

US 20080020406A1

# (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0020406 A1

Jan. 24, 2008 (43) **Pub. Date:** 

## Pardo-Fernandez et al.

## (54) ANTIBODIES TO A HUMAN K+ION **CHANNEL AND THERAPEUTIC APPLICATIONS THEREOF**

(75) Inventors: Luis Angel Pardo-Fernandez, Gottingen (DE); Walter Stuhmer, Gottingen (DE); Synnove Beckh, Gottingen (DE); Andrea Bruggemann, Frankfurt (DE); Donato Del Camino Fernandez-Miranda, Boston, MA (US); Araceli Sanchez Perez, Gottingen (DE); Rudiger Weseloh, Gottingen (DE)

> Correspondence Address: **ROPES & GRAY LLP** PATENT DOCKETING 39/361 **1211 AVENUE OF THE AMERICAS** NEW YORK, NY 10036-8704 (US)

- (73) Assignee: Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V., Berlin (DE)
- (21) Appl. No.: 11/633,085
- (22) Filed: Nov. 30, 2006

### **Related U.S. Application Data**

(60) Continuation of application No. 10/188,287, filed on Jul. 1, 2002, now abandoned, which is a division of application No. 09/694,777, filed on Oct. 23, 2000, now Pat. No. 6,638,736, which is a continuation of application No. PCT/EP99/02695, filed on Apr. 21, 1999.

#### (30)**Foreign Application Priority Data**

### **Publication Classification**

(51) Int. Cl. G01N 33/53 C07K 16/18 (2006.01)(2006.01)U.S. Cl. ...... 435/7.21; 530/387.1; 530/388.1 (52)

#### (57)ABSTRACT

The present invention relates to a novel human K<sup>+</sup> ion channel, to nucleic acid molecules encoding the same and to vectors comprising said nucleic acid molecules. The invention additionally relates to antibodies specifically directed to the novel K<sup>+</sup> ion channel and to pharmaceutical compositions and diagnostic kits containing at least one of the above-mentioned components. Furthermore, the present invention relates to methods of treating a disease caused by malfunction of the polypeptide of the present invention or by the (over)expression of the nucleic acid molecule of the invention comprising administering an inhibitor of said (over)expression or of ion channel function or an inhibitor abolishing said malfunction to a patient in need thereof. Methods of devising drugs for treating or preventing the above-mentioned disease, methods of inhibiting cell proliferation and methods of prognosing cancer are additional embodiments comprised by the present invention. The invention also envisages specific antisense or gene therapies on the basis of the nucleic acid molecule of the invention for inhibiting undesired cellular proliferation, for example, in connection with cancer or in neurodegenerative diseases.



Apr. 21, 1998 (EP) ..... EP 98 10 7268.9



Fig. 1



Time (hours)

Fig. 2



.

Fig. 3





wild type

Reag-transfected

Kv1.4-transfected





# wild type

# Fig. 4b









Fig. 7



Fig. 8



| ••                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                            |                                   |                            |                                             |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|---------------------------------------------|
| 26<br>187<br>199          | 66<br>227<br>239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106<br>267<br>279                   | 146<br>307<br>319                                                                                                                                          | 186<br>347<br>359                 | 226<br>387<br>399          | 266<br>427<br>439                           |
|                           | <b>ح ت</b> ح                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\cup \cup \cup$                    | $\mathbf{H}$                                                                                                                                               | $\cup \cup \cup$                  | <b>444</b>                 | 444                                         |
| 0,00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500                                 | <br>                                                                                                                                                       | 555                               | 4 4 U                      |                                             |
| <b>4 4</b>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000                                 | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$        |                            | μμU                                         |
| <b>6</b> 60               | $\forall \forall \forall$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\cup \cup \cup$                    | $\triangleleft \triangleleft \triangleleft$                                                                                                                | $\vdash \vdash \cup$              | 444                        |                                             |
|                           | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | $\cup \cup \cup$                                                                                                                                           |                                   | <b>444</b>                 | 000                                         |
| $\cup \cup \cup$          | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mu \mu \mu$                       |                                                                                                                                                            |                                   | AAA                        |                                             |
| $\cup \cup \cup$          | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                                 | $\overline{\mathbf{U}}$                                                                                                                                    | <b>4 4 4</b>                      | $\cup \cup \cup$           |                                             |
|                           | טעט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\vdash \vdash \bigcirc$            | 000                                                                                                                                                        | 000                               | 000                        | $\triangleleft \triangleleft \triangleleft$ |
| 444                       | C A D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\vdash$                            | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | 000                               | $\dashv$ $\dashv$ $\dashv$ | 666                                         |
| <u>. 6 6 6</u>            | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                            | <b>4 4 4</b>                                                                                                                                               | $\vdash$ $\vdash$ $\vdash$        | A $A$ $A$                  | $\vdash$ $\vdash$ $\vdash$                  |
| A A                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash \vdash \bigcup$             | $\forall \forall \forall$                                                                                                                                  | <b>4 4 4</b>                      | 000                        | $\cup \cup \cup$                            |
| $\cup \cup \cup$          | ⋖⋖⊍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A A A                               | 666                                                                                                                                                        | 000                               | $\vdash$ $\vdash$ $\vdash$ | 000                                         |
| $\circ \circ \circ \circ$ | $\cup \cup \cup$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A A A                               | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$        | 000                        | A A A                                       |
| S<br>U<br>U               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                                 | 000                                                                                                                                                        | A A A                             | 4 4 4                      | 000                                         |
| 000                       | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 4 4                               | 000                                                                                                                                                        | $\forall \forall \forall$         | AAA                        | ט ט ע                                       |
| $\cup \cup \cup$          | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                                 | H H H                                                                                                                                                      | 000                               | 999                        | 000                                         |
| с i Ç                     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                                 | ┝╴┝╴┝╴                                                                                                                                                     | 000                               | ע <b>ה</b> א               | 000                                         |
|                           | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\vdash$ $\vdash$ $\vdash$          |                                                                                                                                                            | $\forall \forall \forall \forall$ | $\cup \cup \cup$           | H H H                                       |
|                           | $\vdash$ $\vdash$ $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                                                                                                                                            |                                   | 666                        | AAA                                         |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\vdash$                            |                                                                                                                                                            | 4 4 4<br>                         | 5 5 A                      |                                             |
|                           | 555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | ┝╸┝╸┝╸                                                                                                                                                     |                                   | 000                        | 555                                         |
|                           | 000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                                                                                            | 999<br>444                        |                            | A A A<br>A A A                              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                            | 500                               | A A A                      |                                             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 4 4                               |                                                                                                                                                            |                                   |                            |                                             |
|                           | $   \overline{}   \overline$ |                                     |                                                                                                                                                            |                                   |                            |                                             |
|                           | 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AAA                                 | $\vdash$                                                                                                                                                   | 444                               | <b></b>                    | , , ,<br>⊢ ⊢ ⊢                              |
|                           | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>444</b>                          | $   \cup \cup \cup $                                                                                                                                       |                                   | $\vdash$                   | <br>                                        |
| 5 5 V                     | $\vdash$ $\vdash$ $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>ح ح</b> ح                        | <b>4 4 4</b>                                                                                                                                               |                                   |                            | A A A                                       |
|                           | <b>4 4 4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 4 4                               | $\vdash$ $\vdash$ $\Box$                                                                                                                                   | $\cup \cup \cup$                  | 000                        | $\cup \cup \cup$                            |
|                           | ບ່ບ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\cup \cup \cup$                    | 4 4 4                                                                                                                                                      | 000                               | 000                        | 000                                         |
| טֿטּט                     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ല <b>ധ</b> വ                        | 000                                                                                                                                                        | 000                               | $\vdash$ $\vdash$ $\vdash$ | $\vdash$ $\vdash$ $\vdash$                  |
| שטט                       | <b>4 4 4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | $\vdash \vdash \bigcup$                                                                                                                                    | $\vdash$ $\vdash$ $\vdash$        | $\cup \cup \cup$           | UVU                                         |
|                           | 666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\cup \cup \cup$                    | $\forall \forall $ | $\cup \cup \cup$                  | $\vdash$ $\vdash$ $\vdash$ | $\overline{0}\overline{0}\overline{0}$      |
| $\cup \cup \vdash$        | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbf{U}^{\mathbf{U}}\mathbf{U}$ | <b>4 4 4</b>                                                                                                                                               | <b>4 4 4</b>                      | ບບ                         | ע ע ט                                       |
|                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\cup \cup \cup$                    | $\cup \cup \cup$                                                                                                                                           | ១១១                               | $\vdash$ $\vdash$ $\vdash$ | ύμυ                                         |
|                           | ⊢ <mark>∪</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000                                 | $\cup \cup \cup$                                                                                                                                           | 5 5 5                             | 000                        | 999                                         |
| A H O                     | $\cup \cup \vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000                                 | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\vdash$ $\vdash$ $\vdash$        | 000                        |                                             |
| <del>ک</del> 0 ک          | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\vdash$ $\vdash$ $\vdash$          | 000                                                                                                                                                        | 555                               | <b>4 4 4</b>               | UUΗ                                         |
|                           | ⊢⊢⋖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                                 | 000                                                                                                                                                        | < < ∪                             | 444                        | 000                                         |
| ច្ច ត្ត ត្                | ច្ច ត្ត ត្ត                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ច្ច ត្ត ត្ត                         | ត្ត ត្ត ត្                                                                                                                                                 | ច្ច ត្ត ត្                        | ច្ច ច្ន ច្ន                | ស្ត ស្ត<br>ស្ត្                             |
| heag<br>beag<br>reag      | heag<br>beag<br>reag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | heag<br>beag<br>reag                | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag              | heag<br>beag<br>reag       | heag<br>beag<br>reag                        |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                            |                                   | <u> </u>                   |                                             |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                            |                                   |                            |                                             |

Fig. 10

| 306<br>467<br>479            | 346<br>507<br>519                           | 386<br>547<br>559                           | 426<br>587<br>599          | 466<br>627<br>639                | 506<br>667<br>679                           | 546<br>707<br>719            |
|------------------------------|---------------------------------------------|---------------------------------------------|----------------------------|----------------------------------|---------------------------------------------|------------------------------|
|                              |                                             |                                             |                            | 400                              |                                             |                              |
| $\vdash$ $\vdash$ $\bigcirc$ | $\forall \forall \forall$                   | 666                                         | $\circ \circ \circ$        |                                  | $   \cup    \cup    \cup   $                | V V                          |
| A'A A                        | 000                                         |                                             | $\vdash$ $\vdash$ $\vdash$ | $\vdash$ $\vdash$ $\cup$         | 000                                         | 000                          |
| $\vdash$ $\vdash$ $\vdash$   | $\triangleleft \triangleleft \triangleleft$ | $\vdash$ $\vdash$ $\bigcirc$                | $\vdash$ $\vdash$ $\vdash$ | <b>4 4 4</b>                     | <b>4 4 4</b>                                | 000                          |
|                              | 4 4 4                                       | $\vdash$ $\vdash$ $\vdash$                  | $\vdash$ $\vdash$ $\vdash$ | 000                              | 666                                         | $\vdash$ $\vdash$ $\bigcirc$ |
| AAA                          | 000                                         | <b>444</b>                                  |                            |                                  | $\triangleleft \triangleleft \triangleleft$ | $\cup \cup \cup$             |
| 444                          | A A A                                       | <b>4 4 4</b>                                | $\forall \forall \forall$  | <b>4 4 4</b>                     | <b>∀∪</b> ७                                 | 000                          |
| 666                          | $\triangleleft \triangleleft \triangleleft$ | 000                                         |                            | 000                              |                                             | 000                          |
| AAA                          | 000                                         |                                             | 000                        | U<br>V<br>U                      | 444                                         | $\vdash$ $\vdash$ $\vdash$   |
|                              | AAA                                         | - $ -$                                      | H H H                      | $\forall \forall \forall$        | 000                                         | 000                          |
| $\vdash \vdash \vdash$       | $\forall \forall \forall$                   |                                             |                            | 000                              | $\vdash$ $\vdash$ $\vdash$                  | 666                          |
| + + +                        |                                             |                                             | $\vdash$ $\vdash$ $\vdash$ | $\vdash$ $\vdash$ $\vdash$       |                                             | $\forall \forall \forall$    |
|                              | $\triangleleft \triangleleft \triangleleft$ |                                             |                            | $\vdash$ $\vdash$ $\vdash$       | שטט                                         | 000                          |
|                              | $ \vdash \vdash \vdash$                     | +++                                         | $\vdash \vdash \bigcup$    | $\forall \forall \forall$        | 000                                         | 000                          |
|                              | 666                                         | $\triangleleft \triangleleft \triangleleft$ |                            | < 0 U                            |                                             | AAA                          |
|                              | $\vdash$                                    | <b>ک</b> ۷ ۷                                |                            |                                  | $\vdash$ $\vdash$ $\vdash$                  | 000                          |
|                              | $\forall \forall \forall$                   | AAA                                         |                            |                                  |                                             | 999                          |
| A A A                        | 666                                         | $\triangleleft \triangleleft \triangleleft$ |                            | 000                              |                                             |                              |
|                              |                                             | 000                                         | $\vdash \vdash \bigcirc$   | $\forall \forall \forall$        | $\vdash \bigcirc \vdash$                    |                              |
|                              |                                             |                                             |                            |                                  | $\vdash$ $\vdash$ $\vdash$                  |                              |
| 000                          |                                             |                                             |                            |                                  | $\vdash \vdash \vdash$                      |                              |
|                              | $\vdash$ $\vdash$ $\vdash$                  | - + - + -                                   | 555                        | $\mathbf{A}\mathbf{A}\mathbf{A}$ | 0.00                                        |                              |
| U U F                        | 444                                         | $\vdash$ $\vdash$ $\vdash$                  |                            | $\forall \forall \forall$        | A A A                                       |                              |
|                              | AAA                                         |                                             |                            |                                  | $\forall \forall \forall$                   | 000                          |
| 000<br>4 4 <mark>0</mark>    |                                             |                                             | 000                        |                                  | 666                                         | 000                          |
|                              |                                             |                                             | $\forall \forall \forall$  |                                  | 666                                         | 000<br>000                   |
| 4 4 4<br>4 4 4               |                                             |                                             | 4 4 4<br>4 4 4             |                                  | 999<br>999                                  |                              |
| 4 4 4<br>4 4 4               |                                             |                                             |                            | 000<br>000                       | 000<br>000                                  |                              |
| 4 4 4<br>4 4 4               |                                             | 555<br>F F F                                | A A A<br>A A A             |                                  | +++                                         |                              |
| 500                          |                                             | ່ບບບໍ                                       | 000                        |                                  |                                             | A A A                        |
|                              | +++                                         | $\vdash$ $\vdash$ $\vdash$                  | 5 5 5<br>5 5 5             | 4 4 4                            | 500                                         | 000                          |
| <br>                         |                                             | ່ວ່ວ່ວ                                      | 4 4 4                      |                                  |                                             | 5 5 5<br>5 5 5               |
| ح ح <del>ل</del>             |                                             | $\vdash$ $\vdash$ $\vdash$                  |                            | $\leftarrow$                     | 4 4 4                                       | A A A                        |
| 0 <b>0</b> 0                 |                                             | ່ບ່ບບ່                                      | 4 4 4                      | <br>< < <                        | AAA                                         | A D A                        |
|                              | 000                                         | $\ddot{\mathbf{u}}$                         |                            |                                  |                                             |                              |
| 4 4 4<br>4                   | -++                                         | 4 4 4                                       | 555                        | 4 4 4                            |                                             | A A A                        |
|                              |                                             | $\overline{}$                               |                            |                                  | 550                                         | 555                          |
|                              | 000                                         | 4 4 4                                       | 4 4 4                      |                                  | -++                                         | +++                          |
| 555                          | 4 4 4                                       | 500                                         | 444                        | 505                              |                                             |                              |
| 0 0 0<br>4 4 <b>0</b>        | 000                                         | 500                                         | 4 4 U                      | 4 4 4                            |                                             | A A H                        |
|                              |                                             |                                             |                            |                                  |                                             |                              |
| heag<br>beag<br>reag         | heag<br>beag<br>reag                        | heag<br>beag<br>reag                        | heag<br>beag<br>reag       | heag<br>beag<br>reag             | heag<br>beag<br>reag                        | heag<br>beag<br>reag         |
|                              |                                             |                                             |                            |                                  |                                             |                              |

Fig. 10 cont.

.

|                              |                              | (0 h -                                                                                                                                                     |                                                                                                                                                            |                                     |                                                                                                                                                            |                                             |
|------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 586<br>747<br>759            | 626<br>787<br>799            | 666<br>827<br>839                                                                                                                                          | 706<br>867<br>879                                                                                                                                          | 746<br>907<br>919                   | 786<br>947<br>959                                                                                                                                          | 826<br>987<br>999                           |
| $\cup \cup \cup$             | <b>4 4 4</b>                 | $\cup \cup \cup$                                                                                                                                           | <b>4 4 4</b>                                                                                                                                               | <b>4 4 4</b>                        | <b></b>                                                                                                                                                    | 000                                         |
| $\cup$ $\vdash$ $\cup$       | $\cup \cup \cup$             | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\cup \cup \cup$                                                                                                                                           | $\vdash$ $\vdash$ $\vdash$          | 000                                                                                                                                                        | 000                                         |
| 000                          | $\cup \cup \cup$             | 4 4 4                                                                                                                                                      | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\vdash$ $\vdash$ $\vdash$          | ┝━ ┝━ ┝━                                                                                                                                                   | ⊢⊢⊢                                         |
| $\cup \cup \underline{\cup}$ | 000                          | $\cup \cup \cup$                                                                                                                                           | 4 4 4                                                                                                                                                      | $\cup \cup \cup$                    | $\cup \cup \cup$                                                                                                                                           | 555                                         |
|                              | 000                          | $\vdash$ $\vdash$                                                                                                                                          | 000                                                                                                                                                        | <u> </u>                            | $\cup \cup \cup$                                                                                                                                           | 000                                         |
|                              | $\vdash$ $\vdash$ $\bigcirc$ | $\forall \forall \forall$                                                                                                                                  | 000                                                                                                                                                        | $\cup \vdash \cup$                  | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$                  |
| нчч                          | $\vdash$ $\vdash$ $\vdash$   | 000                                                                                                                                                        |                                                                                                                                                            | $\vdash$ $\vdash$ $\vdash$          | 5 5 5                                                                                                                                                      | ┝╸┝╴┝╴                                      |
|                              | 000                          | $\triangleleft \triangleleft \triangleleft$                                                                                                                |                                                                                                                                                            | 000                                 | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\vdash$ $\vdash$ $\vdash$                  |
| AAA                          |                              |                                                                                                                                                            | $\forall \forall \forall$                                                                                                                                  | 000                                 | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$                  |
|                              | $\vdash$                     | н <b>9</b> н                                                                                                                                               | 600                                                                                                                                                        |                                     |                                                                                                                                                            |                                             |
| 000                          | $\forall \forall \forall$    |                                                                                                                                                            | 000<br>                                                                                                                                                    |                                     | AAA                                                                                                                                                        |                                             |
| 4 4 4<br>4 4 4               | U U U<br>V U U               |                                                                                                                                                            | 1 1 0<br>1 1 0                                                                                                                                             |                                     |                                                                                                                                                            | $\vdash$                                    |
|                              | 4 4 4<br>0 0 0               |                                                                                                                                                            | רר<br>טט <b>ע</b>                                                                                                                                          |                                     |                                                                                                                                                            | $\triangleleft \triangleleft \triangleleft$ |
| 4 4 4                        | A A A                        |                                                                                                                                                            |                                                                                                                                                            | A A A<br>U U U                      | 4 4 4<br>4 4 4                                                                                                                                             |                                             |
| 000                          |                              | - $-$                                                                                                                                                      | 4 4 4                                                                                                                                                      |                                     | 4 4 4<br>5 5 5                                                                                                                                             | <br>5 5 5                                   |
|                              | $\vdash$ $\vdash$ $\vdash$   |                                                                                                                                                            | $\overline{0}\overline{0}\overline{0}$                                                                                                                     | 000                                 | A A A                                                                                                                                                      |                                             |
|                              |                              | < < <                                                                                                                                                      |                                                                                                                                                            | 4 4 4                               |                                                                                                                                                            | 444                                         |
| 000                          | 500                          | 000                                                                                                                                                        | 444                                                                                                                                                        |                                     | 500                                                                                                                                                        |                                             |
| $+ \circ +$                  | 555                          | <b>4 4 4</b>                                                                                                                                               | 505                                                                                                                                                        | <b>4 4 4</b>                        | 000                                                                                                                                                        | 555                                         |
| 4 4 4                        | 000                          | $\forall \forall $ | $\forall \land \forall$                                                                                                                                    |                                     | $\forall \forall $ | ⊨⊢⊢                                         |
| <b>4 4 4</b>                 | $\vdash$ $\vdash$ $\vdash$   | A A A                                                                                                                                                      | $\forall \forall $ | 4 4 A                               | $\cup \cup \cup$                                                                                                                                           | 000                                         |
| 000                          | $\cup \cup \cup$             | $\cup \cup \cup$                                                                                                                                           | ⊢⊢⊢                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$ $\vdash$ | $\cup \cup \cup$                                                                                                                                           | $\cup \cup \cup$                            |
| <b>4 4 4</b>                 | 000                          | $\cup \cup \cup$                                                                                                                                           | $\vdash \vdash \vdash$                                                                                                                                     | $\cup \cup \cup$                    | $\forall \forall $ | $\vdash$ $\vdash$ $\vdash$                  |
| 000                          | <b>4 4 4</b>                 | 4 4 U                                                                                                                                                      | <u> </u>                                                                                                                                                   | ⊢⊢⊢⊢                                | $\forall \forall \forall$                                                                                                                                  | $\forall \forall \forall$                   |
| $\cup \cup \vdash$           | $\cup$ $\cup$ $\cup$         | $\cup \cup \cup$                                                                                                                                           | $\vdash$ $\vdash$ $\cup$                                                                                                                                   | $\vdash$ $\vdash$ $\vdash$          | <b>4 4 4</b>                                                                                                                                               | $\cup \cup \cup$                            |
| 000                          | <u>ע ט</u> ע                 | 000                                                                                                                                                        | ┝╸┝╸┝╸                                                                                                                                                     | $\cup \cup \cup$                    | 4 <u>4 4</u>                                                                                                                                               | 666                                         |
| 666                          | ╞╾┝╾┝╴                       | 000                                                                                                                                                        | 000                                                                                                                                                        | $\cup \cup \cup$                    | $\cup$ $\vdash$ $\vdash$                                                                                                                                   | A A A                                       |
| d d d                        |                              | $\forall \forall \forall$                                                                                                                                  | $\vdash \bigcirc \vdash$                                                                                                                                   | A A A                               | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 |                                             |
| AAA                          |                              | 000                                                                                                                                                        | 000                                                                                                                                                        | טעט                                 | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\forall \forall \forall$                   |
|                              |                              | AAA                                                                                                                                                        |                                                                                                                                                            |                                     | 000                                                                                                                                                        | 000                                         |
| ق b<br>۲ م                   | 000                          | $\forall \forall \forall$                                                                                                                                  |                                                                                                                                                            |                                     |                                                                                                                                                            |                                             |
| A A A<br>O O O               | U U U<br>V V V               | 0 0 0<br>0 0 0                                                                                                                                             | T T T T T T T T T T T T T T T T T T T                                                                                                                      |                                     |                                                                                                                                                            |                                             |
| 500                          | 4 4 4<br>5 5 5               | 4 4 4                                                                                                                                                      |                                                                                                                                                            | T T T<br>T T T                      |                                                                                                                                                            | 5 5 5<br>T T <b>5</b>                       |
|                              |                              | 444                                                                                                                                                        |                                                                                                                                                            | 4 4 4<br>0 0 0                      | 1 1 0<br>0 1 1<br>0 1                                                                                                                                      |                                             |
|                              |                              | $\overline{0}\overline{0}\overline{0}$                                                                                                                     | $\overline{0}\overline{0}\overline{0}$                                                                                                                     |                                     |                                                                                                                                                            | 505                                         |
|                              | 000<br>000                   | 4 4 4                                                                                                                                                      | 4 4 4                                                                                                                                                      |                                     |                                                                                                                                                            | 666                                         |
| 500                          | 555                          | -                                                                                                                                                          | $\vdash$                                                                                                                                                   |                                     |                                                                                                                                                            | $\vdash$                                    |
| AAA                          | H H H                        | <br>                                                                                                                                                       | $\vdash \vdash \Box$                                                                                                                                       | $\vdash$ $\vdash$ $\vdash$          |                                                                                                                                                            |                                             |
|                              |                              |                                                                                                                                                            |                                                                                                                                                            |                                     |                                                                                                                                                            |                                             |
| heag<br>beag<br>reag         | heag<br>beag<br>reag         | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                        |
| ءَ ۾ ڏ                       | ے ف ح                        | ءٌ ڡٞ ػ                                                                                                                                                    | ٽ ڦ ٽ                                                                                                                                                      | بَعْمَ                              | ٽ ڡٚ ٽ                                                                                                                                                     | žăž                                         |
|                              |                              | Ein (                                                                                                                                                      | 10                                                                                                                                                         |                                     |                                                                                                                                                            |                                             |

Patent Application Publication Jan. 24, 2008 Sheet 13 of 37 US 2008/0020406 A1

| 866<br>1027<br>1039                             | 906<br>1067<br>1079                                                                                                                                        | 946<br>1107<br>1119        | 986<br>1147<br>1159                                                                                                                                        | 1026<br>1187<br>1199                                                                                                                                       | 1066<br>1227<br>1239                                                                                                                                       | 1106<br>1267<br>1279         |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| ບົບບ                                            | $\cup \cup \cup$                                                                                                                                           | ┝╍┝╸┝╸                     | $\forall \forall $ | 000                                                                                                                                                        | ⊢⊢⊢                                                                                                                                                        | 000                          |
| 000                                             | $\forall \forall $ | $\vdash$ $\vdash$ $\vdash$ | 000                                                                                                                                                        | 000                                                                                                                                                        | $\cup \cup \vdash$                                                                                                                                         | $\vdash$ $\vdash$ $\vdash$   |
| <b>∠∪</b> ∠                                     | $\forall \forall $ | 000                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\cup \cup \cup$                                                                                                                                           | 4 4 4                                                                                                                                                      | 000                          |
| $\overline{\cup}\overline{\cup}\overline{\cup}$ | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$ | $\triangleleft \triangleleft \triangleleft$                                                                                                                | $\cup \cup \Box$                                                                                                                                           | $\cup \cup \cup$                                                                                                                                           | $ \vdash \vdash \vdash $     |
| $\cup \cup \cup$                                |                                                                                                                                                            | $\cup \cup \cup$           | 000                                                                                                                                                        | <b>⊢ ⊢ ⊢</b>                                                                                                                                               | 0000                                                                                                                                                       | 000                          |
| <b>ح ح</b> ح                                    | $\forall \forall $ | $\cup \cup \cup$           | 000                                                                                                                                                        | 000                                                                                                                                                        | $\forall \forall $ | 000                          |
| 000                                             | $\cup \cup \cup$                                                                                                                                           | $\vdash$ $\vdash$ $\vdash$ | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\vdash$ $\vdash$ $\bigcirc$                                                                                                                               | 5 5 5                                                                                                                                                      | $\vdash$ $\vdash$ $\vdash$   |
| 000                                             | 000                                                                                                                                                        | U U U                      | ບ່ບບ່                                                                                                                                                      |                                                                                                                                                            | 000                                                                                                                                                        | $\cup \cup \cup$             |
| $\vdash$ $\vdash$ $\bigcirc$                    | $\cup \cup \cup$                                                                                                                                           | $\neg$ $\neg$ $\neg$       | $\cup \cup \cup$                                                                                                                                           | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | 000                          |
| $\mathbf{H} \mathbf{H} \mathbf{H}$              | $\cup \square \cup$                                                                                                                                        | $\cup \cup \cup$           | AAA                                                                                                                                                        | $\forall \forall \forall$                                                                                                                                  | $\cup \cup \cup$                                                                                                                                           | $\vdash$ $\vdash$ $\vdash$   |
| 505                                             | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\vdash$ $\vdash$ $\vdash$ | $\forall \forall \forall$                                                                                                                                  | <b>4 4 4</b>                                                                                                                                               | 000                                                                                                                                                        | $\cup \cup \cup$             |
| $\vdash$ $\vdash$ $\vdash$                      | <u> </u>                                                                                                                                                   | $\vdash$ $\vdash$ $\vdash$ | 000                                                                                                                                                        | $\forall \forall $ | $\forall \forall $ | $\cup \cup \cup$             |
| $\dashv$ $\dashv$ $\dashv$                      | $\vdash \bigcirc \vdash$                                                                                                                                   | $\cup \cup \cup$           | <b>4 4 4</b>                                                                                                                                               | 4 U U                                                                                                                                                      | $\forall \forall $ | $\vdash$ $\vdash$ $\vdash$   |
| $\vdash$ $\vdash$ $\vdash$                      | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\cup \cup \cup$           | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 |                                                                                                                                                            | 000                          |
| υHυ                                             | $\cup \cup \cup$                                                                                                                                           | 444                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\cup \cup \cup$                                                                                                                                           | 000                                                                                                                                                        | 000                          |
| $\cup \cup \cup$                                | $\forall \forall \forall$                                                                                                                                  | <u> </u>                   | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | ┝╾┝╾┝━                                                                                                                                                     | $\cup \cup \cup$                                                                                                                                           | $\vdash$ $\vdash$ $\vdash$   |
| $\forall \forall \forall$                       | A A A                                                                                                                                                      | $\vdash \vdash \bigcup$    | ┝╸┝╴┝╴                                                                                                                                                     | $\mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u}$                                                                                                             | $\cup \cup \cup$                                                                                                                                           | $\cup \cup \underline{\cup}$ |
| 000                                             | $\triangleleft \triangleleft \triangleleft$                                                                                                                | ┝╾┝╾┣╼                     | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 |                                                                                                                                                            | $\cup \cup \cup$                                                                                                                                           | ט ט <mark>ע</mark>           |
| 000                                             | 000                                                                                                                                                        | $\forall \forall \forall$  | $\cup \cup \cup$                                                                                                                                           | $\cup \cup \vdash$                                                                                                                                         | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$   |
| $\triangleleft \triangleleft \triangleleft$     | 000                                                                                                                                                        | 000                        | 000                                                                                                                                                        | 000                                                                                                                                                        | 000                                                                                                                                                        | 000                          |
|                                                 | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$ |                                                                                                                                                            | AAA                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 |                              |
| 444                                             |                                                                                                                                                            | 666                        | AAA                                                                                                                                                        |                                                                                                                                                            | 000                                                                                                                                                        | 000                          |
|                                                 | $\forall \forall \forall$                                                                                                                                  |                            | $\forall \forall \forall$                                                                                                                                  |                                                                                                                                                            | A O A                                                                                                                                                      | 666                          |
| $\vdash \vdash \vdash$                          |                                                                                                                                                            | $\vdash \vdash \vdash$     |                                                                                                                                                            |                                                                                                                                                            | 000                                                                                                                                                        |                              |
| $\vdash\vdash\vdash$                            |                                                                                                                                                            |                            |                                                                                                                                                            | 555                                                                                                                                                        |                                                                                                                                                            |                              |
| $\begin{array}{c} + + + \\ + + + \end{array}$   |                                                                                                                                                            | 000                        | AAA                                                                                                                                                        | $ \vdash \vdash \vdash$                                                                                                                                    |                                                                                                                                                            | 000                          |
|                                                 |                                                                                                                                                            | 000<br>H H H               | 000<br>H H H                                                                                                                                               |                                                                                                                                                            | 666                                                                                                                                                        | A A A                        |
| 444                                             |                                                                                                                                                            | 505                        | 555                                                                                                                                                        | 000                                                                                                                                                        | 666<br>H <b>60</b>                                                                                                                                         | 000<br>000                   |
|                                                 | 444                                                                                                                                                        |                            |                                                                                                                                                            | 4 4 4                                                                                                                                                      |                                                                                                                                                            |                              |
|                                                 | 000                                                                                                                                                        | 4 4 4                      |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                            |                              |
|                                                 | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | 000                        | 000                                                                                                                                                        | ب ن ن ن<br>ی ی ی                                                                                                                                           |                                                                                                                                                            | $\vdash$                     |
| ບບ                                              | <br>                                                                                                                                                       | <b>4 4 4</b>               | -++                                                                                                                                                        | 4 4 4                                                                                                                                                      |                                                                                                                                                            | ע <u>ה</u> א                 |
| ⊢ <b>⊢</b>                                      | ט ט ע                                                                                                                                                      | <b>444</b>                 | $\triangleleft$ $\triangleleft$ $\triangleleft$                                                                                                            | 000                                                                                                                                                        | $\overline{0}$                                                                                                                                             |                              |
| 000                                             |                                                                                                                                                            | 000                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | ⊢⊢⊢                                                                                                                                                        | $\overline{0}$                                                                                                                                             | 000                          |
| $\vdash$ $\vdash$ $\vdash$                      | 000                                                                                                                                                        | ┝╸┝╴┝╴                     |                                                                                                                                                            | <b>444</b>                                                                                                                                                 | $\mathbf{F}$                                                                                                                                               |                              |
| $\vdash$ $\vdash$ $\vdash$                      | 000                                                                                                                                                        | $\cup \cup \cup$           |                                                                                                                                                            | $\dot{\mathbf{u}}$                                                                                                                                         | $\cup \cup \cup$                                                                                                                                           | + $+$ $+$                    |
| <b>444</b>                                      | <b></b>                                                                                                                                                    | $\cup \cup \cup$           | υυŪ                                                                                                                                                        |                                                                                                                                                            | ט ט ט                                                                                                                                                      | <b>444</b>                   |
| $\cup \cup \cup$                                | 000                                                                                                                                                        | <b>4 4 4</b>               | 000                                                                                                                                                        |                                                                                                                                                            | ⊢⊢⊢                                                                                                                                                        | $\cup \cup \vdash$           |
| <b>4 4 4</b>                                    | ⊲ ⊢ ∪                                                                                                                                                      | $\vdash$ $\vdash$ $\vdash$ | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | <u>.</u>                                                                                                                                                   | $\cup \cup \cup$                                                                                                                                           | AAA                          |
| ם ם ם                                           | ם ם ם                                                                                                                                                      | බු බු බු                   | බු බු බු                                                                                                                                                   | ם ם ם                                                                                                                                                      | ත ත ත                                                                                                                                                      | ରୁ ପ୍ରୁ ପ୍ର                  |
| heag<br>beag<br>reag                            | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag         |
| بد يد                                           | ح بد حد                                                                                                                                                    |                            |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                            |                              |

| (0 N O                                      |                                  | 10 N M                                                                                                                                                     |                                             |                                             |                                                                                                                                                            |                                             |  |
|---------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| 1146<br>1307<br>1319                        | 1186<br>1347<br>1359             | 1226<br>1387<br>1399                                                                                                                                       | 266<br>427<br>439                           | 1306<br>1467<br>1479                        | 1346<br>1507<br>1519                                                                                                                                       | 1386<br>1547<br>1559                        |  |
|                                             |                                  |                                                                                                                                                            | 12<br>14<br>14                              |                                             | त्ने त्ने त्ने                                                                                                                                             | सं सं सं                                    |  |
| 606                                         | $\nabla \nabla \nabla$           |                                                                                                                                                            | <b>ح ح ن</b>                                | AAA                                         | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | 000                                         |  |
| <u>0</u> 00                                 |                                  | $\triangleleft \triangleleft \vdash$                                                                                                                       |                                             |                                             | 666                                                                                                                                                        | 444                                         |  |
|                                             | A A C                            |                                                                                                                                                            |                                             | <b>4 4 4</b>                                |                                                                                                                                                            | <b>4 4 4</b>                                |  |
|                                             |                                  |                                                                                                                                                            |                                             | ЧЧЧ<br>V U V                                |                                                                                                                                                            | 000                                         |  |
| 444                                         | 4 4 4                            |                                                                                                                                                            | 555<br>555                                  |                                             | A A A<br>U U U                                                                                                                                             | 4 4 4<br>9 9 9                              |  |
| $\overline{0}\overline{0}\overline{0}$      | ບົບບົ                            |                                                                                                                                                            |                                             | רי'<br>טטט                                  |                                                                                                                                                            |                                             |  |
|                                             | ש ט ט                            |                                                                                                                                                            |                                             |                                             | 4 4 4                                                                                                                                                      |                                             |  |
| $\vdash$ $\vdash$ $\vdash$                  |                                  | 4 <b>U</b> 4                                                                                                                                               | $\dashv \dashv \dashv$                      |                                             | $\overline{\overline{000}}$                                                                                                                                | <br>< < <                                   |  |
| $\cup \cup \cup$                            | 000                              |                                                                                                                                                            | 000                                         | $\vdash$ $\vdash$ $\vdash$                  |                                                                                                                                                            | 000                                         |  |
| $\cup \cup \cup$                            | υ U <mark>μ</mark>               | $\cup \cup \cup$                                                                                                                                           | 000                                         | ++ <b>U</b>                                 | ົບບົບ                                                                                                                                                      | AAA                                         |  |
| 000                                         | A A A                            | $\cup \cup \cup$                                                                                                                                           | 000                                         | 4 4 4                                       | $\cup \cup \vdash$                                                                                                                                         | ບ່ບບ                                        |  |
| 000                                         | 555                              | $\forall \forall $ | μuμ                                         | A A A                                       | <u> </u>                                                                                                                                                   | 4 4 4                                       |  |
| $\vdash$ $\vdash$ $\vdash$                  | $\vdash \bigcirc \vdash$         | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | AAA                                         | 555                                         | $\forall \forall $ | $\cup \cup \cup$                            |  |
| A A A                                       | ⊢⊢⊢⊢                             | 5 <u>0</u> 0                                                                                                                                               | <b>4 4 4</b>                                | A A A                                       | $\cup \cup \triangleleft$                                                                                                                                  | $\triangleleft \triangleleft \triangleleft$ |  |
| 000                                         | $\vdash$ $\vdash$ $\vdash$       | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | ┝╸┝╴┝╸                                      | <b>4 4 4</b>                                | $\odot \cup \cup$                                                                                                                                          | $\cup \cup \cup$                            |  |
| 000                                         | 000                              | 000                                                                                                                                                        | ┝━ ┝─ ┝─                                    | $\cup \cup \cup$                            | A A A                                                                                                                                                      | $\cup \cup \cup$                            |  |
| $\vdash$ $\vdash$ $\vdash$                  | $\vdash$ $\vdash$ $\vdash$       | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$                  | 000                                         | 000                                                                                                                                                        | <u></u>                                     |  |
|                                             | <b>4 4 4</b>                     | 000                                                                                                                                                        | 000                                         | $\triangleleft \triangleleft \triangleleft$ | - + -                                                                                                                                                      | A G A                                       |  |
| $\triangleleft \triangleleft \triangleleft$ | 000                              |                                                                                                                                                            | $\triangleleft \triangleleft \triangleleft$ |                                             | $\forall \forall \forall$                                                                                                                                  |                                             |  |
|                                             | A A A                            |                                                                                                                                                            |                                             |                                             | ∨ب⊳                                                                                                                                                        |                                             |  |
|                                             | 666                              | 999<br>999                                                                                                                                                 |                                             |                                             |                                                                                                                                                            |                                             |  |
| 000<br>000                                  | A A A                            |                                                                                                                                                            | A A A<br>A A A                              | н н <mark>9</mark><br>9 9 9                 |                                                                                                                                                            |                                             |  |
|                                             |                                  | 4 4 4                                                                                                                                                      |                                             | 555                                         | 000<br>HHH                                                                                                                                                 | 000<br>000                                  |  |
|                                             |                                  |                                                                                                                                                            |                                             | ⊢⊌U                                         |                                                                                                                                                            |                                             |  |
| 000                                         | <b>-</b>                         | 000                                                                                                                                                        | $\overline{0}$                              | 500                                         | $\vdash \vdash \bigcup$                                                                                                                                    |                                             |  |
| טטט                                         | 000                              | <b>4 4 4</b>                                                                                                                                               | υυ <mark>Η</mark>                           | 000                                         |                                                                                                                                                            | 000                                         |  |
| н н н                                       | <del>ی</del> ی ی                 | <b>4 4 4</b>                                                                                                                                               | $\cup \cup \overline{\cup}$                 |                                             | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | <b>4 4 4</b>                                |  |
| $\cup \cup \cup$                            | 000                              | U U 🛏                                                                                                                                                      | AAA                                         | $\forall \forall \forall$                   | 000                                                                                                                                                        | 444                                         |  |
| 5 5 5                                       | 000                              | 000                                                                                                                                                        | $\cup \cup \cup$                            | 000                                         | ⊢⊢⊢                                                                                                                                                        | U U 🛏                                       |  |
| 000                                         | $\vdash \mathbf{O} \vdash$       | $\cup \cup \cup$                                                                                                                                           | 555                                         | 000                                         | $\vdash \vdash \bigcup$                                                                                                                                    | <u> </u>                                    |  |
| 666                                         | $\vdash$ $\vdash$ $\vdash$       | $\cup \cup \cup$                                                                                                                                           | 555                                         | 000                                         | 000                                                                                                                                                        | 555                                         |  |
|                                             | 444                              | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | ⊢⊢⊢                                         | $\vdash$ $\vdash$ $\vdash$                  | $\cup \cup \cup$                                                                                                                                           | $\vdash \vdash \vdash$                      |  |
| $\vdash$ $\vdash$ $\vdash$                  | $\cup \cup \cup$                 | $\forall \forall \forall$                                                                                                                                  | $\vdash$ $\vdash$ $\vdash$                  | 000                                         | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\vdash$ $\vdash$ $\vdash$                  |  |
| $\vdash$ $\vdash$ $\vdash$                  | 000                              | <b>∀</b> ∪∪                                                                                                                                                | A A A                                       | A A A                                       | $\cup \cup \cup$                                                                                                                                           | $\vdash$ $\vdash$ $\vdash$                  |  |
| 000                                         | <b>4 4 4</b>                     | 000                                                                                                                                                        | 000                                         | A A A                                       | $\cup \cup \cup$                                                                                                                                           | $\cup \cup \cup$                            |  |
| H H H                                       |                                  | $\triangleleft \triangleleft \triangleleft$                                                                                                                | < < <                                       | 000                                         |                                                                                                                                                            | 000                                         |  |
|                                             | $\mathbf{A}\mathbf{A}\mathbf{A}$ | 666                                                                                                                                                        | 000 .                                       | 000                                         | υυ <mark>Η</mark>                                                                                                                                          | 000                                         |  |
|                                             | $\vdash$ $\vdash$ $\vdash$       | $\forall \forall \forall$                                                                                                                                  | 000                                         | 000                                         |                                                                                                                                                            | 000                                         |  |
| heag<br>beag<br>reag                        | heag<br>beag<br>reag             | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                        | heag<br>beag<br>reag                        | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                        |  |
| he<br>re                                    | re<br>Pe                         | ree                                                                                                                                                        | re<br>Pe                                    | re<br>Pe                                    | re(<br>he                                                                                                                                                  | he<br>be                                    |  |
|                                             |                                  |                                                                                                                                                            | 10 cont                                     | _                                           |                                                                                                                                                            |                                             |  |

