

(86) Date de dépôt PCT/PCT Filing Date: 2014/01/07
(87) Date publication PCT/PCT Publication Date: 2014/07/10
(45) Date de délivrance/Issue Date: 2020/03/24
(85) Entrée phase nationale/National Entry: 2015/07/03
(86) N° demande PCT/PCT Application No.: IB 2014/000530
(87) N° publication PCT/PCT Publication No.: 2014/106812
(30) Priorités/Priorities: 2013/01/07 (US61/749,751);
2013/07/01 (US61/841,542)

(51) Cl.Int./Int.Cl. A47K 7/04 (2006.01),
A61H 23/02 (2006.01)
(72) Inventeur/Inventor:
SEDIC, FILIP, CN
(73) Propriétaire/Owner:
SEDIC, FILIP, CN
(74) Agent: MARKS & CLERK

(54) Titre : APPAREIL DE NETTOYAGE POUR LA PEAU
(54) Title: SKIN CLEANSER

(57) Abrégé/Abstract:

A skin cleanser includes a surface, such as a silicone surface, with at least one textured portion for transmitting vibrational tapping to the skin. The skin cleanser includes at least one oscillating motor for generating the tapping motion to the skin. The textured portion includes touch-points or a wave that transmit the tapping motion to skin in contact with the textured portions. The touch-points may include thicker and thinner formations of the touch-points to provide firmer or softer vibrations to the skin. The touch-points are within about 0.5 to 2.5 mm in diameter. One configuration includes multiple oscillating motors configured to provide different vibration frequencies at around 50-300 Hertz and operable simultaneously.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 July 2014 (10.07.2014)

(10) International Publication Number
WO 2014/106812 A3

(51) International Patent Classification:
A47K 7/04 (2006.01) *A61H 23/02* (2006.01)

(21) International Application Number:
PCT/IB2014/000530

(22) International Filing Date:
7 January 2014 (07.01.2014)

(25) Filing Language: English

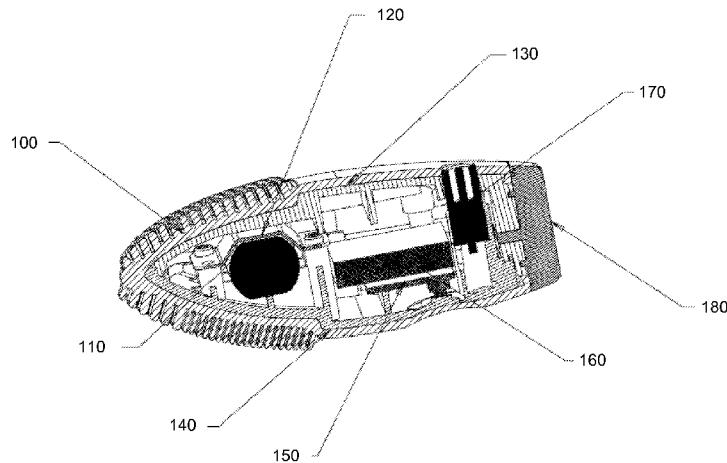
(26) Publication Language: English

(30) Priority Data:
61/749,751 7 January 2013 (07.01.2013) US
61/841,542 1 July 2013 (01.07.2013) US

(72) Inventor; and

(71) Applicant : SEDIC, Filip [SE/CN]; Yougfu Lu 72, House 5, Shanghai, 200031 (CN).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))

(88) Date of publication of the international search report: 8 January 2015

(54) Title: SKIN CLEANSER

(57) Abstract: A skin cleanser includes a surface, such as a silicone surface, with at least one textured portion for transmitting vibrational tapping to the skin. The skin cleanser includes at least one oscillating motor for generating the tapping motion to the skin. The textured portion includes touch-points or a wave that transmit the tapping motion to skin in contact with the textured portions. The touch-points may include thicker and thinner formations of the touch-points to provide firmer or softer vibrations to the skin. The touch-points are within about 0.5 to 2.5 mm in diameter. One configuration includes multiple oscillating motors configured to provide different vibration frequencies at around 50-300 Hertz and operable simultaneously.

SKIN CLEANSER

BACKGROUND

[0001/0002] Skin health and appearance is an important aspect of many beauty regimens. Typical skin care focuses on particular creams or lotions to be applied to the skin, usually performed manually by sponge or brush. Cleaning by hand often fails to adequately apply lotions to the skin, and can be ineffective at removing grease, oils, and other contaminants. An effective skin cleanser device should clean the face more effectively than hand cleaning, but avoid abrasions or other harsh impacts on the skin.

SUMMARY

[0003] A skin cleanser includes one or more oscillating motors or other electromagnetic device that can provide the skin cleanser with various frequency pulsations, and an exterior that can be composed of a soft elastic material, such as silicone, and one or more textured surfaces, including rounded touch-points of 0.5 to 2.5 mm of diameter, or solid surfaces with ridges for cleaning or otherwise interacting with the skin. The oscillating motor moves or oscillates the textured surfaces for application to a user's skin. As the user moves the skin cleanser on the skin, the oscillating pulsations combined with the textured surfaces' touch-points remove oil and other contaminants on the skin's surface. The oscillating pulsations provide a tapping motion to the user's skin to cleanse and loosen contaminants. The oscillations occur at around 50-300 Hertz (Hz). One embodiment includes a high-frequency and a low-frequency oscillating motor or other electromagnetic device that may operate simultaneously or independently. The simultaneous pulsations provide a deep cleaning to the skin. While referred to here as a skin cleanser, the device can also perform other functions besides cleansing, including massaging, exfoliating, buffing, stimulating, toning, exercising, heating, applying lotions or other substances, and so forth.

[0003a] In one respect there is provided a skin cleanser comprising: a casing containing first and second oscillating motors; a unitary silicone exterior that is separate from and covers substantially all of the casing, a first textured surface area integrally forming part of the unitary silicone exterior, the first textured surface area including alternating sections of thicker and thinner touch-points within a range of about 0.5 to 2.5 millimeters (mm) in diameter, wherein the diameter of each of the thicker touch-points is larger than the diameter of each of the thinner touch-points, wherein the alternating sections of thicker and thinner touch-points include a first set of thicker touch-points located at a tip of the skin cleanser, a first set of thinner touch-points adjacent to the first set of thicker touch-points, a second set of thicker touch-points adjacent to the first set of thinner touch-points, a second set of thinner touch-points adjacent to the second set of thicker touch-points, a third set of thicker touch-points adjacent to the second set of thinner touch-points, and a third set of thinner touch-points adjacent to the third set of thicker touch-points, wherein the first set of thicker touch-points forms a plurality of arcuate rows, the first set of thinner touch-points forms a plurality of arcuate rows, the second set of thicker touch-points forms an arcuate row, the second set of thinner touch-points forms a plurality of arcuate rows, the third set of thicker touch-points forms an arcuate row, and the third set of thinner touch-points forms a plurality of arcuate rows, wherein the rows of the first, second, and third sets of thicker touch-points and the first, second, and third sets of thinner touch-points are parallel; wherein each of the first and second oscillating motors is independently driven, the oscillating motors configured to produce pulsations of the first textured surface area, the first and second oscillating motors being operable simultaneously and at different frequencies relative to one another; and at least one control configured to operate the first and second oscillating motors.

[0003b] In another respect there is provided a skin cleanser having a skin cleanser body, the skin cleanser comprising: a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base; a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having: a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, each touch-point of the second set of touch-points having a diameter that is smaller than a diameter of each touch-point of the first set of touch-points,

the second set of touch-points being disposed closer to the base than the first set of touch-points, wherein the diameter of each touch-point of the first set of touch-points is between about 0.5 millimeters and 2.5 millimeters, wherein the diameter of each touch-point of the second set of touch-points is between about 0.5 millimeters and 2.5 millimeters; and a second side defining a third textured surface area that is integrally formed with the silicone exterior, the third textured surface comprising a third set of touch-points; a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

[0003c] In another respect there is provided a skin cleanser having a skin cleanser body, the skin cleanser comprising: a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base; a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having: a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, each touch-point of the second set of touch-points having a diameter that is smaller than a diameter of each touch-point of the first set of touch-points, the second set of touch-points being disposed closer to the base than the first set of touch-points, wherein the diameter of each touch-point of the first set of touch-points is between about 0.5 millimeters and 2.5 millimeters, and wherein the diameter of each touch-point of the second set of touch-points is between about 0.5 millimeters and 2.5 millimeters; and a second side defining a third textured surface area that is integrally formed with the silicone exterior, the third textured surface comprising a first set of ridges; a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

[0003d] In another respect there is provided a skin cleanser having a skin cleanser body, the skin cleanser comprising: a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base; a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, each touch-point of the second set of touch-points having a diameter that is smaller than a diameter of each touch-point of the first set of touch-points, the second set of touch-points being disposed closer to the base than the first set of touch-points, wherein the diameter of each touch-point of the first set of touch-points is between about 0.5 millimeters and 2.5 millimeters, and wherein the diameter of each touch-point of the second set of touch-points is between about 0.5 millimeters and 2.5 millimeters; a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor, wherein the base is configured to emit light, and wherein the light emitted by the base indicates a pattern of use of the skin cleanser.

[0003e] In another respect there is provided a skin cleanser having a skin cleanser body, the skin cleanser comprising: a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base; a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having: a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, at least two touch-points of the second set of touch-points each having a diameter that is smaller than a diameter of each of at least two touch-points of the first set of touch-points; and a second side defining a third textured surface area that is integrally formed with the silicone exterior, the third textured surface area comprising a third set of touch-points; a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

[0003f] In another respect there is provided a skin cleanser having a skin cleanser body, the skin cleanser comprising: a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base; a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having: a first side defining a first textured surface area that is integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points, and a second side defining a second textured surface area that is integrally formed with the silicone exterior, the second textured surface area comprising a first set of ridges; a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

[0003g] In another respect there is provided a skin cleanser having a skin cleanser body, the skin cleanser comprising: a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base; a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, at least two touch-points of the second set of touch-points each having a diameter that is smaller than a diameter of each of at least two touch-points of the first set of touch-points; a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

[0003h] In another respect there is provided a skin cleanser comprising: a skin cleanser body having a substantially flat base configured to stand unaided on a substantially flat surface and further configured to be held in a hand of a user, the skin cleanser body having an upper portion and a lower portion, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base, the skin cleanser body comprising: a silicone exterior covering substantially all of an exterior of the skin cleanser body, a first side of the silicone exterior including: a first textured surface area of thicker touch-points positioned at the upper

portion of the skin cleanser body, the first textured surface area integrally forming part of the silicone exterior; and a second textured surface area of thinner touch-points positioned at the upper portion of the skin cleanser body, wherein the thicker and thinner touch-points are within a range of about 0.5 to 2.5 millimeters (mm) in diameter, the second textured surface area integrally forming part of the silicone exterior, and a second side of the silicone exterior including: a third textured surface area of touch-points or raised, smooth ridges positioned on the skin cleanser body, the third textured surface area integrally forming part of the silicone exterior; a first oscillating motor located within the skin cleanser body, the first oscillating motor configured to produce pulsations of the first and second textured surface areas; and at least one control located on the lower portion of the skin cleanser body and operable through the silicone exterior, the at least one control configured to operate the first oscillating motor.

[0003i] In another respect there is provided a skin cleanser comprising: a skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to a base of the skin cleanser body than in a second direction substantially parallel to the base, wherein the base is substantially flat and is configured to stand unaided on a substantially flat surface, the skin cleanser body comprising: a silicone exterior covering substantially all of an exterior of the skin cleanser body, a first side of the silicone exterior including: a first textured surface area of first touch-points positioned on the skin cleanser body, the first textured surface area integrally forming part of the silicone exterior; and a second textured surface area of second touch-points positioned on the skin cleanser body, wherein the second touch-points are thinner than the first touch-points, the second textured surface area integrally forming part of the silicone exterior, and a second side of the silicone exterior including: a third textured surface area of touch-points or ridges positioned on the skin cleanser body, the third textured surface area integrally forming part of the silicone exterior; a first oscillating motor located within the skin cleanser body, the first oscillating motor configured to produce pulsations of the first and second textured surface areas; and at least one control located on the skin cleanser body and operable through the silicone exterior, the at least one control configured to operate the first oscillating motor.

[0003j] In another respect there is provided a skin cleanser having a skin cleanser body, the skin cleanser comprising: a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base; a silicone exterior covering substantially all of an exterior of said skin cleanser body, the silicone exterior having: a first side defining a first textured surface area that is integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points; and a second side defining a second textured surface area that is integrally formed with the silicone exterior, the second textured surface area comprising a second set of touch-points; a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

[0003k] In another respect there is provided a skin cleanser having a skin cleanser body, the skin cleanser comprising: a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base; a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having: a first side defining a first textured surface area that is integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points; and a second side defining a second textured surface area that is integrally formed with the silicone exterior; a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

[0003l] In another respect there is provided a skin cleanser having a skin cleanser body, the skin cleanser comprising: a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base; a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having a first side defining a first textured surface area that is integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points; a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Fig. 1 is a cross-sectional view of a skin cleanser, according to one embodiment.

[0005] Fig. 2 is a cross-sectional view of a skin cleanser, according to one embodiment.

[0006] Fig. 3 is a front view of a skin cleanser, according to one embodiment.

[0007] Fig. 4 is a back view of a skin cleanser, according to one embodiment.

[0008] Figs. 5 and 6 are side views of a skin cleanser, according to one embodiment.

[0009] Figs. 7 and 8 are top and bottom views of a skin cleanser, according to one embodiment.

[0010] Fig. 9 is a perspective view of a skin cleanser, according to one embodiment.

[0011] Figs. 10 and 11 are views of one embodiment of a brush surface configuration for a skin cleanser.

[0012] Figs. 12 and 13 are views of one embodiment of a brush surface configuration for a skin cleanser.

[0013] Figs. 14 and 15 are views of one embodiment of a brush surface configuration for a skin cleanser.

[0014] Fig. 16 is a skin analyzer, according to one embodiment.

[0015] Figs. 17 and 18 are views of one embodiment of a brush surface configuration for a skin cleanser.

[0016] The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.

