PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 0 :

GO6F 12/02, 12/00 Al

(11) International Publication Number:

(43) International Publication Date;

WO 99/18509

15 April 1999 (15.04.99)

(21) International Application Number: PCT/US98/21107

(22) International Filing Date: 6 October 1998 (06.10.98)

(30) Priority Data:

08/946,331 7 October 1997 (07.10.97) Us

(71) Applicant: LEXAR MEDIA, INC. [US/US]; 47421 Bayside
Parkway, Fremont, CA 94538 (US).

(72) Inventors: ESTAKHRI, Petro; 7966 Foothill Knolls, Pleasan-
ton, CA 94566 (US). IMAN, Berhau; 946 Iris Avenue,
Sunnyvale, CA 94086 (US).

(74) Agents: HAMRICK, Claude, A., S. et al.; Suite 600, Ten
Almaden Boulevard, San Jose, CA 95113 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: MOVING SEQUENTIAL SECTORS WITHIN A BLOCK OF INFORMATION IN A FLASH MEMORY MASS STORAGE

ARCHITECTURE

(57) Abstract

A method and apparatus are dis-
closed for increasing the system per-
formance of a digital system having a
controller for controlling nonvolatile
devices for storing blocks of informa-

032
027

/ Jo34

tion, each block having a group of sec-

000

L

loyo/‘ / 692

(

tors. When sectors within a block are

being rewritten in sequential order, the
controller writes the new sector infor-

Wl =S

mation into a sector location of an-

IFR
1FR
1ER

OHCOHQ\
>
QODOO“\&

plujom
0 (]
0 0
] 0
0 0

other block without the need to move
any of the sectors within the origi-
nal block thereby reducing the num-
ber of read and write cycles needed to
avoid erase-before—write operations.
A "moved" flag (1042), stored in the
sector location of each block, indi-
cates that the sector has been trans-
ferred to another block or, alterna-

Jo36

o e ww wx ww wm ool whe mdr e alew o

tively, a move locator word (170) -1

0{0] 0

maintains status information regarding
the position of the sectors within the

3
1514131211109876 5432140

blocks that have been moved.

Maove register
PBAm

Qo0 O[Ol Oi 0|0|ﬂ0|0|0|0|0|0|0|()|

MOwved LBA
Tegister

105Y

Move Locator (ord
,2

AL
AM

AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
Cu
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzertand
Céte d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
L
IS
IT
JP
KE
KG
Kp

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
T
™
TR
T
UA
uG
Us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/18509 PCT/US98/21107

Specification

MOVING SEQUENTIAL SECTORS WITHIN A BLOCK OF INFORMATION IN A
FLASH MEMORY MASS STORAGE ARCHITECTURE

BACKGROUND OF THE INVENTION

Cross Reference to Related Application

This application is a continuation-in-part of a prior U.S. application with Serial No.
08/831,266, filed March 31, 1997 and entitled "MOVING SECTORS WITHIN A BLOCK OF
INFORMATION IN A FLASH MEMORY MASS STORAGE ARCHITECTURE", which is a
continuation-in-part of another prior U.S. application with Serial No. 08/509,706, filed July 31,
1995 and entitled “DIRECT LOGICAL BLOCK ADDRESSING FLASH MEMORY MASS
STORAGE ARCHITECTURE”.

Field of the Invention
This invention relates to the field of mass storage for computers. More particularly, this
invention relates to an architecture for replacing a hard disk with a semiconductor nonvolatile

memory and in particular flash memory.

Description of the Prior Art

Computers conventionally use rotating magnetic media for mass storage of documents,
data, programs and information. Though widely used and commonly accepted, such hard disk
drives suffer from a variety of deficiencies. Because of the rotation of the disk, there is an
inherent latency in extracting information from a hard disk drive.

Other problems are especially dramatic in portable computers. In particular, hard disks
are unable to withstand many of the kinds of physical shock that a portable computer will likely
sustain. Further, the motor for rotating the disk consumes significant amounts of power
decreasing the battery life for portable computers.

Solid state memory is an ideal choice for replacing a hard disk drive for mass storage
because it can resolve the problems cited above. Potential solutions have been proposed for

replacing a bard disk drive with a semiconductor memory. For such a system to be truly useful,

10

15

25

WO 99/18509 PCT/US98/21107

the memory must be nonvolatile and alterable. The inventors have determined that FLASH
memory is preferred for such a replacement.

FLASH memory is a transistor memory cell which is programmable through hot
electron, source injection. or tunneling, and erasable through Fowler-Nordheim tunneling. The
programming and erasing of such a memory cell requires current to pass through the dielectric
surrounding floating gate electrode. Because of this, such types of memory have a finite number
of erase-write cycles. Eventually, the dielectric deteriorates. Manufacturers of FLASH cell
devices specify the limit for the number of erase-write cycles between 100,000 and 1.000,000.

One requirement for a semiconductor mass storage device to be successful is that its use
in lieu of a rotating media hard disk mass storage device be transparent to the designer and the
user of a system using such a device. In other words, the designer or user of a computer
incorporating such a semiconductor mass storage device could simply remove the hard disk and
replace it with a semiconductor mass storage device. All presently available commercial
software should operate on a system employing such a semiconductor mass storage device
without the necessity of any modification.

SanDisk proposed an architecture for a semiconductor mass storage using FLASH
memory at the Silicon Valley PC Design Conference on July 9, 1991. That mass storage system
included read-write block sizes of 512 Bytes to conform with commercial hard disk sector sizes.
Earlier designs incorporated erase-before-write architectures. In this process, in order to update
a file on the media, if the physical location on the media was previously programmed, it has to
be erased before the new data can be reprogrammed.

This process would have a major deterioration on overall system throughput. When a
host writes a new data file to the storage media, it provides a logical block address to the
peripheral storage device associated with this data file. The storage device then translates this
given logical block address to an actual physical block address on the media and performs the
write operation. In magnetic hard disk drives, the new data can be written over the previous old
data with no modification to the media. Therefore, once the physical block address is calculated
from the given logical block address by the controller, it will simply write the data file into that
location. In solid state storage, if the location associated with the calculated physical block
address was previously programmed. before this block can be reprogrammed with the new data,
it has to be erased. In one previous art, in erase-before-write architecture where the correlation

between logical block address given by the host is one to one mapping with physical block

10

15

20

25

WO 99/18509 PCT/US98/21107

address on the media. This method has many deficiencies. First, it introduces a delay in
performance due to the erase operation before reprogramming the altered information. In solid
state flash, erase is a very slow process.

Secondly, hard disk users typically store two types of information, one is rarely modified
and another which is frequently changed. For example, a commercial spread sheet or word
processing software program stored on a user's system are rarely, if ever, changed. However, the
spread sheet data files or word processing documents are frequently changed. Thus, different
sectors of a hard disk typically have dramatically different usage in terms of the number of times
the information stored thereon is changed. While this disparity has no impact on a hard disk
because of its insensitivity to data changes, in a FLASH memory device, this variance can cause
sections of the mass storage to wear out and be unusable significantly sooner than other sections
of the mass storage.

In another architecture. the inventors previously proposed a solution to store a table
correlating the logical block address to the physical block address. The inventions relating to
that solution are disclosed in U.S. Patent Application serial number 08/038.668 filed on March
26. 1993, now U.S. Patent No. 5,388,083, and U.S. Patent Application serial number
08/037,893, now U.S. Patent No. 5,479,638, also filed on March 26, 1993. Those applications
are incorporated herein by reference.

The inventors' previous solution discloses two primary algorithms and an associated
hardware architecture for a semiconductor mass storage device. It will be understood that "data
file" in this patent document refers to any computer file including commercial software, a user
program, word processing software document, spread sheet file and the like. The first algorithm
in the previous solution provides means for avoiding an erase operation when writing a modified
data file back onto the mass storage device. Instead, no erase is performed and the modified data
file is written onto an empty portion of the mass storage.

The semiconductor mass storage architecture has blocks sized to conform with
commercial hard disk sector sizes. The blocks are individually erasable. In one embodiment,
the semiconductor mass storage can be substituted for a rotating hard disk with no impaét to the
user, so that such a substitution will be transparent. Means are provided for avoiding the erase-
before-write cycle each time information stored in the mass storage is changed.

According to the first algorithm, erase cycles are avoided by programming an altered

data file into an empty block. This would ordinarily not be possible when using conventional

W

10

15

20

25

30

WO 99/18509 PCT/US98/21107

mass storage because the central processor and commercial software available in conventional
computer systems are not configured to track continually changing physical locations of data
files. The previous solution includes a programmable map to maintain a correlation between the
logical address and the physical address of the updated information files.

All the flags, and the table correlating the logical block address to the physical block
address are maintained within an array of CAM cells. The use of the CAM cells provides very
rapid determination of the physical address desired within the mass storage, generally within one
or two clock cycles. Unfortunately, as is well known, CAM cells require multiple transistors,
typically six. Accordingly, an integrated circuit built for a particular size memory using CAM
storage for the tables and flags will need to be significantly larger than a circuit using other
means for just storing the memory.

The inventors proposed another solution to this problem which is disclosed in U.S.
Patent Application serial number 08/131,495, now U.S. Patent No. 5,485,595, filed on October
4.1993. That application is incorporated herein by reference.

This additional previous solution invented by these same inventors is also for a
nonvolatile memory storage device. The device is also configured to avoid having to perform an
erase-before-write each time a data file is changed by keeping a correlation between logical
block address and physical block address in a volatile space management RAM. Further, this
invention avoids the overhead associated with CAM cell approaches which require additional
circuitry.

Like the solutions disclosed above by these same inventors, the device includes circuitry
for performing the two primary algorithms and an associated hardware architecture for a
semiconductor mass storage device. In addition, the CAM cell is avoided in this previous
solution by using RAM cells.

Reading is performed in this previous solutions by providing the logical block address to
the memory storage. The system sequentially compares the stored logical block addresses until it
finds a match. That data file is then coupled to the digital system. Accordingly, the
performance offered by this solution suffers because potentially all of the memory locations
must be searched and compared to the desired logical block address before the physical location
of the desired information can be determined.

What is needed is a semiconductor hard disk architecture which provides rapid access to

stored data without the excessive overhead of CAM cell storage.

10

15

20

25

30

WO 99/18509 - PCT/US98/21107

SUMMARY OF THE INVENTION

The present invention is for a nonvolatile memory storage device. The device is
configured to avoid having to perform an erase-before-write each time a data file is changed.
Further, to avoid the overhead associated with CAM cells, this approach utilizes a RAM array.

The host system maintains organization of the mass storage data by using a logical block
address. The RAM array is arranged to be addressable by the same address as the logical block
addresses (LBA) of the host. Each such addressable location in the RAM includes a field which
holds the physical address of the data in the nonvolatile mass storage expected by the host. This
physical block address (PBA) information must be shadowed in the nonvolatile memory to
ensure that the device will still function after resuming operation after a power down because
RAMs are volatile memory devices. In addition. status flags are also stored for each physical
location. The status flags can be stored in either the nonvolatile media or in both the RAM and
in the nonvolatile media.

The device includes circuitry for performing two primary algorithms and an associated
hardware architecture for a semiconductor mass storage device. The first algorithm provides a
means for mapping of host logical block address to physical block address with much improved
performance and minimal hardware assists. In addition, the second algorithm provides means
for avoiding an erase-before-write cycle when writing a modified data file back onto the mass
storage device. Instead, no erase is performed and the modified data file is written onto an empty
portion of the mass storage.

Reading is performed in the present invention by providing the logical block address to
the memory storage. The RAM array is arranged so that the logical block address selects one
RAM location. That location contains the physical block address of the data requested by the
host or other external system. That data file is then read out to the host.

According to the second algorithm, erase cycles are avoided by programming an altered data file
into an altered data mass storage block rather than itself after an erase cycle of the block as done
on previous arts.

In an alternative embodiment of the present invention, a method and apparatus is
presented for efficiently moving sectors within a block from a first area within the nonvolatile

memory to an unused area within the nonvolatile memory and marking the first area as “used”.

10

15

30

WO 99/18509 PCT/US98/21107

Briefly, A preferred embodiment of the present invention includes a method and
apparatus for storing mapping information for mapping a logical block address identifying a
block being accessed by a host to a physical block address, identifying a free area of nonvolatile
memory, the block being selectively erasable and having one or more sectors that may be
individually moved. The mapping information including a virtual physical block address for
identifying an “original” location, within the nonvolatile memory, wherein a block is stored and
a moved virtual physical block address for identifying a “moved” location, within the
nonvolatile memory, wherein one or more sectors of the stored block are moved. The mapping
information further including status information for use of the “original” physical block address
and the “moved” physical block address and for providing information regarding “moved”

sectors within the block being accessed.

IN THE DRAWINGS

Figure 1 shows a schematic block diagram of an architecture for a semiconductor mass
storage according to the present invention.

Figure 2 shows an alternative embodiment to the physical block address 102 of the RAM
storage of Figure 1.

Figure 3 shows a block diagram of a system incorporating the mass storage device of the
present invention.