| Patent Application | Publication | Jan. 24. 2008 | She |
|--------------------|-------------|---------------|-----|
| I atom Application | 1 upitation | Jan. 24, 2000 | SIL |

| 1426<br>1587<br>1599       | 1466<br>1627<br>1639       | 90<br>79<br>79             | 1546<br>1707<br>1719                        | 86<br>47<br>59                              | 26<br>87<br>99               | 66<br>39                   |
|----------------------------|----------------------------|----------------------------|---------------------------------------------|---------------------------------------------|------------------------------|----------------------------|
| エエエ                        | 16<br>16                   | 1506<br>1667<br>1679       | 17                                          | 1586<br>1747<br>1759                        | 1626<br>1787<br>1799         | 1666<br>1827<br>1839       |
| $\dashv$ $\dashv$ $\dashv$ | <b>4 4 4</b>               | $\cup \cup \cup$           | 000                                         | 555                                         | <b>ט ט</b> <                 |                            |
| $\cup_i \cup_i \cup_j$     | $\cup \cup \cup$           | <b>4 4 4</b>               | <b>0 0</b> ⊳                                | $\vdash$ $\vdash$ $\vdash$                  | < < <                        |                            |
| — — →                      | _<br>ح ح ك                 | $\forall \forall \forall$  |                                             |                                             |                              | AAA                        |
| $\cup \cup \cup$           |                            | $\cup \cup \cup$           | 444                                         |                                             | 000                          |                            |
|                            | $\cup \cup \cup$           | $\vdash$ $\vdash$ $\vdash$ | $\triangleleft$ U U                         | <b>4 4 4</b>                                | $\vdash \vdash \vdash$       | ∨ ט ט                      |
| ┝━ ┝━ ┝━                   | $\cup \cup \cup$           | $\cup \cup \cup$           | $\overline{0}\overline{0}\overline{0}$      | $\cup \cup \square$                         | $\cup \cup \cup$             | ⊢ ⊢ ⊢                      |
| $\cup \cup \cup$           | $\vdash$ $\vdash$ $\vdash$ | 000                        | $\cup \cup \cup$                            | $\cup \cup \overline{\cup}$                 | $\cup \cup \cup$             | 000                        |
| ע ט ט                      | ┝╴┝╴┝╴                     | ┝╾┝╾┝╴                     | ບ່ບບ່                                       | $\vdash$ $\vdash$ $\vdash$                  | $\vdash$ $\vdash$ $\vdash$   | $\cup \cup \cup$           |
|                            | $\vdash$ $\vdash$ $\vdash$ | $\forall \forall \forall$  | ⊢⊢⊢                                         | 000                                         | 000                          | 000                        |
| $\vdash$ $\vdash$ $\vdash$ | $\vdash$ $\vdash$ $\vdash$ | .ບ ບ ບ                     | 550                                         | $\vdash$ $\vdash$ $\vdash$                  | 000                          | н н н                      |
|                            |                            | <b>4 4 4</b>               | 555                                         | ى ب ى                                       | <b>4 4 4</b>                 | $\cup \cup \vdash$         |
| 000                        |                            | 000                        | 444                                         | $\vdash \bigcirc \vdash$                    | $\forall \forall \forall$    |                            |
| 000                        | $\cup \cup \cup$           | $\vdash$ $\vdash$ $\vdash$ | $\cup \cup \cup$                            | $\dashv$ $\dashv$                           | 000                          | <b>4 4 4</b>               |
|                            | <b>4 4 4</b>               | <b>4 4 4</b>               | $\cup \cup \cup$                            | <b>4 4 4</b>                                | A A A                        | $\cup \cup \cup$           |
| $\vdash$ $\vdash$ $\vdash$ |                            | $\cup \cup \cup$           | A Ă A                                       |                                             | <u> </u>                     | $\forall \forall \forall$  |
| 4 4 4                      |                            | $\cup \cup \vdash$         | $\vdash$ $\vdash$ $\vdash$                  | <b>4 4 4</b>                                | ע ע ט                        | 699                        |
| 000                        |                            | AAA                        | $\cup \cup \cup$                            | <u> </u>                                    | $\circ \cup \cup \cup$       |                            |
|                            |                            | $\vdash$ $\vdash$ $\vdash$ | $\vdash$ $\vdash$ $\vdash$                  | $\vdash$ $\vdash$ $\bigcirc$                | <b>4 4 4</b>                 | $\cup \cup \cup$           |
| 444                        |                            | <del>ک</del> ک ک           | 000                                         | A A A                                       | $\cup \cup \cup$             | 000                        |
| 000                        |                            | 000                        | 666                                         | 000                                         | A A A                        | $\forall \forall \forall$  |
|                            |                            | $\forall \forall \forall$  | $\triangleleft \triangleleft \triangleleft$ | 000                                         | 999                          | 000                        |
| 444                        |                            |                            | $\forall \forall \forall$                   | ┝╾┝╾┝╾                                      | $\vdash$ $\vdash$ $\bigcirc$ |                            |
|                            |                            | <b>A A A</b>               | 666                                         | $\triangleleft \triangleleft \triangleleft$ |                              | 000                        |
|                            |                            | $\forall \forall \forall$  |                                             |                                             | 444                          | $\vdash$ $\vdash$ $\vdash$ |
|                            |                            |                            |                                             | $ \vdash \vdash \vdash$                     |                              | AAA                        |
|                            | Constant Statements        |                            |                                             | 000                                         | 000                          |                            |
| 000<br>000                 |                            | A A A<br>U U U             |                                             |                                             | 000                          | A A A                      |
| ں ت<br>ک ت                 | _                          | A A A                      |                                             | 666                                         |                              | 666                        |
|                            |                            |                            |                                             |                                             | 000<br><b>-</b> -            | 000                        |
| <br>                       |                            |                            | <br>5 0 0                                   |                                             |                              | 4 4 4<br>4 4 4             |
| A D D                      |                            |                            | 000<br>000                                  | <br>5 5 5                                   |                              |                            |
|                            |                            | 555<br>550                 | 555<br>555                                  |                                             | + + +                        |                            |
| 500                        |                            | μŪμ                        |                                             | 555                                         | 505                          |                            |
|                            | _                          |                            |                                             | <b>4 4 4</b>                                | -++                          |                            |
| ■ · ·<br>⊣                 |                            | + + +                      | $\vdash$ $\vdash$ $\vdash$                  | 555                                         | <br>4 4 4                    | ິ ບ ບ ບ                    |
| $\vdash$ $\vdash$ $\vdash$ |                            |                            |                                             |                                             | $\overline{0}$               | $\vdash$                   |
|                            |                            | $\vdash$ $\vdash$ $\vdash$ |                                             |                                             |                              |                            |
|                            |                            | <pre></pre>                | 500                                         | <u>ک</u> ک ک                                | H H H                        |                            |
| <b>44</b>                  |                            | 000                        | 444                                         | 000                                         |                              | <br>                       |
|                            |                            |                            |                                             |                                             |                              |                            |
| heag<br>beag<br>reaa       | heag<br>beag<br>reag       | heag<br>beag<br>reag       | heag<br>beag<br>reag                        | heag<br>beag<br>reag                        | heag<br>beag<br>reag         | heag<br>beag<br>reag       |
| تَ هَ تُ                   | تَ مَ تَ                   | ٽ ڡٚ ٽ                     | ٽ ٽ ٽ                                       | ؾٚڡٞؾ                                       | д<br>Ч                       | žăž                        |
|                            |                            | <b>F</b>                   |                                             |                                             |                              |                            |

Patent Application Publication Jan. 24, 2008 Sheet 16 of 37 US 2008/0020406 A1

| 1706<br>1867<br>1879                                    | 1746<br>1907<br>1919                   | 1786<br>1947<br>1959               | 26<br>87<br>99             | 56<br>39                                                                                                                                                   | 86<br>57<br>79                              | )46<br>.07<br>.19                           |
|---------------------------------------------------------|----------------------------------------|------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|
| $\begin{array}{c} 12\\18\\18\\18\end{array}$            | 19 19                                  | 1001                               | 1826<br>1987<br>1999       | 1866<br>2027<br>2039                                                                                                                                       | 1906<br>2067<br>2079                        | 194<br>21(<br>213                           |
| $\vdash$ $\vdash$ $\vdash$                              | $\cup \cup \cup$                       | 000                                | 000                        | $\vdash$ $\vdash$ $\bigcirc$                                                                                                                               | 000                                         | ⊢⊢⊢                                         |
| $\langle \mathbf{v}_{i} \mathbf{v} \rangle$             | $\vdash$ $\vdash$ $\vdash$             |                                    | 000                        | - $ -$                                                                                                                                                     | 000                                         | $H \rightarrow H$                           |
| 000                                                     | $\vdash$ $\vdash$ $\vdash$             | $\forall \forall \forall$          |                            | 4 4 4                                                                                                                                                      | <b>4 4 4</b>                                | $\cup \cup \cup$                            |
| 000                                                     | 666                                    | 000                                | $\cup \cup \cup$           | $\cup \cup \cup$                                                                                                                                           | $\triangleleft \triangleleft \triangleleft$ | $\cup \cup \cup$                            |
|                                                         | <b>4 4 4</b>                           |                                    |                            | $\dot{\mathbf{U}}$ $\mathbf{U}$ $\mathbf{U}$                                                                                                               | 000                                         | 000                                         |
|                                                         | 666                                    | $\mathbf{A} \mathbf{A} \mathbf{A}$ |                            | 000                                                                                                                                                        | 000                                         | 555                                         |
| $\begin{array}{c} - + - + - + \\ + - + - + \end{array}$ |                                        |                                    |                            | 000<br>                                                                                                                                                    | $\vdash$ $\vdash$ $\vdash$                  | 666                                         |
|                                                         | <br>4 4 4                              | +++                                | 555<br>555                 |                                                                                                                                                            |                                             |                                             |
|                                                         | $\overline{0}\overline{0}\overline{0}$ | 444                                | +++                        | 000<br>000                                                                                                                                                 | FFF                                         |                                             |
| 000                                                     | $\overline{0}$                         |                                    | <br>                       |                                                                                                                                                            | U U H                                       | 555                                         |
| 5 A C                                                   | 000                                    | $\vdash$ $\vdash$ $\vdash$         |                            |                                                                                                                                                            |                                             | H + H                                       |
| $\overline{0}\overline{0}\overline{0}$                  | 000                                    | $\cup \cup \cup$                   | $\vdash$ $\vdash$ $\vdash$ | 555                                                                                                                                                        | 000                                         | <b>444</b>                                  |
| $\cup \cup \cup$                                        | ⊢⊢ <u>⊢</u>                            | $\cup \cup \cup$                   | $\vdash$ $\vdash$ $\vdash$ | $\forall \forall \forall$                                                                                                                                  |                                             | $\triangleleft \triangleleft \triangleleft$ |
| $\cup \cup \cup$                                        |                                        | A A A                              | $\cup \cup \cup$           | <u> </u>                                                                                                                                                   | 4 4 4                                       | $\cup \cup \square$                         |
| <b>4 4 4</b>                                            | α α <mark>υ</mark>                     | 000                                | 600                        |                                                                                                                                                            | <u> </u>                                    | υυύ                                         |
|                                                         |                                        | 666                                |                            | $\forall \forall \forall$                                                                                                                                  | ע ע ס                                       | 000                                         |
|                                                         | 666                                    | <b></b>                            |                            | <b>.</b>                                                                                                                                                   | 000                                         | $\vdash \vdash \bigcirc$                    |
| 4 4 5<br>5 9 7                                          | 000                                    | U U U<br>U U U                     |                            | H H H                                                                                                                                                      | <b></b>                                     | 000                                         |
| ن ن ن<br>ک ن ت                                          |                                        |                                    |                            | A A A<br>G G G                                                                                                                                             |                                             |                                             |
| $\triangleleft \triangleleft \triangleleft$             | U <mark>U</mark> U                     |                                    | 000<br>000                 | ע <b>ט ט</b> ע                                                                                                                                             |                                             |                                             |
| <b>444</b>                                              | $ \vdash \vdash \vdash$                |                                    | 4 4 4                      |                                                                                                                                                            | 555                                         |                                             |
| $\cup \cup \cup$                                        | $\cup \cup \cup$                       | $\cup \cup \cup$                   |                            |                                                                                                                                                            | $\vdash$ $\vdash$ $\vdash$                  | <br>                                        |
| $\vdash$ $\vdash$ $\vdash$                              | $\cup$ $\cup$ $\cup$                   | <b></b>                            | <b>4 4 4</b>               | $\cup \cup \cup$                                                                                                                                           | 500                                         | AAA                                         |
| <u>н </u> н                                             | 000                                    | $\vdash$ $\cup$ $\cup$             | <u></u>                    | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 |                                             | $\cup \cup \cup$                            |
| u<br>u<br>u                                             |                                        | 000                                |                            | $\forall \forall $ | 4 4 4                                       | $\cup \cup \triangleleft$                   |
| ┝╴┝╴┝╸                                                  | $\cup \cup \vdash$                     | $\vdash$ $\vdash$ $\vdash$         | $\vdash$ $\vdash$ $\vdash$ | 999                                                                                                                                                        | 000                                         | $\cup \cup \cup$                            |
| 000                                                     | 666                                    | 000                                | 666                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | A A A                                       | 000                                         |
|                                                         |                                        | AAA                                |                            | 555                                                                                                                                                        | 000                                         | $\vdash \vdash \vdash$                      |
| 4 4 4<br>4 4 4                                          |                                        |                                    | 000                        | 000                                                                                                                                                        | 000                                         |                                             |
|                                                         | 4 4 4<br>9 9 9                         |                                    | 4 4 9<br>9 7 9             |                                                                                                                                                            | 4 4 4<br>4 4 4                              |                                             |
| 5 5 <b>5</b>                                            |                                        | שטטט.                              | A A A                      | 000<br>000                                                                                                                                                 | 4 4<br>4 7                                  |                                             |
|                                                         | 555                                    | ບ ບ <b>ປ</b>                       | 500                        |                                                                                                                                                            | 4 4 5 5                                     | A A A                                       |
| $\cup \cup \cup$                                        | 444                                    |                                    | < 5 5                      |                                                                                                                                                            | 600                                         |                                             |
| < < <                                                   | $\cup \cup \cup$                       | <b>44</b>                          | <b>000</b>                 | ບບບົ                                                                                                                                                       | ບບບ                                         |                                             |
| <u>م م</u> م                                            | $\cup \cup \cup$                       | 000                                | 000                        | $\cup \cup \cup$                                                                                                                                           | <b>4 4 4</b>                                | 000                                         |
| ৩ৰ৩                                                     | 000                                    | <b>4 4 4</b>                       | < < ∪                      | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\vdash$ $\vdash$ $\vdash$                  | <mark>ک</mark> م                            |
| $\vdash$ $\vdash$ $\vdash$                              | 5 5 5                                  | $\cup \cup \cup$                   | $\cup \cup \cup$           | $\cup \cup \cup$                                                                                                                                           | $\cup \cup \cup$                            | AAA                                         |
| 0000                                                    | ច្ច ច្ច ច្                             | ច្ឆ ច្ឆ ច្ឆ                        | ត្ត ត្ត ត្                 | ត្ត ត ត                                                                                                                                                    | ຍ ຍ ຍ                                       | ට ට ට                                       |
| heag<br>beag<br>reag                                    | heag<br>beag<br>reag                   | heag<br>beag<br>reag               | heag<br>beag<br>reag       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                        | heag<br>beag<br>reag                        |
|                                                         |                                        |                                    | 0 cont.                    |                                                                                                                                                            |                                             | ــة ليف ــف                                 |
|                                                         |                                        |                                    |                            |                                                                                                                                                            |                                             |                                             |
|                                                         |                                        |                                    |                            |                                                                                                                                                            |                                             |                                             |

Patent Application Publication Jan. 24, 2008 Sheet 17 of 37 US 2008/0020406 A1

| 1986<br>2147<br>2159                       | 2026<br>2187<br>2199                                                                                                                                       | 2066<br>2227<br>2239               | 2106<br>2267<br>2279       | 2146<br>2307<br>2319                         | 2186<br>2347<br>2359                         | 2226<br>2387<br>2399                           |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|--|
|                                            |                                                                                                                                                            |                                    |                            |                                              |                                              |                                                |  |
| 0 0 0<br>H H H                             | + + +                                                                                                                                                      |                                    | ע<br>פע<br>ע               |                                              | $\vdash \vdash \vdash$                       | GOH                                            |  |
|                                            |                                                                                                                                                            | - <b>M</b> -<br>5 5 5              | 4 4<br>5 5 5               |                                              | L L<br>D<br>D                                | 000<br>000                                     |  |
|                                            |                                                                                                                                                            | 444                                | 4 <b>0</b> 4               | <br>< < <                                    | < <b>0</b> 0                                 | 4 <b>U</b> 4                                   |  |
| $\cup \cup \cup$                           |                                                                                                                                                            | $\forall \forall \forall$          | < < <                      | U U 🛏                                        | < < <                                        | 666                                            |  |
| 000                                        | 4 4 4                                                                                                                                                      | 000                                | 555                        | ——<br>— — —                                  | ט ט ע                                        | AAA                                            |  |
|                                            | $\cup \cup \cup$                                                                                                                                           | 000                                | ך ה                        | $\cup \cup \cup$                             | 4 4 4                                        | 000                                            |  |
| 4 4 4                                      | $\cup \cup \cup$                                                                                                                                           | AAA                                | 000                        | $\cup \cup \cup$                             | $\cup \cup \cup$                             | $\forall \forall \forall$                      |  |
|                                            | ပပ်ပ                                                                                                                                                       | 000                                | 000                        | $\cup \cup \cup$                             | $\cup \cup \cup$                             | 555                                            |  |
| 000                                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 |                                    | $\forall \forall \forall$  | $\dot{\mathbf{U}}$ $\mathbf{U}$ $\mathbf{U}$ | $\vdash$ $\vdash$ $\vdash$                   |                                                |  |
|                                            |                                                                                                                                                            | μμυ                                | 444                        | 000                                          | $\vdash$ $\vdash$ $\vdash$                   | $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  |
|                                            | ┝╾┝╧┝╼                                                                                                                                                     |                                    | <b>4 4 4</b>               | $\mathbf{U}$                                 | 000                                          | 999                                            |  |
| 000                                        |                                                                                                                                                            | AAA                                | 000                        | 000                                          | -4 $-4$ $-4$                                 | A C A                                          |  |
| 4 4 4<br>4 4 4                             |                                                                                                                                                            | $\mathbf{A} \mathbf{A} \mathbf{A}$ |                            | 000                                          | 000                                          |                                                |  |
|                                            |                                                                                                                                                            | U U U<br>V V U                     |                            | $\forall \forall \forall$                    |                                              | 999                                            |  |
|                                            | U V V                                                                                                                                                      |                                    |                            | 5 5 5<br>5 4 7                               | 000<br>V V V                                 | 999<br>777                                     |  |
| <b>44</b>                                  |                                                                                                                                                            | υUυ                                | 000                        |                                              | 000<br>000                                   |                                                |  |
| 000                                        | <b>4 4 4</b>                                                                                                                                               | $\overline{0}$                     |                            |                                              | 555<br>555                                   | 555                                            |  |
| エート                                        | $\cup \cup \cup$                                                                                                                                           | <b>4 4 4</b>                       | 000                        | 000                                          |                                              | 555                                            |  |
| 000                                        | <b>4 4 4</b>                                                                                                                                               | ບບບ                                | <b>4 4 4</b>               | <b>4 4 4</b>                                 | $   \overline{} $                            | AAA                                            |  |
|                                            | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $-\overline{++}$                   | ပပ္ပ                       | $\triangleleft \triangleleft \triangleleft$  | $\vdash$ $\vdash$ $\vdash$                   | $\cup \cup \cup$                               |  |
| <b>44</b>                                  | $\cup \cup \cup$                                                                                                                                           | $\cup \cup \cup$                   | $\vdash$ $\vdash$ $\vdash$ | < 5 G                                        | 000                                          | $\cup \cup \cup$                               |  |
| $\cup \cup \cup$                           | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\vdash$ $\vdash$ $\vdash$         | $\forall \forall \forall$  | 000                                          |                                              | 000                                            |  |
| <b>с</b> с                                 | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\vdash$ $\vdash$ $\vdash$         | 000                        | $\cup \cup \cup$                             | $\overline{000}$                             | J A A                                          |  |
| $\dashv$ $\dashv$ $\dashv$                 | $\forall \forall \forall$                                                                                                                                  | A A A                              | A A A                      | עסע                                          | $\cup \cup \cup$                             | $\forall \forall \forall$                      |  |
| 000                                        | <b>4 4 4</b>                                                                                                                                               | UU<br>UU                           | $\forall \forall \forall$  | AAA                                          | $\mathbf{U} \mathbf{U} \mathbf{U}$           | 000                                            |  |
|                                            | 666                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$         | 000                        | $\triangleleft \triangleleft \triangleleft$  | <b>4 4 4</b>                                 | A<br>م                                         |  |
| A A A                                      |                                                                                                                                                            |                                    |                            | 000                                          | 000                                          | AAA                                            |  |
| 1 1 0<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | HHH<br>UÚU                                                                                                                                                 | U U U<br>V V U                     |                            | $\vdash$ $\vdash$ $\vdash$                   |                                              | AAA                                            |  |
| 555                                        | 500                                                                                                                                                        | 4 4 4<br>4 4 4                     |                            |                                              | A A A<br>G D G                               | 000                                            |  |
|                                            | <u>н</u> нн                                                                                                                                                | 440                                |                            | 000                                          |                                              | AAA                                            |  |
|                                            | <br>                                                                                                                                                       | 555                                | 505                        |                                              |                                              | 000                                            |  |
| <b>44</b>                                  | 444                                                                                                                                                        | $\overline{0}$                     | $\vdash$ $\vdash$ $\vdash$ | ک ک<br>ک ک ک                                 |                                              | A A A                                          |  |
| + $+$ $+$                                  | AAA                                                                                                                                                        | ပ်ပပ                               | 000                        | $\triangleleft \triangleleft \triangleleft$  |                                              |                                                |  |
| $\cup \cup \cup$                           | $\forall \forall $ | $\cup \cup \cup$                   | $\vdash \Box \vdash$       | 000                                          |                                              | <b>∀</b> ∪∪                                    |  |
|                                            | 505                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$         |                            | <b>ح ن</b> ن                                 | $\overline{0}$ $\overline{0}$ $\overline{0}$ | 000                                            |  |
| <b>4 4 4</b>                               | <b>4 4 4</b>                                                                                                                                               | $\cup \cup \cup$                   | <b>4 4 4</b>               | <b>4 4 4</b>                                 | ບ່ບບ                                         | $\cup \cup \cup$                               |  |
| 000                                        | $\mathbf{U}$ $\mathbf{U}$ $\mathbf{U}$                                                                                                                     | $\vdash$ $\vdash$ $\vdash$         | 000                        | 000                                          | ┝╾┝╾┝╾                                       | $\cup \cup \cup$                               |  |
| ຊີ ຊີ ຊີ                                   | ចិ ចិ ចិ                                                                                                                                                   | ប្តី ប្តី ប្តី                     | ជិ បិ ប                    | ច្ន ច ច                                      | ច្ច ច្                                       | ច្នា ច្នា ច្                                   |  |
| heag<br>beag<br>reag                       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag               | heag<br>beag<br>reag       | heag<br>beag<br>reag                         | heag<br>beag<br>reag                         | heag<br>beag<br>reag                           |  |
| · · ·                                      | - LL -                                                                                                                                                     |                                    | 10 cont.                   | <u> </u>                                     |                                              |                                                |  |

| 2266<br>2427<br>2439       | 2306<br>2461<br>2479                                                                                                                                       | 2346<br>2501<br>2519                                                                        | 2386<br>2541<br>2559                   | 2426<br>2581<br>2599        | 2466<br>2621<br>2639       | 2506<br>2661<br>2679       |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|----------------------------|----------------------------|--|
|                            |                                                                                                                                                            |                                                                                             |                                        |                             |                            |                            |  |
|                            | A A A                                                                                                                                                      |                                                                                             |                                        |                             | 000                        | A A A                      |  |
|                            | $\forall \forall \forall$                                                                                                                                  |                                                                                             |                                        |                             | 000                        | 000                        |  |
|                            |                                                                                                                                                            |                                                                                             | $\forall \forall \forall$              |                             | $\vdash$ $\vdash$ $\vdash$ | 666                        |  |
| A A A<br>U U U             | - <b>0</b> -                                                                                                                                               | 555<br>777                                                                                  | 000<br>4 <b>0</b> 4                    | 000                         |                            |                            |  |
| 666                        | U<br>U<br>U<br>U<br>U                                                                                                                                      | A A A                                                                                       |                                        | 000<br>00                   | ט ט ט<br>ע <b>ט ט</b>      |                            |  |
| 666                        |                                                                                                                                                            |                                                                                             |                                        |                             |                            | 4 4 4<br>9 9 5             |  |
| 555                        |                                                                                                                                                            |                                                                                             | 500                                    |                             | Α<br>Α<br>Α<br>Α<br>Α<br>Α | 000<br>000                 |  |
| 444                        | $\overline{0}$                                                                                                                                             | 555<br>555                                                                                  |                                        |                             |                            | A A A                      |  |
| 444                        | 000                                                                                                                                                        |                                                                                             |                                        | 555<br>555                  |                            | 555                        |  |
| 555                        | 4 <b>5</b> 4                                                                                                                                               |                                                                                             | 5 5 A                                  | н <mark>о</mark> н          | 555                        | $\vdash$                   |  |
| <b>444</b>                 |                                                                                                                                                            | $\cup \cup \cup$                                                                            | ບບບ                                    |                             |                            | u<br>u<br>u                |  |
| 000                        | $\forall \forall $ | μUμ                                                                                         | ע ט ט                                  | 444                         | 500                        | ע נ <u>ה</u> ע             |  |
| <u>ა</u> ი ი               | $\cup \cup \cup$                                                                                                                                           | ເອັບເອີ                                                                                     |                                        | 000                         | <b>4 4 4</b>               | 000                        |  |
| $\overline{+++}$           | $\cup \cup \cup$                                                                                                                                           | <b>4 4 4</b>                                                                                | $\cup \overline{\cup} \cup$            |                             | $\forall \forall \forall$  | <b>4 4 4</b>               |  |
| <u>.</u>                   |                                                                                                                                                            | 000                                                                                         |                                        | $\cup \cup \overline{\cup}$ | $\cup \cup \cup$           | A O A                      |  |
| $\vdash \bigcirc \vdash$   | AAA                                                                                                                                                        | A A A                                                                                       | $\overline{0}\overline{0}\overline{0}$ | н <b>9</b> н                | $\cup \cup \cup$           | <u>.</u>                   |  |
| <b>4 4 4</b>               | $\cup \cup \cup$                                                                                                                                           | 000                                                                                         | $\cup \cup \cup$                       | שטט                         | 555                        | 000                        |  |
| 000                        | $\cup \cup \cup$                                                                                                                                           | ⊢⋖⊢                                                                                         | ⊲⊍∢                                    | 000                         | $\vdash \cup \vdash$       | 5 5 5                      |  |
| <u>ט ט</u> א               | 000                                                                                                                                                        | 000                                                                                         | $\cup \square \cup$                    | 666                         | U U U                      |                            |  |
| $\vdash$ $\vdash$ $\vdash$ |                                                                                                                                                            | 000                                                                                         |                                        | A T Q                       |                            | 000                        |  |
| 000                        |                                                                                                                                                            | J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J |                                        | 000                         |                            | $\vdash$ $\vdash$ $\vdash$ |  |
|                            |                                                                                                                                                            | H H H                                                                                       | 000                                    | $\cup \cup \cup$            | A A A                      |                            |  |
| <b>4 4 4</b>               |                                                                                                                                                            | 000                                                                                         |                                        | שטט                         | 000                        | 000                        |  |
|                            |                                                                                                                                                            |                                                                                             | 000                                    |                             |                            | 000                        |  |
|                            | 5 A A                                                                                                                                                      |                                                                                             | <b>ح</b> <mark>ل</mark> ح              | 000<br>                     | ចបច                        | $\vdash$ $\vdash$ $\vdash$ |  |
| A A A<br>G G               | T C T                                                                                                                                                      | AAA                                                                                         |                                        |                             |                            | $\forall \forall \forall$  |  |
| 666                        |                                                                                                                                                            | C<br>                                                                                       | 000<br>000                             | A A A<br>C C C              | 5 5 <b>F</b>               | 000                        |  |
| н <u>н</u> н               | U U U                                                                                                                                                      | 505                                                                                         | A O A                                  | ע פי פי<br>פי פי פי         | 555<br>555                 |                            |  |
|                            |                                                                                                                                                            | ა <mark>ს</mark> ა                                                                          |                                        |                             |                            | A A A<br>A A A             |  |
|                            | 000                                                                                                                                                        |                                                                                             |                                        |                             | 500                        |                            |  |
| <b>44</b>                  | <b>V</b> U                                                                                                                                                 |                                                                                             | - $  -$                                | 500                         | 555<br>555                 | $\vdash$                   |  |
| 000                        |                                                                                                                                                            |                                                                                             | <br>⊢ ⊢ ⊢                              |                             | 5 U d                      | $ \vdash \vdash \vdash$    |  |
| 000                        | $\triangleleft$ $\triangleleft$ $\triangleleft$                                                                                                            | 000                                                                                         | ົບບົບ                                  | A U A                       | 500                        |                            |  |
| 505                        |                                                                                                                                                            | <b>4 4 4</b>                                                                                | $\cup \cup \cup$                       |                             | 000                        | 666                        |  |
| $\cup \cup \cup$           |                                                                                                                                                            | $\cup \cup \cup$                                                                            | н <mark>б</mark> н                     | $\overline{000}$            | ບບບ                        | $\cup \cup \cup$           |  |
|                            | $\cup \cup \cup$                                                                                                                                           | $\cup \cup \cup$                                                                            | <b>ک</b> ک ک                           | 000                         | <b>4 4 4</b>               | $\cup \cup \cup$           |  |
| 000                        | $\cup \cup \cup$                                                                                                                                           | 000                                                                                         |                                        | $\cup \cup \cup$            | <b>4 4 4</b>               | ບບບ                        |  |
| 000                        | $\vdash$ $\vdash$ $\bigcirc$                                                                                                                               | 505                                                                                         | 666                                    | <b>4 4 4</b>                | $\cup \cup \cup$           | 505                        |  |
| heag<br>beag<br>reag       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                                                                        | heag<br>beag<br>reag                   | heag<br>beag<br>reag        | ם מ מ                      | heag<br>beag<br>reag       |  |
| he<br>re                   | he<br>be<br>re                                                                                                                                             | r e he                                                                                      | he<br>be                               | he<br>Pe                    | heag<br>beag<br>reag       | he<br>be                   |  |
|                            |                                                                                                                                                            |                                                                                             | 10 cont.                               |                             |                            |                            |  |

Patent Application Publication Jan. 24, 2008 Sheet 19 of 37 US 2008/0020406 A1

| 2546<br>2701<br>2719                 | 2586<br>2741<br>2759                                                                                                                                       | 2626<br>2781<br>2799                                                                                                                                       | 2666<br>2821<br>2839                                                                                                                                       | 2706<br>2861<br>2879                                                                                                                                       | 2746<br>2901<br>2919                        | 2786<br>2941<br>2959                        |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|
| 222                                  |                                                                                                                                                            | 222                                                                                                                                                        | 282                                                                                                                                                        | 28228                                                                                                                                                      | 27<br>29<br>29                              | 27<br>29<br>29                              |
| A A A                                | A م<br>م                                                                                                                                                   | $\cup \cup \vdash$                                                                                                                                         | 000                                                                                                                                                        | $\cup \cup \cup$                                                                                                                                           | $\cup \cup \cup$                            | ⊢⊣⊣                                         |
| 000                                  | $   \cup    \cup    $                                                                                                                                      | UΗU                                                                                                                                                        | <b>4</b> 4 4                                                                                                                                               | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | 6 6 6                                       | $\forall \forall \forall$                   |
|                                      | $\triangleleft \triangleleft \triangleleft$                                                                                                                | 000                                                                                                                                                        | 000                                                                                                                                                        | A A A                                                                                                                                                      | D D D                                       | 4 <b>5</b> 4                                |
|                                      | 000                                                                                                                                                        | 000                                                                                                                                                        | 000                                                                                                                                                        | 000                                                                                                                                                        | A A A                                       | $\forall \forall \forall$                   |
|                                      | A A A                                                                                                                                                      |                                                                                                                                                            |                                                                                                                                                            | $\cup \cup \cup$                                                                                                                                           | 000                                         | $\forall \forall \forall$                   |
|                                      |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                            | -+                                          | 000                                         |
|                                      | 9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                            |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                            | 000                                         |                                             |
| <ul><li></li><li></li><li></li></ul> |                                                                                                                                                            | U U U<br>V V V                                                                                                                                             | 9 9<br>9 9<br>9 9                                                                                                                                          |                                                                                                                                                            | 000                                         | U V U                                       |
|                                      | 0 <b>0</b> 0                                                                                                                                               | <br>5 5 5 5                                                                                                                                                | 000<br>4 4 4                                                                                                                                               |                                                                                                                                                            |                                             |                                             |
| AAA                                  |                                                                                                                                                            |                                                                                                                                                            | $\overline{}$                                                                                                                                              | -++                                                                                                                                                        | 000<br>000                                  |                                             |
| 50                                   |                                                                                                                                                            | 555                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                            |                                             | 4 4 4<br>9 9 9                              |
| <b>4</b> 4 4                         | <b>ح ح ت</b>                                                                                                                                               | 444                                                                                                                                                        | $\overline{0}$                                                                                                                                             |                                                                                                                                                            |                                             |                                             |
| 666                                  | $\cup \cup \overline{\cup}$                                                                                                                                | 000                                                                                                                                                        | $\overline{0}$                                                                                                                                             |                                                                                                                                                            |                                             |                                             |
| טטט                                  | <b>4 4 4</b>                                                                                                                                               | $\forall \forall $ | μOμ                                                                                                                                                        |                                                                                                                                                            |                                             |                                             |
| $\vdash$ $\vdash$ $\vdash$           | $\cup \cup \cup$                                                                                                                                           | $\forall \forall $ | 666                                                                                                                                                        |                                                                                                                                                            | 500                                         |                                             |
| ~ <u>~ ~</u>                         | $\cup \cup \cup$                                                                                                                                           | ပပပ္                                                                                                                                                       | $\forall \forall \forall$                                                                                                                                  | AAA                                                                                                                                                        | A C A                                       | 000                                         |
| <b>600</b>                           | 000                                                                                                                                                        | $\cup \cup \cup$                                                                                                                                           | U V U                                                                                                                                                      | $\cup \cup \cup$                                                                                                                                           | $\overline{\mathbf{u}}$                     | 000                                         |
|                                      | 000                                                                                                                                                        | <b>4 4 4</b>                                                                                                                                               | 000                                                                                                                                                        | 555                                                                                                                                                        | ч <mark>U</mark> ч                          | $\forall \forall \forall$                   |
|                                      | $\forall \forall \forall$                                                                                                                                  | $\cup \cup \cup$                                                                                                                                           | 4 4 4                                                                                                                                                      | <b>4 4 4</b>                                                                                                                                               | $\overline{0}\overline{0}\overline{0}$      | $\forall \forall \forall$                   |
| 000                                  | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | $\cup \cup \cup$                                                                                                                                           | AAA                                                                                                                                                        | $\cup \cup \cup$                            | $\cup \cup \cup$                            |
| <b>444</b>                           |                                                                                                                                                            | AAA                                                                                                                                                        | 000                                                                                                                                                        | 000                                                                                                                                                        | 000                                         | $\vdash$ $\vdash$ $\vdash$                  |
|                                      | 666                                                                                                                                                        | $\cup \cup \triangleleft$                                                                                                                                  | 000                                                                                                                                                        | - $ -$                                                                                                                                                     | 000                                         | $\forall \forall \forall$                   |
|                                      | 666<br>-                                                                                                                                                   | 000                                                                                                                                                        | 000                                                                                                                                                        | 000                                                                                                                                                        | $\forall \forall \forall$                   | 000                                         |
| 000                                  | <b>₹</b> 05                                                                                                                                                |                                                                                                                                                            | $\forall \forall \forall$                                                                                                                                  | 000                                                                                                                                                        |                                             | $\triangleleft \triangleleft \triangleleft$ |
| 5 5 5<br>5 5 5                       |                                                                                                                                                            | н <mark>о</mark> н<br>99                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                            |                                             |                                             |
| 4 4 4                                | י<br>שטע                                                                                                                                                   | 4 4 4                                                                                                                                                      | 500                                                                                                                                                        | 5 5 5<br>7 5 5                                                                                                                                             | +++                                         | 5 5 V                                       |
| <b>444</b>                           |                                                                                                                                                            |                                                                                                                                                            | 500<br>500                                                                                                                                                 |                                                                                                                                                            | ں ں ں<br><b>ک</b> ا ں ی                     | 4 4 4<br>5 5 5                              |
|                                      | 500                                                                                                                                                        | 4 4 4                                                                                                                                                      | 555                                                                                                                                                        | 500<br>500                                                                                                                                                 |                                             | 000                                         |
| $\cup \cup \cup$                     | <b>√</b> ∪ ∪                                                                                                                                               | 000                                                                                                                                                        | H H H                                                                                                                                                      | 600                                                                                                                                                        | 4 4 4                                       | A A A                                       |
| ┝╾┝╾┝                                | 4 <del>4</del> 4                                                                                                                                           | $\vdash \cup \vdash$                                                                                                                                       | 000                                                                                                                                                        | + + +                                                                                                                                                      | 500                                         | AAA                                         |
| 000                                  | $\forall \forall $ | 999                                                                                                                                                        | υ υ <mark>⊢</mark>                                                                                                                                         | $\cup$ $\vdash$ $\vdash$                                                                                                                                   |                                             | <b>U</b> U                                  |
| ┝╾┝╴┝━                               | 4 <b>9</b> 4                                                                                                                                               | ⊢⊢⊢                                                                                                                                                        | 4 4 4                                                                                                                                                      | $\overline{0}$                                                                                                                                             | $\cup \cup \cup$                            |                                             |
| 666                                  | $\overline{\mathbf{u}}$                                                                                                                                    | 5 5 <u>0</u>                                                                                                                                               | <b>4 4 4</b>                                                                                                                                               | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 | 000                                         | $\cup \cup \cup$                            |
| 000                                  | $\triangleleft \triangleleft \triangleleft$                                                                                                                | $\cup \cup \cup$                                                                                                                                           | $\cup \cup \cup$                                                                                                                                           | $\forall \forall $ | $\triangleleft \triangleleft \triangleleft$ | 000                                         |
| <b>4 4 4</b>                         | 666                                                                                                                                                        | H H H                                                                                                                                                      | $\forall \forall $ | $\cup \cup \cup$                                                                                                                                           | 000                                         | <b>4 4 4</b>                                |
| 4 4 4                                | 000                                                                                                                                                        | $\cup \cup \cup$                                                                                                                                           | 000                                                                                                                                                        | $\cup \cup \cup$                                                                                                                                           |                                             | 5 5 <u>5</u>                                |
|                                      | $\triangleleft \triangleleft \triangleleft$                                                                                                                | <b>4 4 4</b>                                                                                                                                               | 000                                                                                                                                                        | $\cup \cup \cup$                                                                                                                                           |                                             | $\cup \cup \vdash$                          |
| <b>۵</b> ۹                           | 000                                                                                                                                                        | 000                                                                                                                                                        | $\vdash$ $\vdash$ $\vdash$                                                                                                                                 |                                                                                                                                                            | $\cup \cup \cup$                            | 444                                         |
| heag<br>beag<br>reag                 | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                                                                                                                                       | heag<br>beag<br>reag                        | heag<br>beag<br>reag                        |
|                                      |                                                                                                                                                            | Fig 1                                                                                                                                                      | 0 cont                                                                                                                                                     |                                                                                                                                                            |                                             |                                             |