DETAILED DESCRIPTION

[0017] Fig. 1 is a cross-sectional view of a skin cleanser, according to one embodiment. The skin cleanser directs pulsations to a user through rounded touch-points on a brush, such as silicone brush 100. The touch-points and brush can be composed of various elastic materials, preferably materials that are soft and do not damage the skin, such as silicone. Silicone is used as an example throughout, though it is understood that other materials can be used, as well. The silicone brush 100 is made of a hygienic silicone that is fast-drying and non-absorbent, allowing the skin cleanser to be used with many skin cleaning products without wear. The silicone brush 100 and other user-contacting portions of the skin cleanser may also include active ingredients, such as vitamin E, antioxidants, or silver nanoparticles. For example, the can be coated with these ingredients by the user or pre-coated, or can have a delivery mechanism in the brush that can store and provide these ingredients upon use. A

WO 2014/106812**PCT/IB2014/000530**

high- or low-frequency oscillating motor 110 creates pulsations that vibrate the skin cleanser. The oscillating motor 110 in this embodiment provides vibrations between 50 and 300 Hz, though pulsation frequencies higher and lower than this range may also provide beneficial cleansing of the skin. When the skin cleanser, and the silicone brush 100 in particular, is applied to the body, such as the face or neck, the pulsations provide a thorough cleaning of the skin. The pulsations provide a tapping motion to the skin, in some embodiments, by providing impulses to the skin's surface from the silicone touch-points 100 pulsating against the skin's surface. The tapping-based cleansing provided by the silicone brush provides a deeper clean that is less abrasive than scrubbing the skin with harsher bristles of other materials (e.g., nylon brush bristles). Frequencies in this range provide deep facial cleansing of oil and dirt, unclog follicles, and stimulate blood circulation and lymph flow within the skin.

[0018] The oscillating motor 110 is enclosed in a frame 120, which is enclosed by a casing including a top 130 and a bottom 140 made of a suitable material, such as plastic. In some embodiments, there is more than one oscillating motor, which may vary from one another in frequency. A controller, such as a printed circuit board 150, provides control to the oscillating motor 110, which is powered by a battery 160. The battery 160 is charged through a charging port, such as a DC jack 170.

[0019] The user interacts with the controller through controls on the exterior of the skin cleanser (such as those shown in Fig. 3) or through a wireless remote. When activated by the controls, the controller initiates a high-frequency vibration of the oscillating motor 110. The user may increase and decrease the frequency of vibration of the motor through controls to set the frequency desired by the user. The frequency set by the user may be stored by the controller when the controller is deactivated, such that the next time the controller is turned on the controller resumes the desired frequency.

[0020] Fig. 2 is a cross-sectional view of a skin cleanser, according to one embodiment. The skin cleanser in Fig. 2 includes similar components to the skin cleanser in Fig. 1, and additional components as described. This embodiment includes a second oscillating motor 200 and a frame 210 containing the second motor 200. In this embodiment, the second motor 200 is capable of creating vibrations at a lower frequency relative to the high-frequency oscillating motor 110. The second motor 200, for example, produces pulsations of 50-130 Hz. The controller in this embodiment may use the second motor 200 alone or in combination with the high-frequency motor 110 to create different vibration effects from the skin cleanser. Using the back-side of the brush, upward strokes on the skin, such as beneath the jaw line, allow the stronger combination of high-frequency and lower-frequency vibration

WO 2014/106812

PCT/IB2014/000530

to tone and tighten underlying musculature, such as that of the neck. Additional benefits can range from stimulating collagen synthesis in fibroblast cells to improving the flow of blood and lymphatic fluid – the result is healthier, younger-looking skin, such as in the known problem areas of the face, and a more sharply defined profile of the face. In one embodiment, the Fig. 2 device is a larger cleanser and the Fig. 1 device is a smaller or mini-cleanser.

[0021] The controller may also activate the lower-frequency motor alone. The lower-frequency vibrations (e.g., in the range of 50-130 Hertz) in conjunction with ridged silicone brush may be used by a user on the skin to relax underlying musculature. In particular, when gently applied to expression-line problem areas at the brow, temples and nasolabial folds, the skin cleanser can relax underlying muscles and reduce the appearance of dynamic wrinkles. Thus, the high-frequency oscillating motor 110 together with the second oscillating motor 200 may enable the skin cleanser to provide a variety of modes and benefits to the user. In some embodiments, the motors 110, 200 can be used in an alternating fashion to provide alternating low and high frequency pulsations to the cleanser.

[0022] In one embodiment, a sensor is also included in the skin cleanser near the front or back of the skin cleanser (or both). The sensor may be a pressure sensor, capacitive sensor, or similar, and detects a user's action to activate the sensor, such as by contacting the body exterior to the sensor. In one embodiment, the controller activates at least one of the oscillating motors when the sensor is activated, permitting the device to automatically activate when the user activates the sensor. Multiple sensors may be included to activate different functions. For instance, in one configuration a sensor is located underneath each textured side of the skin cleanser and detects contact with that textured side. Based on which sensor is activated, the controller activates an operational mode suitable for the side on which the sensor was activated. For example, activating only the low-frequency oscillating motor when one side is contacted, and simultaneously activating the low- and high- frequency oscillating motors when the other side is contacted.

[0023] Figs. 3-9 illustrate various views of the exterior of a skin cleanser according to some embodiments. The exterior shown in Figs. 3-9 correspond to the internal configuration shown in Fig. 2. The exterior is formed of a soft but durable elastic material, such as a hygienic silicone. The skin cleanser includes brush surfaces 300 and 400 on the front and the back of the device with varying textures, such as touch-points of 0.5-2.5 mm diameter, or solid ridged surfaces. The brush surface 300 comprises a series of thinner touch-points for gentle cleansing of non-oily or sensitive skin, with an area of thicker touch-points grouped towards the top of the cleanser. Providing more resistance than the thinner touch-points, the

WO 2014/106812**PCT/IB2014/000530**

thicker touch-points allow for more targeted cleansing of oilier areas and hard to-reach points around the nose, ears and hairline. The pattern of touch-points presented in Figs. 3-9 is one example of a pattern that might be used to cleansing of what is commonly referred to as “normal” skin. Normal skin can include some areas that are drier, oilier, or more sensitive, such that the different patterns of thinner and thicker touch-points can be helpful in targeting these areas (e.g., thinner touch-points for oily areas around the nose). The thinner touch-points and thicker touch-points may vary in size and spacing. In various embodiments, the thinner touch-points are 25-80% thinner (e.g., 30%, 40%, 50%, 60%, 70%, etc. or values in between) compared to the thicker touch-points. In various embodiments, the thinner touch-points are spaced closer together (i.e., the distance between touch-points) by 15%-60%. Thus, the thinner and thicker touch-points for the normal skin cleansing can also be arranged differently around the brush surface than is shown in Figs. 3-9. In one embodiment, the thicker touch points are between about 1.5 mm and 2.5 mm in diameter, and the thinner touch points are between about 0.5 mm and 1.5 mm in diameter.

[0024] The touch points and the body of the skin cleanser itself may be compressible and bendable, such that the touch points and body of the skin cleanser conform to the surface of the skin during use.

[0025] The brush surface 400 is a series of smooth silicone ridges arranged in a wave formation, intended to provide minimal abrasion and maximize the pulsation energy transfer, and the effectiveness of the dual-frequency toning and low-frequency, muscle-relaxing functions. Thus, both surfaces 300 and 400 of the brush can be used for skin cleansing, and specifically for different applications of skin cleansing.

[0026] The front of the skin cleanser also includes a mode control 310 and frequency controls 320. The mode control 310 activates the skin cleanser and is used to cycle through modes of operation for the skin cleanser, such as turning the cleanser on, activating the high-frequency and second lower-frequency motor both independently or in unison, and turning the skin cleanser off. Fewer, more, or different controls may be included for other embodiments. The skin cleanser may also activate a mode that directs the user to cycle through portions of the face when applying vibrations through the skin cleanser. The base 330 of the cleanser may light up or otherwise indicate a prompt for the user to move to another portion of the face. As one example, in this mode that directs cycling through the face, the cleanser may first indicate that the user should apply the brush to the area around the cheeks for a period of time, and then may indicate that the user should apply the brush to the area around the chin, and so forth until the user has cycled throughout the face. The cleanser can indicate when it is time to switch by, for example, lighting up the base, blinking the light

WO 2014/106812**PCT/IB2014/000530**

a certain number of times, or otherwise using the light to indicate instructions to the user. Different cleaning regimens can be used for different cleansers. For example, a sensitive skin cleanser might have a cycle that is shorter in certain areas of the face to avoid irritating the face. A user might also have a program designed specifically for the user's own skin, with shorter or longer application of the brush to different areas of the face as needed for that user's skin. The program designed for a user's skin may be assessed by the manufacturer and programmed to the controller according to a diagnostic of the user's particular skincare needs.

[0027] The brush surfaces are designed to efficiently channel the high-frequency vibrations into the skin to cleanse deeply, unblock follicles, and to boost circulation and lymph flow. By avoiding abrasive exfoliation (as used in other brush-type devices), the brush surface remains gentle enough to use for twice-daily facial cleansing or more uses in the day, as needed. Relative to other cleansing devices, this skin cleanser does not rely on a spinning or twisting action; the result is a deeper clean without the need for such abrasive scrubbing. The pulsations in combination with the textured surfaces, the elastic, soft material touch-points and the solid ridged surfaces provide thorough cleansing, since the textured surface directs the power of the high-frequency motor substantially orthogonal to the skin's surface, which unlocks the skin's natural potential. In one embodiment, the touch-points of the textured surface vertically oscillate from the brush to the skin to create a tapping motion on the skin, similar to the tapping of fingertips on the skin or the patting with a towel or cotton pad. The vertical tapping of the skin in this embodiment provides a gentle cleansing of the skin, as opposed to a rotating motion that can cause a less favorable twisting or stretching of the skin that may cause damage to or scratching of the skin surface.

[0028] The vertical tapping motion can be generated by the vibrations of the motor or of multiple motors, or other electromagnetic device in the brush, by electromechanical mechanisms, among other means. For example, the motors can be positioned in the brush to cause the vertical oscillations of the touch-points, such as by positioning one or more motors directly under or adjacent to the textured surface of the brush. The oscillation of the motor(s) can cause each of or at least some of the touch-points to move orthogonal to the skin's surface to tap the skin. Multiple motors can be arranged near the textured surface to create different motions or different speeds of vertical oscillations across the textured surface of the skin. For example, the motors can be positioned so that different touch-point arrangements or patterns on the textured surface can oscillate differently from one another to provide one type of tapping motion for some touch-points and a different type (e.g., different speed, pattern, etc.) for other touch-points. In some embodiments, each touch-point is a single structure

rather than a plurality of structures, such as might be found in a brush where each brush bristle is made up of multiple bristle components arranged as a bunch.

[0029] The skin cleanser body can be configured to have different shapes, such as a substantially oval shape (e.g., Figs. 3-9), a substantially round shape (e.g., Figs. 17-18), and so forth, and it includes a base 330 that is substantially flat to allow the cleanser to be placed on and stand on a surface. The oval or round shape of the body allows the user to hold the cleanser in the palm of her hand, possibly with fingers splayed along the back side of the cleanser and thumb against the controls in the front side of the cleanser. In some embodiments, the cleanser is wider than it is thick, as is shown, for example, in Fig. 5. This configuration allows the user to easily hold the cleanser in the palm of her hand and reach her fingers around both side of the cleanser for easy and ergonomic manipulation of the cleanser against the skin. The body can thus have two components, the textured portions 300 and 400, and a handle or portion for grasping or manipulating the device, which includes everything other than the textured portions 300, 400. The textured portion can comprise at least 10%, 20%, 30%, 40%, 50% or more of the cleanser outer surface or of the front or of the back of the cleanser outer surface. The textured portion can be positioned on an upper portion or tip of the cleanser, such as is shown in Figs. 3-9, but can also be otherwise positioned (e.g., at the sides, in the middle, at the bottom, etc.).

[0030] Figs. 3-9 provide just one example of how the touch-points on the brush can be arranged. A variety of other arrangements are also possible (e.g., thinner touch-points at the top and thicker at the bottom, thinner on one side and thicker on the other side, alternating rows of thinner and thicker, various areas or groupings of thinner and thicker in different locations on the brush, and so forth). In addition, different types of touch-points can be included, such as taller or shorter touch-points, touch-points with more or less bulbous ends, touch-points with ends of different shapes (e.g., pointed, feathered, ridged, etc.), and so forth. Similarly, the touch-points can be arranged more or less densely, can be positioned on both the front and back of the brush, can be otherwise located on the brush (e.g., only in the middle, only at the edges, etc.), among other variations. Some other examples of touch-point arrangements are shown in Figs. 10-15. In addition, the ridges of brush surface 400 in Figs. 3-9 (and for Figs. 10-15) can be arranged on one or both sides of the brush, can be otherwise located on the brush (e.g., only in the middle, only at the edges, etc.), can be positioned with the touch-points (e.g., above or below, or intermingled within the touch-points), can be formed into other patterns or shapes or with different spacing, among other variations.

[0031] Figs. 10 and 11 are views of one embodiment of a brush surface configuration for a skin cleanser. This brush configuration is specialized for men's facial skin. The brush on

WO 2014/106812**PCT/IB2014/000530**

the front side, as shown in Fig. 10, includes a series of thicker touch-points covering the whole front surface, reflecting the additional cleansing normally required for men's oilier skin, with its larger pores and facial hair that act as magnets for dirt and pollutants, making acne, blackheads and breakouts more likely to occur. Providing more resistance than the thinner touch-points, they allow for firmer, deeper cleansing to meet the challenges of a man's thicker skin. The resulting boost to the health of the skin can reduce the discomfort and irritation often associated with, for example, daily wet shaving. The brush on the back side, as shown in Fig. 11, includes a series of smooth silicone ridges arranged in a wave formation, intended to provide minimal abrasion and to maximize the pulsation energy transfer and the effectiveness of the dual-frequency (high-frequency and lower-frequency motor in combination) toning and low-frequency, muscle-relaxing functions.

[0032] Figs. 12 and 13 are views of one embodiment of a brush surface configuration for a skin cleanser. This brush configuration is specialized for skin with some oilier areas. The brush on the front side, as shown in Fig. 12, includes a series of thinner touch-points for gentle cleansing of non-oily or sensitive skin, with an area of thicker touch-points grouped towards the top of the cleanser, as well as two additional waves of thicker touch-points. Providing less flexibility than the thinner touch-points, these allow for stronger cleansing and the targeting of oilier areas and hard to-reach points around the nose, ears and hairline. The brush on the back side, as shown in Fig. 13, includes a series of smooth silicone ridges arranged in a wave formation, intended to provide minimal abrasion and maximize the pulsation energy transfer and the effectiveness of the dual-frequency toning and low-frequency, muscle-relaxing functions.

[0033] Figs. 14 and 15 are views of one embodiment of a brush surface configuration for a skin cleanser. This brush configuration is specialized for sensitive skin. The brush on the front side, as shown in Fig. 14, includes a series of closely packed, smooth silicone ridges in a wave formation, designed to minimize abrasion and allow for the extra-gentle yet highly effective cleansing of even the most sensitive skin. The brush on the back-side, as shown in Fig. 15, includes a series of smooth silicone ridges arranged in a wave formation, intended to provide minimal abrasion and to maximize the pulsation energy transfer and the effectiveness of the dual-frequency toning and low-frequency, muscle-relaxing functions. The smooth silicone ridges on the front side in one embodiment are spaced closer to one another compared to the spacing of the ridges on the back-side. The ridges on the front side may be spaced between 10-60% closer together (e.g., 20%, 30%, 40%, 50%, etc. or values in between) relative to the spacing of the ridges on the back-side. In addition, the ridges on the

front side are cushioned with additional space between the soft elastic surface and the plastic casing in order to provide with extra-gentle cleansing.