Figures 4 - 8 show the status of several of the flags and information for achieving the
advantages of the present invention.

Figure 9 shows a flow chart block diagram of the first algorithm according to the present
invention.

Figure 10 shows a high-level block diagram of a digital system, such as a digital camera,
including a preferred embodiment of the present invention.

Figures 11-21 illustrate several examples of the state of a mapping table that may be
stored in the digital system of Figure 10 including LBA-PBA mapping information.

Figure 22 depicts an example of a nonvolatile memory device employed in the preferred
embodiment of Figure 10.

Figure 23 shows a high-level flow chart of the general steps employed in writing a block

of information to the nonvolatile devices of Figure 10.

10

15

20

25

WO 99/18509 PCT/US98/21107

Figures 24 - 26 generally show, in flow chart form, the operation of another preferred
embodiment of the present invention employing single sequential sector move operations.

Figures 27 shows an example after initialization of the system of the contents of the
lookup table in SPM RAM 548.

Figure 28 illustrates an example to the contents of the memory unit 508 of the preferred
embodiment described in Figs. 24-26.

Figures 29 - 40 depict examples of the contents of the SPM RAM look-up-table in

accordance with the preferred embodiments as shown in Figures 24 - 28.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Figure 1 shows an architecture for implementation of a solid state storage media
according to the present invention. The storage media is for use with a host or other external
digital system. The mass storage is partitioned into two portions, a volatile RAM array 100 and a
nonvolatile array 104. According to the preferred embodiment, all of the nonvolatile memory
storage is FLASH. The FLASH may be replaced by EEPROM. The RAM can be of any
convenient type.

The memory storage 104 is arranged into N blocks of data from zero through N-1. Each
of the blocks of data is M Bytes long. In the preferred embodiment, each data block is 512 Bytes
long to correspond with a sector length in a commercially available hard disk drive plus the extra
numbers of bytes to store the flags and logical block address (LBA) information and the
associated ECC. The memory 104 can contain as much memory storage as a user desires. An
example of a mass storage device might include 100 M Byte of addressable storage.

There are a plurality of RAM locations 102. Each RAM location 102 is uniquely
addressable by controller using an appropriate one of the logical block addresses provided by the
host system or the actual physical address of the nonvolatile media. The RAM location 102
contains the physical block address of the data associated with the logical block address and the
flags associated with a physical block address on the nonvolatile media.

It is possible that the physical block address (PBA) can be split into two fields as shown
in Figure 2. These fields can be used for cluster addresses of a group of data blocks. The first
such field 290 is used to select a cluster address and the second such field 292 can be used to

select the start address of the logical block address associated with this cluster.

10

15

25

WO 99/18509 PCT/US98/21107

A collection of information flags is also stored for each nonvolatile memory location
106. These flags include an old/new flag 110, a used/free flag 112, a defect flag 114, and a
single/sector flag 116. Additionally, there is also a data store 122.

When writing data to the mass storage device of the present invention, a controller
determines the first available physical block for storing the data. The RAM location 102
corresponding to the logical block address selected by the host is written with the physical block
address where the data is actually stored within the nonvolatile memory array in 104 (Figure 1).

Assume for example that a user is preparing a word processing document and instructs
the computer to séve the document. The document will be stored in the mass storage system.
The host system will assign it a logical block address. The mass storage system of the present
invention will select a physical address of an unused block or blocks in the mass storage for
storing the document. The address of the physical block address will be stored into the RAM
location 102 corresponding to the logical block address. As the data is programmed. the system
of the present invention also sets the used free flag 112 in 104 and 293 to indicate that this block
location is used. One used/free flag 112 is provided for each entry of the nonvolatile array 104.

Later, assume the user retrieves the document, makes a change and again instructs the
computer to store the document. To avoid an erase-before-write cycle, the system of the present
invention provides means for locating a block having its used/free flag 112 in 100 unset (not
programmed) which indicates that the associated block is erased. The system then sets the
used/free flag for the new block 112 of 106 and 293 of 100 and then stores the modified
document in that new physical block location 106 in the nonvolatile array 104. The address of
the new physical block location is also stored into the RAM location 102 corresponding the
logical block address, thereby writing over the previous physical block location in 102. Next, the
system sets the old/new flag 110 of the previous version of the document indicating that this is
an old unneeded version of the document in 110 of 104 and 293 of 109. In this way, the system
of the present invention avoids the overhead of an erase cycle which is required in the erase-
before-write of conventional systems to store a modified version of a previous document.

Because of RAM array 100 will lose its memory upon a power down condition, the
logical block address with the active physical block address in the media is also stored as a
shadow memory 108 in the nonvolatile array 104. It will be understood the shadow information
will be stored into the appropriate RAM locations 102 by the controller. During power up

sequence, the RAM locations in 100 are appropriately updated from every physical locations in

10

15

25

30

WO 99/18509 PCT/US98/21107

104, by reading the information 106 of 104. The logical address 108 of 106 is used to address
the RAM location of 100 to update the actual physical block address associated with the given
logical block address. Also since 106 is the actual physical block address associated with the
new data 122, the flags 110, 112, 114, and 116 arc updated in 293 of 102 with the physical block
address of 106 in 100. It will be apparent to one of ordinary skill in the art that the flags can be
stored in either the appropriate nonvolatile memory location 106 or in both the nonvolatile
memory location and also in the RAM location 102 associated with the physical block address.

During power up, in order to assign the most recent physical block address assigned to a
logical block address in the volatile memory 100, the controller will first read the Flags 110,
112, 114, and 116 portion of the nonvolatile memory 104 and updates the flags portion 293 in
the volatile memory 100. Then it reads the logical block address 108 of every physical block
address of the nonvolatile media 104 and by tracking the flags of the given physical block
address in the volatile memory 100, and the read logical block address of the physical block
address in the nonvolatile memory 104, it can update the most recent physical block address
assigned to the read logical block address in the volatile memory 100.

Figure 3 shows a block diagram of a system incorporating the mass storage device of the
present invention. An external digital system 300 such as a host computer, personal computer
and the like is coupled to the mass storage device 302 of the present invention. A logical block
address is coupled via an address bus 306 to the volatile RAM array 100 and to a controller
circuit 304. Control signals are also coupled to the controller 304 via a control bus 308. The
volatile RAM array 1.00 is coupled for providing the physical block address to the nonvolatile
RAM array 400. The controller 304 is coupled to control both the volatile RAM 100, the
nonvolatile array 104, and for the generation of all flags.

A simplified example, showing the operation of the write operation according to the
present invention is shown in Figures 4 through 8. Not all the information flags are shown to
avoid obscuring these features of the invention in excessive detail. The data entries are shown
using decimal numbers to further simplify the understanding of the invention. It will be
apparent to one of ordinary skill in the art that in a preferred embodiment binary counting will be
used.

Figure 4 shows an eleven entry mass storage device according to the present invention.

There is no valid nor usable data stored in the mass storage device of Figure 4. Accordingly, all

10

15

20

25

30

WO 99/18509 PCT/US98/21107

the physical block addresses are empty. The data stored in the nonvolatile mass storage location
'6' is filled and old. Additionally, location 9" is defective and cannot be used.

The host directs the mass storage device of the example to write data pursuant to the
logical block address '3' and then to '4'. The mass storage device will first write the data
associated with the logical block address '3'. The device determines which is the first unused
location in the nonvolatile memory. In this example, the first empty location is location '0'.
Accordingly, Figure 5 shows that for the logical block address '3', the corresponding physical
block address '0' is stored and the used flag is set in physical block address '0". The next empty
location is location 'I'. Figure 6 shows that for the logical block address '4', the corresponding
physical block address '1" is stored and the used flag is set in physical block address '1'.

The host instructs that something is to be written to logical block address '3' again. The
next empty location is determined to be location '2'. Figure 7 shows that the old flag in location
'0' is set to indicate that this data is no longer usable, the used flag is set in location '2' and the
physical block address in location '3' is changed to 2",

Next. the host instructs that something is to be written to logical block address '4' again.

1

The next empty location is determined to be location 3. Figure 8 shows that the old flag in
location '1' is set to indicate that this data is no longer usable, the used flag is set in location '3'
and the physical block address in location '4' is changed to '3'. (Recall that there is generally no
relation between the physical block address and the data stored in the same location.)

Figure 9 shows algorithm 1 according to the present invention. When the system of the
present invention receives an instruction to program data into the mass storage (step 200), then
the system attempts to locate a free block (step 202), i.e., a block having an unset (not
programmed) used/free flag. If successful, the system sets the used/free flag for that block and
programs the data into that block (step 206).

If on the other hand, the system is unable to locate a block having an unset used/ free
flag, the system erases the flags (used/free and old/new) and data for all blocks having a set
old/new flag and unset defect flag (step 204) and then searches for a block having an unset
used/free flag (step 202). Such a block has just been formed by step 204. The system then sets
the used/flag for that block and programs the data file into that block (step 206).

If the data is a modified version of a previously existing file, the system must prevent the

superseded version from being accessed. The system determines whether the data file

supersedes a previous data file (step 208). If so, the system sets the old/new flag associated with

10

10

15

20

25

30

WO 99/18509 PCT/US98/21107

the superseded block (step 210). If on the other hand, the data file to be stored is a newly created
data file, the step of setting the old/new flag (step 210) is skipped because there is no superseded
block. Lastly, the map for correlating the logical address 308- to the physical addresses updated
(step 212).

By following the procedure outlined above, the overhead associated with an erase cycle
is avoided for each write to the memory 104 except for periodically. This vastly improves the
performance of the overall computer system employing the architecture of the present invention.
In the preferred embodiment of the present invention. the programming of the flash memory
follows the procedure commonly understood by those of ordinary skill in the art. In other
words. the program impulses are appropriately applied to the bits to be programmed and then
compared to the data being programmed to ensure that proper programming has occurred. In the
event that a bit fails to be erased or programmed properly, a defect flag 148 is set which prevent
that block from being used again.

Fig. 10 depicts a digital system 500 such as a digital camera employing an alternative
embodiment of the present invention. Digital system 500 is illustrated to include a host 502,
which may be a personal computer (PC) or simply a processor of any generic type commonly
employed in digital systems, coupled to a controller circuit 506 for storing in and retrieving
information from non-volatile memory unit 508. The controller circuit 506 may be a
semiconductor (otherwise referred to as an “integrated circuit” or “chip”) or optionally a
combination of various electronic components. In the preferred embodiment, the controller
circuit is depicted as a single chip device. The non-volatile memory unit 508 is comprised of
one or more memory devices. which may each be flash or EEPROM types of memory. In the
preferred embodiment of Fig. 10, memory unit 508 includes a plurality of flash memory devices,
510 - 512, each flash device includes individually addressable locations for storing information.
In the preferred application of the embodiment in Fig. 10, such information is organized in
blocks with each block having one or more sectors of data. In addition to the data, the
information being stored may further include status information regarding the data blocks, such
as flag fields, address information and the like.

The host 502 is coupled through host information signals 504 to a controller circuit 506.
The host information signals comprise of address and data busses and control signals for
communicating command, data and other types of information to the controller circuit 506,

which in turn stores such information in memory unit 508 through flash address bus 512, flash

11

10

15

20

25

30

WO 99/18509 PCT/US98/21107

data bus 514, flash signals 516 and flash status signals 518 (508 and 513-516 collectively
referred to as signals 538). The signals 538 may provide command, data and status information
between the controller 506 and the memory unit 508.

The controller 506 is shown to include high-level functional blocks such as a host
interface block 520, a buffer RAM block 522, a flash controller block 532, a microprocessor
block 524, a microprocessor controller block 528, a microprocessor storage block 530, a
microprocessor ROM block 534, an ECC logic block 540 and a space manager block 544. The
host interface block 520 receives host information signals 504 for providing data and status
information from buffer RAM block 522 and microprocessor block 524 to the host 502 through
host information signals 504. The host interface block 520 is coupled to the microprocessor
block 524 through the microprocessor information signals 526, which is comprised of an address
bus. a data bus and control signals.

The microprocessor block 524 is shown coupled to a microprocessor controller block
528. a microprocessor storage block 530 and a microprocessor ROM block 534, and serves to
direct operations of the various functional blocks shown in Fig. 10 within the controller 506 by
executing program instructions stored in the microprocessor storage block 530 and the
microprocessor ROM block 534. Microprocessor 524 may, at times, execute program
instructions (or code) from microprocessor ROM block 534, which is a non-volatile storage area.
On the other hand, microprocessor storage block 530 may be either volatile, i.e., read-and-write
memory (RAM), or non-volatile. i.e., EEPROM, type of memory storage. The instructions
executed by the microprocessor block 524, collectively referred to as program code. are stored in
the storage block 530 at some time prior to the beginning of the operation of the system of the
present invention. Initially, and prior to the execution of program code from the microprocessor
storage location 530, the program code may be stored in the memory unit 508 and later
downloaded to the storage block 530 through the signals 538. During this initialization, the
microprocessor block 524 can execute instructions from the ROM block 534.