| 50 H O                                      |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2866<br>3021<br>3039                        | 2906<br>3061<br>3079                                                                                                                                                                                       | 2945<br>3101<br>3119                                                                                                                                                                      | 2973<br>3140<br>3156                                                                                                                                                                                                                                                                                                               | 2992<br>3179<br>3196                                                                                                                                                                                                                                                 | 3002<br>3200<br>3200                                                                                                                                                                                                                                                                                                                                                    |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| $\vdash$ $\vdash$ $\cup$                    |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| ⊢∪∢                                         | ບ່ບບ່                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| ບບບ                                         | < < <                                                                                                                                                                                                      |                                                                                                                                                                                           | $\cup \cup \cup$                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| $\triangleleft \triangleleft \triangleleft$ | ບບບ                                                                                                                                                                                                        | AAA                                                                                                                                                                                       | $\cup \cup \cup$                                                                                                                                                                                                                                                                                                                   | I A A                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             | <b>4 4 4</b>                                                                                                                                                                                               | <b>4 4 4</b>                                                                                                                                                                              | $\cup \square \cup$                                                                                                                                                                                                                                                                                                                | AAA                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             | 000                                                                                                                                                                                                        | AAA                                                                                                                                                                                       | 4 9 -                                                                                                                                                                                                                                                                                                                              | $\cup \cup \cup$                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           | the second s                                                                                                                                                                                                                     | A A                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| $\cup \cup \cup$                            | $\cup \cup \cup$                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| $\vdash \vdash \bigcup$                     | $\vdash$ $\vdash$ $\vdash$                                                                                                                                                                                 | $\forall \forall $                                | $\cup \cup \cup$                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      | <b>4</b> 4                                                                                                                                                                                                                                                                                                                                                              |
| $\cup \cup \cup$                            | 555                                                                                                                                                                                                        | 000                                                                                                                                                                                       | AAA                                                                                                                                                                                                                                                                                                                                | $\cup \overline{\cup} \cup$                                                                                                                                                                                                                                          | <b>A</b> 1                                                                                                                                                                                                                                                                                                                                                              |
| $\vdash$ $\vdash$ $\vdash$                  | <b>4 4 4</b>                                                                                                                                                                                               | $\forall \forall $                                | 000                                                                                                                                                                                                                                                                                                                                | <b>4 4 4</b>                                                                                                                                                                                                                                                         | υī                                                                                                                                                                                                                                                                                                                                                                      |
| 000                                         | $\cup \cup \cup$                                                                                                                                                                                           | 000                                                                                                                                                                                       | 1 <b> </b> 1                                                                                                                                                                                                                                                                                                                       | $\cup \cup \cup$                                                                                                                                                                                                                                                     | U F                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                                                                                                                                                                                            | $\vdash$ $\vdash$ $\vdash$                                                                                                                                                                | A A I                                                                                                                                                                                                                                                                                                                              | L A Q                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      | 1   1                                                                                                                                                                                                                                                                                                                                                                   |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      | 1 1 1                                                                                                                                                                                                                                                                                                                                                                   |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      | - 5<br>- 5                                                                                                                                                                                                                                                                                                                                                              |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      | - V                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             | <u></u>                                                                                                                                                                                                    | $\vdash$ $\vdash$ $\vdash$                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      | <b>∀ G</b>                                                                                                                                                                                                                                                                                                                                                              |
|                                             | 0 ⊳ ⊳                                                                                                                                                                                                      | $\vdash$ $\vdash$ $\vdash$                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      | A A<br>A G                                                                                                                                                                                                                                                                                                                                                              |
| $\cup \cup \square$                         | <u>ک</u> ک ک                                                                                                                                                                                               | ⊢⊢⊢                                                                                                                                                                                       | I A A                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      | ש א ט                                                                                                                                                                                                                                                                                                                                                                   |
| 4 4 4                                       | <b>4 4 4</b>                                                                                                                                                                                               | $\vdash$ $\vdash$ $\vdash$                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    | 1 5 5                                                                                                                                                                                                                                                                | י א פ                                                                                                                                                                                                                                                                                                                                                                   |
| ⊲ ⊲ ∪                                       |                                                                                                                                                                                                            | ⊢⊢⊢                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                    | - A T                                                                                                                                                                                                                                                                | $\overline{\overline{\mathbf{U}}}$                                                                                                                                                                                                                                                                                                                                      |
|                                             | ⊢ ⊢ <u>⊢</u>                                                                                                                                                                                               | A A A                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                                                            | $\cup \cup \cup$                                                                                                                                                                          | <u>ס</u> ט ע                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                      | $\cup$ $\vdash$ $\vdash$                                                                                                                                                                                                                                                                                                                                                |
| ຍິຍິຍິ                                      | ច្ច ច្ច ច្ច                                                                                                                                                                                                | ច្ឆ ច្ ច្                                                                                                                                                                                 | ត្ត ច ត្                                                                                                                                                                                                                                                                                                                           | ດີ ດີ ດີ                                                                                                                                                                                                                                                             | ດັ່ວ ດັ່ວ                                                                                                                                                                                                                                                                                                                                                               |
| he(<br>re(                                  | hec<br>bec                                                                                                                                                                                                 | hec<br>Jec<br>'ec                                                                                                                                                                         | Jec<br>Jec                                                                                                                                                                                                                                                                                                                         | Jec<br>Jec                                                                                                                                                                                                                                                           | heag<br>beag<br>reag                                                                                                                                                                                                                                                                                                                                                    |
|                                             |                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                      | <u> د د</u>                                                                                                                                                                                                                                                                                                                                                             |
|                                             | СТТССА 6 А А 6 А Т С С Т С Т С А 6 Т С Т С С Т С А 6 6 А 6 Т Т 6 Т<br>С С Т С С А 6 А А 6 А Т С С Т С Т С А 6 Т С С С С С А 6 6 6 6 6 7 А Т<br>Т 6 Т С С А 6 А 6 6 6 Т С С Т С С С 6 С Т С А 6 6 А 6 7 А 7 | <pre>heag TTAACTTCCAGAGACCTCTCAGTCTCAGGAGTTGT<br/>beag TTAACCTCCAGAGTCCTCAGTCCTCAGGAGGTAT<br/>reag CTCATGTCCTCCAGTCCTCAGGAGCTATGT<br/>heag TTGAACCTCCAGAGTCCTCAGGAGCAGTACAGGAGAGAGA</pre> | T T A A C T T C C A G A A G A T C C T C A G T C T C C T C A G G A G T T G T<br>T T A A C C T C C A G A A G A T C C T C T C A G T C C C C A G G A G T A T<br>C T C A T G T C C A G A G A T C C T C C G C C C G C A G G A G C A C G T A T<br>T T G A A T A T C G A G G C C C C C C C A G A T C A G A G A G A G A G A G A G A G A G A | heag T T A A C T T C C A G A G A T C C T C T C A G T C C T C A G T C T C A G T C T C A G T C T C A G T C T C A G T C T C A G T A C T C A G T A C T C A G T A C T C A G T A C T C A G A G A C T A C T C A G A G A C A C A C T C A G A C A C A C A C A C A C A C A C A | heag T T A C T T C C A G A G A T C C T C T C A G T C T C A G G A G T T G T beag T T A C C T C C A G A G A T C T C T C A G T C C C C A G A G A C T C T C A G A G A C T C T C A G A G C T A T T reag C T C A G A G C T C A G A G C T C A G A G C T A T T reag C T C A T A T C G A G A G C T C C C C A G A T A T C G A G A G C T C A G A G A G A G A G A G A G A G A C A C |

Patent Application Publication Jan. 24, 2008 Sheet 20 of 37 US 2008/0020406 A1

MTMAGGRRGLVAPQNTFLEN heag1 20 heag2 MTMAGGRRGLVAPQNTFLEN 20 beag1 MTMAGGRKGLVAPONTFLEN 20 beag2 MTMAGGRKGLVAPQNTFLEN 20 MTMAGGRRGLVAPQNTFLEN meaq 20 reag MTMAGGRRGLVAPONTFLEN 20 heaq1 IVRRSNDTNFVLGNAQIVDW 40 heag2 IVRRSNDTNFVLGNAQIVDW 40 beag1 IVRRSNDTNFVLGNAQIVDW 40 beag2 IVRRSNDTNFVLGNAQIVDW 40 IVRRSNDTNFVLGNAQIVDW meag 40 reag IVRRSNDTNFVLGNAQIVDW 40 heag1 PIVYSNDGFCKLSGYHRAEV 60 heag2 PIVYSNDGFCKLSGYHRAEV 60 beag1 PIVYSNDGFCKLSGYHRAEV 60 beag2 PIVYSNDGFCKLSGYHRAEV 60 PIVYSNDGFCKLSGYHRAEV meaq 60 reaq PIVYSNDGFCKLSGYHRAEV 60 heag1 MQKSSTCSFMYGELTDKDTI 80 heag2 MQKSSTCSFMYGELTDKDTI 80 beag1 MQKSSTCSFMYGELTDKDTI 80 beaq2 MOKSSTCSFMYGELTDKDTI 80 MQKSSACSFMYGELTDKDTV meaq 80 MQKSSACSFMYGELTDKDTV reaq 80 heagl EKVRQTFENYEMNSFEILMY 100 heag2 EKVRQTFENYEMNSFEILMY 100 beag1 EKVRQTFENYEMNSFEILMY 100 beag2 EKVRQTFENYEMNSFEILMY 100 meag EKVROTFENYEMNSFEILMY 100 reag EKVRQTFENYEMNSFEILMY 100

Fig. 11

heag1 KKNRTPVWFFVKIAPIRNEQ 120heag2 KKNRTPVWFFVKIAPIRNEO 120 beag1 KKNRTPVWFFVKIAPIRNEO 120 beag2 KKNRTPVWFFVKIAPIRNEQ 120 meaq KKNRTPVWFFVKIAPIRNEO 120 reaq K K N R T P V W F F V K I A P I R N E O 120 head1 DKVVLFLCTFSDITAFKQPI 140 heag2 DKVVLFLCTFSDITAFKQPI 140 beag1 DKVVLFLCTFSDITAFKOPI 140 beag2 DKVVLFLCTFSDITAFKOPI 140 meag DKVVLFLCTFSDITAFKOPI 140 DKVVLFLCTFSDITAFKOPI reag 140heag1 EDDSCKGWGKFARLTRALTS 160 heag2 EDDSCKGWGKFARLTRALTS 160 beag1 EDDSCKGWGKFARLTRALTS 160 beag2 EDDSCKGWGKFARLTRALTS 160 EDDSCKGWGKFARLTRALTS meaq 160 reag EDDSCKGWGKFARLTRALTS 160 heag1 SRGVLQQLAPSVQKGENVHK 180 heag2 SRGVLQQLAPSVQKGENVHK 180 beag1 SRGVLQQLAPSVQKGENVHK 180 beag2 SRGVLQQLAPSVQKGENVHK 180 SRGVLQQLAPSVQKGENVHK meaq 180 reag SRGVLQQLAPSVQKGENVHK 180 heag1 HSRLAEVLQLGSDILPQYKQ 200 heag2 HSRLAEVLQLGSDILPQYKO 200 beag1 HSRLAEVLQLGSDILPQYKQ 200 beag2 HSRLAEVLQLGSDILPQYKQ 200 meag HSRLAEVLQLGSDILPQYKO 200 HSRLAEVLQLGSDILPQYKQ reag 200

headl EAPKTPPHIILHYCVFKTTW 220 heag2 EAPKTPPHIILHYCVFKTTW 220 beag1 EAPKTPPHIILHYCVFKTTW 220 beag2 EAPKTPPHIILHYCVFKTTW 220 EAPKTPPHIILHYCVFKTTW meaq 220EAPKTPPHILLHYCVFKTTW reag 220 head1 DWIILILTFYTAILVPYNVS 240 heag2 DWIILILTFYTAILVPYNVS 240beag1 DWIILILTFYTAILVPYNVS 240 beag2 DWIILILTFYTAILVPYNVS 240 DWILLLTFYTAILVPYNVS meaq 240 reag DWIILILTFYTAILVPYNVS 240 heag1 FKTRQNNVAWLVVDSIVDVI 260 heag2 FKTRQNNVAWLVVDSIVDVI 260 beag1 FKTRQNNVAWLVVDSIVDVI 260 beag2 FKTRQNNVAWLVVDSIVDVI 260 meaq FKTRQNNVAWLVVDSIVDVI 260 FKTRQNNVAWLVVDSIVDVI read 260 heag1 FLVDIVLNFHTTFVGPAGEV 280 heag2 FLVDIVLNFHTTFVGPAGEV 280 beag1 FLVDIVLNFHTTFVGPAGEV 280 beag2 FLVDIVLNFHTTFVGPAGEV 280 FLVDIVLNFHTTFVGPAGEV meaq 280 reag FLVDIVLNFHTTFVGPAGEV 280 heag1 ISDPKLIRMNYLKTWFVIDL 300 heag2 ISDPKLIRMNYLKTWFVIDL 300 beag1 ISDPKLIRMNYLKTWFVIDL 300 beag2 ISDPKLIRMNYLKTWFVIDL 300 meag ISDPKLIRMNYLKTWFVIDL 300 reag ISDPKLIRMNYLKTWFVIDL 300

heag1 LSCLPYDVINAFENVDE - - -317 heaq2 LSCLPYDVINAFENVDEVSA 320 beag1 LSCLPYDVINAFENVDE ----317 LSCLPYDVINAFENVDEVSA beaq2 320 meag LSCLPYDVINAFENVDEVSA 320 reaq L S C L P Y D V I N A F E N V D E ----317 317 heaq2 FMGDPGKIGFADQIPPPLEG 340 317 beag2 FMGDPGKIGFADQIPPPLEG 340 meaq FMGDPGKIGFADQIPPPLEG 340 reaq 317 heag1 - - - GISSLFSSLKVVRLLR 333 heag2 RESQGISSLFSSLKVVRLLR 360 beag1 - - - - GISSLFSSLKVVRLLR 333 beag2 RESOGISSLFSSLKVVRLLR 360 RESQGISSLFSSLKVVRLLR meaq 360 reag - - - G I S S L F S S L K V V R L L R 333 heag1 LGRVARKLDHYIEYGAAVLV 353 heag2 LGRVARKLDHYIEYGAAVLV 380 beag1 LGRVARKLDHYIEYGAAVLV 353 beag2 LGRVARKLDHYIEYGAAVLV 380 meag LGRVARKLDHYIEYGAAVLV 380 LGRVARKLDHYIEYGAAVLV reag 353 heagl LLVCVFGLAAHWMACIWYSI 373 heag2 LLVCVFGLAAHWMACIWYSI 400 beag1 LLVCVFGLAAHWMACIWYSI 373 LLVCVFGLAAHWMACIWYSI beaq2 400 meag LLVCVFGLAAHWMACIWYSI 400reaq LLVCVFGLAAHWMACIWYSI 373

heag1 GDYEIFDEDTKTIRNNSWLY 393 GDYEIFDEDTKTIRNNSWLY heag2 420 beag1 GDYEIFDEDTKTIRNNSWLY 393 beaq2 GDYEIFDEDTKTIRNNSWLY 420 GDYEIFDEDTKTIRNNSWLY meag 420 GDYEIFDEDTKTIRNNSWLY reag 393 heag1 QLAMDIGTPYQFNGSGSGKW 413 heag2 QLAMDIGTPYQFNGSGSGKW 440 beag1 QLAMDIGTPYQFNGSGSGKW 413 beag2 QLAMDIGTPYQFNGSGSGKW 440 Q L A L D I G T P Y Q F N G S G S G K W meaq 440 Q L A L D I G T P Y Q F N G S G S G K W reaq 413 heag1 EGGPSKNSVYISSLYFTMTS 433 heag2 EGGPSKNSVYISSLYFTMTS 460 beag1 EGGPSKNSVYISSLYFTMTS 433 beag2 EGGPSKNSVYISSLYFTMTS 460 EGGPSKNSVYISSLYFTMTS meaq 460EGGPSKNSVYISSLYFTMTS read 433 heag1 LTSVGFGNIAPSTDIEKIFA 453 heag2 LTSVGFGNIAPSTDIEKIFA 480 beag1 LTSVGFGNIAPSTDIEKIFA 453 beag2 LTSVGFGNIAPSTDIEKIFA 480 meaq LTSVGFGNIAPSTDIEKIFA 480 LTSVGFGNIAPSTDIEKIFA reaq 453 heag1 VAIMMIGSLLYATIFGNVTT 473 heag2 VAIMMIGSLLYATIFGNVTT 500 beag1 VAIMMIGSLLYATIFGNVTT 473 beag2 VAIMMIGSLLYATIFGNVTT 500 VAIMMIGSLLYATIFGNVTT meaq 500 reaq VAIMMIGSLLYATIFGNVTT 473

heagl IFQQMYANTNRYHEMLNSVR 493 heaq2 IFQQMYANTNRYHEMLNSVR 520 beag1 IFQQMYANTNRYHEMLNSVR 493 beaq2 IFQQMYANTNRYHEMLNSVR 520 IFQQMYANTNRYHEMLNSVR meag 520 IFQQMYANTNRYHEMLNSVR reag 493 heag1 DFLKLYQVPKGLSERVMDYI 513 heag2 DFLKLYQVPKGLSERVMDYI 540 beaq1 DFLKLYQVPKGLSERVMDYI 513 DFLKLYQVPKGLSERVMDYI beaq2 540 DFLKLYQVPKGLSERVMDYI meag 540 DFLKLYQVPKGLSERVMDYI reag 513 heag1 VSTWSMSRGIDTEKVLQICP 533 heag2 VSTWSMSRGIDTEKVLQICP 560 beag1 VSTWSMSRGIDTEKVLQICP 533 beag2 VSTWSMSRGIDTEKVLQICP 560 meaq VSTWSMSRGIDTEKVLQICP 560 VSTWSMSRGIDTEKVLQICP reaq 533 heag1 KDMRADICVHLNRKVFKEHP 553 heag2 KDMRADICVHLNRKVFKEHP 580 beag1 KDMRADICVHLNRKVFKEHP 553 beag2 KDMRADICVHLNRKVFKEHP 580 meaq KDMRADICVHLNRKVFKEHP 580 KDMRADICVHLNRKVFKEHP reaq 553 heag1 AFRLASDGCLRALAMEFQTV 573 heag2 AFRLASDGCLRALAMEFOTV 600 beagl AFRLASDGCLRALAMEFOTV 573 beag2 AFRLASDGCLRALAMEFQTV 600 AFRLASDGCLRALAMEFOTV meaq 600 reag AFRLASDGCLRALAMEFOTV 573

heag1 HCAPGDLIYHAGESVDSLCF 593 heag2 HCAPGDLIYHAGESVDSLCF 620 beaq1 HCAPGDLIYHAGESVDSLCF 593 beag2 HCAPGDLIYHAGESVDSLCF 620 HCAPGDLIYHAGESVDSLCF meaq 620 HCAPGDLIYHAGESVDSLCF reag 593 heag1 VVSGSLEVIQDDEVVAILGK 613 head2 VVSGSLEVIQDDEVVAILGK 640 beag1 VVSGSLEVIQDDEVVAILGK 613 beag2 VVSGSLEVIQDDEVVAILGK 640 VVSGSLEVIQDDEVVAILGK meaq 640 VVSGSLEVIQDDEVVAILGK reag 613 heag1 GDVFGDVFWKEATLAQSCAN 633 heaq2 GDVFGDVFWKEATLAQSCAN 660 beag1 GDVFGDVFWKEATLAQSCAN 633 beaq2 GDVFGDVFWKEATLAQSCAN 660 GDVFGDVFWKEATLAQSCAN meag 660 GDVFGDVFWKEATLAOSCAN reaq 633 heag1 VRALTYCDLHVIKRDALQKV 653 heag2 VRALTYCDLHVIKRDALOKV 680 beag1 VRALTYCDLHVIKRDALOKV 653 beag2 VRALTYCDLHVIKRDALOKV 680 meaq VRALTYCDLHVIKRDALOKV 680 reaq VRALTYCDLHVIKRDALOKV 653 heag1 LEFYTAFSHSFSRNLILTYN 673 heag2 LEFYTAFSHSFSRNLILTYN 700 beag1 LEFYTAFSHSFSRNLILTYN 673 beag2 LEFYTAFSHSFSRNLILTYN 700 meaq LEFYTAFSHSFSRNLILTYN 700 LEFYTAFSHSFSRNLILTYN reaq 673

heag1 LRKRIVFRKISDVKREEER 693 heag2 LRKRIVFRKISDVKREEEER 720 LRKRIVFRKISDVKREEEER beag1 693 beag2 LRKRIVFRKISDVKREEER 720 LRKRIVFRKISDVKREEEER meag 720 reaq LRKRIVFRKISDVKREEEER 693 heag1 MKRKNEAPLILPPDHPVRRL 713 heag2 MKRKNEAPLILPPDHPVRRL 740 beag1 MKRKNEAPLILPPDHPVRRL 713 beag2 MKRKNEAPLILPPDHPVRRL 740 meaq MKRKNEAPLILPPDHPVRRL 740 reaq MKRKNEAPLILPPDHPVRRL 713 heag1 FQRFRQQKEARLAAERGGRD 733 heag2 FQRFRQQKEARLAAERGGRD 760 beag1 FQRFRQQKEARLAAERGGRD 733 beag2 FQRFRQQKEARLAAERGGRD 760 FORFRQQKEARLAAERGGRD meaq 760 reag FQRFRQQKEARLAAERGGRD 733 heag1 LDDLDVEKGNVLTEHASANH 753 heag2 LDDLDVEKGNVLTEHASANH 780 beag1 LDDLDVEKGSVLTEH--SHH 751 beag2 LDDLDVEKGSVLTEH - - SHH 778 L D D L D V E K G N A L T D H T S A N H meaq 780 LDDLDVEKGNALTDHTSANH reaq 753 heag1 SLVKASVVTVRESPATPVSF 773 heag2 SLVKASVVTVRESPATPVSF 800 GLAKASVVTVRESPATPVAF beag1 771 beag2 GLAKASVVTVRESPATPVAF 798 SLVKASVVTVRESPATPVSF meaq 800 SLVKASVVTVRESPATPVSF reag 773

heag1 QAASTSGV PDHAKLQAPGSE 793 heag2 QAASTSGVPDHAKLQAPGSE 820 beagi PAAAAPAGLDHARLQAPGAE 791 beag2 PAAAAAAGLDHARLQAPGAE 818 QAA**T**TS**TMS**DHAKLHAPGSE meaq 820 Q A A S T S T V S D H A K L H A P G S E reag 793 heag1 CLGPK**G**GGGDCAKRK**S**WARF 813 heag2 CLGPKGGGGDCAKRKSWARF 840 beag1 GLGPKAGGADCAKRKGWARF 811 beag2 GLGPKAGGADCAKRKGWARF 838 meag CLGPKAVSCDPAKRKGWARF 840 reag C L G P K A G G G D P A K R K G W A R F 813 heag1 KDACGKSEDWNKVSKAESME 833 heag2 KDACGKSEDWNKVSKAESME 860 beag1 KDACGQAEDWSKVSKAESME 831 beag2 KDACGQAEDWSKVSKAESME 858 meaor KDACGKGEDWNKVSKAESME 860 K D A C G K G E D W N K V S K A E S M E read 833 heag1 TLPERTKASGEATLKKTDSC 853 heag2 TLPERTKASGEATLKKTDSC 880 beag1 TLPERTKA AGEATLKKTDSC 851 beag2 TLPERTKAAGEATLKKTDSC 878 TLPERTKA PGEATLKKTDSC meag 880 reag TLPERTKASGEATLKKTDSC 853 heag1 DSGITKSDLRLDNVGEARSP 873 heag2 DSGITKSDLRLDNVGEARSP 900 beag1 DSGITKSDLRLDNVGEARSP 871 beag2 DSGITKSDLRLDNVGEARSP 898 meag D S G I T K S D L R L D N V G E T R S P 900 DSGITKSDLRLDNVGEARSP reag 873

heagl QDRSPILAEVKHSFYPIPEQ 893 heag2 QDRSPILAEVKHSFYPIPEQ 920 QDRSPILAEVKHSFYPIPEO beaq1 891 beag2 QDRSPILAEVKHSFYPIPEQ 918 Q D R S P I L A E V K H S F Y P I P E Q meag 920 Q D R S P I L A E V K H S F Y P I P E O reag 893 heag1 TLQATVLEVRHELKEDIKAL 913 heag2 TLQATVLEVRHELKEDIKAL 940 beag1 TLQAAVLEVKHELKEDIKAL 911 beag2 TLQAAVLEVKHELKEDIKAL 938 meaq TLQATVLEVKYELKEDIKAL 940 TLQATVLEVKHELKEDIKAL reaq 913 heag1 NAKMTNIEKQLSEILRILTS 933 heag2 NAKMTNIEKQLSEILRILTS 960 beag1 STKMTSIEKQLSEILRILTS 931 beag2 STKMTSIEKQLSEILRILTS 958 NAKMTSIEKQLSEILRILMS meaq 960 NAKMTSIEKQLSEILRILMS read 933 heag1 RRSSQSPQELFEISRPQSPE 953 heag2 RRSSQSPQELFEISRPQSPE 980 beag1 RRSSQSPQELFEISRPQSPE 951 beag2 RRSSQSPQELFEISRPQSPE 978 RGSAQSPQETGEISRPOSPE meag 980 R G S S Q S P Q D T C E V S R P O S P E reaq 953 heagl SERDIFGAS 962 heag2 SERDIFGAS 989 beag1 SERDIFGAS 960 beaq2 SERDIFGAS 987 SDRDIFGAS meaq 989 SDRDIFGAS reag 962

Fig. 11 cont.







Fig. 13

۱ .

| DNA                 | Colonies≥0.1 mm |
|---------------------|-----------------|
| rEAG-pTracer        | 9.9 ± 2.4       |
| rEAG-pcDNA3         | 8.5 ± 3.2       |
| rKv1.4-pTracer      | 0               |
| rKv1.4-pcDNA3       | $1.4 \pm 0.7$   |
| GFP-pcDNA3          | $0.8 \pm 0.5$   |
| Transfection buffer | $0.6 \pm 0.2$   |
| No treatment        | 0               |

Fig. 14

•

.

à







Fig. 16













Fig. 17 cont.



Fig. 18

### ANTIBODIES TO A HUMAN K+ION CHANNEL AND THERAPEUTIC APPLICATIONS THEREOF

[0001] The present invention relates to a novel human K<sup>+</sup> ion channel, to nucleic acid molecules encoding the same and to vectors comprising said nucleic acid molecules. The invention additionally relates to antibodies specifically directed to the novel K<sup>+</sup> ion channel and to pharmaceutical compositions and diagnostic kits containing at least one of the above-mentioned components. Furthermore, the present invention relates to methods of treating a disease caused by malfunction of the polypeptide of the present invention or by the (over)expression of the nucleic acid molecule of the invention comprising administering an inhibitor of said (over)expression or of ion channel function or an inhibitor abolishing said malfunction to a patient in need thereof. Methods of devising drugs for treating or preventing the above-mentioned disease, methods of inhibiting cell proliferation and methods of prognosing cancer are additional embodiments comprised by the present invention. The invention also envisages specific antisense or gene therapies on the basis of the nucleic acid molecule of the invention for inhibiting undesired cellular proliferation, for example, in connection with cancer or in neurodegenerative diseases.

[0002] Potassium channels are a relevant factor in the regulation of the resting potential of cells, and this has been regarded as their major role in excitable and non-excitable tissues. On the other hand, the explanation for their ubiquitous presence and the impressive variability in their properties remains elusive. A reasonable hypothesis is that potassium channels are present in all cell types because they have in addition some "housekeeping" role, for example in cell proliferation<sup>1</sup>. Their implication in the regulation of the cell division cycle has been tested repeatedly, and some experimental evidence has been presented<sup>2,3</sup>. However, especially since both depolarization and hyperpolarization of the membrane potential during cell cycle have been reported as depending on cell type<sup>1,4</sup>, there is no general model to explain the function of potassium channels in cell cycle. Two mechanisms have been proposed to explain the role of K<sup>+</sup> channels: they either influence the intracellular Ca<sup>2+</sup> concentration, or control cell volume (17, 18). Both mechanisms would indirectly influence cell proliferation. A member of the eag family has also been proposed to be preferentially expressed in cancer cells (19) Several potassium channel blockers have been tested for their capability to block cancer cell proliferation, and some of them have even been used as coadiuvants for tumor chemotherapy, specially in multidrug-resistant tumors. Nevertheless, the lack of identification of a particular potassium channel directly involved in the control of cell proliferation has, up to date, precluded the description of more specific and effective treatment protocols.

**[0003]** Thus, the technical problem underlying the present invention was to identify a biological component within the conglomerate of potassium channels with their various effects on cell cycle division that allows an unambiguous assignment to cellular proliferation, with a specific view to human cellular proliferation. The solution to said technical problem is achieved by providing the embodiments characterized in the claims. [0004] Accordingly, the present invention relates to a nucleic acid molecule comprising a nucleic acid molecule encoding a (poly)peptide having a function of the human  $K^+$  ion eag channel which is

**[0005]** (a) a nucleic acid molecule comprising a nucleic acid molecule encoding the polypeptide having the amino acid sequence of SEQ ID: No 3 or 4;

**[0006]** (b) a nucleic acid molecule comprising the nucleic acid molecule having the DNA sequence of SEQ ID: No 13 or 14;

**[0007]** (c) a nucleic acid molecule hybridizing to the complementary strand of a nucleic acid molecule of (a) or (b); or

**[0008]** (d) a nucleic acid molecule being degenerate to the sequence of the nucleic acid molecule of (c).

[0009] The nucleic acid molecule of the invention encodes a (poly)peptide which is or comprises the human homologues of the rat eag channel. In this regard the term "a nucleic acid molecule comprising a nucleic acid molecule encoding a (poly)peptide having a function of the human K<sup>+</sup> ion eag channel" may mean that said first mentioned nucleic acid molecule solely encodes said (poly)peptide. Thus, it may be identical to said second mentioned nucleic acid molecule. Alternatively, it may comprise regulatory regions or other untranslated regions. In a further embodiment, said first mentioned nucleic acid may comprise heterologous nucleic acid which may encode heterologous proteinaceous material thus giving rise, e.g., to fusion proteins. It is further to be noted that the DNA sequences of SEQ ID NO: 13 and 14 are splice variants of the nucleic acid sequence encoding the (poly)peptide of the invention. The corresponding amino acid sequences are depicted in SEQ ID NO: 3 and 4.

[0010] The term "having a function of a human K<sup>+</sup> ion eag channel", as used in connection with the present invention, has the following meaning: The channel has a single channel conductance in asymmetrical potassium, at 0 mV of about 6 pS. This value clearly distinguishes the human channel from the rat channel for which a value of about 7 pS was measured. In addition or in the alternative, the above term may have the following meaning: The channel has a IC50 of about 1 mM to quinidine when expressed in Xenopus laevis oocytes, as compared to 400 µM for reag. Further, when measuring voltage-dependence of activation in high extracellular potassium using a two-electrode voltage-clamp it was found that in a conductance-voltage plot, the voltage for half-activation is shifted by about 40 mV or more to the right in the heag channel with respect to the reag channel (see FIG. 13). On the basis of the above features, either alone or in combination, a differentiation based on function between the human ion channel of the invention and the prior art channels, in particular of the rat ion channel, is possible for the person skilled in the art without further ado. Preferably, the channel has all recited functions. The above values refer to values that are obtainable with the experimental set-up described in this specification. Alterations of experimental parameters such as the employment of a different expression system may, as is well known to the person skilled in the art, also change the above values. Yet, these embodiments are also comprized by the scope of the present invention.

**[0011]** The term "hybridizing" as used in accordance with the present invention relates to stringent or non-stringent

hybridization conditions. Preferably, it relates to stringent conditions. Said hybridization conditions may be established according to conventional protocols described, for example, in Sambrook, "Molecular Cloning, A Laboratory Manual", Cold Spring Harbor Laboratory (1989) N.Y., Ausubel, "Current Protocols in Molecular Biology", Green Publishing Associates and Wiley Interscience, N.Y. (1989), or Higgins and Hames (eds) "Nucleic acid hybridization, a practical approach" IRL Press Oxford, Washington D.C., (1985). Hybridizing molecules or molecules falling under alternative (d), supra, also comprise fragments of the molecules identified in (a) or (b) wherein the nucleotide sequence need not be identical to its counterpart in SEQ ID 13 or 14, said fragments having a function as indicated above.

[0012] An example of one such stringent hybridization condition is hybridization at 4×SSC at 65° C., followed by a washing in 0.1×SSC at 65° C. for one hour. Alternatively, an exemplary stringent hybridization condition is in 50% formamide, 4×SSC at 42° C. Examples of such non-stringent hybridization conditions are 4×SSC at 50° C. or hybridization with 30-40% formamide at 42° C. Complementary strands of hybridizing molecules comprise those which encode fragments, analogues or derivatives of the polypeptide of the invention and differ, for example, by way of amino acid and/or nucleotide deletion(s), insertion(s), substitution(s), addition(s) and/or recombination(s) or any other modification(s) known in the art either alone or in combination from the above-described amino acid sequences or their underlying nucleotide sequence(s). Using the PEST-FIND program (Rogers, Science 234 (1986), 364-368), PEST sequences (rich in proline, glutamic acid, serine, and threonine) can be identified, which are characteristically present in unstable proteins. Such sequences may be removed from the polypeptide of the invention in order to increase the stability and optionally the activity of the proteins. Methods for introducing such modifications in the nucleic acid molecules according to the invention are wellknown to the person skilled in the art. The invention also relates to nucleic acid molecules the sequence of which differs from the nucleotide sequence of any of the abovedescribed nucleic acid molecules due to the degeneracy of the genetic code. All such fragments, analogues and derivatives encoding the protein of the invention are included within the scope of the present invention, as long as the essential characteristic immunological and/or biological properties as defined above remain unaffected in kind, that is the novel nucleic acid molecules of the invention include all nucleotide sequences encoding proteins or peptides which have at least a part of the primary structural conformation for one or more epitopes capable of reacting with antibodies to said polypeptide which are encoded by a nucleic acid molecule as set forth above and which have comparable or identical characteristics in terms of biological activity. Part of the invention is therefore also concerned with nucleic acid molecules encoding a polypeptide comprising at least a functional part of the above identified polypeptide encoded by a nucleic acid sequence comprised in a nucleic acid molecule according to the invention.

**[0013]** The present inventors have recently described a potassium channel (reag) which is strongly downregulated immediately after the activation of cyclin dependent kinases (key molecules in the cell cycle regulation), in both G1-S and G2-M transitions<sup>5</sup>. The K<sup>+</sup> current is inhibited following activation of cyclin-dependent kinases due to a voltage-

dependent sodium block, which is not apparent in all phases of the cell cycle. The experiments presented here are aimed to determine whether eag, in addition to being regulated by the cell cycle, is also able to directly influence cell proliferation and growth (20). In accordance with the present invention and with a view to the development of a suitable system for assessing (disease-related) proliferation in human cells, it was further attempted to study whether the implication of the channel in the cell cycle goes in both directions, such that it is not only regulated by but also regulator of the progression of the cell cycle.

[0014] The results obtained in this rat derived ion channel system show that in three different cell lines obtained from different species (Chinese hamster —CHO—, human —HEK293—, and mouse —NIH3T3—), the rate of proliferation is faster when the channel is overexpressed after transfection of the cells with a plasmid containing the channel DNA under the control of the cytomegalovirus promoter. FIG. 1 and FIG. 18*a* show the increase in metabolic activity in cultures of CHO cells in the presence of normal concentrations of fetal calf serum (10% FCS). Under these normal conditions, reag transfected cells grow several folds faster than untransfected cells (WT).

[0015] FIG. 2 shows a comparable experiment at very low concentrations of fetal calf serum (0.5% FCS). These low serum concentrations do not allow wild-type cells to grow; after a few hours, the cells start to die. However, reag transfected cells are able to proliferate under the same conditions. The ability to overcome the growth arrest induced by the absence of growth factors is one of the typical properties of malignant transformation (cf FIG. 18).

[0016] Not only the metabolic activity can be used to trace the proliferation in culture. The measurement of DNA synthesis is a more direct estimation of the rate of cell growth, since only cells entering S phase (committed to divide) synthesize DNA. Also DNA synthesis becomes serum-independent in reag transfected cells, i.e., the growth is maintained in the absence of growth factors (while it induces the programmed death of non-transfected cells). This is depicted in FIG. 3, were the incorporation of 5-Bromo-2'-deoxyuridine (BrdU) was used to monitor DNA synthesis in the presence of 10 or 0.5% FCS in CHO cells. As opposed to wild-type or cells transfected with an inactivating voltage-dependent potassium channel from rat brain (Kv1.4), there are no significant differences in the amount of DNA synthesized in the presence of normal or low FCS concentrations in reag-expressing cells. Similar experiments were done using epidermal growth factor (EGF) in HEK-293 cells or platelet-derived growth factor (PDGF) in CHO cells, with essentially the same result. The pure growth factors were used to avoid the complexity introduced by the use of whole serum.

[0017] To test the effects of eag on cell proliferation more directly, DNA synthesis was measured through incorporation of 5-Bromo-deoxyuridine (BrdU) in cells synchronized in the S-phase of the cell cycle by means of thymidine arrest (23). Consistent with the above mentioned findings, when the S-phase of the cell cycle was allowed to proceed, reag expressing CHO cells (CHOrEAG) showed higher metabolic activity (FIG. 18B) and increased BrdU incorporation (FIG. 18C). These results suggest that more eag-transfected cells entered the S-phase during the arrested period and/or

DNA synthesis was elevated, in any case indicating a faster proliferation rate in CHOrEAG cells. In the presence of low serum, BrdU incorporation was significantly higher in CHO-rEAG than in wild type cells (FIG. **18**C).

[0018] Yet another cell line, NIH3T3, has been frequently used for tumor transformation assays, since these cells are very strongly contact-inhibited, (i.e., their growth is stopped when the culture reaches confluency). This results in a homogeneous monolayer in wild-type cells. The malignant transformation of the line (through oncogene expression) usually induces the loss of this property, and NIH3T3 cells start forming colonies composed of several layers of cells. This can be seen after the transfection with reag DNA, which induced the formation of such foci in several independent clones (FIGS. 4A and B). Another standard test for transforming activity is the ability of NIH3T3 cells to grow in colonies when no substrate for attachment is available. To test this, cells are plated in an agar-containing medium, where the agar will prevent contacts between the cells and the surface of the plate. Under these conditions, wild-type NIH3T3 cells were unable to grow, while cells expressing reag formed large colonies even detectable by simple visual inspection of the plate. Table I shows that reag- (but not rKv1.4-) transfected cells formed colonies in a semisolid medium containing 0.3% agar (24,25), regardless of the vector used for transfection (FIG. 14). All of the above results indicate a transforming potential of eag.

**[0019]** Altogether, the results obtained from transfected cells indicate that reag can, at least under certain conditions, display oncogenic properties.

**[0020]** Once the transforming ability of reag was determined in accordance with the invention, the expression of the respective channel in human cancer cells was investigated. For this investigation, the cell line MCF-7 was used, which was initially obtained from a pleural effusion of a breast aderiocarcinoma. The line is estrogen receptor positive as well as estrogen-sensitive and relatively well differentiated. The strategy followed was first to test electrophysiologically and pharmacologically for the presence of a functional current similar to eag, and then to try an identification of the corresponding channel at the molecular level. However, conventional approaches for such an identification failed.

