

NOTCHING DEVICE

Filed Nov. 1, 1928

Inventor: Emil Falcke, by Charle Villar His Attorney.

EMIL FALCKE, OF BERLIN, GERMANY, ASSIGNOR TO GENERAL ELECTRIC COMPANY, A CORPORATION OF NEW YORK

NOTCHING DEVICE

Application filed November 1, 1928, Serial No. 316,554, and in Germany January 7, 1928.

My invention relates to notching devices. In the accompanying drawing a preferred for controlling the operation of a movable member between a plurality of positions and the object is to insure more effective notching

นี้เกรม กล้างหนึ่ง เกรน เรียกก็พระวันที่นักสมัยเรียก ฮ่ง นิกรณ์แก่ แม่ พระกับ นะเครื่องกระวัน คระวันกับ ก็กลมก็นนั้นสุด นักกระวันเกรียกก็ พระกับ กรุงนี้ มีการกำนวง พูดูการที่สุดสุด กรุงเกรม การกระวั

5 action of such devices.

03

In electrical switching apparatus having contact parts rotatable about an axis between a plurality of switching positions, such for example as rotary switches, switching drums and the like, it is customary to provide notching devices in order to make the definite of the cam type having a plurality of defisive positions perceptible to the operator. The ordinary form of notching device conactions and having a constraint of the cam type having a plurality of defisions and having a casing wall 11 on which a bearing bracket

switch shaft which may either aid or retard the torque applied by the operator. In such cases the well-known forms of notching dequently happens that the desired switch posioperator leaves the cam controller in an im-

40 proper operating position.

According to the present invention this drawback is overcome by connecting the notch roller and the spring controlling it, by means of a lever transformation mechanism which with progressive penetration of the roller into the notch, in spite of the spring losing tension, produces an increased pressure Care must of course be taken that the on the roller. In this way the notching action toggle levers 18 do not reach the full straightis accentuated so as to be readily perceived ened position, but always remain at an angle 50 by the operator.

form of notching device embodying the invention is illustrated in connection with an electric controller. Fig. 1 is a front view of the controller with the casing broken away 55 to show the arrangement of the notching device and Fig. 2 is a sectional view illustrating more in detail the operating parts of the

notching mechanism.

In Figs. 1 and 2 the controller 10 is shown 60 sists of a spring pressed roller and a disc 12 is mounted. In the latter is pivotally 15 provided with notched recesses. The notched mounted the notching pawl 13 carrying the 65 recesses on the disc are so arranged that when roller 14. The notching pawl 13 is biased the spring pressed roller enters the notch and by the spring 17 into engagement with the has reached its lowest position, the rotatable notched disc 15, which is fixed on the rotatswitching member occupies one of its definite able shaft 16 of the controller. In this way 20 switch positions in which the switching de- the notching pawl cooperates with the 70 vice can be held without danger of arcing or notched disc to vary the force required to burning at the contacts. Thus the notching move the controller 10 to and from its defidevice serves to show to the operator through nite position. In order to bring the force the marked variations in operating torque of the biasing spring 17 into action on the that the switching apparatus is in the proper switching position.

of the biasing spring 17 into action on the notching pawl 13, a toggle lever system 18 is 75 provided which consists of two levers. One In certain cases, for example in the case of end of these levers pivotally engages with switches controlled by cam drums, these well- the notching pawl 13 and the other end is known notch arrangements are not sufficient rotatably secured in a bearing bracket 19 on 30 for sure operation, because the pressure of the the casing 11. At the central connection of 80 cam switching mechanism in different posi- the two toggle levers, a spring plate 20 is tions allows additional torques to act on the provided with which the biasing spring en-

Thus upon a rotary movement of the shaft 16 the roller on the notching pawl 13 enters 85 vices do not function satisfactorily and it fre- into a notch of disc 15 and due to the leverage transformation ratio of the toggle levers tions are overrun or not reached, so that the 18 varying with progressive movement, the speed of entry of the roller is reduced, but on the other hand the effective bias of spring 90 17 is correspondingly increased, so that the pressure on the roller in its lowest position is greatest, in spite of the fact that the compression of the spring 17 is reduced and hence delivers less actual pressure to the 95

toggle levers 18.

on the side adjacent the spring, so that on a 100

further rotation of the shaft 16 the roller 14 can again be withdrawn from the notch with a corresponding bending of the levers 18 and a compression of the spring 17. The notch itself may serve as a stop for the levers 18, or if desired a fixed stop 21 may also be provided in order to maintain the toggle levers 18 at an angle so that, after a long time of working and wearing away of the notching parts, reliability of operation of the device is insured.

While the preferred mechanical embodiment of the invention has been illustrated and described it will be understood that various changes and modifications may be adopted without departing from the scope of the invention as set forth in the appended claims.

What I claim as new and desire to secure 20 by Letters Patent of the United States, is,—

1. A notching device for rotatable electric switches having a plurality of definite positions comprising a disc having notches in the periphery thereof, a movable pawl for cooperating with the notches in said disc to maintain the rotatable electric switch in each of said definite positions, a spring for biasing the pawl into engagement with said notches, and a toggle lever mechanism connected at one end with said pawl and at the other end with a fixed support and at the center with said spring whereby the biasing force of the spring exerted upon the pawl is increased when the pawl enters each notch.

2. In combination, a member movable between a plurality of definite positions and having notches therein corresponding to said positions, a notching pawl cooperating with said notches to vary the force required to move the member to and from said positions, and means for biasing the pawl into engagement with the notches in said movable member, said biasing means including means

for increasing the bias when the pawl enters 45 a notch.

3. In combination, a switch element movable between a plurality of definite circuit controlling positions, a member movable therewith and provided with notches therein corresponding to said positions, a notching pawl cooperating with said notches to vary the force required to move the switch element to and from said circuit controlling positions, a spring for biasing the pawl into engagement with the notches in said member, and mechanism for controlling the biasing force of said spring to increase the bias when the

pawl enters a notch.

4. A notching device for controllers rotat
10 able between a plurality of definite circuit

controlling positions, comprising a rotatable member having notches in the periphery thereof corresponding to said definite circuit controlling positions, a notching pawl cooperating with said notches to vary the force

required to rotate the switch member to and from said definite circuit controlling position, a spring for biasing the pawl into engagement with said notches, and a leverage transforming mechanism associated with the spring for increasing the biasing force acting upon the pawl as the pawl enters the notches.

In witness whereof, I have hereunto set my hand this 16th day of October, 1928.

EMIL FALCKE.

80

85

95

100

105

110

115

120

125

130