[0034] Figs. 17 and 18 are views of one embodiment of a brush surface configuration for a skin cleanser. This brush surface configuration corresponds to the internal configuration shown in Fig. 1. The brush on the front side, as shown in Fig. 17, includes a series of thinner touch-points for gentle cleansing of non-oily or sensitive skin, with an area of thicker touch-points grouped towards the top of the cleanser. The brush on the back side, as shown in Fig. 18, provides a series of thicker touch-points allowing a deeper clean provided by the thicker touch-points to be applied to a larger area.

[0035] Figs. 3-15 and 17-18 are just some examples of different brush surface configurations matched to different skin types. Other designs for other skin types are also possible, such as a particular pattern for dry skin, for aging skin, for combination skin or T-zone skin (e.g., oilier around the forehead, nose, and chin), among others. In some embodiments, the front textured surface includes at least two different types of touch-points (e.g., thicker and thinner). The touch-points of a type can be grouped to provide a pattern. For example, Fig. 3 shows a group of thicker touch-points at the tip of the cleanser and a group of thinner touch-points below. Each pattern can correspond to a particular skin type (e.g., male, sensitive, oily, normal, etc.). In some embodiments, at least 10%, 20%, 30%, 40%, 50% of the front textured surface includes touch-points of a different type than the rest of the front textured surface.

[0036] The brush surface can also be designed to contour to the curves of the body or face. In one embodiment, one or more surfaces of the brush, e.g., the textured surfaces, are deformable or bendable. For example, where the textured surface is composed of silicone, the surface can compress or bend when pressed against the skin to mold to the surface of the skin for providing a deeper cleansing and for better cleaning of skin surfaces that are curved. In other embodiments, the textured surface can be designed to pivot relative to the brush or to include one or more portions that pivot such that the textured surface can mold to the shape of the skin.

[0037] Fig. 16 is a skin analyzer according to one embodiment. The skin analyzer is a handheld device capable of analyzing the skin of the user. The results of the skin analysis may be provided to the user to guide use of the skin cleanser, for example by measuring effectiveness and oiliness of the skin after use. The skin analyzer is encased in a body 1600 held by the operator of the skin analyzer. The skin analyzer includes sensors 1610 that sense the skin's condition, such as oil levels, moisture content, and dead skin cell levels. The results of the skin analysis may be communicated to the user by connecting the skin analyzer

WO 2014/106812**PCT/IB2014/000530**

to a display or by wireless communication with a display or computer to direct the user in the use of a skin cleanser, such as whether the skin cleanser is being used too frequently or to show improvement of the skin over a period of time as the skin cleanser is applied. The skin analyzer may also provide the results of the analysis via an interface to the skin cleanser, which may be used to change the suggested frequency of applying the skin cleanser to portions of the user's face during cleansing. The cleanser can also include an interface to communicate with the skin analyzer, including sending information about how often it is used, what skin regimens or programs are used, etc.

[0038] In one embodiment, the skin analyzer can provide a diagnostic of the user's particular skincare needs, such as by indicating skin type (e.g., oily skin, oily skin in certain areas, sensitive skin, dry skin, dry in certain areas, male or female skin, normal skin, etc.) or by indicating specific details about the user's skin at different areas of the face or different times of day (e.g., tends to be dry in the morning, tends to be thin near the eye area, tends to be dry around the nose, etc.). The skin analyzer data can be used to design a program or skincare regimen specific to the user's skin. The program designed for a user's skin may be assessed by the user or by a third party, such as the manufacturer of the skin cleanser or analyzer, a beautician, a dermatologist or other medical personnel, etc. For example, information about the program can be transmitted via the interface of the skin analyzer or skin cleanser to a computer of the user or third party for review and possible revision. The program or regimen (possibly as revised by the user or third party) can be programmed to the controller of the skin cleanser according to the diagnostic of the user's particular skincare needs.

[0039] Additional features may also be included in the skin cleanser. In one embodiment, the skin cleanser includes a heat-emitting source located between the body and the textured surfaces. The heat-emitting source, when activated by the controller, heats the textured surfaces and may be used in conjunction with the oscillations of the touch-points. In a further embodiment, the skin cleanser includes a dosing mechanism integrated in the body of the device to dispense liquids or solid suspensions, such as for the delivery of silver nanoparticles, Vitamin E, etc. as described above. The dosing mechanism may include a reservoir, for example at the base of the skin cleanser, and a pump with an outlet to dispense contents of the reservoir to the textured surfaces or near the textured surfaces.

Summary

[0040] The foregoing description of the embodiments of the invention has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the invention to

WO 2014/106812**PCT/IB2014/000530**

the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.

[0041] The language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the invention.

What is claimed is:

1. A skin cleanser comprising:
 - a casing containing first and second oscillating motors;
 - a unitary silicone exterior that is separate from and covers substantially all of the casing, a first textured surface area integrally forming part of the unitary silicone exterior, the first textured surface area including alternating sections of thicker and thinner touch-points within a range of about 0.5 to 2.5 millimeters (mm) in diameter, wherein the diameter of each of the thicker touch-points is larger than the diameter of each of the thinner touch-points, wherein the alternating sections of thicker and thinner touch-points include a first set of thicker touch-points located at a tip of the skin cleanser, a first set of thinner touch-points adjacent to the first set of thicker touch-points, a second set of thicker touch-points adjacent to the first set of thinner touch-points, a second set of thinner touch-points adjacent to the second set of thicker touch-points, a third set of thicker touch-points adjacent to the second set of thinner touch-points, and a third set of thinner touch-points adjacent to the third set of thicker touch-points, wherein the first set of thicker touch-points forms a plurality of arcuate rows, the first set of thinner touch-points forms a plurality of arcuate rows, the second set of thicker touch-points forms an arcuate row, the second set of thinner touch-points forms a plurality of arcuate rows, the third set of thicker touch-points forms an arcuate row, and the third set of thinner touch-points forms a plurality of arcuate rows, wherein the rows of the first, second, and third sets of thicker touch-points and the first, second, and third sets of thinner touch-points are parallel;
 - wherein each of the first and second oscillating motors is independently driven, the oscillating motors configured to produce pulsations of the first textured surface area, the first and second oscillating motors being operable simultaneously and at different frequencies relative to one another; and
 - at least one control configured to operate the first and second oscillating motors.
2. The skin cleanser of claim 1, wherein the first and second oscillating motors are operable to oscillate within a range of about 50 to 300 Hertz (Hz).
3. The skin cleanser of claim 1 or 2, wherein the at least one control of the skin cleanser comprises either buttons or a sensor configured to detect contact by the user with the first textured surface area.

4. The skin cleanser of any one of claims 1 to 3, wherein the first textured surface area is infused with or contains active ingredients selected from a group consisting of: Vitamin E, anti-oxidants, and silver nanoparticles.
5. The skin cleanser of claim 1, wherein the first oscillating motor is operable to oscillate within a frequency range, and the second oscillating motor is operable to oscillate within a frequency range that is higher than the frequency range of the first oscillating motor.
6. The skin cleanser of claim 5, wherein the frequency range of the first oscillating motor is about 50 to 130 Hz, and the frequency range of the second oscillating motor is about 160 to 300 Hz.
7. The skin cleanser of any one of claims 1 to 6, wherein the silicone exterior further includes a second textured surface area of smooth ridges.
8. The skin cleanser of claim 7, wherein the smooth ridges are arranged in a wave formation.
9. The skin cleanser of any one of claims 1 to 6, wherein the first textured surface area consists of the thicker touch-points between about 1.5 mm and 2.5 mm in diameter, and the unitary silicone exterior includes a second textured surface area that consists of smooth ridges.
10. The skin cleanser of any one of claims 1 to 9, wherein the first textured surface area is compressible to contour to a surface of the skin.
11. The skin cleanser of any one of claims 1 to 9, wherein the unitary silicone exterior is compressible or bendable to contour to a surface of the skin.
12. The skin cleanser of any one of claims 1 to 9, wherein the first and second oscillating motors are arranged within a body of the skin cleanser to vertically oscillate the thicker and thinner touch-points.
13. The skin cleanser of claim 12, wherein, when in use, a portion of the first textured surface area is placed against a surface of the skin, and the vertical oscillations of the thicker and thinner touch-points provide a tapping motion against the surface of the skin.
14. The skin cleanser of any one of claims 1 to 13, wherein the first and second oscillating motors are eccentric rotating mass (ERM) motors.

15. The skin cleanser of any one of claims 1 to 14, wherein the at least one control is operable through the unitary silicone exterior.
16. The skin cleanser of any one of claims 1 to 15, wherein the unitary silicone exterior is configured to be held in a hand of a user with a thumb of the user resting against the at least one control on a first side of the unitary silicone exterior and fingers of the user resting on a second side of the unitary silicone exterior.
17. The skin cleanser of claim 16, wherein the second side of the silicone exterior has a curvature and is configured to be held in a palm of the hand of the user.
18. A skin cleanser having a skin cleanser body, the skin cleanser comprising:
 - a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base;
 - a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having:
 - a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, each touch-point of the second set of touch-points having a diameter that is smaller than a diameter of each touch-point of the first set of touch-points, the second set of touch-points being disposed closer to the base than the first set of touch-points, wherein the diameter of each touch-point of the first set of touch-points is between about 0.5 millimeters and 2.5 millimeters, wherein the diameter of each touch-point of the second set of touch-points is between about 0.5 millimeters and 2.5 millimeters; and
 - a second side defining a third textured surface area that is integrally formed with the silicone exterior, the third textured surface comprising a third set of touch-points;
 - a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and
 - at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.
19. The skin cleanser of claim 18, wherein the first set of touch-points form a substantially semi-circular pattern.

20. The skin cleanser of claim 18 or 19, wherein the second set of touch-points form a substantially semi-circular pattern.
21. The skin cleanser of any one of claims 18 to 20, wherein the first textured surface area is smaller than the second textured surface area.
22. The skin cleanser of claim 21, wherein the third textured surface area is substantially the same size as the first and second textured surface areas combined.
23. The skin cleanser of any one of claims 18 to 20, wherein the silicone exterior defines a strip disposed between the first touch-points and the third touch-points at a top of the skin cleanser that does not define touch-points.
24. The skin cleanser of any one of claims 18 to 20, further comprising a first groove defined by the first side of the silicone exterior disposed nearer to the base than is the second set of touch-points.
25. The skin cleanser of claim 24, further comprising a second groove defined by the second side of the silicone exterior disposed nearer to the base than is the third set of touch-points.
26. The skin cleanser of any one of claims 18 to 25, wherein the base is configured to emit light.
27. The skin cleanser of claim 26, wherein the light emitted by the base indicates a pattern of use of the skin cleanser.
28. The skin cleanser of claim 27, wherein the base is substantially transparent.
29. The skin cleanser of any one of claims 18 to 28, wherein the second side defines a charging port disposed closer to the base than to the third set of touch-points.
30. A skin cleanser having a skin cleanser body, the skin cleanser comprising:
a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base;
a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having:

a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, each touch-point of the second set of touch-points having a diameter that is smaller than a diameter of each touch-point of the first set of touch-points, the second set of touch-points being disposed closer to the base than the first set of touch-points, wherein the diameter of each touch-point of the first set of touch-points is between about 0.5 millimeters and 2.5 millimeters, and wherein the diameter of each touch-point of the second set of touch-points is between about 0.5 millimeters and 2.5 millimeters; and

a second side defining a third textured surface area that is integrally formed with the silicone exterior, the third textured surface comprising a first set of ridges;

a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and

at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

31. The skin cleanser of claim 30, wherein the first set of ridges defines at least five ridges.

32. The skin cleanser of claim 30 or 31, wherein each ridge of the first set of ridges is substantially arcuate in shape.

33. The skin cleanser of claim 32, wherein each ridge of the first set of ridges is disposed on the second side and extends towards the base from an end of said skin cleanser body opposite the base.

34. The skin cleanser of any one of claims 30 to 33, wherein the base is configured to emit light.

35. The skin cleanser of claim 34, wherein the light emitted by the base indicates a pattern of use of the skin cleanser.

36. The skin cleanser of any one of claims 30 to 35, further comprising a first groove defined by the first side of the silicone exterior disposed nearer to the base than is the second set of touch-points.

37. A skin cleanser having a skin cleanser body, the skin cleanser comprising:

- a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base;
- a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, each touch-point of the second set of touch-points having a diameter that is smaller than a diameter of each touch-point of the first set of touch-points, the second set of touch-points being disposed closer to the base than the first set of touch-points, wherein the diameter of each touch-point of the first set of touch-points is between about 0.5 millimeters and 2.5 millimeters, and wherein the diameter of each touch-point of the second set of touch-points is between about 0.5 millimeters and 2.5 millimeters;
- a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and
- at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor,
- wherein the base is configured to emit light, and
- wherein the light emitted by the base indicates a pattern of use of the skin cleanser.

38. A skin cleanser having a skin cleanser body, the skin cleanser comprising:

- a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base;
- a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having:
- a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, at least two touch-points of the second set of touch-points each having a diameter that is smaller than a diameter of each of at least two touch-points of the first set of touch-points; and
- a second side defining a third textured surface area that is integrally formed with the silicone exterior, the third textured surface area comprising a third set of touch-points;

a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and
 at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

39. The skin cleanser of claim 38, wherein at least two touch-points of the third set of touch-points each has a diameter that is larger than the diameter of each of the at least two touch-points of the second set of touch-points.

40. The skin cleanser of claim 38 or 39, wherein the diameter of each of the at least two touch-points of the second set of touch-points is between about 0.5 millimeters and about 2.5 millimeters.

41. The skin cleanser of claim 40, wherein the diameter of each of the at least two of touch-points of the first set of touch-points is between about 0.5 millimeters and about 2.5 millimeters.

42. The skin cleanser of any one of claim 38 to 41, wherein the first textured surface area is smaller than the second textured surface area.

43. The skin cleanser of claim 42, wherein the third textured surface area is substantially the same size as the first and second textured surface areas combined.

44. The skin cleanser of any one of claims 38 to 43, wherein the base is substantially transparent.

45. A skin cleanser having a skin cleanser body, the skin cleanser comprising:
 a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base;
 a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having:

 a first side defining a first textured surface area that is integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points, and

 a second side defining a second textured surface area that is integrally formed with the silicone exterior, the second textured surface area comprising a first set of ridges;

 a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and

at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

46. The skin cleanser of claim 45, wherein the diameter of each of at least two touch-points of the first set of touch-points is between about 0.5 millimeters and about 2.5 millimeters.