[0021] Namely, in most cells, the current density was too low to allow reliable measurements of the whole cell current. Low current density precluded an accurate measurement of channel properties using a whole cell configuration for the patch champ. Therefore, due to said low current densities encountered, another approach was resorted to. Due to such a low number of channels per cell, it is only possible to characterize the functional properties of a channel by a special patch champ method, excising patches of membranes containing one (or a few) channels and allowing characterization on a single molecule level. This approach relied on single-channel measurements in order to also compare properties at the single-molecule level such as single channel conductance, pharmacological properties, voltage dependence, and mean open times. Indeed, a channel with several properties compatible with reag in terms of kinetics, voltage-dependence, and pharmacology in most membrane patches could thus be identified. FIG. 5 shows whole-cell currents obtained from a MCF7 cell under nystatin patch conditions and single channel currents, together with their current-voltage relationship. Despite differences in kinetics at very depolarized voltages, the voltage dependence of the channel in human cells is highly reminiscent to the voltage-dependence of the reag channel. Moreover, the single channel properties of the putative human-eag are also very similar to those of reag.

[0022] Furthermore, standard approaches to isolate the said channel on a molecular level also were not successful. Several other groups have attempted and/or are still attempting to isolate the gene coding for a human eag without success and this in spite of the fact that the rat eag channel has already been published in 1994. For example, Warmke and Ganetzky (Proc. Natl. Acad. Sci. USA 91 (1994), 3428-3442) specifically set out to clone the human eag gene using conventional technology. They were, however, unsuccessful and cloned a novel, eag related gene which they termed h-erg (also referred to as HERG). Further, Wymore et al., Circulation Res. 80 (1997), 261-268, reported that no eag specific clones could be detected in a cDNA library from human heart in spite of the fact that primers for amplification were used that were conserved across the entire eag/erg superfamily. Thus, the standard approach with degenerated oligonucleotides based on the sequence of members of the family revealed itself unsuccessful, although HERG was systematically detected by other researchers in the field. Significantly, most of these approaches to clone the human eag gene were made with brain libraries. The conclusion from these combined prior art data was that the human eag gene could not be cloned by conventional technology using the most obvious source, namely brain tissue. The repeated isolation of HERG clones instead is most probably due to the relative abundance of HERG transcripts in brain libraries, and also to the high homology between the two channels. Consequently, a different strategy had to be devised to direct the screening more specifically to eag channels. First, as described herein above, a cell line expressing a channel functionally similar to reag was identified. Then degenerated oligonucleotides based on conserved sequences between rat, bovine and mouse eag, but divergent from HERG were designed. Using these primers, the cDNA obtained from MCF7 cells by PCR was amplified, and a band of the expected size was cloned in a suitable vector and sequenced. The amplified fragment corresponded to approximately 400 bp within the core region of the channel protein, and shared 90% identity to the reag sequence at the DNA level, and 99% at the amino acid level. However, at this stage it was still quite unclear what the thus identified clone corresponded to. For example, it was quite possible that a further member of the eag family had been identified. This is in particular true in view of the fact that despite of a number of attempts with brain libraries, nobody had been able to clone the human eag gene and that the MCF7 line is a breast cancer derived line.

**[0023]** Since MCF7 cells are immortal cells, it is assumed that a number of genes is mutated. Ab initio, it could have been expected that the human eag channel, if at all expressed in this cell line, was mutated. Under this assumption, it was quite uncertain whether this cell line could at all be used for the isolation of the desired gene.

**[0024]** Due to the prior art failures to clone human eag gene from brain libraries and the above recited uncertainties with immortalized cell lines, another source for a library was in need. The 400 bp fragment was therefore used to screen

a normal human breast cDNA library. Due to the presence of eag in breast cancer cells, such a library was expected to comprise heag clones. Surprisingly, however, after screening  $2 \times 10^6$  phages, no human-eag clones could be identified in said library. This rises the possibility that the channel is expressed only in tumor cells, and not in normal tissue. Specific oligonucleotides, namely 5'-CCAAACACACA-CACCAGC, 5'-CGTGGATGTTATCTTTTGG to check for heag fragments by PCR amplification directly from the above library were designed, but no evidence for the presence of any eag clones in this library was found. In view of the above discussed prior art results, it came as a further surprise that the same primers detected heag in a normal human brain cDNA library, that was therefore screened. First, the probe obtained from MCF7 cells was used to check  $10^6$  phages. This procedure allowed to isolate a 1.6 kbp fragment from human eag. This fragment was then used as a probe for the screening of  $2 \times 10^6$  phages from the same library. Several independent clones were isolated, but none of them was a full-length clone. Furthermore, only one clone contained the 5' end of the sequence, while two of them contained the 3' end and part of the 3' non-coding region. It is likely that the abundance of restriction sites in the nucleic acid sequence encoding the channel has induced this extensive fragmentation of the cDNA. For example, when EcoRI was used to extract the inserts of the library that was cloned in  $\lambda$ -gt10 phage at the EcoRI site, this conventional approach systematically failed to find the 5' end of the molecule (there is an EcoRI site at position 400 of the clone). The pooled positive clones were therefore screened again by PCR, trying to amplify the start condon, and only by this means it was possible to isolate one phage that contained this ATG. Two splice variants of heag were cloned, both expressed in brain tissue. The sequence obtained for heag 1 and heag 2 and their deduced amino acid sequence are shown in FIGS. 10 and 11, and compared to other members of the family.

**[0025]** The deduced amino acid sequence is identical to the sequence published after the priority date of the present invention by Occhidoro (27) and is 97.7% identical to reag. As mentioned, a second (81 bp longer) splice variant (heag 2) was also isolated analogous to that reported for bovine and mouse eag channels (28), the splice insertion being identical in all three species. The chromosomal localization of heag was determined by FISH detection (29) to map to chromosome 1q32.1-32.3 (see also ref. 26).

[0026] To further check the possibility that heag is not expressed in normal mammary gland, as opposed to MCF-7 cancer cells, we performed single-tube RT-PCR experiments using total RNA from human brain, human mammary gland, and MCF-7 cells (FIG. 12), using as primers two oligonucleotides designed to discriminate between the two splice variants of heag. In human brain, two splice variants were detected, while only the short one was expressed in MCF-7 cells (this, together with the lack of amplification in the absence of reverse transcriptase, rules out a possible contamination by genomic DNA of the RNA preparation). No heag signal was detected in normal mammary gland RNA with this highly sensitive technique. This result was totally unexpected, because preliminary results had suggested that expression was present in tumor cells from the same organ. Further, after Southern blot analysis of the RT-PCR products a faint band hybridizing with a heag probe in mammary gland was identified. Accordingly, it is quite difficult to make a strong statement on the total absence of heag message in breast in view of these contradictory experimental data.

**[0027]** Furthermore, electrophyiological properties (21, 30) of heag were tested in *Xenopus* oocytes. As described above, they did not differ significantly from those or reag with the above mentioned exceptions, e.g. a shift in activation of 40 mV to more depolarized potentials when both channels were measured under identical conditions. The electrophysiological observations of heag channels expressed in *Xenopus* oocytes correlate well to hose reported by Bijlenga et al. (31).

**[0028]** The present invention also relates to a nucleic acid molecule specifically hybridizing to the nucleic acid molecule of the invention which comprises the sequence 5'-GG-GAGGATGACCATGGCT.

[0029] This embodiment of the present invention is particularly useful for specific antisense therapies for inhibiting cell proliferation as will be discussed in more detail herein below (e.g. in Example 5). In addition, this embodiment of the nucleic acid molecule of the invention can, naturally, also be used as a probe for specifically detecting heag mRNA in tissues, for example, by employing the Northern Blot technology. The analysis of heag mRNA expression in various tissues by Northern blot revealed a strong hybridization signal of approximately 9.2 kb in brain and a weak signal of similar size in placenta. Heart, lung, liver, skeletal muscle, kidney and pancreas were negative even following long exposures. In addition, total RNA from human brain, heart, trachea, adrenal gland, liver, kidney, skeletal muscle and mammary gland, and spinal cord poly(A)+ RNA, as well as total RNA from the adenovirus-transformed line 293 (a human non-tumoral cell line) were assayed by single-tube RT-PCR and Southern blot. Under these experimental conditions, heag was detected in brain only, where both splice variants were identified (FIG. 15; Example 3).

[0030] The preferential expression of heag in brain was intriguing since the first cDNA had been isolated from an epithelial tumor cell line (MCF-7) and not from brain tissue (see above). To elucidate the presence of heag in other tumoral cell lines, total RNA was prepared from HeLa (cervix carcinoma), SHSY-5Y (neuroblastoma), and lines from mammary gland tumors: COLO-824 (carcinoma), EFM-19 (carcinoma), and BT-474 (ductal carcinoma). Total RNA from brain, MCF-7 cells, 293 cells and RNA from cultures of mammary gland epithelial cells (included to circumvent the mixed cell populations in whole mammary gland) served as controls. All cell lines were obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) and maintained following the DSMZ catalog guidelines. Normal human mammary epithelial cells were purchased from BioWhittaker. The primers were designed to amplify different bands for heag 1 and heag 2, thus allowing us to rule out false positives due to genomic DNA contamination (controls in the absence of reverse transcriptase were also performed). HeLa, SHSY-5Y, EFM-19 and MCF-7 RNA exhibited an heag band, whereas COLO-824 and BT-474 signals were indistinguishable from background (FIG. 15B). Cultured epithelial cells and 293 cells (FIG. 15A) were negative. As discussed above, it could be shown in accordance with the present invention that reag transfected cells can display oncogenic properties. Thus, to determine whether the expression of heag is advantageous

for tumor cells in vivo, subcutaneous implants of CHO cells expressing the channel (CHOhEAG cells) into the flank of female scid (severe combined immunodeficiency, 32) mice were performed and it could be shown that expression of heag represents an advantage for the proliferation of tumor cells in vivo, since CHOhEAG tumors grow faster and are more aggressive than CHOKv tumors.

**[0031]** Thus, the embodiment of the nucleic acid molecule of the present invention may be employed in the quantitative and qualitative analysis of the expression level of human eag in various disease states detectable in a tissue that may be indicative of, for example, cancer (in particular mamma carcinoma, neuroblastoma), psoriasis, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, lateral amyotrophic sclerosis or multiple sclerosis.

**[0032]** In a preferred embodiment of the nucleic acid molecule of the invention, said nucleic acid molecule is DNA, such as genomic DNA. Whereas the present invention also comprises synthetic or semi-synthetic DNA molecules or derivatives thereof, such as peptide nucleic acid, the most preferred DNA molecule of the invention is cDNA.

[0033] In a further preferred embodiment of the present invention, said nucleic acid molecule is RNA, preferably mRNA.

**[0034]** Another preferred embodiment of the nucleic acid molecule of the invention encodes a fusion protein. For example, the nucleic acid molecule of the invention can be fused in frame to a detectable marker such as FLAG or GFP.

[0035] The invention further relates to a vector, particularly plasmid, cosmids, viruses and bacteriophages comprising the nucleic acid molecule of the invention. Such vectors may comprise further genes such as marker genes which allow for the selection of said vector in a suitable host cell and under suitable conditions. Thus the polynucleotide of the invention can be operatively linked in said vector to expression control sequences allowing expression in prokaryotic or eukaryotic cells. Expression of said polynucleotide comprises transcription of the polynucleotide into a translatable mRNA. Regulatory elements ensuring expression in eukaryotic cells, preferably mammalian cells, are well known to those skilled in the art. They usually comprise regulatory sequences ensuring initiation of transcription and optionally poly-A signals ensuring termination of transcription and stabilization of the transcript. Additional regulatory elements may include transcriptional as well as translational enhancers. Possible regulatory elements permitting expression in prokaryotic host cells comprise, e.g., the lac, trp or tac promoter in E. coli, and examples for regulatory elements permitting expression in eukaryotic host cells are the AOX1 or GAL1 promoter in yeast or the CMV-, SV40-, RSV-promoter (Rous sarcoma virus), CMV-enhancer, SV40-enhancer or a globin intron in mammalian and other animal cells. Beside elements which are responsible for the initiation of transcription such regulatory elements may also comprise transcription termination signals, such as the SV40-poly-A site or the tk-poly-A site, downstream of the polynucleotide. In this context, suitable expression vectors are known in the art such as Okayama-Berg cDNA expression vector pcDV1 (Pharmacia), pCDM8, pRc/CMV, pcDNA1, pcDNA3 (In-vitrogene), pSPORT1 (GIBCO BRL).

[0036] Preferably, said vector is an expression vector and/or a gene transfer or targeting vector. Expression vectors

and gene targeting or transfer vectors are well-known in the art and can be adapted for specific purposes of the invention by the person skilled in the art. Thus, expression vectors derived from viruses such as retroviruses, vaccinia virus, adeno-associated virus, herpes viruses, or bovine papilloma virus, may be used for delivery of the polynucleotides or vectors of the invention into targeted cell populations. Methods which are well known to those skilled in the art can be used to construct recombinant viral vectors; see, for example, the techniques described in Sambrook, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. and Ausubel, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y. (1989). Alternatively, the polynucleotides and vectors of the invention can be reconstituted into liposomes for delivery to target cells.

[0037] The invention furthermore relates to a host transformed with the vector of the invention. Said host may be a prokaryotic or eukaryotic cell; see supra. The polynucleotide or vector of the invention which is present in the host cell may either be integrated into the genome of the host cell or it may be maintained extrachromosomally. In this respect, it is also to be understood that the recombinant DNA molecule of the invention can be used for "gene targeting" and/or "gene replacement", for restoring a mutant gene or for creating a mutant gene via homologous recombination; see for example Mouellic, Proc. Natl. Acad. Sci. USA, 87 (1990), 4712-4716; Joyner, Gene Targeting, A Practical Approach, Oxford University Press. Preferably, the host is a mammalian cell, a fungal cell, a plant cell, an insect cell or a bacterial cell. Preferred fungal cells are, for example, those of the genus Saccharomyces, in particular those of the species S. cerevisiae. The term "prokaryotic" is meant to include all bacteria which can be transformed or transfected with a polynucleotide for the expression of the protein of the present invention. Prokaryotic hosts may include gram negative as well as gram positive bacteria such as, for example, E. coli, S. typhimurium, Serratia marcescens and Bacillus subtilis. Methods for preparing fused, operably linked genes and expressing them in bacteria or animal cells are wellknown in the art (Maniatis, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989). The genetic constructs and methods described therein can be utilized for expression the protein of the present invention in prokaryotic hosts. In general, expression vectors containing promoter sequences which facilitate the efficient transcription of the inserted polynucleotide are used in connection with the host. The expression vector typically contains an origin of replication, a promoter, and a terminator, as well as specific genes which are capable of providing phenotypic selection of the transformed cells. The transformed prokaryotic hosts can be grown in fermentors and cultured according to techniques known in the art to achieve optimal cell growth. The polypeptides of the invention can then be isolated from the grown medium, cellular lysates, or cellular membrane fractions. The isolation and purification of the microbially or otherwise expressed polypeptides of the invention may be by any conventional means such as, for example, preparative chromatographic separations and immunological separations such as those involving the use of monoclonal or polyclonal antibodies. As regards mammalian cells, HEK 293, CHO, HeLa and NIH 3T3 are preferred. As regards

insect cells, it is most preferred to use *Spodoptera frugiperda* cells, whereas the most preferred bacterial cells are *E. coli* cells.

**[0038]** The invention also relates to a method of producing the (poly)peptide encoded by the nucleic acid molecule of the invention comprising culturing the host of the invention and isolating the produced (poly)peptide.

**[0039]** Depending on the vector constructing employed, the (poly)peptide of the invention may be exported to the culture medium or maintained within the host. Suitable protocols for obtaining the (poly)peptide produced are well-known in the art for both ways of (poly)peptide production.

[0040] The present invention furthermore relates to a (poly)peptide encoded by the nucleic acid molecule of the invention or produced by the method of the invention. The new channel is envisaged to show a structure having a short amino-terminal region, probably intracellular, five membrane-spanning segments, a hydrophobic hairpin entering the membrane, a sixth transmembrane segment, and a long C-terminal cytoplasmic part comprising a cyclic-nucleotide binding consensus sequence, a nuclear localization consensus sequence, and a hydrophobic domain probably forming a coiled-coil structure. The polypeptide of the invention may also be a functional fragment of the human K<sup>+</sup> ion channel. By "functional fragment" polypeptides are meant that exhibit any of the activity of heag as described above. Using recombinant DNA technology, fragments of the (poly)peptide of the invention can be produced. These fragments can be tested for the desired function, for example, as indicated above, using a variety of assay systems such as those described in the present invention. Preferably, said fragments comprise the C-terminal portion of the novel ion channel.

**[0041]** The present invention also relates to an antibody specifically directed to the (poly)peptide of the invention. The antibody of the invention specifically discriminates between the human eag channel and the prior art channels such as mouse and rat eag and preferably binds to epitopes in the C-terminal part of the ion channel. The term "antibody", as used in accordance with the invention, also relates to antibody fragments or derivatives such as  $F(ab)_2$ , Fab', Fv or scFv fragments; see, for example, Harlow and Lane, "Antibodies, A Laboratory Manual", CSH Press 1988, Cold Spring Harbor, N.Y. Preferably, the antibody of the invention is a monoclonal antibody.

**[0042]** The invention also relates to a pharmaceutical composition comprising the nucleic acid molecule of the invention, the vector of the invention, the polypeptide of the invention and/or the antibody of the invention and a pharmaceutically acceptable carrier and/or diluent and/or excipient.

**[0043]** Examples of suitable pharmaceutical carriers and diluents as well as of excipients are well known in the art and include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions etc. Compositions comprising such carriers can be formulated by well known conventional methods. These pharmaceutical compositions can be administered to the patient in need thereof at a suitable dose. Administration of the suitable compositions may be effected by different ways, e.g., by oral, intravenous, intraperitoneal,

subcutaneous, intramuscular, topical or intradermal administration. The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depend upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. Generally, the regimen as a regular administration of the pharmaceutical composition should be in the range of 1 µg to 10 mg units per day. If the regimen is a continuous infusion, it should also be in the range of 1 µg to 10 mg units per kilogram of body weight per minute, respectively. Progress can be monitored by periodic assessment. Dosages will vary but a preferred dosage for intravenous administration of DNA is from approximately  $10^{\circ}$  to  $10^{12}$  copies of the DNA molecule. The compositions of the invention may be administered locally or systemically. Administration will generally be parenterally, e.g., intravenously; DNA may also be administered directly to the target site, e.g., by biolistic delivery to an internal or external target site or by catheter to a site in an artery.

[0044] It is envisaged by the present invention that the various polynucleotides and vectors of the invention are administered either alone or in any combination using standard vectors and/or gene delivery systems, and optionally together with a pharmaceutically acceptable carrier or excipient. Subsequent to administration, said polynucleotides or vectors may be stably integrated into the genome of the subject. On the other hand, viral vectors may be used which are specific for certain cells or tissues and persist in said cells or tissues. Suitable pharmaceutical carriers and excipients are, as has been stated above, well known in the art. The pharmaceutical compositions prepared according to the invention can be used for the prevention or treatment or delaying of different kinds of diseases, which are related to the undesired (over)expression of the above identified nucleic acid molecule of the invention. In a preferred embodiment the pharmaceutical composition comprises antisense oligodesoxynucleotides, as for example described in example 5, capable of regulating, preferably decreasing heavy expression.

[0045] Furthermore, it is possible to use a pharmaceutical composition of the invention which comprises the polynucleotide or vector of the invention in gene therapy. Suitable gene delivery systems may include liposomes, receptormediated delivery systems, naked DNA, and viral vectors such as herpes viruses, retroviruses, adenoviruses, and adeno-associated viruses, among others. Gene therapy, which is based on introducing therapeutic genes, for example for vaccination into cells by ex-vivo or in-vivo techniques is one of the most important applications of gene transfer. Suitable vectors, methods or gene-delivery systems for in-vitro or in-vivo gene therapy are described in the literature and are known to the person skilled in the art; see, e.g., Giordano, Nature Medicine 2 (1996), 534-539; Schaper, Circ. Res. 79 81996), 911-919; Anderson, Science 256 (1992), 808-813; Isner, Lancet 348 (1996), 370-374; Muhlhauser, Circ. Res. 77 (1995), 1077-1086; Onodera, Blood 91 (1998), 30-36; Verzeletti, Hum. Gene Ther. 9 (1998), 2243-2251; Verma, Nature 389 (1997), 239-242; Anderson, Nature 392 (Supp. 1998), 25-30; Wang, Gene Therapy 4 (1997), 393-400; Wang, Nature Medicine 2 (1996), 714-716; WO 94/29469; WO 97/00957; U.S. Pat. No. 5,580,859; U.S. Pat. No. 5,589,466; U.S. Pat. No.

4,394,448 or Schaper, Current Opinion in Biotechnology 7 (1996), 635-640, and references cited therein. The nucleic acid molecules and vectors of the invention may be designed for direct introduction or for introduction via liposomes, or viral vectors (e.g. adenoviral, retroviral) into the cell. Additionally, a baculoviral system can be used as eukaryotic expression system for the nucleic acid molecules of the invention. Delivery of nucleic acids to a specific site in the body for gene therapy may also be accomplished using a biolistic delivery system, such as that described by Williams (Proc. Natl. Acad. Sci. USA 88 (1991), 2726-2729).

[0046] Standard methods for transfecting cells with recombinant DNA are well known to those skilled in the art of molecular biology, see, e.g., WO 94/29469. Gene therapy may be carried out by directly administering the recombinant DNA molecule or vector of the invention to a patient or by transfecting cells with the polynucleotide or vector of the invention ex vivo and infusing the transfected cells into the patient. Furthermore, research pertaining to gene transfer into cells of the germ line is one of the fastest growing fields in reproductive biology. Gene therapy, which is based on introducing therapeutic genes into cells by ex vivo or in vivo techniques is one of the most important applications of gene transfer. Suitable vectors and methods for in vitro or in vivo gene therapy are described in the literature and are known to the person skilled in the art; see, e.g., WO94/29469, WO 97/00957 or Schaper (Current Opinion in Biotechnology 7 (1996), 635-640) and references cited above. The polynucleotides and vectors comprised in the, pharmaceutical composition of the invention may be designed for direct introduction or for introduction via liposomes, or viral vectors (e.g. adenoviral, retroviral) containing said recombinant DNA molecule into the cell. Preferably, said cell is a germ line cell, embryonic cell, stem cell or egg cell or derived therefrom. An embryonic cell can be for example an embryonic stem cell as described in, e.g., Nagy, Proc. Natl. Acad. Sci. USA 90 (1993) 8424-8428.

[0047] It is to be understood that the introduced polynucleotides and vectors of the invention express the (poly)peptide of the invention after introduction into said cell and preferably remain in this status during the lifetime of said cell. For example, cell lines which stably express the polynucleotide under the control of appropriate regulatory sequences may be engineered according to methods well known to those skilled in the art. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with the polynucleotide or vector of the invention and a selectable marker, either on the same or separate vectors. Following the introduction of foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective medium. The selectable marker in the recombinant plasmid confers resistance to the selection and allows for the selection of cells having stably integrated the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. Such engineered cell lines are particularly useful in screening methods or methods for identifying an inhibitor of the polypeptide of the present invention as described below.

**[0048]** A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, Cell 11(1977), 223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska, Proc. Natl.

Acad. Sci. USA 48 (1962), 2026), and adenine phosphoribosyltransferase (Lowy, Cell 22 (1980), 817) in tk, hgprt or aprt cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, Proc. Natl. Acad. Sci. USA 77 (1980), 3567; O'Hare, Proc. Natl. Acad. Sci. USA 78 (1981), 1527), gpt, which confers resistance to mycophenolic acid (Mulligan, Proc. Natl. Acad. Sci. USA 78 (1981), 2072), neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, J. Mol. Biol. 150 (1981), 1), hygro, which confers resistance to hygromycin (Santerre, Gene 30 (1984), 147), Shble, which confers resistance to Zeocin® (Mulsant, Somat. Cell. Mol. Genet. 14 (1988), 243-252 or puromycin (pat, puromycin N-acetyl transferase). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman, Proc. Natl. Acad. Sci. USA 85 (1988), 8047); and ODC (ornithine decarboxylase) which confers resistance to the ornithine decarboxylase inhibitor, 2-(difluoromethyl)-DL-ornithine, DFMO (McConlogue, 1987, In: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed.). Cells to be used for ex vivo gene therapy are well known to those skilled in the art. For example, such cells include for example cancer cells present in blood or in a tissue or preferably the corresponding stem cells.

**[0049]** Furthermore, the invention relates to a diagnostic composition comprising the nucleic acid molecule of the invention, the vector of the invention, the polypeptide of the invention and/or the antibody of the invention.

**[0050]** The diagnostic composition of the invention is useful in detecting the onset or progress of diseases related to the undesired expression or overexpression of the nucleic acid molecule of the invention. As has been pointed out herein above, such diseases are interrelated or caused by an increased or ongoing cellular proliferation. Accordingly, the diagnostic composition of the invention may be used for assessing the onset or the disease status of cancer. Having thus an early criterium for tumor activity, suitable countermeasures can immediately be applied. Such an immediate action will, of course, significantly improve the prognosis of the patient. These considerations equally apply to the diagnosis of metastases and recurrent tumors.

**[0051]** On the other hand, not all types of tumors may be characterized by an undesired expression or overexpression of the nucleic acid molecule of the invention. Alternatively, said (over)expression may occur only in certain stages, such as early stages, of tumor development. Therefore, the diagnostic composition of the invention may also or alternatively be employed as a means for the classification of tumors or of the developmental status of a tumor. Naturally, the or most of the applications of the composition of the invention described here for tumors also apply to other diseases interrelated with or caused by the undesired (over)expression of the nucleic acid molecule of the invention.

**[0052]** Furthermore, a disease as recited throughout this specification also could be caused by a malfunction of the polypeptide of the present invention. Said disease could be interrelated or caused by, for example, an increased or reduced gene dosis of the polypeptide of the present invention, an increased or reduced activity of said polypeptide e.g.

due to a modification in the primary amino acid sequence as compared to the corresponding wild-type polypeptide in a cell or tissue or a loss of the regulation of the activity of said polypeptide. Said disease might further be caused by an incorrect expression of the polypeptide during cell cycle progression or cell development. For example, mutated binding sites to intracellular or extracellular compounds, e.g. ions or second messengers or regulatory proteins, might result in a malfunction of the polypeptide of the present invention as it changes the binding characteristics for said compounds regulating the activity of said polypeptide. Malfunction could also be caused by defective modifications sites, for example, phosphorylation or glycosylation sites. It also might be caused by incorrect splicing events and therefore by expression of a truncated or extended polypeptides, for example, if heag 1 is expressed instead of heagh 2 or vice versa.

**[0053]** Thus, in a further embodiment the diagnostic composition described above could also be used to detect a malfunction of the polypeptide of the present invention.

[0054] In a further embodiment, the invention relates to a method for preventing or treating a disease which is caused by the malfunction of the polypeptide of the invention, comprising introducing an inhibitor of the expression of the nucleic acid molecule of the present invention or an inhibitor or a modifying agent of the malfunction of the (poly)peptide of the present invention or a nucleic acid molecule coding heag or a polypeptide having heag activity into a mammal affected by said disease or being suspected of being susceptible to said disease. Methods for introduction of a nucleic acid molecule of the present invention encoding heag into a cell or subject, i.e. gene therapy, are described within this specification as well as methods for the identification of inhibitors of the expression of a nucleic acid molecule of the present invention. Furthermore, inhibitors or modifying agents of the malfunction of the polypeptide of the present invention can be identified according to methods for the identification of inhibitors inhibitors of the polypeptide of the present invention known to a person skilled in the art (see below). For example, some genetic changes causing a malfunction of the polypeptide of the present invention lead to altered protein conformational states. Mutant proteins could possess a tertiary structure that renders them far less capable of fascilitating ion transport. Restoring the normal or regulated conformation of mutated proteins is the most elegant and specific means to correct these molecular defects. Pharmacological manipulations thus may aim at restoration of wild-type conformation of the protein. Thus, the polynucleotides and encoded proteins of the present invention may also be used to design and/or identify molecules which are capable of activating the wild-type function of a derivative of the polypeptide of the present invention displaying said malfunction.

**[0055]** The doses and routes for the administration for the treatment of a patient in need thereof have already been discussed herein above in connection with the pharmaceutical composition of the invention. Diseases that may be treated using the method of the present invention comprise any diseases that are correlated with cellular proliferation. Preferred diseases that fall into this category are tumor diseases such as cancer (breast cancer, neuroblastoma etc.), psoriasis, and degenerative diseases, especially those of the

nervous system such as Alzheimer's disease, multiple sclerosis, lateral amyotrophic sclerosis, and Parkinson's disease.

**[0056]** Preferably, said inhibitor of the expression or overexpression of said nucleic acid molecule is the nucleic acid molecule of the invention that hybridizes to the nucleic acid molecule encoding the ion channel of the invention or fragment thereof. For example, this nucleic acid molecule can be an antisense oligodesoxynucleotide (ODN). The inventors could show that antisense ODNs treatment significantly reduces DNA synthesis of several tumor cells, e.g. EFM cells, SHSY-5Y cells and HeLa cells (Example 5). Thus, in a preferred embodiment the nucleic acid molecule comprises antisense ODNs.

**[0057]** In a further preferred embodiment, said inhibitor of polypeptide function is the antibody of the invention or a drug. Said drug can be histamine receptor H1 inhibitor. Preferably, said drug inhibits active heag, for example, acts as use-dependent, probably open-channel blocker, preferably said drug is astemizole or terfenadine. Further suitable drugs can be identified or designed by the person skilled in the art on the basis of the teachings of the present invention. Preferably, the drug will have an affinity to heag channel in the mM range, more preferable in the nM range or lower. Preferably, the drug has no effect on other channels, for example on cardiac channels.

**[0058]** In a further preferred embodiment of the invention, said method further comprises prior to the introduction step,

**[0059]** (a) obtaining cells from the mammal infected by said disease and, after said introduction step, wherein said introduction is effected into said cells,

**[0060]** (b) reintroducing said cells into said mammal or into a mammal of the same species.

**[0061]** This embodiment of the present invention is particularly useful for gene therapy purposes which will reduce the treatment duration largely and increase the effectivity and reduce (even eliminate) side effects. In addition, this embodiment of the method of the invention can also be employed in the context or in combination with conventional medical therapy. The removal from and the reintroduction into said mammal may be carried out according to standard procedures.

**[0062]** Preferably, the above referenced cell is a germ cell, an embryonic cell or an egg cell or a cell derived from any of these cells.

**[0063]** The invention further relates to a method of designing a drug for the treatment of a disease which is caused by the undesired expression or overexpression of the nucleic acid molecule of the invention comprising:

- [0064] (a) identification of a specific and potent drug;
- [0065] (b) identification of the binding site of said drug by site-directed mutagenesis and chimeric protein studies;
- [0066] (c) molecular modeling of both the binding site in the (poly)peptide and the structure of said drug; and
- **[0067]** (d) modifications of the drug to improve its binding specificity for the (poly)peptide.

**[0068]** The term "specific and potent drug" as used herein refers to a drug that potently and specifically blocks heag function.

[0069] All techniques employed in the various steps of the method of the invention are conventional or can be derived by the person skilled in the art from conventional techniques without further ado. Thus, biological assays based on the herein identified features of the ion channel of the invention may be employed to assess the specificity or potency of the drugs wherein the decrease of one or more activities of the ion channel may be used to monitor said specificity or potency. Steps (b) and (d) can be carried out according to conventional protocols described, for example, in K. L. Choi, C. Mossman, J. Aubé & G. Yellen. The International Quaternary Ammonium Receptor Site of Shaker Potassium Channels. Neuron 10, 533-541 (1993), C.-C. Shieh & G. E. Kirsch: Mutational Analysis of Ion Conduction and Drug Binding Sites in the Inner Mouth of Voltage-Gated K<sup>+</sup> -Channels. Biophys. J. 67, 2316-2325 (1994), or C. Miller: The Charybdotoxin Family of K<sup>+</sup>-Channel-Blocking Peptide. Neuron 15, 5-10 (1995).

**[0070]** For example, identification of the binding site of said drug by site-directed mutagenesis and chimerical protein studies can be achieved by modifications in the (poly)peptide primary sequence that affect the drug affinity; this usually allows to precisely map the binding pocket for the drug.

**[0071]** As regards step (c), the following protocols may be envisaged: Once the effector site for drugs has been mapped, the precise residues interacting with different parts of the drug can be identified by combination of the information obtained from mutagenesis studies (step (b)) and computer simulations of the structure of the binding site (since a potassium channel has recently been crystallized in the art, this can now be done by the person skilled in the art without further ado) provided that the precise three-dimensional structure of the drug is known (if not, it can be predicted by computational simulation). If said drug is itself a peptide, it can be also mutated to determine which residues interact with other in the heag molecule.

**[0072]** Finally, in step (d) the drug can be modified to improve its binding affinity or its potency and specificity. If, for instance, there are electrostatic interactions between a particular residue of heag and some region of the drug molecule, the overall charge in that region can be modified to increase that particular interaction; additionally, if those interactions occur with a region of heag that is not conserved with other channel proteins, it is conceivable that an improvement of that interaction while other binding factors are weakened will improve the specificity of the drug.

[0073] Identification of binding sites may be assisted by computer programs. Thus, appropriate computer programs can be used for the identification of interactive sites of a putative inhibitor and the polypeptide of the invention by computer assisted searches for complementary structural motifs (Fassina, Immunomethods 5 (1994), 114-120). Further appropriate computer systems for the computer aided design of protein and peptides are described in the prior art, for example, in Berry, Biochem. Soc. Trans. 22 (1994), 1033-1036; Wodak, Ann. N. Y. Acad. Sci. 501 (1987), 1-13; Pabo, Biochemistry 25 (1986), 5987-5991. Modifications of the drug can be produced, for example, by peptidomimetics and other inhibitors can also be identified by the synthesis of peptidomimetic combinatorial libraries through successive chemical modification and testing the resulting compounds. Methods for the generation and use of peptidomimetic combinatorial libraries are described in the prior art, for example in Ostresh, Methods in Enzymology 267 (1996), 220-234 and Dorner, Bioorg. Med. Chem. 4 (1996), 709-715. Furthermore, the three-dimensional and/or crystallographic structure of inhibitors of the polypeptide of the invention can be used for the design of peptidomimetic inhibitors, e.g., in combination with the (poly)peptide of the invention (Rose, Biochemistry 35 (1996), 12933-12944; Rutenber, Bioorg. Med. Chem. 4 (1996), 1545-1558).

**[0074]** An exemplary strategy for identifying a specific inhibitor that may be used in accordance with the present invention is provided in the appended examples.

**[0075]** The invention also relates to a method of identifying an inhibitor of the expression of the nucleic acid of the invention or of a function of the (poly)peptide of the invention comprising:

**[0076]** (a) testing a compound for the inhibition or reduction of translation wherein said compound is selected from antisense oligonucleotides and ribozymes; or

**[0077]** (b) testing a compound for the inhibition of transcription wherein said compound binds to the promoter region of the gene encoding the (poly)peptide of the invention and preferably with transcription factor responsive elements thereof; or

**[0078]** (c) testing peptides or antibodies suspected to block the proliferative activity of the (poly)peptide of the invention for said blocking activity.

**[0079]** As regards alternative (b) referred to above, it may be advantageous to first characterize the promoter region and locate transcription factor responsive sequences in it. Then it would be possible to genetically manipulate the promoter to render it more sensitive to repressors or less sensitive to enhancers. Turning now to alternative (c), it may be advantageous to first locate the part or parts of the ion channel of the invention implicated in the generation of proliferation disorders. Compounds that have been positive in one of the test systems are, prima facie, useful as inhibitors.

**[0080]** Peptidomimetics, phage display and combinatorial library techniques are well-known in the art and can be applied by the person skilled in the art without further ado to the improvement of the drug or inhibitor that is identified by the basic method referred to herein above.

**[0081]** In a further embodiment, the present invention relates to a method of inhibiting cell proliferation comprising applying an inhibitor to expression of the nucleic acid of the invention or the (poly)peptide of the invention. The method of the invention may be carried out in vitro, ex vivo or when application is to a subject, in vivo.

**[0082]** The present invention also relates to a method of prognosing cancer and/or neurodegenerative diseases and/or psoriasis comprising assessing the expression of the nucleic acid molecule of the invention or assessing the quantitative presence of the (poly)peptide of the invention. In a preferred embodiment said cancer is a mamma carcinoma or neuroblastoma, in a more preferred embodiment said cancer is breast adenocarcinoma, breast carcinoma ductal type, or cervix carcinoma. In a further embodiment said neurode-

generative diseases is Alzheimer's disease, Parkinson's disease, lateral amytrophic sclerosis or multiple sclerosis.

**[0083]** The method of the invention may be carried out in vitro, in vivo, or ex vivo. Suitable protocols for carrying out the method of the invention are well-known in the art and include, as regards in vitro techniques, Northern blotting for the assessment of the level of mRNA or the analysis of tissue by microscopic techniques using, for example, antibodies that specifically recognize the (poly)peptide of the invention. One or more these techniques may be combined with PCR based techniques which may also or in combination with further (conventional) techniques be used for the above recited assessment.

**[0084]** In a preferred embodiment of the above-mentioned methods of the invention, said mammal is a human, rat or mouse.

**[0085]** The present invention further relates to the use of the nucleic acid molecules of the invention in gene therapy. As has been pointed out here above, gene therapy may be designed to inhibit cell proliferation and thus treat any disease affected thereby such as cancer or psoriasis in a specific way. The invention particularly envisages two independent lines carrying out such gene therapy protocols:

**[0086]** (a) Mutagenesis of the channel together with chemical engineering of H1 antagonists (preferably of astemizole) in order to obtain a drug specific for human eag;

**[0087]** (b) Quantitative and qualitative analysis of the expression levels of eag in cancer tissue, in order to design a diagnostic and/or prognostic method. This would also allow the design of genetic therapies against specific tumors.

**[0088]** For example, the nucleic acid molecule may be introduced in vivo into cells using a retroviral vector (Naldini et al., Science 272 (1996), 263-267; Mulligan, Science 260 (1993), 926-932) or another appropriate vector. Likewise, in accordance with the present invention cells from a patient can be isolated, modified in vitro using standard tissue culture techniques and reintroduced into the patient. Such methods comprise gene therapy or gene transfer methods which have been referred to herein above.

**[0089]** Finally, the present invention relates to a kit comprising the nucleic acid molecule specifically hybridizing to the nucleic acid molecule encoding the (poly)peptide of the invention, the vector of the invention, the polypeptide of the invention and/or the antibody of the invention.

[0090] The kit of the invention can, inter alia, be employed in a number of diagnostic methods referred to above. The kit of the invention may contain further ingredients such as selection markers and components for selective media suitable for the generation of transformed host cells and transgenic plant cells, plant tissue or plants. Furthermore, the kit may include buffers and substrates for reporter genes that may be present in the recombinant gene or vector of the invention. The kit of the invention may advantageously be used for carrying out the method of the invention and could be, inter alia, employed in a variety of applications referred to herein, e.g., in the diagnostic field or as research tool. The parts of the kit of the invention can be packaged individually in vials or in combination in containers or multicontainer units. Manufacture of the kit follows preferably standard procedures which are known to the person skilled in the art. **[0091]** Several documents are cited throughout the text of this specification. Each of the documents cited herein (including any manufacturer's specifications, instructions, etc.) are hereby incorporated herein by reference; however, there is no admission that any document cited is indeed prior art as to the present invention.

**[0092]** The figures show:

[0093] FIG. 1. Proliferation of wild-type (circles) and reag-expressing CHO cells as a function of time. Cells were plated in 96-well dishes and at the indicated times the tetrazolium salt  $MTT^{6}$  (50 µg/ml) was added to the plates. After four hours incubation in humidified atmosphere (37° C., 5%  $CO_2$ ), the reaction was stopped by addition of 2 volumes of 10% SDS in 1M HCl. The blue formazan crystals produced in living cells were solubilized overnight, and the resulting color was measured as optical density at the indicated wavelength. Possible non-specific effects of the transfection on the cell proliferation can be neglected, since a) the results were comparable in three independent cell lines from different species (rat, hamster and human); b) transfection with different independent clones gave the same results, and c) transfection with a different potassium channel (Kv1.4) in the same vector (thus with a tendency to recombine at the same site) gave results comparable to WT and did not reproduce the effects of the reag transfection.

**[0094]** FIG. **2**. Proliferation of wild type (circles) and reag expressing (triangles) CHO cells, in the presence of 0.5% FCS. This serum concentration is not able to sustain growth of normal cells, but transfected cells complete almost three cycles. Methods as for FIG. **1**.

[0095] FIG. 3. DNA synthesis in CHO cells expressing different potassium channels, in the presence of normal (10%) or low (0.5%) concentrations of FCS. In control cells, WT or cells transfected with Kv1.4, the levels of DNA synthesis drop significantly in the presence of low serum concentration, whereas reag expressing cells maintain the same replication levels as in high serum concentrations.

