METHOD OF HOMOGENIZING A LIQUID AND APPARATUS THEREFOR

Abstract: Method of and assembly for homogenizing a liquid, in particular a colorant for paint, in a container, comprising the steps of withdrawing liquid from the container and then returning the liquid to the container. With this method and assembly, no stirrer is required.

Published: with international search report (Art. 21(3))
METHOD OF HOMOGENIZING A LIQUID AND APPARATUS THEREFOR

Technical Field

The invention relates to a method of homogenizing a liquid, in particular a colorant for paint, in a container. The invention further relates to an assembly for dispensing a liquid comprising a container and a pump and to an apparatus comprising a plurality of such assemblies.

Background Art

Brownian motion of particles suspended in liquids is not sufficient to overcome gravitational forces and such particles tend to settle out of the liquid and agglomerate. The paint industry has struggled with this problem for more than a hundred years. It is still widely believed within this industry that in order for a pigmented colorant to be successfully applied using colorant dispensers the dispersion must be stirred. This requirement places stringent demands on the manufacturers of dispensers, especially when colorants contain a high loading of pigment.

EP 2 198 950 relates to an apparatus (denoted by numeral 1 in the Figures of that publication) for dispensing a plurality of fluids, comprising a support, such as a turntable (2) or a linear table, a plurality of containers (4) for holding a fluid mounted on the support (2), pumps (3) connected to respective containers (4), a common actuator (31) for sequentially operating the pumps (3), stirring elements mounted rotatably inside and extending from the containers (4), and a drive mechanism (21) for rotating the stirring elements, wherein the support (2) on the one hand and the actuator (31) and drive mechanism (21) on the other are movable relative to each other. The drive mechanism (21) comprises a protrusion (26) movable between at least a first, extended position
(Figure 2B) for engaging a stirring element (20) and a second, retracted position (Figure 2A).

WO 2008/110606 relates to a canister assembly comprising an annular outer shell (21) with an outer cylindrical wall connected to a bottom which, in turn, is connected to an inner cylindrical wall that serves as a standpipe. The bottom includes an outlet (29) connected to a pump. A hollow agitator shaft (21) slides over the inner standpipe and includes a plurality of outwardly extending blades (32) for stirring or "agitating" the fluid.

EP 1 908 510 relates to a device for mixing fluids, particularly paints and varnishes. The Figures of this publication shows a storage tank (2) containing a stirring element. GB 1,004,721 also discloses stirring devices.

In practice, stirrers get contaminated, the colorants will dry in, and over time a buildup of thin layers of colorant will form on the stirrers. The dried layers can be a serious cause of contamination when pieces of the layers break away and drop in the colorant. This might even cause blocking of a downstream pump or contamination of the paint.

Another disadvantage is that stirrers inevitably cause a lot of interaction between the colorant and the atmosphere above the colorant, resulting in evaporation of solvent and in oxidation.

It is an object of the present invention to provide a method of homogenizing a liquid, in particular a colorant for paint, in a container, that does not require a stirrer.

Summary of the disclosure

The invention relates to a method of homogenizing a liquid, in particular a colorant for paint, in a container, comprising the steps of withdrawing liquid from the container and then returning the liquid to the container.

These measures were found to result in effective mixing, even without the use a stirrer.
In an embodiment, the liquid is withdrawn from the container at a first flow speed (S1) and then returned to the container at a second flow speed (S2), higher than the first flow speed (S1).

In another embodiment, part, preferably most of the liquid is returned in a direction having an axial component, preferably returned along the central axis of the container.

In a further embodiment the flow speed of the liquid being returned is in excess of 0.2 A * (V^1/2)/M, where M is the percentage of the volume of the liquid withdrawn relative to the maximum volume of the container, V is the percentage of the height of the column of the liquid in the container (before withdrawing) relative to the height of the container, and A is a correction for viscosity and in range of 0.6 to 1.4, preferably in a range from 0.8 to 1.2. In yet another embodiment, an amount of at least 5% preferably at least 10% of the content of the container is withdrawn from and returned to the container, typically no more than 50% of the content of the container.

In an embodiment, the liquid is returned to the container via one or more nozzles and the Reynolds number at the nozzle(s) is in excess of 1000, preferably in excess of 2000, i.e.

$$\frac{\rho V L C}{\mu} = \text{Re} > 1000, \text{ preferably } > 2000.$$

where ρ is the density of the liquid, V is the nozzle exit speed of the liquid, L is the nozzle diameter, μ is the viscosity of the liquid, and C is a canister characteristic having a value in a range from 1 to 5, preferably 1.6.