47. The skin cleanser of claim 46, wherein each touch-point of the first set of touch-points has substantially the same diameter.

48. The skin cleanser of any one of claims 45 to 47, wherein the first set of ridges defines at least four ridges.

49. The skin cleanser of claim 48, wherein each ridge of the first set of ridges is substantially arcuate in shape.

50. The skin cleanser of claim 48 or 49, wherein at least a portion of each ridge of the first set of ridges extends towards the base from an end of the skin cleanser body opposite the base.

51. The skin cleanser of any one of claims 45 to 50, further comprising a first groove defined by the first side of the silicone exterior disposed substantially adjacent the first textured surface area.

52. A skin cleanser having a skin cleanser body, the skin cleanser comprising:
a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base;
a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having a first side defining first and second textured surface areas that are integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points and the second textured surface area comprising a second set of touch-points, at least two touch-points of the second set of touch-points each having a diameter that is smaller than a diameter of each of at least two touch-points of the first set of touch-points;

a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and

at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

53. The skin cleanser of claim 52, wherein the first side defines a third textured surface area comprising a third set of touch-points.

54. The skin cleanser of claim 53, wherein at least two touch-points of the third set of touch-points each has a diameter that is smaller than the diameter of each of the at least two touch-points of the first set of touch-points.

55. The skin cleanser of claim 54, wherein the at least two touch-points of the third set of touch-points each has a diameter that is larger than the diameter of each of the at least two touch-points of the second set of touch-points.

56. The skin cleanser of claim 55, wherein the diameter of each of the at least two of touch-points of the first set of touch-points, the at least two touch-points of the second set of touch-points, and the at least two touch-points of the third set of touch-points is between about 0.5 millimeters and about 2.5 millimeters.

57. The skin cleanser of any one of claims 52 to 56, wherein the second set of touch-points forms a substantially semi-circular pattern.

58. A skin cleanser comprising:

a skin cleanser body having a substantially flat base configured to stand unaided on a substantially flat surface and further configured to be held in a hand of a user, the skin cleanser body having an upper portion and a lower portion, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base, the skin cleanser body comprising:

a silicone exterior covering substantially all of an exterior of the skin cleanser body,

a first side of the silicone exterior including:

a first textured surface area of thicker touch-points positioned at the upper portion of the skin cleanser body, the first textured surface area integrally forming part of the silicone exterior; and

a second textured surface area of thinner touch-points positioned at the upper portion of the skin cleanser body, wherein the thicker and thinner

touch-points are within a range of about 0.5 to 2.5 millimeters (mm) in diameter, the second textured surface area integrally forming part of the silicone exterior, and

a second side of the silicone exterior including:

a third textured surface area of touch-points or raised, smooth ridges positioned on the skin cleanser body, the third textured surface area integrally forming part of the silicone exterior;

a first oscillating motor located within the skin cleanser body, the first oscillating motor configured to produce pulsations of the first and second textured surface areas; and

at least one control located on the lower portion of the skin cleanser body and operable through the silicone exterior, the at least one control configured to operate the first oscillating motor.

59. The skin cleanser of claim 58, wherein the thicker touch-points are grouped at a top of the upper portion of the first side of the skin cleanser body, and wherein the thinner touch-points are positioned below the thicker touch-points.

60. The skin cleanser of claim 59, wherein the thicker touch-points form a substantially semi-circular pattern at the top of the upper portion of the skin cleanser body, and wherein the thinner touch-points are positioned around at least one side of the semi-circular pattern.

61. The skin cleanser of any one of claims 58 to 60, wherein the third textured surface area is made up of additional thicker touch-points.

62. The skin cleanser of claim 61, wherein the second side does not include any thinner touch-points.

63. The skin cleanser of any one of claims 58 to 62, wherein a portion of the skin cleanser body including the first textured surface area and the second textured surface area is substantially equal to a portion of the skin cleanser body including the third textured surface area.

64. The skin cleanser of any one of claims 58 to 63, further comprising a second oscillating motor operable at a different frequency from the first oscillating motor.

65. The skin cleanser of any one of claims 58 to 64, wherein the first oscillating motor is operable to oscillate within a range of about 50 to 300 Hertz (Hz).

66. The skin cleanser of any one of claims 58 to 65, wherein the at least one control comprises an indentation in the lower portion of the skin cleanser body, the indentation configured to turn on and off the skin cleanser.

67. The skin cleanser of claim 66, wherein the at least one control further comprises plus and minus controls on either side of the indentation, the plus and minus controls configured to increase and decrease, respectively, a speed of the first oscillating motor.

68. The skin cleanser of any one of claims 58 to 60, wherein the third textured surface area is made up of a plurality of raised, smooth ridges.

69. The skin cleanser of claim 68, wherein the raised, smooth ridges are arranged in lines running across the skin cleanser body.

70. The skin cleanser of claim 69, wherein the raised, smooth ridges are arranged in a wave formation.

71. The skin cleanser of any one of claims 58 to 70, wherein the lower portion of the first side of the skin cleanser body comprises silicone and does not include any touch-points.

72. The skin cleanser of any one of claims 58 to 71, wherein the first textured surface area is compressible to contour to a skin surface.

73. The skin cleanser of any one of claims 58 to 71, wherein the thicker and the thinner touch-points are compressible or bendable to contour to a skin surface, and wherein each touch-point of the thicker and the thinner touch-points is formed as a single structure.

74. The skin cleanser of any one of claims 58 to 71, wherein the first oscillating motor is arranged within the skin cleanser body to vertically oscillate the thicker and the thinner touch-points.

75. The skin cleanser of claim 74, wherein the thicker and the thinner touch-points are configured to provide a tapping motion via the vertical oscillations against a skin surface when the first and second textured surface areas are placed against the skin surface.

76. The skin cleanser of claim 58, wherein the thicker touch-points are grouped at a top of the upper portion of the first side of the skin cleanser body, and wherein the thinner touch-points are positioned below the thicker touch-points,
wherein the at least one control comprises:

an indentation in the lower portion of the skin cleanser body, the indentation configured to turn on and off the skin cleanser, and

controls on either side of the indentation that are configured to increase and decrease a speed of the first oscillating motor,

wherein the lower portion of the first side of the skin cleanser body comprises silicone and does not include any touch-points,

wherein the thicker and the thinner touch-points are compressible or bendable to contour to a skin surface,

wherein each touch-point of the thicker and the thinner touch-points is formed as a single structure,

wherein the skin cleanser is shaped to be held in a hand of a user with a thumb of the user resting against the at least one control and one or more fingers of the user resting on the second side of the skin cleanser body, and

wherein the first and second textured surface areas are positioned on the upper portion of the skin cleanser body such that the user is able to press the first and second textured surface areas against the skin surface when the skin cleanser is held in the hand of the user.

77. A skin cleanser comprising:

a skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to a base of the skin cleanser body than in a second direction substantially parallel to the base, wherein the base is substantially flat and is configured to stand unaided on a substantially flat surface, the skin cleanser body comprising:

a silicone exterior covering substantially all of an exterior of the skin cleanser body,

a first side of the silicone exterior including:

a first textured surface area of first touch-points positioned on the skin cleanser body, the first textured surface area integrally forming part of the silicone exterior; and

a second textured surface area of second touch-points positioned on the skin cleanser body, wherein the second touch-points are thinner than the first touch-points, the second textured surface area integrally forming part of the silicone exterior, and

a second side of the silicone exterior including:

a third textured surface area of touch-points or ridges positioned on the skin cleanser body, the third textured surface area integrally forming part of the silicone exterior;

 a first oscillating motor located within the skin cleanser body, the first oscillating motor configured to produce pulsations of the first and second textured surface areas; and
 at least one control located on the skin cleanser body and operable through the silicone exterior, the at least one control configured to operate the first oscillating motor.

78. The skin cleanser of claim 77, wherein the first touch-points are grouped at a top of the first side, and wherein the second touch-points are positioned below the first touch-points.

79. The skin cleanser of claim 78, wherein the first touch-points form a substantially semi-circular pattern at the top of the first side, and wherein the second touch-points are positioned around one side of the semi-circular pattern.

80. The skin cleanser of any one of claims 77 to 79, wherein the third textured surface area is made up of touch-points of substantially a same size as the first touch-points.

81. The skin cleanser of any one of claims 77 to 80, wherein a portion of the skin cleanser body including the first textured surface area and the second textured surface area is substantially equal to a portion of the skin cleanser body including the third textured surface area.

82. The skin cleanser of any one of claims 77 to 81, wherein the at least one control comprises an indentation in the skin cleanser body, the indentation configured to turn on and off the skin cleanser.

83. The skin cleanser of claim 82, wherein the at least one control further comprises controls on either side of the indentation that are configured to increase and decrease a speed of the first oscillating motor.

84. The skin cleanser of any one of claims 77 to 79, wherein the third textured surface area is made up of a plurality of raised, smooth ridges arranged in lines running across the skin cleanser body.

85. The skin cleanser of any one of claims 77 to 84, wherein the skin cleanser body includes an additional surface area below the second textured surface area that does not include any touch-points.

86. The skin cleanser of any one of claims 77 to 85, wherein the first oscillating motor is arranged within the skin cleanser body to vertically oscillate the first and second touch-points to provide a tapping motion against a skin surface when the first and second textured surface areas are placed against the skin surface.

87. The skin cleanser of any one of claims 77 to 85, wherein the first textured surface area of the first touch-points and the second textured surface area of the second touch-points are compressible or bendable to contour to a skin surface,

wherein each one of the touch-points of the first and second touch-points is formed as a single structure,

wherein the skin cleanser is shaped to be held in a hand of a user with a thumb of the user resting against the at least one control and one or more fingers of the user resting on the second side of the skin cleanser body, and

wherein the first and second textured surface areas are positioned on the skin cleanser body such that the user is able to press the first and second textured surface areas against the skin surface when the skin cleanser is held in the hand of the user.

88. A skin cleanser having a skin cleanser body, the skin cleanser comprising:

a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base;

a silicone exterior covering substantially all of an exterior of said skin cleanser body, the silicone exterior having:

a first side defining a first textured surface area that is integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points; and

a second side defining a second textured surface area that is integrally formed with the silicone exterior, the second textured surface area comprising a second set of touch-points;

a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and

at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

89. The skin cleanser of claim 88, wherein at least two touch-points of the second set of touch-points has a diameter that is larger than the diameter of at least two touch-points of the first set of touch-points.

90. The skin cleanser of claim 88, wherein the diameter of at least two touch-points of the second set of touch-points is between about 0.5 millimeters and about 2.5 millimeters.

91. The skin cleanser of claim 90, wherein the diameter of at least two touch-points of the first set of touch-points is between about 0.5 millimeters and about 2.5 millimeters.

92. The skin cleanser of any one of claims 88 to 91, wherein the first textured surface area is larger than the second textured surface area.

93. The skin cleanser of any one of claims 88 to 91, wherein the second textured surface area is substantially the same size as the first textured surface area.

94. The skin cleanser of any one of claims 88 to 93, wherein the base is substantially transparent.

95. A skin cleanser having a skin cleanser body, the skin cleanser comprising:
a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base;
a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having:

 a first side defining a first textured surface area that is integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points; and
 a second side defining a second textured surface area that is integrally formed with the silicone exterior;

 a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and

 at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.

96. The skin cleanser of claim 95, wherein the diameter of at least two touch-points of the first set of touch-points is between about 0.5 millimeters and about 2.5 millimeters.

97. The skin cleanser of claim 95 or 96, wherein each touch-point of the first set of touch-points has substantially the same diameter.

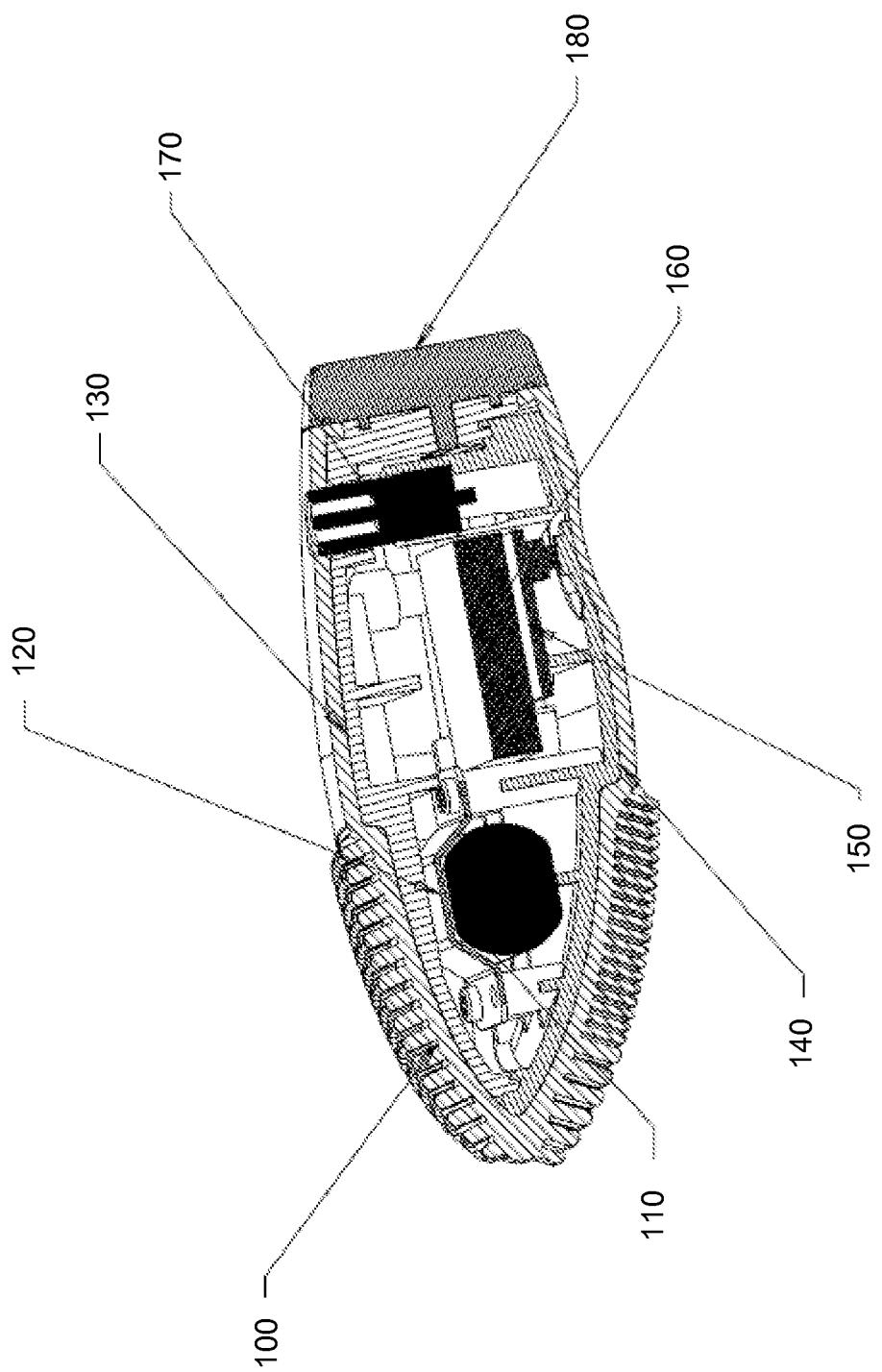
98. The skin cleanser of claim 95, wherein the second textured surface area comprises a second set of touch-points.