Controller 506 further includes a flash controller block 532 coupled to the
microprocessor block 524 through the microprocessor information signals 526 for providing and
receiving information from and to the memory unit under the direction of the microprocessor.
Information such as data may be provided from flash controller block 532 to the buffer RAM

block 522 for storage (may be only temporary storage) therein through the microprocessor

12

W

10

15

25

30

WO 99/18509 PCT/US98/21107

signals 526. Similarly, through the microprocessor signals 526, data may be retrieved from the
buffer RAM block 522 by the flash controller block 532.

ECC logic block 540 is coupled to buffer RAM block 522 through signals 542 and
further coupled to the microprocessor block 524 through microprocessor signals 526. ECC logic
block 540 includes circuitry for generally performing error coding and correction functions. It
should be understood by those skilled in the art that various ECC apparatus and algorithms are
commercially available and may be employed to perform the functions required of ECC logic
block 540. Briefly, these functions include appending code that is for all intensive purposes
uniquely generated from a polynomial to the data being transmitted and when data is received,
using the same polynomial to generate another code from the received data for detecting and
potentially correcting a predetermined number of errors that may have corrupted the data. ECC
logic block 540 performs error detection and/or correction operations on data stored in the
memory unit 508 or data received from the host 502.

The space manager block 544 employs a preferred apparatus and algorithm for finding
the next unused (or free) storage block within one of the flash memory devices for storing a
block of information. as will be further explained herein with reference to other figures. As
earlier discussed. the address of a block within one of the flash memory devices is referred to as
PBA, which is determined by the space manager by performing a translation on an LBA
received from the host. A variety of apparatus and method may be employed for accomplishing
this translation. An example of such a scheme is disclosed in U.S. Pat. No. 5,485.595, entitled
“Flash Memory Mass Storage Architecture Incorporating Wear Leveling Technique Without
Using CAM Cells”, the specification of which is herein incorporated by reference. Other LBA
to PBA translation methods and apparatus may be likewise employed without departing from the
scope and spirit of the present invention.

Space manager block 544 inciudes SPM RAM block 548 and SPM control block 546,
the latter two blocks being coupled together. The SPM RAM block 548 stores the LBA-PBA
mapping information (otherwise herein referred to as translation table, mapping table. mapping
information. or table) under the control of SPM control bldck 546. Alternatively, the SPM RAM
block 548 may be located outside of the controller, such as shown in Fig. 3 with respect to RAM
array 100.

In operation. the host 502 writes and reads information from and to the memory unit 508

during for example, the performance of a read or write operation through the controlier 506. In

13

10

15

25

30

WO 99/18509 PCT/US98/21107

so doing, the host 502 provides an LBA to the controller 506 through the host signals 504. The
LBA is received by the host interface block 520. Under the direction of the microprocessor
block 524, the LBA is ultimately provided to the space manager block 544 for translation to a
PBA and storage thereof, as will be discussed in further detail later. _
Under the direction of the microprocessor block 524, data and other information are written into
or read from a storage area, identified by the PBA, within one of the flash memory devices 510-
512 through the flash controller block 532. The information stored within the flash memory
devices may not be overwritten with new information without first being erased, as earlier
discussed. On the other hand, erasure of a block of information (every time prior to being
written), is a very time and power consuming measure. This is sometimes referred to as erase-
before-write operation. The preferred embodiment avoids such an operation by continuously,
vet efficiently, moving a sector (or multiple sectors) of information, within a block, that is being
re-written from a PBA location within the flash memory to an unused PBA location within the
memory unit 508 thereby avoiding frequent erasure operations. A block of information may be
comprised of more than one sector such as 16 or 32 sectors. A block of information is further
defined to be an individually-erasable unit of information. In the past, prior art systems have
moved a block stored within flash memory devices that has been previously written into a free
(or unused) location within the flash memory devices. Such systems however, moved an entire
block even when only one sector of information within that block was being re-written. In other
words. there is waste of both storage capacity within the flash memory as well as waste of time
in moving an entire block’s contents when less than the total number of sectors within the block
are being re-written. The preferred embodiments of the present invention, as discussed herein,
allow for “moves”™ of less than a block of information thereby decreasing the number of move
operations of previously-written sectors, consequently, decreasing the number of erase
operations.

Referring back to Fig. 10, it is important to note that the SPM RAM block 548 maintains
a table that may be modified each time a write operation occurs thereby maintaining the LBA-
PBA mapping information and other information regarding each block being stored in memory
unit S08. Additionally, this mapping information provides the actual location of a sector (within
a block) of information within the flash memory devices. As will be further apparent, at least a
portion of the information in the mapping table stored in the SPM RAM block 548 is

“shadowed” (or copied) to memory unit 508 in order to avoid loss of the mapping information

14

10

15

25

30

WO 99/18509 PCT/US98/21107

when power to the system is interrupted or terminated. This is, in large part, due to the use of
volatile memory for maintaining the mapping information. In this connection, when power to
the system is restored, the portion of the mapping information stored in the memory unit 508 is
transferred to the SPM RAM block 548.

It should be noted. that the SPM RAM block 548 may alternatively be nonvolatile
memory, such as in the form of flash or EEPROM memory architecture. In this case, the
mapping table will be stored within nonvolatile memory thereby avoiding the need for
“shadowing™ because during power interruptions. the mapping information stored in nonvolatile
memory will be clearly maintained.

When one or more sectors are being moved from one area of the flash memory to another
area. the preferred embodiment of the present invention first moves the sector(s) from the
location where they are stored in the flash memory devices, i.e., 510-512, to the buffer RAM
block 522 for temporary storage therein. The moved sector(s) are then moved from the buffer
RAM block 522 to a free area within one of the flash memory devices. It is further useful to
note that the ECC code generated by the ECC logic block 540, as discussed above, is also stored
within the flash memory devices 510-512 along with the data, as is other information, such as
the LBA corresponding to the data and flag fields.

Figs. 11 - 21 are presented to show examples of the state of a table 700 in SPM RAM
block 548 configured to store LBA-PBA mapping information for identification and location of
blocks (and sectors within the blocks) within the memory unit 508. Table 700 in all of these
figures is shown to include an array of columns and rows with the columns including virtual
physical block address locations or VPBA block address locations 702, move virtual physical
address locations or MVPBA block address locations 704, move flag locations 706, used/free
flag locations 708, old/new flag locations 710, defect flag locations 712 and sector move status
locations 714.

The rows of table include PBA/LBA rows 716, 718 through 728 with each row having a
row number that may be either an LBA or a PBA depending upon the information that is being
addressed within the table 700. For example, row 716 is shown as being assigned row number
‘00’ and if PBA information in association with LBA ‘00’ is being retrieved from table 700, then
LBA ‘00’ may be addressed in SPM RAM block 548 at row 716 to obtain the associated PBA
located in 730. On the other hand, if status information, such as flag fields, 706-712, regarding a

block is being accessed, the row numbers of rows 716 - 728, such as ‘00°, ‘107, 20°, ‘30, ‘40°,

15

10

25

WO 99/18509 PCT/US98/21107

'50'. *N-1" represent PBA. as opposed to LBA, values. Furthermore. each row of table 700 may
be thought of as a block entry wherein each entry contains information regarding a block.
Furthermore, each row of table 700 may be addressed by an LBA.

In the preferred embodiment, each block is shown to include 16 sectors. This is due to
the capability of selectively erasing an entire block of 16 sectors (which is why the block size'is
sometimes referred to as an “erase block size”. If an erase block size is 16 sectors, such as
shown in Figs. 11-21, each block entry (or row) includes information regarding 16 sectors. Row
716 therefore includes information regarding a block addressed by LBA ‘00’ through LBA ‘15’
(or LBA ‘00’ through LBA ‘0F’ in Hex. notation). The next row, row 718, includes information
regarding blocks addressed by LBA ‘16 (or ‘10’ in Hex.) through LBA “31° (or ‘1F’ in Hex.)
The same is true for PBAs of each block.

It should be noted however. other block sizes may be similarly employed. For example,
a block may include 32 sectors and therefore have an erase block size of 32. In the latter
situation. each block entry or row, such as 716, 718, 720..., would include information regarding
32 sectors.

The VPBA block address locations 702 of table 700 stores information generally
representing a PBA value corresponding to a particular LBA value. The MVPBA block address
locations 704 store information representing a PBA value identifying, within the memory unit
508. the location of where a block (or sector portions thereof) may have been moved. The move
tlag locations 706 store values indicating whether the block being accessed has any sectors that
may have been moved to a location whose PBA is indicated by the value in the MVPBA block
address location 704 (the PBA value within 704 being other than the value indicated in VPBA
block address 702 wherein the remaining block address information may be located). The
used/new flag location 708 stores information to indicate whether the block being accessed is a
free block, that is, no data has been stored since the block was last erased. The old/new flag
location 710 stores information representing the status of the block being accessed as to whether
the block has been used and re-used and therefore, old. The defect ﬂag location 712 stores
information regarding whether the block is defective. If a block is declared defective, as
indicated by the value in the defect flag location 712 being set, the defective block can no longer
be used. Flags 708-712 are similar to the flags 110-114 shown and described with respect to
Fig. 1.

16

10

15

20

25

30

WO 99/18509 PCT/US98/21107

Sector move status location 714 is comprised of 16 bits (location 714 includes a bit for
each sector within a block so for different-sized blocks, different number of bits within location
714 are required) with each bit representing the status of a sector within the block as to whether
the sector has been moved to another block within the memory unit 508. The moved block
location within the memory unit 508 would be identified by a PBA that is other than the PBA
value in VPBA block address location 702. Said differently, the status of whether a sector
within a block has been moved, as indicated by each of the bits within 714, suggests which one
of either the VPBA block address locations 702 or the MBPBA block address locations 704
maintain the most recent PBA location for that sector.

Referring still to Fig. 11, an example of the status of the table 700 stored in SPM RAM
block 548 (in Fig. 10) is shown when, by way of example, LBA ‘0’ is being written. As
previously noted. in the figures presented herein, a block size of sixteen sectors (number 0-15 in
decimal notation or 0-10 in hexadecimal notation) is used to illustrate examples only. Similarly,
N blocks (therefore N LBAs) are employed, numbered from 0 - N-1. The block size and the
number of blocks are both design choices that may vary for different applications and may
depend upon the memory capacity of each individual flash memory device (such as 510 - 512)
being employed. Furthermore, a preferred sector size of 512 bytes is used in these examples
whereas other sector sizes may be employed without departing from the scope and spirit of the
present invention.

Assuming that the operation of writing to LBA ‘0’ is occurring after initialization or
system power-up when all of the blocks within the flash memory devices 510-512 (in Fig. 10)
have been erased and are thus free. The space manager block 548 is likely to determine that the
next free PBA location is ‘00°. Therefore, ‘00’ is written to 730 in VPBA block address 702 of
row 716 wherein information regarding LBA ‘0’ is maintained, as indicated in table 700 by LBA
row number ‘00°. Since no need exists for moving any of the sectors within the LBA 0 block,
the MVPBA block address 704 for row 716, which is shown as location 732 may include any
value, such as an initialization value (in Fig. 11, ‘XX’ is sthn to indicate a “don’t care” state).

The value in 734 is at logic state ‘0’ to show that LBA ‘0’ block does not contain any
moved sectors. Location 736 within the used flag 708 column of row 716 will be set to logic
state ‘1’ indicating that the PBA ‘0’ block is in use. The state of location 738, representing the
old flag 710 for row 716, is set to ‘0’ to indicate that PBA ‘0’ block is not “old” yet. Location

740 maintains logic state ‘0’ indicating that the PBA ‘0’ block is not defective and all of the bits

17

10

15

25

30

WO 99/18509 PCT/US98/21107

in move status location 714 are at logic state ‘0’ to indicate that none of the sectors within the
LBA ‘0’ through LBA ‘15" block have been moved.

In Fig. 11, the status information for LBA ‘0’ in row 716, such as in move flag location
706, used flag location 708, old flag location 710, defect flag location 712 and move status
location 714 for all remaining rows, 716-728, of table 700 are at logic state ‘0°. It is understood
that upon power-up of the system and/or after erasure of any of the blocks, the entries for the
erased blocks, which would be all blocks upon power-up, in table 700, are all set to logic state
‘0.

At this time, a discussion of the contents of one of the flash memory devices within the
memory unit 508, wherein the LBA ‘0’ block may be located is presented for the purpose of a
better understanding of the mapping information shown in table 700 of Fig. 11.

Turning now to Fig. 22. an example is illustrated of the contents of the flash memory
device 510 in accordance with the state of table 700 (as shown in Fig. 11). LBA ‘0°, which
within the memory unit 508 is identified at PBA ‘0’ by controller 506 (of Fig. 10) is the location
wherein the host-identified block is written. A PBAO row 750 is shown in Fig. 22 to include
data in sector data location 752. An ECC code is further stored in ECC location 754 of PBAQ
row 750. This ECC code is generated by the ECC logic block 540 in association with the data
being written, as previously discussed. Flag field 756 in PBAO row 750 contains the move,
used. old and defect flag information corresponding to the sector data of the block being written.
In this example. in flag field 756, the “used” flag and no other flag is set, thus, flag field 756
maintains a logic state of ‘0100’ indicating that PBA ‘0’ is “used” but not “moved”, “old” or
“defective”.