Due to the high energy dissipation at the nozzle at conditions where Reynolds is in excess of 1000, the jet will result in turbulent flow with the creation of eddies with a large range of sizes. The larger-scale eddies are considered responsible for capturing fluid from the surroundings and entraining it into the flow resulting in thorough mixing of the material.
Further, the liquid is preferably returned at a pressure in a range from 2 to 10 bar, more specifically 3 to 8 bar, more specifically 4 to 6 bar.

By adjusting the flow speed to the viscosity of the colorant in such a way that a pulse flow is created at the exit of the conduit connecting the container to a pump, the colorant will flow upwards through the centre of the container and reach the top portion of the liquid in the container. To avoid that the returned colorant will break through the colorant surface in the container, the pump stroke and pump speed can be adjusted to the actual colorant level and colorant specification (density, viscosity, reologic structure, etc.).

In an embodiment, at least part, preferably most or all of the liquid is returned in a direction having an radial component, preferably at least substantially radially and preferably along the bottom of the container.

In another embodiment, at least part, preferably most or all of the liquid is returned in a direction having an tangential component, preferably at least substantially tangentially and at an inclination, e.g. to create a vortex about the central axis of the container.

To efficiently homogenize the whole contents of the container, it is preferred to withdraw liquid from the lower half, preferably the bottom portion of the liquid in the container and return it to the upper half, preferably the top portion of the liquid in the container.

Another embodiment comprises consecutively repeating the steps of withdrawing liquid from the container and then returning the liquid to the container until a volume corresponding to at least 50%, preferably at least 70% of the liquid in the container has been withdrawn and returned. This procedure can be carried out e.g. between dispensing paint recipes or when the dispenser has been idle for a pre-selected period, e.g. six hours.

To compensate for variations in viscosity resulting from, e.g., variations in temperature, in an embodiment, the method comprises establishing, e.g. measuring, calculating or
retrieving from a database, the viscosity of the liquid in the container and adjusting the first and/or second flow speeds depending on the viscosity.

The invention further relates to an assembly for dispensing a liquid comprising a container for holding a liquid, a pump connected to the container via at least one conduit and a controller for operating the pump, wherein the controller is arranged to operate the pump to withdraw liquid from the container at a first flow speed (S1) and then return the liquid to the container at a second flow speed (S2), higher than the first flow speed (S1).

In an embodiment, the conduit is oriented in a direction having a component extending along the central axis of the container, i.e. an axial component, and preferably extends coaxial with the central axis of the container.

In another embodiment no stirrer is present in the container, thus avoiding the disadvantages of a stirrer outlined above.

The invention further relates to an apparatus for dispensing a plurality of liquids, in particular colorants for paint, comprising a plurality of assemblies in accordance with the invention as described above.

Stirred containers usually have a round cross-section to accommodate the (rotating) stirrer and to render it effective. It was found that stirring according to the present invention is also efficacious in containers having a non-round cross-section. Thus, the cross-section of the containers can be selected or optimized for other design parameters, such as efficient use of space in a dispenser comprising a plurality of containers. In an embodiment, the container(s) has (have) an oblong, e.g. oval or wedge-shaped, cross-section. In such embodiments, it is preferred that a nozzle is directed to at least one of the (far) ends of the cross-section.

In another embodiment, the bottom of the container or at least some of the containers is concave, e.g. conical, frusto-conical or single or double curved, e.g. bowl- or torus-shaped. Thus, liquid jetted back to the container radially or
in a direction having a radial component more effectively stirs
the bottom portion of the liquid before being directed upwards,
distributing sediment over a large portion of the liquid in the
container.

Within the framework of the present invention the term
"liquid" is defined as any flowable material that comprises a
liquid phase and thus includes suspensions and emulsions.
Colorants often contain high density pigments or particles
suspended in (instable) liquid binder/solvent solutions.

5

Brief description of the drawings

The disclosed method, assembly, and apparatus will be
further explained with reference to the accompanying drawings
in which presently preferred embodiments of the invention are
shown schematically.

Figure 1 is a perspective view of a disclosed
apparatus for dispensing liquids.

Figures 2A to 2C are cross-sections of an assembly
comprising a container and a pump and illustrate a sequence of
events in accordance with the present invention.

Figures 3 to 5 show further embodiments of the
assembly according to the present invention.

Figures 6A and 6B are cross-sections of a nozzle used
in the embodiment shown in Figure 5.

