity for multiple writes across one
or more documents without regard to any particular docu
ment format type and without creating complex code for
syncing document fields, the method comprising:

receiving a file transaction initialization for making mul
tiple writes to one or more files located within a first
directory of a file system;

identifying the file transaction as requiring atomic con
sistency across the multiple writes to the one or more

US 2008/00051 11 A1

files such that the multiple writes either succeed or fail
as a whole even with a hardware failure, software
failure, or both; and

based on the required atomic consistency, automatically
creating a temporary directory folder different from the
first directory, the temporary directory created for sav
ing in-memory data for the one or more files in order to
make the multiple writes thereto.

2. The method of claim 1, wherein each of the multiple
writes are made to the one or more files within the temporary
directory, the method further comprising:

receiving a commit notification that converts the tempo
rary directory to permanent storage by renaming the
temporary directory such that it will persist upon the
occurrence of the hardware failure, software failure, or
both.

3. The method of claim 2, wherein the renaming further
identifies the committed directory as a version generated
after the first directory in order to allow a user to undo
changes made by the multiple writes and rollback to the one
or more files to the first directory version.

4. The method of claim 2, wherein the renaming is based
on the naming of the first directory.

5. The method of claim 2, wherein data of the one or more
files within the committed directory is modified in memory
and used in one or more Subsequent file transactions.

6. The method of claim 2, wherein a path to one or more
of the first directory, temporary directory, or committed
directory are specified by a developer that created the file
transaction system.

7. The method of claim 2, wherein a path to temporary
directory, committed directory, or both, is automatically
determined based on a path specified for the first directory.

8. The method of claim 1, wherein only a portion of the
multiple writes are made to the one or more files within the
temporary directory before the occurrence of a hardware
failure, software failure, or both, the method further com
prising:

receiving a second file transaction initialization for mak
ing second multiple writes to the one or more files;

determining that the file transaction abnormally termi
nated; and

deleting the temporary directory to remove inconsistent
files and preserve atomicity thereof.

9. The method of claim 8, wherein based on the second
file transaction initialization, the method further comprises:

automatically creating a second temporary directory
folder different from the first directory, the second
temporary directory created for saving in-memory data
for the one or more files in order to make the second
multiple writes thereto.

10. In a computing system configured to modify files, a
method of providing for multiple levels of undo/redo func
tionality for changes to the one or more documents without
regard to any particular document format type by using a
Sortable directory mechanism, the method comprising:

receiving user input requesting an undo/redo change to a
set of files, wherein the set of files are atomically
maintained Such that a change to one file must either be
consistently applied to each file within the set, or not at
all;

Jan. 3, 2008

accessing a set of directories related to the set of files,
wherein each of the set of directories includes an
atomic set of the files that were committed to perma
nent storage such that each directory within the set
represents a version of writes that were atomically
maintained across the set of files; and

based on the user input, selecting a chosen directory from
the set of directories for accessing a particular version
of the set of files in order to apply multiple-levels of the
undo/redo changes as desired.

11. The method of claim 10, wherein the selection of the
chosen directory is based on a first time period assigned to
the chosen directory for when its version of writes for the set
of files were committed thereto.

12. The method of claim 11, wherein the user input
identifies a second time period, and wherein the second time
period is a closest approximation to the first time period
associated with the set of directories.

13. The method of claim 10, wherein the selection of the
chosen directory is based on a naming convention for the set
of directories, which represents an easily identifiable sorted
order of the particular version of the set of files that were
committed to each of the set of directories.

14. The method of claim 13, wherein the naming con
vention includes at least numerical numbers for easily
identifying the sorted order.

15. The method of claim 10, wherein the chosen directory
is renamed or otherwise marked to easily identify it as the
chosen directory in Subsequent transaction requests for the
set of files.

16. The method of claim 10, wherein a single root path is
used for the set of directories.

17. In a computing system configured to modify files, a
method of ensuring atomicity across multiple writes to a set
of documents in order to protect against hardware or soft
ware failures by rolling back to a previous version of the set
of documents based on a transaction that only partially
completed, without creating complex code for syncing docu
ment fields, the method comprising:

receiving an initialization of a file transaction for a set of
files, which are atomically maintained such that a
change to one file must either be consistently applied to
each file within the set, or not at all;

based on the initialization, accessing a storage that
includes a temporary directory and a first directory for
different versions of the set of files, wherein the tem
porary directory was automatically created from a
previous file transaction initialization that made at least
one change to at least one file from the set of files, and
wherein the first directory includes a copy of the set of
files without the at least one change to any file within
the set;

identifying that the file transaction abnormally termi
nated, which indicates that at least one of the files from
the set of files within the temporary directory does not
include the at least one change Such that the at least one
change has not been consistently applied to each of the
files within the set; and

using the first directory for the file transaction such that
the set of files rolls-back to the version without the at
least one change to any file within the set.

US 2008/00051 11 A1 Jan. 3, 2008
10

18. The method of claim 17, the method further compris- 19. The method of claim 17, wherein the at least one
ing: change is the creation of an additional file to the set of files.

deleting the temporary directory Such in order to ensure 20. The method of claim 17, wherein a single root path is
that the temporary directory is not considered in Sub- used for both the first directory and the temporary directory
sequent file transactions and to ensure that inconsistent for easily relating the two.
temporary files created during the file transaction that
abnormally terminated are removed. k