PBAO row 750 additionally includes storage location for maintaining in LBA address
location 758, the LBA number corresponding to PBA ‘0’, which in this example, is ‘0’. While
not related to the example at hand, the remaining PBA locations of LBA ‘0’ are stored in the
next 15 rows following row 750 in the flash memory device 510.

It will be understood from the discussion of the examples provided herein that the
information within a PBA row of flash memory device 510 is enough to identify the data and
status information relating thereto within the LBA ‘0’ block including any moves associated
therewith, particularly due to the presence of the “move” flag within each PBA row (750, 762,
764, ...) of the flash memory. Nevertheless, alternatively, another field may be added to the first

PBA row of each LBA location within the flash, replicating the status of the bits in the move

18

wn

10

15

25

30

WO 99/18509 PCT/US98/21107

status location 714 of the corresponding row in table 700. This field is optionally stored in
sector status location 760 shown in Fig. 22 to be included in the first PBA row of each LBA
block, such as row 750, 780 and so on. Although the information maintained in location 760
may be found by checking the status of the “move” flags within the flag fields 756 of each PBA
row, an apparent advantage of using location 760 is that upon start-up (or power-on) of the
system, the contents of table 700 in SPM RAM block 548 may be updated more rapidly due to
fewer read operations (the reader is reminded that table 700 is maintained in SPM RAM 548,
which is volatile memory whose contents are lost when the system is power-down and needs to
be updated upon power-up from non-volatile memory, i.e. memory unit 508).

That is. rather than reading every PBA row (altogether 16 rows in the preferred example)
to update each LBA entry of the table 700 upon power-up, only the first PBA row of each LBA
must be read from flash memory and stored in SPM RAM 548 thereby saving time by avoiding
needless read operations. On the other hand, clearly more memory capacity is utilized to
maintain 16 bits of sector status information per LBA.

In the above example, wherein location 760 is used, the value in sector status location
760 would be all ‘0’s (or ‘0000’ in hexadecimal notation).

In flash memory device 510, each of the rows 750, 762, 764, 768.., is a PBA location
with each row having a PBA row number and for storing data and other information (data and
other information are as discussed above with respect to row 750) for a sector within a block
addressed by a particular LBA. Furthermore, every sixteen sequential PBA rows represents one
block of information. That is, PBA rows 750, 762, 764 through 768, which are intended to show
16 PBA rows correspond to LBA O(shown as row 716 in table 700 of Fig. 11) and each of the
PBA rows maintains information regarding a sector within the block. The next block of
information is for the block addressed by LBA ‘10’ (in Hex.) whose mapping information is
included in row 718 of table 700, and which is stored in locations starting from ‘10’ (in
hexadecimal notation, or ‘16’ in decimal notation) and ending at ‘1F’ (in hexadecimal notation,
or *317) in the flash memory device 510 and so on.

Continuing on with the above example, Fig. 12 shows an example of the state of table
700 when LBA 0 is again being written by the host. Since LBA 0 has already been written and
is again being written without first being erased, another free location within the memory unit
508 (it may serve helpful to note here that the blocks, including their sectors, are organized

sequentially and continuously through each of the flash memory devices of memory unit 508

19

10

15

25

WO 99/18509 PCT/US98/21107

according to their PBAs such that for example, the next flash memory device following device
510 picks up the PBA-addressed blocks where flash memory device 510 left off, an example of
this is where flash memory device 510 includes PBAs of 0-FF (in Hex.) and the next flash
memory device, which may be 512, may then include 100-1FF (in Hex.)) is located by space
manager 544 for storage of the new information. This free location is shown to be PBA 10’ (in
Hexadecimal notation, or 16 in decimal notation). In row 718, where the entries for LBA ‘10’
will remain the same as shown in Fig. 11 except the used flag in location 742 will be set (in the
preferred embodiment, a flag is set when it is at logic state ‘1’ although the opposite polarity
may be used without deviating from the present invention) to indicate that the PBA ‘10’ is now
“in use”.

The entries in row 716 are modified to show ‘10” in MVPBA block address location 732,
which provides the PBA address of the moved portion for the LBA *00’ block. The move flag in
location 734 is set to logic state ‘1’ to indicate that at least a portion (one or more sectors) of the
LBA ‘00’ block have been moved to a PBA location other than the PBA location indicated in
location 730 of table 700. Finally, the bits of the move status location 714 in row 716 are set to
*1000000000000000° (in binary notation, or ‘8000’ in hexadecimal notation), reflecting the
status of the moved sectors within the block LBA ‘00°. That is, in this example, ‘8000’ indicates
that the first sector, or sector ‘0°, within LBA 00’ block has been moved to a different PBA
location.

Referring now to Fig. 22. the state of table 700 in Fig. 12 will affect the contents of the
flash memory device 510 in that the moved sector of the LBA ‘0’ block will now be written to
PBA *10’ in row 780. Row 780 will then include the data for the moved sector, which is 512
bytes in size. With respect to the moved sector information, row 780 further includes ECC code,
a copy of the values in flag locations 734 - 740 of table 700 (in Fig. 12), and LBA 00’ for
indicating that the data in row 780 belongs to LBA ‘00’ and may further include the move status
for each of the individual sectors within the LBA ‘0’ block.

While not specifically shown in the figure, the move flag within location 756 of PBA
row 750 is set to indicate that at least a portion of the corresponding block.has been moved. The
value stored in the move status location 714 of row 716 (in Fig. 12), which is ‘8000’ in Hex., is
also stored within location 760 of the row 750. As earlier noted, this indicates that only sector

‘0’ of PBA ‘0’ was marked “moved” and the new block LBA ‘0’ was written to PBA ‘10’ in

20

10

15

25

30

WO 99/18509 PCT/US98/21107

flash memory. Without further detailed discussions of Fig. 22, it should be appreciated that the
examples to follow likewise affect the contents of the flash memory device 510.

Fig. 13 shows the status of table 700 when yet another write operation to LBA ‘00’ is
performed. The values (or entries) in row 716 remain the same as in Fig. 12 except that the
value in location 732 is changed to ‘20’ (in Hex. Notation) to indicate that the moved portion of
block LBA ‘00’ is now located in PBA location ‘20’ (rather than ‘10’ in Fig. 12). Asin Fig. 12,
the value in move status location 714, ‘8000°, indicates that the first sector (with PBA ‘00°) is
the portion of the block that has been moved.

Row 718 is modified to show that the LBA ‘10’ block is now old and can no longer be
used before it is erased. This is indicated by the value in location 744 being set to logic state ‘1°.
The entries for LBA ‘20°, row 720, remain unchanged except that location 746 is modified to be
set to logic state ‘1’ for reflecting the state of the PBA “20” block as being in use. It is
understood that as in Figs. 11 and 12, all remaining values in table 700 of Fig. 13 that have not
been discussed above and are not shown as having a particular logic state in Fig. 13 are all
unchanged (the flags are all set to logic state ‘0’).

Continuing further with the above example, Fig. 14 shows the state of table 700 when yet
another write to LBA ‘0’ occurs. For ease of comparison, there is a circle drawn around the
values shown in Fig. 14, which are at a different logic state with respect to their states shown in
Fig. 13. Inrow 716, everything remains the same except for the new moved location, indicated
as PBA ‘30°, shown in location 732. PBA ‘30’ was the next free location found by the space
manager 544. As previously noted. this value indicates that a portion of the block of LBA ‘0’ is
now in PBA ‘30°; namely, the first sector (shown by the value in 714 of row 716 being ‘8000’)
in that block has been moved to PBA ‘30’ in the flash memory device 510.

Row 718 remains the same until it is erased. The flags in locations 742 and 744 are set
to logic state ‘0’. Row 720 also remains unchanged except for the value in its old flag 710
column being modified to ‘1’ to show that the block of PBA ‘20’ is also old and can not be used
until first erased. Row 722 remains the same except for the value in its used flag 708 column
being changed to logic state ‘1’ to show that the block of LBA 30’ is now in use.

Fig. 15 is another example of the state of table 700, showing the state of table 700
assuming that the table was at the state shown in Fig. 13 and followed by the host writing to
LBA ‘5°. Again, the changes to the values in table 700 from Fig. 13 to Fig. 15 are shown by a

circle drawn around the value that has changed, which is only one change.

21

10

15

30

WO 99/18509 PCT/US98/21107

When writing to LBA 5’, it should be understood that the LBA entries of rows 716, 718,
720, etc. are only for LBA 00°, LBA ‘10’°, LBA ‘20, so on, and therefore do not reflect an LBA
5" entry. The reader is reminded that each of the LBA row entries is for a block of information
with each block being 16 sectors in the preferred embodiment. For this reason, LBA ‘5” actually
addresses the fifth sector in row 716. Since PBA ‘20’ was used to store LBA ‘0’, only the sector
within PBA ‘20°. corresponding to LBA ‘5°, is yet not written and “free”. Therefore, the data
for LBA ‘5’ is stored in PBA ‘20’ in sector °5’. The move status location 714 of row 716 will be
modified to logic state ‘8400° (in Hex. Notation). This reflects that the location of the first and
fifth sectors within LBA "0’ are both identified at PBA ‘20’ in the flash memory device 510.

The remaining values in table 700 of Fig. 15 remain the same as those shown in Fig. 13.
Figs. 16-18 show vet another example of what the state of table 700 may be after either power-
up or erasure of the blocks with the memory unit 508. In Figs. 16 and 17, the same write
operations as those discussed with reference to Figs. 11 and 12 are performed. The state of table
700 in Figs. 16 and 17 resembles that of Figs. 11 and 12, respectively (the latter two figures have
been re-drawn as Figs. 16 and 17 for the sole convenience of the reader). Briefly, Fig. 16 shows
the state of table 700 after a write to LBA ‘0’ and Fig. 17 shows the state of table 700 after
another write to LBA ‘0.

Fig. 18 picks up after Fig. 17 and shows the state of table 700 after the host writes to
LBA *5°. Asindicated in Fig. 18. LBA ‘5" has been moved to PBA ‘10° where LBA ‘0’ is also
located. To this end. MBPBA block address location 732 is set to ‘10’ in row 716 and the move
flag is set at location 734 in the same row. Moreover, the state of move status location 714 in
row 716 is set to "8400° (in Hex.) indicating that LBA ‘0’ and LBA ‘5’ have been moved. or that
the first and fifth sectors within LBA ‘00’ are moved. Being that these two sectors are now
located in the PBA ‘10" location of the flash memory device 510, the move flag for each of the
these sectors are also set in the flash memory device 510. It should be understood that LBA ‘5’
was moved to PBA ‘10’ because remaining free sectors were available in that block. Namely,
even with LBA ‘0’ of that block having been used, 15 other sectors of the same block were
available, from which the fifth sector is now in use after the write to LBA ‘5.

Continuing on with the example of Fig. 18, in Fig. 19, the state of the table 700 is shown
after the host writes yet another time to LBA ‘0’. According to the table, yet another free PBA
location, ‘20, is found where both the LBA ‘5’ and LBA ‘0’ are moved. First, LBA 5’ is
moved to the location PBA ‘10’ to PBA ‘20’ and then the new block of location LBA ‘0’ is

22

10

25

30

WO 99/18509 PCT/US98/21107

written to PBA ‘20°. As earlier discussed, any time there is a move of a block (for example, here
the block of LBA 5’ is moved) it is first moved from the location within flash memory where it
currently resides to a temporary location within the controller 506, namely with the buffer RAM
block 522, and then it is transferred from there to the new location within the flash memory
devices.

The used flag in location 746 of row 720 is set to reflect the use of the PBA ‘20’ location
in flash memory and the old flag in location 744 is set to discard use of PBA ‘10’ location until
it is erased. Again, in flash memory, the state of these flags as well as the state of the move flag
for both the LBA ‘0’ and LBA ‘5’ sectors are replicated.

Fig. 20 picks up from the state of the table 700 shown in Fig. 18 and shows yet another
state of what the table 700 may be after the host writes to LBA “5’. In this case, the block of
LBA ‘0’ is first moved from location PBA ‘10 within the flash memory device 510 wherein it is
currently stored to location PBA ‘20’ of the flash memory. Thereafter, the new block being
written to LBA ‘5’ by the host is written into location PBA ’20’ of the flash memory. The flags
in both table 700 and corresponding locations of the flash memory device 510 are accordingly
set to reflect these updated locations.