Figures 7A to 7C are cross-sections, in front, side
and top plan views, of an embodiment according to the present
invention employing radial injection of withdrawn liquid.

Figure 8 schematically shows the homogenizing of
liquid in the container according to figures 7A to 7C.

It is noted that the drawings are not necessarily to
scale and that details, which are not necessary for
understanding the present invention, may have been omitted.

Detailed description of the presently preferred
embodiments
Figure 1 shows an example of an apparatus 1 for dispensing a plurality of liquids, such as colorants for paints, but also hair dyes, shampoos, foundations, and the like. It can be used for dispensing numerous recipes and formulas of the said products and it can be located e.g. at a retailer of e.g. decorative paints.

This particular dispensing apparatus 1 is an automated version and includes a horizontal turntable 2, with a plurality of containers 3 mounted along its circumference. Each container 3 is provided with a pump 4 and a valve 5 (Figures 2A to 5).

The turntable 2 can be rotated between discrete positions, e.g. twelve or sixteen positions including a dispensing position, i.e. a position where the pumps and valves are operated by means of a central actuator. Liquids are dispensed in a receptacle, in this example a bucket 6 on an adjustable shelf 7. The apparatus 1 includes a base 8 made e.g. by injection moulding a polymer. A computer 9 for entering and storing information, such as customer data and recipes, and generating instructions for driving the turntable 2, pumps and valves, is positioned on a separate stand 10.

Further information regarding suitable turntables and procedures for driving the various components, are disclosed in, for instance, European patent applications EP 800 858, EP 1 492 970, EP 1 688 652, and EP 2 198 950.

As shown in Figures 2A to 5, each valve 5 is connected by means of a conduit 11 to the bottom of a container 3, to a positive displacement pump 4, and to a dispense opening or dispense conduit 12. In this example, the pump 4 comprises a cylinder 13 and a piston and piston rod 14 slidably accommodated inside the cylinder 13. Further, the valve 5 comprises an operating element, e.g. a handle, lever, or, in this example, a rotary knob 15. The valve 5 and rotary knob 15 provide three positions, a first or closed position wherein both the outlet opening and the connection between the container and the pump are closed, a second or intake position wherein the connection between the container and the pump is open and the outlet is closed, and a third or dispense position
wherein the connection between the container and the pump is closed and the outlet is open.

An example of the method of the present invention is illustrated in Figure 2A and 2C. In a first step (Figure 2A), the valve is in its second or intake position and the piston is pulled out, thus withdrawing liquid from the container at a first speed, S1. If the liquid is to be dispensed (Figure 2B), the valve is rotated to its dispense position and the piston is pushed in. If (part of) the liquid is to used for homogenizing the contents of the container, the valve remains at (or is returned to) the second position and the piston is pushed in at a higher speed thus injecting the liquid back into the container at a second speed, S2, higher than the first speed.

In Figure 2C, the second speed is selected such that the major part of the returned liquid reached the middle part of the container. However, to homogenize the whole contents of the container, it is preferred to withdraw the liquid from the bottom of the container and return it to the upper half, preferably the top portion of the liquid in the container.

Homogenization can be further enhanced in various ways. Figure 3 shows an embodiment of an assembly of a container and pump in accordance with the present invention, comprising an additional (internal or external) conduit connecting the valve 5 and pump 4 to the top part of the container 3 to deliver the returned liquid directly to the top portion of the container 3.

Figure 4 shows an embodiment comprising a central riser or pipe 17, with one or more openings 18 in its wall near the bottom of the container 3. Further, the bottom portion of the container 3 is frustoconical, has a smaller diameter than the rest of the container and/or comprises other means to increase flow resistance for liquid flowing out of the openings. The flow resistance generated by these means and the flow resistance in the pipe are balanced to ensure that during the withdrawing of the liquid from the container at a first, relatively low speed S1, most liquid will be withdrawn from the bottom portion of the liquid in the container and that during
the returning of the liquid from the container at a second, relatively high speed S2, most liquid will be expelled from the top opening in the pipe, i.e. at the top portion of the liquid in the container.

The assembly shown in Figure 4 further comprises a cover 20 for the top opening of the pipe. This cover will prevent a 'fountain' inside the container if the liquid is returned at too high a speed. Also, if the container is provided with a flexible bag (not shown) holding the liquid — e.g. to prevent interaction between the liquid and any air in the container —, the cover prevents blocking of the top opening in the pipe by the flexible bag.