**[0096]** FIG. 4. (A) Photographs of plates with wild type, Kv1.4 transfected or reag transfected NIH3T3 cells. The cells were seeded at low density, and allowed to grow under standard conditions until wild-type cells reached confluence. The cells were then fixed with methanol and stained with Giemsa blue. Under those conditions, both wild type and Kv1.4-expressing cells grow in a monolayer, whereas reag expressing cells form foci. (B) Foci formation of reagtransfected NIH-3T3 cells compared to cells transfected with rKv1.4 and to wild type cells. The vector control (pcDNA3 transfected cells) yielded a similar phenotype as wild type cells (not shown). Transient transfection was carried out using calcium phosphate (33). Cells were maintained in rich medium until control cells reached confluence, then fixed with methanol and stained with Giemsa blue.

**[0097]** FIG. **5**. Currents elicited by depolarizations in MCF7 cells under voltage clamp conditions. Left traces are whole cell currents, right traces have been obtained in an excised outside-out patch. Both the macroscopic currents and the I-V relationships (C and D) are reminiscent of reag currents.

[0098] FIG. 6. Single channel activity in an outside-out membrane patch voltage-clamped at 0 mV, in the presence or the absence of 5  $\mu$ M astemizole. The pipette solution

contained 140 mM KCl, 10 mM BAPTA, 10 mM HEPES pH 7.2; the bath solution contained 140 mM NaCl, 2 mM CaCl<sub>2</sub>, 2 mM MgCl<sub>2</sub>, 2.5 mM KCl, 10 HEPES pH 7.2.

**[0099]** FIG. **7**. A. DNA synthesis in MCF7 cells under different eag blockers. B. HEK293 DNA synthesis levels in the presence of astemizole, glibenclamide and terfenadine.

**[0100]** FIG. **8**. Dose-response curve for the effects of two H1 antagonists on DNA synthesis in MCF7 cells (IC50 7 and 10 mM for LY 91241 and astemizole respectively).

**[0101]** FIG. **9**. Fluorescence images of control (untreated, A) and astemizole-treated (B) MCF7 cells, stained with Hoechst 33342. Notice in B the smaller surface of the nuclei, and a much lower cell density (due to cell death).

**[0102]** FIG. **10**. Nucleotide sequence of human-eag cDNA from human brain compared to the rat sequence and bovine sequences. Those positions showing a different nucleotide in any of the sequences are shaded.

**[0103]** FIG. **11**. Amino acid sequences of both splice variants obtained from human eag cDNA translation, compared to the corresponding bovine, mouse and rat sequences. The black boxes indicate a different residue in any of the sequences.

**[0104]** FIG. **12**. RT-PCR from human brain, human mammary gland and MCF-7 cells total RNA. The amplification produced two specific fragments corresponding to the expected sizes for heag 1 and 2 in brain, and the band corresponding to heag 1 in MCF-7 cells, while no amplification was detected in normal breast RNA.

**[0105]** FIG. **13**. Voltage-dependence of activation in high extracellular potassium, two-electrode voltage-clamp: In the conductance-voltage plot, the voltage for half-activation is shifted by 40 mV to the right in the heag channel with respect to the reag channel.

[0106] FIG. 14. Colony formation in semisolid medium of NIH-3T3 cells transfected with the indicated DNAs. Cells were plated in regular medium containing 0.3% agar onto a layer of 0.55% agar medium. Colonies larger than 0.1 mm in diameter were scored 14 days after transfection. The average number of colonies in at least ten counted microscope fields is expressed per  $\mu$ g DNA used in the transfection (except for the lanes "Transfection buffer" and "No treatment", where the numbers are absolute values). reag and Kv1.4 were transfected using either pcDNA3 or pTracer CMV vectors.

**[0107]** FIG. **15**. (A) Southern blot of RT-PCR products of RNAs from different human tissues and 293 cells. Transferrin receptor (TFR) signals are shown at the bottom. (B) Southern blot analysis of RT-PCR products of total RNAs from different human cell lines and mammary epithelial cells in primary culture (Epith. cells). TRF signals are shown at the bottom.

**[0108]** FIG. **16**. (A) Treatment of heag expressing tumor cell lines with antisense ODNs. (B) heag current in SHSY-5Y neuroblastoma cells (C) Current density in SHSY-5Y cells treated with antisense ODNs (D) Inhibition of DNA synthesis in human cancer cells (EFM-19, HeLa and SHSY-5Y) by antisense ODNs directed against heag.

**[0109]** FIG. **17**. (A) Subcutaneous implantation of CHOhEAG cells induced aggressive tumors that grew rap-

idly and soon broke the skin of the carrier mice. The photograph was taken in the third week post-implantation of  $2 \times 10^6$  cells. (B,C) The average mass of CHOhEAG tumors was significantly greater than that of the CHOKv tumors both two weeks (B; mean±S.E.M.; p=0.002) or three weeks post-implantation (C; mean±S.E.M.; p=0.03) (D) CHOhEAG and (E) CHOKv tumors photographed in situ. The main macroscopic differences are the darker color and the fixation to the skin of the CHOhEAG tumor. (F, G) CHOhEAG (F) and CHOKv (G) tumors were cut open to show the great extent of necrosis (arrowheads) in the former. (H, I) The greater degree of necrosis and the fixation to the skin are also evident microscopically after paraffin embedding and hematoxylin-eosin staining. The histology is comparable in both micrographs, but in (H) a much bigger necrotic area is observed (arrowheads), and there is no border between the subcutaneous fat and the tumor. (Scale bars, 100 µm) (J) As a quantitative measurement of these images, the average width of the vital area in CHOKv tumors was significantly larger than that of CHOhEAG tumors (mean±S.E.M.; p<0.0005).

[0110] FIG. 18: Proliferation assays of rEAG-transfected CHO cells (A-C). Growth curves of CHO cells transfected with rEAG (circles) as compared to naive cells (triangles) in 10% (filled symbols) or 0.5% (open symbols) fetal calf serum. The values are referred to the ones measured after 12 h in culture (time 0 in the plot), and represent mean±S.E.M. of eight wells in the same plate. Cell lines were established by selection through the G-418 resistance encoded in the pcDNA3 vector. MTT hydrolysis (22) was used to measure metabolic activity of viable cells. Serum was carefully diluted 12 hours after plating. (B) Increase in metabolic activity during the first 12 hours after removal of S-phase block. For cell synchronization, 2 mM thymidine was added to the culture medium for 12 h. Thymidine was removed from the medium for additional 12 h, and then a second arresting pulse was applied for 12 h. Cells were then trypsinized and plated for metabolic activity and DNA synthesis determination. (C) BrdU incorporation<sup>i</sup> during the first 12 hours after removal of S-phase block for 12 h incubation in 10% FCS, or in the presence of 0.5% FCS (24 h incubation). BrdU incorporation was measured using the Boehringer-Mannheim "BrdU labeling and detection kit", following the indications of the manufacturer. The bars represent mean±S.D. for wild-type CHO cells (open bars), Kv1.4-transfected (shaded bars) and eag-transfected (solid bars). The incorporation of BrdU is quantified as optical density at 405 nm (reference 490 nm) produced on ABTS<sup>™</sup> substrate by peroxidase coupled to the anti BrdU antibody.

**[0111]** The examples illustrate the invention.

#### EXAMPLE 1

## Cloning of the K<sup>+</sup> Ion Channel

**[0112]** mRNA was purified from total RNA obtained from MCF-7 cells following standard procedures. Then, cDNA was prepared by reverse transcription with Superscript II reverse transcriptase; this cDNA was used as a template for PCR amplification using degenerate oligonucleotides designed to match highly conserved eag sequences. After amplification, a SacII/SacII fragment from rat eag was used as a probe for Southern blot analysis of the results. Those bands showing positive hybridization were subsequently

cloned in pGEM-T vector (Promega) and sequenced. All of them gave sequences corresponding to HERG.

**[0113]** Specific oligonucleotides engineered to avoid HERG cDNA amplification were then designed, taking into account rat, mouse and bovine eag. We looked for sequences having high homology between the various eag clones but with maximal divergence to the HERG sequence.

**[0114]** The sequences of the oligonucleotides were the following:

5'-CAGAA(T,C)AA(T,C)GTGGC(A,C,T,G,)TGGCT

5 '-TCACT(G,A)AAGATCTATA(A,G)TC

**[0115]** After PCR amplification, the band of the expected size was cloned into pGEMT and sequenced. The sequence obtained showed high homology to rat eag (nucleotides 942-1108).

**[0116]** This band was labeled and used as a probe to screen a mammary gland cDNA library. After screening of  $2 \times 10^6$  phages, no positive clones were found.

**[0117]** We then used specific oligonucleotides to analyze cDNA using PCR from human heart and human brain (obtained from total RNA purchased from Clontech). Two PCR products from brain were sequenced, and the sequence corresponded to two alternatively spliced variants of eag. To further test the possibility of cloning the full length molecule from the human brain, we performed PCR analysis of a human cDNA library, and compared this result to the same experiment in the human mammary gland library (both from Clontech). Only the brain library gave positive results.

**[0118]** Subsequently, the amplified fragment was employed to screen the human brain library (2 rounds,  $10^6$  phages) and several clones that were cloned into the pBSK-vector were found and sequenced. All of them corresponded to the central part of the molecule, but were missing the 5' and 3' ends. The longest of these positive clones was used to prepare a probe and re-screen the library (again two rounds,  $2 \times 10^6$  clones).

**[0119]** The sequences obtained in this case corresponded to part of the coding sequence (approximately 400 bp 5' were missing until the initiation codon) and a long 3' untranslated sequence. Since the fragment close to the 5' end of the molecule started in all cases with an EcoRI site, it was suspected that the site was actually present in the heag sequence, and that is was lost in the subcloning of the fragments into vectors for sequencing.

**[0120]** To obtain the full length sequence, we pooled those phages that carried fragments close to the 5' end and analyzed them by PCR amplification, using the sequence 3' to the mentioned EcoRI site and a sequence from lambda gt10 as primers for the PCR. After successive fractionation of the pools, two phages that carried the 5' end of the coding sequence were obtained, and one of them contained part of the 5' untranslated region.

**[0121]** Once we knew the complete sequence, we assembled the whole clone starting from two phages, one of them containing the 3' UTR and most of the coding sequence, and the other containing the 5' end. The first fragment was extracted from the phage by SphI/HindIII

digestion, and subcloned into pBKS- to produce pBKSheag 1. In this was, a 1.2 kbp SphI-SphI fragment was also removed from the clone, and it was necessary to reintroduce it afterwards. The fragment containing the 5' end was extracted by HindIII/MunI digestion. This fragment was ligated with a HindIII/MunI digest of pBKSheag 1. Only using this procedure were we able to obtain the full length clone in a single plasmid. We then needed to reintroduce the SphI-SphI fragment since we had deleted one of the SphI sites. Subsequently, an Eagl/NotI fragment was subcloned into the NotI site of pCDNA3 vector, to eliminate the contaminating phage sequences and to obtain a vector suitable for functional expression of the channel. Finally obtained sequences are depicted in sequence listing as SEQ ID No. 1 and SEQ ID No. 2.

#### EXAMPLE 2

#### Identification of Inhibitors that Specifically Bloc the Action of Human Eag

[0122] Another member of the eag family,  $HERG^{11-16}$ , has been related to a familiar form of long QT syndrome (LQT). This has allowed to identify several blockers of HERG based on their ability to induce LQT-type arrythmias. Thus, certain histamine H1 receptor blockers, such as astemizole and terfenadine, as well as class III antiarrythmic drugs (dofetilide, E-4031) are potent and specific blockers of HERG<sup>15,17</sup>. However, for eag channels, specific blockers have not yet been described. Due to the sequence similarity between HERG and eag channels, both groups of drugs on reag were tested in accordance with the present invention. The H1 blockers also affect reag, whereas the channel is rather insensitive to class III antiarrythmics (dofetilide). This provides a useful tool to selectively block eag-type channels and to discard possible effects of HERG channels (which are also present in MCF7 cells). The effect of one of these drugs (astemizole 5  $\mu$ M) is shown on single putative human eag channels in FIG. 6.

[0123] It was further tested whether several reag and other potassium channel blockers are able to inhibit growth of MCF7 cells. As a "positive" control glibenclamide, a blocker of the ATP-sensitive potassium channel was also included, since it has been described to inhibit the proliferation of this cell line<sup>2</sup>. To determine the rate of DNA synthesis, cells were plated on 96-well microtiter plates at a density of  $\approx 10^5$  cells/ml and in the absence of growth factors. After 24 hours starvation, cells were stimulated by addition of 10% FCS in the presence of BrdU. The amount of BrdU incorporated into the newly synthesized DNA was determined using a commercial antibody (Boehringer Mannheim). The drugs tested were added either at the same time or 12 hours prior to the stimulation. In a different human cell line, HEK293, the addition of 10 µM astemizole or 100 µM glibenclamide did not reduce significantly the DNA synthesis, while terfenadine (10 µM) produced a strong inhibition. For this reason, only effects of astemizole (and its closely related analog LY91241) were considered, and those produced by terfenadine (although MCF7 cells are significantly more sensitive to growth inhibition by terfenadine than the control cells) discarded. In MCF7 cells, 5 µM astemizole reduced the DNA synthesis by 40%, while the same concentration of the HERG-specific blocker dofetilide produced no significant effects. Ten times higher concentrations (50

 $\mu$ M) of other potassium channel blockers (quinidine or glibenclamide) where required to induce a similar effect. A dose-response curve for astemizole effects on DNA synthesis in MCF7 cells is depicted in FIG. **8**. The half-maximal effect was obtained for 10  $\mu$ M astemizole.

**[0124]** In an attempt to clarify the mechanism underlying the proliferation inhibition in MCF7 cells, the nuclear morphology of cells treated with  $5 \,\mu$ M astemizole were checked, using the supravital nuclear stain Hoechst 33342. After 24 hours of treatment, most cells showed nuclear condensation and fragmentation, typical features of apoptotic cell death (FIG. 9).

**[0125]** In conclusion, a human counterpart of the reag channels are present in human cancer cells, and they have the ability to induce malignant transformation in several different cell types.

### EXAMPLE 3

#### Expression of Heag in Different Human Tissues

[0126] 500 ng total RNA from different human tissues (or 5 ng polyA<sup>+</sup> RNA, for spinal chord) were reverse transcribed and amplified using a pair of oligonucleotides of the sequences 5'-CGCATGAACTACCTGAAGACG (forward) and 5'-TCTGTGGATGGGGGGGGGGGTGTTC (reverse). The amplified DNA was analyzed by Southern blot using a specific human eag probes (a 1.5 Kb EcoRI fragment from the core of the channel). Among the RNAs tested, only brain total RNA gave positive signals. RNAs from spinal chord, adrenal gland, skeletal muscle, heart, trachea, liver, kidney and mammary gland were negative. The integrity of the RNA was checked using transferrin amplification. Using the same approach, the expression of heag in several tumoral human cell lines was checked, in: MCF-7 (breast adenocarcinoma), BT-474 (breast ductal carcinoma, from a solid tumor), EFM-19 (breast carcinoma, ductal type, from pleural fluid), COLO-824 (breast carcinoma, from pleural fluid), SHSY5Y (neuroblastoma).

**[0127]** In contrast to normal tissues, all the cancer cell lines tested were found positive for heag expression.

[0128] Further, Southern blot of RT-PCR products of RNAs from different human tissues and 293 cells show that only in RNA from brain the two bands corresponding to heag A and B could be amplified and identified. Transferrin receptor (TFR) signals are shown at the bottom (FIG. 15A). Furthermore, a Southern blot analysis of RT-PCR products of total RNAs from different human cell lines and mammary epithelial cells in primary culture (Epith. cells). TRF signals are shown at the bottom. RNAs from the different cell lines (34) and commercial RNAs from human tissues (Clontech) were subjected to single-tube RT-PCR (35). Total RNA was used with the exception of spinal cord, where  $poly(A)^+$  RNA was used (Primer sequences were: forward: 5'-CGCAT-GAACTACTGAAGACG, and reverse: 5'-TCTGTG-GATGGGGGCGATGTTC. 5'-TCAGCCCAGCAGAAG-CATTAT and reverse: 5'-CTGGCAGCGTGTGAGAGC were used to control RNA and PCR performance.). Specific primers for TFR were used to control RNA and PCR performance. These ODNs were designed according to the published TFR sequence (36), starting at exon 11 and spanning to exon 19 (37). This, together with the amplification of two heag splice fragments and controls in the absence of reverse transcriptase, excludes a false positive due to genomic DNA contamination. 50  $\mu$ l (heag) or 15  $\mu$ l (TFR) of PCR reactions were analyzed in 2% agarose gels. DNA was transferred to membranes and consecutively hybridized at high stringency with [<sup>32</sup>P]-dCTP labeled random primed probes consisting of a 980 bp heag fragment and the TFR fragment amplified from brain RNA.

### EXAMPLE 4

### Expression of Heag In Vivo

[0129] To determine whether the expression of heag is advantageous for tumor cells in vivo, the inventors preformed subcutaneous implants of CHO cells expressing the channel (CHOhEAG cells) into the flank of female scid (severe combined immunodeficiency, 33) mice. CHOKv cells were used as a control. Therefore, 2×10<sup>6</sup> CHOhEAG or CHO-Kv1.4 cells suspended in 100 µl PBS were implanted subcutaneously on the flank of 6-8 week old female Fox Chase scid mice (C.B-17/Icr sicd/scid) obtained from Bomholtgard, Ry, Denmark. The presence of tumors was checked every second day by tactile inspection of every mouse. After two or three weeks, the animals were sacrificed by cervical dislocation and the tumors dissected and fixed in paraformaldehyde for subsequent paraffin inclusion and staining. The identity of the CHOhEAG cells was established by UV illumination of the tumors to evoke fluorescence from the green fluorescence protein encoded in the pTracer vector (Invitrogen). One week after the implantation, all CHOhEAG-injected mice carried tumors detectable by palpation, while no mass greater than 1 mm was observed in the controls. During the second week post-implantation, the heag-expressing tumors reached in excess of 5 mm in diameter and visibly emerged through the skin in most cases (FIG. 17A); the mice were sacrificed after two (N=6) or three weeks (N=7). Only one of the 11 control animals used was free of visible tumors; all 13 CHOhEAG-injected animals showed tumors. The average mass (FIG. 17B, C) of the heag-expressing tumors was significantly larger than that of controls, especially two weeks following implantation (FIG. 17B). From macroscopic observation, the tumors appeared friable and hemorragic; the CHOhEAG tumors were darker than the controls and were adhered to the skin (FIG. 17D, E) in all CHOhEAG-injected mice at two weeks. Six of seven mice exhibited similar characteristics at three weeks. In contrast, the tumor could be easily dissected from the skin in all of the control mice after two weeks, and in five out of six mice at three weeks. The tissue below the tumor appeared unaffected in all cases. The dark color was due to great extent of intratumoral necrosis (FIG. 17F, G, arrows), confirmed by histology (FIG. 17 H, I, arrowheads), indicating a faster growth of CHOhEAG tumors. The thickness of the vital area in the EAG-expressing tumors was significantly smaller than in the controls (FIG. 17J). The rapid growth of the tumor can account for the massive intratumoral necrosis in the CHOhEAG group. This could also explain the enhanced difference found in the mass of the tumors two weeks after implantation, since CHOhEAG tumors would cease growth due to massive necrosis. These data strongly suggest that expression of heag tumors grow faster and are more aggressive than CHOKv tumors.

## EXAMPLE 5

#### Inhibition of Heag

**[0130]** It is assumed that expression of heag in some tumor cells is not the consequence of their abnormal growth, but that this K<sup>+</sup> channel is necessary for their proliferation. Therefore, inhibition of heag expression with antisense oligodeoxynucleotides (ODNs) should decrease the proliferation rate in these tumor cells. Therefore, a 19-mer <antisense phosphorothioate ODN> (5'-CAGCCATGGTCATC-CTCCC) spanning the putative initiation codon of heag was used to test inhibition of proliferation. The sense ODN and a scrambled sequence (gtcggtaccagtaggaggg) were used as controls. Data shown in FIG. **16**A confirms the efficiency of the antisense ODN treatment in reducing the heag mRNA content in EFM cells. A reduction in heag mediated K<sup>+</sup> currents in SHSY-5Y cells by treatment with antisense ODN is shown in FIGS. **16**B and C.

[0131] Treatment of heag expressing tumor cell lines with antisense ODNs significantly reduced the yield of amplified PCR products. EFM-19 cells were treated with 10 µg/ml DAC30 (lanes "C") or 10  $\mu g/ml$  DAC30 (Eurogentec) plus 1 µM antisense ODN (lanes "AS") overnight, total RNA was extracted and assayed under the same conditions as described in Example 3, with ODNs designed to either amplify heag or the transferrin receptor. The arrows in FIG. 16A mark the expected sizes of the amplified fragments. Further, to dissect the heag current in SHSY-5Y neuroblastoma cells, the inventors utilized the voltage-dependence of the activation of eag (30) in the presence of extracellular Mg<sup>2+</sup>. The current was measured after a depolarization to +60 mV from -120 mV (FIG. 16B, gray lines). The first part of the subtracted trace (FIG. 16B, black line) corresponds to eag current that has not yet activated when the holding potential is very negative (-120 mV), but becomes evident if the holding potential is -60 mV. The average current between 19 and 21 ms was chosen to determine the current density. The current density in SHSY-5Y cells treated with antisense ODNs was significantly reduced as compared to control cells (The electrophysiological determinations were performed using standard protocols in the whole cell configuration of the patch-clamp technique (Hamill, O. P., Marty, A., Neher, E., Sakmann, B., Sigworth, F. J. Pflügers Arch- Eur. J. Physiol 391, 85 (1981)), with an extracellular solution containing (mM) 140 NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2, 10 Hepes/NaOH pH 7.2, 10 glucose. The pipette solution was (mM) 140 KCl, 10 BAPTA, 10 Hepes/KOH pH 7.2.). The cells were treated overnight with antisense ODN 1 µM containing fluorescein-labeled ODN. The currents were determined 1 to 3 days later in cells showing fluorescence in their nuclei. The bars in FIG. 16C represent mean±S.E.M. for 9 cells (control) or 25 cells (antisense). Only the outward currents were evaluated in the analysis. Furthermore, the inhibition of DNA synthesis in human cancer cells (EFM-19, HeLa and SHSY-5Y) by antisense ODNs directed against heag was investigated. DNA synthesis is expressed relative to BrdU incorporation in the absence of ODNs. The uptake conditions into cells using fluorescein labeled antisense ODN was optimized. Cells were seeded in 96-well plates at a density of 105 cells/ml. One day after plating, the cells were washed with culture medium and the ODN was added (final concentration 10  $\mu$ M). The ODN had previously been mixed with 20  $\mu$ g/ml of the transfection ragenent DAC-30 (Eurogentec) in serumfree medium and allowed to incubate at room temperature for 20-30 min. The mixture was then added as a 1:1 dilution in culture medium and maintained in contact with cells overnight. After this incubation, the cells were washed and labeled with BrdU (100  $\mu$ M) for 2 h. Incorporation was detected using the kit from Boehringer Mannheim and measured as OD units at 405 nm (reference 490 nm) after subtraction of the non-specific background incorporation. (FIG. 16D). The bars indicate mean±S.D. for eight wells per condition in a representative experiment.

Glossary and List of Abbreviations

[0132] Cell Lines:

| СНО        | CHO-K1                           | Chinese hamster Cricetulus                        |
|------------|----------------------------------|---------------------------------------------------|
| HEK293     | (ATCC CCL 61)<br>293             | <i>griseus</i> ovary<br>Transformed primary human |
|            | (ATCC CRL 1573)                  | embryonal kidney                                  |
| NIH3T3     | (ATCC CRL 1658)                  | Embryo Swiss mouse<br>fibroblasts                 |
| MCF7<br>WT | (ATCC HTB 22)<br>Wild-type cells | Human breast adenocarcinoma                       |

#### [0133] Genes and Gene Products

| eag   | ether-a-go-go potassium channel                 |
|-------|-------------------------------------------------|
| HERG  | Human-Eag-Related Gene. Codes for an inwardly   |
|       | rectifying potassium channel mainly expressed   |
|       | in heart.                                       |
| Kv1.4 | Inactivating voltage-dependent potassium        |
|       | channel. Initially cloned from rat brain, it is |
|       | present in many other tissues.                  |

### [0134] Others

| EGF          | Epidermal growth factor                                                               |
|--------------|---------------------------------------------------------------------------------------|
| PDGF         | Platelet-derived growth factor                                                        |
| FCS          | Fetal calf serum                                                                      |
| I-V relation | Current-Voltage relation                                                              |
| LQT          | Long Q-T (interval between Q and T waves in the                                       |
|              | electrocardiogram). Induces severe arrythmias                                         |
|              | due to repolarization defects.                                                        |
| BrdU         | 5-Bromo-2'-deoxyuridine. Structure analog                                             |
|              | of thymidine.                                                                         |
| IC50         | Concentration that produces 50% inhibition                                            |
| RT-PCR.      | Polymerase Chain Reaction of cDNA produced by reverse transcription in the same tube. |

#### REFERENCES

- [0135] 1. Moody, W. J. (1995). Critical periods of early development created by the coordinate modulation of ion channel properties. *Perspect Dev Neurobiol* 2, 309-315.
- [0136] 2. Woodfork, K. A., Wonderlin, W. F., Peterson, V. A., and Strobl, J. S. (1995). Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. *J Cell Physiol* 162, 163-71.
- [0137] 3. Lepple Wienhues, A., Berweck, S., Bohmig, M., Leo, C. P., Meyling, B., Garbe, C., and Wiederholt, M.

(1996). K<sup>+</sup> channels and the intracellular calcium signal in human melanoma cell proliferation. *J Membr Biol* 151, 149-57.

- **[0138]** 4. Wonderlin, W. F., Woodfork, K. A., and Strobl, J. S. (1995). Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. *J Cell Physiol* 165, 177-85.
- [0139] 5. Brüggemann, A., Stühmer, W., and Pardo, L. A. (1997). Mitosis-promoting factor-mediated suppression of a cloned delayed rectifier potassium channel expressed in *Xenopus* oocytes. *Proc Nat Acad Sci USA* 94, 537-542.
- [0140] 6. Mosmann, T. (1983). Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55-63.
- [0141] 7. Muir, D., Varon, S., and Manthorpe, M. (1990). An enzyme-linked immunosorbent assay for bromodeoxyuridine incorporation using fixed microcultures. *Anal. Biochem.* 185, 377-82.
- [0142] 8. Magaud, J. P., Sargent, I., and Mason, D. Y. (1988). Detection of human white cell proliferative responses by immunoenzymatic measurement of bromodeoxyuridine uptake. J. Immunol. Meth. 106, 95-100.
- [0143] 9. Huong, P. L., Kolk, A. H., Eggelte, T. A., Verstijnen, C. P., Gilis, H., and Hendriks, J. T. (1991). Measurement of antigen specific lymphocyte proliferation using 5-bromo-deoxyuridine incorporation. An easy and low cost alternative to radioactive thymidine incorporation. J. Immunol. Meth. 140, 243-8.
- [0144] 10. Ellwart, J., and Dormer, P. (1985). Effect of 5-fluoro-2'-deoxyuridine (FdUrd) on 5-bromo-2'-deoxyuridine (BrdUrd) incorporation into DNA measured with a monoclonal BrdUrd antibody and by the BrdUrd/Hoechst quenching effect. *Cytometry* 6, 513-20.
- [0145] 11. Benson, D. W., MacRae, C. A., Vesely, M. R., Walsh, E. P., Seidman, J. G., Seidman, C. E., and Satler, C. A. (1996). Missense mutation in the pore region of HERG causes familial long QT syndrome. *Circulation* 93, 1791-5.
- [0146] 12. Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., and Keating, M. T. (1995). A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. *Cell* 80, 795-803.
- [0147] 13. Sanguinetti, M. C., Jiang, C., Curran, M. E., and Keating, M. T. (1995). A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. *Cell* 81, 299-307.
- [0148] 14. Spector, P. S., Curran, M. E., Keating, M. T., and Sanguinetti, M. C. (1996). Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K<sup>+</sup> channel. Open-channel block by methanesulfonanilides. *Circ Res* 78, 499-503.
- **[0149]** 15. Trudeau, M. C., Warmke, J. W., Ganetzky, B., and Robertson, G. A. (1995). HERG, a human inward rectifier in the voltage-gated potassium channel family. *Science* 269, 92-5.
- [0150] 16. Suessbrich, H., Waldegger, S., Lang, F., and Busch, A. E. (1996). Blockade of HERG channels

expressed in *Xenopus* oocytes by the histamine receptor antagonists terfenadine and astemizole. *FEBS Lett* 385, 77-80.

- [0151] 17. For example, see: DeCoursey, T. E., Chandy, K. G., Gupta, S., Cahalan, M. D. Nature 307, 465 (1984); Mauro, T., Dixon, D. B., Komuves, L., Hanley, K., Pappone, P. A. J. Invest. Dermat. 108, 864 (1997).
- [0152] 18. Rouzaire-Dubois, B. and Dubois, J. M. J. Physiol. 510, 93 (1998).
- [0153] 19. Arcangeli, A., L. Bianchi, et al. J. Physiol. 489, 455-471 (1995). Bianchi, L. et al., Cancer Res. 58, 815-822 (1998).
- [0154] 20. Brüggemann, A., Stühmer, W., Pardo, L. A. Proc. Natl. Acad. Sci. USA. 94, 537 (1997). Pardo, L. A., Brüggemann, A., Camacho, J., Stühmer, W. J. Cell. Biol. 143, 767 (1998).
- [0155] 21. Ludwig, J., et al., EMBO J. 13, 4451 (1994).
- **[0156]** 22. Mosmann, T. J. Immunol. Meth. 65, 55 (1983). Cells were incubated with MTT (Thiazolyl blue) 50  $\mu$ g/ml for 4 h, and the formazan crystals were solubilized in 10% SDS, 10 mM HCl for 12-14 h. The optical density at 570 nm was measured using an ELISA reader, with a reference wavelength of 650 nm.
- [0157] 23. Stein, G. S. et al., in Cell Growth and Apoptosis. A Practical Approach, G. P. Studzinski, Ed. (IRL Press, Oxford, 1995) pp. 193-203.
- [0158] 24. Jainchill, J. L., Aaronson, S. A., Todaro, G. J. J. Virol. 4, 549 (1969).
- [0159] 25. Hermouet, S., Merendino, J. J., Jr., Gutkind, S., Spiegel, A. M. Proc. Natl. Acad. Sci. USA 88, 10455 (1991).
- **[0160]** 26. GenBank Accession Numbers for the sequences reported in this paper are AF078741 (heag A) and AF078742 (heag B).
- [0161] 27. Occhiodoro, T. et al., FEBS Lett. 434, 177 (1998).
- [0162] 28. Warmke, J. W. and Ganetzki, B. Proc. Natl. Acad. Sci. USA. 91, 3438 (1994). Frings, S., et al., J. Gen. Physiol. 111, 583 (1998).
- [0163] 29. Heng, H. H. Q., Squire, J., Tsui, L.-C. Proc. Natl. Acad. Sci. USA, 89, 9509 (1992); Heng, H. H. Q., and Tsui, L.-C. Chromosoma, 102, 325 (1993). We acknowledge Dr. Henry Heng (See DNA Biotech, Downsview, Ontario, Canada) for FISH analysis.
- [0164] 30. Terlau, H., et al., Pflügers Arch.—Eur. J. Physiol., 432, 301 (1996). Terlau, H., Heinemann, S. H., Stühmer, W., Pongs, O., Ludwig, J. J. Physiol., 502, 537-543 (1997). Meyer, R. and Heinemann, S. H. J. Physiol. 508, 49 (1998).
- [0165] 31. Bijlenga, P., et al. J. Physiol. 512, 317 (1998).
- [0166] 32. Bosma, G. C., et al. Nature 301, 527-530 (1987)
- [**0167**] 33. Chen, C. and Okayama, H. Mol. Cell Biol. 7,2745 (1987).

- [0168] 34. Chomczynski, P. and Sacchi, N. Anal. Biochem. 162, 156 (1987).
- [0169] 35. Soto, F., et al., Proc. Natl. Acad. Sci. USA. 93, 3684 (1996).
- [0170] 36. McClelland, A., Kühn, L. C., Ruddle, F. H. Cell 39, 267 (1984). Schneider, C., Owen, M. J., Banville, D., Williams, J. G. Nature 311, 675 (1984).
- [0171] 37. Evans, P. and Kemp, J. Gene 199, 123 (1997).

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 24

<210> SEO ID NO 1 <211> LENGTH: 3002 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 1 aattccgggc ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg ggactagtgg cccctcaaaa cacgtttctg gagaatattg ttcggcggtc caatgatact 120 aattttgtgt tggggaatgc tcagatagtg gactggccta ttgtgtacag caatgatgga 180 ttttgcaagc tgtctggcta tcacagggca gaagtgatgc aaaaaagcag cacctgcagt 240 tttatgtatg gggagctgac tgataaagac acgattgaaa aagtgcggca aacatttgag 300 aactatgaga tgaattcctt tgaaattctg atgtacaaga agaacaggac acctgtgtgg 360 ttctttgtga aaattgctcc aattcgaaac gaacaggata aagtggtttt atttctttgc 420 actttcagtg acataacagc tttcaaacag ccaattgagg atgattcatg taaaggctgg 480 gggaagtttg ctcggctgac aagagcactg acaagcagca ggggtgtcct gcagcagctg 540 gctccaagcg tgcaaaaagg cgagaatgtc cacaagcact cccgcctggc agaggtccta 600 cagetggget cagacateet teeccagtae aageaagagg caceaaagae teeceeteac 660 atcatcttac attattgtgt ttttaagacc acgtgggatt ggatcatctt gatcttgacc 720 ttctatacag ccatcttggt cccttataat gtctccttca aaaccaggca gaataatgtg 780 gcctggctgg ttgttgatag catcgtggat gttatctttt tggtggacat tgtgctcaat 840 900 tttcatacca cctttqttqq accaqcaqqq qaqqtqattt ctqaccccaa acttatccqc 960 atgaactacc tgaagacgtg gtttgtgatt gaccttctgt cctgtttgcc atatgatgtc 1020 atcaacgctt ttgagaacgt ggatgagggc atcagcagcc tgttcagctc tctaaaagtt 1080 gtccggctgc tccgtcttgg gcgagtggcc cgtaagctgg accactacat tgaatatgga gctgctgtgc tggtcctgct ggtgtgtgtg tttgggctgg ctgcacactg gatggcctgc 1140 atctggtaca gcattgggga ctatgagatc tttgacgagg acaccaagac aatccgcaac 1200 aacagctggc tgtaccaact agcgatggac attggcaccc cttaccagtt taatgggtct 1260 ggctcaggga agtgggaagg tggtcccagc aagaattctg tctacatctc ctcgttgtat 1320 ttcacaatga ccagcctcac cagtgtgggc tttgggaaca tcgccccatc cacagacatt 1380 gagaagatct ttgcagtggc catcatgatg attggctcac ttctctatgc caccatcttc 1440 gggaatgtga cgactatttt ccaacagatg tatgccaaca ccaacagata ccatgagatg 1500 ctcaacagtg ttcgggactt cctgaagctc taccaggtgc caaaaggatt gagtgagcga 1560 1620 gtaatggatt atattgtgtc cacttggtcc atgtccagag gcattgacac agagaaggtc ctgcagatct gccccaagga catgagagcc gacatctgcg tgcacctgaa ccgcaaggtg 1680 ttcaaggagc acccggcctt ccggctggcc agtgatggct gcctccgggc actggccatg 1740

| gagttccaga cggtgcactg tgccccaggg gacctcatct accatgcagg agagagcgtt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1800                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| gacageetet getttgtggt ttetggetee etggaggtga teeaagatga tgaggtggtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1860                                                                       |
| gccattctag gaaaaggaga cgtgtttgga gatgtgttct ggaaggaagc cacccttgcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1920                                                                       |
| cagteetgtg ceaatgttag ggeettgaee taetgtgate tgeatgtgat eaagegggat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1980                                                                       |
| gccctgcaga aagtgctgga attctacacg gccttctccc attccttctc ccggaacctg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2040                                                                       |
| attctgacgt acaacttgag gaagaggatt gtgttccgga agatcagcga tgtgaaacgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2100                                                                       |
| gaagaggaag aacgcatgaa acgaaagaat gaggcccccc tgatcttgcc cccggaccac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2160                                                                       |
| cctgtccggc gcctcttcca gagattccga cagcagaaag aggccaggct ggcagctgag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2220                                                                       |
| agagggggcc gggacctgga tgacctagat gtggagaagg gcaatgtcct tacagagcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2280                                                                       |
| gcctccgcca accacagcct cgtgaaggcc agcgtggtca ccgtgcgtga gagtcctgcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2340                                                                       |
| acgecegtat cetteragge agenterade teeggggtge cagaceaege aaagetaeag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2400                                                                       |
| gcgccagggt ccgagtgcct gggccccaag gggggcgggg gcgattgtgc caagcgcaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2460                                                                       |
| agctgggccc gcttcaaaga tgcttgcggg aagagtgagg actggaacaa ggtgtccaag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2520                                                                       |
| gctgagtcga tggagacact tcccgagagg acaaaagcgt caggcgaggc cacactgaag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2580                                                                       |
| aagacagact cgtgtgacag tggcatcacc aagagcgact tgcgcctgga caacgtgggt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2640                                                                       |
| gaggccagga gtccccagga tcggagtccc atcctggcag aggtcaagca ttcgttctac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2700                                                                       |
| cccatccctg agcagacgct gcaggccaca gtcctggagg tgaggcacga gctgaaggag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2760                                                                       |
| gacatcaagg cottaaacgo caaaatgaco aatattgaga aacagototo tgagatacto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2820                                                                       |
| aggatattaa cttccagaag atcctctcag tctcctcagg agttgtttga aatatcgagg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2880                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2940                                                                       |
| ccacagtccc cagaatcaga gagagacatt tttggagcca gctgagaggt ctatttaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2940                                                                       |
| ccacagtece cagaateaga gagagaeatt tttggageea getgagaggt etatttaaaa<br>aaaaagteag agacagatae eteeaaceet geegteacea eeaceetae eaceeggaat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3000                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |
| aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3000                                                                       |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br/>tc<br/>&lt;210&gt; SEQ ID NO 2<br/>&lt;211&gt; LENGTH: 3083<br/>&lt;212&gt; TYPE: DNA</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3000                                                                       |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br/>tc<br/>&lt;210&gt; SEQ ID NO 2<br/>&lt;211&gt; LENGTH: 3083<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Homo sapiens</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3000                                                                       |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat tc &lt;210&gt; SEQ ID NO 2 &lt;211&gt; LENGTH: 3083 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Homo sapiens &lt;400&gt; SEQUENCE: 2</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3000<br>3002                                                               |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br/>tc<br/>&lt;210&gt; SEQ ID NO 2<br/>&lt;211&gt; LENGTH: 3083<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Homo sapiens<br/>&lt;400&gt; SEQUENCE: 2<br/>aattccgggc ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3000<br>3002<br>60                                                         |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br/>tc<br/>&lt;210&gt; SEQ ID NO 2<br/>&lt;211&gt; LENGTH: 3083<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Homo sapiens<br/>&lt;400&gt; SEQUENCE: 2<br/>aattccgggc ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg<br/>ggactagtgg cccctcaaaa cacgtttctg gagaatattg ttcggcggtc caatgatact</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3000<br>3002<br>60<br>120                                                  |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br/>tc<br/>&lt;210&gt; SEQ ID NO 2<br/>&lt;211&gt; LENGTH: 3083<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Homo sapiens<br/>&lt;400&gt; SEQUENCE: 2<br/>aattccgggc ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg<br/>ggactagtgg cccctcaaaa cacgttctg gagaatattg ttcggcggtc caatgatact<br/>aattttgtgt tggggaatgc tcagatagtg gactggccta ttgtgtacag caatgatgga</pre>                                                                                                                                                                                                                                                                                                                                                              | 3000<br>3002<br>60<br>120<br>180                                           |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br/>tc<br/>&lt;210&gt; SEQ ID NO 2<br/>&lt;211&gt; LENGTH: 3083<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Homo sapiens<br/>&lt;400&gt; SEQUENCE: 2<br/>aattccgggc ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg<br/>ggactagtgg cccctcaaaa cacgtttctg gagaatattg ttcggcggtc caatgatact<br/>aattttgtgt tggggaatgc tcagatagtg gactggccta ttgtgtacag caatgatgga<br/>ttttgcaagc tgtctggcta tcacagggca gaagtgatgc aaaaaagcag cacctgcagt</pre>                                                                                                                                                                                                                                                                                       | 3000<br>3002<br>60<br>120<br>180<br>240                                    |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat tc &lt;210&gt; SEQ ID NO 2 &lt;211&gt; LENGTH: 3083 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Homo sapiens &lt;400&gt; SEQUENCE: 2 aattccgggc ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg ggactagtgg cccctcaaaa cacgtttctg gagaatattg ttcggcggtc caatgatact aattttgtgt tggggaatgc tcagatagtg gactggccta ttgtgtacag caatgatgga ttttgcaagc tgtctggcta tcacagggca gaagtgatgc aaaaaagcag cacctgcagt tttatgtatg gggagctgac tgataaagac acgattgaaa aagtgcggca aacatttgag</pre>                                                                                                                                                                                                                                                             | 3000<br>3002<br>60<br>120<br>180<br>240<br>300                             |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br/>tc<br/>&lt;210&gt; SEQ ID NO 2<br/>&lt;211&gt; LENGTH: 3083<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Homo sapiens<br/>&lt;400&gt; SEQUENCE: 2<br/>aattccgggc ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg<br/>ggactagtgg cccctcaaaa cacgttctg gagaatattg ttcggcggtc caatgatact<br/>aattttgtgt tggggaatgc tcagatagtg gactggccta ttgtgtacag caatgatgga<br/>ttttgcaagc tgtctggcta tcacagggca gaagtgatga aaaaaagcag cacctgcagt<br/>tttatgtatg gggagctgac tgataaagac acgattgaaa aagtgcggca aacatttgag<br/>aactatgaga tgaattcctt tgaaattctg atgtacaaga agaacaggac acctgtgtgg</pre>                                                                                                                                            | 3000<br>3002<br>60<br>120<br>180<br>240<br>300<br>360                      |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br/>tc<br/>&lt;210&gt; SEQ ID NO 2<br/>&lt;211&gt; LENGTH: 3083<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Homo sapiens<br/>&lt;400&gt; SEQUENCE: 2<br/>aattccggge ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg<br/>ggactagtgg cccctcaaaa cacgtttctg gagaatattg ttcggcggtc caatgatact<br/>aattttgtgt tggggaatgc tcagatagtg gactggccta ttgtgtacag caatgatgga<br/>ttttgcaagc tgtctggcta tcacagggca gaagtgatgc aaaaaagcag cacctgcagt<br/>tttatgtatg gggagctgac tgataaagac acgattgaaa aagtgcggca aacatttgag<br/>aactatgaga tgaattcctt tgaaattctg atgtacaaga agaacaggac acctgtgtgg<br/>ttctttgtga aaattgctcc aattcgaaac gaacaggata aagtggttt attctttgc</pre>                                                                       | 3000<br>3002<br>60<br>120<br>180<br>240<br>300<br>360<br>420               |
| <pre>aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br/>tc<br/>&lt;210&gt; SEQ ID NO 2<br/>&lt;211&gt; LENGTH: 3083<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Homo sapiens<br/>&lt;400&gt; SEQUENCE: 2<br/>aattccgggc ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg<br/>ggactagtgg cccctcaaaa cacgttctg gagaatattg ttcggcggtc caatgatact<br/>aattttgtgt tggggaatgc tcagatagtg gactggccta ttgtgtacag caatgatgga<br/>ttttgcaagc tgtctggcta tcacagggca gaagtgatgc aaaaaagcag cacctgcagt<br/>tttagtatg gggagctgac tgataaagac acgattgaaa aagtgcggca aacatttgag<br/>aactatgaga tgaattcctt tgaaattctg atgtacaaga agaacaggac acctgtgtgg<br/>ttctttgtga aaattgctcc aattcgaaac gaacaggata aagtggttt attctttgc<br/>acttcagtg acataacagc tttcaaacag ccaattgagg atgattcatg taaaggctgg</pre>    | 3000<br>3002<br>60<br>120<br>180<br>240<br>300<br>360<br>420<br>480        |
| aaaaagtcag agacagatac ctccaaccct gccgtcacca ccacccctac cacccggaat<br>tc<br><210> SEQ ID NO 2<br><211> LENGTH: 3083<br><212> TYPE: DNA<br><213> ORGANISM: Homo sapiens<br><400> SEQUENCE: 2<br>aattccggge ccgccggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg<br>ggactagtgg cccctcaaaa cacgtttctg gagaatattg ttcggeggte caatgatact<br>aattttgtgt tggggaatge tcagatagtg gactggecta ttgtgtacag caatgatgga<br>ttttgcaage tgtctggcta tcacagggea gaagtgatge aaaaaageag cacctgeagt<br>tttatgtatg gggagetgac tgataaagae acgattgaaa aagtgeggea aacatttgag<br>aactatgaga tgaatteett tgaaattetg atgtacaaga agaacaggae acetgtgtgg<br>ttetttgta aaattgetee aattegaaa gaacaggaa acetgtggg<br>gggaagttg cteggetgae aagageeetg acaatgagg atgatteetg taaaggetgg<br>gggaagtttg cteggetgae aagageeetg acaageagag agagtgeteet geageagetg | 3000<br>3002<br>60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540 |