Fig. 21 also picks up from the state of the table 700 shown in Fig. 18 and shows the state
of what the table 700 may be after the host writes to LBA ‘7°. In this case, the new block is
simply written to location PBA ‘10’ of the flash memory since that location has not yet been
used. Additionally, three of the bits of the move status location 714 in row 716 are set to show
that LBA 0", LBA ‘5" and LBA ‘7" have been moved to another PBA location within the flash
memory. Location 732 shows that the location in which these three blocks are stored is PBA
107,

As may be understood from the discussion presented thus far, at some point in time, the
number of sectors being moved within a block makes for an inefficient operation. Thus, the
need arises for the user to set a threshold for the number of sectors within a block that may be
moved before the block is declared “old” (the old flag is set) and the block is no longer used,
until it is erased. This threshold may be set at, for example, half of the number of sectors within
a block. This is demonstrated as follows: For a block having 16 sectors, when 8 of the sectors
are moved into another block, the “original” block and the “moved” block (the block in which
the moved sectors reside) are combined into the same PBA block. The combined PBA block

may be stored in a new block altogether or, alternatively, the “original” block may be combined

23

10

15

20

25

30

WO 99/18509 PCT/US98/21107

with and moved into the “moved” block. In the latter case, the “original” block is then marked as
“old” for erasure thereof. If the combined PBA block is stored in a new block. both of the
“original” and the “moved” blocks are marked as “old”.

Fig. 23 depicts a general flow chart outlining some of the steps performed during a write
operation. It is intended to show the sequence of some of the events that take place during such
an operation and is not at all an inclusive presentation of the method or apparatus used in the
preferred embodiment of the present invention.

The steps as outlined in Fig. 23 are performed under the direction of the microprocessor
block 524 as it executes program code (or firmware) during the operation of the system.

When the host writes to a block of LBA M, step 800, the space manager block 544, in step 802,
checks as to whether LBA M is in use by checking the state of the corresponding used flag in
table 700 of the SPM RAM block 548. If not in use, in step 804. a search is performed for the
next free PBA block in memory unit 508. If no free blocks are located, an “error” state is
detected in 808. But where a free PBA is located, in step 806. its used flag is marked (or set) in
table 700 as well as in flash memory. In step 810, the PBA of the free block is written into the

~ VPBA block address 702 location of the corresponding LBA row in table 700.

Going back to step 802, if the LBA M block is in use, search for the next free PBA block is still
conducted in step 812 and upon the finding of no such free block, at 814, an “error” condition is
declared. Whereas, if a free PBA location is found, that PBA is marked as used in table 700 and
flash memory, at step 816. Next, in step 818, the state of the block is indicated as having been
moved by setting the move flag as well as the setting the appropriate bit in the move status
location 714 of table 700. The new location of where the block is moved is also indicated in
table 700 in accordance with the discussion above.

Finally, after steps 818 and 810. data and all corresponding status information, ECC code
and LBA are written into the PBA location within the flash memory.

As earlier indicated, when a substantial portion of a block has sectors that have been
moved (in the preferred embodiment, this is eight of the sixteen sectors), the block is declared
“old” by setting its corresponding “old” flag. Periodically, blocks with théir “old” flags set, are
erased and may then be re-used (or re-programmed, or re-written).

As can be appreciated, an advantage of the embodiments of Figs. 10-23 is that a block
need not be erased each time after it is accessed by the host because if for example, any portions

(or sectors) of the block are being re-written, rather than erasing the block in the flash memory

24

10

15

25

WO 99/18509 PCT/US98/21107

devices or moving the entire block to a free area within the flash, only the portions that are being
re-written need be transferred elsewhere in flash, i.e. free location identified by MVPA block
address. In this connection. an erase cycle, which is time consuming is avoided until later and
time is not wasted in reading an entire block and transferring the same.

Improvements to the various embodiments of the present invention, as described thus far,
are hereinafter disclosed for efficiently transferring single sectors that are addressed in sequential
order by the host and that are also being re-written under the direction of the controller 506 (in
Fig. 10). As will be apparent to those skilled in the art, while such improvements include
moving sectors within a block from a first area within the nonvolatile memory to an unused area
within the nonvolatile memory. there is less storage area utilized within the controller thereby
providing a smaller and less expensive solution. Specifically, the need for maintaining: 1)
MBPBA block address locations 704 and sector move status locations 714 (shown in Figs. 11-
21) within the SPM RAM block 548 of the controller 506 (shown in Fig. 10); and 2) sector
status locations 760 for every block in the memory unit 508 (shown in Fig. 10), as disclosed
hereinabove with respect to the embodiment of Figs. 10-23, is avoided. Furthermore, the number
of operations necessary for performing such sequential single sector moves is substantially
decreased thereby yielding higher system performance.

One embodiment of such an improvement of the present invention, is shown in flow
chart form in Figs. 24-26. to utilize the digital system 500 of Fig. 10 to reduce the number of
read and write cycles associated with re-writing single sectors which are arranged in sequential
order.

In systems such as digital cameras, for example. wherein the digital system 500 of the
present invention may be employed, the host 502 (in Fig. 10), under the direction of the
controller 506, commonly transfers a large quantity of information in the form of picture frames
with each frame typically having 1648 sectors for storage within the flash memory unit 508. In
such applications, information received by the controller 506, from the host 502, is generally
arranged in sectors that are in sequential order. For example, as will be discussed through
examples provided hereinbelow, the host may command the controller to store data in sectors
addressed LBA 5 through LBA 15. As will be apparent shortly, the improved embodiments of
the present invention. take advantage of the sequential addressing of sectors by the host when
such sectors are being re-accessed in such a way as to avoid unnecessary sector transfers while

yet avoiding the need for erase-before-write operations. As stated above, such an improvement

25

10

25

30

WO 99/18509 PCT/US98/21107

utilizes the structure shown in Fig. 10 in conjunction with the method of Figs. 24-26 outlined in
flow chart form.

Most of the steps outlined in Figs. 24-26 are performed by the microprocessor block 524,
included within the controller 506 of Fig. 10. The microprocessor block 524 executes
instructions that are stored in the microprocessor RAM block 530 for performing most of the
steps outlined in Figs. 24-26. It should, however, be obvious to those of ordinary skill in the art
that these steps may be performed by hardware means rather than by the microprocessor.

Fig. 27 shows an example of what the contents of a look-up table 1030 stored in the SPM
RAM block 548 may maintain. Table 1030 is formed of an array of volatile storage locations
(RAM) organized in LBA/PBA rows and columns. Each row is addressed by a nine-bit LBA
value, LBA row address 1032. such as LBA 0, 1, 2, 3,..., n-1. The number of rows is a function
of the memory capacity afforded by the memory unit 508. For example. a memory capacity
within the nonvolatile memory unit 508 of at least 4 Mbytes can store 500 blocks (each block
having 16 sectors and each sector being 512 bytes) therein and 500 blocks require 500 rows in
the table 1030. The columns of table 1030 comprise of a nine-bit block address 1034, a ‘defect’
flag 1036, a "used’ flag 1038 and an ‘old’ flag 1040 for indicating the status of each block within
the memory unit 508 (the reader is reminded that an LBA value is used to address a sector of
information received from the host while a PBA, developed by the controller, is used to address
a sector of information within a multi-sectored block that is stored in the memory unit 508).

For ease of understanding, the flow chart of Figs. 24-27 is discussed with reference to the
contents of table 1030. as shown in Fig. 27. as well as examples of the contents of table 1030. as
shown in Figs. 28-40.

In Fig. 24. step 1000 is shown to include a command sent from the host 502 to the
controller 506 for writing a sector of information to the memory unit 508. The sector of
information is addressed by the host and this host-provided address is transformed to an LBA
value, i.e. LBA X, by the controller. As discussed hereinabove with respect to other
embodiments of the present invention, the host interface block 520 receives the host command,
including sector information and address, and develops LBA X therefrom for addressing an
LBA/PBA row within the table 1030 in Fig. 27.

LBA X is developed from an address provided by the host that may be either in LBA
format or CHS format. in which case it is transformed to an LBA format. The LBA address is

16 bits in the preferred embodiment but is four least significant bits (LSBs) are masked and the

26

W

10

—
wh

25

WO 99/18509 PCT/US98/21107

remaining 12 bits are shifted four times to the right, the nine LSB bits of the shifted value are
used to address the LBA/PBA rows of table 1030 at 1032. Nine bits are used for the row
addressing to address 500 blocks in the table 1030. Alternatively, if the memory unit 508 has a
different capacity and other numbers of blocks are utilized, a corresponding bit-size is used as
earlier described. Similarly, in alternative embodiments, a block may comprise of a different
number of sectors. Consistent therewith, the number of bits being masked from the address
received from the host will be different. For example, if a 32-sectored block size is employed, 5
bits would be masked from the address instead of the current 4 bits as performed by the system
of the preferred embodiment. Furthermore, a sector of information is organized to include a user
data portion that is 512 bytes and an overhead portion, the latter having at least an ECC field and
may be further stored with flag and address information in the memory unit 508.

Referring back to Fig. 24, upon receipt of such a command by the host interface block
520 (of the controller 506). the microprocessor block 524 (also within the controller 506), in step
1002. compares the address of the sector being accessed, i.e. LBA X, to a PREV_LBA sector
address. the latter having been previously stored in a storage location, such as a register (named
moved LBA register 1054 in later figures). within the microprocessor block 524. If LBA X and
PREV_LBA are equal. step 1004, the write command from the host is a sequential write
command and the microprocessor block 524 checks as to whether the block that is addressed by
LBA X has been written to previously by checking the VPBA, which is a nine-bit address of the
block assigned to a corresponding LBA (as will be explained further) and the contents of the
block address 1034 of SPM RAM block 548.

As an example. if LBA 5 was commanded to be written by the host, the four LSBs of the
binary notation of the number ‘5’ would be masked resulting in the value ‘0’ and in Fig. 27, the
VPBA block address 1034 corresponding to LBA 0, which in this case is set to ‘1FF’ indicating
the block is not vet used, would be checked. If the VPBA is valid, i.e. is a value other than all
one’s (‘1FF’ in Hex.), the microprocessor block 524 checks a move pending flag, which is a bit
and when set indicates that information is stored by the microprocessor. The move pending flag
may be optionally stored in the SPM RAM block 548, as shown in Fig. 27 at column 1042
instead of by the microprocessor. The decision as to where the pending move flag may be stored
is a design choice although it should be noted that the pending move flag, whether stored in the
microprocessor block or the SPM RAM, is only a one bit information. This is because there can

only be one block that is in the process of being moved from one location in the nonvolatile

27

10

25

WO 99/18509 PCT/US98/21107

memory unit 508 to another location therein and the move pending flag indicates whether or not
such a block move is pending. It should be obvious to those of ordinary skill in the art that in
alternative embodiments. more than one block may be pending a move. However. in such an
implementation, the microprocessor must keep track of more LBAs and more hardware in
needed. The determination as to whether to use one or more than one pending move blocks in a
matter of design choice.

In the case where there is a pending block move, i.e. at least one sector of a block that
has been re-written by the host prior to erasure thereof has been moved to another block within
the memory unit 508. That is, in Fig. 24, after step 1006, step 1018 follows and LBA X sector
information is written to the block housing the sectors being moved. Thereafter, in step 1020,
the microprocessor increments LBA X by one and stores this incremented value in the
PREV_LBA location.

Referring back to the top of Fig. 24, if LBA X does not match the PREV_LBA at step
1002, the sector that is being currently accessed by the host is not in sequential order with
respect to the previous sector that was accessed by the host and therefore the entire block of
information where sectors were previously written need to be transferred to new block location
to where the old block is being moved. This is shown at step 1022 in Fig. 25. The following
step is to perform an erase operation of all locations of a block that is located at an address
corresponding to LBA X in the memory unit 508, step 1024, prior to its re-use. Thereafter, at
step 1026, a move PBA register, which is a storage location for maintaining information
regarding the location of the block that is in the process of being move, is cleared as is the move
pending flag and the process resumes from step 1004 in Fig. 24.

In Fig. 24. if the VPBA at 1034 that corresponds to LBA X is not valid (or not ‘1FF’ as
explained above). a search is conducted by the SPM control block 546 (in Fig. 10) for locating a
free block in memory unit 508, as shown in Fig. 26 at step 1028. The ‘used’ flag corresponding
to the PBA X location in the flash memory unit 508 is set, indicating that the LBA X block has
been re-accessed prior to erasure thereof, as shown at step 1029. Later, at step 1031, the VPBA
of the located free block is stored in one of the locations of the look-up-table 1030, this location
being in one of the rows of column 1034 that corresponds to LBA X in Fig. 27. After step 1031
in Fig. 26, the process flows back to step 1016 of Fig. 24.

Similarly, in Fig. 24, if the VPBA at 1034 corresponding to LBA X is valid, then the

move pending flag is checked at step 1006. If the move pending flag was not set at step 1006, a

28

10

15

25

30

WO 99/18509 PCT/US98/21107

search is conducted for a free LBA block at step 1008, the pending move flag is set at step 1010,
the VPBA of the newly-located free block (of step 1008) is stored in a location of the look-up-
table 1030 at step 1012 and the ‘used’ flag corresponding to the LBA X block in the memory
unit 508 is set.