99. The skin cleanser of claim 98, wherein each touch-point of the second set of touch-points has substantially the same diameter.

100. The skin cleanser of any one of claims 95 to 99, further comprising a first groove defined by the first side of the silicone exterior, the first groove disposed substantially adjacent the first textured surface area.

101. The skin cleanser of claim 100, further comprising a second groove defined by the second side of the silicone exterior, the second groove disposed substantially adjacent the second textured surface area.

102. A skin cleanser having a skin cleanser body, the skin cleanser comprising:
a substantially flat base configured to stand unaided on a substantially flat surface, the skin cleanser body having a cross-sectional shape that is longer in a first direction substantially parallel to the base than in a second direction substantially parallel to the base;
a silicone exterior covering substantially all of an exterior of the skin cleanser body, the silicone exterior having a first side defining a first textured surface area that is integrally formed with the silicone exterior, the first textured surface area comprising a first set of touch-points;
a first oscillating motor disposed within the skin cleanser body and configured to produce pulsations of the skin cleanser; and
at least one control disposed on the skin cleanser body and configured to operate the first oscillating motor.


103. The skin cleanser of claim 102, wherein each touch-point of the first set of touch-points has substantially the same diameter.

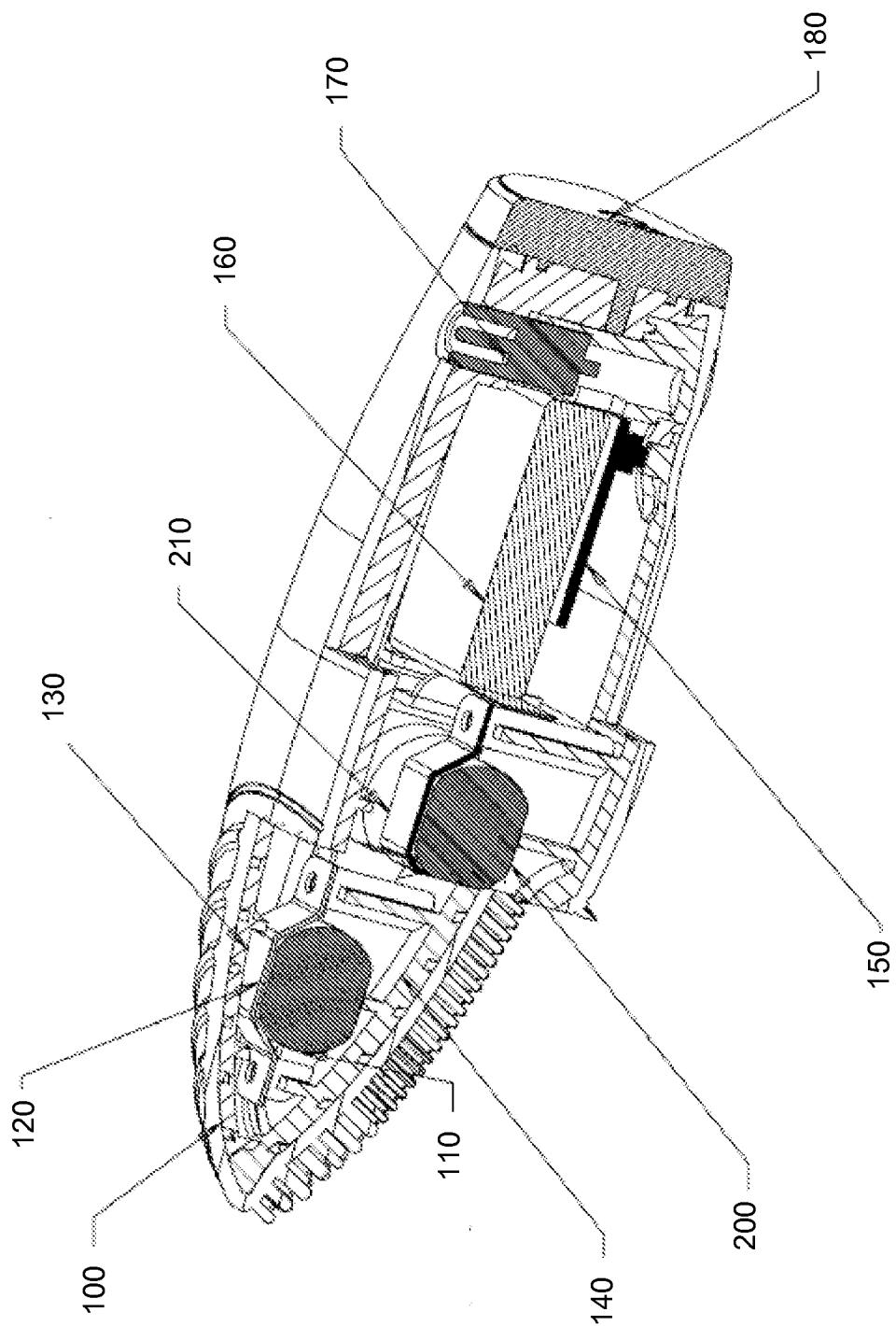
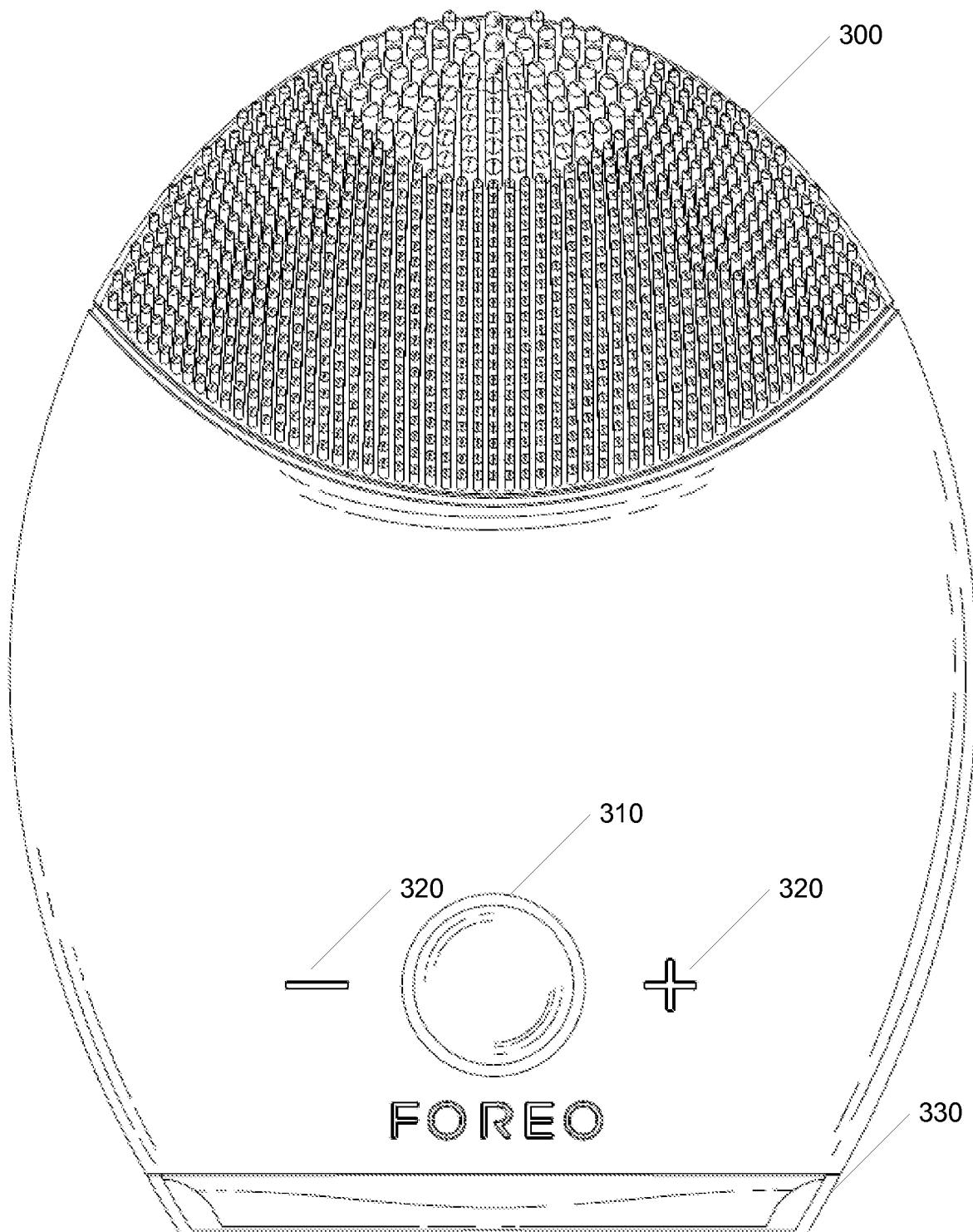
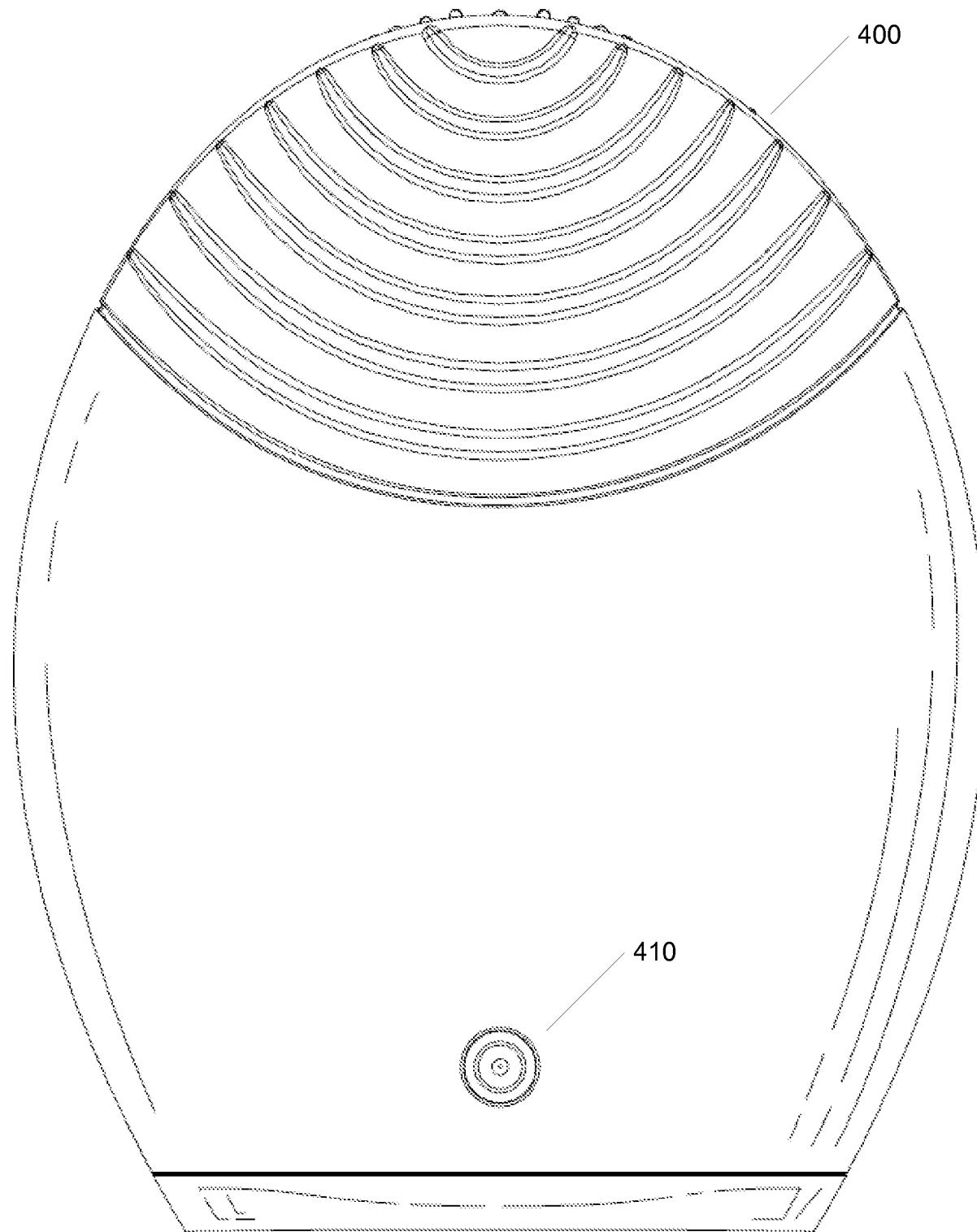
104. The skin cleanser of claim 102 or 103, wherein the oscillating motor is operable to oscillate within a range of about 50 Hertz to about 300 Hertz.