| ttctatacag ccatc  | ttggt cccttataat | gtctccttca | aaaccaggca | gaataatgtg  | 780  |
|-------------------|------------------|------------|------------|-------------|------|
| geetggetgg ttgtte | gatag catcgtggat | gttatctttt | tggtggacat | tgtgctcaat  | 840  |
| tttcatacca ccttte | gttgg accagcaggg | gaggtgattt | ctgaccccaa | acttatccgc  | 900  |
| atgaactacc tgaaga | acgtg gtttgtgatt | gaccttctgt | cctgtttgcc | atatgatgtc  | 960  |
| atcaacgctt ttgaga | aacgt ggatgaggtt | agtgccttta | tgggtgatcc | agggaagatt  | 1020 |
| ggttttgctg atcaga | attcc accaccactg | gaggggagag | agagtcaggg | catcagcagc  | 1080 |
| ctgttcagct ctcta  | aaagt tgtccggctg | ctccgtcttg | ggcgagtggc | ccgtaagctg  | 1140 |
| gaccactaca ttgaa  | tatgg agctgctgtg | ctggtcctgc | tggtgtgtgt | gtttgggctg  | 1200 |
| gctgcacact ggatge | gcctg catctggtac | agcattgggg | actatgagat | ctttgacgag  | 1260 |
| gacaccaaga caatco | cgcaa caacagctgg | ctgtaccaac | tagcgatgga | cattggcacc  | 1320 |
| ccttaccagt ttaat  | gggtc tggctcaggg | aagtgggaag | gtggtcccag | caagaattct  | 1380 |
| gtctacatct cctcg  | ttgta tttcacaatg | accagcctca | ccagtgtggg | ctttgggaac  | 1440 |
| atcgccccat ccacae | gacat tgagaagatc | tttgcagtgg | ccatcatgat | gattggctca  | 1500 |
| cttctctatg ccacca | atctt cgggaatgtg | acgactattt | tccaacagat | gtatgccaac  | 1560 |
| accaacagat accate | gagat gctcaacagt | gttcgggact | tcctgaagct | ctaccaggtg  | 1620 |
| ccaaaaggat tgagte | gagcg agtaatggat | tatattgtgt | ccacttggtc | catgtccaga  | 1680 |
| ggcattgaca cagaga | aaggt cctgcagatc | tgccccaagg | acatgagagc | cgacatctgc  | 1740 |
| gtgcacctga accgca | aaggt gttcaaggag | cacccggcct | tccggctggc | cagtgatggc  | 1800 |
| tgcctccggg cactgo | gccat ggagttccag | acggtgcact | gtgccccagg | ggacctcatc  | 1860 |
| taccatgcag gagaga | agcgt tgacagcctc | tgctttgtgg | tttctggctc | cctggaggtg  | 1920 |
| atccaagatg atgage | gtggt ggccattcta | ggaaaaggag | acgtgtttgg | agatgtgttc  | 1980 |
| tggaaggaag ccacco | cttgc ccagtcctgt | gccaatgtta | gggccttgac | ctactgtgat  | 2040 |
| ctgcatgtga tcaago | cggga tgccctgcag | aaagtgctgg | aattctacac | ggccttctcc  | 2100 |
| catteettet eeegga | aacct gattctgacg | tacaacttga | ggaagaggat | tgtgttccgg  | 2160 |
| aagatcagcg atgtga | aaacg tgaagaggaa | gaacgcatga | aacgaaagaa | tgaggccccc  | 2220 |
| ctgatcttgc ccccg  | gacca ccctgtccgg | cgcctcttcc | agagattccg | acagcagaaa  | 2280 |
| gaggccaggc tggcag | gctga gagagggggg | cgggacctgg | atgacctaga | tgtggagaag  | 2340 |
| ggcaatgtcc ttaca  | gagca tgcctccgcc | aaccacagcc | tcgtgaaggc | cagcgtggtc  | 2400 |
| accgtgcgtg agagto | cctgc cacgcccgta | tccttccagg | cagcctccac | ctccgggggtg | 2460 |
| ccagaccacg caaago | ctaca ggcgccaggg | tccgagtgcc | tgggccccaa | aaaaaacaaa  | 2520 |
| ggcgattgtg ccaago | cgcaa aagctgggcc | cgcttcaaag | atgcttgcgg | gaagagtgag  | 2580 |
| gactggaaca aggtg  | tccaa ggctgagtcg | atggagacac | ttcccgagag | gacaaaagcg  | 2640 |
| tcaggcgagg ccacad | ctgaa gaagacagac | tcgtgtgaca | gtggcatcac | caagagcgac  | 2700 |
| ttgcgcctgg acaaco | gtggg tgaggccagg | agtccccagg | atcggagtcc | catcctggca  | 2760 |
| gaggtcaagc attcg  | ttcta ccccatccct | gagcagacgc | tgcaggccac | agtcctggag  | 2820 |
| gtgaggcacg agctga | aagga ggacatcaag | gccttaaacg | ccaaaatgac | caatattgag  | 2880 |
| aaacagctct ctgaga | atact caggatatta | acttccagaa | gatcctctca | gtctcctcag  | 2940 |
| gagttgtttg aaata  | tegag gecacagtee | ccagaatcag | agagagacat | ttttggagcc  | 3000 |

| agetgagagg tetatttaaa aaaaaagtea gagaeagata eeteeaacee tgeegteace                                                   | 3060 |
|---------------------------------------------------------------------------------------------------------------------|------|
| accaccccta ccacccggaa ttc                                                                                           | 3083 |
|                                                                                                                     |      |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 962 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Homo sapiens</pre> |      |
| <400> SEQUENCE: 3                                                                                                   |      |
| Met Thr Met Ala Gly Gly Arg Arg Gly Leu Val Ala Pro Gln Asn Thr                                                     |      |
| 1 5 10 15                                                                                                           |      |
| Phe Leu Glu Asn Ile Val Arg Arg Ser Asn Asp Thr Asn Phe Val Leu<br>20 25 30 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  |      |
| Gly Asn Ala Gln Ile Val Asp Trp Pro Ile Val Tyr Ser Asn Asp Gly<br>35 40 45                                         |      |
| Phe Cys Lys Leu Ser Gly Tyr His Arg Ala Glu Val Met Gln Lys Ser<br>50 55 60                                         |      |
| Ser Thr Cys Ser Phe Met Tyr Gly Glu Leu Thr Asp Lys Asp Thr Ile65707580                                             |      |
| Glu Lys Val Arg Gln Thr Phe Glu Asn Tyr Glu Met Asn Ser Phe Glu<br>85 90 95                                         |      |
| Ile Leu Met Tyr Lys Lys Asn Arg Thr Pro Val Trp Phe Phe Val Lys100105110                                            |      |
| Ile Ala Pro Ile Arg Asn Glu Gln Asp Lys Val Val Leu Phe Leu Cys<br>115 120 125                                      |      |
| Thr Phe Ser Asp Ile Thr Ala Phe Lys Gln Pro Ile Glu Asp Asp Ser                                                     |      |
| 130 135 140<br>Cys Lys Gly Trp Gly Lys Phe Ala Arg Leu Thr Arg Ala Leu Thr Ser                                      |      |
| 145     150     155     160       Ser Arg Gly Val Leu Gln Gln Leu Ala Pro Ser Val Gln Lys Gly Glu                   |      |
| 165 170 175<br>Asn Val His Lys His Ser Arg Leu Ala Glu Val Leu Gln Leu Gly Ser                                      |      |
| 180 185 190<br>Asp Ile Leu Pro Gln Tyr Lys Gln Glu Ala Pro Lys Thr Pro Pro His                                      |      |
| 195 200 205<br>Ile Ile Leu His Tyr Cys Val Phe Lys Thr Thr Trp Asp Trp Ile Ile                                      |      |
| 210 215 220<br>Leu Ile Leu Thr Phe Tyr Thr Ala Ile Leu Val Pro Tyr Asn Val Ser                                      |      |
| 225 230 235 240                                                                                                     |      |
| Phe Lys     Thr Arg Gln Asn Asn Val Ala Trp Leu Val Val Asp Ser Ile       245     250       255                     |      |
| Val Asp Val Ile Phe Leu Val Asp Ile Val Leu Asn Phe His Thr Thr<br>260 265 270                                      |      |
| Phe ValGly Pro Ala Gly Glu ValIle Ser Asp ProLysLeuIle Arg275280285                                                 |      |
| Met Asn Tyr Leu Lys Thr Trp Phe Val Ile Asp Leu Leu Ser Cys Leu<br>290 295 300                                      |      |
| Pro Tyr Asp Val Ile Asn Ala Phe Glu Asn Val Asp Glu Gly Ile Ser305310315320                                         |      |
| Ser Leu Phe Ser Ser Leu Lys Val Val Arg Leu Leu Arg Leu Gly Arg<br>325 330 335                                      |      |
| Val Ala Arg Lys Leu Asp His Tyr Ile Glu Tyr Gly Ala Ala Val Leu<br>340 345 350                                      |      |
| Val Leu Val Cys Val Phe Gly Leu Ala Ala His Trp Met Ala Cys<br>355 360 365                                          |      |
| Ile Trp Tyr Ser Ile Gly Asp Tyr Glu Ile Phe Asp Glu Asp Thr Lys                                                     |      |
| 370 375 380<br>Thr Ile Arg Asn Asn Ser Trp Leu Tyr Gln Leu Ala Met Asp Ile Gly                                      |      |
| 385         390         395         400           Thr Pro Tyr Gln Phe Asn Gly Ser Gly Ser Gly Lys Trp Glu Gly Gly   |      |
| 405 410 415<br>Pro Ser Lys Asn Ser Val Tyr Ile Ser Ser Leu Tyr Phe Thr Met Thr                                      |      |
| 420 425 430<br>Ser Leu Thr Ser Val Gly Phe Gly Asn Ile Ala Pro Ser Thr Asp Ile                                      |      |
| 435 440 445<br>Glu Lys Ile Phe Ala Val Ala Ile Met Met Ile Gly Ser Leu Leu Tyr                                      |      |
| 450 455 460<br>Ala Thr Ile Phe Gly Asn Val Thr Thr Ile Phe Gln Gln Met Tyr Ala                                      |      |
| 465 470 475 480                                                                                                     |      |
| Asn Thr Asn Arg Tyr His Glu Met Leu Asn Ser Val Arg Asp Phe Leu<br>485<br>490<br>495<br>495<br>495                  |      |
| Lys Leu Tyr Gln Val Pro Lys Gly Leu Ser Glu Arg Val Met Asp Tyr                                                     |      |

|            |                |            |                |            |                     |                   |            |            |            |            | -          | con        | tin        | ued                 |            |
|------------|----------------|------------|----------------|------------|---------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|---------------------|------------|
|            |                |            | 500            |            |                     |                   |            | 505        |            |            |            |            | 510        |                     |            |
| Ile        | Val            | Ser<br>515 | Thr            | Trp        | Ser                 | Met               | Ser<br>520 | Arg        | Gly        | Ile        | Asp        | Thr<br>525 | Glu        | Lys                 | Val        |
| Leu        | Gln<br>530     |            | Сув            | Pro        | Lys                 | Asp<br>535        | Met        | Arg        | Ala        | Asp        | Ile<br>540 | Cys        | Val        | His                 | Leu        |
| Asn<br>545 | Arg            | Lys        | Val            | Phe        | L <b>y</b> s<br>550 |                   | His        | Pro        | Ala        | Phe<br>555 | Arg        | Leu        | Ala        | Ser                 | Asp<br>560 |
| Gly        | Сув            | Leu        | Arg            | Ala<br>565 |                     | Ala               | Met        | Glu        | Phe<br>570 |            | Thr        | Val        | His        | С <b>у</b> в<br>575 | Ala        |
| Pro        | Gly            | Asp        | Leu<br>580     | Ile        | Tyr                 | His               | Ala        | Gly<br>585 |            | Ser        | Val        | Asp        | Ser<br>590 | Leu                 | Cys        |
| Phe        | Val            | Val<br>595 | Ser            | Gly        | Ser                 | Leu               | Glu<br>600 | Val        | Ile        | Gln        | Asp        | Asp<br>605 | Glu        | Val                 | Val        |
| Ala        | Ile<br>610     | Leu        | Gly            | Lys        | Gly                 | Asp<br>615        | Val        | Phe        | Gly        | Asp        | Val<br>620 | Phe        | Trp        | Lys                 | Glu        |
| Ala<br>625 | Thr            | Leu        | Ala            | Gln        | Ser<br>630          | Сув               | Ala        | Asn        | Val        | Arg<br>635 | Ala        | Leu        | Thr        | Tyr                 | Cys<br>640 |
| Asp        | Leu            | His        | Val            | Ile<br>645 | Lys                 | Arg               | Asp        | Ala        | Leu<br>650 | Gln        | Lys        | Val        | Leu        | Glu<br>655          | Phe        |
| Tyr        | Thr            | Ala        | Phe<br>660     | Ser        | His                 | Ser               | Phe        | Ser<br>665 | Arg        | Asn        | Leu        | Ile        | Leu<br>670 | Thr                 | Tyr        |
| Asn        | Leu            | Arg<br>675 | Lys            | Arg        | Ile                 | Val               | Phe<br>680 | Arg        | Lys        | Ile        | Ser        | Asp<br>685 | Val        | Lys                 | Arg        |
|            | Glu<br>690     |            |                |            |                     | 695               |            |            |            |            | 700        |            |            |                     |            |
| 705        | Pro            |            |                |            | 710                 |                   |            |            |            | 715        |            |            |            |                     | 720        |
|            | Glu            |            |                | 725        |                     |                   |            |            | 730        |            |            |            |            | 735                 |            |
|            | Asp            |            | 740            |            |                     |                   |            | 745        |            |            |            |            | 750        |                     |            |
|            | Ser            | 755        |                | _          |                     |                   | 760        |            |            |            | -          | 765        |            |                     |            |
|            | Pro<br>770     |            |                |            |                     | 775               |            |            |            |            | 780        |            |            | _                   |            |
| 785        | Lys            |            |                |            | 790                 |                   |            |            |            | 795        |            |            |            |                     | 800        |
|            | Gly            |            |                | 805        |                     |                   |            |            | 810        |            |            |            |            | 815                 |            |
| _          | Gly            | _          | 820            |            | _                   | _                 |            | 825        |            |            | _          |            | 830        |                     |            |
|            | Thr            | 835        |                |            |                     |                   | 840        |            |            |            |            | 845        |            |                     |            |
| _          | Thr<br>850     | _          |                | _          | _                   | 855               | _          |            |            | -          | 860        | _          |            | -                   |            |
| 865        | Asn            |            | _              |            | 870                 | -                 |            |            |            | 875        | -          |            |            |                     | 880        |
|            | Glu            |            | -              | 885        |                     |                   | -          |            | 890        |            |            |            |            | 895                 |            |
|            | Thr            |            | 900            |            |                     | -                 |            | 905        |            | -          |            | -          | 910        | -                   |            |
|            | Asn            | 915        | -              |            |                     |                   | 920        |            | -          |            |            | 925        |            |                     |            |
|            | Ile<br>930     |            |                |            |                     | 935               |            |            |            |            | 940        |            |            |                     |            |
| 945        | Ile<br>Ser     | Ser        | Ary            | PIO        | 950                 | Ser               | PIO        | GIU        | Ser        | 955        | Arg        | Авр        | IIG        | Pile                | 960<br>960 |
|            |                |            |                |            |                     |                   |            |            |            |            |            |            |            |                     |            |
|            | )> SE<br>1> LE |            |                |            |                     |                   |            |            |            |            |            |            |            |                     |            |
| <212       | 2> TY<br>3> OF | /PE:       | $\mathbf{PRT}$ |            | sar                 | oiens             | 5          |            |            |            |            |            |            |                     |            |
|            | )> SE          |            |                |            |                     |                   |            |            |            |            |            |            |            |                     |            |
|            | Thr            |            |                |            | Gly                 | Arg               | Arg        | Gly        | Leu        | Val        | Ala        | Pro        | Gln        |                     | Thr        |
| 1<br>Phe   | Leu            | Glu        |                | 5<br>Ile   | Val                 | Arg               | Arg        |            | 10<br>Asn  | Asp        | Thr        | Asn        |            | 15<br>Val           | Leu        |
| Gly        | Asn            |            | 20<br>Gln      | Ile        | Val                 | Asp               |            | 25<br>Pro  | Ile        | Val        | Tyr        |            | 30<br>Asn  | Asp                 | Gly        |
| Phe        | Cys            | 35<br>Lys  | Leu            | Ser        | Gly                 |                   | 40<br>His  | Arg        | Ala        | Glu        |            | 45<br>Met  | Gln        | Lys                 | Ser        |
| Ser        | 50<br>Thr      | Cys        | Ser            | Phe        | Met                 | 55<br><b>Ty</b> r | Gly        | Glu        | Leu        | Thr        | 60<br>Asp  | Lys        | Asp        | Thr                 | Ile        |
|            |                |            |                |            |                     |                   |            |            |            |            |            |            |            |                     |            |

|            |            |            |                     |                    |                    |            |            |            |                     |                    | -          | con        | tin        | ued        |                    |
|------------|------------|------------|---------------------|--------------------|--------------------|------------|------------|------------|---------------------|--------------------|------------|------------|------------|------------|--------------------|
|            |            |            |                     |                    | 7.0                |            |            |            |                     | 75                 |            |            |            |            |                    |
| 65<br>Glu  | Lys        | Val        | Arg                 |                    | 70<br>Thr          | Phe        | Glu        | Asn        |                     | 75<br>Glu          | Met        | Asn        | Ser        |            | 80<br>Glu          |
| Ile        | Leu        | Met        |                     | 85<br>L <b>y</b> s | Lys                | Asn        | Arg        |            | 90<br>Pro           | Val                | Trp        | Phe        |            | 95<br>Val  | Lys                |
| Ile        | Ala        |            | 100<br>Ile          | Arg                | Asn                | Glu        |            | 105<br>Asp | Lys                 | Val                | Val        |            | 110<br>Phe | Leu        | Cys                |
| Thr        |            | 115<br>Ser | Asp                 | Ile                | Thr                |            | 120<br>Phe | Lys        | Gln                 | Pro                |            | 125<br>Glu | Asp        | Asp        | Ser                |
| -          | 130<br>Lys | Gly        | Trp                 | Gly                | Lys                | 135<br>Phe | Ala        | Arg        | Leu                 |                    | 140<br>Arg | Ala        | Leu        | Thr        |                    |
| 145<br>Ser | Arg        | Gly        | Val                 |                    | 150<br>Gln         | Gln        | Leu        | Ala        |                     | 155<br>Ser         | Val        | Gln        | Lys        | -          | 160<br>Glu         |
| Asn        | Val        | His        | L <b>y</b> s<br>180 | 165<br>His         | Ser                | Arg        | Leu        | Ala<br>185 | 170<br>Glu          | Val                | Leu        | Gln        | Leu<br>190 | 175<br>Gly | Ser                |
| Asp        | Ile        | Leu<br>195 |                     | Gln                | Tyr                | Lys        | Gln<br>200 |            | Ala                 | Pro                | Lys        | Thr<br>205 |            | Pro        | His                |
| Ile        | Ile<br>210 |            | His                 | Tyr                | Cys                | Val<br>215 |            | Lys        | Thr                 | Thr                | Trp<br>220 |            | Trp        | Ile        | Ile                |
| Leu<br>225 | Ile        | Leu        | Thr                 | Phe                | <b>Ty</b> r<br>230 | Thr        | Ala        | Ile        | Leu                 | Val<br>235         | Pro        | Tyr        | Asn        | Val        | Ser<br>240         |
| Phe        | Lys        | Thr        | Arg                 | Gln<br>245         | Asn                | Asn        | Val        | Ala        | <b>T</b> rp<br>250  | Leu                | Val        | Val        | Asp        | Ser<br>255 | Ile                |
|            |            |            | 260                 |                    | Leu                |            |            | 265        |                     |                    |            |            | 270        |            |                    |
|            |            | 275        |                     |                    | Gly                |            | 280        |            |                     |                    |            | 285        |            |            |                    |
|            | 290        | -          |                     | _                  | Thr                | 295        |            |            |                     | -                  | 300        |            |            | -          |                    |
| 305        | -          | -          |                     |                    | Asn<br>310         |            |            |            |                     | 315                | -          |            |            |            | 320                |
|            |            |            |                     | 325                | Gly<br>Glu         |            |            |            | 330                 |                    |            |            |            | 335        |                    |
|            |            |            | 340                 | _                  | Leu                |            |            | 345        |                     |                    |            |            | 350        |            |                    |
|            |            | 355        |                     |                    | Tyr                |            | 360        |            |                     |                    |            | 365        |            |            |                    |
|            | 370        |            |                     |                    | - <i>1</i> -       | 375        |            |            |                     |                    | 380        |            |            |            |                    |
| 385        |            | _          |                     |                    | 390<br>Phe         |            | _          |            |                     | 395                |            | _          | _          |            | 400                |
|            |            |            |                     | 405                | Leu                |            |            |            | 410                 |                    |            |            |            | 415        |                    |
| Asn        | Gly        | Ser        | 420<br>Gly          | Ser                | Gly                | Lys        | Trp        | 425<br>Glu | Gly                 | Gly                | Pro        | Ser        | 430<br>Lys | Asn        | Ser                |
| Val        |            | 435<br>Ile | Ser                 | Ser                | Leu                |            | 440<br>Phe | Thr        | Met                 | Thr                |            | 445<br>Leu | Thr        | Ser        | Val                |
|            | 450<br>Phe | Gly        | Asn                 | Ile                | Ala                | 455<br>Pro | Ser        | Thr        | Asp                 |                    | 460<br>Glu | Lys        | Ile        | Phe        |                    |
| 465<br>Val | Ala        | Ile        | Met                 | Met<br>485         | 470<br>Ile         | Gly        | Ser        | Leu        | Leu<br>490          | 475<br><b>Ty</b> r | Ala        | Thr        | Ile        | Phe<br>495 | 480<br>Gl <b>y</b> |
| Asn        | Val        | Thr        | Thr<br>500          |                    | Phe                | Gln        |            | Met<br>505 | Tyr                 | Ala                | Asn        | Thr        | Asn<br>510 |            | Tyr                |
| His        | Glu        | Met<br>515 |                     | Asn                | Ser                | Val        |            |            |                     | Leu                | Lys        | Leu<br>525 |            | Gln        | Val                |
| Pro        | Lys<br>530 | Gly        | Leu                 | Ser                | Glu                | Arg<br>535 | Val        | Met        | Asp                 | Tyr                | Ile<br>540 | Val        | Ser        | Thr        | Trp                |
| Ser<br>545 | Met        | Ser        | Arg                 | Gly                | Ile<br>550         | Asp        | Thr        | Glu        | Lys                 | Val<br>555         | Leu        | Gln        | Ile        | Cys        | Pro<br>560         |
| -          | -          |            | -                   | 565                | Asp                |            | -          |            | 570                 |                    |            | -          | -          | 575        |                    |
|            |            |            | 580                 |                    | Phe                |            |            | 585        |                     |                    |            |            | 590        |            |                    |
|            |            | 595        |                     |                    | Gln                |            | 600        |            |                     |                    |            | 605        |            |            |                    |
|            | 610        |            |                     |                    | Ser                | 615        |            |            |                     |                    | 620        |            |            |            |                    |
| Ser<br>625 | Leu        | GIU        | va⊥                 | тте                | Gln<br>630         | Asp        | Asp        | GLU        | va⊥                 | Va⊥<br>635         | Ala        | тте        | Leu        | θТΆ        | Lys<br>640         |
|            | Asp        | Val        | Phe                 | Gly<br>645         | Asp                | Val        | Phe        | Trp        | L <b>y</b> s<br>650 |                    | Ala        | Thr        | Leu        | Ala<br>655 |                    |
| Ser        | Cys        | Ala        | Asn<br>660          |                    | Arg                | Ala        | Leu        | Thr<br>665 |                     | Cys                | Asp        | Leu        | His<br>670 |            | Ile                |
| Lys        | Arg        | Asp        | Ala                 | Leu                | Gln                | Lys        | Val        | Leu        | Glu                 | Phe                | Tyr        | Thr        | Ala        | Phe        | Ser                |

| -continued                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------|
| 675 680 685                                                                                                              |
| His Ser Phe Ser Arg Asn Leu Ile Leu Thr Tyr Asn Leu Arg Lys Arg<br>690 695 700                                           |
| Ile Val Phe Arg Lys Ile Ser Asp Val Lys Arg Glu Glu Glu Glu Arg<br>705 710 715 720                                       |
| Met Lys Arg Lys Asn Glu Ala Pro Leu Ile Leu Pro Pro Asp His Pro                                                          |
| 725 730 735<br>Val Arg Arg Leu Phe Gln Arg Phe Arg Gln Gln Lys Glu Ala Arg Leu                                           |
| 740 745 750<br>Ala Ala Glu Arg Gly Gly Arg Asp Leu Asp Asp Leu Asp Val Glu Lys                                           |
| 755 760 765<br>Gly Asn Val Leu Thr Glu His Ala Ser Ala Asn His Ser Leu Val Lys                                           |
| 770 775 780<br>Ala Ser Val Val Thr Val Arg Glu Ser Pro Ala Thr Pro Val Ser Phe                                           |
| 785 790 795 800<br>Gln Ala Ala Ser Thr Ser Gly Val Pro Asp His Ala Lys Leu Gln Ala                                       |
| 805 810 815<br>Pro Gly Ser Glu Cys Leu Gly Pro Lys Gly Gly Gly Gly Asp Cys Ala                                           |
| 820 825 830<br>Lys Arg Lys Ser Trp Ala Arg Phe Lys Asp Ala Cys Gly Lys Ser Glu                                           |
| 835 840 845<br>Asp Trp Asn Lys Val Ser Lys Ala Glu Ser Met Glu Thr Leu Pro Glu                                           |
| 850 855 860<br>Arg Thr Lys Ala Ser Gly Glu Ala Thr Leu Lys Lys Thr Asp Ser Cys                                           |
| 865 870 875 880<br>Asp Ser Gly Ile Thr Lys Ser Asp Leu Arg Leu Asp Asn Val Gly Glu                                       |
| 885 890 895<br>Ala Arg Ser Pro Gln Asp Arg Ser Pro Ile Leu Ala Glu Val Lys His                                           |
| 900<br>Ser Phe Tyr Pro Ile Pro Glu Gln Thr Leu Gln Ala Thr Val Leu Glu                                                   |
| 915 920 925                                                                                                              |
| Val Arg His Glu Leu Lys Glu Asp Ile Lys Ala Leu Asn Ala Lys Met<br>930 935 940                                           |
| Thr Asn Ile Glu Lys Gln Leu Ser Glu Ile Leu Arg Ile Leu Thr Ser<br>945 950 955 960                                       |
| Arg Arg Ser Ser Gln Ser Pro Gln Glu Leu Phe Glu Ile Ser Arg Pro965970975                                                 |
| Gln Ser Pro Glu Ser Glu Arg Asp Ile Phe Gly Ala Ser<br>980 985                                                           |
|                                                                                                                          |
| <210> SEQ ID NO 5<br><211> LENGTH: 18                                                                                    |
| <212> TYPE: DNA                                                                                                          |
| <213> ORGANISM: Artificial Sequence<br><220> FEATURE:                                                                    |
| <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic<br>DNA                                            |
| <400> SEQUENCE: 5                                                                                                        |
|                                                                                                                          |
| ccaaacacac acaccage 18                                                                                                   |
| <210> SEQ ID NO 6                                                                                                        |
| <211> LENGTH: 20<br><212> TYPE: DNA                                                                                      |
| <213> ORGANISM: Artificial Sequence                                                                                      |
| <220> FEATURE:<br><223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic                                 |
| DNA                                                                                                                      |
| <400> SEQUENCE: 6                                                                                                        |
| cgtggatgtt atctttttgg 20                                                                                                 |
| <210> SEQ ID NO 7                                                                                                        |
| <211> LENGTH: 18<br><212> TYPE: DNA                                                                                      |
| <pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>                                                |
| <pre>&lt;220&gt; FLAIORE:<br/>&lt;223&gt; OTHER INFORMATION: Description of Artificial Sequence: Synthetic<br/>DNA</pre> |
| <400> SEQUENCE: 7                                                                                                        |
|                                                                                                                          |

gggaggatga ccatggct 18 <210> SEQ ID NO 8 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic DNA <220> FEATURE: <221> NAME/KEY: modified\_base <222> LOCATION: (15)<223> OTHER INFORMATION: a, t, c or g <400> SEQUENCE: 8 cagaayaayg tggcntggct 20 <210> SEQ ID NO 9 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic DNA <400> SEQUENCE: 9 tcactraaga tctatartc 19 <210> SEQ ID NO 10 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic DNA <400> SEQUENCE: 10 21 cgcatgaact acctgaagac g <210> SEQ ID NO 11 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic DNA <400> SEQUENCE: 11 tctgtggatg gggcgatgtt c 21 <210> SEQ ID NO 12 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic DNA <400> SEQUENCE: 12 gggaggatga ccatggct 18 <210> SEQ ID NO 13 <211> LENGTH: 2886 <212> TYPE: DNA

| <213> ORGANISM: Homo  | sapiens    |            |            |            |      |  |
|-----------------------|------------|------------|------------|------------|------|--|
| <400> SEQUENCE: 13    |            |            |            |            |      |  |
| atgaccatgg ctgggggcag | gaggggacta | gtggcccctc | aaaacacgtt | tctggagaat | 60   |  |
| attgttcggc ggtccaatga | tactaatttt | gtgttgggga | atgctcagat | agtggactgg | 120  |  |
| cctattgtgt acagcaatga | tggattttgc | aagctgtctg | gctatcacag | ggcagaagtg | 180  |  |
| atgcaaaaaa gcagcacctg | cagttttatg | tatggggagc | tgactgataa | agacacgatt | 240  |  |
| gaaaaagtgc ggcaaacatt | tgagaactat | gagatgaatt | cctttgaaat | tctgatgtac | 300  |  |
| aagaagaaca ggacacctgt | gtggttcttt | gtgaaaattg | ctccaattcg | aaacgaacag | 360  |  |
| gataaagtgg ttttatttct | ttgcactttc | agtgacataa | cagctttcaa | acagccaatt | 420  |  |
| gaggatgatt catgtaaagg | ctgggggaag | tttgctcggc | tgacaagagc | actgacaagc | 480  |  |
| agcaggggtg tcctgcagca | gctggctcca | agcgtgcaaa | aaggcgagaa | tgtccacaag | 540  |  |
| cactcccgcc tggcagaggt | cctacagctg | ggctcagaca | tccttcccca | gtacaagcaa | 600  |  |
| gaggcaccaa agactccccc | tcacatcatc | ttacattatt | gtgtttttaa | gaccacgtgg | 660  |  |
| gattggatca tcttgatctt | gaccttctat | acagccatct | tggtccctta | taatgtctcc | 720  |  |
| ttcaaaacca ggcagaataa | tgtggcctgg | ctggttgttg | atagcatcgt | ggatgttatc | 780  |  |
| tttttggtgg acattgtgct | caattttcat | accacctttg | ttggaccagc | aggggaggtg | 840  |  |
| atttctgacc ccaaacttat | ccgcatgaac | tacctgaaga | cgtggtttgt | gattgacctt | 900  |  |
| ctgtcctgtt tgccatatga | tgtcatcaac | gcttttgaga | acgtggatga | gggcatcagc | 960  |  |
| agcctgttca gctctctaaa | agttgtccgg | ctgctccgtc | ttgggcgagt | ggcccgtaag | 1020 |  |
| ctggaccact acattgaata | tggagctgct | gtgctggtcc | tgctggtgtg | tgtgtttggg | 1080 |  |
| ctggctgcac actggatggc | ctgcatctgg | tacagcattg | gggactatga | gatctttgac | 1140 |  |
| gaggacacca agacaatccg | caacaacagc | tggctgtacc | aactagcgat | ggacattggc | 1200 |  |
| accccttacc agtttaatgg | gtctggctca | gggaagtggg | aaggtggtcc | cagcaagaat | 1260 |  |
| tctgtctaca tctcctcgtt | gtatttcaca | atgaccagcc | tcaccagtgt | gggctttggg | 1320 |  |
| aacatcgccc catccacaga | cattgagaag | atctttgcag | tggccatcat | gatgattggc | 1380 |  |
| tcacttctct atgccaccat | cttcgggaat | gtgacgacta | ttttccaaca | gatgtatgcc | 1440 |  |
| aacaccaaca gataccatga | gatgctcaac | agtgttcggg | acttcctgaa | gctctaccag | 1500 |  |
| gtgccaaaag gattgagtga | gcgagtaatg | gattatattg | tgtccacttg | gtccatgtcc | 1560 |  |
| agaggcattg acacagagaa | ggtcctgcag | atctgcccca | aggacatgag | agccgacatc | 1620 |  |
| tgcgtgcacc tgaaccgcaa | ggtgttcaag | gagcacccgg | ccttccggct | ggccagtgat | 1680 |  |
| ggctgcctcc gggcactggc | catggagttc | cagacggtgc | actgtgcccc | aggggacctc | 1740 |  |
| atctaccatg caggagagag | cgttgacagc | ctctgctttg | tggtttctgg | ctccctggag | 1800 |  |
| gtgatccaag atgatgaggt | ggtggccatt | ctaggaaaag | gagacgtgtt | tggagatgtg | 1860 |  |
| ttctggaagg aagccaccct | tgcccagtcc | tgtgccaatg | ttagggcctt | gacctactgt | 1920 |  |
| gatctgcatg tgatcaagcg | ggatgccctg | cagaaagtgc | tggaattcta | cacggccttc | 1980 |  |
| tcccattcct tctcccggaa | cctgattctg | acgtacaact | tgaggaagag | gattgtgttc | 2040 |  |
| cggaagatca gcgatgtgaa | acgtgaagag | gaagaacgca | tgaaacgaaa | gaatgaggcc | 2100 |  |
| cccctgatct tgcccccgga | ccaccctgtc | cggcgcctct | tccagagatt | ccgacagcag | 2160 |  |
|                       |            |            |            |            |      |  |

| aaagaggcca  | ggctggcagc | tgagagaggg | ggccgggacc | tggatgacct | agatgtggag  | 2220 |
|-------------|------------|------------|------------|------------|-------------|------|
| aagggcaatg  | tccttacaga | gcatgcctcc | gccaaccaca | gcctcgtgaa | ggccagcgtg  | 2280 |
| gtcaccgtgc  | gtgagagtcc | tgccacgccc | gtatccttcc | aggcagcctc | cacctccggg  | 2340 |
| gtgccagacc  | acgcaaagct | acaggcgcca | gggtccgagt | gcctgggccc | caagggggggc | 2400 |
| ggggggcgatt | gtgccaagcg | caaaagctgg | gcccgcttca | aagatgcttg | cgggaagagt  | 2460 |
| gaggactgga  | acaaggtgtc | caaggctgag | tcgatggaga | cacttcccga | gaggacaaaa  | 2520 |
| gcgtcaggcg  | aggccacact | gaagaagaca | gactcgtgtg | acagtggcat | caccaagagc  | 2580 |
| gacttgcgcc  | tggacaacgt | gggtgaggcc | aggagtcccc | aggatcggag | tcccatcctg  | 2640 |
| gcagaggtca  | agcattcgtt | ctaccccatc | cctgagcaga | cgctgcaggc | cacagtcctg  | 2700 |
| gaggtgaggc  | acgagctgaa | ggaggacatc | aaggccttaa | acgccaaaat | gaccaatatt  | 2760 |
| gagaaacagc  | tctctgagat | actcaggata | ttaacttcca | gaagatcctc | tcagtctcct  | 2820 |
| caggagttgt  | ttgaaatatc | gaggccacag | tccccagaat | cagagagaga | catttttgga  | 2880 |
| gccagc      |            |            |            |            |             | 2886 |
|             |            |            |            |            |             |      |

<210> SEQ ID N O 14 <211> LENGTH: 2967 <212> TYPE: DNA <213> ORGANISM: Homo sap iens