Figure 5 shows an embodiment comprising another example of a structure 21 for increasing mixing efficiency. The structure 21, shown in more detail in Figure 6A and 6B, comprises a top surface 22 provided with a central opening 23 and a plurality of radial openings 24.

The area and length of the central opening on the one hand and the area and length of the radial opening, the diameter, D1, of the top surface, and the inner diameter, D2, of the container at the axial position of the structure, on the other hand, have been selected to increase the amount of liquid that is directed in axial direction during the returning of the liquid at the second speed.

In general, good results were obtained with structures that fulfil the following criterion:

\[(D2^2 - D1^2) / D1 = C / \pi\]

where D1 and D2 are the diameters defined above and C is in a range from 3 to 300. In the example shown in Figures 6A and 6B, C equals 24.

Figures 7A to 7C show a container 3 according to the present invention having an oval cross-section and a double curved (internal) bottom surface. A plurality of nozzles, directed radially and towards the curved surface, is located at or near the center of the bottom surface. In this example, the
container comprises a structure 21, mushroom-shaped, with four nozzles 24. Two nozzles have a relatively large diameter, D3, extend along the long diagonal of the oval and exit towards the curved surface. The other two nozzles have a relatively small diameter, D4, extend along the short diagonal of the oval, and also exit towards the curved surface. The structure is closed at its top, i.e. no liquid is jetted in axial direction.

Figure 8 schematically shows homogenizing (mixing) of liquid in the container according to figures 7A to 7C. I.e., liquid is returned to the container radially and at Reynolds 2500. The liquid jetted from the nozzles effectively stirs the bottom portion of the liquid before being directed upwards, effectively distributing sediment over a large portion of the liquid in the container.

The method and assembly of the present invention provide efficacious homogenization of colorants in containers, obviating the need for a stirrer.

As a matter of course, the invention is not restricted to the above-disclosed embodiment and can be varied in numerous ways within the scope of the claims. E.g., the container can made of a rigid material or of a flexible material. Flexibility of the container and/or a bag inside the container enables the container to compensate for the amount of liquid that is withdrawn temporarily.
What is claimed:

1. Method of homogenizing a liquid, in particular a colorant for paint, in a container, comprising the steps of withdrawing liquid from the container and then returning the liquid to the container.

2. Method according to claim 1, comprising the steps of withdrawing liquid from the container at a first flow speed (S1) and then returning the liquid to the container at a second flow speed (S2), higher than the first flow speed (S1) and preferably in excess of

\[0.2 \frac{A \times (V^{1/2})}{M} \]

where M is the percentage of the volume of the liquid withdrawn relative to the maximum volume of the container, V is the percentage of the height the column of the liquid in the container relative to the height of the container, and A is a correction for viscosity and in range of 0.6 to 1.4, preferably in a range from 0.8 to 1.2;

and/or wherein an amount of at least 5% preferably at least 10% of the content of the container is withdrawn from and returned to the container.

3. Method according to claim 1 or 2, wherein the liquid is returned to the container via one or more nozzles and the Reynolds number at the nozzle(s) is in excess of 1000, preferably in excess of 2000.

4. Method according to any one of the preceding claims, wherein at least part, preferably most of the liquid is returned in a direction having an axial component, preferably returned along the central axis of the container.

5. Method according to any one of the preceding claims, wherein at least part, preferably most or all of the liquid is returned in a direction having an radial component, preferably at least substantially radially.

6. Method according to claim 5, wherein the liquid is returned along the bottom of the container.
7. Method according to any one of the preceding claims, comprising consecutively repeating the steps of withdrawing liquid from the container and then returning the liquid to the container until a volume corresponding to at least 50%, preferably at least 70% of the liquid in the container has been withdrawn and returned.

8. Method according to any one of the preceding claims, comprising the steps of establishing the level of the liquid in the container and adjusting the flow speed of the liquid being returned depending on this level.

9. Assembly for dispensing a liquid comprising a container for holding a liquid, a pump connected to the container via at least one conduit and a controller for operating the pump, wherein the controller is arranged to operate the pump to withdraw liquid from the container and then return the liquid to the container to homogenize at least part of the liquid in the container.

10. Assembly according to claim 9, wherein the controller is arranged to operate the pump to withdraw liquid from the container at a first flow speed (S1) and then return the liquid to the container at a second flow speed (S2), higher than the first flow speed (S1).

11. Assembly according to claim 9 or 10, wherein the conduit is oriented in a direction having a component extending along the central axis of the container and preferably coaxial with the central axis of the container.