At step 1016, the VPBA of the newly-located free block is stored in a move PBA register
by the microprocessor. The move PBA register is shown as 1052 and the moved LBA register is
shown as 1054 in Fig. 27. Both of these registers as well as the VPBA block address at 1034 are
initialized to the hexadecimal value ‘1FF’ after initial power-on of the digital system 500 as well
as after erasure of the moved block. In fact, in the above discussion, with reference to the flow
charts shown in Fig. 24-26. wherever it is indicated that any of these registers is “cleared” (such
as in step 1026), that is actually setting the contents of the registers to ‘1FF’,

After step 1016, data that was received by the host to be written to the LBA X block is

written to the newly-located free block in memory unit 508, as shown at step 1018. LBA X is
then incremented by one and the incremented value is stored in PREV_LBA at step 1020.
In the manner described above, the preferred embodiment of the present invention avoids having
to move all of the sectors of a block, the sectors of which are being re-written prior to an erase
operation, to an unused location in flash when sectors are singly and sequentially addressed by
the host. This is because each time the next sequential sector is accessed, the block location
where the most up-to-date, or moved, sectors reside is maintained in the move register PBA
1052 and since the PREV_LBA value maintains where within the latter block the next sector
should be written, the write operation is performed using these two parameters without the
necessity of having to move an entire block. This in turn saves many unnecessary read. write
and erase operations as required by prior art systems. For example, in the prior art systems,
when one sector of a block was re-written, 15 read operations and 15 write operations were
necessarily performed because an entire block of information was moved. The present invention
however, as will be further evident with the examples provided below, avoids these 15 read and
write operations and only writes the sector being re-written.}

Fig. 28 generally depicts the organization of information within the blocks of the
memory unit 508. As shown, each block includes sixteen sectors and each sector of a block
includes a 512-byte location 1056 for storing the user data portion of a sector and a storage
location 1058 for storing the ECC. Each block, i.e. Block 0, Block 1, ... is addressed using the
9-bit block address value of 1034 (in Fig. 27) and each sector within the block is addressed using

29

10

15

20

25

30

WO 99/18509 PCT/US98/21107

the 4 masked LSB bits discussed above after they are unmasked. The last sector of each block
further includes a block address location 1060 for storing the 9-bit LBA value for the block in
which the block address location 1060 resides. For example, the block address location 1060 of
block 0 will contain the value *0’, the block address location 1060 of block 1 will contain the
value ‘1°, the block address location 1060 of block 2 will contain the value ‘2’ and so forth for
all blocks. In fact. these values are the same as the values of the LBA/PBA row address 1032
(shown in Fig. 27).

Further included in the last sector storage area of each block is storage location for
maintaining the ‘defect” flag 1062, the ‘used’ flag 1064, the ‘old’ flag 1066 and a ‘good’ block
flag 1068. The defect and old flags 1062 and 1066, respectively, correspond to the defect and
old flags 1036 and 1040 of the SPM RAM look-up-table 1030 (shown in Fig. 27). Each ‘used’
flag corresponds to one sector of a block, therefore, each sector location of each block maintains
a “used’ flag location. The reason for having a ‘used’ flag for each sector in the block is to
indicate which sectors of the block have been moved or are being written to the move PBA
Jocation (as indicated by the contents of move register PBA 1052) from the originally-
maintained LBA location (as indicated by the moved LBA register 1054). This is especially
useful during moving of an entire block having some sectors that have been moved and others
that have not.

For example, when a sector that is non-sequential in order is accessed by the host, as
noted above with reference to Figs. 24-26, an entire sector that was in pending move status is
moved. In such a case. the microprocessor checks the ‘used’ flag of each sector within the block
being moved and only moves the sectors whose ‘used’ flags are not set because those sectors
having ‘used’ flags that are set have already been moved during sequential accesses by the host.

In an alternative embodiment. rather than utilizing ‘used’ flags to indicate which sectors
need be moved. a move locator location that is a word (16 bits) in length is utilized by the
microprocessor and stored in the microprocessor block 524 to do the same. After the time when
the pending move flag is set, every time a sector is moved to the move PBA location, a bit
within the move locator word (shown as 170 in the example of Fig. 29 and on), corresponding
to the location of the sector within the block is set. Therefore, the move locator word acts as a
map to the moved sectors of a block and provides a fast way of identifying which sectors of the

block pending move are in the move PBA location and which are in the moved LBA location.

30

10

15

30

WO 99/18509 PCT/US98/21107

The ‘good’ block flag 1068 is maintained in the first and last sectors of each block for
purposes of identifying the location of the block that has the most recent and accurate copy of
the stored file. After a power interruption, the contents of the memory unit 508 are used to
update the look-up-table 1030 in the SPM RAM and when a block, for example, was in the
midst of being moved from a first location within the nonvolatile memory unit 508 to a second
location within the memory unit 508 prior to when the power interruption occurred, the block
information is distributed among two blocks that will be addressed by the same LBA. The
second block where information was being moved can not be relied upon for having good data
since the move was not completed and the information in the first block may in fact be more
useful.

When a block is being moved from a first block to a second block, the last sector of the
first block is moved to the second block first and the ‘good’ block flag 1068 of the last sector of
the second block is set to indicate that that block is ‘good’. thereafter the next to the last sector
of the first block is moved to the corresponding location of the second block and so on until all
of the sectors including the first sector of the first block are moved. Thereafter, the ‘good’ block
flag of the first sector of the second block is set to indicate that the second block is ‘good’. In
this respect. if for example, upon the restoration of power, two blocks have the same LBA values
due to the incomplete transfer of block information from one block to another, the block with the
accurate information may be identified by checking the status of the two ‘good’ block flags of
each block. That is, where a block has two unmatching ‘good’ block flag values, it was never
completely transferred and therefore not a good block. If. on the other hand. one of the blocks
has two matching ‘good’ block flags that indicate the block is good and the other block has two
non-matching flags that indicate the block is not good and the pending move flag is set, then the
microprocessor concludes that the latter block in not good and uses the information in the former
block as valid information.

Figs. 29 -40 are provided to show several examples of the contents of the SPM RAM
look-up-table when various types of LBA accesses for a better understanding of the operation of
the preferred embodiments as discussed above relative to Figs. 24-28. Initially, upon power-up
of the system, the v.alues in the block address locations 1034 and the move PBA register and
moved LBA register contents are all set to ‘1FF’ in Hex. The flags and the move locator word

170 are all set to *0’.

31

w

10

15

25

30

WO 99/18509 PCT/US98/21107

In Fig. 29, after power-up, if the host commands the controller to write to LBA 0 through
LBA 15, the SPM controller is likely to find block 0 to be free and the microprocessor will use it
to store the data provided by the host. Accordingly, the block address 1034 of the LBA block 0
will contain the value ‘0’ and the ‘used’ flag for that block will be set.

In Fig. 30, the host commands the controller to write only to LBA 5 after the write of
Fig. 29. In this case, the hexadecimal notation of the value ‘5’ is processed to mask its 4 LSBs
thereby yielding the value ‘0’. But since the location LBA 0 within the memory unit 508 was
written to in the steps of Fig. 29, the SPM controller must search for another available free
block. Assuming such a block to be at address ‘1°, the controller will then write the data that
was sent by the host to be stored as LBA 5 to location 5 of LBA block 1, which is the sixth
sector location (location 0 being the first sector) within block 1. Then, the move pending flag,
which may be stored either in the microprocessor block or alternatively in the SPM RAM look-
up-table at location 1042 will be set by the controller.

The controller further writes the address where the block is being moved to, ‘001°, to the
move PBA register 1052 and sets the move pending flag (either in the microprocessor or 1042.
It should be noted that the move PBA register 1052 may be saved in the SPM RAM in
alternative embodiments. The controller also sets the ‘used’ flag 1038 corresponding to Block 1
in the SPM RAM look-up-table 1030 and updates the moved LBA register 1054 to store a ‘0’
value indicating that at least one or more sectors of block 0 have been moved elsewhere in the
memory unit 508. If move locator word 170 is used, the controller also updates the same to
indicate that LBA 5 has been moved.

From hereon, several different events may occur and in each case, the contents of the
look-up-table 1030 is clearly different. Figs. 31-33 illustrate what the contents of the look-up-
table 1030 may be after the state shown in Fig. 31 in order to demonstrate the effect of the
various events. In particular, Fig. 31 depicts the contents of 1030 when an LBA which is not in
block 0 is written, Fig. 32 depicts the contents of 1030 when the host writes to LBA 5 again and
Fig. 33 depicts the contents of 1030 when the host writes to an LBA other than LBA 5 that is
nevertheless within block 0, i.e. LBA 6.

In Fig. 31, if the host writes to LBA 17, this is clearly outside of block 0 and its a non-
sequential sector write since the previous write was to LBA 5. Here again, the 4 LSBs of ‘the
hexadecimal equivalent of the value ‘17’ is masked yielding block ‘1’. The controller then

checks the moved LBA register 1054 against ‘1’ and also checks as to whether the move

32

10

15

25

30

WO 99/18509 PCT/US98/21107

pending flag is set. Since the value in the moved LBA register is ‘0’, there is no match and the
pending move must be closed. That is, all of the sectors that have not yet been updated in block
1 must be moved from block 0 to block 1 and block 0 must either be erased or marked as ‘old’
until some later point in time when it can be erased in the background prior to writing the new
LBA 17 to a block in the memory unit 508. The new LBA 17 is thus written to block 2, which is
the next free block found by the SPM controller.

Fig. 32 depicts the case where LBA 5 is again accessed by the host. In such a case, the
data received from the host for LBA 5 must be written into another block and the move PBA
register 1052 must be updated with the next block address and the old block must be marked as
‘old’ for erasure thereof. In this case, the LBA 5 is written to block 2 which is free and since
there was no other sectors written in block 1 other than sector 5, no other sectors are moved from
block 1 to block 2 and the contents of block 0 remains the same. Block 1 is marked as ‘old” and
the move PBA register 1052 is updated to include the value 002 since LBA 5 is now presiding in
block 2. It is important to note that in this example, the need to move all of the sectors from
block 0 to block 1 or block 2, as required by prior art techniques, is avoided thereby eliminating
15 read and 15 write cycles. The controller additionally sets the ‘used’ flag corresponding to
block 2.

In Fig. 33, the host writes to LBA 6. Here the controller again masks the lower 4 bits of
the Hex. equivalent of ‘6’ resulting in ‘0’. The controller then checks this value ‘0’ against the
value in the moved LBA register 1054 and finds that a match exists between the two values.
Either by way of checking the move locator word 170 or by checking the ‘used’ flag
corresponding to sector 6 for determining whether sector 6 has been written to previously or
whether it is free for use. In this case. since sector 6 was not previously written, the controller
merely sets the corresponding bit of the move locator word 170 (or alternatively the used flag of
sector 6 in the memory unit 508) and writes the data received from the host to sector 6 of block
1. No other modifications to the contents of the look-up-table 1030 is necessary.

If the host continues to write data into LBAs 7,8,9 ’through 15 sequentially, these new
LBAs are accordingly written into sectors 7, 8, 9 through 15, respectively, by the controller.
Once the end of the block is reached, that is, the last sector, sector 15, is written, sectors 0, 1,2,3,
and 4 are moved from block 0 to block 1 because the host has not updated these sectors. Block 0

is then marked ‘old’ and the move PBA register 1053 and the moved LBA register 1054 are

33

10

WO 99/18509 PCT/US98/21107

initialized to ‘1FF’ indicating no pending moves. For the same reason, the move locator word
170 is also initialized to ‘0°. This discussion is depicted in the examples shown in Figs. 34-40.
Referring to Fig. 40, the status of the look-up-table 1030 is shown when the block has been
entirely exhausted and the pending move is closed. As shown, the block address 1034 of LBA
block 0 is now ‘001" and block 0 is marked as ‘old’ for erasure thereof and registers 1052 and
1054 are shown to have been initialized.

Although the present invention has been described in terms of specific embodiments, it is
anticipated that alterations and modifications thereof will no doubt become apparent to those
skilled in the art. It is therefore intended that the following claims be interpreted as covering all
such alterations and modification as fall within the true spirit and scope of the invention.