<400> SEQUENCE : 14

atgaccatgg ctgggggcag gaggggacta gtggcccctc aaaacacgtt tctggagaa t 60 attgttcggc ggtccaatga tactaatttt gtgttgggga atgctcagat agtggactgg 120 cctattgtgt acagcaatga tggattttgc aagctgtctg gctatcacag ggcagaagtg 180 atgcaaaaaa gcagcacctg cagttttatg tatggggagc tgactgataa agacacgatt 240 gaaaaagtgc ggcaaacatt tgagaactat gagatgaatt cctttgaaat tctgatgtac 300 aagaagaaca ggacacctgt gtggttcttt gtgaaaattg ctccaattcg aaacgaacag 360 gataaagtgg ttttatttct ttgcactttc agtgacataa cagctttcaa acagccaatt 420 gaggatgatt catgtaaagg ctgggggaag tttgctcggc tgacaagagc actgacaagc 480 agcaggggtg tcctgcagca gctggctcca agcgtgcaaa aaggcgagaa tgtccacaag 540 cactcccgcc tggcagaggt cctacagctg ggctcagaca tccttcccca gtacaagcaa 600 gaggcaccaa agactccccc tcacatcatc ttacattatt gtgtttttaa gaccacgtgg 660 gattggatca tcttgatctt gaccttctat acagccatct tggtccctta taatgtctcc 720 ttcaaaacca ggcagaataa tgtggcctgg ctggttgttg atagcatcgt ggatgttatc 780 tttttggtgg acattgtgct caattttcat accacctttg ttggaccagc aggggaggtg 840 atttctgacc ccaaacttat ccgcatgaac tacctgaaga cgtggtttgt gattgacctt 900 ctgtcctgtt tgccatatga tgtcatcaac gcttttgaga acgtggatga ggttagtgcc 960

| -continued                                                                                                    |         |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|
| tttatgggtg atccagggaa gattggtttt gctgatcaga ttccaccacc actggaggg                                              | rg 1020 |  |  |  |  |  |
| agagagagtc agggcatcag cagcctgttc agctctctaa aagttgtccg gctgctccg                                              | t 1080  |  |  |  |  |  |
| ettgggegag tggeeegtaa getggaeeae taeattgaat atggagetge tgtgetggt                                              | ac 1140 |  |  |  |  |  |
| rtgctggtgt gtgtgtttgg gctggctgca cactggatgg cctgcatctg gtacagcat                                              | t 1200  |  |  |  |  |  |
| ggggactatg agatetttga egaggaeace aagaeaatee geaaeaaeag etggetgta                                              | uc 1260 |  |  |  |  |  |
| caactagcga tggacattgg caccccttac cagtttaatg ggtctggctc agggaagtg                                              | rg 1320 |  |  |  |  |  |
| jaaggtggtc ccagcaagaa ttctgtctac atctcctcgt tgtatttcac aatgaccag                                              | c 1380  |  |  |  |  |  |
| ctcaccagtg tgggctttgg gaacatcgcc ccatccacag acattgagaa gatctttgc                                              | a 1440  |  |  |  |  |  |
| gtggccatca tgatgattgg ctcacttctc tatgccacca tcttcgggaa tgtgacgac                                              | t 1500  |  |  |  |  |  |
| attttccaac agatgtatgc caacaccaac agataccatg agatgctcaa cagtgttcg                                              | rg 1560 |  |  |  |  |  |
| gacttootga agototacoa ggtgocaaaa ggattgagtg agogagtaat ggattatat                                              | t 1620  |  |  |  |  |  |
| gtgtccactt ggtccatgtc cagaggcatt gacacagaga aggtcctgca gatctgccc                                              | c 1680  |  |  |  |  |  |
| aaggacatga gagccgacat ctgcgtgcac ctgaaccgca aggtgttcaa ggagcaccc                                              | g 1740  |  |  |  |  |  |
| geetteegge tggeeagtga tggetgeete egggeaetgg ceatggagtt eeagaeggt                                              | g 1800  |  |  |  |  |  |
| cactgtgccc caggggacct catctaccat gcaggagaga gcgttgacag cctctgctt                                              | t 1860  |  |  |  |  |  |
| gtggtttctg gctccctgga ggtgatccaa gatgatgagg tggtggccat tctaggaaa                                              | a 1920  |  |  |  |  |  |
| gagacgtgt ttggagatgt gttctggaag gaagccaccc ttgcccagtc ctgtgccaa                                               | t 1980  |  |  |  |  |  |
| ttagggcct tgacctactg tgatctgcat gtgatcaagc gggatgccct gcagaaagt                                               | g 2040  |  |  |  |  |  |
| rtggaattet acaeggeett eteceattee tteteeegga acetgattet gaegtaeaa                                              | ac 2100 |  |  |  |  |  |
| tgaggaaga ggattgtgtt ccggaagatc agcgatgtga aacgtgaaga ggaagaacg                                               | gc 2160 |  |  |  |  |  |
| tgaaacgaa agaatgaggc ccccctgatc ttgcccccgg accaccctgt ccggcgcct                                               | ac 2220 |  |  |  |  |  |
| tccagagat tccgacagca gaaagaggcc aggctggcag ctgagagagg gggccggga                                               | ac 2280 |  |  |  |  |  |
| tggatgacc tagatgtgga gaagggcaat gtccttacag agcatgcctc cgccaacca                                               | ac 2340 |  |  |  |  |  |
| ageetegtga aggeeagegt ggteacegtg egtgagagte etgeeaegee egtateette                                             | c 2400  |  |  |  |  |  |
| aggcageet ceaceteegg ggtgeeagae eaegeaaage taeaggegee agggteega                                               | lg 2460 |  |  |  |  |  |
| gcctgggcc ccaagggggg cgggggggt tgtgccaagc gcaaaagctg ggcccgctt                                                | c 2520  |  |  |  |  |  |
| aagatgctt gcgggaagag tgaggactgg aacaaggtgt ccaaggctga gtcgatgga                                               | g 2580  |  |  |  |  |  |
| cactteeeg agaggacaaa agegteagge gaggeeaeae tgaagaagae agaetegtg                                               | rt 2640 |  |  |  |  |  |
| acagtggca tcaccaagag cgacttgcgc ctggacaacg tgggtgaggc caggagtcc                                               | c 2700  |  |  |  |  |  |
| aggategga gteceateet ggeagaggte aageattegt tetaceeeat eeetgagea                                               | g 2760  |  |  |  |  |  |
| acgetgeagg ceacagteet ggaggtgagg eaegagetga aggaggaeat eaaggeetta                                             | a 2820  |  |  |  |  |  |
| acgccaaaa tgaccaatat tgagaaacag ctctctgaga tactcaggat attaacttc                                               | c 2880  |  |  |  |  |  |
| gaagateet eteagtetee teaggagttg tttgaaatat egaggeeaca gteeceaga                                               | a 2940  |  |  |  |  |  |
| ccagagagag acatttttgg agccagc                                                                                 | 2967    |  |  |  |  |  |
| 210> SEQ ID NO 15<br>211> LENGTH: 19<br>212> TYPE: DNA<br>213> ORGANISM: Artificial Sequence<br>220> FEATURE: |         |  |  |  |  |  |

<220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Antisense phosphorothioate ODN

| <400> SEQUENCE: 15                                                                                                                                                                                               |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| cagccatggt catcctccc                                                                                                                                                                                             | 19  |
| <210> SEQ ID NO 16<br><211> LENGTH: 19<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Description of Artificial Sequence: Synthet<br>scrambled sequence | tic |
| <400> SEQUENCE: 16                                                                                                                                                                                               |     |
| gtcggtacca gtaggaggg                                                                                                                                                                                             | 19  |
| <210> SEQ ID NO 17<br><211> LENGTH: 21<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Description of Artificial Sequence: Primer                        |     |
| <400> SEQUENCE: 17                                                                                                                                                                                               |     |
| tcagcccagc agaagcatta t                                                                                                                                                                                          | 21  |
| <210> SEQ ID NO 18<br><211> LENGTH: 18<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Description of Artificial Sequence: Primer                        |     |
| <400> SEQUENCE: 18                                                                                                                                                                                               |     |
| ctggcagcgt gtgagagc                                                                                                                                                                                              | 18  |
| <210> SEQ ID NO 19<br><211> LENGTH: 3041<br><212> TYPE: DNA<br><213> ORGANISM: Bovine sp.                                                                                                                        |     |
| <400> SEQUENCE: 19                                                                                                                                                                                               |     |
| gtgccgggac gccccccaga ccccgagctg ccgggaggat gaccatggct gggggcagga                                                                                                                                                | 60  |
| agggactggt ggccccgcaa aacacgtttc tggagaatat tgtccggcgg tccaatgata                                                                                                                                                | 120 |
| ctaactttgt tttggggaat gcccagatag tggactggcc tatcgtgtac agcaatgatg                                                                                                                                                | 180 |
| gattttgcaa gctgtctggc tatcacaggg cggaagtgat gcaaaaaagc agtacatgca                                                                                                                                                | 240 |
| gttttatgta tggggagctg accgataaag ataccattga aaaagtgcgg caaacctttg                                                                                                                                                | 300 |
| agaactatga gatgaattee tttgaaatte tgatgtacaa gaagaacagg acaectgtgt                                                                                                                                                | 360 |
| ggttetttgt gaaaattget eeaattegaa aegaaeagga taaagtggtt ttatttett<br>geaettteag tgaeataaece gettteaaae ageegattga agatgattea tgtaaagget                                                                           | 420 |
| gggggaagtt cgctcggctg accagagcac tgacgagcag ccggggtgtc ctgcagcagc                                                                                                                                                | 540 |
| tggctcccag cgtgcagaaa ggcgagaacg tccacaagca ctcccgtctg gccgaggttc                                                                                                                                                | 600 |
| tgcagctggg ctcagacatc cttccccagt acaagcaaga ggcaccaaag actcccccgc                                                                                                                                                | 660 |
| acatcatctt acactactgc gtttttaaga ccacgtggga ctggatcatc ctgatcctaa                                                                                                                                                | 720 |
| ccttctacac agccatcctg gttccttaca acgtctcctt taaaaccagg cagaacaacg                                                                                                                                                | 780 |

|            |            |            |            | -contir    | nued       |      |  |
|------------|------------|------------|------------|------------|------------|------|--|
| tggcctggct | ggttgtggac | agcatcgtgg | atgtcatttt | tttggtggac | attgtgctga | 840  |  |
| attttcacac | cacttttgtt | ggacccgctg | gggaggtgat | ttctgacccc | aaactcattc | 900  |  |
| gcatgaacta | cctgaagacg | tggtttgtga | ttgaccttct | gtcctgtttg | ccctatgacg | 960  |  |
| tcatcaacgc | ttttgagaac | gtggatgagg | gcatcagcag | cctgttcagc | tctctgaaag | 1020 |  |
| ttgtccggct | gctccgcctg | ggacgcgtgg | cccggaagct | ggaccactac | atcgagtatg | 1080 |  |
| gagctgccgt | gctggtcctg | ctggtgtgtg | tgttcgggct | ggccgctcac | tggatggcct | 1140 |  |
| gcatttggta | cagcatcggg | gactatgaga | tcttcgacga | ggacaccaag | accatccgca | 1200 |  |
| acaacagctg | gctctaccag | ctggccatgg | acattggcac | cccttaccag | tttaacgggt | 1260 |  |
| ctggctcagg | gaagtgggaa | gggggtccca | gcaagaattc | cgtctacatc | tcctcgttgt | 1320 |  |
| atttcaccat | gaccagcctc | accagcgtgg | gctttgggaa | catcgccccg | tccacagaca | 1380 |  |
| ttgagaagat | ctttgccgtg | gccatcatga | tgattggctc | cctcctctat | gccaccatct | 1440 |  |
| ttgggaatgt | gacgaccatt | ttccaacaga | tgtacgccaa | caccaacagg | taccatgaga | 1500 |  |
| tgctcaacag | tgtccgggac | ttcttgaagc | tctaccaggt | gcccaagggg | ctgagcgagc | 1560 |  |
| gagtcatgga | ttacatcgtg | tccacctggt | ccatgtccag | aggcattgac | acagagaagg | 1620 |  |
| tcctgcagat | ctgccccaag | gacatgagag | cggacatctg | cgtgcaccta | aaccgcaagg | 1680 |  |
| tcttcaagga | gcacccagcc | tttcggctgg | ccagcgacgg | ctgcctgcgg | gcactggcca | 1740 |  |
| tggagttcca | gacggtgcac | tgcgcccctg | gggacctcat | ctaccacgca | ggggagagcg | 1800 |  |
| tcgacagcct | gtgcttcgtg | gtctccggct | ccctggaggt | gatccaggat | gacgaggtgg | 1860 |  |
| tggccattct | agggaaagga | gacgtgtttg | gagacgtgtt | ctggaaggaa | gccacccttg | 1920 |  |
| cccagtcctg | tgccaatgtg | agggccttga | cctactgtga | cctccatgtg | atcaagcggg | 1980 |  |
| acgccctgca | gaaagtgctg | gaattctaca | cagccttctc | ccactccttc | tcccggaacc | 2040 |  |
| tcattctcac | ctacaacttg | aggaagcgga | tcgtgttccg | gaagatcagt | gacgtgaaac | 2100 |  |
| gggaggagga | ggagcgcatg | aagcggaaga | atgaggeeee | cctgatcctg | ccgcccgacc | 2160 |  |
| accccgtccg | gcggctcttc | cagaggttcc | gccagcagaa | ggaagccagg | ctggccgcgg | 2220 |  |
| agaggggcgg | gcgggacttg | gacgacctgg | acgtggagaa | gggcagcgtc | ctcaccgagc | 2280 |  |
| acagccacca | cggcctggcg | aaggccagcg | tcgtcaccgt | ccgagagagc | cctgccacgc | 2340 |  |
| ccgtggcctt | cccggcggcc | gctgccccgg | cggggctgga | tcacgcccgg | ctgcaggcgc | 2400 |  |
| ctggggccga | gggcctgggc | cccaaggccg | gcggggccga | ctgcgccaag | cgcaagggct | 2460 |  |
| gggcccgctt | caaggatgcc | tgcgggcagg | ctgaggactg | gagcaaggtg | tccaaggccg | 2520 |  |
| agtccatgga | aacgctcccc | gagaggacga | aggccgccgg | cgaggccaca | ctcaagaaga | 2580 |  |
| cggactcgtg | cgacagcggc | atcaccaaga | gcgacctgcg | tctggacaac | gtgggcgagg | 2640 |  |
| ccagaagccc | ccaggaccgg | agccccatct | tggcggaggt | caagcactcc | ttctacccca | 2700 |  |
| tccccgagca | gacgctgcag | gccgccgtcc | tggaggtgaa | gcacgagctc | aaggaggaca | 2760 |  |
| tcaaggcctt | gagcaccaag | atgacgagca | ttgagaaaca | gctctctgag | atactcagga | 2820 |  |
| tattaacctc | cagaagatcc | tctcagtcgc | ctcaggagct | atttgaaata | tcgaggcccc | 2880 |  |
| agtccccaga | gtcagagaga | gacatttttg | gcgcaagctg | agaggtctgt | tgtaaaaaaa | 2940 |  |
| aagaaaaaaa | atccaagatg | acaaaaacct | accgtcctgc | cctagacacc | accacacaca | 3000 |  |
| cacctacatg | accaacaacc | ttcaaagtag | gcttttccca | a          |            | 3041 |  |
|            |            |            |            |            |            |      |  |

| <210> SEQ 1<br><211> LENGT<br><212> TYPE:<br><213> ORGAN | CH: 3041   | s sp.      |            |            |            |      |
|----------------------------------------------------------|------------|------------|------------|------------|------------|------|
| <400> SEQUE                                              | ENCE: 20   |            |            |            |            |      |
| tgcggtgaga                                               | cacggcgccg | gacgccccca | gagccccagc | agtagggagg | atgaccatgg | 60   |
| ctggcggccg                                               | gcggggacta | gtggccccgc | agaacacatt | tctggagaac | atcgtgcggc | 120  |
| ggtccaacga                                               | cactaatttt | gtgttgggga | atgcccagat | cgtggactgg | cccatcgtgt | 180  |
| acagcaatga                                               | tggattctgc | aagctgtctg | gctaccaccg | agcggaagtg | atgcaaaaga | 240  |
| gtagcgcctg                                               | cagttttatg | tatggagagc | tgaccgacaa | ggacacggtt | gaaaaggttc | 300  |
| gccagacctt                                               | tgagaactac | gagatgaact | ccttcgaaat | tctgatgtac | aagaagaaca | 360  |
| ggacacctgt                                               | gtggttttt  | gtgaagatcg | ctccaatcag | gaacgaacag | gataaagtgg | 420  |
| ttctgttcct                                               | ttgcactttc | agtgacataa | cggcattcaa | gcagcccatt | gaggacgact | 480  |
| cctgcaaagg                                               | ttgggggaag | tttgctcgac | tgacgagagc | tctgacaagc | agcaggggag | 540  |
| tcctgcagca                                               | gctggccccc | agtgtgcaga | agggtgagaa | tgttcacaag | cactcgcgcc | 600  |
| tggcagaggt                                               | cctgcagctg | ggttcagaca | tcctccccca | gtacaagcaa | gaggcgccaa | 660  |
| agacaccccc                                               | tcacatcatc | ctacactact | gtgtctttaa | gaccacatgg | gattggatca | 720  |
| tcttgatcct                                               | gaccttctac | acagccatcc | tggtccctta | caacgtctcc | tttaaaacca | 780  |
| ggcagaataa                                               | cgtggcctgg | ctggtggtgg | acagcatcgt | ggatgtcatc | ttttggtgg  | 840  |
| acattgtctt                                               | gaattttcac | accacctttg | tcgggccagc | gggggaagtg | atctctgacc | 900  |
| ccaaacttat                                               | ccgcatgaac | tacctgaaga | cgtggtttgt | gatcgacctt | ctctcctgtt | 960  |
| tgccatatga                                               | cgtcatcaac | gcttttgaga | acgtggatga | gggcatcagc | agcctgttca | 1020 |
| gttctctgaa                                               | agtcgtgcgg | ctgctccgtc | tcggacgagt | ggcccgcaag | ctggaccatt | 1080 |
| atatcgagta                                               | cggagcggcg | gtactggtcc | tgctggtgtg | cgtgttcggg | ctggctgccc | 1140 |
| actggatggc                                               | ctgcatctgg | tacagcattg | gggattatga | gatctttgat | gaagacacca | 1200 |
| agaccatccg                                               | taacaacagc | tggctctacc | aactggcatt | ggacattggc | actccatacc | 1260 |
| agtttaatgg                                               | gtctggttcg | gggaagtggg | aaggcgggcc | aagcaagaac | tccgtataca | 1320 |
| tttcctcgct                                               | gtacttcacc | atgacaagtc | tcaccagtgt | gggctttggt | aacatcgccc | 1380 |
| catccacaga                                               | catcgagaag | atcttcgccg | tagccatcat | gatgattggc | tcccttctgt | 1440 |
| atgccaccat                                               | ctttgggaat | gtgacgacca | ttttccagca | gatgtatgcc | aacaccaaca | 1500 |
| ggtatcatga                                               | gatgctcaac | agcgtccggg | atttcctgaa | gctctaccag | gtgcccaagg | 1560 |
| ggctgagcga                                               | gcgggtcatg | gactacattg | tgtctacctg | gtccatgtcc | cgcggcatcg | 1620 |
| acacggagaa                                               | ggtcctgcaa | atctgcccca | aggacatgcg | agctgacatt | tgcgtacacc | 1680 |
| tgaaccgaaa                                               | agtgttcaaa | gaacaccccg | ccttccggct | ggccagcgat | ggttgcctga | 1740 |
| gggccttggc                                               | catggagttc | cagacagtac | actgcgcccc | aggggacctc | atctatcacg | 1800 |
| ccggggagag                                               | tgtggacagc | ctctgcttcg | tggtctcggg | ctccctggag | gtgatccagg | 1860 |
| atgatgaggt                                               | ggtggccatc | ctagggaaag | gagatgtgtt | tggggatgtt | ttctggaagg | 1920 |
| aggctaccct                                               | tgcacagtcc | tgcgctaatg | tccgggcctt | gacctactgt | gacctgcacg | 1980 |
| tgatcaagag                                               | ggatgccctg | cagaaagtgc | tagaattcta | cacagccttc | tcccactcct | 2040 |

| teteceggaa eetgattete acetacaate tgaggaagag gattgtgtte eggaagatea                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2100 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gcgacgtgaa acgagaagaa gaggagagga tgaaacggaa gaacgaggcc ccccttatcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2160 |
| tgcctcctga ccaccctgtc aggaggctct tccaaaggtt ccgccagcag aaagaagcca                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2220 |
| ggctggcagc cgagagaggt ggccgggacc tggatgacct ggatgtagag aagggcaatg                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2280 |
| ccctcacgga ccatacctca gccaaccaca gcctggtgaa ggccagtgtg gtcacggtgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2340 |
| gtgagagtcc cgccacgcct gtgtccttcc aggcagcctc cacctccaca gtgtcagacc                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2400 |
| acgccaagct gcatgcaccg ggatctgagt gcctaggtcc caaggcaggc ggtggcgacc                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2460 |
| ctgccaagcg caaaggctgg gcccggttca aagatgcctg tgggaagggt gaggattgga                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2520 |
| acaaggtgtc caaggcagag tccatggaga cgcttcccga gaggacaaag gcatcgggcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2580 |
| aggccacgct gaagaagaca gactcctgtg acagtggaat caccaagagt gacctgcgct                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2640 |
| tggacaatgt gggtgaggcc aggagtcccc aggaccggag ccccatcttg gccgaggtca                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2700 |
| agcattettt etaceceate eeegageaga eaetgeagge eaeagtgetg gaggtgaage                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2760 |
| atgagetgaa ggaagacate aaggeettga atgeeaaat gaeeteeat gagaageage                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2820 |
| tgtctgagat cctcaggata ctcatgtcca gagggtcctc ccagtctccg caggacacgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2880 |
| gtgaggtete caggeeceag teeccagagt cagacagaga catttttggg geaagetgag                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2940 |
| aggatcattt caaaacaaac aaacaaaaaa atcaaagaca aaagcctgcc ccctgcccct                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3000 |
| gacactteet acegeaceaa acacatgace aacaacttte a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3041 |
| <212> TYPE: PRT<br><213> ORGANISM: Bovine sp.<br><400> SEQUENCE: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Met Thr Met Ala Gly Gly Arg Lys Gly Leu Val Ala Pro Gln Asn Thr<br>1 5 10 15                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| Phe Leu Glu Asn Ile Val Arg Arg Ser Asn Asp Thr Asn Phe Val Leu<br>20 25 30                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| Gly Asn Ala Gln Ile Val Asp Trp Pro Ile Val Tyr Ser Asn Asp Gly<br>35 40 45                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| 35 40 45<br>Phe Cys Lys Leu Ser Gly Tyr His Arg Ala Glu Val Met Gln Lys Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 35 40 45<br>Phe Cys Lys Leu Ser Gly Tyr His Arg Ala Glu Val Met Gln Lys Ser<br>50 55 60<br>Ser Thr Cys Ser Phe Met Tyr Gly Glu Leu Thr Asp Lys Asp Thr Ile                                                                                                                                                                                                                                                                                                                                                                           |      |
| 35       40       45         Phe Cys Lys Leu Ser Gly Tyr His Arg Ala Glu Val Met Gln Lys Ser       50         Ser Thr Cys Ser Phe Met Tyr Gly Glu Leu Thr Asp Lys Asp Thr Ile       80         Glu Lys Val Arg Gln Thr Phe Glu Asn Tyr Glu Met Asn Ser Phe Glu       81                                                                                                                                                                                                                                                              |      |
| 35       40       45         Phe Cys Lys Leu Ser Gly Tyr His Arg Ala Glu Val Met Gln Lys Ser 50       50         Ser Thr Cys Ser Phe Met Tyr Gly Glu Leu Thr Asp Lys Asp Thr Ile 65       60         Glu Lys Val Arg Gln Thr Phe Glu Asn Tyr Glu Met Asn Ser Phe Glu 90       90         Ile Leu Met Tyr Lys Lys Asn Arg Thr Pro Val Trp Phe Phe Val Lys                                                                                                                                                                             |      |
| 35       40       45         Phe Cys Lys Leu Ser Gly Tyr His Arg Ala Glu Val Met Gln Lys Ser         50       55         Ser Thr Cys Ser Phe Met Tyr Gly Glu Leu Thr Asp Lys Asp Thr Ile         65       70         Glu Lys Val Arg Gln Thr Phe Glu Asn Tyr Glu Met Asn Ser Phe Glu         85       90         11e Leu Met Tyr Lys Lys Asn Arg Thr Pro Val Trp Phe Phe Val Lys         11e Ala Pro Ile Arg Asn Glu Gln Asp Lys Val Val Leu Phe Leu Cys                                                                             |      |
| 35       40       45         Phe Cys Lys Lys Leu Ser Gly Tyr His Arg Ala Glu Val Met Gln Lys Ser         50       55         Ser Thr Cys Ser Phe Met Tyr Gly Glu Leu Thr Asp Lys Asp Thr Ile         65       70         Glu Lys Val Arg Gln Thr Phe Glu Asn Tyr Glu Met Asn Ser Phe Glu         90       90         11e Leu Met Tyr Lys Lys Asn Arg Thr Pro Val Trp Phe Phe Val Lys         11e Ala Pro Ile Arg Asn Glu Gln Asp Lys Val Val Leu Phe Leu Cys         11r Phe Ser Asp Ile Thr Ala Phe Lys Gln Pro Ile Glu Asp Asp Ser |      |
| 354045Phe Cys<br>50Lys<br>50Leu Ser Gly<br>55Tyr<br>55His<br>60Arg<br>60Ala<br>60Met<br>60Gln<br>Lys<br>80Ser<br>60Ser<br>65Thr<br>70Cys<br>70Ser<br>70Phe<br>70Glu<br>75Leu<br>75Asp<br>75Lys<br>80Asp<br>76Thr<br>80Glu<br>Glu<br>Lys<br>85Val<br>85Arg<br>85Thr<br>                                                                                                                                                                                                                                                               |      |

-continued

|            |                     |            |            |                    |                     |            |            |                    |            |            | -          | con                | tin        | ued                |                    |  |  |  |  |  |  |
|------------|---------------------|------------|------------|--------------------|---------------------|------------|------------|--------------------|------------|------------|------------|--------------------|------------|--------------------|--------------------|--|--|--|--|--|--|
|            |                     |            | 180        |                    |                     |            |            | 185                |            |            |            |                    | 190        |                    |                    |  |  |  |  |  |  |
| Asp        | Ile                 | Leu<br>195 | Pro        | Gln                | Tyr                 | Lys        | Gln<br>200 | Glu                | Ala        | Pro        | Lys        | Thr<br>205         | Pro        | Pro                | His                |  |  |  |  |  |  |
| Ile        | Ile<br>210          | Leu        | His        | Tyr                | Cys                 | Val<br>215 | Phe        | Lys                | Thr        | Thr        | Trp<br>220 | Asp                | Trp        | Ile                | Ile                |  |  |  |  |  |  |
| Leu<br>225 | Ile                 | Leu        | Thr        | Phe                | <b>Ty</b> r<br>230  | Thr        | Ala        | Ile                | Leu        | Val<br>235 | Pro        | Tyr                | Asn        | Val                | Ser<br>240         |  |  |  |  |  |  |
| Phe        | Lys                 | Thr        | Arg        | Gln<br>245         | Asn                 | Asn        | Val        | Ala                | Trp<br>250 | Leu        | Val        | Val                | Asp        | Ser<br>255         | Ile                |  |  |  |  |  |  |
| Val        | Asp                 | Val        | Ile<br>260 | Phe                | Leu                 | Val        | Asp        | Ile<br>265         | Val        | Leu        | Asn        | Phe                | His<br>270 | Thr                | Thr                |  |  |  |  |  |  |
| Phe        | Val                 | Gly<br>275 | Pro        | Ala                | Gly                 | Glu        | Val<br>280 | Ile                | Ser        | Asp        | Pro        | L <b>ys</b><br>285 | Leu        | Ile                | Arg                |  |  |  |  |  |  |
| Met        | Asn<br>290          | Tyr        | Leu        | Lys                | Thr                 | Trp<br>295 | Phe        | Val                | Ile        | Asp        | Leu<br>300 | Leu                | Ser        | Суз                | Leu                |  |  |  |  |  |  |
| Pro<br>305 | Tyr                 | Asp        | Val        | Ile                | Asn<br>310          | Ala        | Phe        | Glu                | Asn        | Val<br>315 | Asp        | Glu                | Gly        | Ile                | Ser<br>320         |  |  |  |  |  |  |
| Ser        | Leu                 | Phe        | Ser        | Ser<br>325         | Leu                 | Lys        | Val        | Val                | Arg<br>330 | Leu        | Leu        | Arg                | Leu        | Gly<br>335         | Arg                |  |  |  |  |  |  |
| Val        | Ala                 | Arg        | Lys<br>340 | Leu                | Asp                 | His        | Tyr        | Ile<br>345         | Glu        | Tyr        | Gly        | Ala                | Ala<br>350 | Val                | Leu                |  |  |  |  |  |  |
| Val        | Leu                 | Leu<br>355 | Val        | Суз                | Val                 | Phe        | Gly<br>360 | Leu                | Ala        | Ala        | His        | Trp<br>365         | Met        | Ala                | Сув                |  |  |  |  |  |  |
| Ile        | <b>T</b> rp<br>370  | Tyr        | Ser        | Ile                | Gly                 | Asp<br>375 | Tyr        | Glu                | Ile        | Phe        | Asp<br>380 | Glu                | Asp        | Thr                | Lys                |  |  |  |  |  |  |
| Thr<br>385 | Ile                 | Arg        | Asn        | Asn                | Ser<br>390          | Trp        | Leu        | Tyr                | Gln        | Leu<br>395 | Ala        | Met                | Asp        | Ile                | Gl <b>y</b><br>400 |  |  |  |  |  |  |
| Thr        | Pro                 | Tyr        | Gln        | Phe<br>405         | Asn                 | Gly        | Ser        | Gly                | Ser<br>410 | Gly        | Lys        | Trp                | Glu        | Gl <b>y</b><br>415 | Gly                |  |  |  |  |  |  |
| Pro        | Ser                 | Lys        | Asn<br>420 | Ser                | Val                 | Tyr        | Ile        | Ser<br>425         | Ser        | Leu        | Tyr        | Phe                | Thr<br>430 | Met                | Thr                |  |  |  |  |  |  |
| Ser        | Leu                 | Thr<br>435 | Ser        | Val                | Gly                 | Phe        | Gly<br>440 | Asn                | Ile        | Ala        | Pro        | Ser<br>445         | Thr        | Asp                | Ile                |  |  |  |  |  |  |
| Glu        | L <b>y</b> s<br>450 | Ile        | Phe        | Ala                | Val                 | Ala<br>455 | Ile        | Met                | Met        | Ile        | Gly<br>460 | Ser                | Leu        | Leu                | Tyr                |  |  |  |  |  |  |
| Ala<br>465 | Thr                 | Ile        | Phe        | Gly                | Asn<br>470          | Val        | Thr        | Thr                | Ile        | Phe<br>475 | Gln        | Gln                | Met        | Tyr                | Ala<br>480         |  |  |  |  |  |  |
| Asn        | Thr                 | Asn        | Arg        | <b>Ty</b> r<br>485 | His                 | Glu        | Met        | Leu                | Asn<br>490 | Ser        | Val        | Arg                | Asp        | Phe<br>495         | Leu                |  |  |  |  |  |  |
| Lys        | Leu                 | Tyr        | Gln<br>500 | Val                | Pro                 | Lys        | Gly        | Leu<br>505         | Ser        | Glu        | Arg        | Val                | Met<br>510 | Asp                | Tyr                |  |  |  |  |  |  |
| Ile        | Val                 | Ser<br>515 | Thr        | Trp                | Ser                 | Met        | Ser<br>520 | Arg                | Gly        | Ile        | Asp        | Thr<br>525         | Glu        | Lys                | Val                |  |  |  |  |  |  |
| Leu        | Gln<br>530          | Ile        | Суз        | Pro                | Lys                 | Asp<br>535 | Met        | Arg                | Ala        | Asp        | Ile<br>540 | Суз                | Val        | His                | Leu                |  |  |  |  |  |  |
| Asn<br>545 | Arg                 | Lys        | Val        | Phe                | L <b>y</b> s<br>550 | Glu        | His        | Pro                | Ala        | Phe<br>555 | Arg        | Leu                | Ala        | Ser                | Asp<br>560         |  |  |  |  |  |  |
| Gly        | Сув                 | Leu        | Arg        | Ala<br>565         | Leu                 | Ala        | Met        | Glu                | Phe<br>570 | Gln        | Thr        | Val                | His        | Сув<br>575         | Ala                |  |  |  |  |  |  |
| Pro        | Gly                 | Asp        | Leu<br>580 | Ile                | Tyr                 | His        | Ala        | Gl <b>y</b><br>585 | Glu        | Ser        | Val        | Asp                | Ser<br>590 | Leu                | Сув                |  |  |  |  |  |  |

| Phe        | Val        | Val<br>595          | Ser        | Gly        | Ser        | Leu        | Glu<br>600         | Val        | Ile                | Gln        | Asp        | Asp<br>605         | Glu        | Val        | Val        |
|------------|------------|---------------------|------------|------------|------------|------------|--------------------|------------|--------------------|------------|------------|--------------------|------------|------------|------------|
| Ala        | Ile<br>610 | Leu                 | Gly        | Lys        | Gly        | Asp<br>615 | Val                | Phe        | Gly                | Asp        | Val<br>620 | Phe                | Trp        | Lys        | Glu        |
| Ala<br>625 | Thr        | Leu                 | Ala        | Gln        | Ser<br>630 | Cys        | Ala                | Asn        | Val                | Arg<br>635 | Ala        | Leu                | Thr        | Tyr        | Cys<br>640 |
| Asp        | Leu        | His                 | Val        | Ile<br>645 | Lys        | Arg        | Asp                | Ala        | Leu<br>650         | Gln        | Lys        | Val                | Leu        | Glu<br>655 | Phe        |
| Tyr        | Thr        | Ala                 | Phe<br>660 | Ser        | His        | Ser        | Phe                | Ser<br>665 | Arg                | Asn        | Leu        | Ile                | Leu<br>670 | Thr        | Tyr        |
| Asn        | Leu        | Arg<br>675          | Lys        | Arg        | Ile        | Val        | Phe<br>680         | Arg        | Lys                | Ile        | Ser        | <b>A</b> sp<br>685 | Val        | Lys        | Arg        |
| Glu        | Glu<br>690 | Glu                 | Glu        | Arg        | Met        | Lys<br>695 | Arg                | Lys        | Asn                | Glu        | Ala<br>700 | Pro                | Leu        | Ile        | Leu        |
| Pro<br>705 | Pro        | Asp                 | His        | Pro        | Val<br>710 | Arg        | Arg                | Leu        | Phe                | Gln<br>715 | Arg        | Phe                | Arg        | Gln        | Gln<br>720 |
| Lys        | Glu        | Ala                 | Arg        | Leu<br>725 | Ala        | Ala        | Glu                | Arg        | Gly<br>730         | Gly        | Arg        | Asp                | Leu        | Asp<br>735 | Asp        |
| Leu        | Asp        | Val                 | Glu<br>740 | Lys        | Gly        | Ser        | Val                | Leu<br>745 | Thr                | Glu        | His        | Ser                | His<br>750 | His        | Gly        |
| Leu        | Ala        | L <b>y</b> s<br>755 | Ala        | Ser        | Val        | Val        | <b>T</b> hr<br>760 | Val        | Arg                | Glu        | Ser        | Pro<br>765         | Ala        | Thr        | Pro        |
| Val        | Ala<br>770 | Phe                 | Pro        | Ala        | Ala        | Ala<br>775 | Ala                | Pro        | Ala                | Gly        | Leu<br>780 | Asp                | His        | Ala        | Arg        |
| Leu<br>785 | Gln        | Ala                 | Pro        | Gly        | Ala<br>790 | Glu        | Gly                | Leu        | Gly                | Pro<br>795 | Lys        | Ala                | Gly        | Gly        | Ala<br>800 |
| Asp        | Cys        | Ala                 | Lys        | Arg<br>805 | Lys        | Gly        | Trp                | Ala        | <b>A</b> rg<br>810 | Phe        | Lys        | Asp                | Ala        | Сув<br>815 | Gly        |
| Gln        | Ala        | Glu                 | Asp<br>820 | Trp        | Ser        | Lys        | Val                | Ser<br>825 | Lys                | Ala        | Glu        | Ser                | Met<br>830 | Glu        | Thr        |
| Leu        | Pro        | Glu<br>835          | Arg        | Thr        | Lys        | Ala        | Ala<br>840         | Gly        | Glu                | Ala        | Thr        | Leu<br>845         | Lys        | Lys        | Thr        |
| Asp        | Ser<br>850 | Cys                 | Asp        | Ser        | Gly        | Ile<br>855 | Thr                | Lys        | Ser                | Asp        | Leu<br>860 | Arg                | Leu        | Asp        | Asn        |
| Val<br>865 | Gly        | Glu                 | Ala        | Arg        | Ser<br>870 | Pro        | Gln                | Asp        | Arg                | Ser<br>875 | Pro        | Ile                | Leu        | Ala        | Glu<br>880 |
| Val        | Lys        | His                 | Ser        | Phe<br>885 | Tyr        | Pro        | Ile                | Pro        | Glu<br>890         | Gln        | Thr        | Leu                | Gln        | Ala<br>895 | Ala        |
| Val        | Leu        | Glu                 | Val<br>900 | Lys        | His        | Glu        | Leu                | Lys<br>905 | Glu                | Asp        | Ile        | Lys                | Ala<br>910 | Leu        | Ser        |
| Thr        | Lys        | Met<br>915          | Thr        | Ser        | Ile        | Glu        | Lys<br>920         | Gln        | Leu                | Ser        | Glu        | Ile<br>925         | Leu        | Arg        | Ile        |
| Leu        | Thr<br>930 | Ser                 | Arg        | Arg        | Ser        | Ser<br>935 | Gln                | Ser        | Pro                | Gln        | Glu<br>940 | Leu                | Phe        | Glu        | Ile        |
| Ser<br>945 | Arg        | Pro                 | Gln        | Ser        | Pro<br>950 | Glu        | Ser                | Glu        | Arg                | Asp<br>955 | Ile        | Phe                | Gly        | Ala        | Ser<br>960 |

<212> TYPE: PRT <213> ORGANISM: Bovine sp.