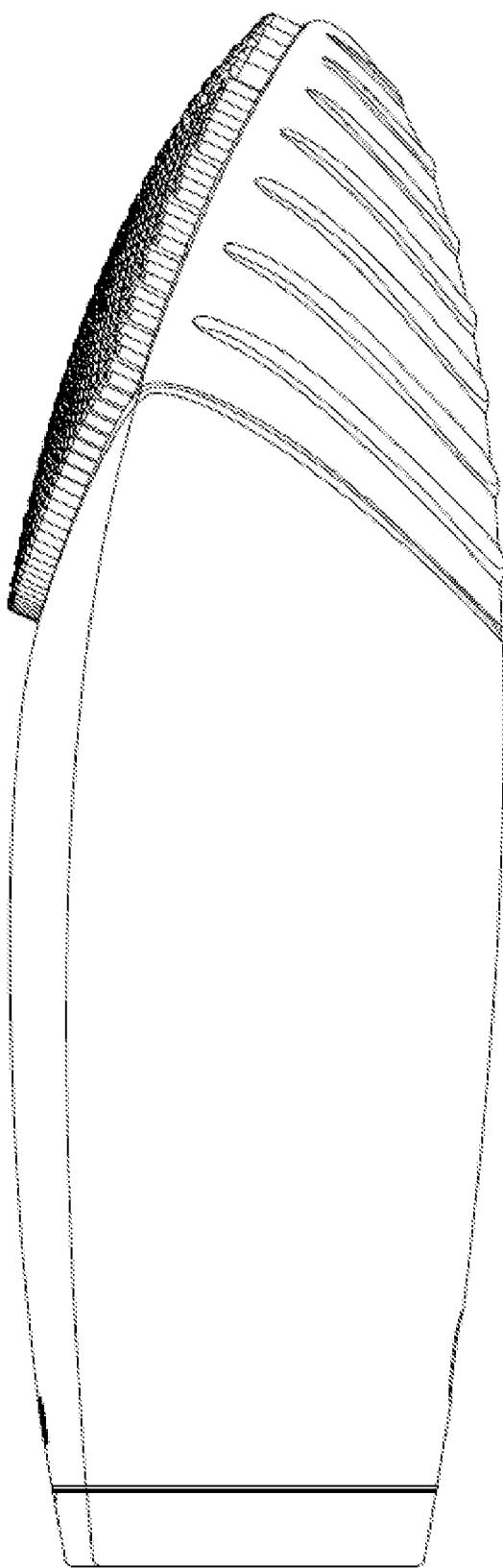
105. The skin cleanser of any one of claims 102 to 104, wherein the at least one control is disposed on the first side.

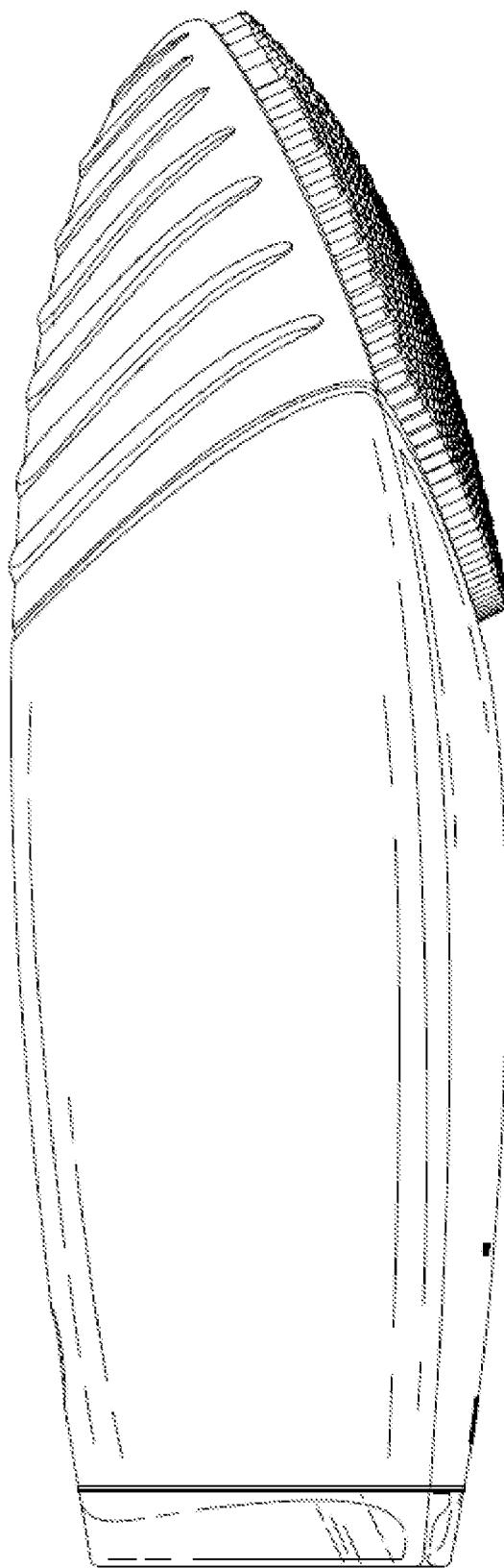
106. The skin cleanser of claim 105, wherein the at least one control comprises a mode control in a lower portion of the skin cleanser body, the mode control configured to turn on and off the skin cleanser.

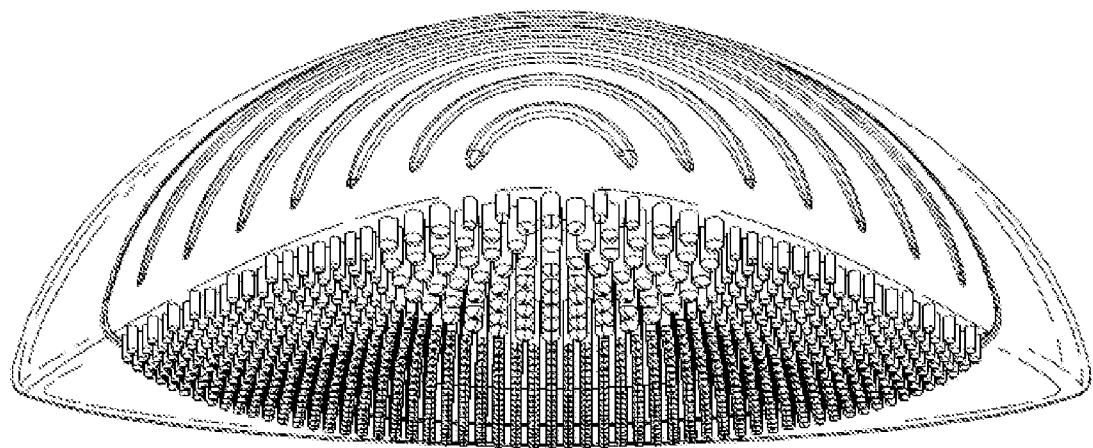
107. The skin cleanser of claim 106, wherein the at least one control further comprises plus and minus controls on either side of the mode control, the plus and minus controls configured to increase and decrease, respectively, a speed of the first oscillating motor.