12. Assembly according to any one of claims 9-11, wherein the conduit comprises one or more radial openings.

13. Assembly according to any one of claims 9-12, wherein the cross-section of the container is oblong and/or the bottom surface of the container is concave.

14. The assembly according to any one of claims 9-13, wherein no stirrer is present in the container and/or the pump is a positive displacement pump, preferably a piston pump.

15. An apparatus for dispensing a plurality of liquids, in particular colorants for paint, comprising a
plurality of assemblies according to any one of the claims 9-14.
INTERNATIONAL SEARCH REPORT

PCT/EP2012/055488

A. CLASSIFICATION OF SUBJECT MATTER

INV. B01F11/00 B01F5/02 B01F5/10 B01F13/10 B01F15/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched: (classification system followed by classification symbols)

B01F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 1 366 894 A (ETABLISSEMENTS DAUBRON SOC D) 17 July 1964 (1964-07-17) page 1, column 1, paragraph 1 - paragraph 2 figures</td>
<td>1,3,5,7, 9-14 4,6,8,15</td>
</tr>
<tr>
<td>X</td>
<td>GB 2 333 047 A (KESTREL SERVICES 2000 LIMITED [GB]) 14 July 1999 (1999-07-14) page 1, paragraph 1 - paragraph 4 page 2, paragraph 4 figures 1,5-7</td>
<td>1,3,4,9, 11,13,14 2,5-8, 10,12,15</td>
</tr>
</tbody>
</table>

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier application or patent but published on or after the international filing date

 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 "O" document referring to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

 "**" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

 "*" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

 "**" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

 "$" document member of the same patent family

Date of the actual completion of the international search

13 June 2012

Date of mailing of the international search report

20/06/2012

Name and mailing address of the ISA/
European Patent Office, P.B. 5618 Patentlaan 2
NL-2280 HV Rijswijk
Tel: (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Real Cabrera, Rafael
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 15 57 197 A1 (SVENSKA CELLULOSA AB) 19 March 1970 (1970-03-19)</td>
<td>1-3,5-7, 9,10,14</td>
</tr>
<tr>
<td></td>
<td>page 1, paragraph 1</td>
<td>4,8</td>
</tr>
<tr>
<td></td>
<td>page 3, paragraph 3</td>
<td>11-13,15</td>
</tr>
<tr>
<td></td>
<td>page 5, paragraph 5 - page 6, paragraph 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 7, paragraph 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 8, paragraph 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>W0 01/17668 A1 (KRESTREL SERVICES 2000 LTD [GB]; ASHCROFT PETER LEONARD [GB]; ARNOLD DA) 15 March 2001 (2001-03-15)</td>
<td>1-6,9-14</td>
</tr>
<tr>
<td></td>
<td>page 1, line 4 - line 26</td>
<td>7,8,15</td>
</tr>
<tr>
<td></td>
<td>page 3, line 22 - page 4, line 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 6, line 15 - page 7, line 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 8, line 16 - page 9, line 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 10, line 13 - line 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 11, line 24 - page 12, line 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 5 052 813 A (LATTO BRIAN [CA])</td>
<td>1-4,7, 9-11,14</td>
</tr>
<tr>
<td></td>
<td>column 1, line 10 - line 14</td>
<td>5,6,8</td>
</tr>
<tr>
<td></td>
<td>column 1, line 55 - column 2, line 9</td>
<td>12,13,15</td>
</tr>
<tr>
<td></td>
<td>column 2, line 50 - line 64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 16 - line 58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 1 813 653 A1 (KANSAI PAINT CO LTD [JP])</td>
<td>1,3,4,7, 9</td>
</tr>
<tr>
<td></td>
<td>paragraph [0001] - paragraph [0005]</td>
<td>2,5,6,8, 10-15</td>
</tr>
<tr>
<td></td>
<td>paragraph [0023]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 1</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FR 1365894 A</td>
<td>17-07-1964</td>
<td>NONE</td>
</tr>
<tr>
<td>GB 2333047 A</td>
<td>14-07-1999</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 1557197 A1</td>
<td>19-03-1970</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7024100 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2383997 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 66066828 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 66066828 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1210169 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2211593 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1210169 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6616322 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0117668 A1</td>
</tr>
<tr>
<td>US 5052813 A</td>
<td>01-10-1991</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2587174 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1813653 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2344988 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009097352 A1</td>
</tr>
</tbody>
</table>