| <400       | )> SE      | QUEN       | ICE :               | 22         |                     |            |            |                    |            |            |            |                    |            |                    |            |
|------------|------------|------------|---------------------|------------|---------------------|------------|------------|--------------------|------------|------------|------------|--------------------|------------|--------------------|------------|
| Met<br>1   | Thr        | Met        | Ala                 | Gly<br>5   | Gly                 | Arg        | Lys        | Gly                | Leu<br>10  | Val        | Ala        | Pro                | Gln        | Asn<br>15          | Thr        |
| Phe        | Leu        | Glu        | Asn<br>20           | Ile        | Val                 | Arg        | Arg        | Ser<br>25          | Asn        | Asp        | Thr        | Asn                | Phe<br>30  | Val                | Leu        |
| Gly        | Asn        | Ala<br>35  | Gln                 | Ile        | Val                 | Asp        | Trp<br>40  | Pro                | Ile        | Val        | Tyr        | Ser<br>45          | Asn        | Asp                | Gly        |
| Phe        | Сув<br>50  | Lys        | Leu                 | Ser        | Gly                 | Tyr<br>55  | His        | Arg                | Ala        | Glu        | Val<br>60  | Met                | Gln        | Lys                | Ser        |
| Ser<br>65  | Thr        | Cys        | Ser                 | Phe        | Met<br>70           | Tyr        | Gly        | Glu                | Leu        | Thr<br>75  | Asp        | Lys                | Asp        | Thr                | Ile<br>80  |
| Glu        | Lys        | Val        | Arg                 | Gln<br>85  | Thr                 | Phe        | Glu        | Asn                | Tyr<br>90  | Glu        | Met        | Asn                | Ser        | Phe<br>95          | Glu        |
| Ile        | Leu        | Met        | <b>Ty</b> r<br>100  | Lys        | Lys                 | Asn        | Arg        | Thr<br>105         | Pro        | Val        | Trp        | Phe                | Phe<br>110 | Val                | Lys        |
| Ile        | Ala        | Pro<br>115 | Ile                 | Arg        | Asn                 | Glu        | Gln<br>120 | Asp                | Lys        | Val        | Val        | Leu<br>125         | Phe        | Leu                | Суз        |
| Thr        | Phe<br>130 | Ser        | Asp                 | Ile        | Thr                 | Ala<br>135 | Phe        | Lys                | Gln        | Pro        | Ile<br>140 | Glu                | Asp        | Asp                | Ser        |
| Cys<br>145 | Lys        | Gly        | Trp                 | Gly        | L <b>y</b> s<br>150 | Phe        | Ala        | Arg                | Leu        | Thr<br>155 | Arg        | Ala                | Leu        | Thr                | Ser<br>160 |
| Ser        | Arg        | Gly        | Val                 | Leu<br>165 | Gln                 | Gln        | Leu        | Ala                | Pro<br>170 | Ser        | Val        | Gln                | Lys        | Gl <b>y</b><br>175 | Glu        |
| Asn        | Val        | His        | L <b>y</b> s<br>180 | His        | Ser                 | Arg        | Leu        | <b>Ala</b><br>185  | Glu        | Val        | Leu        | Gln                | Leu<br>190 | Gly                | Ser        |
| Asp        | Ile        | Leu<br>195 | Pro                 | Gln        | Tyr                 | Lys        | Gln<br>200 | Glu                | Ala        | Pro        | Lys        | Thr<br>205         | Pro        | Pro                | His        |
| Ile        | Ile<br>210 | Leu        | His                 | Tyr        | Cys                 | Val<br>215 | Phe        | Lys                | Thr        | Thr        | Trp<br>220 | Asp                | Trp        | Ile                | Ile        |
| Leu<br>225 | Ile        | Leu        | Thr                 | Phe        | <b>Ty</b> r<br>230  | Thr        | Ala        | Ile                | Leu        | Val<br>235 | Pro        | Tyr                | Asn        | Val                | Ser<br>240 |
| Phe        | Lys        | Thr        | Arg                 | Gln<br>245 | Asn                 | Asn        | Val        | Ala                | Trp<br>250 | Leu        | Val        | Val                | Asp        | Ser<br>255         | Ile        |
| Val        | Asp        | Val        | Ile<br>260          | Phe        | Leu                 | Val        | Asp        | Ile<br>265         | Val        | Leu        | Asn        | Phe                | His<br>270 | Thr                | Thr        |
| Phe        | Val        | Gly<br>275 | Pro                 | Ala        | Gly                 | Glu        | Val<br>280 | Ile                | Ser        | Asp        | Pro        | L <b>ys</b><br>285 | Leu        | Ile                | Arg        |
| Met        | Asn<br>290 | Tyr        | Leu                 | Lys        | Thr                 | Trp<br>295 | Phe        | Val                | Ile        | Asp        | Leu<br>300 | Leu                | Ser        | Cys                | Leu        |
| Pro<br>305 | Tyr        | Asp        | Val                 | Ile        | Asn<br>310          | Ala        | Phe        | Glu                | Asn        | Val<br>315 | Asp        | Glu                | Val        | Ser                | Ala<br>320 |
| Phe        | Met        | Gly        | Asp                 | Pro<br>325 | Gly                 | Lys        | Ile        | Gly                | Phe<br>330 | Ala        | Asp        | Gln                | Ile        | Pro<br>335         | Pro        |
| Pro        | Leu        | Glu        | Gly<br>340          | Arg        | Glu                 | Ser        | Gln        | Gl <b>y</b><br>345 | Ile        | Ser        | Ser        | Leu                | Phe<br>350 | Ser                | Ser        |
| Leu        | Lys        | Val<br>355 | Val                 | Arg        | Leu                 | Leu        | Arg<br>360 | Leu                | Gly        | Arg        | Val        | Ala<br>365         | Arg        | Lys                | Leu        |
| Asp        | His<br>370 | Tyr        | Ile                 | Glu        | Tyr                 | Gly<br>375 | Ala        | Ala                | Val        | Leu        | Val<br>380 | Leu                | Leu        | Val                | Сув        |
| Val<br>385 | Phe        | Gly        | Leu                 | Ala        | Ala<br>390          | His        | Trp        | Met                | Ala        | Сув<br>395 | Ile        | Trp                | Tyr        | Ser                | Ile<br>400 |

| Gly        | Asp                | Tyr        | Glu                | Ile<br>405 | Phe        | Asp                | Glu                | Asp               | Thr<br>410          | Lys        | Thr        | Ile        | Arg                | Asn<br>415 | Asn        |
|------------|--------------------|------------|--------------------|------------|------------|--------------------|--------------------|-------------------|---------------------|------------|------------|------------|--------------------|------------|------------|
| Ser        | Trp                | Leu        | <b>Ty</b> r<br>420 | Gln        | Leu        | Ala                | Met                | Asp<br>425        | Ile                 | Gly        | Thr        | Pro        | <b>Ty</b> r<br>430 | Gln        | Phe        |
| Asn        | Gly                | Ser<br>435 | Gly                | Ser        | Gly        | Lys                | <b>T</b> rp<br>440 | Glu               | Gly                 | Gly        | Pro        | Ser<br>445 | Lys                | Asn        | Ser        |
| Val        | <b>Ty</b> r<br>450 | Ile        | Ser                | Ser        | Leu        | <b>Ty</b> r<br>455 | Phe                | Thr               | Met                 | Thr        | Ser<br>460 | Leu        | Thr                | Ser        | Val        |
| Gly<br>465 | Phe                | Gly        | Asn                | Ile        | Ala<br>470 | Pro                | Ser                | Thr               | Asp                 | Ile<br>475 | Glu        | Lys        | Ile                | Phe        | Ala<br>480 |
| Val        | Ala                | Ile        | Met                | Met<br>485 | Ile        | Gly                | Ser                | Leu               | Leu<br>490          | Tyr        | Ala        | Thr        | Ile                | Phe<br>495 | Gly        |
| Asn        | Val                | Thr        | Thr<br>500         | Ile        | Phe        | Gln                | Gln                | Met<br>505        | Tyr                 | Ala        | Asn        | Thr        | Asn<br>510         | Arg        | Tyr        |
| His        | Glu                | Met<br>515 | Leu                | Asn        | Ser        | Val                | Arg<br>520         | Asp               | Phe                 | Leu        | Lys        | Leu<br>525 | Tyr                | Gln        | Val        |
| Pro        | Lys<br>530         | Gly        | Leu                | Ser        | Glu        | Arg<br>535         | Val                | Met               | Asp                 | Tyr        | Ile<br>540 | Val        | Ser                | Thr        | Trp        |
| Ser<br>545 | Met                | Ser        | Arg                | Gly        | Ile<br>550 | Asp                | Thr                | Glu               | Lys                 | Val<br>555 | Leu        | Gln        | Ile                | Cys        | Pro<br>560 |
| Lys        | Asp                | Met        | Arg                | Ala<br>565 | Asp        | Ile                | Cys                | Val               | His<br>570          | Leu        | Asn        | Arg        | Lys                | Val<br>575 | Phe        |
| Lys        | Glu                | His        | Pro<br>580         | Ala        | Phe        | Arg                | Leu                | <b>Ala</b><br>585 | Ser                 | Asp        | Gly        | Cys        | Leu<br>590         | Arg        | Ala        |
| Leu        | Ala                | Met<br>595 | Glu                | Phe        | Gln        | Thr                | Val<br>600         | His               | Cys                 | Ala        | Pro        | Gly<br>605 | Asp                | Leu        | Ile        |
| Tyr        | His<br>610         | Ala        | Gly                | Glu        | Ser        | Val<br>615         | Asp                | Ser               | Leu                 | Сув        | Phe<br>620 | Val        | Val                | Ser        | Gly        |
| Ser<br>625 | Leu                | Glu        | Val                | Ile        | Gln<br>630 | Asp                | Asp                | Glu               | Val                 | Val<br>635 | Ala        | Ile        | Leu                | Gly        | Lys<br>640 |
| Gly        | Asp                | Val        | Phe                | Gly<br>645 | Asp        | Val                | Phe                | Trp               | L <b>y</b> s<br>650 | Glu        | Ala        | Thr        | Leu                | Ala<br>655 | Gln        |
| Ser        | Cys                | Ala        | Asn<br>660         | Val        | Arg        | Ala                | Leu                | Thr<br>665        | Tyr                 | Сув        | Asp        | Leu        | His<br>670         | Val        | Ile        |
| Lys        | Arg                | Asp<br>675 | Ala                | Leu        | Gln        | Lys                | Val<br>680         | Leu               | Glu                 | Phe        | Tyr        | Thr<br>685 | Ala                | Phe        | Ser        |
| His        | Ser<br>690         | Phe        | Ser                | Arg        | Asn        | Leu<br>695         | Ile                | Leu               | Thr                 | Tyr        | Asn<br>700 | Leu        | Arg                | Lys        | Arg        |
| Ile<br>705 | Val                | Phe        | Arg                | Lys        | Ile<br>710 | Ser                | Asp                | Val               | Lys                 | Arg<br>715 | Glu        | Glu        | Glu                | Glu        | Arg<br>720 |
| Met        | Lys                | Arg        | Lys                | Asn<br>725 | Glu        | Ala                | Pro                | Leu               | Ile<br>730          | Leu        | Pro        | Pro        | Asp                | His<br>735 | Pro        |
| Val        | Arg                | Arg        | Leu<br>740         | Phe        | Gln        | Arg                | Phe                | Arg<br>745        | Gln                 | Gln        | Lys        | Glu        | <b>Ala</b><br>750  | Arg        | Leu        |
| Ala        | Ala                | Glu<br>755 | Arg                | Gly        | Gly        | Arg                | Asp<br>760         | Leu               | Asp                 | Asp        | Leu        | Asp<br>765 | Val                | Glu        | Lys        |
| Gly        | Ser<br>770         | Val        | Leu                | Thr        | Glu        | His<br>775         | Ser                | His               | His                 | Gly        | Leu<br>780 | Ala        | Lys                | Ala        | Ser        |
| Val<br>785 | Val                | Thr        | Val                | Arg        | Glu<br>790 | Ser                | Pro                | Ala               | Thr                 | Pro<br>795 | Val        | Ala        | Phe                | Pro        | Ala<br>800 |

| -cc | nt                                      | -i | nı  | 17.6 | Ъс |
|-----|-----------------------------------------|----|-----|------|----|
| -cc | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |    | 11, | u    | zu |

|                      |                                           |                      |                     |            |            |            |            |                    |            |            |            | con        | tin        | ued        |            |
|----------------------|-------------------------------------------|----------------------|---------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|
| Ala                  | Ala                                       | Ala                  | Pro                 | Ala<br>805 | Gly        | Leu        | Asp        | His                | Ala<br>810 | Arg        | Leu        | Gln        | Ala        | Pro<br>815 | Gly        |
| Ala                  | Glu                                       | Gly                  | Leu<br>820          | Gly        | Pro        | Lys        | Ala        | Gl <b>y</b><br>825 | Gly        | Ala        | Asp        | Cys        | Ala<br>830 | Lys        | Arg        |
| Lys                  | Gly                                       | Trp<br>835           | Ala                 | Arg        | Phe        | Lys        | Asp<br>840 | Ala                | Сув        | Gly        | Gln        | Ala<br>845 | Glu        | Asp        | Trp        |
| Ser                  | Lys<br>850                                | Val                  | Ser                 | Lys        | Ala        | Glu<br>855 | Ser        | Met                | Glu        | Thr        | Leu<br>860 | Pro        | Glu        | Arg        | Thr        |
| L <b>y</b> s<br>865  | Ala                                       | Ala                  | Gly                 | Glu        | Ala<br>870 | Thr        | Leu        | Lys                | Lys        | Thr<br>875 |            | Ser        | Сув        | Asp        | Ser<br>880 |
| Gly                  | Ile                                       | Thr                  | Lys                 | Ser<br>885 | Asp        | Leu        | Arg        | Leu                | Asp<br>890 | Asn        | Val        | Gly        | Glu        | Ala<br>895 | Arg        |
| Ser                  | Pro                                       | Gln                  | Asp<br>900          |            | Ser        | Pro        | Ile        | Leu<br>905         | Ala        | Glu        | Val        | Lys        | His<br>910 | Ser        | Phe        |
| Tyr                  | Pro                                       | Ile<br>915           | Pro                 | Glu        | Gln        | Thr        | Leu<br>920 | Gln                | Ala        | Ala        | Val        | Leu<br>925 | Glu        | Val        | Lys        |
| His                  | Glu<br>930                                | Leu                  | Lys                 | Glu        | Asp        | Ile<br>935 | Lys        | Ala                | Leu        | Ser        | Thr<br>940 | Lys        | Met        | Thr        | Ser        |
| Ile<br>945           | Glu                                       | Lys                  | Gln                 | Leu        | Ser<br>950 | Glu        | Ile        | Leu                | Arg        | Ile<br>955 | Leu        | Thr        | Ser        | Arg        | Arg<br>960 |
| Ser                  | Ser                                       | Gln                  | Ser                 | Pro<br>965 | Gln        | Glu        | Leu        | Phe                | Glu<br>970 | Ile        | Ser        | Arg        | Pro        | Gln<br>975 | Ser        |
| Pro                  | Glu                                       | Ser                  | Glu<br>980          | Arg        | Asp        | Ile        | Phe        | Gly<br>985         | Ala        | Ser        |            |            |            |            |            |
| <211<br><212<br><213 | )> SE<br>L> LE<br>2> TY<br>3> OF<br>)> SE | NGTH<br>PE:<br>RGANI | H: 9:<br>PRT<br>SM: | 89<br>Mus  | sp.        |            |            |                    |            |            |            |            |            |            |            |
| Met                  |                                           |                      |                     |            | Gly        | Arg        | Lys        | Gly                |            | Val        | Ala        | Pro        | Gln        |            | Thr        |
| 1<br>Phe             | Leu                                       | Glu                  | Asn<br>20           | J          | Val        | Arg        | Arg        | Ser<br>25          | 10<br>Asn  | Asp        | Thr        | Asn        | Phe<br>30  | 15<br>Val  | Leu        |
| Gly                  | Asn                                       | Ala<br>35            |                     | Ile        | Val        | Asp        | Trp<br>40  | Pro                | Ile        | Val        | Tyr        | Ser<br>45  |            | Asp        | Gly        |
| Phe                  | Cys<br>50                                 | Lys                  | Leu                 | Ser        | Gly        | Tyr<br>55  | His        | Arg                | Ala        | Glu        | Val<br>60  | Met        | Gln        | Lys        | Ser        |
| Ser<br>65            | Ala                                       | Cys                  | Ser                 | Phe        | Met<br>70  | Tyr        | Gly        | Glu                | Leu        | Thr<br>75  | -          | Lys        | Asp        | Thr        | Val<br>80  |
| Glu                  | Lys                                       | Val                  | Arg                 | Gln<br>85  | Thr        | Phe        | Glu        | Asn                | Tyr<br>90  | Glu        | Met        | Asn        | Ser        | Phe<br>95  | Glu        |
| Ile                  | Leu                                       | Met                  | <b>Ty</b> r<br>100  |            | Lys        | Asn        | Arg        | Thr<br>105         | Pro        | Val        | Trp        | Phe        | Phe<br>110 | Val        | Lys        |
| Ile                  | Ala                                       | Pro<br>115           | Ile                 | Arg        | Asn        | Glu        | Gln<br>120 | Asp                | Lys        | Val        | Val        | Leu<br>125 | Phe        | Leu        | Cys        |
| Thr                  | Phe<br>130                                | Ser                  | Asp                 | Ile        | Thr        | Ala<br>135 | Phe        | Lys                | Gln        | Pro        | Ile<br>140 | Glu        | Asp        | Asp        | Ser        |
| C <b>y</b> s<br>145  | Lys                                       | Gly                  | Trp                 | Gly        | Lys<br>150 | Phe        | Ala        | Arg                | Leu        | Thr<br>155 |            | Ala        | Leu        | Thr        | Ser<br>160 |
| Ser                  | Arg                                       | Gly                  | Val                 | Leu<br>165 | Gln        | Gln        | Leu        | Ala                | Pro<br>170 | Ser        | Val        | Gln        | Lys        | Gly<br>175 | Glu        |
|                      |                                           |                      |                     |            |            |            |            |                    |            |            |            |            |            |            |            |

| Asn                | Val                | His        | Lys<br>180         | His        | Ser                | Arg                | Leu                | Ala<br>185 | Glu        | Val                 | Leu                | Gln                 | Leu<br>190         | Gly        | Ser        |
|--------------------|--------------------|------------|--------------------|------------|--------------------|--------------------|--------------------|------------|------------|---------------------|--------------------|---------------------|--------------------|------------|------------|
| Asp                | Ile                | Leu<br>195 | Pro                | Gln        | Tyr                | Lys                | Gln<br>200         | Glu        | Ala        | Pro                 | Lys                | Thr<br>205          | Pro                | Pro        | His        |
| Ile                | Ile<br>210         | Leu        | His                | Tyr        | Cys                | Val<br>215         | Phe                | Lys        | Thr        | Thr                 | <b>T</b> rp<br>220 | Asp                 | Trp                | Ile        | Ile        |
| Leu<br>225         | Ile                | Leu        | Thr                | Phe        | <b>Ty</b> r<br>230 | Thr                | Ala                | Ile        | Leu        | Val<br>235          | Pro                | Tyr                 | Asn                | Val        | Ser<br>240 |
| Phe                | Lys                | Thr        | Arg                | Gln<br>245 | Asn                | Asn                | Val                | Ala        | Trp<br>250 | Leu                 | Val                | Val                 | Asp                | Ser<br>255 | Ile        |
| Val                | Asp                | Val        | Ile<br>260         | Phe        | Leu                | Val                | Asp                | Ile<br>265 | Val        | Leu                 | Asn                | Phe                 | His<br>270         | Thr        | Thr        |
| Phe                | Val                | Gly<br>275 | Pro                | Ala        | Gly                | Glu                | Val<br>280         | Ile        | Ser        | Asp                 | Pro                | L <b>y</b> s<br>285 | Leu                | Ile        | Arg        |
| Met                | Asn<br>290         | Tyr        | Leu                | Lys        | Thr                | Trp<br>295         | Phe                | Val        | Ile        | Asp                 | Leu<br>300         | Leu                 | Ser                | Cys        | Leu        |
| Pro<br>305         | Tyr                | Asp        | Val                | Ile        | Asn<br>310         | Ala                | Phe                | Glu        | Asn        | Val<br>315          | Asp                | Glu                 | Val                | Ser        | Ala<br>320 |
| Phe                | Met                | Gly        | Asp                | Pro<br>325 | Gly                | Lys                | Ile                | Gly        | Phe<br>330 | Ala                 | Asp                | Gln                 | Ile                | Pro<br>335 | Pro        |
| Pro                | Leu                | Glu        | Gly<br>340         | Arg        | Glu                | Ser                | Gln                | Gly<br>345 | Ile        | Ser                 | Ser                | Leu                 | Phe<br>350         | Ser        | Ser        |
| Leu                | Lys                | Val<br>355 | Val                | Arg        | Leu                | Leu                | Arg<br>360         | Leu        | Gly        | Arg                 | Val                | Ala<br>365          | Arg                | Lys        | Leu        |
| Asp                | His<br>370         | Tyr        | Ile                | Glu        | Tyr                | Gly<br>375         | Ala                | Ala        | Val        | Leu                 | Val<br>380         | Leu                 | Leu                | Val        | Суз        |
| Val<br>385         | Phe                | Gly        | Leu                | Ala        | Ala<br>390         | His                | Trp                | Met        | Ala        | С <b>у</b> в<br>395 | Ile                | Trp                 | Tyr                | Ser        | Ile<br>400 |
| Gly                | Asp                | Tyr        | Glu                | Ile<br>405 | Phe                | Asp                | Glu                | Asp        | Thr<br>410 | Lys                 | Thr                | Ile                 | Arg                | Asn<br>415 | Asn        |
| Ser                | Trp                | Leu        | <b>Ty</b> r<br>420 | Gln        | Leu                | Ala                | Leu                | Asp<br>425 | Ile        | Gly                 | Thr                | Pro                 | <b>Ty</b> r<br>430 | Gln        | Phe        |
| Asn                | Gly                | Ser<br>435 | Gly                | Ser        | Gly                | Lys                | <b>T</b> rp<br>440 | Glu        | Gly        | Gly                 | Pro                | Ser<br>445          | Lys                | Asn        | Ser        |
| Val                | <b>Ty</b> r<br>450 | Ile        | Ser                | Ser        | Leu                | <b>Ty</b> r<br>455 | Phe                | Thr        | Met        | Thr                 | Ser<br>460         | Leu                 | Thr                | Ser        | Val        |
| Gl <b>y</b><br>465 | Phe                | Gly        | Asn                | Ile        | Ala<br>470         | Pro                | Ser                | Thr        | Asp        | Ile<br>475          | Glu                | Lys                 | Ile                | Phe        | Ala<br>480 |
| Val                | Ala                | Ile        | Met                | Met<br>485 | Ile                | Gly                | Ser                | Leu        | Leu<br>490 | Tyr                 | Ala                | Thr                 | Ile                | Phe<br>495 | Gly        |
| Asn                | Val                | Thr        | Thr<br>500         | Ile        | Phe                | Gln                | Gln                | Met<br>505 | Tyr        | Ala                 | Asn                | Thr                 | Asn<br>510         | Arg        | Tyr        |
| His                | Glu                | Met<br>515 | Leu                | Asn        | Ser                | Val                | Arg<br>520         | Asp        | Phe        | Leu                 | Lys                | Leu<br>525          | Tyr                | Gln        | Val        |
| Pro                | Lys<br>530         | Gly        | Leu                | Ser        | Glu                | Arg<br>535         | Val                | Met        | Asp        | Tyr                 | Ile<br>540         | Val                 | Ser                | Thr        | Trp        |
| Ser<br>545         | Met                | Ser        | Arg                | Gly        | Ile<br>550         | Asp                | Thr                | Glu        | Lys        | Val<br>555          | Leu                | Gln                 | Ile                | Суз        | Pro<br>560 |
| Lys                | Asp                | Met        | Arg                | Ala<br>565 | Asp                | Ile                | Сув                | Val        | His<br>570 | Leu                 | Asn                | Arg                 | Lys                | Val<br>575 | Phe        |

|            |            |                    |            |            |            |            |            |            |                     |            | _          | con        | tin        | ued        |            |
|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|---------------------|------------|------------|------------|------------|------------|------------|
| Lys        | Glu        | His                | Pro<br>580 | Ala        | Phe        | Arg        | Leu        | Ala<br>585 | Ser                 | Asp        | Gly        | Cys        | Leu<br>590 | Arg        | Ala        |
| Leu        | Ala        | Met<br>595         | Glu        | Phe        | Gln        | Thr        | Val<br>600 | His        | Cys                 | Ala        | Pro        | Gly<br>605 | Asp        | Leu        | Ile        |
| Tyr        | His<br>610 | Ala                | Gly        | Glu        | Ser        | Val<br>615 | Asp        | Ser        | Leu                 | Сув        | Phe<br>620 | Val        | Val        | Ser        | Gly        |
| Ser<br>625 | Leu        | Glu                | Val        | Ile        | Gln<br>630 | Asp        | Asp        | Glu        | Val                 | Val<br>635 | Ala        | Ile        | Leu        | Gly        | Lys<br>640 |
| Gly        | Asp        | Val                | Phe        | Gly<br>645 | Asp        | Val        | Phe        | Trp        | L <b>y</b> s<br>650 | Glu        | Ala        | Thr        | Leu        | Ala<br>655 | Gln        |
| Ser        | Cys        | Ala                | Asn<br>660 | Val        | Arg        | Ala        | Leu        | Thr<br>665 | Tyr                 | Сув        | Asp        | Leu        | His<br>670 | Val        | Ile        |
| Lys        | Arg        | Asp<br>675         | Ala        | Leu        | Gln        | Lys        | Val<br>680 | Leu        | Glu                 | Phe        | Tyr        | Thr<br>685 | Ala        | Phe        | Ser        |
| His        | Ser<br>690 |                    | Ser        | Arg        | Asn        | Leu<br>695 |            | Leu        | Thr                 | Tyr        | Asn<br>700 |            | Arg        | Lys        | Arg        |
| Ile<br>705 |            | Phe                | Arg        | Lys        | Ile<br>710 |            | Asp        | Val        | Lys                 | Arg<br>715 |            | Glu        | Glu        | Glu        | Arg<br>720 |
|            | Lys        | Arg                | Lys        | Asn<br>725 |            | Ala        | Pro        | Leu        | Ile<br>730          |            | Pro        | Pro        | Asp        | His<br>735 |            |
| Val        | Arg        | Arg                |            |            | Gln        | Arg        | Phe        | Arg        |                     | Gln        | Lys        | Glu        |            |            | Leu        |
| Ala        | Ala        |                    | 740<br>Arg | Gly        | Gly        | Arg        | -          | 745<br>Leu | Asp                 | Asp        | Leu        | _          | 750<br>Val | Glu        | Lys        |
| Gly        |            | 755<br>Ala         | Leu        | Thr        | Asp        |            | 760<br>Thr | Ser        | Ala                 | Asn        |            | 765<br>Gly | Leu        | Ala        | Lys        |
|            | 770<br>Ser | Val                | Val        | Thr        |            | 775<br>Arg | Glu        | Ser        | Pro                 |            | 780<br>Thr | Pro        | Val        | Ala        |            |
| 785<br>Gln | Ala        | Ala                | Thr        |            | 790<br>Ser | Thr        | Met        | Ser        | _                   | 795<br>His | Ala        | Lys        | Leu        |            | 800<br>Ala |
| Pro        | Gly        | Ser                | Glu        | 805<br>Cys | Leu        | Gly        | Pro        | Lys        | 810<br>Ala          | Val        | Ser        | Cys        | Asp        | 815<br>Pro | Ala        |
| Lys        | Arg        | Lys                | 820<br>Gly | Trp        | Ala        | Arg        | Phe        | 825<br>Lys | Asp                 | Ala        | Cys        | Gly        | 830<br>Gln | Ala        | Glu        |
| -          | -          | 835                | -          | -          |            | -          | 840        | Glu        | -                   |            | -          | 845        |            |            |            |
| -          | 850        |                    | -          |            |            | 855        |            | Thr        |                     |            | 860        |            |            |            |            |
| 865        |            | -                  |            |            | 870        |            |            |            |                     | 875        | -          |            | -          |            | 880        |
| -          |            | _                  |            | 885        | -          |            | -          | Leu        | 890                 |            | -          |            |            | 895        |            |
| Thr        | Arg        | Ser                | Pro<br>900 | Gln        | Asp        | Arg        | Ser        | Pro<br>905 | Ile                 | Leu        | Ala        | Glu        | Val<br>910 | Lys        | His        |
| Ser        | Phe        | <b>Ty</b> r<br>915 | Pro        | Ile        | Pro        | Glu        | Gln<br>920 | Thr        | Leu                 | Gln        | Ala        | Ala<br>925 | Val        | Leu        | Glu        |
| Val        | Lys<br>930 | Tyr                | Glu        | Leu        | Lys        | Glu<br>935 | Asp        | Ile        | Lys                 | Ala        | Leu<br>940 | Asn        | Ala        | Lys        | Met        |
| Thr<br>945 | Ser        | Ile                | Glu        | Lys        | Gln<br>950 | Leu        | Ser        | Glu        | Ile                 | Leu<br>955 | Arg        | Ile        | Leu        | Met        | Ser<br>960 |
| Arg        | Gly        | Ser                | Ala        | Gln<br>965 | Ser        | Pro        | Gln        | Glu        | Thr<br>970          | Gly        | Glu        | Ile        | Ser        | Arg<br>975 | Pro        |
| Gln        | Ser        | Pro                | Glu        | Ser        | Asp        | Arg        | Asp        | Ile        | Phe                 | Gly        | Ala        | Ser        |            |            |            |

-continued

<210> SEQ ID NO 24 <211> LENGTH: 962 <212> TYPE: PRT <213> ORGANISM: Rattus sp. <400> SEQUENCE: 24 Met Thr Met Ala Gly Gly Arg Lys Gly Leu Val Ala Pro Gln Asn Thr Phe Leu Glu Asn Ile Val Arg Arg Ser Asn Asp Thr Asn Phe Val Leu 20 25 30 Gly Asn Ala Gln Ile Val Asp Trp Pro Ile Val Tyr Ser Asn Asp Gly 35 40 45 Phe Cys Lys Leu Ser Gly Tyr His Arg Ala Glu Val Met Gln Lys Ser 50 55 60 Ser Ala Cys Ser Phe Met Tyr Gly Glu Leu Thr Asp Lys Asp Thr Val Glu Lys Val Arg Gln Thr Phe Glu Asn Tyr Glu Met Asn Ser Phe Glu Ile Leu Met Tyr Lys Lys Asn Arg Thr Pro Val Trp Phe Phe Val Lys 100 105 110 Ile Ala Pro Ile Arg Asn Glu Gln Asp Lys Val Val Leu Phe Leu Cys Thr Phe Ser Asp Ile Thr Ala Phe Lys Gln Pro Ile Glu Asp Asp Ser Cys Lys Gly Trp Gly Lys Phe Ala Arg Leu Thr Arg Ala Leu Thr Ser 145 150 155 160 Ser Arg Gly Val Leu Gln Gln Leu Ala Pro Ser Val Gln Lys Gly Glu 165 170 175 Asn Val His Lys His Ser Arg Leu Ala Glu Val Leu Gln Leu Gly Ser Asp Ile Leu Pro Gln Tyr Lys Gln Glu Ala Pro Lys Thr Pro Pro His Ile Ile Leu His Tyr Cys Val Phe Lys Thr Thr Trp Asp Trp Ile Ile Leu Ile Leu Thr Phe Tyr Thr Ala Ile Leu Val Pro Tyr Asn Val Ser Phe Lys Thr Arg Gln Asn Asn Val Ala Trp Leu Val Val Asp Ser Ile 245 250 250 255 Val Asp Val Ile Phe Leu Val Asp Ile Val Leu Asn Phe His Thr Thr Phe Val Gly Pro Ala Gly Glu Val Ile Ser Asp Pro Lys Leu Ile Arg Met Asn Tyr Leu Lys Thr Trp Phe Val Ile Asp Leu Leu Ser Cys Leu Pro Tyr Asp Val Ile Asn Ala Phe Glu Asn Val Asp Glu Gly Ile Ser Ser Leu Phe Ser Ser Leu Lys Val Val Arg Leu Leu Arg Leu Gly Arg Val Ala Arg Lys Leu Asp His Tyr Ile Glu Tyr Gly Ala Ala Val Leu 

-continued

|            |                     |            |            |                    |                     |                     |            |            |            |            | -                  | con        | tin        | ued                 |                    |  |
|------------|---------------------|------------|------------|--------------------|---------------------|---------------------|------------|------------|------------|------------|--------------------|------------|------------|---------------------|--------------------|--|
| Val        | Leu                 | Leu<br>355 | Val        | Cys                | Val                 | Phe                 | Gly<br>360 | Leu        | Ala        | Ala        | His                | Trp<br>365 | Met        | Ala                 | Cys                |  |
| Ile        | Trp<br>370          |            | Ser        | Ile                | Gly                 | Asp<br>375          | Tyr        | Glu        | Ile        | Phe        | <b>A</b> sp<br>380 | Glu        | Asp        | Thr                 | Lys                |  |
| Thr<br>385 | Ile                 | Arg        | Asn        | Asn                | Ser<br>390          | Trp                 | Leu        | Tyr        | Gln        | Leu<br>395 | Ala                | Leu        | Asp        | Ile                 | Gly<br>400         |  |
| Thr        | Pro                 | Tyr        | Gln        | Phe<br>405         | Asn                 | Gly                 | Ser        | Gly        | Ser<br>410 | Gly        | Lys                | Trp        | Glu        | Gl <b>y</b><br>415  | Gly                |  |
| Pro        | Ser                 | Lys        | Asn<br>420 | Ser                | Val                 | Tyr                 | Ile        | Ser<br>425 | Ser        | Leu        | Tyr                | Phe        | Thr<br>430 | Met                 | Thr                |  |
| Ser        | Leu                 | Thr<br>435 | Ser        | Val                | Gly                 | Phe                 | Gly<br>440 | Asn        | Ile        | Ala        | Pro                | Ser<br>445 | Thr        | Asp                 | Ile                |  |
| Glu        | L <b>y</b> s<br>450 |            | Phe        | Ala                | Val                 | Ala<br>455          | Ile        | Met        | Met        | Ile        | Gly<br>460         | Ser        | Leu        | Leu                 | Tyr                |  |
| Ala<br>465 | Thr                 | Ile        | Phe        | Gly                | Asn<br>470          | Val                 | Thr        | Thr        | Ile        | Phe<br>475 | Gln                | Gln        | Met        | Tyr                 | Ala<br>480         |  |
| Asn        | Thr                 | Asn        | Arg        | <b>Ty</b> r<br>485 | His                 | Glu                 | Met        | Leu        | Asn<br>490 | Ser        | Val                | Arg        | Asp        | Phe<br>495          | Leu                |  |
| Lys        | Leu                 | Tyr        | Gln<br>500 | Val                | Pro                 | Lys                 | Gly        | Leu<br>505 | Ser        | Glu        | Arg                | Val        | Met<br>510 | Asp                 | Tyr                |  |
| Ile        | Val                 | Ser<br>515 | Thr        | Trp                | Ser                 | Met                 | Ser<br>520 | Arg        | Gly        | Ile        | Asp                | Thr<br>525 | Glu        | Lys                 | Val                |  |
| Leu        | Gln<br>530          | Ile        | Cys        | Pro                | Lys                 | Asp<br>535          | Met        | Arg        | Ala        | Asp        | Ile<br>540         | Cys        | Val        | His                 | Leu                |  |
| Asn<br>545 |                     | Lys        | Val        | Phe                | L <b>y</b> s<br>550 | Glu                 | His        | Pro        | Ala        | Phe<br>555 | Arg                | Leu        | Ala        | Ser                 | <b>A</b> sp<br>560 |  |
| Gly        | Cys                 | Leu        | Arg        | Ala<br>565         | Leu                 | Ala                 | Met        | Glu        | Phe<br>570 | Gln        | Thr                | Val        | His        | C <b>y</b> s<br>575 | Ala                |  |
| Pro        | Gly                 | Asp        | Leu<br>580 | Ile                | Tyr                 | His                 | Ala        | Gly<br>585 | Glu        | Ser        | Val                | Asp        | Ser<br>590 | Leu                 | Cys                |  |
| Phe        | Val                 | Val<br>595 | Ser        | Gly                | Ser                 | Leu                 | Glu<br>600 | Val        | Ile        | Gln        | Asp                | Asp<br>605 | Glu        | Val                 | Val                |  |
| Ala        | Ile<br>610          | Leu        | Gly        | Lys                | Gly                 | Asp<br>615          | Val        | Phe        | Gly        | Asp        | Val<br>620         | Phe        | Trp        | Lys                 | Glu                |  |
| Ala<br>625 | Thr                 | Leu        | Ala        | Gln                | Ser<br>630          | Суз                 | Ala        | Asn        | Val        | Arg<br>635 | Ala                | Leu        | Thr        | Tyr                 | Cys<br>640         |  |
|            | Leu                 | His        | Val        | Ile<br>645         |                     | Arg                 | Asp        | Ala        | Leu<br>650 |            | Lys                | Val        | Leu        | Glu<br>655          |                    |  |
| Tyr        | Thr                 | Ala        | Phe<br>660 |                    | His                 | Ser                 | Phe        | Ser<br>665 |            | Asn        | Leu                | Ile        | Leu<br>670 |                     | Tyr                |  |
| Asn        | Leu                 | Arg<br>675 |            | Arg                | Ile                 | Val                 | Phe<br>680 |            | Lys        | Ile        | Ser                | Asp<br>685 |            | Lys                 | Arg                |  |
| Glu        | Glu<br>690          |            | Glu        | Arg                | Met                 | L <b>y</b> s<br>695 |            | Lys        | Asn        | Glu        | Ala<br>700         | Pro        | Leu        | Ile                 | Leu                |  |
| Pro<br>705 | Pro                 | Asp        | His        | Pro                | Val<br>710          | Arg                 | Arg        | Leu        | Phe        | Gln<br>715 | Arg                | Phe        | Arg        | Gln                 | Gln<br>720         |  |
| Lys        | Glu                 | Ala        | Arg        | Leu<br>725         | Ala                 | Ala                 | Glu        | Arg        | Gly<br>730 |            | Arg                | Asp        | Leu        | Asp<br>735          | Asp                |  |
| Leu        | Asp                 | Val        | Glu<br>740 |                    | Gly                 | Asn                 | Ala        | Leu<br>745 | Thr        | Asp        | His                | Thr        | Ser<br>750 | Ala                 | Asn                |  |
| His        | Gly                 | Leu        |            | Lys                | Ala                 | Ser                 | Val        |            | Thr        | Val        | Arg                | Glu        |            | Pro                 | Ala                |  |
|            |                     |            |            |                    |                     |                     |            |            |            |            |                    |            |            |                     |                    |  |

|            |            |            |            |            |            |            |            |            |                    |                    | -          | con        | tin        | ued        |                    |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|--------------------|------------|------------|------------|------------|--------------------|
|            |            | 755        |            |            |            |            | 760        |            |                    |                    |            | 765        |            |            |                    |
| Thr        | Pro<br>770 | Val        | Ala        | Phe        | Gln        | Ala<br>775 | Ala        | Ser        | Thr                | Ser                | Thr<br>780 | Val        | Ser        | Asp        | His                |
| Ala<br>785 | Lys        | Leu        | His        | Ala        | Pro<br>790 | Gly        | Ser        | Glu        | Суз                | Leu<br>795         | Gly        | Pro        | Lys        | Ala        | Gl <b>y</b><br>800 |
| Gly        | Gly        | Asp        | Pro        | Ala<br>805 | Lys        | Arg        | Lys        | Gly        | <b>T</b> rp<br>810 | Ala                | Arg        | Phe        | Lys        | Asp<br>815 | Ala                |
| Сув        | Gly        | Gln        | Ala<br>820 | Glu        | Asp        | Trp        | Ser        | Lys<br>825 | Val                | Ser                | Lys        | Ala        | Glu<br>830 | Ser        | Met                |
| Glu        | Thr        | Leu<br>835 | Pro        | Glu        | Arg        | Thr        | Lys<br>840 | Ala        | Ala                | Gly                | Glu        | Ala<br>845 | Thr        | Leu        | Lys                |
| Lys        | Thr<br>850 | Asp        | Ser        | Cys        | Asp        | Ser<br>855 | Gly        | Ile        | Thr                | Lys                | Ser<br>860 | Asp        | Leu        | Arg        | Leu                |
| Asp<br>865 | Asn        | Val        | Gly        | Glu        | Ala<br>870 | Arg        | Ser        | Pro        | Gln                | <b>As</b> p<br>875 | Arg        | Ser        | Pro        | Ile        | Leu<br>880         |
| Ala        | Glu        | Val        | Lys        | His<br>885 | Ser        | Phe        | Tyr        | Pro        | Ile<br>890         | Pro                | Glu        | Gln        | Thr        | Leu<br>895 | Gln                |
| Ala        | Thr        | Val        | Leu<br>900 | Glu        | Val        | Lys        | Tyr        | Glu<br>905 | Leu                | Lys                | Glu        | Asp        | Ile<br>910 | Lys        | Ala                |
| Leu        | Asn        | Ala<br>915 | Lys        | Met        | Thr        | Ser        | Ile<br>920 | Glu        | Lys                | Gln                | Leu        | Ser<br>925 | Glu        | Ile        | Leu                |
| Arg        | Ile<br>930 | Leu        | Met        | Ser        | Arg        | Gly<br>935 | Ser        | Ser        | Gln                | Ser                | Pro<br>940 | Gln        | Asp        | Thr        | Cys                |
| Glu<br>945 | Val        | Ser        | Arg        | Pro        | Gln<br>950 | Ser        | Pro        | Glu        | Ser                | Asp<br>955         | Arg        | Asp        | Ile        | Phe        | Gly<br>960         |
| Ala        | Ser        |            |            |            |            |            |            |            |                    |                    |            |            |            |            |                    |

1-11. (canceled)

12. An isolated antibody specifically directed against a polypeptide having a function of human  $K^+$  eag ion channel and encoded by a nucleic acid sequence selected from the group consisting of:

- (a) a nucleic acid sequence encoding the polypeptide having the amino acid sequence of SEQ ID NO:3;
- (b) a nucleic acid sequence that hybridizes to the complementary strand of the nucleic acid sequence of (a) at 4×SSC at 65° C. or at 4×SSC at 42° C. in 50% formamide followed by washing in 0.1×SSC at 65° C. for one hour; and
- (c) a nucleic acid sequence that is degenerate to the nucleic acid sequence of (b).

**13**. The antibody of claim 12 wherein the antibody is a monoclonal antibody.

14. (canceled)

**15**. A diagnostic composition comprising the antibody of claim 12 or 13, the composition being capable of detecting the presence of a human eag in an analyte.

16-31. (canceled)

32. A kit comprising the antibody of claim 12 or 13.

**33**. The antibody according to claim 12, wherein the nucleic acid sequence is the nucleic acid sequence of part (a).

**34**. The antibody according to claim 12, wherein the nucleic acid sequence is the nucleic acid sequence of part (b).

**35**. The antibody according to claim 12 wherein the antibody binds to an epitope in the C-terminus of the polypeptide.

**36**. The antibody according to claim 12 wherein the antibody is an antibody derivative selected from the group consisting of:  $F(ab)_2$ , Fab', Fv and scFv.

**37**. A composition comprising the antibody according to claim 12 and a pharmaceutically acceptable carrier.

**38**. A diagnostic composition comprising the antibody according to claim 12.

39. A kit comprising the antibody according to claim 12.

\* \* \* \* \*