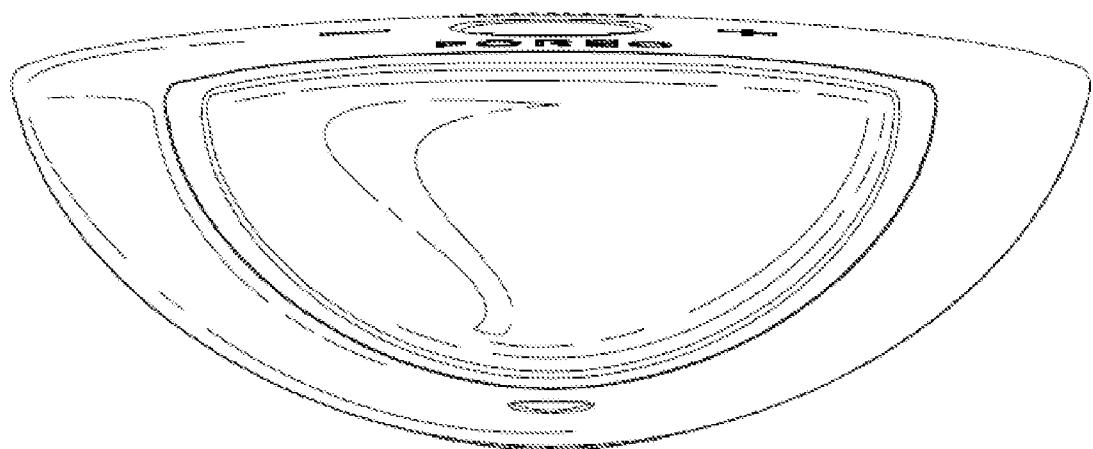
Fig. 1

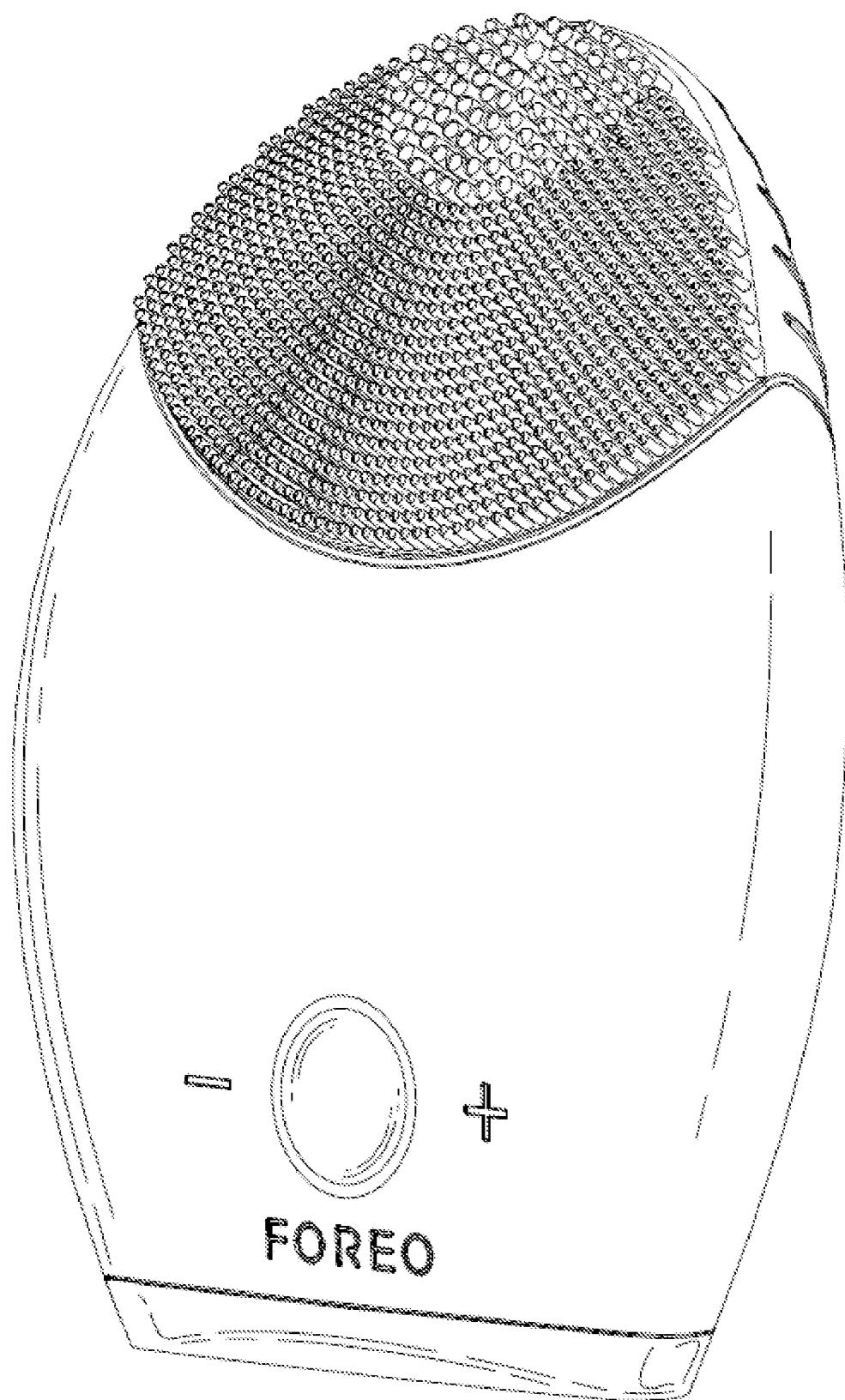




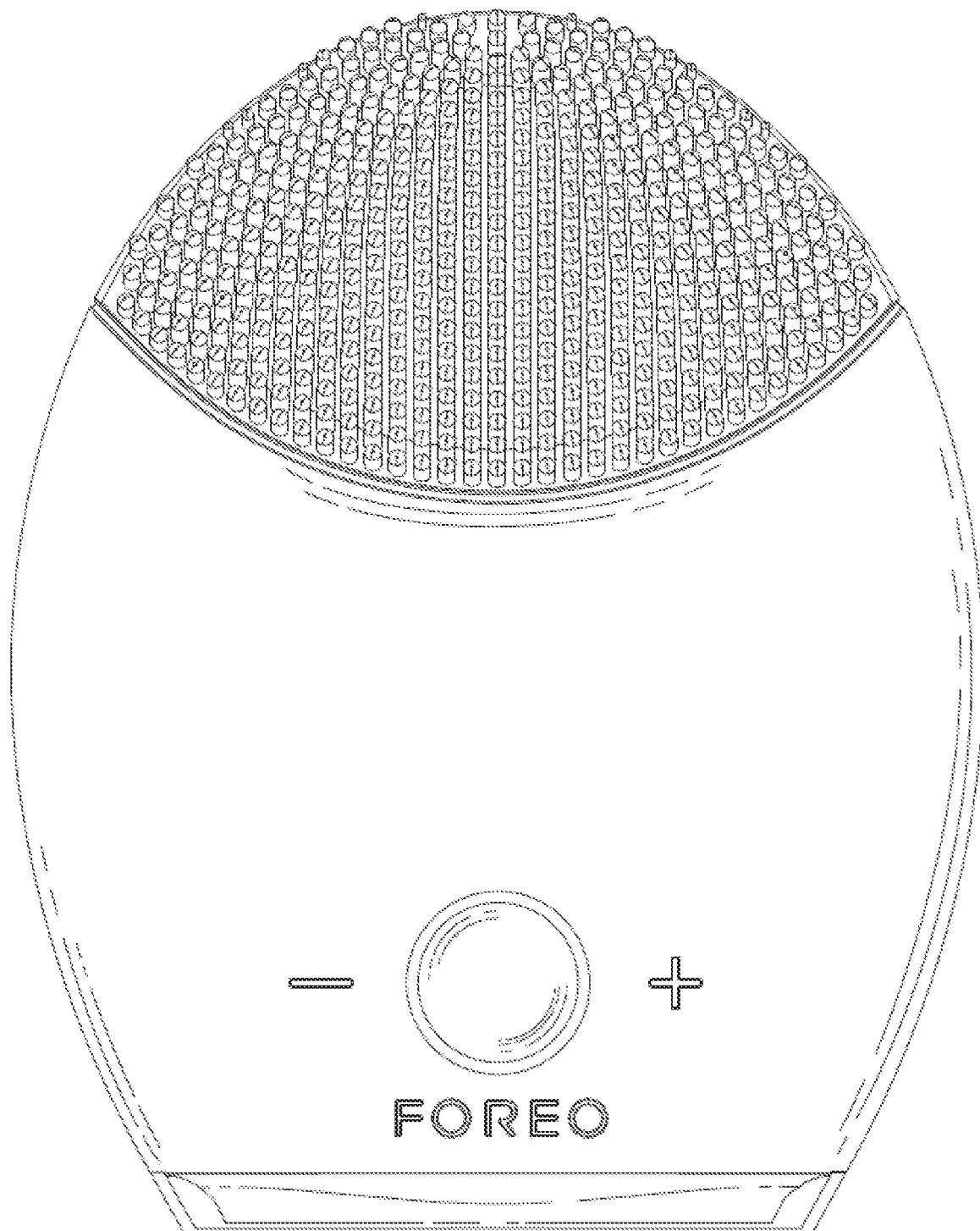

Fig. 2

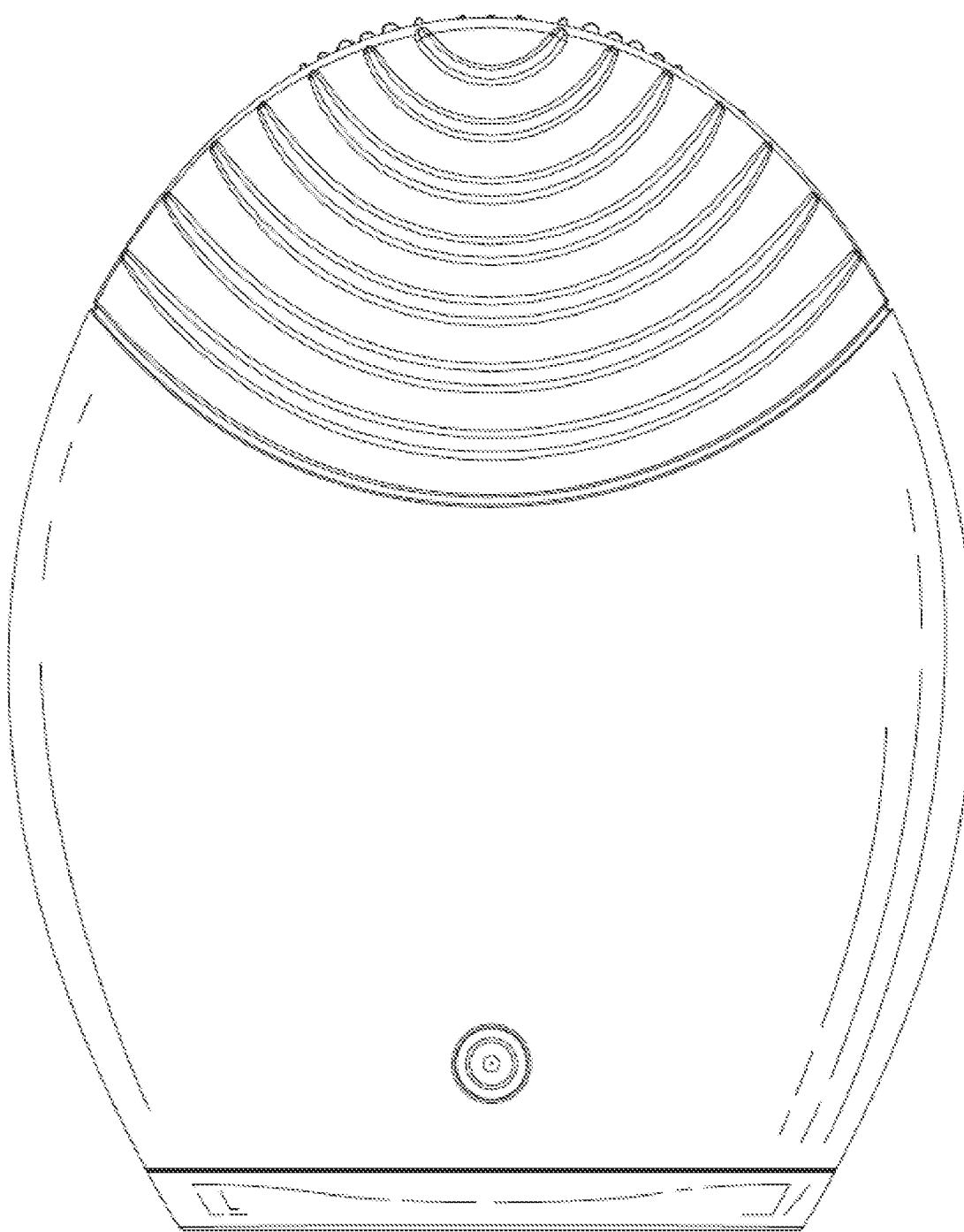

Fig. 3

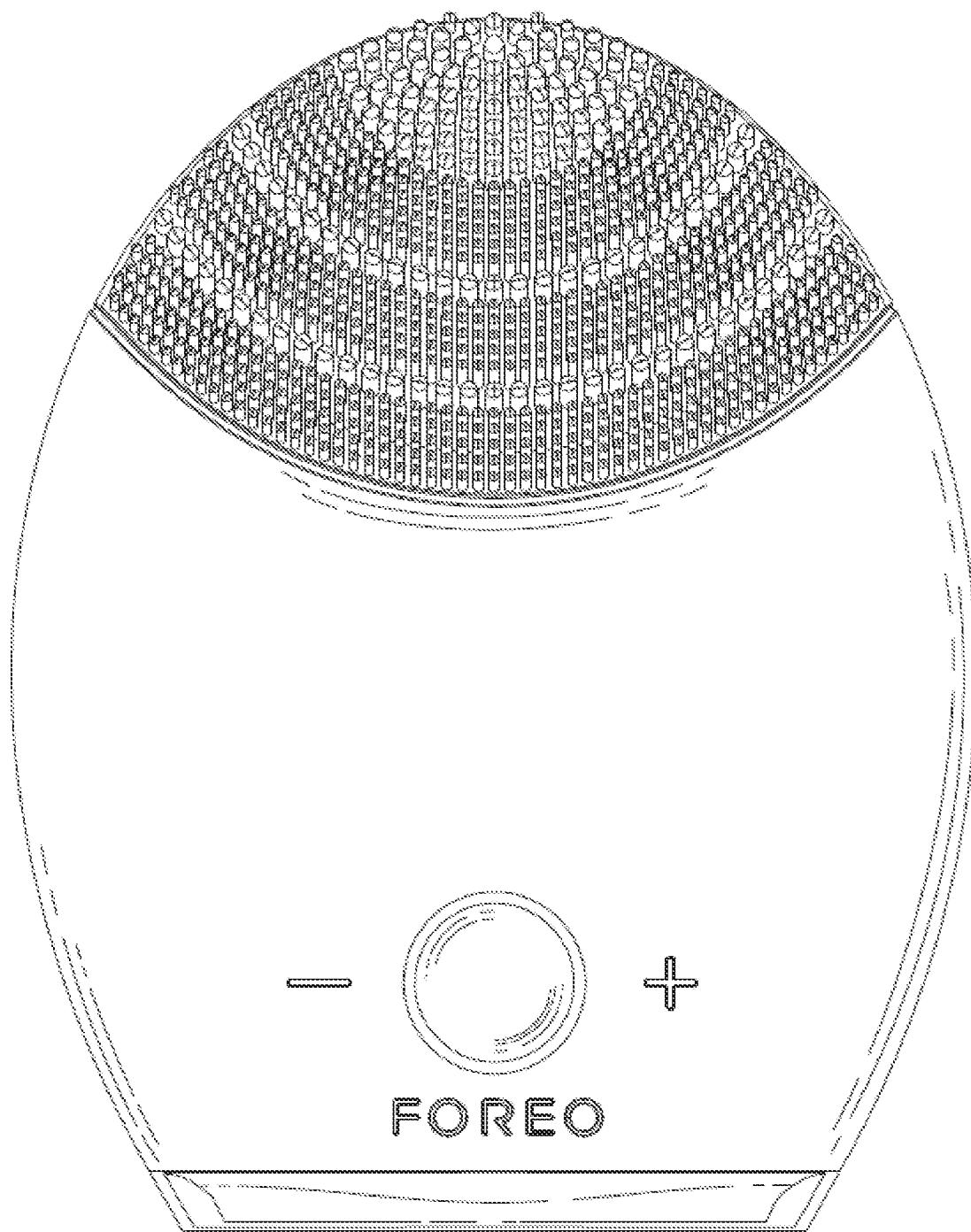

Fig. 4

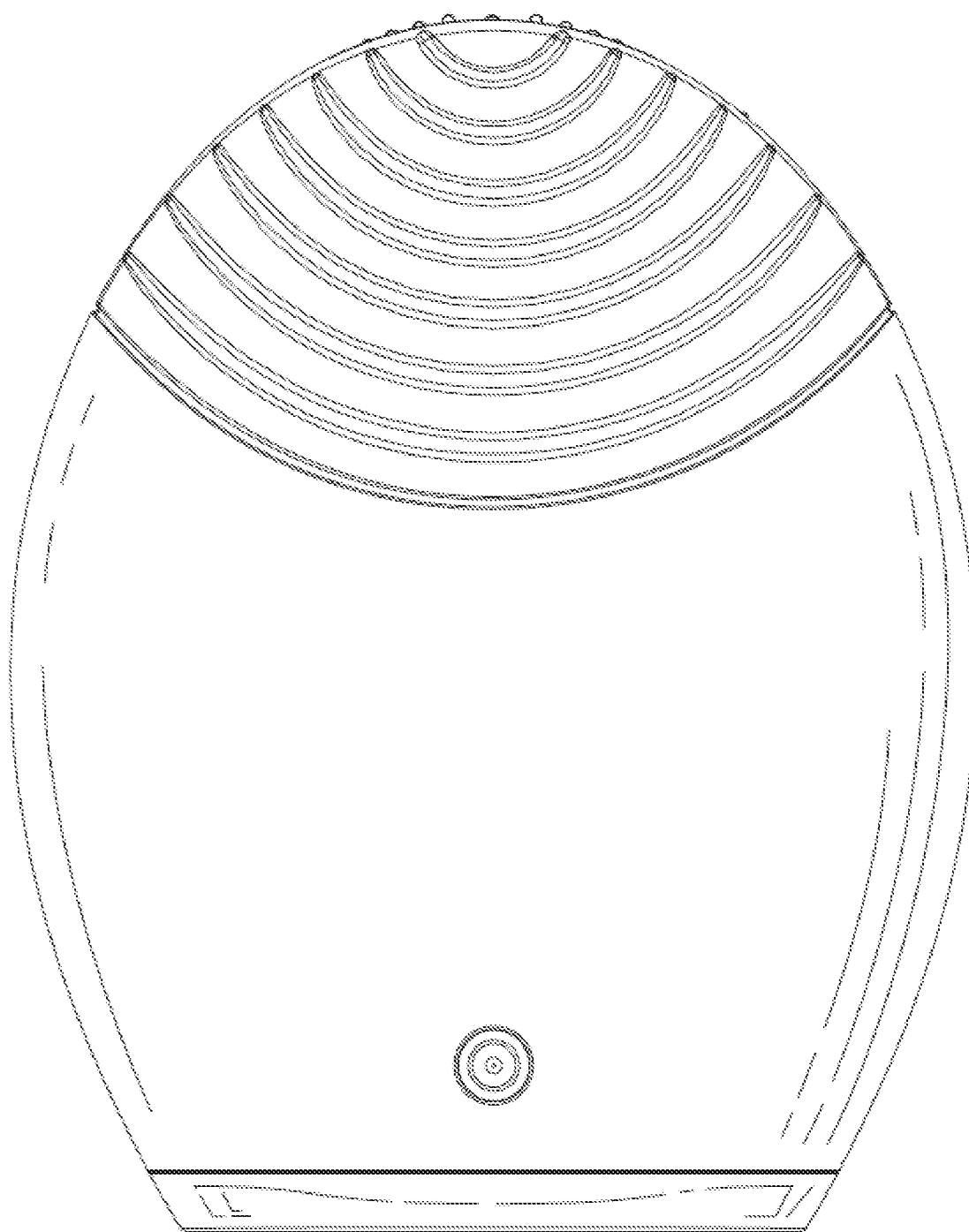

Fig. 5