What is claimed is:

34

W2

O R0 NN N A

WO 99/18509 PCT/US98/21107

CLAIMS

1. A method for updating sector information in a digital system having a host coupled
through a controller to a nonvolatile memory device for storing digital information organized
into sectors in the nonvolatile memory, each sector having a data portion and an overhead
portion and being uniquely identifiable by the host using an LBA (Logic Block Address), the
sector information stored within a sector location within the nonvolatile memory device, a group
of sector locations defining a block addressable by the controller using a VPBA, and each sector
location within a block being identifiable by the controller using a PBA (Physical Block
Address), wherein the sector information stored in a sector location of a block within the
nonvolatile memory device is updated prior to erasure of the block, the method comprising:

a. developing an LBA value corresponding to a host-addressed sector in response to a
command received from the host to re-write sector information to a sector identified by the host;

b. developing an LBA block address from the LBA value for addressing a block within
the memory device within which the sector provided by the host is to be stored;

c. comparing the LBA value with a previous LBA (PREV_LBA) value to determine
whether or not there is a match;

d. if the LBA value and PREV_LBA match, checking for a previous write operation to
have been performed on the LBA block since the last erase operation of the LBA block;

e. if a previous write operation has been performed, checking for whether or not any of
the sectors of the block identified by the LBA block address have been transferred from one
location within the memory device to another location within the memory device since the
occurrence of the last erase operation on the LBA block;

f. if the sectors of the block identified by the LBA block address have not been
transferred, finding a free block within the nonvolatile memory device for storing the sector
information, the free block being identified by a VPBA (Virtual Physical Block Address) value
corresponding to the LBA block;

g. storing the sector information within a sector location of the free block corresponding
to the sector location of the LBA block;

h. storing the VPBA value in a PBA storage location for indicating the free block
location within the memory device wherein the new sector information resides;

1. incrementing the LBA value by one; and

j. replacing the PREV_LBA value with the incremented LBA value,

35

W2

AN W B

[N

(OS]

8]

EoN (98] [\ (9%}

—

HOwN

WO 99/18509 PCT/US98/21107

wherein single sequential write operations are performed on a sector of a block that was

previously written and not yet erased without moving all other sectors of the block.

2. A method as recited in claim 1, wherein a move locator value is generated and stored in a
particular storage location, and further including, after said step of storing the sector information,
the step of modifying the value of a move locator storage location to indicate the status of which
sector within the LBA block has been updated by setting a bit in said particular storage location,
the position of the bit within the move locator value corresponding to the position of the updated
sector within the LBA block.

3. A method as recited in claim 1, wherein the sector overhead portion includes a ‘used’
flag that when set indicates that the sector has been written to by the host since the last erase
operation. and when not set indicates that the sector has not been written to by the host since the

last erase operation.

4 A method as recited in claim 3, further comprising after the step of finding, the step of

setting a ‘used’ flag of the sector identified by the LBA value.

5. A method as recited in claim 1, further comprising after the finding step, the step of
setting a pending move flag for indicating that at least a portion of the block has been moved to

another location within the memory device.

6. A method as recited in claim 1, further including, the step of storing the VPBA value
associated with the LBA value in an LBA storage location to indicate the location of the block
within the memory device wherein the sector information of all sectors addressed by the LBA

reside.

7. A method as recited in claim 1, wherein if the comparing step yields no match between
the LBA value and the PREV_LBA value, transferring sector information for all of the sectors of
the block identified by the LBA value to the block location identified by the VPBA value stored

in the PBA storage location.

8. A method as recited in claim 7, wherein the block identified by the LBA value is erased.
36

o

(%] [\

v

o

L2

139) (U8)

N

O 0 3 N n s W

10

WO 99/18509 - PCT/US98/21107

9. A method as recited in claim 8, further including clearing a move pending flag and a

PBA storage location after said transferring step and performing steps d. through j.

10 A method as recited in claim 7, wherein the sector overhead portion of at least two of the
sectors in each block stored in the memory device each include a bit for storing a ‘good’ block
flag and during said transferring sector information, setting the ‘good’ block flag of the first
sector after the transfer thereof and setting the ‘good’ block flag of the last sector after the

transfer thereof.

11. A method as recited in claim 10, wherein after a power interruption, the state of the
"good” block flags of the VPBA block are compared and if they are not equal, the sector
information within the LBA block is accessed instead of the VPBA block when the host
addresses the LBA block.

12. A method as recited in claim 1, wherein if the previous write operation of step e has not
been performed. finding a free block within the nonvolatile memory device for storing sector

information, the free block identified by a VPBA value corresponding to the LBA block.

13. A method as recited in claims 3 or 12, wherein after said finding step, setting the ‘used’

flags of the sectors of the block identified by the LBA value and performing steps h. through j.

14. A digital system for use with a host for receiving commands therefrom and a nonvolatile
memory device for storing digital information, the digital information being organized into
sectors with each sector having a data portion and an overhead portion, and being stored in a
sector location within the nonvolatile memory device, a group of said sector locations defining a
block addressable by the controller using a VPBA (Virtual Physical Block Address) value, and
each sector location within a block being identified by the controller using a PBA (Physical
Block Address) value. the digital system comprising:

a controller including,

a. a host interface means responsive to a write command from the host for re-writing

sector information to a sector identified by a sector address and operative to generate an LBA

37

11

12

14
15
16
17
18
19
20

3] NS 3% o
A~ (U8} 9 —

o
W

WO 99/18509 PCT/US98/21107

velue corresponding to the host-addressed sector and further operative to generate an LBA
(Logical Block Address) block address from the LBA value for addressing a block within the
memory device for storing the sector information;

b. means for comparing the LBA value with a PREV_LBA value;

c. means for checking for a previous write operation to have been performed on the LBA
block since the last erase operation of the LBA block;

d. means for detecting whether or not any of the sectors of the block identified by the
LBA block address have been transferred from one location within the memory device to
another location within the memory device since the occurrence of the last erase operation on the
LBA block. means for searching for a free block within the nonvolatile memory device for
storing the sector information. the free block identified by a VPBA value corresponding to the
LBA block:

e. means for storing the sector information within a sector location of the VPBA block
corresponding to the sector location of the LBA block;

f. means for storing the VPBA value in a PBA storage location for indicating the block
location within the memory device wherein the new sector information resides;

g. means for incrementing the LBA by one, and means for replacing the PREV_LBA
value with the incremented LBA value,

wherein single sequential write operations are performed on a sector of a block that was

previously written and not yet erased without the need for moving all other sectors of the block.

38

PCT/US98/21107

WO 99/18509 1/ 27
N
Ny
-
Q{. S O o0 o
<2
¥ &
® X 2 7 IR
g
<
=
%‘ © o o &
. N
bsse. o O o
Lo
O O o &
O O o =
e 8 .

102

o)

o

o)
100

102
102

Figure 2

PCT/US98/21107

WO 99/18509

2/27

€ 33y

vO€E VI vingD

W,WOm 3

P L

!
xédéa\ | Wvy
CHINE % LY YV TY
I

i

hvwy H_\ Wy

I

\ o1

001

¢opg

08~

WaLSAS
YL 12(d
TYNULLKT

PCT/US98/21107

3/27

WO 99/18509

Figure 4

..w) olo ..rO—
3
.mw (] (=] ¥ (=] Y e
J
.m (=] SO QIO
3
B
g
5
I
38
.m.m - 0 S
(S X3}
<<

To) «©
:
= o
I 2
irC .,
.,M © ~lo ..w ol S =
.m) olo .W of o)
m o olo ...M ol o =
< <
& &
F El]]
e >
I< <<
38 38
<< | << |

PCT/US98/21107

WO 99/18509

4/27

A e

o 5

g o)

2 i

i
M O_FOO 10— M ol o
M dolo olo M ol g 1<)
< <
& &
~
<< I
38 38
,mm o wfin «|2 ..m.m e =
<< <<

PCT/US98/21107
WO 99/18509 5/27

200

RECEIVE WRITE INSTRUCTION
TO PROGRAM MASS STORAGE

&
N\
4

204

ERASE FLAGS AND DATA-FOR
ALL BLOCKS HAVING A SET

LOCATE BLOCK WITH
UNSET USED/FREE
FLAG

YES

206
SET USED/FREE FLAG AND
PROGRAM DATA FILE

208

WILL DATA SUPERCEDE
PREVIOUS DATA

NO

210
SET OLD/NEW FLAG ON
SUPERCEDED BLOCK

Y

Y
212
UPDATE MAP TO CORRELATE
LOGICAL ADDRESS TO PHYSICAL
ADDRESS

Figure 9

PCT/US98/21107

WO 99/18509

6/27

91

AY)q D

52

PCT/US98/21107

WO 99/18509
7/27
712
7IE sy T35 73840
7m o NN\ Vo
A \ o
. Egﬁlmk ddr Q‘,{:’iﬁg Fl‘? ed'| Qld Ddtecl] QO OOUULONOLT T
7/ —=00 0¥ o ST | flag | Plag 0123456789101%21%13 1
310 XX 70 170 “Tolojolodololololo[o 5
Y24 XX 0 L I I} 9
227 720 glolvpidofddadiojololo
%0
92 40
772 0

.
.
.
\
\J
A Y

725 3
700 Fi g. !/
761 734 736
32 0
720\ 7 N0 17 U
to LBA O / 37
VL e [e
. : 11818
7/&(500 (oo 3‘/13‘“’ A F‘g%gs o1}2 25‘2%591‘61‘1‘1’51‘51‘2 15
7> 10 ¥R XX 0T T 2loolaolololofoolo
70 —> 20 910 P
72/730 OOboodooaooooao
7
;,47’,‘?3
72, I ‘ AR
7
700 __’i’i_—/—ﬁ——
706 7 y
)Host rite to LB AZaZ://7'/2'/7 7 ‘/ 7/ 17[
PBA/|'VPBA VPBA' | Move]U
LBA |Blk A o e T
';;f?—\%oo 007 .gkz'})dd’ ,%fg ﬂ::lg TigiFlae 012 45|75]
720-—-—7)53 = X O A By Tiaiololdls lols ool o
0 XX 0 T 10715 %060000000000000
7§; % C°0°0°0000000
— /
7 ﬂso /
716 . : P P » . .
v - . / N >° :
/
727 —>Na //

PCT/US98/21107

WO 99/18509
8/27

HosT WRIFE T LBAS AGAn
732 _79% 736

708" 73¢% 740
730 70& \7of\\<izé\ \ 7:)0 @ <7/?‘ \

PBA/ BA ' 7 v
LBA Bmddr g‘,{;’m ',;‘lt d't Old Defect QO OOOOIO T I
7/b —7 w0 [T —rarss—E Fae HagiPhe | OL|ab|s) 47labl 1174 4 13
jo/’m X XX o IV/ g))\ 0 12 olololdoldAdolololaTo
7. 230 | XX XX oDl o \c 21 agololglolols s oo Il
222 ;g 7 \O oppPRIPEE o fololofo
|

.
LK
a

3
O
[y

767 734

32 06
750 \7) \7\ a0 7t
Egﬁ/BYEﬁﬁd’ MVPBA . OZ&U/(ccc/%
7o —X0 s BL;gdr o€ | Fia | Flag|Flag | gt as|ds|7]g G
: o : o = 1 15
7/ —310 % o) I 7 010j0jo Isiollo|olofel ad ©
720"‘5 2 & > 0 Qlootulolélololel ololo lola
o] e 1 o ollolc =
712//;40 010101010101 0 10161 0ln 1D
72¢ 50
/0 I . 4 -
M N A
. P e .
73

/ ' Host URITE Jo tEa 5

WO 99/18509 9 / 27 PCT/US98/21107

HosT B TE 70 LBAD

732 39 736 738 40
7900 77 4
730 70?\ \70f\\{ \\ \? 7’) /-/<~—\\
L

PBA/ M Move[Used'| GId Detect] JLIOOTOOY
LBA Bv%\ddr B Addr Flag | Blag |Hlag|Flag | Oj1]2i3|4}s 6718J9 {Ellli{xlﬁm%ml 15
7/ —20 XX 10T 17T 170 {70 {ololololde[dla
P XX {0 101070 SIS
7/7/720 plgiolelsidordddoiojololo
7}0/30
40
722 7 50
72‘/ /l ’ . 71 ¢
. e o I P .’
726 ¢ . . N I I
7?? N.?
o F 57, /6
706 40 N
o 1
toLB /737
o Al m# S
Addr UOOLC
T —"00 [T 1 £ Pl |Pde Fiag' | 01135514517 ebliqinzi A4 i3
7§ —> 10 [TXX XX T T o 010|9jalobdls[oble slol o] & &
720;'5;1;3 0 Ri%ulelglololof ololotolol
722 4

72f

ZZS B T

.
.
.