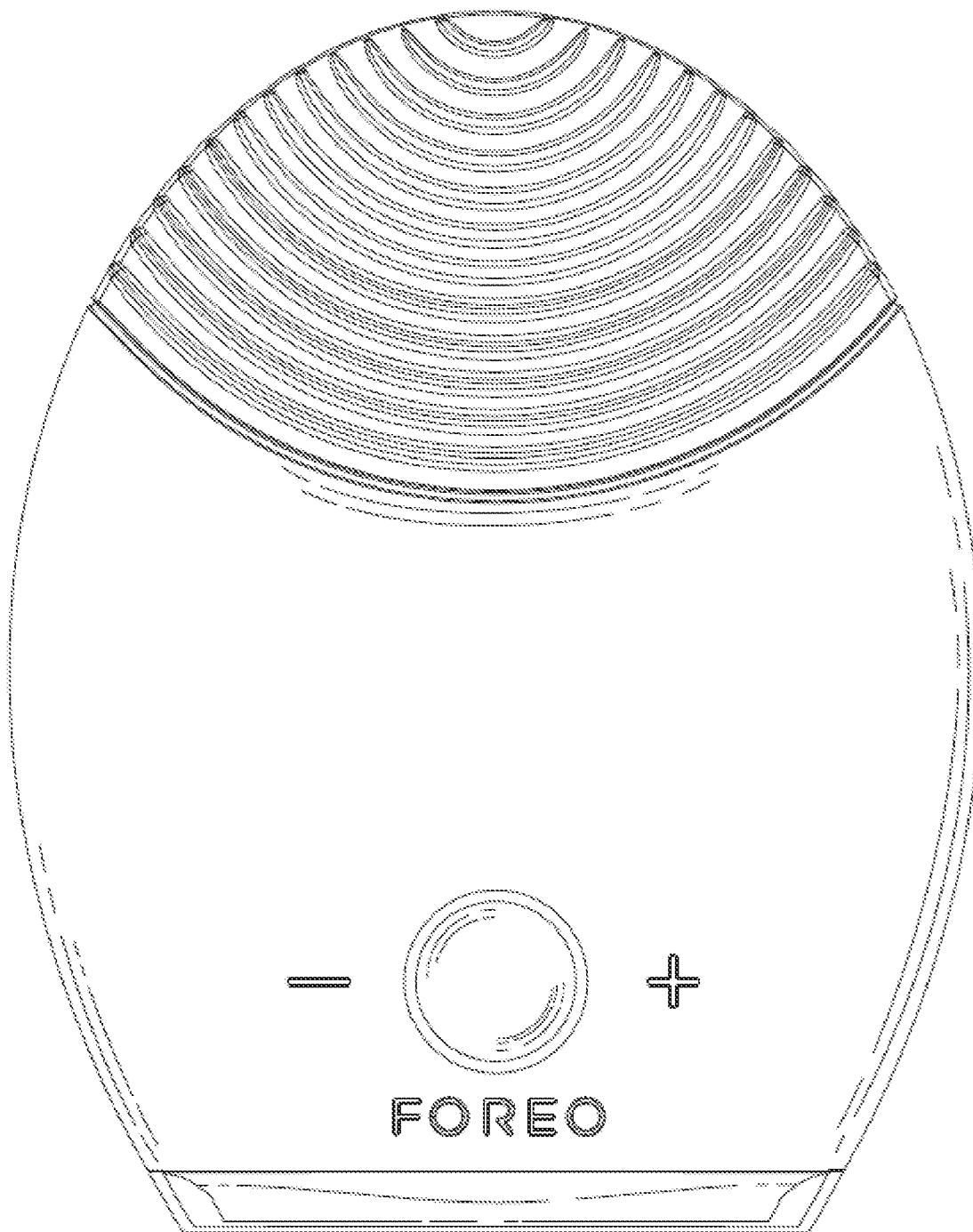

Fig. 6


Fig. 7


Fig. 8


Fig. 9


Fig. 10


Fig. 11

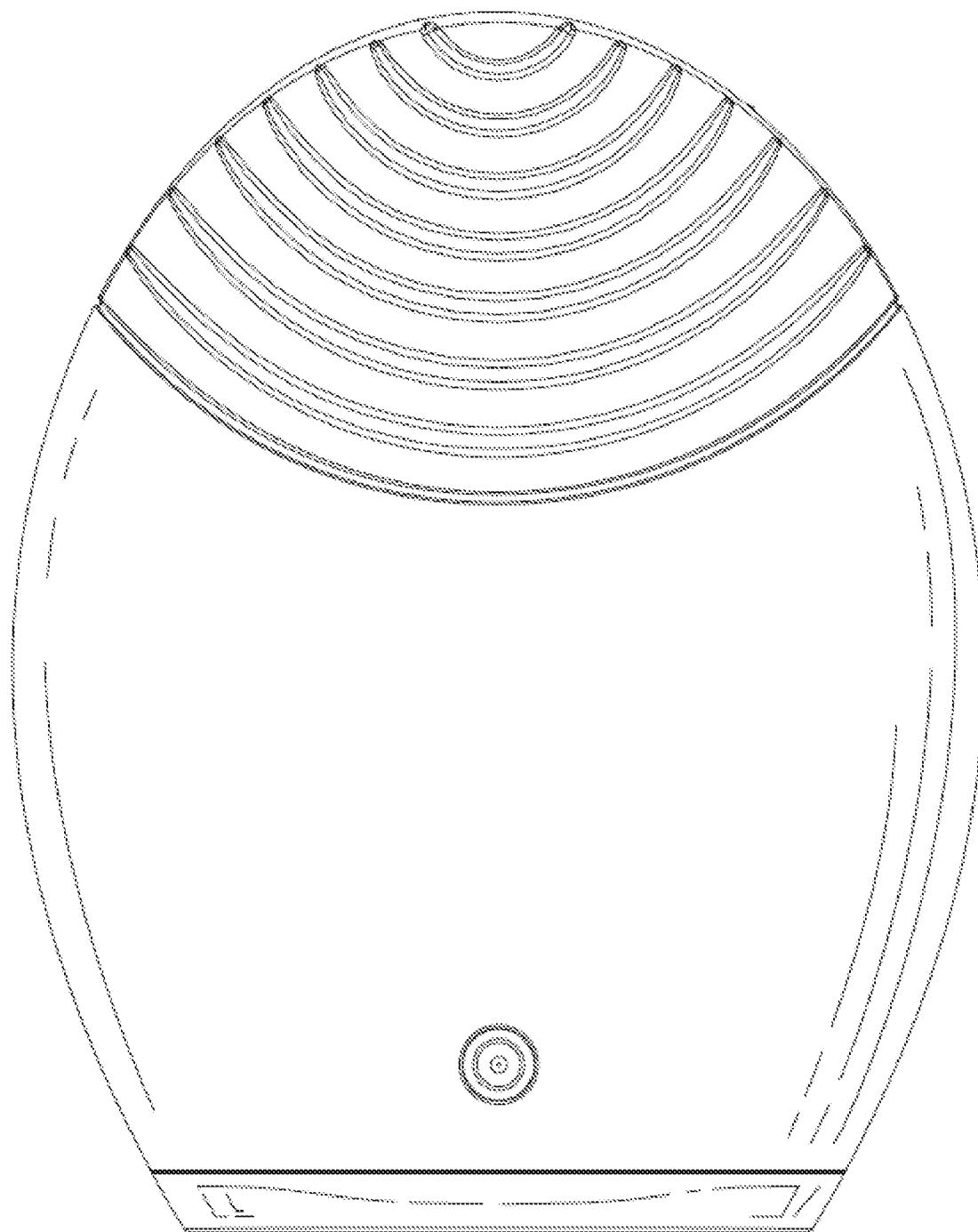
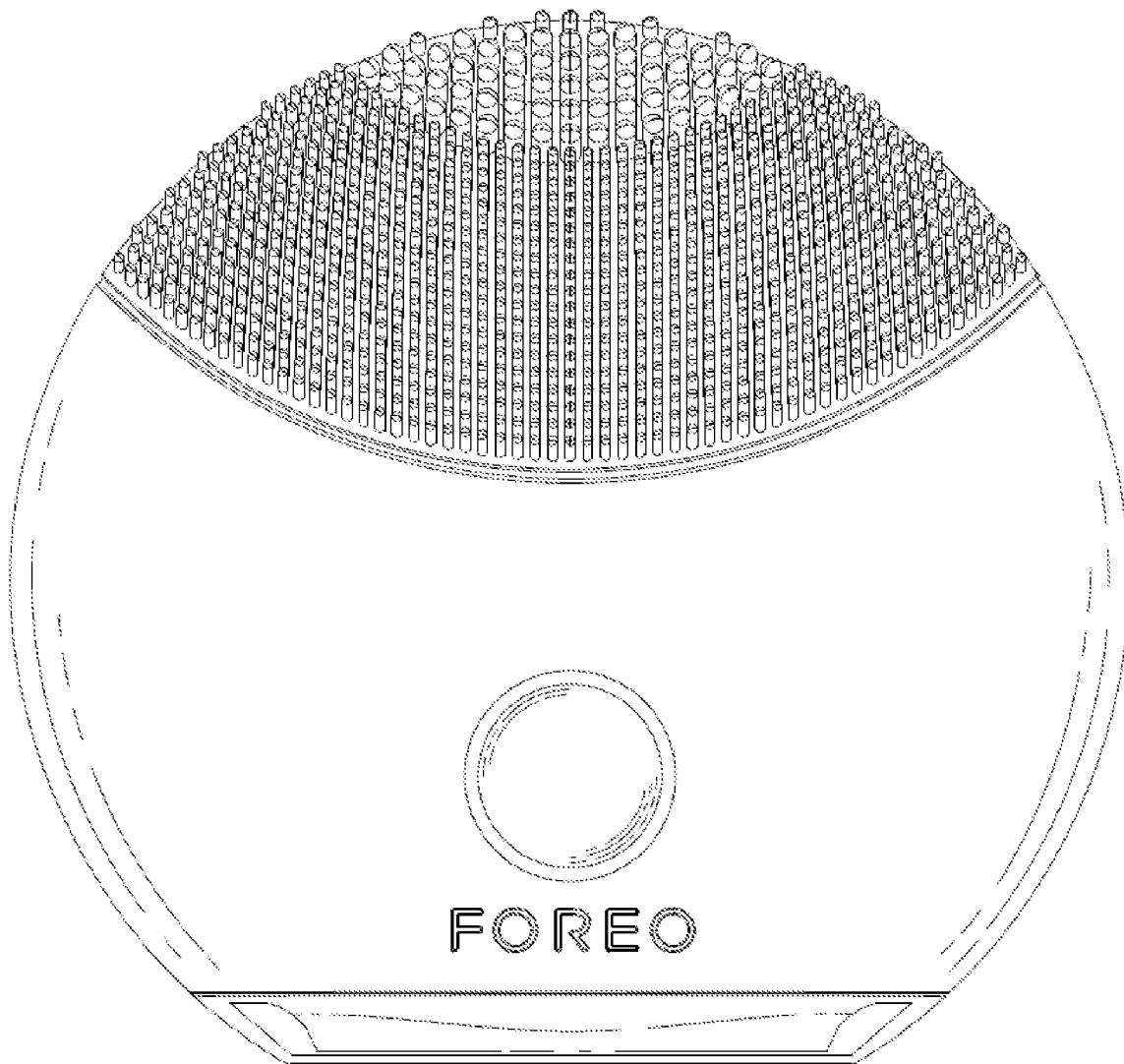
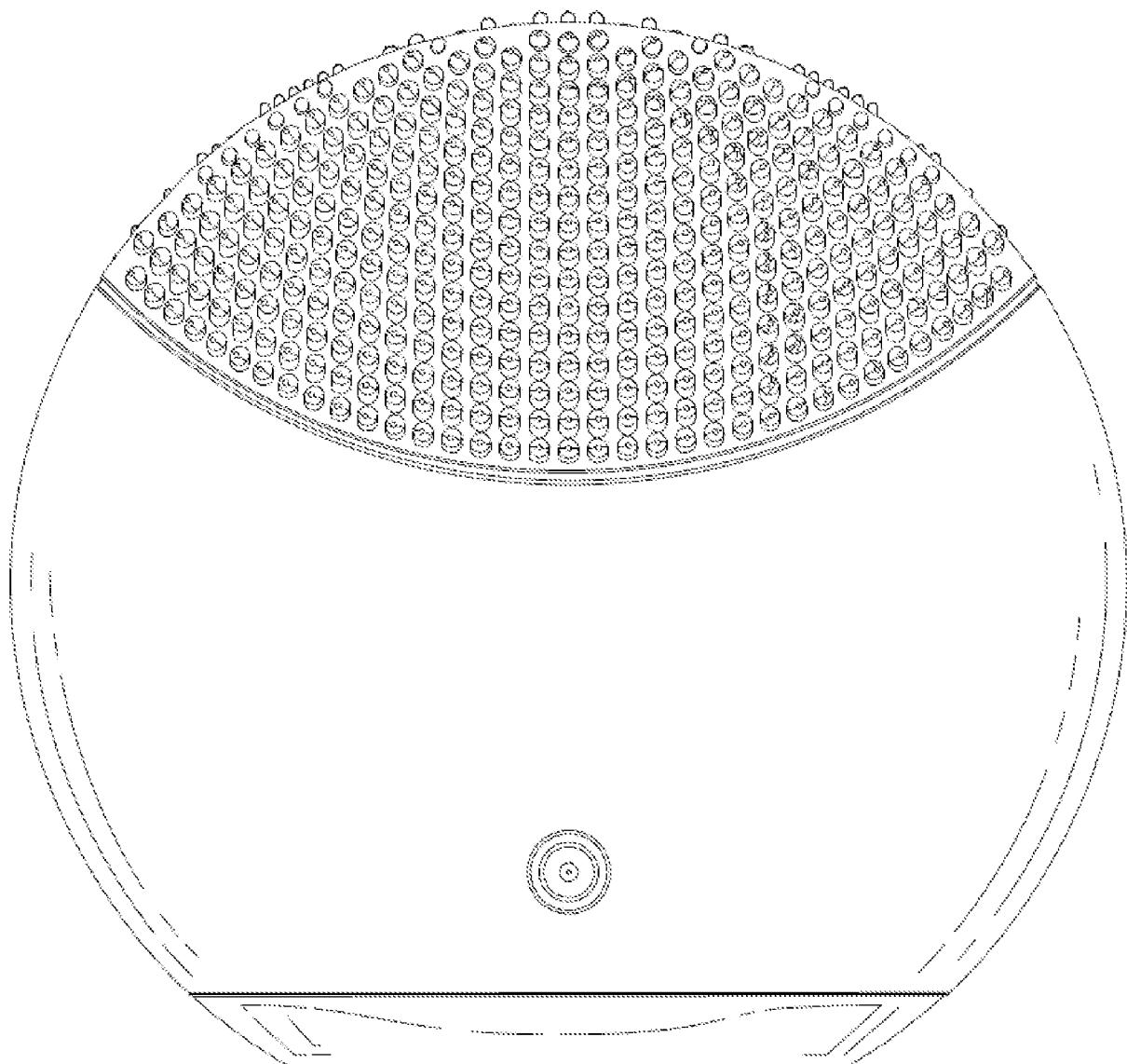

Fig. 12

Fig. 13


Fig. 14


Fig. 15

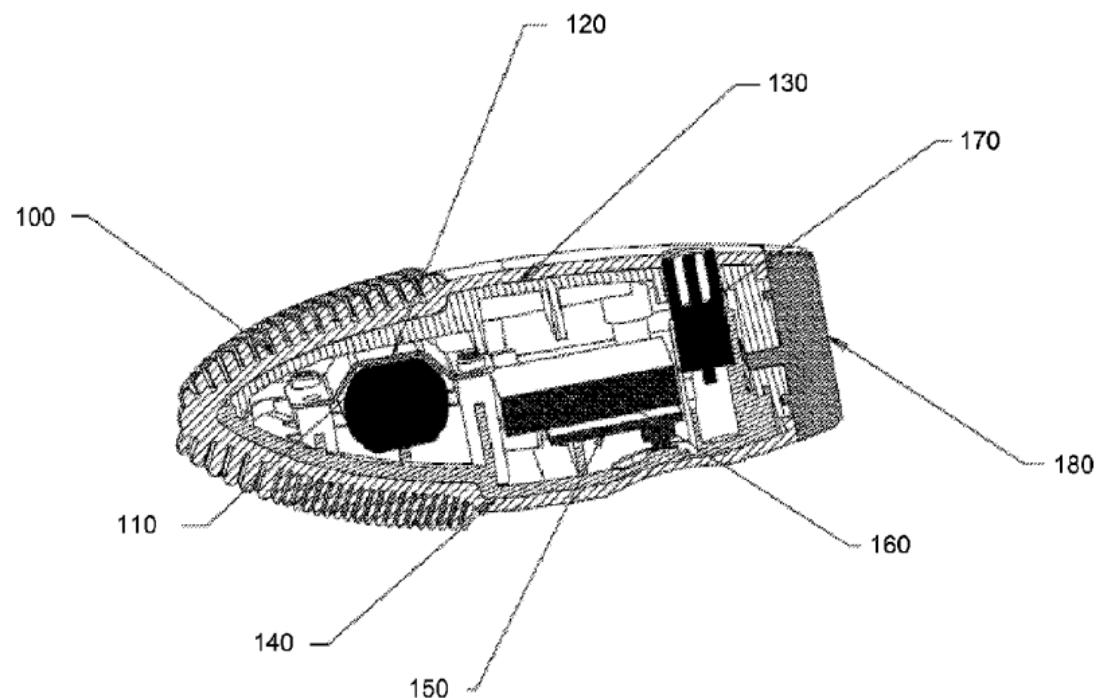

Fig. 16

Fig. 17

Fig. 18