72§ o

7 ,

700 Fig 17
Horr wrire - /_j/;. Vs

702 73 /732 /73 o 714

PBAI’VP VPBA i
LBA |BIk UUTOOOT UL
b —00 oo — s addr ug F“:g F})jg*"ag olt}203|ls|d7labrch g 44 13
7E D10 | xx XX) o 0 lidololetilololofels blolalol o
720 2 - Oooaooaaooaoaooo
?Q 530 O‘OCGOOGDODODOOOO
—> 40 /.
727 /)50 [
2 B B N P
. : . Py .
" . . o P
/
/
728 —>N. 7

WO 99/18509 10 / 27 PCT/US98/21107

HorT LR(TE To 1BA &

7%°
701{ Wk /73‘74 42 w/JCZL
PBA/['VFBA/ [MVPBA O

/6 LBA BlkA%r Blk Addr g fect jSissiepeinnispmny
Hg \>log W7 T o 1T Fﬁg Ogﬂgg O112B141s|67|8l|1q1 T ‘é‘xﬂu
20 —520 [- el IoloTelaTo
7. XX 0 1075 % 2901 dols| o] ol dploto
722 —>% agdoldoololedSlolploloT 75
777 //vSO 7
7ﬂé ‘ : L /4 . - .
’ . . o - [} o
’ ¢ . . ’ .
//
728 —>Na 7

700 T

Hos7 KRITE 70 LPAS

72,7 780 3%, 714
- 7 77?’
PBA/ ‘VPBW }chBA / U tccz /é\

ove OOaoonyg
P — LB Bk AL Bk Addr ?!‘lﬂg ﬂsig Fidg|Fiag | Olt}213|4i5|7|al chaiad) 13
7/E —>10 % = o lll‘ ?'\ 8 11d0lololli]ololo] s (n 10 1al0T 6
dddad
720 523% XX xx 0 L 1010 aaacoaopgggco’gggo
7?2.,..—7 o)
/
727 ﬁSO /
726 ¢ . /: L IR
4 : L4 . - e
. ¢ 4 . 4
//
728 —>Na 7

7

700 T

WO 99/18509 11 /27 PCT/US98/21107

HosT Weires 70 LBA 7

7%°
N B v 71

PBA/ 'VPB%I VPBA ovel U
., PRA/[VS VPEA ! cc LUnOmnOn
7/? S i ﬁag g‘ig F(l;gFlgg ft]203]ls| 7l gh 1y A 13
20_. ; o I 3 qoiiotiel) ool Iolslalole
7 . ’ aolgaddo nAooaooo
7yg 30 ooceooooooooooo Q
. : /
7 7 ﬁSO A
726 AT
o : ps P o e 4
c. . . 0 ’ .
. //
727 ~>na /

7

700 74

12 /1 27 PCT/US98/21107

WO 99/18509
750 752 e 6 755" s
P7‘¢(= TQ’ £ l/fﬁ £ /76
762"“13' — | Ecc TERR[Bl AR A]
7647
780 ——\)’0 512 DeT @‘F =
1 AT B gl
1F 760 '

WO 99/18509 13 / 27 PCT/US98/21107

O
A V2D LEA . /‘/ g/
tw Sem NEFTE. fEA
)
Rz W FE | S P Cvran)
T2 N SEM
L3 A
roven | {
e
7o F2AS g0

WO 99/18509 14 /27 PCT/US98/21107

HOST SENDs commpND 76)
PRITEF> L BA X N FLL ’1’__‘,\,/009

VES /MVE ﬂ-?/D//VG

FZ/}G Sé’f

SEARCH R FREE PRA Flack

LSE'/‘ .0°;/VD/MG moveE FMZPVIO/O

MoVeD Btk
I WRITE Vﬁ?ﬂ o~ LOC/?TED"FKEE)

8lock 4 A/L’f—? ‘é:cm/o OF THE Io) 12
e N2

N FUH, SET. UstD’ AAG Comresrovoms

70 LBA. X PLO 1014
WRITE VPBA _ OF THE . .
NEWLY - LOCATED Free BLOCK (ﬂlonD GLeck)

7S THE MovE FBA ReGIsTER
WAITE DATA. OF LBA-. X o |~ /0 18
BLstle 7o THE NEWLY-LoCATED

FREE Plock (moVED frock) v
FLA Y

>

INCREmEwT <B4 X BY owE 5
pwo Ave 7o kevtgn 1 OF

Fig. 27

N/olé

WO 99/18509 PCT/US98/21107
15/27

' o~/ 0272
1. _MoVveE. . LBA X _Rock 7o -
A L MOVED. . 3L0Ck)

J102%
] oF THE !
1o LRASE ML Locdnons N @1 oc ke)
FLRSH CoRRESPONDING T LBH X

A CLEAL _MoveE PBA REGISTAR

L laripending Llr3

WO 99/18509 PCT/US98/21107
16/27

L sen RejtFOR FREE LI BLock

| 56T \Usen’ FLAG. CORRESPWDING
o LBA X.BLOLK LK FLASH

~[03]

CWRITE YPBA OF LOCATED FREE|.
BLotk /N LAST LOATIN OF THE

_SPM RAm

Fig2e

WO 99/18509 17127 PCT/US98/21107

T 042

{

PCT/US98/21107

WO 99/18509
18/27
(%%; T /1056 1054 /00

#1 oam (5785te) £es M Zh

" (56 5T it

B ol Gl 0sks) " (e %%‘;‘;;;_Duos,

b} atd (512 c;n;)\ 'ge _ (4 }sf
mi&, 1063 1062 ok} —

/{(55 1657 /oc,b
3| parh (512 By+es)' lgec| groue elyldole

2| perh (5 Byeo)) [gc 4 1
/

. [b3b 105¢ 1664

1 15,,057 Pk)

4 5/2: Bytes” [gcc]Bgock Dl

4 512 Bytes lece)

,:olgc,»_._./olb’f e

WO 99/18509 19/27 PCT/US98/21107

cr PRITES TOo LOAG

Hv)l
‘_/___—_—_‘_-/

1032 (36
N\ /034 137 s
tRareA . [// /—'/WZ
RAM ADD BLOGEADD [116y ng
0 l GO0 0 010
1 IFF olofolo *
2 1FF ofojola 1l
3 {EF 5(0o]o}
—]
]
)
]
|
J036 I
|
n-1 0|0} 0 ()l

Mx:fz_m | 1514:312-1110987654-3210
re ? ' '
PRA | B° “ [0] 0] 0f o} ofaTGla]a]0 ojojojojo]
MOved LBA 7 Move Locstor Gora

register
105 /70

Fig. 27

WO 99/18509 20/27 PCT/US98/21107

Hos7 WeiTES > LB S

(032 Y4 1636
\ // ///Ogg/oyo

LBA/PBA.
BLOCK . o¥Z
RAM ADD BLOGK ADD M/‘“/
0 i
1 o/1jofo 1
2 al0lojo 3
3 1FF oooo’
ﬂ
-
7 ;
[030 |
X
X
ol 0[0 0'

/05,7 151413'1211109876543210
| [T [e [r L FRRRp]
Moved L5 Mors Locar

/067’ 170
Fig- 99

WO 99/18509 21/27 PCT/US98/21107

{
v
042

ILBA/PFBA /'/—/

RAMADDBL%,%%@;DD plu 01!‘.,;

0 001 o(1(1]0 "

1] o002 o|ijofo

2 IFF olLlolo 1

3 1FF 0(0l0 O!

P

B

A .
[030 :

[05) 1514131211109876543210
’mﬁw [o[o o] o[o[o[0T Bo[o 0 Pofeo[o]
Maved LBA | IFF | Move Locater (oral
register ' f

.[051/ | FI{- 2/ /70

WO 99/18509 22/27 PCT/US98/21107

RAM ADD L0§1;§m DDUOMI
0 000 0101"
1 | IEF ol|ijijo 1
2 IR ol(Llo[o ¥
3 1FF 0/0/ojg !

3
i
i
!
|
o1 o[o[o[ol

[0F2 151413121110987654321
Move -,

WO 99/18509 23/27 PCT/US98/21107

'/03’é

1038

(034 j039 /o JO6
3 4 / _ j0#2

LBA/PBA s

RAM AD : M !

i 1

2 g1

: -

1

I

= p

j o5 :

E

-1 Gf{ 0 (ri

|052— 5141312111098 765432 1 0

WO 99/18509 24/27 PCT/US98/21107

[03C
Host writes to LBA 7 /0/53;0
ﬁ/;\ 139 ////os’z
109 RAM ADDILOSEAPP ¥olujo u !
0 000 0[1]0]1
1 1FR ol1joja -
2 IFF 0l0jo(o F’j _?7
3 IFF 0/0jojo -
Jo%o
=1 IFF 0({Gjol o
/&gﬁ - 151413121110987654321 ¢
Move register [™o57 Lo eToT o] o o[oToIT[T o[cfojolo]
MOvedLBA [~ 000] Move Locator Alogpf »
register N
jo5Y /70
E—
A o
/09?/ LBAPBA ‘o' oo (//
RAM ADDE™ghit > Iplulolm !
0 000 0[1(0]1
1 1FF o|L|o]o
2 1FF ojojofo
3 1FF 0{0|ofo0 f:/j j-;—
[0F©
o1 IFE o(0la|o
| 052 — 1514131211109876 5432 1 0
Movo register I™ 067 cfofojofojo[i1t 00000

register

MOvedrna [T000 — 7 Move Locat
[057 70

WO 99/18509 25/27 PCT/US98/21107
1036
1631 /oj’f
0§ O
/632"‘\ / 72 oz
thtcboLBAQ
RAM ADY oS hts D UOM_‘
0 000 01|01
1 IFF of1jojo "
2 1FF o[o6]o
I I)) Fl?jé
: —
/O30 '
I
{052 — 151413121110 98765432 1 0
Move regi 001 L4 0ol o OOt I[IT pJojofo[o]
MOved LBA M
MOved | 000] ave Locatar Ly,
/o5y
— [7°
J02¢ 196
S \ ((/O}Hostmmwu}AIS
- A
/052 RAM ADDYELQERADD {1 || 5 [ag N oy7
0 Go0 010
L 1FF of1fo o:
2 LEF ocl|o]jofo ¥
3 1FF ae[ojolo’
A F1j~ 37
| o
7 I
/030 J
!
}
/ o-1 1FF 0j0jofo}
{ob?Mmm'm 151413121110 987654321 ¢
A B 001 L T oo o oo}
mm Q00 Move Locator /‘)Ord

7

/79

PCT/US98/21107

WO 99/18509 26/27
63y 136 ’
[/ /703 1037 _ 160
N\ / /072
le 2 RAMADD’B%L%DD fD u o:,: o elaas
0 000 oJ1[0 1"‘
1 1FF ofljo]jo ?
2 IFF olofo (T:
3 ["9,
T olofo[ol F,j 45
|
e '
/030 :
n-1 IFF 0i10|0 (TE
b
057 — 151413121110 987654321 0
/ I};%A register I g0 {o[efo{ojo 0|1} 1f1|1]1]o]o[o]o]o]
'MOwdLBA [000 Move Lacator
/654 055 i
1635
Jo3¢ A
/0:?2 /LB\ / ’Gost.wﬁmsmLBAls
RAM ADDIBLOGE ADD |, UOM/!—._\./OyZ
o %o —TalTont
1 1FF ojljajo
2 1FF gjofojo’
3 IFR clG OT:‘
— .
- I _Eij__gj__
|
J0j0 !
!
ol 1FE gfojofo]

/Dﬂi : 15141312111098 7654321 0
Move register T 01 gy L] LI 1TATI]T plojajole
vopns o0 Vs Lo Lt

/72

27/27 PCT/US98/21107

WO 99/18509
Il
of
I [ey
LBA/PBA > /6Y2
RAM AD (é(nsA)DD'DUOM; /
0 001 0]1]110
1 LFF ofr{ofo °
2 IFF o[ojojo I
3 1FF o|a[o]o !
—
|
A7 !
[63o ' l
| '
t
n-1 1FF 0j010{0
050 151413121110 98765432 1 0
/ Move register [~ 1pp L9e[o[of o[o[OTOoTalo plofoTo 6]
MOved |
mgismrm‘ IFF Move Locator Wogy 9\
05
/ 7 /70

/:3>j. 70

INTERNATIONAL SEARCH REPORT Intemational application No.
PCT/USY8/21107

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :GO6F 12/02, 12/00

US CL :711/103, 156. 206, 165)
According to Intemational Patent Classification (1PC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 711/103, 156, 206, 165

Documentation searched other than minimum documeniation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication. where appropriate, of the relevant passages Relevant to claim No.

A US 5,479,638 A (ASSAR et al) 26 December 1995, entire| i-14
document.

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents T" later document published after the international filing date or priority
. date and not in conflict with the application but cited to understand
A" document defining the general state of the art which s not considered e principle or theory underlying the invention
to be of parucular relevance
. . 1 filine . X" document of particular relevance; the claimed invention cannot be
E earlier document published on or after the miernational filing date considered novel or cannot be considered to involve an inventive step
*L” document which may throw doubts on prionty claim(s) or which s when the document is taken alone
cited to establish the publication date of another citation or other . . X .
special reason (as specified) "y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
P document pubhished prior 10 the nternational filing date but later han s g » document member of the same patent family
the prionity date clamed
Date of the actual completion of the intemational search Date of mailing of the intemational search report
08 JANUARY 1999 02FER 1999
Name and mailing address ol the 1SA-US Authorized officer
Commissioner of Patents and Trademarks
Box PCT e N
Washington. D.C. 20231 REGINALD G. BRAGDON . "“ .
Facsimile No (703) 305-3230 Telephone No. (703) 305-323

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT Intemational application No.
PCT/US98/21107

B. FIELDS SEARCHED
Elcctronic data bases consulted (Name of data base and where practicable terms used):

APS, Japanese Patent Abstracts, European Patent Abstracts, IEEE periodicals
search terms: flash memory. feeprom. logical block address. physical block address, re-write, move, erase, free, unused,
unallocated

Form PCT/ISA/210 (extra sheet)(July 1992)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

